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Abstract: In general, for a complex engineering structure with a large number of nodes or members, the inherent 

symmetry is not easily recognizable. Even though someone succeeds in recognizing certain symmetry properties 

of the structure, these might be partial ones, and the others will be possibly unnoticed. To overcome this 

difficulty and enable the integration of computational analysis and symmetry methods, we propose an automated 

detection method for engineering structures with cyclic symmetries. Only the nodes and the connectivity patterns 

of the members are needed for implementing this algorithm. Using group theory, we first describe different 

cyclic groups of symmetries and their symmetry operations. In order to establish a group-theoretic algorithm for 

automated symmetry detection, several theorems and corollaries are presented. Then, on the basis of matrix 

representations of symmetry operations, the equivalence of the nodes and members of a structure is evaluated. 

Hence, the inherent symmetry operations of the structure are identified one by one. Illustrative examples show 

that the proposed automated symmetry detection method is robust and applicable to both 2D and 3D structures. 

Highly symmetric structures are recognized accurately and effectively. In addition, asymmetric structures and 2D 

structures can be recognized in a very small number of iterations. 
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1. Introduction 

In general, symmetry is scientifically significant because of its extremely rich and inspiring mathematics, as 

well as artistically attractive as a result of its remarkable aesthetic appeal. It occurs naturally in the world around 

us, and is of great importance in engineering analysis and design [1-4]. Utilizing symmetry can not only greatly 

simplify the analysis and reduce computational effort [5,6], but can also gain meaningful insights [7-10]. In fact, 

symmetry analysis is a powerful generative tool, which can be generalized for solving many engineering 

problems involving symmetry. For instance, to design innovative structures, a framework for deriving symmetric 

variations of the crease pattern of a given origami structure is presented [11]. The implementation of this 

framework leads to the design of an extensive family of folding structures which are either from the same 

symmetry group of the original structure [12] or are from one of its subgroups [10,13]. 

There are important and increasing real-world applications for this kind of analysis, given the tendency of 

architects and structural engineers to incorporate symmetry as well as subtle symmetry-breaking in their designs 

and analyses. Kaveh and Dadfar [2] have developed a symmetry method for calculating the buckling loads of 

symmetric 2D frame structures. Zingoni [14] has successfully utilized group theory for vibration problems in 

structural mechanics and obtained some effective insights and qualitative benefits. Chen and Feng [5,7] 

successfully applied symmetry analysis into Moore-Penrose inverse and integral prestress modes of cable-strut 

structures. Using symmetry-adapted compatibility matrices, Guest and Fowler [9] identified finite mechanisms 

in statically and kinematically indeterminate structures. Admittedly, to implement a symmetry analysis (e.g., the 

group-theoretic analysis), symmetry of a structure needs to be given or determined in advance [8,15]. Therefore, 

accurate symmetry detection is critical for effective and integrated symmetry analysis. 

Symmetry detection is one of the fundamental ways to explore and understand the physical world around us, 

and thus has attracted interest from artists and scientists over centuries [16,17]. It can play an important role in 
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object recognition [18], image analysis [19], and classifications in computer vision [20,21]. Unfortunately, 

symmetry detection is traditionally performed manually, which is often tricky and time-consuming. In general, 

the symmetry of a complex structure with many nodes or members is not easily recognizable. Even though 

someone succeeds in recognizing certain symmetry properties of the structure, these might be partial ones, and 

the others will be possibly unnoticed [22]. To overcome this difficulty and enable an integrated symmetry 

analysis without human intervention, some automated symmetry detection algorithms have been presented [23]. 

Highnam [24] concerned a 2D point set, and simplified the original symmetry problems into a 1D pattern 

matching. He presented an algorithm capable of locating the symmetry axis for a reflection operation. Recently, 

Jiang et al. [16] have proposed a Fourier-theoretic method for determining the symmetry group G of an object. 

Using the Fourier transformations, a marginal-based search strategy has been proposed for detecting the 

symmetry group G. Nevertheless, the geometric similarity matrix which describes symmetry properties or their 

combinations need to be given beforehand. With the increasing demand for computer-aided design, Tate and 

Jared [25] proposed a computational method to identify the symmetry of regular geometries. In their method, the 

area of closed loops and the central point are calculated. Then, the symmetry is evaluated by pattern matching of 

the closed loops among various surfaces. However, this algorithm is highly time-consuming because of heavy 

computations on curved surfaces. Lee and Liu [26] extended the concept of two-fold reflection symmetry to 

curved glide-reflection symmetry in 2D. They successfully applied the curved glide-reflection axis detection for 

curved reflection surface detection in 3D. 

Arguably, symmetry types remain to be specified in advance for the above-mentioned methods. In addition, 

they have not been closely integrated with group theory, which has a distinct advantage in analyzing symmetric 

systems. To avoid the manual specification of symmetry types, Zingoni [22] utilized symmetry operations and 

proposed an algorithm which can search for symmetry systematically. All existing rotation axes, whether 

https://www.sciencedirect.com/science/journal/00457949/191/supp/C


 Published in COMPUTERS & STRUCTURES (Volume 191, 15 October 2017, Pages 153-164) 

4 

belonging to cyclic, dihedral, cubic or other symmetry groups, could be picked up by the three-dimensional 

search. The search for rotation axes has been made by sweeping over the entire spherical surface centered about 

the center of symmetry of the system, testing every possible position of the rotation axis. This search algorithm 

is very general, and shows good performance for the symmetric structures randomly dispersed in space. A key 

improvement for this algorithm is that it is intended for completely arbitrary system, and it does not assume any 

prior symmetry. Meanwhile, Zingoni [22] pointed out that the computation efficiency of the reported algorithm 

should be further enhanced. Many iterations will be needed to identify all symmetry operations for a 

constellation of a large number of points randomly distributed in three-dimensional space [22]. Suresh and 

Sirpotdar [23] made the full use of the basic concepts of group theory, and proposed a symmetry detection 

method for computer-aided design. The method is one of the very few methods which try to automate and 

integrate symmetry analysis, and provides an alternative way for symmetry detection. 

