
Learning Density Models via Structured
Latent Variables

Thesis submitted in accordance with the requirements of the
University of Liverpool for the degree of Doctor in

Philosophy by

Xi Yang

Department of Electrical Engineering and Electronics
School of Electrical Engineering and Electronics and

Computer Science
University of Liverpool

Oct. 2018

Abstract

As one principal approach to machine learning and cognitive science, the probabilistic
framework has been continuously developed both theoretically and practically. Learning
a probabilistic model can be thought of as inferring plausible models to explain observed
data. The learning process exploits random variables as building blocks which are held
together with probabilistic relationships. The key idea behind latent variable models is to
introduce latent variables as powerful attributes (setting/instrument) to reveal data struc-
tures and explore underlying features which can sensitively describe the real-world data.
The classical research approaches engage shallow architectures, including latent feature
models and finite mixtures of latent variable models. Within the classical frameworks, we
should make certain assumptions about the form, structure, and distribution of the data. S-
ince the shallow form may not describe the data structures sufficiently, new types of latent
structures are promptly developed with the probabilistic frameworks. In this line, three
main research interests are sparked, including infinite latent feature models, mixtures of
the mixture models, and deep models.

This dissertation summarises our work which is advancing the state-of-the-art in both
classical and emerging areas. In the first block, a finite latent variable model with the
parametric priors is presented for clustering and is further extended into a two-layer mix-
ture model for discrimination. These models embed the dimensionality reduction in their
learning tasks by designing a latent structure called common loading. Referred to as the
joint learning models, these models attain more appropriate low-dimensional space that
better matches the learning task. Meanwhile, the parameters are optimised simultaneously
for both the low-dimensional space and model learning.

However, these joint learning models must assume the fixed number of features as
well as mixtures, which are normally tuned and searched using a trial and error approach.
In general, the simpler inference can be performed by fixing more parameters. However,
the fixed parameters will limit the flexibility of models, and false assumptions could even
derive incorrect inferences from the data. Thus, a richer model is allowed for reducing
the number of assumptions. Therefore an infinite tri-factorisation structure is proposed
with non-parametric priors in the second block. This model can automatically determine

i

an optimal number of features and leverage the interrelation between data and features.
In the final block, we introduce how to promote the shallow latent structures model to

deep structures to handle the richer structured data. This part includes two tasks: one is
a layer-wise-based model, another is a deep autoencoder-based model. In a deep density
model, the knowledge of cognitive agents can be modelled using more complex probabil-
ity distributions. At the same time, inference and parameter computation procedure are s-
traightforward by using a greedy layer-wise algorithm. The deep autoencoder-based joint
learning model is trained in an end-to-end fashion which does not require pre-training of
the autoencoder network. Also, it can be optimised by standard backpropagation without
the inference of maximum a posteriori. Deep generative models are much more efficient
than their shallow architectures for unsupervised and supervised density learning tasks.
Furthermore, they can also be developed and used in various practical applications.

Key Words: Density models, Latent variable models, Deep density models, Gaussian
mixture models, Deep autoencoder.

ii

Acknowledgements

My research and education would not have been possible without the help and support of
supervisors, colleagues, and family. First and foremost, I am extremely grateful for the
advice and support of my primary supervisor Professor Kaizhu Huang who have helped
guide me on both academic and personal decisions in the past several years. His academic
rigour and innovative thinking inspire me along the way of my research. His guidance
has helped me in all the time of this research and in writing of this thesis. Furthermore,
I want to thank my co-supervisor Dr. John Y. Goulermas for his patience and support in
supervising me in my research, especially on the professional of writing, whose influence
can be seen throughout this dissertation.

Besides my advisor, I extend my thanks to all the advisors and colleagues in the Pat-
tern REcognition & Machine Intelligence Laboratory: Dr. Qiufeng Wang, Mr. Haochuan
Jiang, Mr. Shufei Zhang, Mr. Guanyu Yang. They have offered me an intensively pos-
itive attitude and the technical and equipment support. Moreover, I would also like to
thank Xi’an Jiaotong-Liverpool University for providing a Ph.D. scholarship under Grant
PGRS-13-03-17.

My sincere thanks also go to my husband Yuyao Yan, also the most important col-
league, who supports me not only in life but also in my research. Without his continuous
help and support, I cannot insist on my research.

Last but not the least, my parents and my cat have provided me with the love and
support I have needed throughout all of this, and without them, none of this would have
been possible.

iii

iv

Contents

Abstract i

Acknowledgements iii

Contents v

List of Figures ix

List of Tables xiii

1 Introduction 1
1.1 Contributions of This Thesis . 4

1.2 Summary of Remaining Chapters . 7

2 Background 11
2.1 Density Model with Latent Variables . 12

2.1.1 Notation . 14

Factor Analysis . 15

Probabilistic Principal Component Analysis 16

2.1.2 Dimensionality Reduction (DR) 16

2.1.3 Discussion . 17

2.2 Finite Mixture Models . 17

2.2.1 Notation . 18

2.2.2 Gaussian Mixture Model . 19

2.2.3 Mixtures of Factor Analysers . 20

2.2.4 Inference . 21

2.2.5 Maximum Likelihood . 21

2.2.6 Maximum A Posteriori . 22

2.2.7 Expectation-Maximisation Algorithm 23

2.2.8 Unsupervised Learning and Discussion 24

2.3 Infinite Latent Variable Models . 25

v

2.3.1 Notation . 25

2.3.2 Linear-Gaussian IBP Model . 26

2.3.3 Variational Bayes Inference . 27

2.4 Deep Density Model . 29

2.4.1 Deep Density Model via Greedy Layer-wise Learning 30

2.4.2 Deep Generative Models . 31

2.4.3 Inference . 33

2.4.4 Collapse Model . 35

2.5 Deep Autoencoding Density Model . 36

2.5.1 Notation . 37

2.5.2 Deep Autoencoding Gaussian Mixture Model 39

2.5.3 Rejection . 41

3 Density Model with Finite Mixture for Unsupervised and Supervised Learn-
ing 43
3.1 Unsupervised Dimensionality Reduction for Gaussian Mixture Model . . 44

3.1.1 Preliminaries . 45

3.1.2 Unsupervised Dimensionality Reduction with MCFA 47

Model Description . 47

Optimisation . 49

3.1.3 Experiments . 51

Simulation Data . 51

Comparison on Real Data . 52

3.2 Joint Learning . 60

3.2.1 Supplementary Experiments: MFA vs MCFA 61

Empirical Results . 63

Clustering Result . 64

3.3 Two-layer Mixtures of Factor Analysers with Joint Factor Loading 65

3.3.1 Related Model Architectures and Computational Complexities . . 67

3.3.2 Problem Definition . 69

3.3.3 Main Model . 70

3.3.4 Optimisation via a Modified EM Algorithm 71

E-step . 73

M-step . 74

3.3.5 Experiments and Results . 75

User knowledge data . 76

Small sample size datasets . 78

vi

3.4 Summary . 87

3.4.1 Discussion . 88

4 Infinite Non-negative Binary Matrix Tri-factorisation for Learning Latent
Features 89
4.1 Background . 92

4.1.1 Learning Latent Feature via Matrix Factorisation 92

4.1.2 Indian Buffet Process . 92

4.1.3 Maximisation-Expectation Algorithm 94
4.2 Infinite Non-negative Binary Matrix Tri-factorisation 94

4.2.1 Model Description . 95

4.2.2 Linear-Gaussian iNBMT Model: Formulation 96
4.2.3 Linear-Gaussian iNBMT Model: Variational Inference Procedure 97

4.2.4 Linear-Gaussian iNBMT Model: Parameter Updating 98

4.3 Optimising Latent Features . 98

4.3.1 Updating Variational Parameters 99
4.4 Benchmarking Approaches . 100

4.5 Experiments . 101

4.5.1 Datasets . 101
Synthetic Data . 102

Com-USPS and Pre-USPS Data 102

Com-NIST and Pre-NIST Data 103

Coil-20-product and UMIST . 103
4.5.2 Feature Extraction . 103

4.5.3 Reconstruction . 105

4.5.4 Pre-image Restoration . 108
4.5.5 Clustering . 109

4.6 Complexity Analysis . 112

4.7 Summary . 113

4.7.1 Limitation and Future Work . 114

5 A Novel Deep Density Model for Unsupervised Learning 115
5.1 Deep Mixtures of Factor Analysers with Common Loadings 116

5.1.1 Main Model . 117

5.1.2 Inference . 120

5.1.3 Collapse Model . 123
5.1.4 Complexity Analysis . 123

5.2 Benchmarking Approaches . 124

vii

5.3 Experimental Results . 125
5.3.1 Experimental Setup . 125
5.3.2 Datasets Description . 126
5.3.3 Results . 127

Empirical results . 127
Clustering results . 129
Qualitative results . 130

5.4 Summary . 131
5.4.1 Limitation and Future Work . 132

6 Deep Neural Network-Based Models via Density Estimation 133
6.1 A Deep Autoencoder-Based Joint Learning Model 134

6.1.1 Model Description . 135
6.1.2 Optimisation Strategy . 138

6.2 Preliminary Experimental Results . 139
6.2.1 Datasets . 139
6.2.2 Network Configuration . 139
6.2.3 Benchmarking Approaches . 141
6.2.4 Qualitative Results . 142

Empirical Results . 142
Generation Results . 143

6.2.5 Quantitative Results . 147
Classification . 147
Rejection . 147

6.3 Discussion and Future Work . 151

7 Conclusion and Future Work 153
7.1 Review of the Journey . 153
7.2 Future Work . 155

Publication List 157

Appendix 159

Reference 163

viii

List of Figures

1.1 The relationship among the developed models in this thesis. 4

2.1 The building blocks of the background. 13

2.2 A directed graph of a latent variable models. 14

2.3 A simple mixture model is expressed in terms of a Bayesian network. . . 18

2.4 A mixture of latent variables model is graphically expressed by the Bayesian
network. 19

2.5 Illustration of the EM algorithm. 24

2.6 A binary matrix generated by Indian Buffet Process diagram 26

2.7 A directed acyclic graph represents a shallow density model. 30

2.8 A multi-layer directed acyclic graph represents a deep density model. . . 31

2.9 The sketch of a mixture of the DMFA’s higher layer for clustering and
dimensionality reduction. 32

2.10 Graphical models of a two-layer DMFA model. 33

2.11 Schematic structure of an autoencoder. 37

2.12 Schematic structure of a variational autoencoder. 38

2.13 Deep Autoencoding Gaussian Mixture Model 40

3.1 Comparison of DR by PCA and the joint learning model on simulated data. 53

3.2 Three criteria comparison on User Knowledge Dataset among different
algorithms. 55

3.3 Three criteria comparison on user Physical Dataset among different algo-
rithms. 57

3.4 Three criteria comparison on Iris Dataset among different algorithms. . . 58

3.5 Three criteria comparison on Seeds Dataset among different algorithms. . 60

3.6 The sketch of the joint learning with locally linear assumptions for clus-
tering and dimensionality reduction. 62

3.7 The sketch of the joint learning with globally linear assumptions for clus-
tering and dimensionality reduction. 62

ix

3.8 Performance on various real data (on training set) in terms of the log-
likelihood. 64

3.9 Performance on various real data (on the testing set) in terms of the log-
likelihood. 64

3.10 Clustering error rate on 4 datasets (on the training set). 65

3.11 Clustering error rate on 4 datasets (on the testing sets). 65

3.12 Comparison of different mixture models. 68

3.13 Visualisation of DR for 2L-MJFA, MCFA, and PCA on simulated data. . 77

3.14 Error rate comparison for the User Knowledge dataset. 78

3.15 Error rate comparison for the WDBC dataset. 79

3.16 Error rate comparison for the WPBC dataset. 81

3.17 Error rate comparison for the ULC dataset. 84

3.18 Error rate comparison for the LSVT dataset. 85

3.19 Error rate comparison for the BT dataset. 87

4.1 Comparison of different models via IBP. 91

4.2 Representation of the iNBMT model. 95

4.3 Comparison of iNBMT, ME-IBP, IBP-IBP, and PNMT on the synthetic
dataset. 104

4.4 Comparison of iNBMT, ME-IBP, IBP-IBP, and PNMT on Com-USPS
dataset. 104

4.5 Comparison of iNBMT, ME-IBP, IBP-IBP, and PNMT on Com-NIST
dataset. 105

4.6 Comparison of reconstruction of synthetic data. 106

4.7 Comparison of iNBMT, ME-IBP, IBP-IBP, and PNMT on the Com-USPS
dataset. 107

4.8 Comparison of iNBMT, ME-IBP, IBP-IBP, and PNMT on the Com-NIST
dataset. 107

4.9 Illustration of von-Neumann divergence measure. 108

4.10 Comparison of iNBMT, ME-IBP, IBP-IBP, and PNMT on the Pre-USPS
dataset for pre-image restoration. 110

4.11 Comparison of iNBMT, ME-IBP, IBP-IBP, and PNMT on the Pre-NIST
dataset for pre-image restoration. 111

5.1 Graphical models of a two-layer DMFA and DMCFA. 117

5.2 The sketch of a mixture of the higher layer of DMCFA. 118

5.3 Performance on various real data (on the training set) in terms of the av-
erage log-likelihood. 128

x

5.4 Performance on various real data (on the testing set) in terms of the log-
likelihood. 128

5.5 Clustering error rates on the training sets. 130
5.6 Clustering error rates on the test sets. 131
5.7 Comparison of two-layer DMCFA, two-layer DMFA, MCFA, and MFA

on the MNIST dataset for generation. 132

6.1 Flaws of the deep learning systems. 133
6.2 Schematic structure of a Deep Autoencoder-Based Joint Learning Model. 136
6.3 The sketch of classification and dimensionality reduction. 144
6.4 Reconstruction results on the testing set of MNIST. 145
6.5 Generation results of the handwriting digits. 146
6.6 Rejection results of 120 handwriting letters. 150

xi

xii

List of Tables

2.1 Different types of latent variable models. 12

3.1 Comparison among the MCFA, PCA+GMM and mPPCA on Simulated
Data . 52

3.2 Summary of real-world datasets . 53

3.3 Comparison among MCFA, PCA+GMM and mPPCA on User Knowl-
edge Data . 54

3.4 Comparison among MCFA, PCA+GMM and mPPCA on Physical Data . 56

3.5 Comparison among MCFA, PCA+GMM and mPPCA on Iris Data 57

3.6 Comparison among MCFA, PCA-GMM and mPPCA on Seeds Data . . . 59

3.7 Summary of the number of parameters for the main models. 69

3.8 Error rate comparison for various dimensions, on the User Knowledge
dataset. 77

3.9 Summary of S3 datasets. 79

3.10 Error rate comparison for the WDBC dataset. 80

3.11 Error rate comparison for the WPBC dataset. 82

3.12 Error rate comparison for the ULC dataset. 83

3.13 Error rate comparison for the LSVT dataset. 85

3.14 Error rate comparison for the BT dataset. 86

4.1 Description of seven datasets used in the experiment 102

4.2 Reconstruction results by Von neumann divergence. 109

4.3 Clustering results on two benchmark datasets. 113

4.4 Number of parameters comparison. 114

5.1 Parameter settings of the deep models. 126

5.2 Performance on various real data (on the training set) in terms of the av-
erage log-likelihood. 127

5.3 Performance on various real data (on the test set) in terms of the average
log-likelihood. 129

5.4 Clustering error rate on all the datasets. 130

xiii

6.1 Performance on 4 real-world datasets in terms of the error rate. 148
6.2 Rejection results regarding three metrics. 149

xiv

Chapter 1

Introduction

Machine learning can be thought of as a set of methods for creating plausible models from
observed data. A machine can use such models to describe or predict something about the
real world. In fact, future data may be not consistent with the model obtained by train-
ing the observed data, so the model is required to give uncertain results. Therefore, the
probabilistic framework provides uncertainty about the representation, manipulation, and
predictions of models [1]. The probabilistic framework mentioned here is synonymous
with Bayesian modelling rather than frequency, which adopts probability theory for learn-
ing the parameters and structures of a model from data [2, 3]. Besides, for mathematically
understanding, Bayesian modelling can be used both in a discriminative and a generative
way.

Density modelling introduced in this dissertation mainly refers to the Bayesian de-
cision method which gives the probability density function.1 This kind of model is a
probabilistic framework for estimating distributions which are used to encode data ac-
quired through experience. Concretely, from Bayesian’s point of view, it is necessary to
assign a prior distribution to the parameters, which is to give the subjective probability
distribution characteristics. The observation data are then used to correct the initial prob-
ability distribution, which is achieved by multiplying the likelihood function. Finally, the
posterior distribution is obtained according to the Bayesian theory for making a decision.
This model is particularly useful when the model cannot be confidently learned due to
insufficient data. Especially, density estimation is most potent when involving additional
latent/hidden variables [4]. Given a different distribution of latent variables, the structured
latent variable can correspond to different concepts, such as categories, data structures,
semantics, or behavioural state [5, 6]. In addition, latent variables are also introduced to
reduce the dimensions of the data. They can also abstract the underlying features in a
large number of observations to make the analysis of the data more accessible. Scientif-

1Another discriminative method of statistical machine learning is the discriminant function method. The
most important special case is the minimum-distance classifier.

