
Sampling the mobile gene pool: innovation via horizontal gene 
transfer in bacteria  

James P. J. Hall1, Michael A. Brockhurst1, Ellie Harrison2  

1Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, 
Western Bank, Sheffield S10 2TN, UK 
2P3 Institute, Department of Animal and Plant Sciences, Arthur Willis Environment Centre, 
University of Sheffield, 1 Maxfield Avenue, Sheffield S10 1AE, UK  

ORCID: JPJH, 0000-0002-4896-4592; MAB, 0000-0003-0362-820X; EH, 0000-0002-2050-4631  

Philosophical Transactions of the Royal Society B, 372(1735).  

http://doi.org/10.1098/rstb.2016.0424 

 



organisms to acquire novelties. As with mutations, transferred genes can be neutral or 36 
deleterious, and many of the agents that facilitate HGT are entities evolving in their own 37 
right. Their interactions with the donors and recipients of HGT can set the scene for 38 
evolutionary conflicts.  39 
 40 
HGT can occur across vast phylogenetic distances, and these events may have important 41 
ecological consequences. For example, Hypothenemus hampei, a species of beetle, appears to 42 
have acquired a gene for mannanase degradation from Bacillus, enabling it to become an 43 
economically-important pest of coffee plantations [8]. In other cases, HGT appears more 44 

opportunistic, and the adaptive consequences are less clear. For example, some strains of the 45 
human pathogen Neisseria gonorrhoeae have acquired a 685 bp region of the Long 46 
Interspersed Nuclear Element (LINE1), a fragment of a retroelement gene found in the 47 
human genome that has no clear function in the recipient bacterium [9]. Inter-kingdom gene 48 
transfer can occur surprisingly often given the right ecological conditions, as is shown by the 49 
independent acquisition of the bacterial gene acdS by 15 different lineages of fungi and other 50 
eukaryotes [10]. The amount of DNA transferred can be considerable — in one case, almost 51 
an entire bacterial genome was found to have transferred into the nuclear genome of a 52 
Drosophila [11]. Events like these demonstrate that species boundaries can be more 53 
permeable than is often assumed, and that genetic information can in principle move between 54 
even highly divergent lineages. It has even been proposed that no insurmountable barrier to 55 
HGT exists [12].  HGT into metazoan genomes is striking, the more so because it has 56 
disrupted long-held assumptions about the nature of inheritance and evolution in complex 57 
organisms. However, while metazoan HGT clearly occurs, the complexity of eukaryotic 58 
genomes, and the ease by which samples can become contaminated with bacterial DNA 59 
creating false positives, have thrown some of the more extreme claims into doubt [13]. The 60 
consensus therefore is that successful HGT into metazoan taxa is relatively rare, albeit with 61 
potentially huge impact for phenotype and fitness where it does occur [14]. 62 

 63 
By contrast, in the microbial world, HGT is a fact of life. For bacteria in particular, HGT is a 64 
major mode of adaptation, making a significant contribution to genome evolution and 65 
structure [1,15,16]. Bacterial HGT has a central role in adaptation to environmental 66 
challenges, like colonisation of new environments, exploitation of novel carbon sources, and 67 
resistance to toxins [17]. The increasing evidence placing humans in the midst of an 68 
essentially microbial world [18-20], where bacteria have fundamental roles in 69 
biogeochemical cycles, health and disease, and food security, make it all the more important 70 



to understand their evolution and ecology. Furthermore, bacteria are increasingly used as 71 
model systems for understanding general evolutionary processes [21]. In this review we will 72 
focus on HGT between bacteria, although many of the themes we discuss are likely to apply 73 
when considering the horizontal transfer of traits more generally.  74 
 75 
Horizontal gene transfer is central to bacterial evolution 76 
Bacteria have several features that may make them especially well-suited for HGT-mediated 77 
evolution. All cells are generally reproductively proficient, i.e. germline, meaning that 78 
mutations and acquired genes can be easily passed down to subsequent generations. Unlike 79 

