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Abstract 

Geometric stability is a necessary criterion to guarantee stable equilibrium in engineering 

structures. However, we generally encounter enormous calculations to examine the geometric 

stability when we make variations on the geometry or the connectivity of a given 

kinematically and statically indeterminate structure. This study describes how symmetry is 

utilized to enhance the mobility and geometric stability analysis of symmetric skeletal 

structures.  Symmetry-extended mobility distinguishes representations of the internal 

mechanisms and self-stress states from relative mobility based on their inherent symmetries 

using group-theoretic method. Thus, it acts as an efficient tool to evaluate the order of internal 

mechanisms that may be indistinguishable by traditional structural approaches.  Further, it is 

used to gain effective insights into the mobility and geometric stability of a symmetric 

skeletal structure with symmetrically perturbed connectivity or geometry. The first-order 

changes of symmetry-extended mobility are deduced to describe the changes induced by the 

variations of nodal coordinates, members, and kinematic constraints, respectively. Examples 

are given to verify the correctness and effectiveness of the proposed method. We show that 

the geometry or connectivity of kinematically indeterminate symmetric skeletal structures can 

be altered while at the same time retaining geometric stability and some or all of the original 

symmetry. The results have potential application in the design of novel deployable structures. 

Keywords: Mobility; Kinematically indeterminate; Group theory; Initial imperfection; 

Kinematic constraint; Removal of members. 



  

 

 

1. Introduction 

 

Geometric stability is necessary to guarantee stable equilibriums. It is defined as a property 

of a structure which preserves its geometry under loads and allows the structure to act as a 

unified system (Macdonald, 2007). Some questions on this topic such as “what conditions are 

necessary/sufficient for geometric stability?”, “What static or kinematic characteristics of a 

structure will change or remain constant under varied geometries?” attract great attention and 

interest among researchers. These questions are crucial for many applications in the fields of 

civil and mechanical engineering, e.g., for developing novel deployable structures or 

kinematically indeterminate structures. 

Exploring answers to the above questions, Maxwell (1864) developed a mobility rule for 

pin-jointed structures. More recently, Pellegrino and Calladine (1986) classified these 

structures into four types according to static and kinematic indeterminacy, and proposed a 

criterion (Calladine and Pellegrino, 1991) for evaluating their geometric stability. Using 

constraint equations and a statical-kinematic stiffness matrix, Kuznetsov (1991) studied the 

kinematic mobility and statical possibility of self-stress states, and proposed a criterion for 

immobility.  

Further, most skeletal structures are symmetric (Guest et al., 2010; Wei and Dai, 2010), as 

they can be transformed into configurations that are physically indistinguishable from the 

original configuration. Recently, group theory has been utilized as a systematic mathematical 

tool for studying the stability of symmetric structures (Kaveh and Nikbakht, 2008; Kettle, 

2008; Zingoni, 2009; Kaveh and Nikbakht, 2010), as well as for designing novel deployable 

structures based on an existing deployable structure (Sareh and Guest, 2015a; Sareh and 

Guest, 2015b). These group-theoretic methods not only reduce the computational effort, but 

also give qualitative benefits and insights (Chen et al., 2014; Zingoni, 2014). Based on the 

irreducible representations of symmetry groups, Guest and Fowler proposed a symmetry-

extended mobility rule for symmetric frameworks (Fowler and Guest, 2000; Guest and 



  

 

Fowler, 2005). Using the symmetry-extended mobility rule, Guest and Fowler (2007) further 

identified the symmetries of the internal mechanisms and self-stress states, and thus revealed 

mobility. Therefore, the geometric stability of some symmetric structures with internal 

mechanisms can be computed efficiently. The recent examples are illustrated in the cyclically 

symmetric pin-jointed structures (Chen et al., 2013) and the highly symmetric over-

constrained structures (Chen et al., 2012). To provide necessary stability conditions, Connelly 

et al. (2009) and Chen et al. (2014) used group theory to study the stability of symmetric pin-

jointed structures. Zhang et al. (2009) used group theory to investigate the geometric 

configurations and stability of symmetric tensegrity structures. In addition, group theory can 

be extended to analyze the mobility and geometric stability of finite mechanisms (Zhao et al., 

2009; Ding et al., 2011; Wei et al., 2014; Wei and Dai, 2014) that were explored with screw 

theory. 

As geometric stability has often been evaluated by the positive definiteness of the 

geometric stiffness matrix, Guest (2006) developed stiffness formulations for prestressed pin-

jointed structures. Based on the energy method (Connelly, 1982; Connelly and Whiteley, 

1996), Vassart et al. (2000) studied the geometric stability of kinematically and statically 

indeterminate structures. The reported algorithm is capable of identifying the order of internal 

mechanisms. Using the principle of potential energy, Kovacs and Tarnai (2009) investigated 

the equilibrium and geometric stability of bar-and-joint assemblies on the surface of a sphere. 

Masic et al. (2005) studied the geometric stability of symmetric tensegrity structures with 

shape constraints. It has been proved that the structural equilibrium is preserved under affine 

node position transformations. Sultan et al. (2001) formulated the general geometric stability 

conditions for tensegrity structures. The stability conditions were expressed as a set of 

nonlinear equations and inequalities on the tendon tensions. Subsequently, Sultan (2013) 

presented the necessary and sufficient conditions for the exponential stability of prestressable 

pin-jointed structures, and discussed the advantages of the formulation of the tangent stiffness 

matrix in analytical manipulations and computations. Meanwhile, some studies have 

evaluated the geometric stability of a pin-jointed structure by heuristic optimization methods 



  

 

such as genetic algorithms and the ant colony algorithms (El-Lishani et al., 2005; Chen et al., 

2012; Koohestani, 2013). 

Nevertheless, the above methods usually concern the mobility and geometric stability of a 

structure with a specific and fixed geometry and connectivity. However, in the preliminary 

analysis or design process of a structure, the geometry or connectivity might be variable 

(Zhang et al., 2014). Obviously, repeated calculations for the geometric stability of a structure 

with variable geometry or connectivity are computationally expensive. Therefore, more 

efficient numerical methods are required to reduce the relevant computational tasks. 

Furthermore, it is known that many factors affect the mobility and geometric stability of a 

structure. Using the singular value decomposition technique, Lu et al. (2007) analyzed the 

mobility and geometric stability of kinematically indeterminate pin-jointed structures under 

external loads. They showed that a deployable structure can preserve its geometric stability in 

certain conditions. Among the components of the stiffness matrices, the main factors affecting 

the geometric stability of the structure include nodal coordinates, the connectivity patterns of 

members, and kinematic constraints (Deng and Kwan, 2005; Ohsaki and Zhang, 2006; Chen 

et al., 2014). 

This study explores the impact of symmetric variations on the mobility and geometric 

stability of symmetric skeletal structures. We proposed a symmetry method that builds on our 

previous work (Chen et al., 2012; Chen et al., 2014) and the work by Guest and co-workers 

(Fowler and Guest, 2000; Connelly et al., 2009; Guest et al., 2010). Specifically, we 

investigate the variations of nodal coordinates, structural members, and kinematic constraints 

of the structures to provide effective insights into their mobility and geometric stability. 