1

ically, latent variables can link observable data in the real world to symbolic data in the
modelled world [7]. Therefore density models via latent structures emerge as one of the
central theoretical approaches for designing machines, and also as a central role in data
mining, pattern recognition, and artificial intelligence [2, 3]. The primary challenge of
density models lies at learning high-dimensional data which have complicated data man-
ifolds such as text, images, and sounds. In essence, it embraces the following aspects: i)
capturing the crucial attributes in lower-dimensional space, ii) reducing the free parame-
ters, iii) estimating distributions to fit the complicated data manifold, iv) increasing model
flexibility, and v) reducing the learning difficulty (costly inference procedures).

This dissertation explores all the above five aspects. When we deal with high-dimensional
data, how to capture its low-dimensional representation is the primary task of learning.
In classical approaches, dimensionality reduction techniques are always considered as a
pre-processing step, which reveals data structure and explores features for subsequent
discriminative or generative learning. Essentially, this independent learning may lead to
some problems, i.e., the optimal subspace obtained by the dimensionality reduction may
not benefit the most the learning task because these two tasks are solved independently
without joint optimisation [8, 9]. Therefore, the question becomes how to capture the
crucial attributes in the lower-dimensional space, which refers to the attributes related
to subsequent tasks. To this end, the first process can be described as the dimension-
ality reduction for the particular learning task. Recently, coupled with latent variables,
joint frameworks are proposed which combine the dimensionality reduction task with the
learning task. In the joint frameworks, the parameters of the two tasks are updated si-
multaneously, which ensures that the learning task can guide the process of finding the
low-dimensional representation.

Reducing the parameters can accelerate the model training. Also, it is an important
method to alleviate the problem caused by insufficient training data. When the data pat-
terns are high-dimensional but of low cardinality, the ratio of the sample number to the
parameter number in the model will be low.2 With the limited data, we may not learn a
good model due to either over-fitting or underestimation of the noise level [10]. Therefore
the subspace derived by the independent dimensionality reduction may even significantly
deteriorate the discrimination performance. In a model with multiple latent variables, it is
a very effective method to set a common latent variable loading for reducing the free pa-
rameters. Especially, when the mixture model adopts a common latent variable loading,
this variable can be treated as a dimensionality reduction matrix. This method acceler-
ates training while mitigates the negative effect caused by the limited number of per class
samples. Chapter 3.2 mainly discusses the performances on small sample size data and

2These kinds of data are denoted as Hughs Phenomelia.

2

the comparison of computational efficiency with the component mixture model. Also,
this simple and elegant framework is appropriate for both shallow and deep models.

There are two cases of estimating distributions to learn high-dimensional data with
complicated data manifolds. In the first case, when objects of multiple types with fea-
tures of much richer structures are addressed, the single latent factor can be restrictive
and often provides poor low-rank matrix approximation [11]. Thus, a new latent factor is
needed to absorb the additional scale. Thus a probabilistic model for tri-factorisation is
proposed to provide two factors to leverage the interrelation between data and features (in
Chapter 4). In the other case, a distribution is usually not enough to represent latent fea-
tures of a cluster, when the high-dimensional data are just projected by a linear mapping.
Therefore, both the multi-layer mixture structured latent variables and the deep-structured
latent variables are often used to handle the complicated data manifold. Since the Gaus-
sian mixture model considers that multiple Gaussians can fit any unknown distribution,
this thesis proposes a two-layer mixture model to deal with the problem that the data of a
single class does not fit well by a multivariate Gaussian (see Chapter 3). Assuming that
each class is a generative learning task, we can then use a mixture latent variable model
to approximate it.

Moreover, capable of extracting high-level and semantically meaningful features from
the sensory data, the deep architecture of density models can create a better prior for com-
plex structured data. In addition, deep neural networks can also be used for feature extrac-
tion, and they can further be combined with density model learning. The existing deep
models, probabilistic graphical models, and deep neural networks, not only prove that
the deep architectures can create a better prior for complex structured data than the shal-
low density architectures theoretically, but also have practical significance in prediction,
reconstruction, clustering, and simulation [12][13].

However, deep density models still encounter computational difficulties in practice
due to a large number of free parameters and costly inference procedures [14]. To this end,
the common latent variable loading and the greedy layer-wise learning approach are con-
sidered to address these concerns (see Chapter 3). Particularly, in the greedy layer-wise
learning approach, the same inference procedure is used for each layer. The hot-point,
deep neural networks, and the density estimations are further combined. The proposed
model (see Chapter 6) manages to exploit the network output as a posterior probabili-
ty, which simplifies the inference procedures. Meanwhile, the back-propagation can be
directly used to reduce the optimisation difficulty.

Finally, there is a trade-off between increasing model flexibility and reducing the
learning difficulty. In general, some assumptions need to be made about the form, struc-
ture, and/or distribution of data during inferring. However, the more assumptions are

3

made, the simpler it is to perform inference. But if these assumptions are wrong, the in-
ferences drawn from the data would not be correct. To increase flexibility, it is desirable to
reduce the number of assumptions and allow for richer models as the understanding of da-
ta grows. Therefore, better flexibility can be achieved through the use of non-parametric
Bayesian prior on the factor, which liberates the constraint that the dimension of the low-
dimensional representation must be fixed [15]. However, the posterior inference is per-
formed in models using the priors of an infinite-dimensional stochastic process since the
model is not practical unless posterior distributions can be computed. This increases the
difficulty of theoretical analysis of the non-parametric models.

In summary, the relationship among our developed models is described in a stacked
Venn diagram Fig. 1.1.

Fig. 1.1: The relationship among the developed models in this thesis.

1.1 Contributions of This Thesis

The research contributions in this dissertation are summarised in the following:

4

• We propose two frameworks for joint learning of latent variable models: Mixtures
of Factor Analysers with Common factor loadings (MCFA) for clustering; Two-
layer Mixtures of Factor Analysers with Joint Factor Loading (2L-MJFA) for clas-
sification.

– In comparison with the traditional independent learning (conducted by the la-
tent space and classifier independently), the joint learning methods can learn
both the optimal subspace and the parameters for the clustering/classification
model simultaneously. The aim is to interact dimensionality reduction with
the clustering/classification so that the dimensionality reduction and the clus-
tering/classification can be well matched with each other.

– For unsupervised learning, we demonstrate that the joint learning with the di-
mensionality reduction subspace would make the clustering properties clearly
reserved. Furthermore, we analyse that the common factor loading could be
regarded as the dimensionality reduction matrix, and it also achieves efficien-
t dimensionality reduction that reduces the free parameters (computational
time) for high dimensional data.

– With the above insight, we propose a mixture discriminant model, namely the
two-layer joint learning model, which is more suitable for high dimensional
but small sample size classification. This relies upon a mixture of mixtures
structure, used to capture the complex properties of each class better. Impor-
tantly, the common loading matrix mitigates the negative effect caused by the
limited number of per class samples.

– For the two-layer joint learning model, a modified expectation-maximisation
algorithm is proposed that consists of two-layer loops, so that the joint learn-
ing is conducted very efficiently. The first-layer loop is engaged to estimate
the joint parameters that fit the mixture among different classes, whereas the
second one trains the mixture components within each class.

• An infinite probabilistic tri-factorisation model is proposed by exploiting the Bayesian
nonparametric priors, called Infinite Non-negative Binary Matrix Tri-factorisation
(iNBMT).

– This model is used to address objects of multiple types with features of much
richer structures. We show that how to learn the interaction among features
and leverage the interrelation between data and features.

5

– Specifically, the priors of an infinite-dimensional stochastic process are able
to automatically determine an optimal number of features instead of tuning or
searching constant parameter by trial and error.

– Two latent factors are designed in binary form since binary features are cheap-
er to compute and more compact to store. Binary features can also appear in
various types of data. Moreover, no extra constraints are enforced in this mod-
el, presenting more appealing features when compared with other models used
to generate binary features.

– We perform posterior inference in models using the priors of an infinite-
dimensional stochastic process and compute posterior distributions.

• We develop two kinds of frameworks for deep density models: one is a layer-wise
deep architecture called Deep Mixtures of Factor Analysers with Common loadings
(DMCFA), the other is a deep neural network-based model.

– First, we show how to stack multiple layers of joint learning of latent variable
models on top of each other by forming a deep belief network. The knowl-
edge of cognitive agents can be modelled using more complex probability
distributions, and a deep density model can provide better support for simu-
lating complex data. Thus, the deep model enables a consistent gain in model
performance on a wide range of data.

– By using a greedy layer-wise learning approach, its inference and parameter
computation procedure is more straightforward than previous methods. The
proposed model is also flexible in estimating the data density by utilising the
learnable Gaussian distributions as the priors for each latent unit.

– We develop a joint learning method via a deep autoencoding framework for
supervised learning. The parameters of the deep autoencoder and the Gaus-
sian mixture model are optimised simultaneously in an end-to-end fashion.
The joint optimisation can well balance autoencoding reconstruction, laten-
t representation of density estimation, and regularisation terms. This helps
the autoencoder to escape the less attractive local optimal solution and further
reduce the reconstruction error.

– There is a difficulty to make significant changes to a well-trained autoencoder
by fine-tuning. However, in the end-to-end fashion, pre-training of the autoen-
coder network is not necessary.

6

– The introduction of density estimation makes it possible to calculate the output
of the network based on the likelihood function instead of the softmax; this
enables a probabilistic output which can be more flexibly used in practice.

– The autoencoder-based joint learning model can be optimised by the standard
backpropagation. Moreover, the posterior probability is derived from the net-
work and does not require Maximum A Posteriori estimation, so the reasoning
of the model is much simpler.

1.2 Summary of Remaining Chapters

Chapter 2 Background In this chapter, we provide a technical overview of the basic
building blocks of density models with latent structures. The models include probabilistic
Principal Component Analysis, factor analysis, Gaussian mixture model, and the mix-
tures of factor analysers, Bayesian nonparametric model, deep density model, and deep
autoencoding. We also analyse techniques that improve the learning of those mixture
models by employing priors of an infinite-dimensional stochastic process. We discuss
how to combine shallow mixture models into deeper models via layer-wise stacking.
Deep mixture factor analysers present the latest results in deep density models. There
is also a brief discussion of another deep generative model, deep autoencoders. At the
end of this chapter, we discuss Maximum Likelihood Estimation, Maximum A Posteriori
inference, Variational Bayesian inferences, the Expectation-Maximisation algorithm, and
hyperparameters.

Chapter 3 Density Model with Finite Mixtures for Unsupervised and Supervised
Learning In this chapter, we will detail two models related to joint learning. The
first work is the Unsupervised Dimensionality Reduction for Gaussian Mixture Model,
demonstrating that joint learning with the dimensionality reduction subspace would make
the clustering properties clearly reserved and even clear than independent learning. The
second work is to propose a novel joint learning model for classification referred to as
a two-layer mixtures of factor analysers with joint factor loading. Explicitly, the model
adopts a special two-layer mixture or a mixture of mixtures structure, where each compo-
nent represents each specific class as a mixtures of factor analysers. Importantly, all the
involved factor analysers are intentionally designed so that they share the same loading
matrix. Apart from operating as the dimensionality reduction matrix, this largely reduces
the parameters and makes the proposed algorithm very suitable to small dataset situation-
s. Additionally, we propose a modified expectation maximisation algorithm to train the
proposed model. This chapter is based on the published papers of Yang et al. [16–19].

7

Chapter 4 Infinite Non-negative Binary Matrix Tri-factorisation for Learning Latent
Features In this chapter, we propose a new Bayesian model, termed the infinite Non-
negative Binary Matrix Tri-factorisation (iNBMT) model. This can automatically learn
both latent binary features and feature numbers, based on the Indian Buffet Process (IBP).
It exploits a tri-factorisation process that decomposes the nonnegative matrix into a prod-
uct of three components: two binary matrices and a non-negative real matrix. In contrast
to traditional bi-factorisation, the tri-factorisation can better reveal the latent structures
among items (samples) and attributes (features). Specifically, an IBP prior is imposed
on two infinite binary matrices while a truncated Gaussian distribution is assumed on the
weight matrix. To optimise the model, we develop a modified variational-Bayes algorith-
m, with iteration complexity one order lower than the recently proposed models [20, 21].
We also demonstrate our approach in two new applications: pre-image restoration and
co-clustering. This chapter is based on the published papers of Yang et al. [9, 22].

Chapter 5 A Novel Deep Density Model for Unsupervised Learning In this chapter,
we introduce a novel deep density model, referred to as Deep Mixtures of Factor Analy-
sers with Common Loadings (DMCFA), with an efficient greedy layer-wise unsupervised
learning algorithm. The model employs a mixtures of factor analysers sharing common
component loadings in each layer. The common loadings can be considered to be a feature
selection or reduction matrix which makes this new model more physically meaningful.
Importantly, sharing common components is capable of reducing both the number of free
parameters and computation complexity remarkably. Consequently, DMCFA makes in-
ference and learning rely on a dramatically more succinct model and avoids sacrificing its
flexibility in estimating the data density by utilising Gaussian distributions as the priors.
This chapter is based on the published papers of Yang et al. [23, 24].

Chapter 6 Deep Neural Network-Based Models via Density Estimation In this chap-
ter, we study a variant of the joint learning model utilising a deep autoencoder to a feature
extractor. The goal is to perform hand-writing characters classification through depth
generation models and then to generate new samples by categories. The proposed mod-
el is referred to as the deep autoencoder-based joint learning model. In this model, the
deep autoencoder generates a low-dimensional representation which is further fed into a
Gaussian mixture model and controls the reconstruction error for each input data point.
Importantly, deep autoencoder-based joint learning is conducted in an end-to-end fashion,
which optimises the parameters of the Gaussian mixture model and deep autoencoder si-
multaneously instead of the decoupled two-stage training, and the inference of the model
is kept simple by using the standard backpropagation. Also, the Gaussian mixture model

8

can guide the deep autoencoder projecting latent features onto a Gaussian space and help
the autoencoder escape from the less attractive local optimum. Consequently, the join-
t optimisation, which well balances autoencoding reconstruction and Gaussian mixture
model of latent representation, avoids the need for pre-training.

Chapter 7 Conclusion We will then summarise this dissertation and conduct discus-
sions on future work.

We try to make each of these chapters self-contained. Therefore, some critical con-
tents appearing in previous chapters may be briefly reiterated in several chapters, e.g.,
model definitions or illustrative figures.

9

10

Chapter 2

Background

In this chapter, we introduce density models with latent variables and provide the rele-
vant background material. Density models are mainly used to estimate the unobservable
probability density function based on the observed data in statistical pattern recognition.
The density estimation can offer valuable indications for features of the data such as
skewness and multimodality [25]. Among all density models, those with latent variables
are particularly interesting. These density models seek to model the latent structure or
the latent features of data, with probability density estimation [1, 26]. Moreover, laten-
t variables can be learned to transform the data from its input representation to a more
useful latent representation. Algorithms vary in complexity, from simple methods like
Probabilistic Principal Component Analysis (PPCA) [27] and Factor Analysis (FA) [28]
to complicated methods such as the mixture models and Bayesian nonparametric model-
s. “Deep Density model” derives its name from forming a multi-layer model where the
same shallow density model comprises the basic components of each layer. For instance,
the well-known Deep Belief Network is formed by the stacking of Restricted Boltzmann
Machines [14, 29]. With the development of deep learning, the perception of the densi-
ty estimation is enhanced by the combination with deep autoencoder, which also makes
the establishment of the model simpler, such as the Variational Autoencoders and Deep
Autoencoding Gaussian Mixture Model.

In this chapter, we discuss several popular density models with mixtures and Bayesian
nonparametric framework, and deep density models with multi-layer and deep autoen-
coder framework, which will form the basic building blocks of the remaining chapters in
this thesis. As the preliminaries, Section 2.1 reviews the density models with latent vari-
ables, and also briefly discusses their role in Dimensionality Reduction (DR). Section 2.2
covers many popular finite mixture models for unsupervised learning (clustering) includ-
ing Gaussian Mixture Model (GMM) and Mixtures of Factor Analysers (MFA) [30, 31].
This section will serve as a building block of the mixture of latent variables models.
Section 2.3 reviews a density model with infinite mixtures based on the bi-factorisation

11

framework. The main contribution is the utilisation of the Bayesian nonparametric pri-
or. Section 2.4 and 2.5 review two kinds of deep density models which adopt different
deep architectures. The former one is a multi-layer deep model, and the latter one is the
combination of the deep autoencoders (AE). Moreover, the latter is a probabilistic model.
The multi-layer deep model has the advantage of easier inference and less computational
complexity. However, when the number of layers is too big, the performance may not be
good enough. With deep AE, this deep model has the advantage of easier optimisation
by even adopting the standard back-propagation. Both the model formulation and some
novel insights into the improved training will be discussed in each section.

The building block roadmap of this chapter is drawn in Fig. 2.1 which shows clearly
the major topics for learning density models with the latent structures. The topics with a
tick indicate that they have been discussed or touched in this thesis.

2.1 Density Model with Latent Variables

In statistics, latent variable models are probabilistic approaches parameterized with a set
of latent variables and manifest variables [32, 33]. These models are typically grouped
depending whether the nature of the manifest and latent variables are discrete or continu-
ous (see Table 2.1) [34, 35]. They are also widely applied to analyse data, especially in the
presence of repeated observations, multi-level data, and panel data [4]. The preliminaries

Table 2.1: Different types of latent variable models.