eukaryotes, bacteria lack membrane-bound nuclei, meaning that their genomes are more 80 
accessible to incoming DNA. This can enhance the acquisition and integration of new genes 81 
[12]. Bacteria can evolve rapidly, thanks to their potential for huge population sizes and short 82 
generation times, which means that infrequent gene transfer events are more likely to occur 83 
and selectively advantageous events less likely to be lost due to drift. Bacteria have a truly 84 
cosmopolitan distribution, inhabiting and adapting to a vast range of environments and 85 
performing reactions the benefits of which may be limited spatially, such as degradation of 86 
exotic carbon sources. Migration is thought to occur readily [22,23], and consequently 87 
myriad bacterial species can coexist in a community [24]. This represents diverse genetic 88 
material that can potentially transfer between, and be of value to, its members. 89 
 90 
Comparative analyses have revealed the pervasiveness of HGT in bacterial evolution and 91 
genome dynamics. Even closely-related bacterial strains can vary greatly in genome content 92 
[25], and increased sequencing shows that only a minority of genes carried by a species 93 
might be shared across all members [25,26]. This set of genes represents a ‘core genome’, 94 
and can be contrasted with the ‘variable’ or ‘accessory’ genome which represents genes 95 
present only in a subset of strains [27]. The total of all the unique genes in a species, termed 96 
the ‘pan genome’, generally increases in size with each new strain sequenced (though this can 97 

vary between species [28]), a pattern which emerges because different lineages within a 98 
species acquire and lose variable genes from other species in their local communities. The 99 
size of the pan genome, and its distribution amongst strains, hints therefore at a large ‘pool’ 100 
or ‘library’ of genetic material that is available for acquisition — a genetic resource on which 101 
evolving bacteria can draw for adaptation. This library is apparently well-used. Comparative 102 
studies show that in several bacterial lineages, genes are acquired and lost at rates comparable 103 
to or even greater than nucleotide substitutions [29,30].  104 
 105 



Machines for spreading genes  106 
In principle, HGT requires two physical processes. First, genetic information must cross 107 
biological membranes into the recipient species. Second, the genes must be linked to a 108 
functioning origin of replication in a germline cell to ensure subsequent vertical transmission 109 
in the recipient. There are several well-defined mechanisms that facilitate gene transfer 110 
between bacteria by enhancing one or both of these processes (figure 1), with novel 111 
mechanisms still being characterised and, in all likelihood, more yet to be discovered.  112 
 113 
Traditionally there are three canonical mechanisms of DNA transfer in bacteria: conjugation, 114 

transduction, and transformation. Conjugation occurs when a donor bacterium expresses a 115 
multi-component macromolecular membrane-traversing structure — a ‘conjugative pilus’ — 116 
which provides a physical link for DNA to move between donor to recipient [31,32]. 117 
Transferred DNA contains an ‘origin of transfer’ (oriT), a sequence of bases which is 118 
recognized by the conjugative machinery [33]. Transduction occurs when bacteriophage from 119 
a donor bacterium package non-phage DNA in viral particles which then infect other bacteria 120 
[34,35]. Both conjugation and transduction provide protection for DNA from environmental 121 
damage after it leaves the donor cell. Natural transformation is the process by which bacteria 122 
take up DNA from their environment. This occurs by the retraction of cell surface fibres (pili) 123 
which pull double-stranded DNA close to the cell membrane, allowing uptake via a 124 
conserved membrane pore. The DNA substrates for transformation may be actively secreted 125 
into the environment by donors [36], or released by dying bacteria (e.g. following lysis by 126 
phages, [37]). It has been recorded that bacteria can take up genes released by neighbours 127 
they themselves have killed [38]. More recent research has identified other mechanisms by 128 
which DNA can transfer between hosts. Gene transfer agents (GTAs) are DNA-containing 129 
particles that resemble phages, but are incapable of carrying the genes for particle production 130 
[39]. Genes can also be transferred between bacteria that form intercellular connections via 131 
nanotubes [40] or membrane fusion [41]. Some bacteria release DNA-containing membrane-132 

bound vesicles that can carry genetic information to new hosts [42]. Mycobacteria undergo 133 
an unusual form of conjugation that appears to be regulated in part by the recipient, doesn’t 134 
require oriT, and results in transconjugants whose genomes are a patchwork of its parents 135 
[43,44].  136 
 137 
Once DNA has entered a recipient, it must replicate to avoid loss by segregation during cell 138 
division. Incoming DNA can carry its own origin of replication thus replicating separately 139 
from the chromosome of its new host. Such is the case for plasmids: pieces of DNA, usually 140 