The article is organized as follows. Section 2 introduces the symmetry-extended mobility 

rule for kinematically indeterminate structures under symmetric variations. Current numerical 

approaches for evaluating the mobility and geometric stability of a structure are described in 

Section 2.1. Previous work on the symmetry representations of mechanism modes and self-

stress states is presented in Section 2.2. The first-order variations of symmetry-extended 

mobility for structures with varied connectivity or geometry are derived in Section 2.3. Based 



  

 

on the proposed method, Section 3 presents the impact of the nodal coordinates on the 

geometric stability of a structure. In the same section, the effect of symmetry migrations is 

discussed. Sections 4 and 5 demonstrate the impact of the structural members and the impact 

of the kinematic constraints on the geometric stability of a structure, respectively. Section 6 

concludes the paper. 

 

2. Symmetry-Extended Mobility for Structures under Symmetric Variations 

 

2.1 Mobility of a structure 

Maxwell’s rule (Maxwell, 1864) is a necessary condition for the mobility of pin-jointed 

structures by counting structural components. It is valid for kinematically determinate 

structures; for statically and kinematically indeterminate structures (Pellegrino and Calladine, 

1986), Maxwell’s rule should be expressed as: 

m s T j b k− = ⋅ − −  (1) 

where T  is the magnitude of the rigid-body translation vector, j  is the number of all the pin-

joints (including boundary nodes), b  is the number of members, and k  is the number of 

constraints on the structure (Guest et al., 2010). However, for a free-standing structure (i.e., 

k=0), k  is modified as k T R= +  to exclude rigid-body motions, where R  is the magnitude of 

the rigid-body rotation vector (Chen et al., 2014). 

   In Eq. (1), m  is the number of internal mechanism modes, which are the independent 

vectors in the nullspace of the compatibility matrix J , i.e., a solution to the compatibility 

equation (Pellegrino and Calladine, 1986; Fowler and Guest, 2000): 

= 0Jd  (2) 

where d  is a vector of nodal displacements. Moreover, in Eq. (1), s  is the number of self-

stress states, which are the independent vectors in the nullspace of the equilibrium matrix H , 

i.e., a solution to the equilibrium equation (Pellegrino and Calladine, 1986): 

= 0Ht  (3) 



  

 

where t  is the vector containing the internal forces in the members. Using the virtual work 

principle, it can be shown that T
H = J . 

The relative mobility, m s−  in Eq. (1), is not sufficient to evaluate the geometric stability 

of statically and kinematically indeterminate structures. Calladine and Pellegrino (1991) 

proposed a criterion to identify whether self-stress states can stiffen all the internal 

mechanism modes. The criterion is equivalent to the positive definiteness of the quadratic 

form of the geometric stiffness matrix 
G

K  (Guest, 2006; Ohsaki and Zhang, 2006) satisfying 

T T 0, m

G
> ∀ ∈ ℜβ M K Mβ β  (4) 

where M  is the mechanism mode matrix, and β  is an arbitrary nonzero vector. Recent work 

(Deng and Kwan, 2005; Chen et al., 2012; Sultan, 2013) reveals that the criterion provides a 

necessary condition for the stability of pin-jointed structures. Based on energy theory, a 

general condition for guaranteeing structural stability can be expressed as: 

T 0
T

δ δ >d K d  (5) 

where 
T

K  is the tangent stiffness matrix, and δ d  is the virtual nodal displacement vector. 

On the other hand, the generalized mobility criterion for over-constrained structures (Guest 

and Fowler, 2005; Chen et al., 2012) can be written in its modern form as: 

1

( ) ( 1)
b

i

i

m s T R j b f
=

− = + ⋅ − − +∑  (6) 

In Eq. (6), j  is the number of generalized joints, b  is the number of members, and if  is 

the dimension of the relative freedoms permitted by member i. 

 

2.2 Symmetry-extended mobility rule 

The mobility criteria described by Eqs. (1) and (6) express only a relationship  between  the 

number of mechanism modes and the number of self-stress states. They are not sufficient to 

identify the rigidity of a structure. The symmetry method based on group theory can not only 

detect rigidity/mobility from the results obtained through different symmetry operations 

(Fowler and Guest, 2000; Guest and Fowler, 2005), but also reveal the geometric stability of 



  

 

symmetric structures (Guest and Fowler, 2007; Chen et al., 2012). For symmetric pin-jointed 

structures, the symmetry-extended mobility rule can be written as: 

( ) ( ) ( ) ( )
T k

m s j bΓ − Γ = Γ ⋅ Γ − Γ − Γ  (7) 

where ( )mΓ  is the representation of mechanism modes, ( )sΓ  is the representation of self-

stress states, ( )jΓ  is the representation of unshifted joints, and ( )bΓ  is the representation of 

unshifted members. 
T

Γ  and 
k

Γ  are the representations of rigid-body translations and 

kinematic freedoms. Furthermore, for symmetric over-constrained structures, the symmetry-

extended mobility rule (Guest and Fowler, 2005) has the following form: 

[ ]0
( ) ( ) ( ) ( ) ( )

T R k
m s j bΓ − Γ = Γ + Γ ⋅ Γ − Γ − Γ + Γ  (8) 

where 
R

Γ  and 
0

Γ  are the representations of rigid-body rotations and full symmetry. It should 

be noted that 
T

Γ , 
R

Γ , and 
0

Γ  can be directly read from the point group theory tables 

(Altmann and Herzig, 1994). ( )jΓ , ( )bΓ , and 
k

Γ  can be obtained through evaluating the 

corresponding characters associated with different symmetry operations. 

Based on point group theory and its matrix representations, ( ) ( )m sΓ − Γ  can be decomposed 

into combinations of certain irreducible representations (Guest and Fowler, 2005; Chen et al., 

2012): 

1

( ) ( ) i i

i

m s
µ

α
=

Γ − Γ = Γ∑  (9) 

where 
i

α  is the coefficient for the thi  irreducible representation 
i

Γ  of the symmetry group, 

and µ  is the total number of the irreducible representations. As ( )mΓ  and ( )sΓ  must contain 

non-negative numbers of 
i

Γ , they are accordingly separated by the sign of 
i

α . Hereafter, we 

will demonstrate that the geometric stability of symmetric structures can be revealed relying 

on the symmetry conditions (Guest and Fowler, 2007). 

 

2.3 Variations of symmetry-extended mobility for structures with varied connectivity or 

geometry 



  

 

If the geometry or connectivity of a symmetric structure is variable, the symmetry-extended 

mobility ( ) ( )m sΓ − Γ  is a function of unshifted joints, members, and kinematic constraints. 

Hence, ( ) ( )m sΓ − Γ  in Eqs. (7) and (8) can be rewritten in a compact form as: 

( )( ) ( ) , ,
G

m s F j b kΓ − Γ =  (10) 

where 
G

F  is defined as the general function for obtaining symmetry-extended mobility, and 

subscript G  is the symmetry group of the structure. 