On the other hand, computational effort of a low-order symmetric structure is approximately the same as that 

of a high-order one. In fact, for a low-order symmetric structure, some unnecessary computations can be avoided, 

which improves the computational efficiency significantly. Moreover, since many engineering structures are 

subjected to the gravity and have at most one feasible rotation axis, they generally belong to cyclic symmetry 

groups. Then, the symmetry search field for detecting these structures can be effectively reduced. Here, we will 

tackle a scenario where the structure is known at the outset to possess cyclic symmetry, which allows 

simplifications over the more general approaches reported in [22] and [23]. We will propose an efficient and 

automated symmetry detection method for 2D and 3D engineering structures with cyclic symmetries. Only the 

nodal coordinates and the connectivity patterns of the members are needed for implementing this algorithm. 

Note that this automated symmetry detection method will be preferred for symmetry analysis. Furthermore, in 

combination with frequently used methods of structural design, this method can provide us with a powerful tool 

https://www.sciencedirect.com/science/journal/00457949/191/supp/C
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for the design of symmetric structures. For instance, this method can be generalized to design novel mechanisms 

[6,27], or to develop innovative forms of tensegrity structures [28-30]. Moreover, a future improvement of this 

research can link it to computer vision, where a vision-based algorithm can detect the symmetry properties of the 

structure from one or more 3D images or 2D pictorial views [31-33]. 

The content of this work is as follows. Section 2 describes different groups of cyclic symmetry and their 

symmetry operations. Section 3 proposes the automated symmetry detection method, in which the equivalence of 

the geometric configuration of a structure is evaluated. Then, in Section 4, a large variety of numerical examples 

are presented to verify the effectiveness of the proposed method. Finally, conclusions are given in Section 5. 

2. Symmetry Operations and Symmetry Groups 

2.1. Symmetry operations 

A 2D or 3D structure is said to be symmetric if its structural configuration remains invariant under certain 

independent linear transformations. These transformations are defined as symmetry operations [34]. For all finite 

engineering structures, symmetry operations are classified into five types: 

(I) The identity, E. This symmetry operation describes that no actual transformation is applied to the structure, 

and thus the configuration remains unchanged. In fact, the identity E is possessed by all kinds of structures. 

(II) The rotation operation, 
i

nC . It denotes a counterclockwise (or clockwise) rotation by an angle 

2 /i n   about an axis. For the integer n we should have 2n  , and [1, 1]i n  . The axis is also known 

as the n-fold rotation axis. 

(III) The reflection operation with respect to a symmetry (mirror) plane, i . Generally, v  denotes a 

reflection with respect to a vertical symmetry plane, which contains the principal axis. h  denotes a 

reflection with respect to a horizontal symmetry plane, which is perpendicular to the principal axis. 

(IV) The improper rotation operation, 
2 1

2

i

nS 
. It denotes a rotation by an angle (2 1) /i n    about a 

https://www.sciencedirect.com/science/journal/00457949/191/supp/C
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rotation axis ( [1, ]i n ), preceded with a reflection with respect to a symmetry plane perpendicular to the axis. 

This operation is also known as the rotation-reflection operation, and satisfies 

 2 1 2 1

2 2

i i

n h nS C                                  (1) 

(V) The inversion operation, S2. It is an inversion through the center unshifted by all symmetry operations. 

Moreover, it is a special case of the improper rotation with n=1, 

 1 1

2 2hS C                 (2) 

Figs. 1(a-d) respectively show different kinds of symmetry operations listed above (except the identity, E), 

where the members keep equivalent under these operations. 

 

(a)                                        (b) 

 

(c)                                          (d) 

Figure 1 Different kinds of symmetry operations: (a) rotation i

nC ; (b) reflection 
i ; (c) improper rotation 

2 1

2

i

nS  ; (d) inversion 1

2S  

2.2. Matrix representations for different symmetry operations 

Each symmetry operation which transforms a finite structure into itself must keep the center of the structure 

https://www.sciencedirect.com/science/journal/00457949/191/supp/C
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unshifted. More importantly, this center coincides with the inversion center of symmetry. Without loss of 

generality, supposing that a certain symmetric structure is composed of m0 nodes and b members, the initial 

coordinates of a node 0[1, ]j m   is (xj, yj, zj) in the Cartesian coordinate system XYZ. We take zj=0 for 2D 

structures. Then, the center of the structure O(x0, y0, z0) is computed by 

 
0

0

10

1
m

j

j

x x
m 

  , 
0

0

10

1
m

j

j

y y
m 

  , 
0

0

10

1
m

j

j

z z
m 

     (3) 

where the geometry center O is assumed to coincide with the center-of-mass of the structure. To locate the center 

O at the origin of the symmetry coordinate system, the initial coordinate system is translated. In the new 

coordinate system XYZ , the nodal vector Xj for each node 0[1, ]j m   is expressed by 

 T T

0 0 0[ , , ] [ , , ]j j j j j j jx y z x x y y z z      X   (4) 

Mathematically speaking, each symmetry operation is a linear transformation on the nodal vectors of the 

structure. As the coordinate system has been attached to the structure, we can describe the matrix representations 

for all the symmetry operations. Subjected to the identity operation E, the new vector of one node 0[1, ]j m   is 

written as 

 ,

1 0 0

0 1 0

0 0 1

j

j E E j j

j

x

y

z

  
  

      
      

X R X , 
0[1, ]j m    (5) 

where 
T

, , , ,[ , , ]j E j E j E j Ex y zX  is the new nodal vector, and the 3 3  identity matrix ER  is the 

corresponding transformation matrix. Eq. (5) shows that each node remains unshifted under the identity 

operation E. 