circular, which remain physically distinct to the chromosome [45]. Alternatively, the 141 
incoming DNA must recombine with a resident element to gain access to an origin of 142 
replication, either on the chromosome or an extrachromosomal replicon like a plasmid. This 143 
can happen via general mechanisms of recombination, but is enhanced by an assortment of 144 
enzymes, which catalyse the integration, excision and recombination of DNA [46]. 145 
 146 
Although the machineries discussed in this section enable the horizontal transfer of genetic 147 
innovations, it should be noted they have not necessarily evolved ‘for’ that purpose. For 148 
example, transformation tends to cause the replacement of longer stretches of DNA with 149 

shorter ones, so is more prone to reducing, rather than expanding, genome content [47]. 150 
Various restrictions on assimilating DNA from unrelated strains suggests that transformation 151 
may tend towards being a more conservative than innovative process [48,49]. But perhaps 152 
more importantly, many of these mechanisms are not in fact under the control of the bacteria 153 
but are instead controlled by semi-autonomous segments of DNA which, far from being 154 
functional tools for bacterial gene exchange, have their own self-interest at heart. 155 
 156 
Mobile genetic elements: perpetrators of HGT 157 
From the perspective of a gene, HGT represents another opportunity for reproduction, and 158 
thus is subject to natural selection. The microbial world is teeming with mobile genetic 159 
elements (MGEs), genetic entities that are adapted to transferring between strands of DNA 160 
and between different bacterial hosts [50]. The bestiary of MGEs is rich, and the elements 161 
involved are dynamic, modular, and nested. For example, transposable elements (TEs), DNA 162 
sequences which carry genes enabling them to hop between DNA strands, can be found on 163 
larger elements such as plasmids which carry an origin of replication [51]. Plasmids may 164 
carry their own set of genes for conjugative transfer (i.e. conjugative plasmids), or, if they 165 
have a compatible oriT, may utilise the conjugative machinery encoded by a different 166 
replicon (i.e. are mobilizable) [33,52]. Plasmid gene content is dynamic, and plasmids that 167 

acquire new genes from their hosts, perhaps through the activity of TEs, carry these genes 168 
onwards when they conjugate [53,54]. Integrative and conjugative elements (ICEs) resemble 169 
plasmids in many ways, except they carry enzymes that catalyse insertion into the host 170 
chromosome and thus do not need to carry their own origin of replication [55]. 171 
Bacteriophages can be either purely virulent, killing their hosts quickly in order to reproduce, 172 
or ‘temperate’ phages, that, similarly to ICEs, can insert their genomes into the bacterial 173 
chromosome. Both types of phages can mediate HGT. For temperate phages there is an 174 
opportunity for bacterial genes or transposons to become integrated into the phage genome 175 



and thus be co-inserted into the bacterial genome when they integrate, called lysogenic 176 
conversion [56]. However for all phages, bacterial DNA or other MGEs can be packaged in 177 
phage particles and become transferred by transduction [57]. Indeed, some integrative 178 
elements specialise in repurposing phage capsids for their own transfer [58]. Collaborations 179 
and conflicts between MGEs can therefore enhance their ability to spread within and between 180 
hosts. 181 
 182 
MGEs can carry genes other than those necessary for transfer and replication. These genes — 183 
or where they can be functionally grouped, ‘modules’ [59] — may help the selfish vertical 184 

transmission of the element. For example, partitioning systems segregate plasmids between 185 
daughter cells, reducing the frequency of plasmid-free offspring, and toxin-antitoxin systems 186 
impose a large (usually lethal) cost on daughter cells that have lost the MGE, favouring MGE 187 
carriers by removing such competitors from the population [60]. The evolutionary benefits of 188 
such modules are easy to appreciate. Many MGEs also carry ‘accessory genes’, which do not 189 
play a direct role in their vertical or horizontal transmission. Instead, accessory genes may 190 
have effects at higher organisational levels, boosting the success of the element indirectly. 191 
For example, the spread of antimicrobial resistance (AMR) genes is facilitated by the carriage 192 
of these genes on elements such as transposons, ICEs and plasmids [61]. Acquiring these 193 
accessory genes can allow a bacterial host to flourish in otherwise deadly environments, with 194 
concomitant positive effects on the elements that it carries. The benefits of accessory gene 195 
carriage demonstrated by the success of integrons, elements first identified on MGEs that 196 
appear adapted for the acquisition, assembly, and expression of accessory genes [62,63]. Yet, 197 
the function of many accessory genes is not known [64], and the selective factors that favour 198 
their mobility and co-occurrence are similarly unclear. Nevertheless, MGEs likely constitute 199 
the means by which most genes travel through bacterial communities, and are therefore 200 
potent agents of HGT [65,66]. 201 
 202 