Using the original structure as a basic model, the mobility of a structure with varied 

connectivity or geometry can be given as: 

( ) ( ) ( ) ( )0
( ) ( ) , ,

G G G G
m s F j b k F j F b F kΓ − Γ = + ∆ + ∆ + ∆  (11) 

where ( )0 0 0, , ( ) ( )
G

F j b k m s= Γ − Γ  is the mobility of the original structure, and 0 ( )mΓ  and 

0 ( )sΓ  are the representations of the initial mechanism modes and self-stress states, 

respectively. ( )G
F j∆ , ( )G

F b∆ , and ( )G
F k∆  are the first-order changes of mobility induced by 

the variations of joints, members, and kinematic constraints, respectively. It should be noted 

that the mobility and stability of the original structure ought to be known in advance, which 

can be obtained using conventional numerical methods (Calladine and Pellegrino, 1991; 

Guest, 2006). Moreover, the symmetry representations 0 ( )mΓ  and 0 ( )sΓ  of the original 

structure should be known in advance, which can be evaluated by group theory and the 

symmetry-extended mobility rule (Guest and Fowler, 2007; Chen et al., 2014). Consequently, 

the symmetry-extended expression shown in Eq. (11) provides effective insights into the 

evaluation of the mobility and geometric stability of symmetric structures with varied 

connectivity or geometry. In this equation, only the representations of ( )G
F j∆ , ( )G

F b∆ , and 

( )G
F k∆  need to be identified. Thus, in comparisons with conventional approaches, this 

symmetry method not only on the one hand avoids repeated derivations and calculations for 

the associated matrices, such as the equilibrium matrix and the tangent stiffness matrix, but 

also on the other hand provides an efficient method for identifying whether a structure 

becomes unstable after making geometric variations. 



  

 

It is important to point out that, in some cases, geometric variations may break some 

symmetry operations of the original structure. In these cases, the symmetry group G  of the 

structure will descend into a subgroup 
1

G G⊂  (Altmann and Herzig, 1994). Accordingly, the 

symmetry-extended mobility is rewritten based on subgroup 
1

G  as: 

( ) ( ) ( ) ( )
1 1 1 1

0
( ) ( ) , ,G G G Gm s F j b k F j F b F kΓ − Γ = + ∆ + ∆ + ∆  (12) 

 

3. Impact of the Nodal Coordinates on Geometric Stability 

 

Nodal coordinates are the basic factors which determine the geometric configuration of a 

structure (Zhang et al., 2009). For kinematically indeterminate structures, any changes of 

nodal coordinates are likely to influence their geometric stability. Making variations on a 

symmetric structure while preserving its connectivity and kinematic constraints, the structure 

either retains its original symmetry, or transforms into a structure with a low-order symmetry. 

 

3.1 Invariant initial symmetry 

A symmetric structure can retain its initial symmetry group, if its nodal coordinates are 

modified by rigid-body motions, linear scaling, or symmetry operations. According to Ohsaki 

and Zhang’s investigation (Ohsaki and Zhang, 2006), rigid-body motions and linear scaling 

do not affect the structural stability. Under any symmetry operation S, the geometric stability 

of a structure remains unchanged and this can be proved and illustrated as follows. 

Considering the case that a structure is under a symmetry operation S (e.g., rotation and 

reflection), the nodal displacements d and external loads P on the structure in the new 

configuration will then be: 

S S
= ⋅d R d , 

S S
= ⋅P R P  (13) 

where 
S

R  is the nodal transformation matrix under the symmetry operation S, and 
S

d  and 
S

P  

are the corresponding displacement and load vectors, respectively.  

Further, the deformation vector e of the members is: 



  

 

s S= ⋅e T e  (14) 

where ST  is the member transformation matrix under the symmetry operation S, and se  is the  

deformation vector in the new configuration. The equilibrium equation and the compatibility 

equation of the structure, respectively, are given by: 

, ,T S S T S S S
= ⋅K d K R d = P  (15) 

S S S S S
= ⋅J d J R d = e  (16) 

where 
,T S

K  is the symmetry-adapted tangent stiffness matrix, and 
S

J  is the symmetry-

adapted compatibility matrix. Substituting Eqs. (13) and (14) into Eqs. (15) and (16), the 

matrices 
,T SK  and 

SJ  have the form: 

T

,T S S T S
=K R K R , T

S S S
=J T JR  (17) 

It is known that the eigenvalues of a matrix remain invariant under similarity 

transformations (Chen and Feng, 2012). Hence, both 
,T S

K  and 
S

J  in Eq. (17) preserve their 

original eigenvalues. In other words, the mobility and geometric stability of a structure remain 

unchanged under symmetry operations. 

Moreover, the symmetry of a structure remains invariant even though some nodes are 

displaced from their initial locations. As a result, it cannot be intuitively identified whether the 

minimum eigenvalue of 
T

K  or J  associated with the new configuration changes. Actually, 

the mobility and geometric stability can be detected from the symmetries of the mechanism 

modes and self-stress states according to Eq. (11). Since both the number of unshifted nodes 

and members and the group G do not change, the symmetry-extended mobility is independent 

of the changes of nodal coordinates. That is ( ) ( ) ( ) 0
G G G

F j F b F k∆ = ∆ = ∆ = , which leads to 

( )0 0 0( ) ( ) , , 0 ( ) ( )
G

m s F j b k m sΓ − Γ = + = Γ − Γ  (18) 

Therefore, the mechanism modes and the self-stress states preserve the original symmetries, 

and the geometric stability of the structure remains unchanged. 

This can be illustrated with examples on three-dimensional 
2nv

C  symmetric pin-jointed 

structures as follows. These pin-jointed structures consist of 2n bottom nodes, 2n top nodes, 



  

 

and 6n bars. The bottom nodes are constrained in three directions. The radius of the circles 

formed by the top and bottom nodes are 
s

r  and 
d

r , respectively, and the height is h. For the 

original structures, it satisfies 
s d

r r h= = . Such structures remain unchanged under the identity 

operation E, 2 1n −  rotation operations 
2

i

n
C  ( [1, 2 1]i n∈ − ) around the Z axis, and 2n  mirror 

operations 
i

σ  ( [1, 2 ]i n∈ ). For instance, Fig. 1 shows the symmetry operations of one type of 

the 
2nv

C  symmetric structures, i.e., a
4v

C  symmetric structure. 

These symmetric structures have one mechanism mode (i.e. m=1) and one self-stress state 

(i.e. s=1). The mechanisms cannot be stiffened and are finite mechanisms (Tarnai, 1980; 

Sultan, 2013). Thus, the structures retain full symmetry in the group 
nvC  (Guest and Fowler, 

2007; Chen et al., 2014). Affected by the variations of the nodal coordinates, 
sr ,

dr , and h are 

no longer equal; however, the structure still belongs to the group 
2nvC . Both ( )jΓ  and ( )bΓ  

remain invariant under symmetry operations. Table 1 gives the calculations of the relative 

degrees of freedom. 