Manifest variables
Latent variables

Continuous Discrete

Continuous Factor Analysis Latent Profile Analysis

Discrete Latent Trait Analysis Latent Class Analysis

focus on the Factor Analysis and the Latent Profile Analysis, where the manifest variables
are continuous and the conditional distribution gave the latent variables, often supposed
to be normal [35, 36]. Note that the latent variables are treated as normally distributed for
the former variables and a multinomial distribution for the latter.

In general, the most commonly used method for density estimation is the Maxi-
mum Likelihood Estimate (MLE). In this way, we can establish a likelihood function
L(µ,Σ) =

∑N
n=1 ln p(yn|µ,Σ).1 However, it is computationally difficult to directly cal-

1yn - N observation data, µ - mean, Σ - covariates

12

Fig. 2.1: The building blocks of the background.

13

culate the likelihood functions because of the very high dimensions of Σ. Thus, a set of
variables z is defined to govern multiple y. When the distribution of p(z) is obtained,
p(y) can be determined by the joint distribution over y and z. Typically, the covariates
Σ are ruled out. In this setting, z is assumed to affect the manifest variables (observ-
able variables), but it is not directly observable. Therefore, z is the so-called the latent
variable [36]. Importantly, the introduction of latent variables allows the formation of
complicated distributions from simpler components. The latent variable models are wide-
ly used in machine learning, data mining, and statistical analysis. As basic models, FA
and PPCA are often applied to define an appropriate density distribution of data.

2.1.1 Notation

In density estimation, the density function is assumed to be a simple parametric model,
and the parameters of the model are estimated by using a valid training set. We begin
by considering the problem of identifying groups/clusters of data points in a multidimen-
sional space. Suppose we have a dataset y consisting of N observations which have
a d-dimensional vector {y1, y2, . . . , yd} of each feature variable. The data involved in
models shall follow the identical and independent distribution as assumption, namely, the
i.i.d. condition. By introducing latent variables, the manifest distribution p(y) can be
signified in terms of a q-dimensional vector {z1, z2, . . . , zq} of latent variables z, where
q is a smaller number than d [37]. Through this process, the joint distribution P (y, z)

is decomposed into the conditional distribution of the feature variables given the latent
variables and the product of the marginal distribution of the latent variables p(z) [4].

P (y, z) = p(y|z)p(z) = p(z)
d∏

i=1

p(yi|z) . (2.1)

As shown in Fig. 2.2, the latent variable models can be graphically represented by a
directed graph.

Fig. 2.2: A directed graph of a latent variable models. The factorisation property of
Eq. (2.1) can be expressed with a directed graph, in which the feature variables yi are
independent of the latent variables z.

14

Factor Analysis

Among the four latent variable models in Table 2.1, FA is the most well-known and earli-
est developed latent variable model [38]. In machine learning, FA is a data dimensionality
reduction method exploited for data analysis and processing, and EM algorithms are of-
ten engaged to estimate parameters [39]. FA can mine low-dimensional features that
still can represent the primary information of many observable attributes from the high-
dimensional observations. This low-dimensional representation can generate new data
through Gaussian distribution, linear transformation, and error perturbation. As the most
common example of a latent variable model, the generative model of FA can be presented
as the mapping f(z;A), a linear function of the latent variable z

y = Az+ µ+ ϵ . (2.2)

Conventionally, the latent factors z are defined to be independent to each other and Normal
distribution N (0, Iq), where Iq is a q × q identity matrix. The noise term ϵ is defined to
be a Gaussian with Ψ diagonal variance, and µ denotes the mean of the data y, which
permits the data model to have a non-zero mean. Moreover, the matrix A ∈ Rd×q contains
the factor loadings, where q < d. Note that this factor loading matrix should be an
orthogonal matrix. From this formulation, it can be deduced that the observations are also
distributed as the Gaussian N (µ,Σ), where the model covariance can be calculated by
Σ = AAT +Ψ.2 The probability distribution over y-space for a given z of the form

y|z ∼ N (Az+ µ,Ψ) . (2.3)

By using the Bayesian rule, the conditional distribution of the latent variables z given the
observations y is again Gaussian

z|y ∼ N (V−1ATΨ−1(y − µ),V−1) , (2.4)

where V = Iq +ATΨ−1A.3 Note that the size of Ψ is d× d while V is a q × q matrix.
The goal of FA is to best model Σ by finding the optimal A and Ψ. Since there are no

closed-form analytic solutions, their values must be determined by iterative procedures.
The most common method is the Expectation-Maximisation (EM) algorithm [40], which
will be detailed in Section 2.2.7. The principal motivation for FA is that the observed vari-
ables y are conditionally independent given the latent variables z when Ψ is diagonalised.
Consequently, FA utilises a small number of latent variables to model the correlations be-
tween the elements of the observed variables, and ϵ can be seen as the variance of each
observed variable.
2As a result of this parametrisation, Σ is invariant under post-multiplication of A by an orthogonal matrix,
which is equivalent to a rotation of the z coordinate system.

3In the equation, Ψ is diagonal variance and A is orthogonal matrix. Thus there must be an inverse matrix.

15

Probabilistic Principal Component Analysis

Principal Component Analysis (PCA) is also a classical method of dimensionality reduc-
tion. In learning theory, PCA is mainly used to deal with noise or redundant features [41].
PCA is a standardised linear projection in which the most common derivation is to per-
mutate the variance of the projection space by computing the feature vector, but it is not
based upon a probability model. In contrast to FA, traditional PCA exploits feature vec-
tors and eigenvalues of covariance to achieve the same intention [42, 43]. Moreover, the
maximum likelihood estimate of the parameters in the FA can determine the principal
axis of a set of observation vectors. Therefore, PCA is extended into a probability model
by introducing a constraint into the covariance matrix of the noise term of the FA model.
With the generative model as stated in Eq. (2.2), the PPCA adopts an isotropic Gaussian
model N (0,σ2Id) for the noise term ϵ . The conditional probability distribution is given
by

y|z ∼ N (Az+ µ,σ2Id) . (2.5)

The observation covariance model is specified by AAT + σ2Id. Also using Bayes rule,
the posterior distribution of the latent variables is obtained by

z|y ∼ N (V−1AT (y − µ),σ2V−1) , (2.6)

where we have V = ATA+ σ2Id.

2.1.2 Dimensionality Reduction (DR)

As the latent variable model, the general motivation for FA and PPCA is also to transform
the data into some lower-dimensionality representation. In DR, the primary role of the
latent variables is to allow a complicated distribution over observed variables constructed
from simpler conditional distributions. Importantly, the dimensionality of latent variables
is always lower than that of the observable variables. Therefore, the higher-dimensional
observable variables are reduced to the low-dimensional latent variables to represent a
model.

DR has been one central research topic in information theory, pattern recognition,
and machine learning [44, 45]. Apparently, the performance of many learning model-
s significantly relies on DR: successful DR can largely improve various approaches in
clustering and classification. When applied to high-dimensional data, existing research
approaches often try to reduce the dimensionality first and then input the reduced features
to other available models. There are many mature dimensionality reduction methods at

16

present [31, 46–48], such as, linear methods - linear discriminant analysis (LDA), fac-
tor analyser (FA), and non-linear method - kernel principal component analysis (kernel-
PCA). From the comparison of PCA and PPCA, it is more natural to consider the dimen-
sion reduction process according to the distribution of latent variables conditioned on the
observation. In PPCA, the principal axes can be found incrementally through observing
each iteration.

2.1.3 Discussion

Although PPCA utilises a simple constraint to the standard FA model by the use of
the isotropic noise covariance, both of them achieve the goal of DR by finding low-
dimensionality representations. In essence, there are significant differences between the
two methods:

• The original observed variable is in a different position in two cases: FA exploits a
linear combination of the original observed variables as the new factors, and PPCA
engages the linear combination of the principal components as the original observed
variables.

• Importantly, FA is covariant under component rescaling, while PPCA is covariant
under the raw data axis rotating.

• Compared with PCA, FA estimates a low-dimensional loading factor matrix when
constructing the model, while PCA converts the observed variables into the same-
dimensional representation and then reduces the dimensionality. FA can be consid-
ered as an extended version from PCA.

2.2 Finite Mixture Models

In statistics, a mixture model is a density model which utilises the mixing components
as the latent variables for representing the presence of subpopulations within an overall
population. The finite mixture model is central to latent profile analysis, a typical latent
variable model, which is usually engaged in dealing with the case where the data in the
same set contain multiple different distributions or the same distributions with different
parameters [30, 49]. In contrast to the methods introduced in the previous section, the
mixture model needs to consider not only the distribution of components but also the
number of components, where both components and mixing quantities are treated as latent
variables. Consequently, there are two core problems in the finite mixture model, the
density established of the mixed component and the parameter estimation of the mixed

17

model. This finite mixture model is a convex combination of more than one density
function and comes up with an expression of heterogeneity in a finite number of latent
classes, such as GMM and MFA [30, 50].

GMM refers to a model produced by a linear combination of multiple Gaussian dis-
tribution functions. In theory, multiple Gaussian distributions can fit any types of distri-
butions. Therefore, it is meaningful to decompose a set of data into several models based
on Gaussian probability density functions [51, 52]. MFA presents improved density es-
timators that are modelled by allowing each Gaussian in the mixture to be represented
in a different lower-dimensional manifold. In particular, MFA simultaneously performs
clustering and DR of the data [31, 53].

2.2.1 Notation

By considering a mixture of C multinomial distributions, the density of y could be mod-
elled as a finite mixture model

P (y;θ) =
C∑
c=1

πcp(y;θc), where c = 1, . . . , C . (2.7)

Conventionally, c is the index of mixed components, and πc = p(c) is the probability of
mixing components, also called mixing proportions. p(y;θc) is the density function of
the component, depending on the parameter vector θc.

These distributions are referred to as components of this model (or sub-populations
of observations) describing the d-variate density function [54]. The mixture distribution
can be expressed by a simple graph, as shown in Fig. 2.3. These components are assumed

Fig. 2.3: A simple mixture model is expressed in terms of a Bayesian network.

to follow the same parametric family of distributions, but with different parameters, θ.
θc denotes the observations’ parameters which are associated with the component c. For
instance, the mixture components follow Gaussian distributions, and then each component
has different means and variances. Additionally, the parameters (means and variances) are
random variables in a Bayesian setting, and the prior probability distributions p(y|c;θc)

18

are placed over the variables [4][36]. πc = p(c) denotes the C mixture weights satisfying
the requirement that probabilities sum to 1.

Then, a mixture of latent variables model can be obtained by combining ingredients
from the technical of mixture models with the idea of latent variables [55]. Consequent-
ly, the joint distribution P (y, z) is derived as follows and the corresponding Bayesian
network is shown in Fig. 2.4.

P (y, z) =
C∑
c=1

p(y|p(c), z)p(c)p(z|c) =
C∑
c=1

πcp(zc)
d∏

i=1

p(yi|z) . (2.8)

This mixture model is explicitly computed with discrete latent variables. Hence, the inte-
gral is replaced by a sum.

Fig. 2.4: A mixture of latent variables model is graphically expressed by the Bayesian
network. The feature variables yi are conditionally independent of the given mixture
weights c and latent variables z.

2.2.2 Gaussian Mixture Model

GMM is a fundamental and widely used model, such as clustering and foreground de-
tection [30, 56]. As a widespread use of clustering algorithm, GMM exploits several
Gaussian distributions with deferent parameters as the parametric model. It typically us-
es the EM algorithm for training. First, the multivariate Gaussian of the d-dimensional
observations y can be defined as follows

N (y;µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
− 1

2
(y − µ)TΣ−1(y − µ)

)
, (2.9)

where the mean vector is denoted by µ and the covariance matrix is Σ. GMM is a simple
extension of the Gaussian model, and GMM engages the weighted sum of several Gaus-
sian models to estimate the distribution of data. According to the central limit theorem, it
is reasonable to assume the mixture model is Gaussian [57, 58]. Of course, any distribu-
tion can also be defined for the component model. However, more conveniences could be
offered in the case of GMM. In addition, it is noted that any probability distribution can
be approximated when a sufficient number of mixed components are used. A Gaussian

19

mixture model with C mixed components is defined as the following probability density
function

P (y;θ) =
C∑
c=1

p(c)N (y;µc,Σc) . (2.10)

Here, the parameter set θ includes p(c), µc, and Σc, where p(c) is the weights of the
associated mixing proportion and

∑C
c=1 p(c) = 1. The estimation of this probability

density is to find θ of each variable.

2.2.3 Mixtures of Factor Analysers

Traditionally, PPCA can present a low-dimensional representation as a pre-processing
step to promote the well-known mixtures of Gaussians [28]. However, as the pre-step,
DR ignores the subsequent density estimation tasks, and hence may miss certain infor-
mation critical for the followed tasks; this approach would easily lead to suboptimal per-
formance. Motivated from the above issue, the idea of joint learning is proposed, which
can get the appropriate low-dimensional representation as guided by the DR. Then a joint
learning approach is introduced which is referred to as the mixtures of factor analysers.
MFA is a globally nonlinear latent variable model which is considered as an extension
of the traditional FA. To separate the observations independently into c non-overlapping
components, the MFA approach is modelled as

y =
C∑
c=1

Acz+ µc + ϵc with probability πc (c = 1, . . . , C) , (2.11)

where µc is a d-dimensional mean vector associated with the component c; Ac is a d× q

factor loading matrix of the cth component, where q < d; and πc = p(c) denotes the
weights of the associated mixing proportion. Each (unobservable) factor z is distributed
independently by a normal distribution with zero mean and a q × q identity covariance
matrix, N (0, Iq). The noise model ϵc is also independent and assumed as a Gaussian
distribution with zero mean and a q-dimensional diagonal covariance matrix, N (0,Ψc).
Given the latent variables and the component indicator variables, the conditional distribu-
tion of observations p(y|c, z) follows a Gaussian distribution which has mean Acz + µc

and variance Ψc.

By defining a joint distribution over visible and latent variables p(y|c, z)p(z|c)p(c),
and the density of the observed data P (y;θ) is obtained by summing up all mixture
components. The corresponding distribution of the observed variables is then obtained by

20

marginalising over the latent variables

p(y|c) =
∫
z
p(y|c, z)p(z|c)dz = N (y;µc,AcA

T
c +Ψc) , (2.12)

P (y;θ) =
C∑
c=1

πcp(y|c, z)p(z|c) =
C∑
c=1

πcN (y;µc,AcA
T
c +Ψc) , (2.13)

where θ denotes the model parameter vector. It consists of the mixture weight πc, the
mean of the component µc, the factor loading Ac and the covariance of component
Ψc [53]

θc =

πc

µc

Ac(vec)

Ψc(diag)

C

c=1

. (2.14)

Therefore, MFA can be considered as a globally nonlinear latent variable model, where
C Gaussian factors are fitted on the data.

2.2.4 Inference

For make inference on the density models, we first discuss MLE to obtain the parameters.
It can be seen from Section 2.2.5 that the objective function is the logarithm of the sum,
which is difficult to expand. Moreover, the optimisation problem is difficult to perform
partial bias processing. An iterative method, i.e., the EM algorithm, is typically used.

2.2.5 Maximum Likelihood

After the “best-fitting” distribution (Eq. (2.13)) is obtained, the parameters can then be
estimated for that distribution. MLE is a common technique for estimating the param-
eters of a probability distribution. In other words, MLE can be known as to maximise
the sample likelihood by estimating the parameters. These unknown parameters are con-
tained in a vector θ (as Eq. (2.14)). Loosely speaking, the goal of MLE is to maximise
a likelihood function of the sample data. Suppose we have a sample of independent and
identically distributed (iid) random variables, {y1;y2; . . . ;yN}, which is described by the
MFA model (Eq. (2.13)). The basic likelihood function is defined as

P (y;θ) =
C∑
c=1

πc

N∏
n=1

N (yn;µc,AcA
T
c +Ψc) . (2.15)

21

Instead of maximising the product, ones usually exploit its logarithm version. It will be e-
quivalent to maximise the log-likelihood since the logarithm is an increasing function [53]

L(θ) = logP (y;θ) =
C∑
c=1

N∑
n=1

log
{
πcN (yn|µc,AcA

T
c +Ψc)

}
, (2.16)

θ̂ = argmax
θ
L(θ) . (2.17)

Here, θ̂ denotes the estimated parameters when the empirical log-likelihood has a maxi-
mum value. In general, we cannot get the exact parameters of the model that have been
solved by ∂L

∂θ
. It is therefore necessary to adopt an iterative method, typically the EM al-

gorithm, that is, to exploit the expectation-maximisation algorithm to maximise the like-
lihood function.