Thus, there exist many potential routes by which genes can transfer between bacteria, and 203 
although rates for processes have been measured experimentally (e.g. [67-69]), understanding 204 
the relative importance of these mechanisms in situ is complicated by the fact that efficacies 205 
are likely to vary between species and environments [45,70]. This can stem from physical 206 
limitations, for example, mechanical agitation can inhibit conjugative transfer [71] and 207 
different environments are more or less harsh to extracellular DNA, affecting opportunities 208 
for transformation [72]. It is also likely to be driven by the ecology of both bacteria and 209 
MGEs, for example lysogenic conversion is more common among bacteria with fast growth 210 



rates [73], which likely reflects the conditions which favour the life history strategy of 211 
temperate phages. Genome analyses suggest that plasmids are better-connected ‘hubs’ in 212 
networks of gene exchange than phages, for example, [66], but it can be difficult to identify 213 
how genes have moved by analysing their sequences [74]. A clear priority for future research 214 
is to quantify the relative importance of HGT mechanisms and how such rates vary with 215 
taxonomy and ecology. 216 
 217 
Costs, benefits, and conflicts in HGT 218 
Horizontally-transferred genes have the potential to provide their recipients with striking 219 

benefits. But HGT is not a benign process, and gene exchange can impose significant fitness 220 
costs on both donor and recipient. Indeed, the distribution of fitness effects of HGT has been 221 
proposed to be more dispersed than that of nucleotide mutations [29], with potential costs, as 222 
well as potential benefits, likely to be more extreme. Costs emerge in the short term from a 223 
variety of mechanisms [75]. Incoming genes represent additional DNA that draws on cellular 224 
resources for replication, transcription, and translation. The sequence composition of 225 
acquired DNA may be poorly optimised for the host’s expression machinery, resulting in 226 
stalled ribosomes, misfolded proteins, and triggering of stress responses, while expressed 227 
genes may interfere with cellular homeostasis by disrupting metabolic or signalling 228 
processes. Acquired TEs can proliferate in the chromosome, damaging the genes into which 229 
they insert and causing gene loss through recombination. Donors are also affected. The 230 
production of conjugative machinery is metabolically expensive, and exposes its bearers to 231 
‘male-specific’ bacteriophage that recognize and use the conjugative pilus as a receptor [76]. 232 
The release of capsids to secrete genetic material, through generalized transduction or GTAs, 233 
can require lysis [39]. Unlike the metaphors that refer to transferred genes as swappable 234 
‘smartphone apps’ [77], HGT may in reality be a more traumatic experience. 235 
 236 
Several mechanisms have evolved that can inhibit HGT, allowing cells to escape this 237 

disruption [45]. For example, DNA restriction-modification systems and CRISPR-Cas loci 238 
represent ‘immunity’ systems that recognize and selectively degrade foreign DNA. Though 239 
they likely evolved as a means of resisting highly antagonistic agents, such as bacteriophage, 240 
these systems may also impact potentially beneficial MGEs [78,79]. They therefore have the 241 
potential to cut lineages off from the flow of adaptive innovations. Experimental studies 242 
exploring this tension show that where pressure to acquire plasmid-borne genes is strong 243 
enough, bacteria tend to jettison their CRISPR-Cas immunity loci completely [80], enabling 244 
gene acquisition. However, immunity loci are also horizontally transferred, so it is possible to 245 



re-acquire them. Indeed, comparative studies show no correlation between the degree of 246 
CRISPR-Cas immunity and recent HGT acquisitions [81], suggesting that immunity to HGT 247 
is likely to be dynamic, with transient periods of susceptibility and resistance. Besides 248 
physically degrading foreign DNA, bacteria can also exert some control over the expression 249 
of recent acquisitions. Newly-arrived DNA tends to be relatively AT-rich in comparison with 250 
the resident chromosome, possibly reflective of an itinerant lifestyle [82]. The histone-like 251 
nucleoid structuring protein (H-NS), a regulator encoded by bacteria, binds to and silences 252 
AT-rich DNA, preventing costly and maladapted expression of foreign genes [83,84], and 253 
representing a form of ‘censorship’ by the established genome.  254 