The relative degrees of freedom in the symmetry group 
2nv

C  can be further reduced to: 

1 2
( ) ( )m s B BΓ − Γ = −  (19) 

Then, symmetry representations of the mechanism mode and self-stress state are: 

1
( )m BΓ = , 

2
( )s BΓ =  (20) 

The mechanism 
1

( )m BΓ =  is not fully symmetric. At this point, it is difficult to distinguish 

whether the mechanism is finite. Supposing that the structure is perturbed by a tiny 

deformation with 
1

B  symmetry; the symmetry of the geometric configuration migrates from 

group 2nvC   to nvC . ( ) ( )m sΓ − Γ  is further evaluated in the subgroup nvC : 

Group 
nv

C   E  2 , [1, 2 1]
i

nC i n∈ −  
, [1, ]

i
i nσ ∈

 
 

( ) ( )m sΓ − Γ  0 0 2 (21) 

This can be expressed in terms of the irreducible representations as: 

1 2
( ) ( )m s A AΓ − Γ = −  (22) 

Therefore, the symmetry representations of the mechanism mode and self-stress state are: 



  

 

1
( )m AΓ = , 

2
( )s AΓ =  (23) 

Eq. (23) shows that the low-order symmetric self-stress state cannot stiffen the fully 

symmetric mechanism mode. Hence, the 
2nv

C  symmetric structures with new configurations 

remain unstable. Although subjected to the changes of nodal coordinates, they are finite 

mechanisms. Meanwhile, the kinematic characteristics remain unchanged, where the internal 

mechanism retains 
1

A  symmetry and the self-stress state retains 
2

A  symmetry in the group 

nv
C . 

In order to verify the static and kinematic characteristics of the structures, in this section, 

the force method and the singular value decomposition are employed and adapted such that 

computer program is constructed leading to the intuitive illustration of the results. The 

parameters 
s

r  and h  are varied, whereas 
d

r  and the symmetry groups of the structures are 

kept unchanged. Figure 2 shows the minimum and second-smallest singular values of J  for 

the 
4v

C  symmetric structures with different 
s

r  and h. Figure 3 shows those values for the 16vC  

symmetric structures. 

It can be shown that, by making variations on 
s

r  and h, the singular values change 

accordingly. Nevertheless, all the minimum singular values can be assumed to be zero, as they 

are smaller than 10
-12

. The second-smallest singular values are nonzero, whereas the minimum 

is greater than 10
-3

. Hence, these symmetric structures with varied nodal coordinates have a 

single mechanism mode and self-stress state. 

In addition, the impact of nodal coordinates induced by different 
s

r  and 
d

r  is investigated, 

where the height h and the symmetry groups of the structures remain unchanged. The 

corresponding results of singular values of J  for the 
4v

C  symmetric and 
20v

C  symmetric 

structures are shown in Fig. 4 and Fig. 5, respectively. 

It can be seen from Figs. 4 and 5 that the singular values change significantly with the 

variations of 
s

r  and 
d

r . The minimum singular values continue to be zero, while the second-

smallest singular values are nonzero. It means that the compatibility matrix J  has necessarily 

a zero singular value, regardless of the variations of 
s

r  and 
d

r . As a result, the symmetric 



  

 

structures have a single mechanism mode and self-stress state. It should be noted that the 

results are consistent with those obtained from the symmetry analysis (see Eq. (23)). 

Therefore, variations of nodal coordinates do not alter the mobility or geometric stability of a 

symmetric structure as long as the original symmetry is retained. 

 

3.2 Migration to a lower-order symmetry group 

Admittedly, geometric position deviations of joints exist in engineering structures, caused 

by initial imperfections and uncertain errors. It tends to break the perfect symmetry of a 

structure. If the geometric locations of nodes are close to the ideal ones, small position 

deviations do not destruct the total symmetric properties of the structure. However, in this 

case, the initial symmetry group G  migrates to a lower-order symmetry group 
1

G G⊂ , 

whereas the structure maintains partial symmetry properties in the initial symmetry group G . 

And in such a case, mobility and geometric stability of a structure can be subsequently re-

evaluated in the subgroup 
1

G  (see Eq. (12)).  

A 
6v

C  symmetric pin-jointed structure is given as an example so as to illustrate and verify 

the above statement. For the 
6v

C  symmetric structure, the original geometric configuration is 

in accordance with the 
2nv

C  symmetric structures shown in Fig. 1. The geometric parameters 

are taken as 
s

0.8r = , 
d

1r h= = . Recall that the initial structure with perfect symmetry is 

mobile, and has 1m =  mode of internal mechanism and 1s =  state of self-stress. The internal 

mechanism and self-stress state are expressed in symmetry representations as 
1

( )m BΓ = , and 

2
( )s BΓ = . Table 2 shows the static and kinematic characteristics of the initial 

6v
C  symmetric 

structure. It also presents the symmetry reduction of the structure because of different position 

deviations. The first row in the table lists all subgroups of the symmetry group 
6v

C  (Altmann 

and Herzig, 1994): 
3v

C , 
2v

C , 
v

C , 
6

C , 
3

C , 
2

C , and 
1

C . Groups such as 
6

C , 
3

C , and 
2

C  do not 

possess mirror symmetry operations, and the group 
1

C  has only an identity symmetry 

operation. 



  

 

When the geometric position deviations preserve full symmetry (i.e., 
6vC ), the static and 

kinematic characteristics of the structure remain invariant, and the structure continues to be 

transformable. Otherwise, the geometric configuration resulted by deviations will have a 

lower-order symmetry. Figure 6 shows the case that the structure belongs to the symmetry 

groups 3vC , 2vC  or vC , where ∆  indicates the tiny position deviations of the specified joints. 

In these cases, as shown in Table 2, symmetries of the mechanisms are higher than those of 

the self-stress states. The structure cannot maintain a stable equilibrium state. In other words, 

the structure is a finite mechanism. It should be pointed out that the results obtained in this 

paper for these three symmetric structures are consistent with those of Kangwai and Guest 

(1999). 

If a symmetric structure has no mirror symmetry operations after geometric deviations, the 

self-stress state and the mechanism will be equisymmetric (see Table 2). Then the self-stress 

state can provide first-order stiffness to stiffen the internal mechanism. Therefore, geometric 

stability and kinematic characteristics of the structure can be different from those of the 

original structure. 

A 
8v

C  symmetric structure is presented in Fig. 7, where 
s

0.8r = , and 
d

1r h= = . First-order 

analysis reveals that the structure has 1m =  mechanism mode and 1s =  self-stress state. The 

symmetry representation of the mechanism mode is 
1

( )m BΓ = , and that of the self-stress state 

is 
2

( )s BΓ = . It turns out that the structure is unstable. To study the impact of position 

deviations to different symmetries, Table 3 shows the static and kinematic characteristics of the 

8vC  symmetric structure with reduced symmetries. In the table, symmetry groups 4vC , 2vC , vC , 

8C , 4C , 2C  and 1C  are subgroups of the group 8vC .  

Figure 7 shows the case in which the geometric configuration belongs to the symmetry 

groups 
4v

C , 
2v

C  or 
v

C . It can be noticed from Table 3 that, while the mechanism mode of the 

structure is fully symmetric, the self-stress state is symmetric with a lower-order. Therefore, 

the internal mechanism cannot be stiffened, and the structure is still unstable. 