2.2.6 Maximum A Posteriori

Maximum A Posteriori (MAP) is also a method for estimating variables in the probability
distributions setting. MAP is closely related to MLE, which can be regarded as regulari-
sation of MLE. However, MAP is more interested in a posterior distribution, rather than
the likelihood. For inference, MAP usually comes up with the Bayesian setting, and the
posterior q(·) over the components can be found by recalling Bayes rule

q(z, c|y) = q(z|y, c)q(c|y) , (2.18)

q(c|y) = p(y|c)p(c)∑C
h=1 p(y|h)p(h)

∝ p(y|c)p(c) . (2.19)

More concretely, the posterior over the latent factors is also a multivariate Gaussian den-
sity on z given y and c

q(z|y, c) = N (z;κc,V
−1
c) , (2.20)

where

V−1
c = I+AT

c ΨcAc ,

κc = V−1
c AT

c Ψ
−1
c (y − µc) . (2.21)

A point estimate can be made by selecting the component c by maximising a posterior
probability

ĉ = argmax
c

p(c)p(c|y) . (2.22)

Then, the likelihood in MLE (Eq. (2.17)) is replaced by the posterior. Consequently,

θ̂MAP = argmax
θ

C∑
c=1

N∑
n=1

log{p(y|c)p(c)} = θ̂MLE . (2.23)

22

2.2.7 Expectation-Maximisation Algorithm

In many applications, the parameters of these density models are determined by the max-
imum likelihood, which typically adopts the expectation-maximisation (EM) algorith-
m [59–61]. First, the latent variables must be clarified using the EM algorithm. In density
models which have the incomplete data or latent variables, EM algorithms make the pa-
rameter estimation possible [60]. In this section, we will show that EM is a powerful and
elegant method to find the maximum likelihood solutions for models with latent variables.
As the general-purpose iterative strategy, the EM algorithm alternates between two step-
s. Given the current model, the expected step (step E) is used to predict the probability
distribution over completions of missing data. There is usually no need to establish a
probability distribution over these completions explicitly, and it is often necessary to cal-
culate “expected” sufficient statistics over completions. The maximisation step (M-step)
is used for re-estimating the model parameters by utilising these completions, which can
be thought of as “maximisation’ of the expected log-likelihood of the data [60].

When the observing variable y, latent variable z, and parameter θ are given, the math-
ematical expression can be formulated as follows

E-step: Q(θ|θ(k)) = Eq(z|y;θ(k))

[
log

∫
z

p(y, z|θ(k))dz
]
; (2.24)

M-step: θ(k+1) = argmax
θ

Q(θ|θ(k)) . (2.25)

The convergence of the latent variable-based EM algorithm can be theoretically guaran-
teed [60, 61]. Based on the Jensen inequality, it is easy to prove that the EM algorithm
repeatedly constructs new lower bounds F (q(·),θ) where q(·) denotes the posterior of the
latent variable.

L(θ) = log

∫
z

p(y, z|θ)dz = log

∫
z

q(z|y;θ)p(y, z|θ)
q(z|y;θ)

dz

≥
∫
z

q(z|y;θ) log p(y, z|θ)
q(z|y;θ)

dz = F (q(·),θ) , (2.26)

F (q(·),θ) =
∫
z

q(z|y;θ) log p(y, z|θ)dz−
∫
z

q(z|y;θ) log q(z|y;θ)dz

= Eq(z|y;θ)
[
log p(y, z|θ)

]
+H(q(·)) . (2.27)

In short, the process of EM is to calculate a lower bound function of the current latent
variables distribution according to the current parameters and then to obtain new parame-
ters by optimising this function. The loop will be continued until it converges (as shown
in Fig. 2.5).

23

Fig. 2.5: Illustration of EM algorithm. The E step is to calculate q by fixing θ(k+1), and
then raise the lower bound from F (q;θ(k+1)) to F (q;θ(k+2)), where F (q;θ(k+2)) is equal
to L(θ) at θ(k+1). M step is to migrated from θ(k+1) to θ(k+2) when q is fixed, and then to
find the maximum F (q;θ(k+2)).

2.2.8 Unsupervised Learning and Discussion

One main application of latent models is model-based clustering. Clustering is a method
of putting similar data samples together. Probabilistic unsupervised learning builds a
generation model that is able to describe clustering. The idea is that all the similar data
points belonging to a cluster (all from the same distribution) are more or less equivalent,
and any differences between them are accidental [62]. Mixture model-based clustering
not only gives a class label for a cluster sample but also generates the probability that
each sample belongs to the distribution of a certain model component. The question
about the appropriate clustering method and the number of clusters can be converted into
questions about how to select the model.

Compared with traditional clustering methods (e.g. k-means), GMM can offer higher
flexibility, since the subordination of data points in clustering is not only related to neigh-
bours but also dependent on the shape of clusters. It is worth mentioning that the shape
of the multivariate Gaussian distribution is determined by the covariance of each cluster.

Unsupervised dimensionality reduction is often performed together with GMM, while
inappropriate DR may deteriorate the GMM’s discriminating performance. Although M-
FA can be formed by imposing specific constraints on the covariance matrix of each clus-
ter of GMM, the loading matrix of the MFA can be regarded as a DR matrix which cannot
be achieved by the standard GMM. Such settings exactly optimise a DR together with the

24

parameters of the learning model. Moreover, joint learning could lead to improvement in
comparison with the traditional unsupervised method.

• Joint learning interacts the learning task with DR, so the DR space and the cluster-
ing/classification space can be well matched with each other.

• It could lead to much better clustering performance by capturing the crucial at-
tributes in a low-dimensional space.

2.3 Infinite Latent Variable Models

In the finite model, described in the previous two sections, two parameters need be de-
termined. They are the number of mixed components and the dimensions of the low-
dimensional representation. To this end, a method is proposed that does not need to
specify the cluster number. In the case of adding new samples to the observation set, the
number of clusters generated may increase [63, 64]. This method is called the Bayesian
nonparametric (BNP) method, which is widely applied to supervised/unsupervised learn-
ing (regression, classification, and clustering), latent variable modelling, and image seg-
mentation [65–68]. Although non-parametric methods are referred to as the infinite mod-
el, in fact, they can utilise a limited number of sub-arrays in the dimensions of parameters
to account for limited observed samples. The choice of the dimension depends on the
distribution of samples so that the complexity of the model can be adapted to the data.

For the latent variable modelling, the popular method is to assume a BNP prior on the
latent variable - the mixing proportion. As the background, the current state-of-the-art
models will be introduced in this section, and the proposed new model able to determine
the clusters and latent dimensions will be presented in Chapter 4.

2.3.1 Notation

In the machine learning community, there are many BNP priors based on random infinite-
dimensional objects [69]. The current popular BNP priors include:

• The Gaussian process is mainly used for regression and classification. Its structure
may change as the sample changes [70].

• The Dirichlet process (Chinese restaurant process) and related priors are used to
deal with clustering, which continuously assigns new data into the corresponding
clustering [71].

25

• Beta process (Indian buffet process) and related priors are mainly used for com-
pressed sensing problems and feature extraction, which allow over-lapping proper-
ties between objects [72]

In this section, we focus on the Indian buffet process (IBP) of the beta process. IBP
provides the prior for the infinite binary matrix so that each row of the matrix has only a
finite number of 1. This is the most commonly used model when each object has multiple
different attributes, and these attributes can be shared among different objects [72, 73].

Fig. 2.6: A binary matrix generated by Indian Buffet Process diagram: each object en-
counters an array consisting of infinite attributes.

A diagram of this process is shown in Fig. 2.6 where the rows of the matrix correspond
to objects and the columns correspond to properties. If an object has an attribute, the
corresponding column element is 1 (the blue block). IBP can be simply described as N
customers orderly entering a buffet restaurant which arranges infinite dishes. A customer
can take a Poisson(α) number of dishes. The ith entered customer chooses the dish k

with probability mk

i
, where mk is the number of customers selecting this dish previously,

and can take Poisson(α
i
) new dishes after the end of all previously sampled dishes. Note

that the order of customers is exchangeable.

2.3.2 Linear-Gaussian IBP Model

The linear-Gaussian IBP model is the simplest example of how to engage IBP as a pri-
ori for an unsupervised learning model. As a linear-Gaussian latent feature model, the

26

observed data are still linear functions of the properties, but its hidden layer features are
binary. This model is mainly used to generate the grayscale image which consists of a
vector of real-valued pixel intensities. The generated model can be written in the form
of linearly superimposing different features (visual elements, Z) and additive Gaussian
noise ϵ

Y = AZ+ ϵ . (2.28)

Here Y are the generative images with a D-dimensional vector of pixel intensities, and A

is a D ×K linear projection matrix which can also be considered as a matrix of weights.
Essentially, this is a form of binary factor analysis; the feature matrix is reduced to the
binary matrix Z by the DR matrix A [72]. Thus in a finite model, the ith image yi

is generated from a Gaussian distribution with mean Azi, and covariance matrix σ2
yI,

where zi is a K-dimensional binary vector, and I is the identity matrix. In matrix notation,
the conditional probability distribution of Y is Gaussian with mean AZ and covariance
matrix σ2

Y I. A prior on A is defined to be a Gaussian with σ2
AI variance. This prior is

conjugate to the likelihood which makes it possible to integrate out the model parameters
A. The equation can be rewritten as follows

p(Y|Z,σY ,σA) =
exp

{
− 1

2σ2
Y
tr
(
YT (I− Z(ZTZ+

σ2
Y

σ2
AI
)−1ZT)Y

)}
(2π)ND/2σ

(N−K)D
Y σKD

A |ZTZ+
σ2

Y

σ2
AI
|D/2

. (2.29)

We can extend this to the infinite model with well-defined prior of binary feature Z

which has an unbounded number of columns. Consequently, the infinite number of active
features K+ means K is unbounded, which is learned from data while remaining finite
with probability one. By rearranging the non-zero columns of Z, we can specify K →∞
and write the IBP prior as follows

p([Z]) =
αK+∏
h>0Kh

e−αHN

K+∏
k=1

(N −mk)!(mk − 1)!

N !
, (2.30)

where HN =
∑N

j=1
1
j

denotes the N th harmonic number, and Kh represents the number
of non-zero rows. Moreover, Kh and mk are both irrelevant to the objects sequence,
which proves that p([Z]) is an infinitely exchangeable distribution. This model assumes
that there are some unknown number of visual elements. Each image is generated by
selecting which visual elements the image has.

2.3.3 Variational Bayes Inference

For this model, two basic inference algorithms are commonly applied:

27

• Sampling algorithms (Gibbs sampling), a family of iterative procedures, derive each
random variable by sampling it from the conditional distribution of the given re-
maining ones.

• Variational inference uses a tractable distribution to approximate an intractable pos-
terior distribution. In general, the parameters of a tractable distribution are chosen
by minimising the distance between the approximate distribution and the true pos-
terior.

In this section, we mainly introduce the variational Bayes method. On the one hand,
the model includes latent variables; on the other hand, unlike the sampling algorithm,
the output of the variational Bayes (VB) inference is a distribution, not a sample. In
particular, mean field theory, the only condition of the VB inference, assumes a model
q(Z) =

∏
i q(zi) (all of the variables are assumed to be independent) to approximate the

posterior probability p(Z|Y).

If we are setting the KL divergence as the measure of distance, finding q(Z) turns
into an optimisation problem q(Z∗) = argmaxq(Z)∈Q KL(q(Z)||p(Z|Y)), where KL(·)
is a function about q(Z), and q(Z) ∈ Q is a function satisfied the mean field theory.
They constitute a functional. The variation extreme is derived from a functional, just as
differentiation extreme is derived from a function. The derivation of Evidence Lower
Bound Objective (ELBO) [74] is expressed as follows

KL
(
q(Z)||p(Z|Y)

)
=

∫
q(Z) log

q(Z)

p(Z|Y)
dZ = −

∫
q(Z) log

p(Z,Y)

q(Z)p(Y)
dZ

=

∫
q(Z)

[
log q(Z) + log q(Y)

]
dZ−

∫
q(Z) log p(Z,Y)dZ

= log p(Y) +

∫
q(Z) log q(Z)dZ−

∫
q(Z) log p(Z,Y)dZ .

(2.31)

Because of KL(q(Z)||p(Z|Y)) ≥ 0, F (q(Z)) =
∫
q(Z) log q(Z)dZ−

∫
q(Z) log p(Z,Y)dZ

can be considered as the lower bound of log p(Y). Then we can obtain the following ex-
pression

KL
(
q(Z)||p(Z|Y)

)
= log p(Y) + F (q(Z)) . (2.32)

Since the logarithmic evidence log p(Y) is a likelihood function that does not depend on
Z, it can be regarded as a constant. Therefore, in order to minimise the KL divergence,
our goal can be converted to maximise the lower bound. According to the mean field

28

theory, the form of the lower bound can be expanded to

F (q(Z)) =

∫
log q∗(zj)dzj −

∑
i:i̸=j

log q(zi)− constant

=

∫
q(zj)

log q∗(zj)

q(zj)
dzj −

∑
i:i̸=j

log q(zi)− constant

= −KL
(
q(zj)||q∗(zj)

)
+
∏
i:i̸=j

H
(
q(zi)

)
− constant ,

(2.33)

where H(.) ≥ 0 is the information entropy, and q∗(zj) =
exp(Ei̸=j [p(Z,Y)])
normaliseconstant

. Consequent-
ly, maximising F (q(Z)) only needs to make −KL(q(zj)||q∗(zj)) = 0, that is, to make
q(zj) = q∗(zj).

In addition, VB’s lower bound equation F (q(Z)) can be further deduced in an ex-
pectation form F (q(Z)) = Eq(Z|Y)[log p(Y,Z)] + H(q(Z)), which is the same form as
EM’s ELBO equation (see Eq. (2.27)). Thus, the EM-like iteration method can also be
employed to update the lower bound, which is a popular application of variational Bayes
to latent variable models called Variational Bayes EM (VBEM). VBEM is considered to
be a special case of the generalised EM by assuming that mean-field requires component
independence. In the approximating distribution, the latent variables and parameters are
independent, and often there are additional variational approximations within either the
latent variables or the parameters.

2.4 Deep Density Model

In the above sections, we defined the shallow architectures and also exhibit inferences to
optimise a single layer. We now consider how to extend the shallow models by defining
the deep density models. First, the deep architectures need to have many layers of latent
variables. Second, parameters should be learned by the efficient greedy layer-wise algo-
rithms. This section introduces the density models with latent variables that explicitly
show how inferences of the models correspond to operations in a single layer of a deep
architecture. Therefore, the deep model is a directed generative model and exploits the
layer-wise training procedure as approximations. In this section, one deep density model
will be described, Deep Mixtures of Factor Analysers (DMFA) who adopts an MFA in
each hidden layer [31, 75]. The observation vector and the first hidden layer are treated as
an MFA model (see Chapter 2.2.3) and learning parameters are manipulated by this un-
supervised method. After fixing the first-layer parameters, the priors of next layer MFAs
are replaced by sampling the hidden units of the current-layer MFA. The same scheme
can be extended to train the following layers. Compared with the shallow models with the

29

same scale mixtures (Collapse Models), the deep models have fewer free parameters and
a simpler inference procedure. On the one hand, the components of adjacent layers share
the parameters; on the other hand, too many mixtures may make the overall objective
function of a shallow model too complicated.

2.4.1 Deep Density Model via Greedy Layer-wise Learning

The latent variable models are usually expressed as a shallow architecture which has one
single visible layer and one single hidden layer, such as a directed acyclic graph (see
Fig. 2.7). As shown in Chapter 3.2.1, shallow architectures have achieved good perfor-

Fig. 2.7: A directed acyclic graph represents a shallow density model which has only one
hidden layer.

mances in practice [18]. Nonetheless, shallow architectures may have a serious problem,
i.e., it is very inefficient for them to deal with the complex structural data or large amounts
of hidden units [76]. In contrast, the deep architectures have multiple hidden layers to help
in learning better representations of the complicated hidden units. A directed deep archi-
tecture is illustrated in Fig. 2.8. Also, deep architectures reduce the need for hand-crafted
features which is a very time-consuming process requiring expert knowledge. However,
it is difficult to train all layers at once when a generative model has multi-layered archi-
tectures [77].

To this end, the greedy layer-wise procedures are developed for training deep genera-
tive models by using the same criterion for optimising each layer starting from the bottom
and for transferring the problem upwards to the next layer (which is called the layer-wise
learning algorithm [77]). In this sense, in addition, to providing a framework for building
more complex probability distributions [78], the latent variable models could be an ide-
al criterion for a deep architecture. Besides, the deep architectures can also be used for
a finite mixture model, which means each sub-population is assumed to come from the
manifest variables having more than one distributions.

30

Fig. 2.8: A multi-layer directed acyclic graph represents a deep density model which has
three hidden layers and one visible layer.

2.4.2 Deep Generative Models

Tang et al. proposed a deep density model utilising a greedy layered unsupervised learn-
ing algorithm, referred to as deep mixtures of factor analysers (DMFA) [75].4 Unlike
previous methods, this model is a directed graphical model which has been developed by
adopting MFA. In particular, DMFA extends the same scheme as MFA to train each hid-
den layer and takes the EM algorithm to maximise the log-likelihood in learning [50, 61].
Its inference and parameter computation procedure is more straightforward than previous
methods. However, it is a highly parameterised model where the number of parameters
may not be manageable. In real applications, overfitting could become a severe prob-
lem in DMFA, since it adopts multiple different factor loadings. Additionally, the latent
factors are specified to follow a multivariate standard normal prior, which may limit its
flexibility and hinder the accurate estimation of the density.