 255 
An important aspect of the MGEs that facilitate gene exchange is that they themselves 256 
reproduce and mutate, and are subject to natural selection. They therefore have their own 257 
fitness ‘interests’, which may not necessarily be aligned with those of their hosts. For 258 
example, plasmids are under selection to increase copy number within a cell, but high copy 259 
number imposes a high cost on that cell [85]. This can generate significant evolutionary 260 
conflict between hosts and MGEs. Plasmid carriage, for example, can exert a considerable 261 
toll on host fitness, and selection might favour hosts which have managed to shed their 262 
plasmid burden [86]. Meanwhile, to prevent their loss, MGEs acquire modules to ensure their 263 
maintenance, such as those involved in plasmid partitioning, or genes which disable the 264 
host’s CRISPR-Cas immunity loci [87]. Vertical and horizontal modes of MGE transmission 265 
are likely to trade off against one another: adaptations that improve the ability of an MGE to 266 
move across lineages are likely to make that MGE costlier to the host it is in, while decreases 267 
in cost are likely to come from repressing horizontal transfer [88]. Hosts are under pressure to 268 
‘domesticate’ or shed fractious MGEs, while MGEs are under pressure to maintain 269 
autonomy. In this context, it is interesting that of the three canonical mechanisms of DNA 270 
transfer, only one (natural transformation) is under the direct control of bacteria, the others 271 
are encoded by the semi-autonomous MGEs that inhabit them. The mobile gene pool may be 272 

akin to a library, but the books are alive.  273 
 274 
Considering the potential for conflict between MGEs and their hosts, carriage by MGEs of 275 
potentially useful accessory genes, such as those involved in antimicrobial resistance or 276 
virulence, is difficult to explain. The benefits of accessory genes are likely to be highly 277 
context-dependent, varying with chemical, physical, and social environment [89-91]. 278 
Plasmids, for example, carry genes for resistance to environmental pollutants even in pristine 279 
habitats [92]. Under such conditions, where accessory genes are not beneficial, plasmids 280 



persist as parasitic entities, and would be expected to become more efficient parasites, 281 
streamlining their genomes through accessory gene excision and increased transfer rate. 282 
Positive selection for accessory genes could offset the costs of plasmid carriage, but under 283 
such conditions selection would favour integration of the beneficial traits into the host 284 
chromosome and loss of the plasmid backbone. Regardless of selective conditions, accessory 285 
gene carriage by MGEs, though widespread, appears problematic. This puzzle has been 286 
termed the ‘plasmid paradox’ [93], but it can be generalised to include other MGEs such as 287 
transposons and integrative elements which maintain accessory gene mobility. 288 
 289 

Keeping genes moving — resolving the plasmid paradox  290 
Experimental evolution studies are providing some answers to this problem, at least for 291 
plasmids. Co-evolution between plasmid and host can rapidly ameliorate the major costs of 292 
plasmid carriage, reducing the effects of purifying selection and maintaining gene mobility. 293 
Compensatory evolution can occur on the chromosome [94-96] or to the plasmid [97,98], and 294 
may be specific to that host-plasmid pairing or represent a more general adaptation. 295 
Interestingly, in some cases plasmid cost emerges from conflicts with other horizontally-296 
transferred elements. In Pseudomonas aeruginosa PAO1, cytotoxic gene expression from the 297 
small plasmid pNUK73 is induced by two recently acquired chromosomal genes. Disruption 298 
of one or both of these genes alleviates plasmid cost, resulting in maintenance of the plasmid 299 
and the antibiotic resistance gene it carries [99]. Some plasmids reduce their burden by 300 
deploying their own H-NS-like genes, which reduce burden by repressing plasmid gene 301 
expression [100]. Evolution of gene regulators may prove to be a general theme in the 302 
accommodation of acquired genes, as comparative analyses show that gene regulatory 303 
regions tend to correlate with the accessory compartment rather than the core genome [26].  304 
 305 
Alternatively, where rates of conjugation outweigh the costs of carriage and imperfect 306 
transmission to daughter cells, plasmids can be maintained in a population through infectious 307 

transfer [101]. Though there has been considerable debate over whether they are achieved in 308 
nature, high infection rates have been shown to sustain carriage in several laboratory 309 
experiments, at least over short periods [102-104]. Persistence through infection leads to a 310 
more antagonistic relationship between plasmids and their hosts: hosts are predicted to 311 
develop adaptations for actively resisting (re)-infection, whereas plasmids are likely to lose 312 
accessory genes to become better parasites.  313 
 314 