Nevertheless, if the structure has no mirror symmetry operations and migrates to 8C , 4C , 



  

 

2C  or 
1C  symmetric after geometric deviations, the self-stress state and the mechanism will 

be equisymmetric, as listed in Table 3. In this case, it is difficult to identify whether the 

mechanism mode is infinitesimal. Geometric stability and kinematic characteristics of the 

structure should be evaluated using the energy method. 

 

4. Impact of the Structural Members on Geometric Stability 

 

A structure is composed of a number of joints and members according to specific geometric 

topology. Each type of members plays a unique role in maintaining the structural stability. In 

engineering design, the determination of key members plays an important role in evaluating 

structural safety and reliability (Murtha-Smith, 1988; Sebastian, 2004; Deng and Kwan, 2005). 

For a structure with s modes of static indeterminacy, the removal of a member is not arbitrary. 

Sometimes, in a statically determinate structure, the removal of a single member might result 

in geometric instability. In such cases, the member is identified as a necessary (non-

removable) member of the structure. In structural analysis, it is important to identify 

efficiently whether the removal of multiple members leads to structural instability. 

To identify necessary members for a statically indeterminate structure, a conventional 

method is re-evaluating the singular values of the compatibility matrix and the eigenvalues of 

the stiffness matrices. In fact, since engineering structures have numerous joints and members, 

various geometric configurations can be obtained after removing some members in certain 

ways. Consequently, extracting the singular values of the compatibility matrix and evaluating 

the positive definiteness of stiffness matrices for each possible configuration is 

computationally expensive. Here, symmetry is adopted for a systematic classification and 

removal of the members of structures. The symmetry method can efficiently distinguish the 

static and kinematic characteristics of a structure after the removal of a single or multiple 

members, resulting in revealing its structural stability. 

 



  

 

4.1 Representation of the changed members 

According to Eq. (7), the symmetry-extended mobility of the original structure can be 

expressed as: 

0 0 0 0 0( ) ( ) ( ) ( )
T k

m s j bΓ − Γ = Γ ⋅Γ − Γ − Γ  (24) 

where 0 ( )mΓ  and 0 ( )sΓ  are the representations of the mechanisms and self-stress states of the 

original structure. 0 ( )jΓ  and 0 ( )bΓ  are the representations of unshifted nodes and members. 

0

k
Γ  is the representation of invariant kinematic constraints. If the structure has no constraints, 

then 0

k T R
Γ = Γ + Γ . 

T
Γ  and 

R
Γ  are the representations of rigid-body translations and rotations. 

The geometry of a structure changes if a number of members are removed from the original 

configuration. Let t denote the way of removing the members, we can rewrite the symmetry-

extended mobility of the new structure as:  

t t t t t( ) ( ) ( ) ( )
T k

m s j bΓ − Γ = Γ ⋅Γ − Γ − Γ  (25) 

where t
( )mΓ  and t

( )sΓ  are the representations of the mechanisms and self-stress states under 

the action of t. t ( )jΓ  and t ( )bΓ  are the new representations of unshifted nodes and members. 

t

k
Γ  is the new representation of invariant kinematic constraints. The unshifted nodes and 

kinematic constraints remain the same after the removal of the members, i.e., t 0( ) ( )j jΓ = Γ  

and t 0

k k
Γ = Γ . Subtracting Eq. (24) from Eq. (25), we obtain the representation of the changed 

members: 

( ) ( ) ( ) ( )
G

F b m s b∆ = ∆Γ − ∆Γ = ∆Γ  (26) 

where t 0( ) ( ) ( )m m m∆Γ = Γ − Γ  and t 0( ) ( ) ( )s s s∆Γ = Γ − Γ  are the representations for the changes 

of the mechanism modes and self-stress states after removing some members. 

0 t( ) ( ) ( )b b b∆Γ = Γ − Γ  describes the change of the representation of the unshifted members, 

which can reveal the symmetry of the removed members. 

We note that the symmetry representations 0 ( )mΓ , 0 ( )sΓ  and 0 ( )bΓ  of the original 

structure are known in advance. Then, according to Eqs. (11) and (26), the symmetry of the 

new mechanism modes and self-stress states can be obtained, combined with the change of 



  

 

the representation induced by varied connectivity. Subsequently, the static and kinematic 

characteristics of the new structure can be evaluated. Hence, there is no need for repeated 

calculations on the compatibility matrix and stiffness matrices. The method takes advantage 

of the symmetry of the changed members, and significantly improves the computational 

efficiency. 

 

4.2 2D symmetric frameworks with selected members removed 

Figure 8(a) illustrates a 2D symmetric structure, which consists of 6 pin-joints and 15 

members. Members 1~6 are the boundary elements, members 8, 11 and 13 are the main 

diagonal elements, and the others are the secondary diagonal elements. 

The initial structure remains invariant under the following operations: the identity operation 

E, five rotational operations about the Z-axis 1

6
C ~ 5

6
C , and six mirror operations 

1
σ ~

6
σ . 

Therefore, the structure has 12 independent symmetry operations, and belongs to the 

symmetry group 
6vC . 

The rank of the compatibility matrix J  turns out to be 9r =  by extracting the singular 

values. Thus, the structure is kinematically determinate and statically indeterminate, as it has 

6s =  independent self-stress states. Accordingly, the maximum number of members that can 

be removed from the structure is six. To obtain the mobility, ( ) ( )m sΓ − Γ  is evaluated in the 

group 
6v

C : 

Group 
6v

C   E  62C  32C  2C  3
v

σ  3
d

σ  
  

( ) ( )m sΓ − Γ  6−  2−  0 2−  2−  2−  (27)  

where ( ) ( )m sΓ − Γ  is reduced as: 

1 1 2
( ) ( ) 2m s A E EΓ − Γ = − − −  (28) 

As 0m =  and 6s = , the representations of the mechanism and self-stress states are: 

( )mΓ = ∅ , 
1 1 2

( ) 2s A E EΓ = + +  (29) 



  

 

The structure has 6s =  self-stress states with different symmetry properties, which contain 

the full symmetry 
1

A . To identify the necessary members, the mobility of the resulting 

structures with a single member removed from the original structure is studied. Three distinct 

configurations exist after removing a single member from the structure, shown in Fig. 8(b-d). 

Based on the irreducible representations of the symmetry groups, the results of structures with 

different member removed are studied and listed in Table 4. 

According to the symmetry of the removed bar ( )b∆Γ , the symmetry of the structure 

changes from the group 
6v

C  to the groups 
2v

C  or 
v

C  after removing a single member, but the 

mechanism remains invariant. Moreover, the representations of the mechanism and self-stress 

states are summarized as ( )mΓ = ∅  and ( )sΓ ≠ ∅ , respectively. The resulting structures are 

kinematically determinate and statically indeterminate. In other words, the structure remains 

stable after removing any one of the members. Hence, the symmetric structure has no 

necessary members. 