Under a rotation operation 
i

nC  about the Z-axis, the new vector of node 0[1, ]j m   is written as 

 
,

cos(2 / ) sin(2 / ) 0

sin(2 / ) cos(2 / ) 0

0 0 1

i i
n n

j

j jj C C

j

xi n i n

i n i n y

z

 

 

  
  

      
      

X R X , 
0[1, ]j m  , [1, 1]i n        (6) 

where T

, , , ,
[ , , ]i i i i

n n n nj C j C j C j C
x y zX  is the new nodal vector, and the 3 3  matrix i

nC
R  is the transformation 

https://www.sciencedirect.com/science/journal/00457949/191/supp/C
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matrix for the rotation i

nC . In addition, when i n  in Eq. (6),  

 

1 0 0

0 1 0

0 0 1

n
n

EC

 
 

 
 
  

R R               (7) 

Thus, the rotation n

nC  is equivalent to the identity operation E. On the other hand, if a structure remains 

invariant under a reflection operation 
v  on the vertical symmetry plane, it satisfies 

 ,

cos(2 ) sin(2 ) 0

sin(2 ) cos(2 ) 0

0 0 1
v v

jr r

j j r r j

j

x

y

z

 

 

 

  
  

       
      

X R X , 
0[1, ]j m  , [0, )r           (8) 

where 
T

, , , ,[ , , ]
v v v vj j j jx y z   X  is the shifted nodal vector, and the 3 3  matrix 

v
R  is the transformation 

matrix for the rotation 
v . The vertical symmetry plane contains the Z-axis, and it is perpendicular to the XY  

plane. In Eq. (8), 
r  denotes the angle between the XZ plane and the symmetry plane. Similarly, if a structure 

keeps equivalent under a reflection operation 
h  with respect to the horizontal symmetry plane, it satisfies 

 ,

1 0 0

0 1 0

0 0 1
h h

j

j j j

j

x

y

z

 

  
  

      
      

X R X ,
0[1, ]j m                (9) 

where 
T

, , , ,[ , , ]
h h h hj j j jx y z   X  is the nodal vector, and the matrix 

h
R  is the corresponding transformation 

matrix. 

Under an improper rotation operation 
2 1

2

i

nS 
 about the Z-axis, the new vector of node 0[1, ]j m   is written 

as 

 2 1 2 1
2 2,

cos((2 1) / ) sin((2 1) / ) 0

sin((2 1) / ) cos((2 1) / ) 0

0 0 1

i i
n n

j

j jj S S

j

xi n i n

i n i n y

z

 

  

    
  

        
      

X R X
0[1, ]j m  , [1, ]i n        (10) 

where 2 1 2 1 2 1 2 1
2 2 2 2

T

, , , ,
[ , , ]i i i i

n n n nj S j S j S j S
x y z   X  is the shifted nodal vector by the operation 2 1

2

i

nS  , and the matrix 

2 1
2

i
nS R  is the 3 3  transformation matrix. As the inversion operation 1

2S  is a special case of the improper 

rotation operations, its matrix representation can be computed from Eq. (10), with n=i=1. Thus, we have 

https://www.sciencedirect.com/science/journal/00457949/191/supp/C
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 1 1
2 2,

1 0 0

0 1 0

0 0 1

j

j jj S S

j

x

y

z

  
  

       
      

X R X , 
0[1, ]j m     (11) 

where 1 1 1 1
2 2 2 2

T

, , , ,
[ , , ]

j S j S j S j S
x y zX  is the shifted nodal vector by the inversion 1

2S , and the matrix 1
2S

R  is the 

transformation matrix. It is important to mention that the matrix representations in Eqs. (6)-(11) are expressed in 

terms of the Cartesian coordinate system, whereas the Z-axis is the principal axis of symmetry. Indeed, they are 

also applicable to other coordinate systems, with a series of linear transformations through the new coordinate 

system. 

2.3. Cyclic symmetry groups 

A group G={g1, g2, , gi } is called a symmetry group, on condition that all the elements gi of G are 

symmetry operations. Furthermore, the number of symmetry operations included in a symmetry group 

determines the order of the group, G . A symmetry group is known as point symmetry group, when at least one 

point of the system remains fixed under the action of all the symmetry operations. 

Point symmetry groups can be classified into cyclic groups, dihedral groups and cubic groups [35]. Dihedral 

and cubic groups possess many different rotation axes [29], e.g., the two-fold, three-fold or five-fold rotation 

axis [30]. Here, we concern the cyclic groups, because many symmetric structures for engineering applications 

subject to the gravity and have no more than a single rotation axis [36,37]. All cyclic groups and their symmetry 

operations are summarized in Table 1, where the positive integer 2n   [38]. 

Note that the notations in Table 1 such as nC  and nhC  refer to the Schoenflies notations of (point) cyclic 

symmetry groups [38]. A low-order symmetry group has no rotation operation, and its order is at most 2. 

Notably, a symmetric structure that belongs to the lowest-order group C1 refers to an asymmetric structure. On 

the other hand, a regular symmetry group has a principal axis for the n-fold rotation. Specifically, proper cyclic 

group Cn contains only n rotations about the principal axis; proper cyclic group Cnv is Cn with the addition of n 

https://www.sciencedirect.com/science/journal/00457949/191/supp/C
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reflections along the vertical symmetric planes; proper cyclic group Cnh is Cn with the addition of a reflection 

along the horizontal symmetry plane; and improper cyclic group S2n is Cn with the addition of n improper 

rotations along the principal axis.  