Having formulated the MFA model, we now show how to construct MFA into a deep
architecture. In a shallow model, each FA in MFA has an isotropic Gaussian prior in its
factor, as well as a Gaussian posterior over each training sample. However, the posterior
is generally non-Gaussian when a posterior is aggregated for many training samples. If
we replace the prior of each FA with a separate mixed model, this mixture model can
learn to model an aggregated posterior rather than an isotropic Gaussian. The sketches
are shown in Fig. 2.9. Therefore, it can improve a variational lower bound on the log

4The greedy layer-wise algorithm is a generative model with many layers of hidden variables.

31

Fig. 2.9: The sketch of a mixture of the DMFA’s higher layer for clustering and dimen-
sionality reduction. Left: The aggregated posterior of a component in the lower layer
is not a Gaussian distribution. Right: The higher layer has an ability to model a better
aggregated posterior of the lower layer.

probability of the training data [31][75]. According to this method, Tang et al. [75] con-
struct a DMFA model by replacing the FA in the mixture with an MFA model and even
substitute the FA of the next mixtures. The graphical model of two-layer DMCFA is vi-
sualised in Fig. 2.10. Importantly, the pivotal method is used to sample the data regarding
the posterior distributions of the current layer, which can be treated as the training data
for the next layer.

The observations y and the factors z in the first hidden layer are treated as the MFA,
and the first-layer parameters θ(1) are adopted by this unsupervised method. The aggre-
gated posterior over z factor with a specific component c is given by 1

N

∑N
n=1 p(z

n, cn =

c|yn). For the second layer, z(1) and ĉ are treated as training data by sampling poste-
rior distribution (Eq.(2.20), Eq.(2.22)). Then a more powerful MFA prior replaces the
standard multivariate normal prior

p(z|c) = PMFA(z
(1)
c ;θ(2)cs) . (2.34)

The same scheme can be extended to train the following layers.
In the second layer, some new symbols need to be defined: z(1) is a q-dimension vector

as the data input to the second layer; θ(2)cs emphasises a new parameter vector in the second
layer, which is specific to the component c of the first-layer MFA.5 The layer factors are
denoted as a d-dimension vector z(2); s is a new sub-component indicator variable, and
the total number of sub-components is S satisfying S =

∑C
c=1Mc; mc = 1, . . . ,Mc

5The superscript represents which layer these variables belongs to

32

denotes the number of sub-components corresponding to the cth first-layer component;
The mixing proportions in the second layer p(s) = π

(2)
s are defined as p(cs)p(s|cs), where∑S

s=1 π
(2)
s = 1 and cs denote the sub-components corresponding to the c component.

Then, the DMFA prior is written as follows

p(z; c) = p(c)p(mc|c)p(z|mc) . (2.35)

The density of vectors z(1) follows the joint density over z(2) and s

p(z(1), z(2), s) = p(z(1), c|z(2), s)p(z(2)|s)p(s) , (2.36)

p(z(1), c|s, z(2)) = N (z(1);W
(2)
s z(2) + µ

(2)
s ,Ψ(2)

s), p(z(2)|s) = N (0, I) . (2.37)

Here, the new parameter vector θ(2)cs consists of W(2)
s ∈ Rq×d, Ψ(2)

s ∈ Rq×q, µ(2)
s ∈ Rq,

z(2) ∈ Rd.6 Specifically, since every s is just allowed to belong to one and only one c, we
obtain the Gaussian density on the observed data y given z(1) and c

p(y|c, z(1)) = N (y;W(1)
c z(1) + µ(1)

c ,Ψ(1)
c) , (2.38)

where, W(1)
c ∈ Rp×q, Ψ(1)

c ∈ Rp×p,µ(1)
c ∈ Rp, z(1) ∈ Rq denote the first layer parameters.

Fig. 2.10: Graphical models of a two-layer DMFA model. DMFA is a deep directed
graphical model utilising the multi-layer factor analysers which are developed by adopting
an MFA model in each hidden layer.

2.4.3 Inference

For inference, the posterior distribution is computed in a similar fashion with Eq. (2.18)
and Eq. (2.20)

q(z(2), s|z(1), c) = q(z(2)|z(1), c, s)q(s|z(1), c)

= N (z(2);κ(2)
cs ,V

(2)−1

cs) ,
(2.39)

6d denotes the d-dimension subspace of second layer, where d < q.

33

where

V
(2)−1

cs = Id +W
(2)T

cs Ψ(2)−1

cs W
(2)
cs ,

κ
(2)
cs = V

(2)−1

cs W
(2)T

cs Ψ(2)−1

cs (z(1) −W
(2)
cs µ

(2)
c) .

Here, the subscript emphasises the sub-component s which is specific to component c of
the first layer, and Id is a d-dimensional identity matrix. The posterior over the compo-
nents can be found as follows

q(s|z(1), c) ∝ p(z(1), c|s)p(s) , (2.40)

ŝ = argmax
s

p(s)q(s|z(1)) . (2.41)

For the second layer, p(z(1)) and ĉ are treated as input data and initial labels when the
first layer parameters are fixed and Eq. (2.17) is maximised. According to Equation 2.34,
the DMFA formulation seeks to find a better prior p(z|c) = PMFA(z

(1)|ĉ;θ(2)cs).

Given the new data vectors {z(1)1 ; z
(1)
2 ; . . . ; z

(1)
q }, maximising Eq. (2.15) with respect to

the second layer parameters is equivalent to maximising the density function P (z(1)|ĉ;θ(2)cs).
The basic likelihood objective function of the second layer is defined as

P (z(1)|ĉ;θ(2)cs) =
∑
s∈c

πs

q∏
i=1

{
N (z

(2)
i |µ

(2)
s ,W

(2)
s W

(2)T

s +Ψ(2)
s)
}
. (2.42)

It is worth noting that, at the second layer, each mixture model of C components derived
from the first layer can be updated separately, since S second-layer parameters are non-
overlapping and just allowed to belong to one and only one of the first layer components.

θ̂
(2)

cs = argmax
θ
(2)
cs

logP (z(1);θ(2)cs) . (2.43)

Despite the good performance in practice, the DMFA model still has many drawback-
s. Specifically, this model utilises different loading matrices for different components,
which may lead to over-fitting in practical applications. Meanwhile, it also inherits the
shortcoming of MFA, that is, assuming that the prior of each potential factor follows a
standard Gaussian distribution, which may limit the flexibility and accuracy.

In the deep model, the greedy layer-wise unsupervised algorithm is usually used as
an efficient and simple optimisation algorithm to perform inference and learning. In the
layer-wise algorithm, the EM algorithm can typically be utilised to estimate the parame-
ters of each mixture in each layer to find a local maximum of the log-likelihood. Impor-
tantly, a simple objective function can be fed to the EM algorithm in a layer-wise style
instead of the massive objective function of a shallow model with same scale mixtures.

34

For instance, the expectation log-likelihood of the mixture in the first layer is shown as
follows

Q(θ|θ(k)) =
C∑
c=1

∫
z

q(z, c|y;θc) ln p(y, z, c|θc)dz

= Eq(z,c|y;θc)

[
ln p(y|c, z) + ln p(z|c) + ln πc

]
= Eq(z,c|y,θ)[logL(θc)] .

(2.44)

During M-step, the parameters θk+1
c (at (k + 1)th iteration) are updated by solving the

partial differentiation of the expectation log-likelihood equation over each parameter

∂Eq(z,c|y,θold)[logL(θc)]
∂θc

= 0 . (2.45)

The higher layer has an ability to model a better aggregated posterior of the first layer,
with variational inference. Moreover, any increase in the bound will improve the true
log-likelihood of the model when the bound is tight. In this sense, it is better to train the
deep model than a shallow model.

2.4.4 Collapse Model

It is noted that DMFA can also be collapsed into a shallow form by integrating out the
latent factors. According to Eq. (2.12), we obtain the collapse model after the first-layer
factors z(1) are integrated out

p(y|z(2), s) =
∫
z(1)

p(y|c, z(1))p(z(1)|s, z(2))p(z(2)|s)dz(1)

= N
(
y;W(1)

c (W(2)
s z(2) + µ(2)

s) + µ(1)
c ,W(1)

c Ψ(2)
s W(1)T

c +Ψ(1)
c

)
.

(2.46)

Then the final shallow form is obtained by further integrating out z(2)

p(y|s) =
∫
z(2)

p(y|z(2), s)dz(2) = N (y;ms,Σs) , (2.47)

ms = W
(1)
c µ

(2)
s + µ

(1)
c , Σs = W

(1)
c (ψ(2)

s +W
(2)
s W

(2)T

s)W
(1)T

c +Ψ(1)
c . (2.48)

Finally, the marginal density of the shallowed model on observed data y is then given by
a mixture of Gaussians

p(y) =
S∑

s=1

p(s)p(y|s) =
S∑

s=1

πsN (y;ms,Σs) . (2.49)

Conventionally, θs = {πs,µs,Ws,Ψs,Wc,µc,Ψc}S,Cs=1,c=1 represent the parameters of
the shallow form of DMFA.

In this case, the posterior probability of the shallowed MFA collapsing from a two-
layer DMFA for the sth mixture can be given by p(s|y) = πsp(y|s)/p(y). We are also

35

interested in the posterior distribution of the latent factor zs which is collapsed to a shallow
form

q(z(2), s|y) = N (z
(2)
s ;κs,V

−1
s) , (2.50)

V−1
s = (W

(2)
s W

(2)T

s +Ψ(2)
s)−1 +W

(1)T

c Ψ(1)−1

c A
(1)
c ,

κs = W
(2)T

s µ
(2)
s +V−1

s A(1)TΨ(1)−1

(y − µc) .

2.5 Deep Autoencoding Density Model

This section will introduce another type of deep density models using the framework
of the deep AE. We name them as Deep Autoencoder-based Density Model, to mainly
distinguish the layer-wise deep density model. Deep Learning is a learning algorithm
which is already an important branch of artificial intelligence. Deep learning can be
trained in an end-to-end style. Thus it subverts the idea of algorithm design in many fields,
such as speech recognition, image classification, text understanding and so on [79–81]. In
recent years, due to the improvement of hardware (Graphics Processing Unit (GPU)) and
the optimisation method (Back Propagation, BP), deep learning has quickly become the
most popular method in the learning community with its concise framework and powerful
perception ability. Moreover, in just a few years, it has also been rapidly applied to a wide
range of practical applications.

One of the simplest methods of deep learning is to take a hierarchical system of neural
networks (NN). If an NN is given, we assume that its output is the same as the input, and
then train the adjustment. Its parameters give the weights in each layer. Naturally, we
get several different representations of input data (each layer represents a representation),
and these representations are features. An AE is a neural network that reproduces the
input signal as much as possible. In order to achieve this recurrence, AE must capture
the most important factor that can represent the input data, just like PCA, find the main
components that can represent the original data (as shown in Fig. 2.11).

However, this structure can only be applied in data compression. On the other hand,
building a density model on the latent variable (z) allows the model to achieve more
learning goals, such as generating new data, classification, and clustering [13, 82, 83]. To
this end, the Variational Autoencoder (VAE) is developed to extend AE to be a generative
model. In this section, VAE will be introduced as the preliminary [84], and a state-of-the-
art deep autoencoding Gaussian mixture model will also be described [85].

36

Fig. 2.11: Schematic structure of an autoencoder with 3 fully-connected hidden layers.

2.5.1 Notation

The goal of VAE is to construct a model that generates target data X from a latent vari-
able Z. More precisely, By assuming that Z obeys a common distribution (normal dis-
tribution or uniform distribution, a model X = g(Z) can then be learned. This model
maps the probability distribution of the target data to the probability distribution of the
latent variables. Fig. 2.12 shows the structure of a standard VAE with fully-connected
hidden layers. First, the unlabeled data X are taken as input, and then the features are
learned using unsupervised learning. The features are generated by the encoder (Code:
h = tanh(W0X + b0)). After that, two encoders will be connected, one for calculating
the latent variable mean µ = W1X + b1, and the other for calculating the hidden vari-
able variance logσ2 = W2X + b2. The goal is to make the generated data similar to the
metadata. The log-likelihood of observed data xi can be written as

log pθ(xi) = KL
(
qϕ(z|xi)

)
+ L(θ, ϕ;xi) . (2.51)

Here L represents the evidence of the lower bound, which is usually maximised so as to
obtain the best parameters. We can optimise the likelihood indirectly by optimising L.

37

Fig. 2.12: Schematic structure of a variational autoencoder with fully-connected hidden
layers.

38

According to the multiplication formula of probability, L can be transformed into

L(θ, ϕ;xi) = −KL
(
qϕ(z|xi)

)
+ Eqθ(xi)

[
log pθ(xi)

]
. (2.52)

It can be observed that the optimised goal can be broken down into two items. Let’s first
examine the first item, which is a KL divergence. qϕ(z|xi) is the distribution we would
like to learn, which takes each dimension’s independent Gaussian distribution N (µ,σ2).
In fact, in the VAE model, we assume that the posterior distribution of latent variables
p(z|xi) is a standard normal distributionN (0, I). By reasonably selecting the distribution
form, this item can be analytically solved. Then the KL divergence between the Gaussian
distribution and standard normal distribution can be calculated as

−KL(qϕ(z|xi)) = −0.5
(
1 + logσ2

i − µ2
i − σ2

i

)
. (2.53)

Then, we can look at the second term on the right-hand side: E(qθ(xi))[log pθ(xi)] is the
Log-likelihood of posterior probability about xi.

Eqθ(xi)[log pθ(xi)] ≈
1

L

L∑
j=1

log pθ(xi|zj) . (2.54)

Here, zj is not directly sampled from the Gaussian distribution modelled by the decoder
but exploits the reparameterisation method. If we only take one sample point at a time,
then E(qθ(xi))[log pθ(xi)] ≈ log pθ(xi|z). Among them, z is the sampling point. For-
tunately, this is the loss function commonly utilised in neural networks. Therefore, VAE
converts the similarity between the generated distribution and the true distribution into a
summation of the similarity between the distribution of the latent variable and the normal
distribution (the posterior distribution of the hidden variable), and the similarity between
the sample of the generated distribution and the true distribution.

2.5.2 Deep Autoencoding Gaussian Mixture Model

Deep Autoencoding Gaussian Mixture Model (DAGMM) is one of the state-of-the-art
deep AE-based density models, which utilises a deep AE to generate a low-dimensional
representation. It further feeds the compact representation into a GMM for performing
density estimation [85]. DAGMM usually consists of two major components, which is
illustrated in Fig. 2.13.

• A compression network performs two parts of low-dimensional representations,
one is the latent features zc for input samples x by a deep AE, and the other is the
reconstruction error features zr by measuring the distance between input and output
samples x′.

39

• An estimation network outputs a K-dimensional vector for the soft mixture-component
membership γ̂, which predicts the likelihood/energy in the framework on the low-
dimensional representations z.

Fig. 2.13: Deep Autoencoding Gaussian Mixture Model: Schematic structure for the
compression network combined with the estimation network.

The compression network computes the low-dimensional representation as follows

zc = h(x;θe) , x′ = g(zc;θd), (2.55)

zr = f(x,x′) , z = [zc, zr] , (2.56)

where h(·) denotes the encoding function, g(·) denotes the decoding function, and f(·)
denotes the function of reconstruction error. All the parameters of the deep AE and multi-
layer network are denoted by θ with different subscripts. L(x,x′) is the loss function that
characterises the reconstruction error caused by the deep AE.

40

Given the number of mixture components K, the membership prediction can be ob-
tained from the estimation network outputs as follows

p = MLP (z;θp) , γ̂ = softmax(p) , (2.57)

ϕ̂k =
N∑
i=1

γ̂ik

N
, µ̂k =

N∑
i=1

γ̂ikzi

N∑
i=1

γ̂ik

, (2.58)

Σ̂k =

N∑
i=1

γ̂ik(zi−µ̂k)(zi−µ̂k)
T

N∑
i=1

γ̂ik

, (2.59)

where p is the output of the multi-layered perceptions MLP (·), softmax(·) denotes the
soft-max function, and ϕ̂k, µ̂k, Σ̂k are mixing proportion, mean, and covariance for the
kth component in GMM.

The loss function of the estimation networks is inferred by the negative log-likelihood
with these estimated parameters

E(z) = − log
{ K∑

k=1

ϕ̂kN (z; µ̂k, Σ̂k)
}
. (2.60)

In addition, the regularisation P (Σ̂k) =
∑K

k=1

∑d
j=1(Σ̂kjj)

−1 alleviates the singular-
ity problem by penalising small values on the diagonal entries, where d is the low-
dimensional representations’ dimensions. Given the above, this objective function can
be constructed as follows

J(θc,θd,θp) =
1

N

N∑
i=1

L(x,x′) +
λ1

N

N∑
i=1

E(zi) +
λ2

N
P (Σ̂k) , (2.61)

where λ1 and λ2 are the meta parameters which are usually set to λ1 = 0.1 and λ2 =

0.005.
Since the model is mainly used for unsupervised anomaly detection7, the reconstruc-

tion error features are added as the input to the GMM [86]. In essence, the model takes
advantage of the fact that anomalies deviate from the cluster in low-dimensional space
and are difficult to reconstruct. Furthermore, anomaly samples can be predicted when
their E(z) is higher than a pre-chosen threshold. Compared with other anomaly detection
models, such as Deep clustering network (DCN)and DSEBM-r [87, 88], DAGMM is an
end-to-end model which optimises the parameters of deep AE and GMM simultaneously.