Although the 2D structure has only six joints, it has many possible geometric 

configurations. However, generally, engineering structures have so many joints that 

optimizing their geometries is complex. Using the inherent symmetry and preserving 

symmetry operations as many as possible, some independent configurations can be obtained 

by removing different types of members. For example, the original structure belongs to the 

group 
6v

C . New 
6v

C  symmetric structures can be obtained by removing six interior members 

or six exterior members, as shown in Fig. 9(a) and Fig. 9(b), respectively. The symmetries of 

these structures are equivalent. Similarly, if some members of low-order symmetry are 

removed, the corresponding structure will fall into the subgroups 
3v

C , 
2v

C , 
3

C  or 
v

C , as 

shown in Fig. 9(c-h). Then, the mobility and geometric stability of the structure is re-identified 

within the relevant subgroup, listed in Table 5. 

The results of the proposed method are consistent with those from the first-order analysis, 

as listed in the last column of Table 5. In addition, removing the fully symmetric members 

necessarily causes the decrease of the combinatorial coefficient of 
1

A , which is a 



  

 

representation of the self-stress states. Accordingly, it tends to change the static and kinematic 

indeterminacy of the structure. If the representations of the removed members contain more 

than one kind of irreducible representation, the mobility and kinematic indeterminacy of the 

structure would be sensitive to the removal of members. Then the structure would generate 

new internal mechanisms, such as the structures in Fig. 9(e) or Fig. 9(f). 

 

4.3 Mobility of symmetric Kiewitt type structures with certain members removed 

Figure 10 shows a symmetric Kiewitt type structure (Fan et al., 2012), where the numbers 

of pin-joints and members are 56j =  and 145b = , respectively. The outmost 18 boundary 

joints are constrained in three directions. 

As shown in Fig. 10, the geometric configuration of the structure remains invariant under 

the following operations: the identity operation E , five rotation operations 1

6
C ~ 5

6
C  about the 

Z-axis, and six mirror operations 
1

σ ~
6

σ  along the Z-axis. The structure has twelve 

independent symmetry operations and thus belongs to the group 
6v

C . Using the singular value 

decomposition, the rank of the equilibrium matrix H  of the structure turns out to be 114r = . 

The symmetric structure has no internal mechanism, however, has 31s =  independent self-

stress states. Thus, the structure is an over-constrained stable structure, and at most thirty-one 

members can be removed. To identify the necessary members, the symmetry-extended 

mobility ( ) ( )m sΓ − Γ  is evaluated in the group 
6v

C , given as: 

Group 
6v

C  E  62C  
32C  

2C  3
v

σ  3
d

σ  

( ) ( )m sΓ − Γ  31−  3 1−  3−  7−  1 (30)

In Eq. (30), ( ) ( )m sΓ − Γ  can be expressed as: 

1 2 1 2 1 2
( ) ( ) 4 5 4 6m s A A B B E EΓ − Γ = − − − − − −  (31) 

As 0m =  and 31s = , the representations of the mechanism and self-stress states are: 

( )mΓ = ∅ , 
1 2 1 2 1 2

( ) 4 5 4 6s A A B B E EΓ = + + + + +  (32) 



  

 

   ( )sΓ  in Eq. (32) contains the item 
1A , indicating that some of the self-stress states are fully 

symmetric. Figure 11 shows eleven independent configurations of the symmetric structure 

with the removal of a single member. In the figure, “☆☆☆☆” is used to depict the removed 

member. 

The mobility and geometric stability of the obtained configurations are evaluated. Table 6 

gives the symmetry results. It can be seen from Table 6 that the symmetry of the structure 

descends from the group 
6v

C  to the groups 
2v

C  or 
v

C , while, that the kinematic and static 

characteristics remain unchanged. This is because all the representations of the mechanisms 

are ( )mΓ = ∅ , and those of the self-stress states are summarized as ( )sΓ ≠ ∅ . The structure 

remains kinematically determinate and statically indeterminate. Since the structure remains 

stable with an arbitrary one of the members removed, it possesses no necessary members. 

Furthermore, we study the structures with fully symmetric members removed. The eight 

geometric configurations are shown in Fig. 12, where the symbol “☆☆☆☆” is used to mark the 

removed members. The symmetry results of the static and kinematic characteristics are listed 

in Table 7. 

The study proved that the static and kinematic characteristics vary only if the inner ring and 

outer ring circumferential members are removed at the same time (see Fig. 12(h)). The 

structure has a new internal mechanism after the removal, but maintains its stability. The new 

mechanism mode is first-order infinitesimal, since it obtains structural stiffness via the self-

stress states. On the other hand, removing the vertical members does not affect the rigidity of 

the original structure. Even if all the vertical members are removed, the structure preserves its 

geometric stability. 

During the analysis process, there is no need to solve the minimum eigenvalues of a series 

of stiffness matrices or calculating the singular values of the corresponding equilibrium 

matrices. Therefore, computational tasks are reduced significantly. 

 

5. Impact of the Kinematic Constraints on Geometric Stability 



  

 

 

The kinematic constraints (e.g., boundary conditions) are sensitive to the mobility and 

stability of a structure (Lu et al., 2007; Chen et al., 2013). When the kinematic constraints 

change, in general, the global equilibrium matrix and the stiffness matrices need to be rebuilt. 

In this section, using symmetry, the mobility and geometric stability of a structure are 

evaluated from the variations of symmetries of the internal mechanisms and self-stress states. 

According to Eqs. (11), (24) and (25), the number of unshifted joints and members remains 

invariant after changing the kinematic constraints, i.e., t 0( ) ( )j jΓ = Γ  and t 0( ) ( )b bΓ = Γ . 

Subtracting Eq. (24) from Eq. (25), we obtain the first-order change of the symmetry-

extended mobility induced by the kinematic constraints: 

( ) ( ) ( )
G k

F k m s∆ = ∆Γ − ∆Γ = ∆Γ  (33) 

where 0 t

k kk
= Γ∆ − ΓΓ  is the representation of the changed kinematic constraints. Eq. (33) also 

suits a more general over-constrained system (see Eq. (8)). 

Eq. (33) can be expressed by certain irreducible representations. Using the symmetry-

extended method, the symmetry representations 0 ( )mΓ , 0 ( )sΓ  and 0

k
Γ  of the original structure 

has been obtained in advance. Therefore, the symmetry of the internal mechanisms and self-

stress states of the structures with varied geometric configurations can be efficiently 

calculated. 

 

5.1 Released degrees of freedom for symmetric structures 

Figure 13(a) shows a 
2v

C  symmetric over-constrained framework. The simple 2D structure 

consists of four joints and four link members, where the joints 1 and 3 are pin-joints. The in-

plane rotational degrees of freedom of joints 2 and 4 are constrained. 

Table 8 shows the relative mobility of the structure under different symmetry operations. 

On the basis of irreducible representations of the group 
2v

C , the results of ( ) ( )m sΓ − Γ  is 

reduced into: 

2
( ) ( )m BsΓ − Γ = −  (34) 



  

 

The four-link over-constrained system has no internal mechanism, i.e., 0m = . Therefore, 

the symmetries of the internal mechanism and self-stress state are: 

( )mΓ = ∅ , 
2

( )s BΓ =  (35) 

   Figure 13(a) also shows the structure with released rotational degrees of freedom of joints 2 

and 4. The variations of the kinematic constraints are listed in the last column of Table 8. 