Table 1  Cyclic symmetry groups and their symmetry operations 

Low-order symmetry Regular symmetry 

Group Order Symmetry operations Group Order Symmetry operations 

1C  1 E  nC  n E, ( 1, , 1)i

nC i n    

s hC C  2 , hE   
nvC  2n E, ( 1, , 1)i

n vC i n n    

2 iS C  2 
1

2,E S  nhC  n+1 E, ( 1, , 1)i

n hC i n     

   2nS  2n E, 2 1

2( 1, , 1) ( 1,..., )i i

n nC i n S i n     

 

Despite the huge diversity of structural configurations in engineering, the associated symmetry operations are 

finite. According to Table 1, once all the symmetry operations for a given structure are identified, the 

highest-order symmetry group of the structure can be determined. 

3. Automated Symmetry Detection Method 

3.1. Theorems and corollaries 

On the basis of symmetry operations and their matrix representations, the following theorems and corollaries 

are presented, which are important for establishing the automated symmetry detection method. 

Theorem 1. If a symmetric structure remains invariant under a rotation 
i

nC  (or 
2 1

2

i

nS 
) about an axis, then it 

must remain invariant under the operation 
'

'

i

nC  (or 
2 ' 1

2 '

i

nS 
) about the same axis. The positive integer 'n  is a 

divisor of n, where ' 2n  , 1 ' 'i n   and 1 i n  . 

Proof. It can be obtained from Eqs. (6) and (10) that the transformation matrices 
'
'

i
nC

R  and 
2 ' 1
2 '

i
nS R  are 

https://www.sciencedirect.com/science/journal/00457949/191/supp/C


 Published in COMPUTERS & STRUCTURES (Volume 191, 15 October 2017, Pages 153-164) 

11 

 '
'

cos(2 ' / ') sin(2 ' / ') 0

sin(2 ' / ') cos(2 ' / ') 0

0 0 1

i
nC

i n i n

i n i n

 

 

 
 


 
  

R , 2 ' 1
2 '

cos((2 ' 1) / ') sin((2 ' 1) / ') 0

sin((2 ' 1) / ') cos((2 ' 1) / ') 0

0 0 1

i
nS

i n i n

i n i n

 

 

   
 

  
 
  

R , ' [1, ']i n  (12) 

Note that { 2 ' / 'i n |1 ' 'i n  } { 2 /i n |1 i n  }, and { (2 ' 1) / 'i n |1 ' 'i n  } { (2 1) /i n  

|1 i n  }, because 'n  is a divisor of n. For example, ' 3n   is a divisor of 6n  , and we have { 2 /3 , 

4 /3 , 2 } { /3 , 2 /3 ,  , 4 /3 , 5 /3 , 2 }. 

Then the transformation matrices 
'
'

i
nC

R  and 
2 ' 1
2 '

i
nS R  are, respectively, included in the matrices 

i
nC

R  and 

2 1
2

i
nS R . Therefore, we have proved that if a structure retains a rotation 

i

nC  (or 
2 1

2

i

nS 
) about an axis, then it must 

retain the operation 
'

'

i

nC  (or 
2 ' 1

2 '

i

nS 
) about the same axis. 

Corollary. If a structure remains invariant under two rotations 
1

1

nC  and 
2

1

nC  (or 
1

1

2nS , 
2

1

2nS ) about an axis, 

then it must remain invariant under the operation 
1

nC  (or 
1

2nS  ) about the same axis. The positive integer n is 

the least common multiple of 1n  and 2n . 

Proof. Supposing that node j is transformed from node 1
j  under rotation 

1

1

nC , and node 1
j  is transformed 

from node 2
j  under rotation 

2

1

nC , the matrix representation for the nodes is expressed as 

 
1 1 2

1 1 1
1 2n n n

j

j j jC C C

j

x

y

z

 
 

     
 
  

R X R R X 

2

2

2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

cos(2 ( )/ ) sin(2 ( )/ ) 0

sin(2 ( )/ ) cos(2 ( )/ ) 0

0 0 1

j

j

j

xn n n n n n n n

n n n n n n n n y

z

 

 

 
     

     
   
    

 

,  (13) 

As the integer n is the least common multiple of n1 and n2, we can rewrite Eq. (13) as 

 

2

2 2

2

cos(2 / ) sin(2 / ) 0

sin(2 / ) cos(2 / ) 0

0 0 1

i
n

jj

j j jC

j j

xx i n i n

y i n i n y

z z

 

 

                             

R X and 1 i n               (14) 

Hence, this corollary is proved by combining Eq. (14) with Eq. (6). 

Theorem 2. If a structure is symmetric, then the distances from the center of the structure to at least two 

nodes are identical. 

Proof. For a symmetric structure, the principal axis or symmetry plane passes through the symmetry center 

of the structure. Under every symmetry operation, the nodes on the same orbit remain invariant. Thus, the 

distances from these nodes to the center of the structure are identical. 

Corollary 1. If a structure remains invariant under a symmetry operation 
i

nC  or 
2 1

2

i

nS 
 about an axis 

(1 1i n   , where i and n are relatively prime), then the distances from the center of the structure to at least n 
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nodes are identical. 

Proof. Eqs. (6) and (10) show that at least n nodes are on the same orbit and remain invariant under the 

operation 
i

nC  or 
2 1

2

i

nS 
. 

Corollary 2. If a structure remains invariant under a rotation 
i

nC  (1 1i n   , where i and n are relatively 

prime), and a reflection operation v  on a vertical symmetry plane, then the structure retains at least n 

reflection operations along n different vertical symmetry planes. 

Proof. Supposing that node j is transformed from node 1
j  under rotation 

i

nC , and node 1
j  is transformed 

from node 2
j  under reflection v , the matrix representation for the nodes is expressed as  

 
2

i
vn

j

j jC

j

x

y

z



 
 

   
 
  

R R X

2

2

2

cos(2 2 / ) sin(2 2 / ) 0

sin(2 2 / ) cos(2 2 / ) 0

0 0 1

j
r r

r r j

j

xi n i n

i n i n y

z

   

   

 
    

       
   
    

 

, 
0[1, ]j m  , [1, 1]i n      (15) 

Thus, it can be concluded from Eq. (8) that the structure has n reflection operations, where /r i n   in Eq. 