Whether and how conflict with MGEs is resolved varies between hosts, as differing gene 315 
content between strains offers different opportunities and constraints to conflict resolution. In 316 
some species, plasmids are highly unstable due to poor vertical transmission, in others they 317 
are unstable due to a high cost [86], with differing evolutionary outcomes. For example, the 318 
IncP-1 plasmid derivative pMS0506 evolved increased stability in Shewanella odeidensis 319 
through mutations in trfA, which reduced plasmid cost [105], but in Pseudomonas 320 
moraviensis stability was increased by the acquisition, from another plasmid, of a transposon 321 
carrying a toxin-antitoxin system, which effectively reduced plasmid loss [106] (an example 322 
of mobile elements interacting to enhance plasmid maintenance). Moreover, although 323 

beneficial accessory genes can become ‘captured’ by the chromosome under positive 324 
selection, with consequent loss of the plasmid, this phenomenon varies between species 325 
[107].  326 
 327 
MGEs are not just the traits they carry, and the relationship between these elements and their 328 
hosts may be multifaceted and more subtle than the effects of their accessory genes. 329 
Temperate phages, for instance, can be effective ‘weapons’ in bacterial warfare [108] while 330 
plasmid encoded conjugative pili may can help bacterial hosts to form biofilms [109]. 331 
Besides these ecological effects, MGEs can alter bacterial evolution and gene regulation in 332 
ways beyond gene acquisition. Integrative elements like temperate phages, transposons and 333 
other IS elements can jump into genes and regulatory regions. This sledge-hammer approach 334 
to gene disruption can lead to rapid adaptation of the host to new environments [110,111]. 335 
Recent advances may also suggest that integrative elements may actively integrate into and 336 
excise out of bacterial genes to act as functional ‘switches’ in turn disrupting and restoring 337 
gene function [112].  Furthermore, the multicopy nature of many of these elements both 338 
increase the opportunity for mutations in the genes they carry [113], and, in the case of 339 
plasmids, constitutes a responsive platform for altering gene dosage by varying copy number. 340 
During infection, Yersinia requires an increased gene dose of its type 3 secretion system 341 

(T3SS) for efficient colonisation. This is achieved by a transient increase in copy number of 342 
the virulence plasmid pIBX, which carries the T3SS, from 1 to 3 per cell [114]. Aureimonas 343 
species carry plasmid-borne ribosomal RNA (rRNA) genes, potentially enabling rapid change 344 
in copy number which might provide selective benefit under changing environmental 345 
conditions [115].  346 
 347 
Plasmid maintenance in a species, through amelioration or infectious transfer, may resonate 348 
through a community. In species-rich microbial communities, a subset of members able to 349 



maintain plasmids may act as a ‘source’ species for otherwise unfavourable hosts [107], a 350 
pattern that is reflected in the fact that the ability of a plasmid to invade a microbial 351 
community is correlated with existing plasmid maintenance [116]. Plasmids can still 352 
conjugate from hosts that have completely ameliorated their cost [96], and the ability of a 353 
plasmid to invade a diverse fraction of a community [117] means that a few source species 354 
could maintain community-wide gene mobility.  355 
 356 
The impacts of HGT on genome evolution 357 
Genes can be rapidly lost as well as gained, and gene loss frequently acts to pare down 358 

bacterial genomes [118]. This balance between acquisition and loss gives rise to the patterns 359 
of HGT that become apparent in large-scale genome analyses. These infer HGT by 360 
identifying genes shared between lineages and thus detect both recent gene transfer events 361 
and those which occurred longer ago [30]. Shared genes represent not only successful 362 
transfer, but also maintenance in the donor and recipient lineages [119]. There is a bias in the 363 
types of gene detected by these studies, leading to theories about why certain genes are 364 
overrepresented amongst shared genes (i.e. are more ‘transferable’ than others). ‘The 365 
Complexity Hypothesis’ suggests that a gene’s associated biological process is the main 366 
determinant of its transferability, with ‘informational’ genes (involved in transcription, 367 
translation and replication) less likely to be successfully transferred than ‘operational’ genes 368 
(involved in functions such as metabolism and regulation) [15]. This hypothesis has since 369 
been refined to show that the primary factor impacting transferability is the number of 370 
protein-protein interactions the gene product is involved in [120]: genes highly integrated 371 
with many partners in one cell will be unlikely to provide benefit in a different cellular 372 
environment. Innovations that perform distinct, specific tasks are thus more likely to be 373 
maintained in a new lineage. 374 
 375 
The apparently high rates of gene gain and loss detected when comparing recently diverged 376 