They are reduced into: 

( ) 1 2G kF k A B∆ = ∆Γ = +  (36) 

It is concluded from Eqs. (35) and (36) that, with two degrees of freedom released, the 

symmetries of the internal mechanism and self-stress state are: 

1
( )m AΓ = , ( )sΓ = ∅  (37) 

Hence, the structure transforms from stable into mobile. In fact, as shown in Fig. 13(a), the 

new structure is a classic four-bar mechanism. Therefore, the results in Eq. (36) and (37) are 

verified. 

In addition, the effect of the kinematic constraints of a 
3v

C  symmetric structure on its 

geometric stability is investigated, as shown in Fig. 13(b-c). The structure is composed of ten 

pin-joints and 21 bars, whereas the joints 1~4 are totally constrained. Detailed geometric 

information for the structure is available in the literature (Chen et al., 2013). The relative 

mobility of the structure under the symmetry operations of E , 1

3
C , 2

3
C , 1σ , 2σ  and 3σ  are 

calculated in Table 9. 

Based on the irreducible representations of the group 
3v

C , the column of ( ) ( )m sΓ − Γ  in 

Table 9 is simplified as: 

1
( ) ( )m s A EΓ Γ = −− −  (38) 

Since the structure has no internal mechanism (i.e., 0m = ), the symmetries of the internal 

mechanism and self-stress states are: 

( )mΓ = ∅ , 
1

( )s A EΓ = +  (39) 

To change the kinematic constraints, the degree of freedom along the Z direction of joint 1 

is released, as well as the translational degrees of freedom along the mirror planes of joints 



  

 

2~4. The last column of Table 9 presents the corresponding variations of the kinematic 

constraints. The results are simplified as: 

( ) 1
2

G k
F k A E∆ = ∆Γ = +  (40) 

Combining with Eqs. (39) and (40), the static and kinematic characteristics of the 
3vC  

symmetric structure with varied kinematic constraints are: 

1
( )m AΓ = , ( )sΓ = ∅  (41) 

Therefore, the structure must be mobile and its static and kinematic indeterminacy change 

significantly. These results match well with the FEM results in Chen et al. (2013), thus the 

proposed method is feasible. 

 

5.2 Constrained degrees of freedom for a highly symmetric structure 

As shown in Fig. 14(a), the highly symmetric structure is originated from a cube, and 

consists of eight pin-joints and twelve bars. Typical symmetry operations for the structure are 

also shown in Fig. 14(a), such as the rotations 
2

C , 
3

C , 
4

C , and the inversion i . Table 10 lists 

the results of the evaluation of relative mobility under 48 independent symmetry operations. 

Based on the irreducible representations of the group hO , the results of ( ) ( )m sΓ − Γ  in the 

fifth row of Table 10 are simplified as: 

2 2
( ) ( )

g u u
m s T A EΓ +− Γ = +  (42) 

Since the highly symmetric structure has no redundant constraints, the number of self-stress 

states is 0s = . Therefore, symmetries of the mechanisms and self-stress states are: 

2 2
( )

g u u
m T A E+Γ = + , ( )sΓ = ∅  (43) 

The structure has 6m =  independent internal mechanisms, associated with multiple low-

order symmetry subspaces. To reduce its mobility, the pin-joints and bars are replaced by 

revolute joints and rigid links, respectively. Figure 14(b) shows the corresponding over-

constrained system. Note that, for the link elements, the rotational degrees of freedom around 

the secondary axis and translational degrees of freedom along the inversion point are 



  

 

permissible. Consequently, the specific values of 
k∆Γ  under different symmetry operations 

are calculated, and listed in the last column in Table 10. They are simplified as: 

( ) 1 2 1 2G k g g u u u
F k T T A E T∆ = ∆Γ = + + + +  (44) 

Combining with Eq. (43) and Eq. (44), the static and kinematic characteristics of the highly 

symmetric over-constrained system shown in Fig. 14(b) are: 

2
( )

u
m AΓ = , 

1 1 1
( )

u g u
s A T TΓ = + +  (45) 

The internal mechanism retains full symmetry in the tetrahedral symmetry subgroup (i.e., 

d hT O⊂ ), but the self-stress states have low-order symmetries. None of the self-stress states 

can provide first-order stiffness to stiffen the fully symmetric mechanism. Thus, the 

symmetric over-constrained system is a deployable structure with a single degree of freedom. 

The conclusion is in agreement with the results in the work of Chen et al. (2012). 

 

6. Conclusions 

 

Many factors affect the mobility and geometric stability of a structure, such as the nodal 

coordinates of joints, the connectivity of members, and kinematic constraints. This study has 

introduced symmetry-extended mobility rule and irreducible representations to investigate the 

geometric stability of a skeletal structure influenced by these factors. Examples on symmetric 

structures with varied nodal coordinates, structural members, and kinematic constraints have 

been presented and illustrated. It turns out that a symmetric skeletal structure with kinematic 

indeterminacy can retain its geometric stability and some or all of the original symmetry, 

while its geometry or connectivity is altered. The results verify that the symmetry method 

presented in this paper offers an intuitive and efficient method for characterizing the 

geometric stability of symmetric skeletal structures. Thus, the proposed method provides a 

theoretical basis for determining the mobility of structures, designing novel deployable 

structures, and finding novel statically or kinematically indeterminate systems. 
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Table 1 

Group 
2nv

C  E  2 , [1, 2 1]
i

n
C i n∈ −

 2 , [1, ]
j

n j nσ ∈
 2 1, [1, ]

j
n j nσ − ∈

 

( )jΓ  2n  0 2 0 

( )bΓ  6n  0 0 2 

kΓ
 0 0 0 0 

( ) ( )m sΓ − Γ  0 0 2 2−  

 

Table 2 

Symmetry group 6vC
 3vC

 2vC
 vC

 6C
  3C

 2C
 1C

 

11, ( )m m B= Γ =
 1B

 1A
 1B

 1A
 B  A  B  A  

21, ( )s s B= Γ =
 2B

 2A
 2B

 2A
 B  A  B  A  

 

Table 3 

Symmetry group 8vC
 4vC

 2vC
 vC

 8C
 4C

 2C
 1C

 

11, ( )m m B= Γ =
 1B

 1A
 1A

 1A
 B  A  A  A  

21, ( )s s B= Γ =
 2B

 2A
 2A

 2A
 B  A  A  A  

 

Table 4 

Geometry Symmetry ( )b∆Γ  ( )mΓ , ( )sΓ  m , s  

Fig. 8(a) 6vC  ∅  ( )mΓ = ∅ , 1 1 2( ) 2s A E EΓ = + +  0m = , 6s =  

Fig. 8(b) 
2vC  

1A  ( )mΓ = ∅ , 
1 2 1 2( ) 2s A A B BΓ = + + +  0m = , 5s =  

Fig. 8(c) vC  1A  ( )mΓ = ∅ , 1 2( ) 3 2s A AΓ = +  0m = , 5s =  

Fig. 8(d) 
vC  

1A  ( )mΓ = ∅ , 
1 2( ) 3 2s A AΓ = +  0m = , 5s =  

 