(15) determines the angle between the XZ plane and the corresponding symmetry plane. 

3.2. Further improvements on the computation efficiency 

The distance from the center of the structure to a node j is defined as 

 
2 2 2

j j j jr x y z   , 
0[1, ]j m       (16) 

and the maximum number of nodes with identical jr  is denoted by 
rn , whereas the allowable tolerance   for 

the numerical computations is taken as  

 3 4

maxmax(10 ,10 )r     (17) 

where maxr  is the maximum of jr . Then, according to Theorem 2 and its corollaries, we can evaluate the value 

of n from the interval 

 2 rn n                   (18) 

Thereafter, the computational effort for determining the n-fold axis and the rotation angle   will be 

significantly reduced. More importantly, a structure is guaranteed to be asymmetric when 1rn  ; that is, each 

node has a different distance jr  to the center of the structure. Using this criterion, asymmetric structures can be 
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efficiently detected. 

For generality, the authors also concern the case that a 3D cyclically symmetric structure is randomly 

oriented in space. Then, the principal axis should be first identified. Since a general member k1 moves on to 

another member k2 with an identical length 
1 2k kl l  under a rotation around the principal axis, the principal axis 

zn  can be effectively determined by 

  
1 2 1 21 2, [1, ] andz k k k kk k b l l    n n n  (19) 

where 
1kn  and 

2kn  are the unit vectors along the members k1 and k2, and 
1 2k kn n  denotes the cross product. 

Hence, one candidate axis of the potential axes is chosen as the principal axis, which is obtained the most times 

from Eq. (19). It should be noted that the horizontal symmetry plane is perpendicular to the principal axis, which 

lies in each vertical symmetry plane. Based on the definition of a reflection on a symmetry plane, the normal 

v
n  of a vertical symmetry plane must be parallel to one of the vectors which connect two nodes with identical 

jr
. That is 

 1 2

1 1

1 2

1 2 0

2

, [1, ] and
v

j j

j j

j j

j j m r r

  
    

  

X X
n

X X
, and 0

v z  n n  (20) 

where 
1 2 2
j jX X  denotes the distance between the nodes 

1j  and 
2j . At the beginning of the symmetry 

detection, it is assumed that 
T[0 1 0]

v
n , and T[0 0 1]z n . When a given structure retains no reflection 

(i.e., no solution exists for Eq. (20)), the vector 
v

n  is still taken as 
T[0 1 0]

v
n . 

To detect cyclic symmetry of a structure along desired orientations, the coordinates of a general symmetric 

structure shall be transformed in terms of a modified coordinate system 

 
T

0 0 0[ , , ]j XYZ j j jx x y y z z      X R , 
0[1, ]j m    (21) 

In this modified right-handed system, the principal axis zn  is taken as the Z-axis, and 
v

n  is taken as the 

Y-axis. The 3 3  direction cosine matrix XYZR  in Eq. (21) is written as 
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cos( , ) cos( , ) cos( , )

cos( , ) cos( , ) cos( , )

cos( , ) cos( , ) cos( , )

v v v

v v v

z z z

XYZ

z z z

X Y Z

X Y Z

X Y Z

  

  

   
 

  
 
 

n n n n n n

R n n n

n n n

  (22) 

where 
v z n n  denotes the new X-axis, and cos( , )

v
Xn  in the matrix 

XYZR  denotes the direction cosine of 

the new Y-axis (the vector 
v

n ) with respect to the original X-axis. Similarly, the other entries in Eq. (22) can be 

obtained. 

On the other hand, computation efficiency of the symmetry detection method can be further improved by 

considering the symmetry of distinguishing characteristics or mechanical properties. For example, the symmetry 

of the material properties, the symmetry of the cross-sectional areas of members, and that of boundary conditions 

are 
eG , 

aG , and 
bG , respectively. Then, the actual symmetry group G for the given engineering structure is 

 
1lowest-order group of ( , , , )e a bG G G G G                 (23) 

where 
1G  is the symmetry group of the nodes and connectivity patterns. However, it should be noted that the 

symmetry of external loads does not alter the symmetry group G of the given structure. Even if the external loads 

have lower-order symmetry or asymmetry, they can be decomposed into a series of vectors in the 

symmetry-adapted coordinate system and solved independently [10,39,40]. 

3.3. Group-theoretic algorithm 

Based on the characteristics of different symmetry groups in Table 1 and the above-mentioned theorems and 

corollaries, Fig. 2 gives the flowchart for detecting the cyclic symmetry group of a given engineering structure. 

The kernel of this algorithm contains seven steps. 

Step 1. The structural configuration (e.g., nodal coordinates and connectivity patterns of members) is 

provided as initial input data. Subsequently, modify the nodal coordinates using Eqs. (3)-(4), to locate the 

symmetry center at the origin of a new coordinate system. 

Step 2. Compute the distance jr  from the center of the structure to each node 0[1, ]j m  by Eq. (16), and 
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determine whether the value of 
rn  in Eq. (18) is smaller than 2. If 2rn  , finish this algorithm; and thus the 

structure is asymmetric and belongs to the lowest-order 
1C  group. Otherwise, modify the symmetry coordinate 

system using Eqs. (19)-(22), and go to Step 3 for further symmetry detection. 

Step 3. For the value of n decreased from 
rn  to 2, iteratively evaluate whether the structure contains a 1

nC  

rotation along the principal axis, where the transformation matrix is based on the matrix representation for the 

rotation operation in Eq. (6) with 1i  . If yes, obtain the exact value of n, denote 1cf  , and then terminate the 

iteration. Otherwise, 0cf  , 1n n  , and continue for the iteration while 2n  . Go to Step 4. 