lineages relative to more ancient branches [29], suggests that transferred genes ‘live fast, die 377 
young’, undergoing constant turnover [30]. Those which are beneficial are retained by 378 
selection, whilst others, excised by the pervasive razor of gene deletion, are lost [118]. A 379 
study of HGT amongst human-associated microbes showed that although genes with 380 
plasmid-, phage- or transposon-related functions were identified, they comprised only a small 381 
fraction of the transfers detected [121]. This suggests that while MGEs can enhance HGT, 382 
they aren’t required for long-term maintenance of transferred genes in the recipient. Longer 383 
timescales are likely to see retention of beneficial genes and loss of their means of entry 384 



[122]. Indeed, the genetic context of transferred genes varies considerably between 385 
individuals and between populations [74] due to recombination breaking linkage. This is 386 
consistent with a model of HGT whereby horizontal gene spread is lubricated by the activity 387 
of MGEs, but over longer periods the signatures of these elements is gradually erased as the 388 
functional genes become integrated into the physiology of their new hosts.  389 
 390 
Where there is sufficient HGT, selection appears to act on genes, and sweeps can carry a 391 
particular allele to fixation in a population without purging other loci of their diversity, as 392 
was observed in a marine Vibrio population [123]. However, if advantageous alleles arise 393 

where there is a relatively low rate of HGT, genetic diversity is lost in a ‘genome-wide’ 394 
selective sweep, resulting in a much more clonal population. A nine-year study of 30 395 
bacterial populations in a freshwater lake found gradual purging of genome-wide diversity in 396 
one species of green sulphur bacteria due to a selective sweep [124], though these dynamics 397 
were not shared by other species at the same site. Interestingly, propensity to undergo gene-398 
specific or genome-wide selective sweeps may be a stable trait, with low-diversity 399 
populations with evidence of prior genome-wide sweeps more likely to undergo future 400 
diversity-purging sweeps [125]. This suggests that the flow of genes varies within and 401 
between species, and is structured by consistent barriers. These barriers are likely determined 402 
in large part by the peculiarities of the elements involved, for example carriage and 403 
compatibility of MGEs, or presence of cognate restriction-modification systems [45,126].  404 
 405 
HGT shapes bacterial populations  406 
The opportunity for gene transfer can have significant effects on the genetic structure of 407 
bacterial populations. Related bacteria end up with fewer genes in common, as lineages 408 
acquire different sets of genes from their local neighbours [127]. Meanwhile, horizontally-409 
transferred genes are associated more with ecological conditions or geographical locations 410 
rather than the phylogenetic lineages in which they are found [25,74,121]. In some cases 411 

these genes have a clear relationship to the local environment, encoding, for example, 412 
degradation of locally-occurring carbohydrate sources [74,128], or biofilm formation and 413 
host colonisation [123]. Where bacteria can migrate, MGEs may be under selection to 414 
maintain mobility of these ‘niche-specific gene pools’ [129], perhaps by transfer to and 415 
assembly on a readily-exchangeable plasmid or ICE, since transfer of these locally-beneficial 416 
traits to potentially competitive newcomers benefits the success of the MGE [101,130].  417 
 418 