2.5.3 Rejection

In real-world applications, some samples may not belong to any known class. Therefore, it
might be necessary to refuse to make decisions on these samples, which can further reduce
7Anomaly detection is a kind of application of rejection recognition.

41

the error rate. These rejected samples can be discarded or hold on for more information.
This process is called rejection recognition.

DAGMM is mainly applied for the one-class detection by using the value of log-
likelihood as the detection criteria. In this case, most of the data are considered normal
and modelled in an unsupervised way, and then the abnormal data are detected if the value
of log-likelihood is smaller than a pre-defined threshold. Another case is the so-called out-
of-distribution detection which is applied for the multi-class detection. It rejects the test
samples from different distributions of training data by training a prediction confidence.
Recent work has demonstrated that the common multi-class classifiers (neural networks)
tend to make highly confident predictions of all test samples, even if they are completely
unrecognisable or irrelevant inputs [89–92]. In recent years, the emerging approaches
have been proposed to improve the classifier so that such uncertainty can be considered.
One seemingly straightforward approach is to enlarge the training set, but the number
of out-of-distribution examples can be infinitely many. It keeps an challenge [86, 93] to
detect out-of-distribution examples without further re-training networks.

42

Chapter 3

Density Model with Finite Mixture for
Unsupervised and Supervised Learning

A density model with finite mixture usually utilises latent variables to represent the p-
resence of sub-populations, e.g., various components, within an overall population, e.g.,
the mixture model. Typically, the finite mixture models provide a convenient and formal
setting for the model-based unsupervised learning, i.e., the Gaussian Mixture Model [30]
and the Mixtures of Factor Analysers [50]. These methods can also be used in the model-
based supervised learning. For example, when the sub-populations cannot be approximat-
ed by a simple or known distribution, a finite mixture model can offer a better fit for each
sub-population.

In this chapter, two finite density models will be introduced for unsupervised and su-
pervised learning respectively. More specifically, we will first discuss how to establish
a joint learning method which performs the dimensionality reduction and the following
learning task simultaneously. We then verify the effectiveness of this model for unsu-
pervised learning, i.e., clustering. Next, we discuss how to reduce the free parameters
typically for high-dimensional complicated data. To this end, we propose a latent vari-
able model that uses a hierarchical structure, while assuming a common dimensionality
reduction matrix for each component. This model is verified in the setting of supervised
learning on various data.

The rest of this chapter is organised as follows: in Section 3.1, a joint learning model
is introduced by embedding a common loading matrix in a finite mixture model, high-
lighting the point that the learned low-dimensionality representations can be calibrated
for subsequent learning tasks. Experiments are reported for the joint learning models on
several real-world datasets in Section 3.2. In Section 3.3, we develop a mixture discrimi-
nation model for the high-dimensional but small sample sized data. Finally, we conclude
this chapter in Section 3.4 and also discuss the limitations and future work.

43

3.1 Unsupervised Dimensionality Reduction for Gaussian
Mixture Model

Dimensionality Reduction (DR) has been an important yet active research area in infor-
mation theory, pattern recognition, and machine learning. Among them are Principal
Component Analysis (PCA), Independent Component Analysis (ICA), Fisher Discrimi-
nant Analysis (FDA), Latent Dirichlet Analysis (LDA), Maxi-Min Discriminant Analysis
(MMDA) [94], and 1-norm based feature selection approach. This is especially the case
for high-dimensional data since such data usually contain much redundant information.
DR can be engaged to map these high-dimensional data into a low dimensional space,
where meaningful or semantic features could be available. Such latent features, better
reflecting the relationship within data, can be input to any learning models, e.g., Gaus-
sian mixture model (GMM) [95], and may lead to performance improvement. In the past,
there has been a great deal of works in this field [94, 96, 97]. In the context of classifica-
tion or regression [98], DR could be conducted in the supervised style by utilising certain
supervised information (e.g., class labels) so as to find a subspace where different classes
of data could be separated as far as possible. These methods include the above mentioned
FDA and MMDA. On the other hand, when the class information is not available, DR is
performed in an unsupervised way. This family of approaches includes the famous PCA
and independent component analysis [44].

In practice, some dimensionality reduction are usually performed independently be-
fore the low-dimensional features are fed to available learning models. For example,
when GMM is utilised for high-dimensional data, PCA could be conducted beforehand.
Then the reduced features are input to a GMM so as to obtain the best parameters. The
purpose is both to reduce the computational time for high dimensional data and to find a
suitable subspace where better clustering or classification performance could be achieved
due to the removal of possible noisy features. In this setting, the optimal subspace and
the following optimal parameters of GMM are searched independently. Consequently,
the optimal subspace obtained by the independent DR may not be appropriate for the fol-
lowing GMM. This is particularly the case in the context of unsupervised learning, e.g.,
clustering. In supervised learning, class labels could be used for deriving a good sub-
space, whilst in unsupervised learning, the principles used for DR (e.g., maximisation of
the variance in PCA) may not be appropriate for GMM. Figure 3.1(a) in Section 3.1.3
illustrates the best 2-dimensional subspace obtained by PCA in one synthetic data. Ob-
viously, the original clustering information among data was less obvious after PCA. The
detailed discussion can be later seen in the experimental section.

In comparison with the traditional independent learning of DR and GMM (i.e., con-

44

ducted independently and separately), we propose to learn both the optimal subspace and
the parameters for GMM jointly. Specifically, we engage the Mixtures of Factor Analy-
sers (MFA) [99] where a common factor loading is assumed to exist for all latent factors.
Importantly, when this special MFA called MCFA is optimised via the modified EM al-
gorithm, the common factor loading could be regarded as the dimensionality reduction
matrix, while the mixtures of latent factors can be regarded as GMM. When GMM is
used for unsupervised clustering, its joint learning with the DR subspace will make the
clustering properties clearly reserved and even clear. To see the advantages, we also show
in Figure 3.1(b) of Section 3.1.3 the subspace obtained by the joint learning method. Ob-
viously, it could lead to much better clustering performance, especially compared with
PCA. We will also discuss this comparison later in the experimental section. Despite its
good properties, the EM algorithm is widely known as a local optimizer, guaranteing on
the global optimum. Hence, the engaged algorithm used in this paper also leads to local-
minimum solution. Nonetheless, the experimental results showed that the EM can still
generate satisfactory results.

It should be noted that although MFA has been earlier discussed for literature such
as [100], it was presented from the viewpoint of data analysis rather than dimensionality
reduction. More importantly, the idea of using common loadings, or the joint learning,
could also be applied in other mixture models [54]. This presents one important contri-
bution of this section. The rest of this section is organised as follows. First of all, we
present the preliminaries used in this section and also briefly review the finite mixture
model. In Section 3.1.2, we then introduce a novel MFA model with the common factor
loading. The model definition and the optimisation method will be described in turn. In
Section 3.1.3, we compare the proposed new joint learning model on five datasets against
the other two competitive methods. This work can also be seen in [16, 18] for a short
version.

3.1.1 Preliminaries

Probabilistic mixture methods, founded on statistical theory, have become well estab-
lished in the learning algorithms and have been extensively used in many application-
s [101, 102]. In the following, we will first introduce Gaussian latent variable model-
s [50], and then we will review the fundamentals of its special case, that is probabilistic
PCA [27]. In this part, the notation of this section will be presented with the focus on
introducing Gaussian latent variable models. In this model, the marginal and conditional
distribution are all subject to Gaussian distribution. The basic mixture model is defined

45

as

P (y;θ) =

g∑
i=1

πi

n∏
j=1

P (yj | zij) . (3.1)

where P (y) is a mixture of g multi-variate normal component distribution of the random
variable Y = (y1, . . . ,yp)

T . zij is q-dimensional latent variable and N (yj | zij) is
the marginal distribution which can be known as a component of this model. Indeed, it
also can be seen that the observed p-dimensional data are equivalent to mapping to the
q-dimension latent subspace by linear transformation.

The unknown parameter vector θ consists of the mixture weight πi, the means of com-
ponent µi, and the covariance of component matrices Σi(i = 1, . . . , g). This vector can
be estimated by maximising the log-likelihood function: logL(θ) =

∑n
j=1 logP (yj;θ),

where {yj} (j = 1, . . . , n) is an observed random sample set. By using the Expectation-
Maximisation (EM) algorithm [100], the local maximisers of log-likelihood function can
be obtained by an appropriate root of following equation

∂E[logL(θ)]/∂θ = 0 . (3.2)

With the Bayes theorem, the posterior distribution P (ωi | yj;θ) can be expressed as

P (ωi | yj;θ) =
πiP (yj | zij)∑g

h=1 πhP (yj | zhj)
, i = 1, . . . , g ; j = 1, . . . , n . (3.3)

Here, ωi represents the i-th latent component category that each sample yj belongs to.
Note that the category of each sample yj is unknown, and the latent variable is the indi-
cator variable ωi, ωi = {0, 1}, πi = P (ωi = 1). A data point could be assigned to the
component that has the highest estimated posterior probability.

The normal mixture model has m = p(p+1)
2

parameters for each component covari-
ance matrix. In particular, MFA with the factor-analytic representation of the component
covariance matrices as Σi = AiA

T
i + Ψi where Ψi is a diagonal matrix and the p × q

matrix A contains the factor loading [99]. Since A is an orthogonal matrix, Ai has
d = q(q−1)

2
constraints. Hence the number of free parameters in each covariance matrix is

pq + p− q(q−1)
2

. The total number of parameters is

m1 = g − 1 + 2gp+ gpq − gq(q − 1)

2
.

To reduce further the number of parameters so as to favour efficient optimisation,
another popular mixture method-mixture of probabilistic PCA (mPPCA) [43] assumes an
isotropic covariance instead of a diagonal matrix covariance of MFA. Each component

46

covariance matrix is defined as Σi = AiA
T
i + σ2Ip. The total number of parameters is

reduced to

m2 = g + gp+ gpq − gq(q − 1)

2
.

Even with the isotropic matrix, the number of parameters still may not be manageable
when p or q is large. In this section, the novel algorithm provides a great reduction by
reducing the parameters in loading matrices. The total number of parameters is further
reduce to

m3 = g − 1 + p+ gq + pq +
gq(q + 1)

2
− q2 ,

with the restrictions

µi = Aξi ;

Σi = AΩiA
T +Ψ ;

Ψi = Ψ ,

(3.4)

where A is a p × q matrix of loadings on latent factors, ξi is a q-dimensional vector,
and Ωi is a symmetric matrix. In addition to the manageable computational efficiency,
when the above special MFA is optimised via the modified EM algorithm, the common
factor loading could be regarded as the dimensionality reduction matrix, while the mixture
of latent factors can be regarded as a GMM (see Chapter 2.2.2). This exactly achieves
the joint learning, leading to much better clustering performance than the independent
approaches.

As a linear model, FA decomposes a factor loading to cross a linear subspace within
the covariate vector space, making factors have a lower dimension than the covariates. In
the following, we will first introduce MFA [50], and then we will review the fundamentals
of its special case, that is MCFA [100]. Let Y ∈ Rn×p denote n p-dimensional vectors of
feature variables generated by a linear combination of latent variables Z.

3.1.2 Unsupervised Dimensionality Reduction with MCFA

In this section, we will introduce the model Mixtures of Factor Analysers with Common
factor loadings (MCFA) so as to learn jointly the dimensionality reduction and the param-
eters of GMM. We will introduce the model definition first, and then present the involved
optimisation algorithm.

Model Description

The latent variable model seeks to generate a p-dimensional observed data vector Y =

(y1, . . . ,yp)
T by linear combination with q-dimensional vector of latent variables Z =

47

(zi1, . . . , zin)
T

Y = f (Z;A) + ϵ . (3.5)

The most common model is the MFA where the linear mapping function of the unobserv-
able factors Z is defined as

f (Z;A) = Aizij + µi . (3.6)

Here Ai is a p×q matrix contains the factor loadings, the latent factors zij are defined to be
independent and Gaussian with unit variance N (0, Iq), and ϵ is random noise distributed
independently underN (0,Ψi). Moreover, Ψi is a q×q positive definite symmetric matrix
(i = 1, . . . , g). µi is the non-zero mean vector of the observation data.

With the additional restrictions in Eq. (3.4), the general linear function of MCFA is
obtained

yj = Azij + ϵij ,

zij ∼ N (ξi,Ωi) , ϵij ∼ N (0,Ψ) . (3.7)

Here the common loading A can easily be seen as the transformation matrix, reducing
p-dimensional to a latent q-dimensional space. Conventionally, the (unobservable) fac-
tors zij are distributed independently under N (ξi,Ωi), ϵij is random noise distributed
independently under N (0,Ψ), and Ψ is a diagonal matrix. Different from MFA, the in-
dependent noise variance matrix Ψ is a global parameter instead of the local parameter
Ψi.

With the above definitions, we obtain the conditional distribution of y in the form

P (yj | zij) = N (yi | Azij,Ψ) . (3.8)

Hence, the overall model distribution with the corresponding mixing proportion πi, (i =

1, . . . , g) takes the form

P (y;θ) =

g∑
i=1

πi

n∏
j=1

N (yj;µi,σ
2
i)

=

g∑
i=1

πi

n∏
j=1

N (yj;Aξi,AΩiA
T +Ψ) .

(3.9)

Each marginal distribution N (yj;Aξi,AξiA
T + Ψ) known as a component of this

model. By Eq. (3.3), the posterior probability of the observed yj belongs to the ith com-
ponent may be calculated

τ i(yj;θ) =
πiϕ(yj;Aξi,AξiA

T +Ψ)∑g
h=1 πhϕ(yj;Aξh,AξhA

T +Ψ)
. (3.10)

48

Then the maximum-likelihood technique can be exploited to estimate the parameters and
then approximate Maximum A Posteriori by Eq. (3.10). The likelihood function of ob-
served data under MCFA can then be written as

L(y) =
g∏

i=1

n∏
j=1

P (yj | zij, ωi)P (zij | ωi)P (ωi) . (3.11)

Here ω is the component-indicator labels of this mixture model of g components, whose
value is either one or zero depending on whether or not yj belongs to the i-th component
of the model. Since factors are distributed independently N (ξi,Ωi), we have P (zij |
ωi) = N (zij | ξi,Ωi). Then, the log-likelihood function is given by

logLc(θ) =

g∑
i=1

n∑
j=1

ωi

{
log πi + logN (yj;Azij,Ψ) + logN (zij; ξi,Ωi)

}
. (3.12)

In the next subsection, we will introduce how to utilise EM to find the dimensionality
reduction matrix A as well as the parameters of GMM.

Optimisation

The parameters of MCFA can be estimated by the famous EM algorithm, or in particu-
larly, the alternating expectation-conditional maximisation algorithm (AECM) [53, 99].
Then the two-stage form of EM can be shown.

E-step Starting with the initial values for the parameters, we first need to compute the
posterior probabilities in Eq. (3.10). The conditional expectation of the component labels
ωi(i = 1, . . . , g) can be written as Eθ{ωi | yj} = Prθ{ωi = 1 | yj} = τ i(yj;θ).
Then the expectations of the hidden variables E(Z | yj, ωi) and E(ZZ′ | yj, ωi) should
be estimated that appear in the log-likelihood for all data point j = 1, . . . , n and mixture
components i = 1, . . . , g. It is easily verified that

E(Z | yj, ωi) = Ωi + γT
i (yj −Aξi) , (3.13)

E(ZZT | yj, ωi) = (Iq − γT
i A)Ωi + θ

(k)(Z | yj, ωi)θ
(k)(Z | yj, ωi)

T , (3.14)

where γi = (AΩiA
T)−1AΩi.

At each iteration, the Q(θ;θ(k)) denotes the conditional expectation of Eq. (3.12).
Given the observed data yi and θ(k), we have

Q(θ;θ(k)) := P (zk | yk;θ) . (3.15)

49

With respect to the posterior distrubutions of both zij and ωi, Eq. (3.15) can be trans-
formed as

Q(θ;θ(k)) =

g∑
i=1

n∑
j=1

τ
(k)
ij

{
log πi + Eθ(k)

{
logN (yj;Azij,Ψ)|yj, ωi = 1

}
+ Eθ(k)

{
logN (zij; ξi,Ωi)|yj, ωi = 1

}}
.

(3.16)

where τ (k)
ij = τ i(yj;θ

(k)). This expectation omitte terms independent of model parame-
ters.

M-step This step involves maximising Eq. (3.16) with the values for parameters π(k+1)
i ,

ξ
(k+1)
i , Ω(k+1)

i , A(k+1) and Ψ(k+1) by iterate the EM algorithm (k+1) times. The updated
estimates of the mixing proportions πi are derived in the case of the normal mixture model
by

π
(k+1)
i =

1

n

n∑
j=1

τ
(k)
ij , i = 1,g . (3.17)

To consider the other parameters, the local maximisers of log-likelihood function can
be obtained by calculating the root of the derivative of Eq. (3.16) with respect to the
remaining parameters. The update estimate function of the factor loadings is formed as

A(k+1) =

(
g∑

i=1

A
(k)
1i

)(
g∑

i=1

A
(k)
2i

)−1

, (3.18)

where

A
(k)
1i =

∑g
i=1 τ

(k)
ij

{
yjE(k)(Z | yj, ω

(k)
i)
}
;

A
(k)
2i =

∑g
i=1 τ

(k)
ij

{
E(k)(ZZ′ | yj, ω

(k)
i)
}
.