Step 4. Evaluate whether the structure contains a vertical symmetry plane, where the transformation matrix is 

based on the matrix representation in Eq. (8). If yes, 1
v

f  ; otherwise, 0
v

f  . Then, 

a) If 1
vcf f  , finish this algorithm; and thus the structure is 

nvC  symmetric ( 2n  ). 

b) If 1, 0
vcf f  , and the structure is 2D, then the structure is 

nC  symmetric ( 2n  ). Finish this 

algorithm. 

c) Otherwise, go to Step 5. 

Step 5. Evaluate whether the structure contains a horizontal symmetry plane, where the transformation 

matrix is based on the matrix representation in Eq. (9). If yes, 1
h

f  ; otherwise, 0
h

f  . Then, 

a) If 0cf   and 0
v h

f f   , finish this algorithm; and thus the structure is 
sC  (or 

hC ) symmetric. 

b) If 1cf   and 1
h

f  , finish this algorithm; and thus the structure is nhC  symmetric. 

c) If 0
v hcf f f    , go to Step 6. 

d) Otherwise, go to Step 7. 

Step 6. Evaluate whether the structure contains an inversion, where the transformation matrix is based on the 

matrix representation in Eq. (11). If yes, the structure is iC  symmetric; otherwise, the structure is asymmetric 

(i.e., C1 group). The automated symmetry detection algorithm is finished. 
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Step 7. Evaluate whether the structure contains an improper rotation 1

2nS  along the principal axis, where the 

transformation matrix is based on the matrix representation in Eq. (10) and i=1. If yes, the structure is 
2nS  

symmetric; otherwise, the structure is 
nC  symmetric. The algorithm is finished. 

 

Figure 2 Flowchart for detecting the cyclic symmetry group of a given engineering structure 

As can be seen in Fig. 2 and the above-mentioned algorithm, Steps 5 and 7 are not necessary for all 2D 

structures. This is because all the nodes and members of 2D structures locate on the same plane. Consequently, 

this proposed detection method allows much more efficient evaluations for 2D structures. 

At each step of the automated symmetry detection algorithm, the key is to evaluate the equivalence of the 

geometric configuration of a given structure. To evaluate the equivalence of nodes, a set N which collects nodal 

vectors Xj is denoted by 

  0[1, ]j j m N X          (24)
 

and  , 0[1, ]S j S j m N X
 is the corresponding set that collects the new nodal vectors ,j SX

 under the 

operation S. These sets can be taken as equivalent if they satisfy 

 SN N          (25) 
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where   indicates that the precision of nodal vectors is broadened, because of the accuracy of numerical 

computations, and potential surds and square roots involved in symmetry operations. Besides, another set M 

which collects the connectivity patterns of members is denoted by 

  [1, ]m m b M K          (26) 

where the two-dimensional vector [ , ]m i jK  describes that a general member [1, ]m b  connects the nodes i 

and j, and i<j. On condition that the nodes remain invariant under the operation S, we need to further evaluate 

the equivalence of members, and build the corresponding set MS for the members 

  , [1, ]S m S m b M K          (27) 

In Eq. (27), 
, [ , ]m S S Si jK , where the node i is transformed from node 

Si  under the operation S, and the 

node j is transformed from node 
Sj . Then, under the operation S, the connectivity of members can be taken as 

equivalent if 

 
S S  M M M M          (28) 

which reveals that the involved operation is a symmetry operation and brings all the members into coincidence 

with themselves. In a word, we should search for the feasible solution to Eqs. (25) and (28) at each iteration step 

of Fig. 2. 

4. Illustrative Examples for Symmetry Detection of Certain Structures with Cyclic 

Symmetries 

A large number of symmetric structures are presented to evaluate the performance of the proposed symmetry 

detection method. In these examples, the symmetry center remains invariant, and the Z-axis is taken as the 

principal axis. All the examples are implemented in MATLAB on a PC with 3.1 GHz CPU and 4 GB RAM. 

4.1. 2D symmetric structures 

Figure 3 gives eleven examples of 2D symmetric structures. Based on their configurations and the automated 
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detection algorithm, the symmetry properties and the corresponding running time of the proposed approach for 

these structures are obtained and shown in Table 2. 

 

(a)                  (b)                (c)                (d) 

 

(e)                   (f)                (g)               (h) 

 

(i)                         (j)                      (k) 

Figure 3 2D symmetric structures 

Table 2  Running time and symmetry properties for the 2D symmetric structures 

Configuration a b c d e f 

(m0, b) (3, 3) (4, 4) (4, 4) (4, 4) (5, 5) (6, 6) 

number of symmetry operations 1 2 4 4 10 12 

rn  1 2 2 4 5 6 

Running time of proposed approach: s 0.0259 0.0974 0.1098 0.1118 0.1097 0.1135 

symmetry group 1C  sC  2vC  2vC  5vC  6vC  

Configuration g h i j k  

(m0, b) (7, 7) (10, 10) (11, 50) (12, 60) (12, 58)  

number of symmetry operations 14 20 20 24 2  

rn  7 10 10 12 12  

Running time of proposed approach: s 0.1070 0.1087 0.1084 0.1138 0.1311  

symmetry group 7vC  10vC  10vC  12vC  sC   
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The results demonstrate that the proposed symmetry detection method is capable of efficient and exact 

evaluation of the symmetry groups for all the 2D structures. The structure shown in Fig. 3(a) is based on the 

geometry of an irregular triangle, where the length ratio of three sides is 4: 6: 7. As each node has a different 

distance rj to the center (i.e., nr=1), the structure is effectively recognized as an asymmetric structure. Clearly, 

this structure has only the identity operation as a symmetry operation, and thus belongs to group C1. The 

structure shown in Fig. 3(b) is a kite. Since it has a single symmetry plane along the vertical direction, this 

structure is detected to be Cs symmetric. Both of the structures shown in Fig. 3(c) and Fig. 3(d) have two 

symmetry planes, and thus belong to group C2v. The symmetric structures shown in Fig. 3(e-j) are based on the 

geometries of n-regular polygons (here n=nr); these structures have n rotations and n reflections, and thus belong 

to group Cnv. Notably, the symmetric structure shown in Fig. 3(k) is designed by removing two members from 

the structure in Fig. 3(j), which are shown by the thick dotted lines. As a result, the structure has only the identity 

and a single reflection operation with respect to the thin dotted line as symmetry operations. Therefore, such a 

structure belongs to the group Cs. 