Within communities HGT promotes diversity, rescuing unrelated species from purifying 419 
selection by the spread of ecologically relevant traits [101]. At the same time, HGT increases 420 
relatedness at specific loci, creating conditions conducive to the evolution and success of 421 
‘cooperative’ traits (which may likewise be niche-specific). Cooperative traits, in this 422 
context, are costly actions that provide a benefit not only to the individual performing them, 423 
but also to their neighbours. Where neighbours do not reciprocate, co-operative traits are 424 
difficult to explain, because co-operators, burdened by the cost of their actions and sharing 425 
the benefits, are out-competed. Cooperative traits are thus expected to succeed where the 426 
recipients of the co-operative action are likely to be co-operators too. By spreading the genes 427 

involved in cooperation between otherwise unrelated individuals, plasmids and other MGEs 428 
can favour cooperation. In other words: from a plasmid’s perspective, inducing cooperative 429 
behaviour in their hosts is beneficial, because it enhances the success of neighbours that are 430 
likely to become plasmid hosts too, through HGT [131]. Consistent with this, plasmids and 431 
other MGEs are overrepresented in accessory genes that encode traits regarded as 432 
cooperative: secreted functions the benefits of which are shared as ‘public goods’ amongst 433 
neighbours [132]. Experimental and modelling studies on a synthetic plasmid system also 434 
suggest that HGT can favour cooperative traits [133].  435 
 436 
The acquisition of new traits by HGT can have decisive effects on the evolutionary trajectory 437 
of the recipient lineage with consequences that extend into human society. Pathogenic 438 
lineages often owe their devastating behaviour to genes harboured on MGEs. The ymt gene, 439 
which provided the agent of plague, Yersinia pestis, with an arthropod vector by allowing it 440 
to colonize the guts of fleas, was acquired when a TE transposed into a plasmid sometime in 441 
the late Bronze age [134]. The lysogenic phage CTX-phi converts Vibrio cholerae hosts from 442 
non-pathogenic to pathogenic by the expression of cholera toxin, which was acquired 443 
horizontally by CTX-phi, exemplifying the nested levels of gene mobility in microbes [135]. 444 
Meanwhile the efficiency and flexibility of HGT, amplified by this nested structure, can be 445 

observed in the spread of AMR genes in hospital-acquired infections, where resistance genes 446 
carried on transposons are able to hop between different resident plasmids each able to infect 447 
multiple host lineages [54]. On a larger scale, HGT between more divergent participants lies 448 
at the root of key evolutionary transitions — although a matter of current debate in the 449 
literature, it has been suggested that major phylogenetic transitions in Archaea are associated 450 
with HGT from Eubacteria [136,137]. New acquisitions causing dramatic shifts in phenotype 451 
space offer opportunities to take up a very different lifestyle.  452 
 453 



Concluding remarks  454 
HGT amongst microbes may prove to be a good model for understanding the spread of 455 
innovations at other scales. Certainly, microbes have various idiosyncrasies that make them 456 
exceptionally susceptible to HGT as an engine of evolutionary change, and harbour well-457 
described elements that are adapted for the job. But though the mechanisms facilitating it 458 
remain unclear (though some candidates have been described, [4,138]), the occurrence of 459 
HGT within and between multicellular eukaryotes is becoming increasingly apparent [14]. It 460 
will be interesting to see how far the ecological drivers of HGT in microbes similarly 461 
promote gene exchange amongst other lifeforms. The interaction between selection and drift 462 

[127] and the ability for HGT to facilitate rapid adaptation of migrants [130] may have 463 
particular relevance.  464 
 465 
Generalising further, bacterial HGT demonstrates that, for the spread of innovations, ‘the 466 
medium is the message’ [139] — at least in the short term. High impact innovations are 467 
usually carried into cells by selfish MGEs, and though their signal may eventually be masked 468 
by gene loss, recombination, and domestication, the peculiarities of these strange semi-469 
autonomous biological entities affect both the ways that genes flow through communities, 470 
and the consequences of this flux. Understanding the negotiations between MGEs and their 471 
hosts may therefore be as important as understanding the ecological or clinical significance of 472 
the genes that they transfer.  473 
 474 
 475 
Figure 1. The many routes for horizontal gene transfer. DNA can be transferred between 476 
individuals by multiple mechanisms falling broadly into three categories. In transduction 477 
(blue text) DNA is transferred either on as part of the phage genome itself or as additional 478 
DNA packaged into phage particles or gene transfer agents. In conjugation (yellow text) 479 
donor cells form conjugative pili, typically encoded on plasmids or integrative conjugative 480 

elements, through which DNA is transferred. Finally transformation (red text) is the process 481 
by which DNA in the environment is actively taken up by the donor cell. In addition, recent 482 
studies have shown that bacteria can also transfer DNA fragments in membrane bound 483 
vesicles and via nanotubes.  484 
 485 
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