  

 

Table 5 

Geometry Symmetry ( )b∆Γ  ( )mΓ , ( )sΓ  m , s  

Initial 6vC  ∅  1 1 2( ) 2s A E EΓ = + +  0m = , 6s =  

Fig. 9(a) 
6vC  

1 2 1 2A B E E+ + +  
2( )m BΓ = , 

1( )s AΓ =  1m s= =  

Fig. 9(b) 6vC  1 1 1 2A B E E+ + +  1( )m BΓ = , 1( )s AΓ =  1m s= =  

Fig. 9(c) 
3vC  

12 2A E+  ( ) ( )m sΓ = Γ = ∅  0m s= =  

Fig. 9(d) 3vC  12 2A E+  ( ) ( )m sΓ = Γ = ∅  0m s= =  

Fig. 9(e) 
2vC  

1 2 1 22 2A A B B+ + +  
2( )m BΓ = , 

1( )s AΓ =  1m s= =  

Fig. 9(f) 2vC  1 2 1 22 2A A B B+ + +  2( )m BΓ = , 1( )s AΓ =  1m s= =  

Fig. 9(g) 
3C  2 2A E+  ( ) ( )m sΓ = Γ = ∅  0m s= =  

Fig. 9(h) vC  1 24 2A A+  ( ) ( )m sΓ = Γ = ∅  0m s= =  

 

Table 6
 

Geometry Symmetry ( )b∆Γ  ( )mΓ , ( )sΓ  m , s  

Initial 6vC  ∅  ( )mΓ = ∅ , 1 2 1 2 1 2( ) 4 5 4 6s A A B B E EΓ = + + + + +  0m = , 31s =  

Fig. 11(a) 6vC  1A  ( )mΓ = ∅ , 1 2 1 2 1 2( ) 3 5 4 6s A A B B E EΓ = + + + + +  0m = , 30s =  

Fig. 11(b) vC
 1A

 ( )mΓ = ∅ , 1 2( ) 18 12s A AΓ = +  0m = , 30s =  

Fig. 11(c) vC
 1A

 ( )mΓ = ∅ , 1 2( ) 18 12s A AΓ = +
 

0m = , 30s =  

Fig. 11(d) vC
 1A

 ( )mΓ = ∅ , 1 2( ) 14 16s A AΓ = +
 

0m = , 30s =  

Fig. 11(e) vC
 1A

 ( )mΓ = ∅ , 1 2( ) 14 16s A AΓ = +  0m = , 30s =  

Fig. 11(f) vC
 1A

 ( )mΓ = ∅ , 1 2( ) 18 12s A AΓ = +  0m = , 30s =  

Fig. 11(g) vC
 1A

 
( )mΓ = ∅ , 1 2( ) 18 12s A AΓ = +  0m = , 30s =  

Fig. 11(h) vC
 1A

 ( )mΓ = ∅ , 1 2( ) 18 12s A AΓ = +  0m = , 30s =  

Fig. 11(i) vC
 1A

 
( )mΓ = ∅ , 1 2( ) 18 12s A AΓ = +  0m = , 30s =  

Fig. 11(j) vC
 1A

 ( )mΓ = ∅ , 1 2( ) 18 12s A AΓ = +  0m = , 30s =  

Fig. 11(k) vC
 1A

 ( )mΓ = ∅ , 1 2( ) 18 12s A AΓ = +  0m = , 30s =  

 



  

 

Table 7 

Geometry Symmetry ( )b∆Γ  ( )mΓ , ( )sΓ  m, s 

Initial 6vC  ∅  
( )mΓ = ∅  

1 2 1 2 1 2( ) 4 5 4 6s A A B B E EΓ = + + + + +  

0m =  

31s =  

Fig. 12(a) 6vC  1A  
( )mΓ = ∅  

1 2 1 2 1 2( ) 3 5 4 6s A A B B E EΓ = + + + + +  

0m =  

30s =  

Fig. 12(b) 6vC  1 1 1 2A B E E+ + +  
( )mΓ = ∅  

1 2 1 2 1 2( ) 3 4 3 5s A A B B E EΓ = + + + + +  

0m =  

25s =  

Fig. 12(c) 6vC  1 1 2 1 22 2 2A B B E E+ + + +  
( )mΓ = ∅  

1 2 1 1 2( ) 2 4 2 4s A A B E EΓ = + + + +  

0m =  

19s =  

Fig. 12(d) 6vC  1 1 2 1 23 2 3 3A B B E E+ + + +  
( )mΓ = ∅  

1 2 1 1 2( ) 3 3s A A B E EΓ = + + + +  

0m =  

13s =  

Fig. 12(e) 6vC  1 2 1 2A B E E+ + +  
( )mΓ = ∅  

1 2 1 1 2( ) 3 5 3 5s A A B E EΓ = + + + +  

0m =  

25s =  

Fig. 12(f) 6vC  1 2 1 2 1 22 2A A B B E E+ + + + +  
( )mΓ = ∅  

1 1 1 2( ) 3 4 2 4s A B E EΓ = + + +  

0m =  

19s =  

Fig. 12(g) 6vC  1 2 1 2 1 22 2 3 3A A B B E E+ + + + +  
2( )m BΓ =  

1 1 1 2( ) 2 4 3s A B E EΓ = + + +  

1m =  

14s =  

Fig. 12(h) 6vC  1 1 1 22 2 2 2A B E E+ + +  
( )mΓ = ∅  

1 2 1 2 1 2( ) 2 3 2 4s A A B B E EΓ = + + + + +  

0m =  

19s =  

 

Table 8 

Group 
2vC  

TΓ  
RΓ  ( )jΓ  ( )bΓ  

kΓ  ( ) ( )m sΓ − Γ  
k∆Γ  

E  2 1 4 4 2 1−  2 

2C  2−  1 0 0 0 1 0 

Xσ  0 1−  2 0 2 1 0 

Yσ  0 1−  2 0 0 1−  2 

 



  

 

 

Table 9  

Group 
3vC  

T
Γ

 ( )jΓ  ( )bΓ  kΓ
 

( ) ( )m sΓ − Γ  
k∆Γ
 

E  3 10 21 12 3−  4 

32C  0 1 0 0 0 1 

3σ  1 4 3 2 1−  2 

Table 10 

Symmetry operations E  38C
 26C

 46C
 23C

 i  46S
 68S

 
3 hσ

 
6 dσ

 

( )jΓ  8 2 0 0 0 0 0 0 0 4 

( )bΓ  12  0 2 0 0 0 0 0 4 2 

kΓ
 6 0 2−  2 2−  0 0 0 0 0 

( ) ( )m sΓ − Γ  6 0 0 2−  2 0 0 0 4−  2 

k∆Γ
 12 0 2 0 0 0 0 0 4−  2−  

 

 