4.2. 3D truss structures 

Figure 4 shows a 3D truss structure, which consists of twelve pin-joints and twenty truss members. The 

height of the structure (along the Z-axis), the length of the outer members, and the length of the diagonal 

members are h=2m, 
o 4l  m, and 6dl  m, respectively. 
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Figure 4 A 3D truss structure 

Note that recognizing all symmetry operations for this structure needs only 0.152s. It turns out that 8rn  , 

because the distances from the nodes 1-4, 9-12 to the symmetry center are identical. Then, the value of n for the 

n-fold rotation axis is predicted from Eq. (18) 

 2 8n                  (29) 

As expected, it turns out that 4n   and the structure belongs to symmetry group C4h. It remains unchanged 

under the identity, three rotation operations and one reflection operation 
h  with respect to the horizontal 

symmetry plane XY. Importantly, although the nodes are indistinguishable under four reflection operations v  

with respect to the vertical symmetry planes ( 0, /4, /2,r   and 3 /4 , respectively), the truss members 

cannot retain these reflection operations. 

Note that the proposed algorithm not only detects the symmetry group for a given structure, but also records 

the transformations of its nodes and members under different symmetry operations. For example, Table 3 gives 

the nodal transformations of this C4h symmetric structure, where the first row lists the reference numbers of the 

nodes of the original configuration. 

https://www.sciencedirect.com/science/journal/00457949/191/supp/C


 Published in COMPUTERS & STRUCTURES (Volume 191, 15 October 2017, Pages 153-164) 

21 

 

Table 3 Nodal transformations of the C4h (C4) symmetric structure under different types of symmetry operations 

Symmetry operation 
Numbering of nodes 

1 2 3 4 5 6 7 8 9 10 11 12 

identity E 1 2 3 4 5 6 7 8 9 10 11 12 

rotation operation 1

4C  2 3 4 1 6 7 8 5 10 11 12 9 

reflection operation 
h  11 12 9 10 5 6 7 8 3 4 1 2 

 

Obviously, all the nodes remain invariant under the identity E, as the numbering of the nodes remains 

unchanged. Contrarily, all the nodes move to other positions under the rotation operation 1

4C . For instance, the 

first two entries in the third row indicate that the shifted nodes 1 and 2 move to coincide with the original nodes 

2 and 3 under the rotation. In addition, nodes 5-9 remain invariant under the reflection operation 
h , while 

nodes 1, 2, 3, and 4 are respectively transformed from nodes 11, 12, 9 and 10. 

In order to check the accuracy and robustness of the automated symmetry detection method, two similar truss 

structures with different symmetries are presented in Fig. 5. These two structures are based on the configuration 

of the original structure shown in Fig. 4. The structure in Fig. 5(a) is obtained by removing nodes 9-12 and their 

adjacent members; the structure in Fig. 5(b) is obtained by modifying nodal coordinates of nodes 1, 3, 10 and 12 

(along the Z-axis) from 1z   m to 1.5z   m. 

The value of 
rn  reduces to 4rn   for these two structures. It takes 0.149s and 0.151s, respectively, to 

complete symmetry detection for the two structures. In comparison to the original structure in Fig. 4, the 

structure in Fig. 5(a) does not remain unchanged under the reflection operation, and therefore belongs to group 

C4. The structure shown in Fig. 5(b) has an identity and a two-fold rotation operation 1

2C , as well as two 

improper rotations 1

4S  and 3

4S . As a result, this structure belongs to the improper cyclic group S4. 
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(a)                                        (b) 

Figure 5 Two different 3D truss structures originated from the structure shown in Fig. 4 

The bold entries in Table 3 describe the nodal transformations of the C4 symmetric structure, and the entries 

in Table 4 describe the nodal transformations of the S4 symmetric structure. It can be noticed that all the nodes 

change their positions under all independent symmetry operations, except the identity operation E. 

Table 4  Nodal transformations of the S4 symmetric structure under different types of symmetry operations 

Symmetry operation 
Numbering of the nodes 

1 2 3 4 5 6 7 8 9 10 11 12 

identity E 1 2 3 4 5 6 7 8 9 10 11 12 

rotation operation 1

2C  2 3 4 1 6 7 8 5 10 11 12 9 

improper rotation 1

4S  10 11 12 9 8 5 6 7 2 3 4 1 

 

4.3. A 3D cable-strut structure 

A large-scale cable-strut structure is given in Fig. 6. It has a diameter of 120 m and consists of 80 pin-joints 

and 208 members, with 32 strut members denoted by thick lines and 176 cable members denoted by thin lines. In 

fact, its geometric configuration is based on the prestressable structure reported in [7], where the two pin-joints 

along the principal axis and their adjacent members have been removed. The outmost 16 nodes are constrained 

in the X, Y, and Z directions. 

https://www.sciencedirect.com/science/journal/00457949/191/supp/C


 Published in COMPUTERS & STRUCTURES (Volume 191, 15 October 2017, Pages 153-164) 

23 

 

Figure 6 A 3D cable-strut structure with 80 nodes and 208 members 

Though the symmetry center is not located at the origin of the coordinate system (Fig. 6), the symmetry 

detection algorithm effectively detects the symmetry group of this structure. The complete iteration process takes 

only 0.117s for this highly symmetric structure, which consists of a large number of nodes and members. The 

value of nr is computed to be nr=16. As the structure remains invariant under both 16-fold rotations and 

reflection operations with respect to the vertical symmetry plane, it is C16v symmetric. 

