Influence of curvature strain and Van der Waals force on the inter-layer vibration mode of WS2 nanotubes: A confocal micro-Raman spectroscopic study.



Wang, Xiao Hu, Zheng, Chang Cheng and Ning, Ji Qiang ORCID: 0000-0003-3360-3628
(2016) Influence of curvature strain and Van der Waals force on the inter-layer vibration mode of WS2 nanotubes: A confocal micro-Raman spectroscopic study. Scientific reports, 6 (1). 33091-.

Access the full-text of this item by clicking on the Open Access link.

Abstract

Transition-metal dichalcogenides (TMDs) nanostructures including nanotubes and monolayers have attracted great interests in materials science, chemistry to condensed matter physics. We present an interesting study of the vibration modes in multi-walled tungsten sulfide (WS2) nanotubes prepared via sulfurizing tungsten oxide (WO3) nanowires which are investigated by confocal micro-Raman spectroscopy. The inter-layer vibration mode of WS2 nanotubes, A1g, is found to be sensitive to the diameter and curvature strain, while the in-plane vibration mode, E(1)2g, is not. A1g mode frequency shows a redshift by 2.5 cm(-1) for the multi-layered nanotubes with small outer-diameters, which is an outcome of the competition between the Van der Waals force stiffening and the curvature strain softening. We also show that the Raman peak intensity ratio is significantly different between the 1-2 wall layered nanotubes and monolayer flat sheets.

Item Type: Article
Depositing User: Symplectic Admin
Date Deposited: 13 Feb 2019 12:57
Last Modified: 17 Mar 2024 22:25
DOI: 10.1038/srep33091
Open Access URL: https://doi.org/10.1038/srep33091
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3032778