The ξ(k+1)
i and Ω

(k+1)
i can be expressed as follows

ξ
(k+1)
i = ξ

(k)
i +

∑n
j=1 τ

(k)
ij β(k)TΣ

(k)
i

T
µij∑n

j=1 τ
(k)
ij

, (3.19)

Ω
(k+1)
i =

∑n
j=1 τ

(k)
ij Σ

(k)
i

T
β(k)TµT

ijΣ
(k)
i β(k)∑n

j=1 τ
(k)
ij

+ (Iq −Σ
(k)
i β(k)A(k))Ω

(k)
i ,(3.20)

β(k) = A(k)Ω
(k)
i , µij = yj −A(k)ξ

(k)
i ,

Σ
(k)
i =

(
A(k)Ω

(k)
i A(k)T +Ψ(k)

)−1
.

50

The updated estimates Ψ(k+1) = diag
(
Ψ

(k)
1 +Ψ

(k)
2

)
, where

Ψ
(k)
1 =

∑g
i=1

∑n
j=1 τ

(k)
ij Ψ(k)(Ip −Σ

(k)
i Ψ(k))∑g

i=1

∑n
j=1 τ

(k)
ij

,

Ψ
(k)
2 =

∑g
i=1

∑n
j=1 τ

(k)
ij Ψ(k)TΣ

(k)T

i µijµ
T
ijΣ

(k)
i Ψ(k)∑g

i=1

∑n
j=1 τ

(k)
ij

.

3.1.3 Experiments

In this section, we conduct a series of experiments on one simulated and four real datasets
(obtained from UCI machine learning repository [103]) and compare the performance of
the joint learning approach MCFA with the independent learning method PCA followed
by GMM and another competitive joint leaning method mPPCA [41, 43], which is stated
in Chapter 3.3.1.

Experimental Setup: All the evaluations are conducted based on clustering, since we
merely consider unsupervised dimensionality reduction in this section. All the data are
applied as training so as to get an appropriate clustering result. Following previous re-
search, we report the error rate (ERR), the adjust rand index (ARI), and the Bayesian
information criterion (BIC) to compare different algorithms.1 Note that, although we do
not exert any labeled information in clustering, the label for each sample is known be-
forehand in all the used datasets. Hence we can exploit the label information to evaluate
the clustering performance. Specifically, we could exploit ERR as the evaluation metric
for clustering, since we expect the same cluster should contain the data of the same class.
BIC is employed to determine the number of clusters where the lower BIC implies better
fitting [104]. ARI is a measure of similarity between two clusterings. If the clustering and
the true class perfectly agree, the value of the ARI will be 1 [105].

Simulation Data

To validate the effectiveness of the joint learning approach MCFA, we first performed a
simulation experiment. We generated 300 random vectors from each of g = 3 different
three-dimensional multivariate normal distributions. The three distributions have respec-

1AdjustedIndex = Index−ExpectedIndex
MaxIndex−ExpectedIndex ;

BIC = −2× ln(Likelihood) + k × ln(the number of samples).

51

Table 3.1: Comparison among the MCFA, PCA+GMM and mPPCA on Simulated Data

MCFA PCA+GMM [41] mPPCA [43]

CLUS DIM ERR BIC ARI ERR BIC ARI ERR BIC ARI

2 2 0.3333 4173 0.5600 0.3333 3153 0.5553 0.3333 62171 0.4831

3 2 0.0100 4105 0.9702 0.0300 3080 0.9126 0.0233 88344 0.9310
∗ CLUS denotes the number of clusters; DIM denotes the number of dimensions.

tively means µ1 = (0, 0, 0)T , µ2 = (2, 2, 6)T , µ3 = (8, 8, 8)T , and covariance matrices

Σ1 =

4 −1.8 −1

−1.8 2 0.9

−1 0.9 2

 ,Σ2 =

4 1.8 0.8

1.8 2 0.5

0.8 0.5 2

 ,Σ3 =

4 0 −1

−1.8 2 0.9

−1 0.9 2

 .

To compare the performance MCFA with PCA for DR. We plot the unsupervised feature
reduction results on Fig. 3.1. In Fig. 3.1(a), the optimal subspace is just obtained by
reducing the observations with PCA. Clearly, the original clustering information among
data was less obvious after PCA. For MCFA, the predicted observations in the optimal
subspace shown in Fig. 3.1(b) is given by ẑij = A

∑g
i=1 τ ijyij . Since mPPCA assume

to project the data of different clusters into different subspaces, the mPPCA does not
show all the low-dimensional representation in a subspace. Obviously, the joint learning
approaches could lead to much better clustering performance, especially compared with
PCA.

To quantitatively evaluate the clustering performance, we compute ERR, ARI and BIC
with PCA followed by GMM and the joint learning MCFA and mPPCA. These results are
shown in Table 3.1. From the table, the lowest BIC of both approaches are pointed to 3

clusters, indicating that 3 is the best cluster number. Moreover, in the case of 3 cluster
number, the joint learning MCFA outperformed PCA followed by GMM significantly in
terms of the other two criteria.

Comparison on Real Data

Datasets Table 3.2 summarises the real-world datasets used in our experiments (details
are shown in appendix). We have compared the joint learning MCFA, mPPCA and inde-
pendent learning approach PCA followed by GMM in case of various cluster number and
different dimensionality ranged from 2 to the feature number, as the cluster number was
usually not known. For iris data, one class is linearly separable from the other two, and

52

D1
-10 -5 0 5 10 15

D
2

-8

-6

-4

-2

0

2

4

6

8

1
2
3

(a) 2-d subspace by PCA

D1
-2 0 2 4 6 8 10 12 14

D
2

-2

-1

0

1

2

3

4

5

6

7

1
2
3

(b) 2-d subspace by joint learning

Fig. 3.1: Comparison of DR by PCA and joint learning models on simulated data. Data
points with the same shape are supposed to be clustered together.

the latter are not linearly separable from each other. We also used seeds dataset to study
methods for clustering in high-dimensional data with large noise information. Each of the
subjects consists of a total of 37 variables (p = 37), including 7 geometric parameters of
wheat kernels and 30 uniform noise variables. The noise variables were generated from
the uniform distribution on the interval [0, 2].

Table 3.2: Summary of real-world datasets

Datasets Size (N × P) Details

User knowledge model 403× 5 4 knowledge levels of the students

Physical 178× 13 The chemical analysis of wines with 3 cultivars

Iris Data 150× 4 3 classes of iris plant.

Seeds Data 210× 37 3 different varieties of wheat

Experimental results The results of the user knowledge modelling data are shown in
Tabel 3.3, the best-estimated cluster number of MCFA is 4 according to the lowest BIC.
This setting also achieved the lowest ERR, and the highest ARI when reducing the di-
mensional to 2 factors. In the same way, with the lowest BIC, the result by mPPCA is 3
clusters and 2 clusters given by PCA. All of these results do not conform to the ground
truth. To show the comparison better, we also plot the results in Fig. 3.2. It is clearly
observed that MCFA is also significantly better than the best case of other competitive
methods by comparing ERR.2

2When the estimate of the variance of the random error term is too small, the value of log-likelihood can be
a positive number. This is the reason why BIC becomes negative. If ERRs/ARIs are same, the model with
the lower BICs are better.

53

Table 3.3: Comparison among MCFA, PCA+GMM and mPPCA on User Knowledge
Data

User Knowledge Modelling Data

MCFA PCA+GMM mPPCA

CLUS DIM ERR BIC ARI ERR BIC ARI ERR BIC ARI

2

2 0.3891 −117 0.4474 0.4358 187 0.2469 0.4047 −3554 0.3912

3 0.3891 −87 0.4474 0.4514 212 0.2896 0.4008 −7658 0.4013

4 0.3891 −48 0.4474 0.4553 150 0.2442 0.3891 −16103 0.4242

3

2 0.3074 −126 0.4190 0.3735 210 0.3001 0.3463 −9509 0.3528

3 0.3035 −121 0.4242 0.3969 232 0.2924 0.3346 −7956 0.3926

4 0.3074 −22 0.4477 0.4786 159 0.1781 0.3035 −285480.4302

4

2 0.1634 −142 0.6456 0.4008 225 0.2771 0.4047 −8825 0.3084

3 0.1868 −92 0.6240 0.4591 230 0.2791 0.3774 −8158 0.3739

4 0.2451 −86 0.5901 0.4669 216 0.2593 0.3502 −23606 0.4224

∗ CLUS denotes the number of clusters; DIM denotes the number of dimensions.

54

Cluster - Component
2-2 2-3 2-4 3-2 3-3 3-4 4-2 4-3 4-4

B
IC

 &
 E

R
R

 &
 A

R
I

-150

-100

-50

0

0.5

1

ERR
ARI
BIC of 2 Cluster
BIC of 3 Cluster
BIC of 4 Cluster

(a) MCFA

Cluster - Component
2-2 2-3 2-4 3-2 3-3 3-4 4-2 4-3 4-4

B
IC

 &
 E

R
R

 &
 A

R
I

0

50

100

150

200

0

0.2

0.4

0.6

0.8

1

ERR
ARI
BIC of 2 Cluster
BIC of 3 Cluster
BIC of 4 Cluster

(b) PCA+GMM

Cluster - Component
2-2 2-3 2-4 3-2 3-3 3-4 4-2 4-3 4-4

B
IC

 &
 E

R
R

 &
 A

R
I

-30000

-24000

-18000

-12000

-6000

0

0.2

0.4

0.6

0.8

1

ERR
ARI
BIC of 2 Cluster
BIC of 3 Cluster
BIC of 4 Cluster

(c) mPPCA

Fig. 3.2: Three criteria comparison on User Knowledge Dataset among different algo-
rithms. Lines represent ERR, ARI and histograms represent BIC where different colours
represent different numbers of clusters.

Furthermore, in Table. 3.4, the best-estimated cluster number of MCFA and PCA+GMM
is 3, according to the lowest BIC of Physical Data. Obviously, in Fig. 3.3, in the case of
q ≥ 6 factors with 3 clusters, the joint learning led to better performance than PCA+GMM
in terms of ERR and ARI. However, with the mPPCA approach, it did not lead to the s-
mallest error rate with the lowest BIC.

For iris data, all algorithms achieved the lowest BIC with 3-cluster (see Table 3.5).
This also matches the class number in this dataset. Since two of classes are not linearly
separable, the error rates are all 0.3333 when cluster number is set to 2. In Fig. 3.4, MCFA
achieved the lowest ERR and the highest ARI, which outperformed significantly that of
other competitors.

Table 3.6 presents the seeds dataset which is high-dimensional data with large noise
information. By comparing BIC, 3 clusters are the best for MCFA and mPPCA, and 2

clusters are the best for PCA. It can be seen clearly in Fig. 3.5, the MCFA leads to a

55

Table 3.4: Comparison among MCFA, PCA+GMM and mPPCA on Physical Data

Physical Data

MCFA PCA+GMM mPPCA

CLUS DIM ERR BIC ARI ERR BIC ARI ERR BIC ARI

2

2 0.3146 7398 0.4717 0.3258 4142 0.3963 0.3090 241520 0.4336

3 0.2921 7134 0.5397 0.3202 5106 0.4219 0.3090 240639 0.4403

4 0.2921 7010 0.5298 0.3202 5945 0.4820 0.3315 250914 0.3904

5 0.2753 6962 0.5711 0.3258 6452 0.4088 0.3315 250091 0.3904

6 0.2697 6973 0.5820 0.3315 6922 0.3916 0.3315 250283 0.3904

7 0.2697 6986 0.5820 0.2865 7255 0.5499 0.3315 236383 0.3904

8 0.2697 7045 0.5820 0.2921 7487 0.5397 0.3315 263761 0.3904

3

2 0.0562 7384 0.8298 0.2978 4130 0.3827 0.2191 527095 0.5053

3 0.0225 7096 0.9295 0.2697 5109 0.4302 0.1067 626431 0.7174

4 0.0225 6922 0.9309 0.1401 5872 0.6170 0.0787 688774 0.7781

5 0.0169 6935 0.9485 0.0730 6413 0.7822 0.1461 678949 0.6381

6 0.0056 6881 0.9832 0.0562 6905 0.8319 0.0899 683243 0.7486

7 0.0056 6948 0.9817 0.0618 7253 0.8185 0.0674 672007 0.8069

8 0.0056 6944 0.9832 0.0449 7462 0.8708 0.0843 594161 0.7637

4

2 0.0618 7411 0.8145 0.2978 4165 0.3600 0.2640 538754 0.4802

3 0.0393 7106 0.8792 0.2865 5143 0.3977 0.2416 573750 0.5014

4 0.0169 6999 0.9470 0.1404 5863 0.6479 0.1854 677267 0.6478

5 0.0169 6988 0.9470 0.1124 6445 0.7531 0.2191 656419 0.5858

6 0.0169 7018 0.9551 0.1180 6992 0.7436 0.1966 647137 0.6339

7 0.0056 7099 0.9833 0.0899 7327 0.8355 0.2472 549149 0.5043

8 0.0056 7121 0.9900 0.1011 7505 0.8264 0.2165 682489 0.5709
∗ CLUS denotes the number of clusters; DIM denotes the number of dimensions.

56

Cluster - Component
2 - [2 to 8] 3 - [2 to 8] 4 - [2 to 8]

B
IC

 &
 E

R
R

 &
 A

R
I

0

1600

3200

4800

6400

0

0.2

0.4

0.6

0.8

1

ERR
ARI
BIC of 2 Cluster
BIC of 3 Cluster
BIC of 4 Cluster

(a) MCFA

Cluster - Component
2 - [2 to 8] 3 - [2 to 8] 4 - [2 to 8]

B
IC

 &
 E

R
R

 &
 A

R
I

0

1600

3200

4800

6400

0

0.2

0.4

0.6

0.8

1

ERR
ARI
BIC of 2 Cluster
BIC of 3 Cluster
BIC of 4 Cluster

(b) PCA+GMM

Cluster - Component
2 - [2 to 8] 3 - [2 to 8] 4 - [2 to 8]

B
IC

 &
 E

R
R

 &
 A

R
I

0

140000

280000

420000

560000

0

0.2

0.4

0.6

0.8

1

ERR
ARI
BIC of 2 Cluster
BIC of 3 Cluster
BIC of 4 Cluster

(c) mPPCA

Fig. 3.3: Three criteria comparison on user Physical Dataset among different algorithms.
Lines represent ERR, ARI and histograms represent BIC where different colours represent
different numbers of clusters.

Table 3.5: Comparison among MCFA, PCA+GMM and mPPCA on Iris Data

Iris Data

MCFA PCA+GMM mPPCA

CLUS DIM ERR BIC ARI ERR BIC ARI ERR BIC ARI

2
2 0.3333 624 0.5681 0.3333 672 0.5681 0.3333 50768 0.5681

3 0.3333 571 0.5681 0.3333 717 0.5681 0.3333 34002 0.5681

3
2 0.0200 654 0.9410 0.0267 672 0.9222 0.0267 73706 0.9222

3 0.0200 571 0.9410 0.0267 733 0.9222 0.0267 32758 0.9222

4
2 0.0200 692 0.9410 0.0533 706 0.8700 0.0600 57953 0.8488

3 0.0200 628 0.9410 0.0800 755 0.8570 0.0400 44837 0.9116
∗ CLUS denotes the number of clusters; DIM denotes the number of dimensions.

57

Cluster - Component
2-2 2-3 3-2 3-3 4-2 4-3

B
IC

 &
 E

R
R

 &
 A

R
I

0

140

280

420

560

0

0.2

0.4

0.6

0.8

1

ERR
ARI
BIC of 2 Cluster
BIC of 3 Cluster
BIC of 4 Cluster

(a) MCFA

Cluster - Component
2-2 2-3 3-2 3-3 4-2 4-3

B
IC

 &
 E

R
R

 &
 A

R
I

0

160

320

480

640

0

0.2

0.4

0.6

0.8

1

ERR
ARI
BIC of 2 Cluster
BIC of 3 Cluster
BIC of 4 Cluster

(b) PCA+GMM

Cluster - Component
2-2 2-3 3-2 3-3 4-2 4-3

B
IC

 &
 E

R
R

 &
 A

R
I

0

16000

32000

48000

64000

0

0.2

0.4

0.6

0.8

1

ERR
ARI
BIC of 2 Cluster
BIC of 3 Cluster
BIC of 4 Cluster

(c) mPPCA

Fig. 3.4: Three criteria comparison on Iris Dataset among different algorithms. Lines rep-
resent ERR, ARI and histograms represent BIC where different colours represent different
numbers of clusters.