Figure 7 illustrates the nodal transformations of the cable-strut structure under different symmetry operations. 

Each shifted node is associated with a different position of the original nodes. 

 

Figure 7 Transformations of the nodes of the cable-strut structure under different types of symmetry operations: 

(a) identity E; (b) rotation operation 1

16C ; (c) reflection operation with respect to the symmetry plane YZ, with 

/2r   

As expected, all nodes are unshifted by the identity operation E (Fig. 7a), and they are shifted by rotation 

operations (Fig. 7b). Interestingly, six nodes (17, 25, 32, 47, 50, and 77) remains invariant under the reflection 
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operation with /2r  , as shown in Fig. 7(c). These unshifted nodes are located on the symmetry plane YZ, 

and are therefore not affected by the symmetry operation. 

Recall that the change of boundary conditions, material properties, or cross-sectional areas of members 

would alter the symmetry of a given structure. For example, if the vertical strut connected to node 9 has a 

different cross-sectional area from those of the struts on the same orbit [1], its symmetry group is 
a sG C . Then, 

the symmetry group G for the structure is evaluated from Eq. (23), 

 
16lowest-order group of ( , )v s sG C C C               (30) 

In other words, because of the change of cross-sectional area for a member, the highly symmetric structure 

reduces to be symmetric with a low-order. Similarly, if the struts connected to nodes 9 and 60 (or nodes 9, 46, 60 

and 79 in Fig. 6) have a different cross-sectional area, then the structure is 
2vC  (or 

4vC ) symmetric. 

4.4. 3D dome structures with different cyclic symmetries 

To further validate the feasibility of the proposed symmetry detection algorithm, dome structures with a large 

number of nodes and members are studied. Such type of dome structures is based on the graph products of a 

cycle graph with n vertices and an arc graph with np vertices [41-43]. The diameter of the cycle graph is L; the 

arc graph with np vertices denotes a parabola on the vertical symmetry plane, whereas the curve is given 

by 2 20.5 0.125z x L    (0.05L ≤ x ≤0.5L). For example, Fig. 8 shows a 3D dome structure with n=18 and np=6, 

which consists of 108 nodes and 378 members. 

https://www.sciencedirect.com/science/journal/00457949/191/supp/C


 Published in COMPUTERS & STRUCTURES (Volume 191, 15 October 2017, Pages 153-164) 

25 

 

Figure 8 A 3D dome structure composed of 108 nodes and 378 members 

As far as the structure in Fig .8 is concerned, a total of 36 independent symmetry operations are recognized 

by running the proposed algorithm within 0.245s. The symmetry operations include the identity operation E, 17 

rotation operations, and 18 reflection operations. Thus, this dome structure is 
18vC  symmetric. In addition, 

distribution patterns for the nodal transformations of this structure under six typical symmetry operations are 

given in Fig. 9. 

These nodal transformations shown in Fig. 9 describe strong regularity. All the nodes are located at the 

original positions and remain unmoved under the identity operation E, while none of the nodes remains unmoved 

under the proper rotations. Interestingly, twelve nodes remain unmoved under one type of reflection operations 

(e.g., Fig. 9d and Fig. 9f), while no node stays fixed under the other type of reflection operations (e.g., Fig. 9c 

and Fig. 9e). This is owing to the fact that twelve nodes are located on the vertical symmetry plane in the former 

case, and no node is located on the symmetry plane in the latter case. 

Furthermore, the impact of structural configurations induced by different values for n and np is investigated 

in this study, where the diameter of the cycle graph and the curve of the arc graph remain unchanged. The 

corresponding contour plots for the number of members and the running time for the structures with variable n 

and np are shown in Fig. 10(a) and Fig. 10(b), respectively. 
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Figure 9 Distribution patterns for nodal transformations of the 
18vC  symmetric dome structure under typical 

symmetry operations: (a) identity E; (b) rotation 1

18C ; (c) reflection 
v  with /2r  ; (d) reflection 

v  

with 0r  ; (e) reflection 
v  with /18r  ; (f) reflection 

v  with /9r   

It can be noticed from Fig. 10 that both the number of members and the computational effort involved in 

running this method show nonlinear and significant rise with the increases of n and np. It turns out that the total 

number of members can be calculated as 4 3pn n n  , while the structural symmetry remains to be 
nvC  

symmetry. It means that this type of symmetric domes has at least rn n  identical distances from the nodes to 

the symmetry center, regardless of the variations of n and np. More importantly, the whole running time for 

recognizing the structure with the largest number of members is still less than 0.8s (Fig. 10b). Therefore, the 

automated symmetry detection algorithm is computationally efficient. 

https://www.sciencedirect.com/science/journal/00457949/191/supp/C
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(a)                                            (b) 

Figure 10 Contour plots for (a) number of members; and (b) running time for each detection process of the dome 

structures with variable n and np 

5. Conclusions 

On the basis of five types of symmetry operations and their matrix representations, this study has proposed a 

computationally efficient method for the automated detection of engineering structures with cyclic symmetries. 

Only nodal coordinates and connectivity patterns of members are needed in advance. The proposed method 

offers significant benefit for symmetry detection, such as reducing computational effort, avoiding human errors 

and enhancing computational accuracy. 

To evaluate the feasibility and robustness of the presented symmetry detection method, a great number of 2D 

and 3D symmetric structures have been studied. The results verify that the automated detection algorithm is 

accurate and efficient for not only conventional symmetric structures, but also for low-order/high-order 

symmetric structures with many nodes and numbers. A highly demonstrative example of the method is the exact 

detection on the 18vC  symmetric dome structure with 108 nodes and 378 members, which takes only 0.245s. 

Moreover, the proposed detection algorithm can record the transformations of nodes and members under 

symmetry operations. This is very helpful to understand the symmetry properties of a structure, and can be 

utilized for further symmetry analysis. 
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