58

Table 3.6: Comparison among MCFA, PCA-GMM and mPPCA on Seeds Data

Seeds Data

MCFA PCA+GMM mPPCA

CLUS DIM ERR BIC ARI ERR BIC ARI ERR BIC ARI

2

2 0.3333 11410 0.4685 0.3333 2453 0.3963 0.3333 18679 0.4720

3 0.3333 9902 0.4436 0.3333 3453 0.4219 0.3333 21156 0.4517

4 0.3333 9980 0.4927 0.3381 4413 0.4820 0.3333 20932 0.4564

5 0.3333 10040 0.4797 0.3333 5378 0.4088 0.3333 22514 0.4564

6 0.3333 10242 0.5299 0.3429 6318 0.3916 0.3381 20919 0.4683

3

2 0.1238 11411 0.6688 0.1381 2460 0.6544 0.1143 21192 0.6945

3 0.1000 11247 0.7257 0.1143 3473 0.7018 0.1238 25097 0.6807

4 0.0905 9763 0.7530 0.1333 4449 0.6627 0.1333 26369 0.6632

5 0.0667 9883 0.8138 0.1238 5444 0.6814 0.1429 28910 0.6452

6 0.0667 10086 0.8136 0.1095 6422 0.7072 0.1619 28872 0.6046

4

2 0.1286 11455 0.6660 0.1476 2475 0.6632 0.1714 22517 0.6364

3 0.1381 9776 0.6572 0.1429 3510 0.6812 0.1857 27477 0.6358

4 0.0810 9849 0.7811 0.1571 4491 0.6319 0.2095 27424 0.5915

5 0.0714 10002 0.8059 0.1857 5510 0.6102 0.2190 27411 0.6271

6 0.0714 10188 0.8059 0.2143 6512 0.5310 0.2381 28528 0.5782
∗ CLUS denotes the number of clusters; DIM denotes the number of dimensions.

59

Cluster - Component
2-2 2-3 2-4 2-5 2-6 3-2 3-3 3-4 3-5 3-6 4-2 4-3 4-4 4-5 4-6

B
IC

 &
 E

R
R

 &
 A

R
I

0

2400

4800

7200

9600

0

0.2

0.4

0.6

0.8

1

ERR
ARI
BIC of 2 Cluster
BIC of 3 Cluster
BIC of 4 Cluster

(a) MCFA

Cluster - Component
2-2 2-3 2-4 2-5 2-6 3-2 3-3 3-4 3-5 3-6 4-2 4-3 4-4 4-5 4-6

B
IC

 &
 E

R
R

 &
 A

R
I

0

1400

2800

4200

5600

0

0.2

0.4

0.6

0.8

1

ERR
ARI
BIC of 2 Cluster
BIC of 3 Cluster
BIC of 4 Cluster

(b) PCA+GMM

Cluster - Component
2-2 2-3 2-4 2-5 2-6 3-2 3-3 3-4 3-5 3-6 4-2 4-3 4-4 4-5 4-6

B
IC

 &
 E

R
R

 &
 A

R
I

0

6000

12000

18000

24000

0

0.2

0.4

0.6

0.8

1

ERR
ARI
BIC of 2 Cluster
BIC of 3 Cluster
BIC of 4 Cluster

(c) mPPCA

Fig. 3.5: Three criteria comparison on Seeds Dataset among different algorithms. Lines
represent ERR, ARI and histograms represent BIC where different colours represent dif-
ferent numbers of clusters.

good result of error rate for the cases that the number of factors is greater than 3. The
highest ARI is obtained by using five factors (q = 5) in MCFA. The best result of ERR
and ARI for mPPCA is obtained by reducing to two dimensions. However, it dose not
lead to the choice of q with the best result when BIC is exploited to choose g with PCA.
To comparing the best result of two approaches, the ERR and ARI for MCFA are much
better than others.

In summary, all the experimental results show that the joint learning model significant-
ly outperforms the independent learning models. In the next section, we will compare two
classic joint learning models.

3.2 Joint Learning

The latent variable models with density estimation are the fundamental machine learning
approaches which have achieved big success in both supervised learning, e.g., classifi-

60

cation and regression, and unsupervised learning, e.g., clustering. When latent variable
models (e.g. GMM) are employed for practical data, they are usually to perform dimen-
sionality reduction beforehand. The purpose is both to reduce the computational time for
high dimensional data and to find a suitable subspace where better clustering or classifica-
tion performance could be achieved due to the removal of possible noisy features. In this
setting, the optimal subspace and the following optimal parameters of GMM are searched
separately or independently. The optimal subspace obtained by the independent DR may
not be appropriate for the following GMM. This is particularly the case in the context of
unsupervised learning, e.g., clustering. In supervised learning, class labels could be used
for deriving a good subspace, while in unsupervised learning, the principles used for DR
(e.g., maximisation of the variance in PCA) may not be appropriate for GMM [8].

To handle unsupervised dimensionality reduction for GMM, we argue that both the
optimal subspace and the parameters for GMM should be jointly learned. This is sig-
nificantly different from the traditional setting that the two steps are usually conducted
separately. As a classical joint learning method, MFA has introduced the factor loading
matrices as an additional latent variable for a mixture model (shown in Chapter 2.2.3).
Each factor loading matrix can be thought of as a dimensionality reduction matrix. There-
fore, the MFA model performs the dimensionality reduction of data by making locally lin-
ear assumptions, which projects the points of different clusters into different subspaces.
Fig. 3.6 illustrates a joint learning method with locally linear assumptions to perform the
dimensionality reduction and clustering simultaneously. The principle is to maximise the
homogeneity of points from the same cluster.

Based on extending the classical model, it is engaged as a global linear assumption that
all latent factors share a common factor loading. In the proposed joint learning model, the
common factor loading is treated as a global dimensionality reduction matrix, while the
mixture of latent factors can be regarded as a GMM. Specifically, this model could reduce
the data dimensions by a single projection matrix, which can project the different clusters
into a sub-space, as shown in Fig. 3.7. Different from local linear models, global linear
models not only follow the principle of maximising the similarity but also to maximise the
distance between clusters. When the information provided by the sample is insufficient
(small sample size data), the global matrix can utilise the interaction attributes among
clusters to reduce the dimensionality, and it also reduces the number of the parameters to
make the model easier to learn.

3.2.1 Supplementary Experiments: MFA vs MCFA

In unsupervised learning, two joint learning models, MFA and MCFA, are able to present
arbitrarily complex probability density functions, which fact makes them an excellen-

61

Fig. 3.6: The sketch of clustering and dimensionality reduction. Joint learning with local-
ly linear assumptions drops the data points of different clusters into different sub-spaces
and cluster them at the same time. Different colours represent different clusters.

Fig. 3.7: The sketch of clustering and dimensionality reduction. Joint learning with glob-
ally linear assumptions drops the data points of different clusters into a common sub-
spaces and cluster them simultaneously. Different colours represent different clusters.

62

t choice for representing complex low-dimensional points [54]. As the supplementary
experiments, we conduct complementary experiments on various real-world datasets to
evaluate the performance of both joint learning models, including artificial data, grey im-
ages, and digitised aerial image. The following datasets are exploited in our empirical
experiments.

• ULC-3: The urban land cover (ULC) data are used to classify a high-resolution
aerial image which consists of 3 types with 273 training samples, 77 test samples
and 147 attributes [106][107].

• Coil-4-proc: This dataset contains images for 4 objects discarding the background
and each object has 72 samples [108]. The images are downsampled into 32 by 32

pixels and then reshaped to a 1024-dimensional vector. There are just 248 samples
in the training set and 40 samples in the test set.

• Leuk72 3k: This dataset is an artificial dataset including 3 classes which have been
drawn from randomly generated Gaussian mixtures. The Leuk72 3k has only 54

training samples and 18 test samples with 39 attributes.

• USPS1-4: This handwriting digit data contains 1 to 4 digits images of size 16 by
16 pixels. Each image is reshaped to a 256-dimensional vector. The training set
includes 100 samples of each digit and the test set also consists of 100 of each digit.

It is worth noting that data of the training set are used for training a density model and
clustering the data points without any label information. As the model-based method on
clustering, the testing set is used to test the adaptability of the model on more data form
homogenous distributed.

Empirical Results

Empirically, as a criterion, the average log-likelihood is used for examining the quality
of the density estimates after modelling the density of the observed data. The empirical
results are demonstrated on both MFA and MCFA. The model parameters are estimated
over the training data by maximising the log-likelihood value. By multiple trials, the aver-
age log-likelihood value on the training data are shown in Fig. 3.8. In order to intuitively
observe the trend of the entire experimental results, the image results have to be treated
as logarithmic, which is utilised to control all the results in the same range. On the testing
data, the log-likelihood value obtained using only the model has been trained and did not
update the model parameters, and the results are shown in Fig. 3.9. From the comparison
of both results, the log-likelihood values obtained by the MCFA model are higher than

63

that of MFA on all datasets. Consequently, sharing a common loading can improve the
true log-likelihood dramatically.

ULC-3 Coil-4-proc Leuk72_3k USPS1-4
Dataset

-104

-103

-102

-101

-100

A
ve

ra
ge

 L
og

-li
ke

lih
oo

d
(T

ra
in

in
g

se
t)

MFAs
MCFAs

Fig. 3.8: Performance on various real data (on the training set) in terms of the log-
likelihood (the larger, the better).

ULC-3 Coil-4-proc Leuk72_3k USPS1-4
Dataset

-104

-103

-102

-101

-100

A
ve

ra
ge

 L
og

-li
ke

lih
oo

d
(T

es
tin

g
se

t)

MFAs
MCFAs

Fig. 3.9: Performance on various real data (on the testing set) in terms of the log-
likelihood (the larger, the better).

Clustering Result

Then, the clustering error rate is demonstrated of both training and testing datasets, and
the best results are reported from multiple trials. In the experiments, both methods have
been initialised by a random assortment. Also, the number of mixes is set to be the same
as the number of real categories. Comparing both MFA and MCFA results on the training
data in Fig. 3.10, the results of these two methods are not significantly different on the
Coil-4-proc dataset, and even get the same result on the Leuk72 3k dataset. As model-
based clustering methods, they have the ability to cluster datasets that are never seen but
have the same distribution with the training data. Comparing the results in Fig. 3.11, the

64

MCFA model still maintains good performance on the test dataset. On the whole, the
results of MCFA are consistently better than that of MFA.

ULC-3 Coil-4-proc Leuk72_3k USPS1-4
Dataset

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
rr

or
 R

at
e

(T
ra

in
in

g
se

t)

MFAs
MCFAs

Fig. 3.10: Clustering error rate on 4 datasets. The best result is reported from each model
on the training set.

ULC-3 Coil-4-proc Leuk72_3k USPS1-4
Dataset

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
rr

or
 R

at
e

(T
es

tin
g

se
t)

MFAs
MCFAs

Fig. 3.11: Clustering error rate on 4 datasets. The best result is reported from each model
on the testing set.

3.3 Two-layer Mixtures of Factor Analysers with Joint
Factor Loading

The generic discrimination problem is considered as the assignment of a previously un-
seen object to a class of training data data which consist of class labelled measurements
(and possibly some unlabelled measurements). When the generative model is involved, its
objective becomes to model the measurements belonging to different labels. In the topic
of discriminant analysis, mixture models are also very important and have been studied
intensely in the relevant literature [109, 110]. When a finite mixture model is established
using label information, the measurements for each class are modelled as a distribution

65

that is considered a component of mixtures. Then a Bayesian formalism is developed
to obtain the parameters of mixture models and infers the posterior distributions as the
prediction model [111].

Traditionally, each distribution of the mixture model represents the data with the same
label to performed as a measurement of the discrimination analysis [109, 111]. However,
in the case of learning high-dimensional data with complicated data manifolds, distribu-
tion is usually not enough to represent a class of data [8]. This is particularly the case
for the small sample size (S3) problem [112, 113], where the data patterns are high-
dimensional but of low cardinality. In such problems, each class of data cannot well
learn a model, and the subspace derived by the independent DR may even significantly
deteriorate the discrimination performance.

Motivated from the above issues, we propose a mixture discrimination model within
an FA framework, a novel model referred to as the two-layer mixtures of factor analysers
with joint factor loading (2L-MJFA). This relies upon a mixture of mixtures structure 3,
which is used to capture the complex properties of each class better and realise the join-
t learning requirements efficiently. An important characteristic of 2L-MJFA is that all
of its involved latent factors are designed to share the same loading matrix (shown in
Fig. 3.12(c)). This has a dual purpose, in the sense that, on the one hand, it operates as
the driving DR structure, and on the other hand it significantly reduces the number of
parameters. The latter accelerates training while mitigates the negative effect caused by
the limited number of per class samples.

Contrary to the independent approaches, the proposed 2L-MJFA is capable of simul-
taneously learning the DR matrix as well as the optimal parameters of the classification
model. This model is implemented via a GMM for simplicity, but it is straightforward to
extend the two-layer mixture approach to the use of other models. Through joint learn-
ing, the method achieves efficient DR that not only reduces the computational time for
high dimensional data but more importantly it significantly benefits the final classification
stage. Another contribution is that we also propose a modified expectation-maximisation
(EM) algorithm that consists of two-layer loops so that the joint learning is conducted
very efficiently. The first layer loop is used to estimate the joint parameters that fit the
mixture among different classes, whereas the second one trains the mixture components
within each class. The 2L-MJFA is theoretically distinct to other joint learning FA-based
models, such as the MCFA model, the mixtures of MCFAs (mMCFA), and the mixtures
of probabilistic PCAs (mPPCA) [27, 43, 100]. Further details about these models are
presented in the following section. Our experiments show that the proposed method sig-
nificantly outperforms these existing methods in seven benchmark datasets.

3In each class, the mixture components can clearly detail a multimodal density.

66

The rest of this section is organised as follows. Section 3.3.1 briefly reviews relat-
ed work and emphasises the differences between our proposed approach and existing
ones. The baseline model MCFA is introduced as preliminaries in Section 3.3.2. In Sec-
tion 3.3.3 we introduce the proposed 2L-MJFA model, while Section 3.3.4 explains how
the model parameters can be estimated by the modified EM algorithm. In Section 3.3.5 we
present the experimental setup and the classification results with the aid of seven datasets
including a synthetic dataset and six real ones. This work has been published on [17]
and [19].

3.3.1 Related Model Architectures and Computational Complexities

There have been several joint learning FA-based approaches [114, 115] related to our pro-
posed method. To illustrate the distinction, we present the different alternative structures
incorporated in various models in Fig. 3.12. In particular, the MFA model [116] is the
base model for what we propose. It combines DR with clustering and utilises a subspace
metric to guide cluster separation. This work is extended by MCFA [100] which assumes
the factor loading of the MFA model to be a common matrix that can largely reduce the
associated parameters. When MCFA is used for classification, one straightforward way is
to regard each class as one component, as shown in Fig.3.12(a). Obviously, such a setting
is quite basic and not adequately flexible, since data classes may have complex distri-
butions and modalities. Another popular variant that extends MCFA is mMCFA (shown
in Fig. 3.12(b)), where the factor loadings Ai are different for each class. In general,
different loading matrices imply independent DR for different classes, and this may be
physically impractical. More importantly, mMCFA could be problematic in S3 problem-
s, as the limited number of samples cannot support the accurate learning of the loading
matrices. To this end, a non-trivial model is proposed here by sharing one loading ma-
trix for all the classes. The mPPCA method [43] extends PCA to a mixture distribution
model. As seen in Fig.3.12(d), its graphical model is quite similar to MFA with the ele-
ments of the common covariance matrix D = σ2Ip assumed to be isotropic [117], where
Ip is the p-dimensional identity matrix. For classification, each class is modelled as an
mPPCA model. This method is limited due to its poor flexibility and has many redundant
parameters for dealing with S3 problems.

We now analyse the parameter numbers in the different models, assuming p dimen-
sions, q reduced dimensions from p, and m classes. Setting g mixture components in
each class, the covariance matrix of each component has N = p(p+1)

2
parameters. S-

ince mPPCA converts the diagonal covariance matrix into an isotropic one as Σi =

WiW
T
i + σ2Ip, where factor loading Wi ∈ Rp×q contains q(q−1)

2
constraints, its total

67

(a) MCFA (b) mMCFA

(c) 2L-MJFA (d) mPPCA

Fig. 3.12: Comparison of different models. Y denotes observed data, Zl/Zi denotes
latent factors, and A/Al is (common) factor loadings, where m is the class label and
g is the number of mixtures. (a) MCFA which is the fundamental MFA model with a
common A. (b) Mixtures of MCFAs with each class consisting of a components mixture
with individual local factor loadings Al. (c) The proposed 2L-MJFA with a global factor
loading A shared between and within classes in the 2-layer mixture model. (d) Mixtures
of probabilistic PCA which is similar to MFA but with an isotropic common covariance
matrix.

number of parameters is

N1 = m

(
g + gp+ gpq − gq(q − 1)

2

)
.

If either p or q is large, the number of parameters may not even be manageable with a diag-
onal covariance. To further reduce the parameters and accelerate training, the component
covariance matrices of mMCFA has a factor-analytic representation Σi = AΩiA

T +D,
where D is a diagonal matrix, and A contains the factor loading for all the components
[99]. From the orthogonality requirement, A has pq − q2 constraints. Hence, in mMCFA
the total number of parameters is reduced to

N2 = m

[
pq − q2 + p+ g

(
1 + q +

q(q + 1)

2

)]
.

Table 3.7 lists the associated parameter numbers for FA models. Since p >> q, the order
of the number of parameters can be approximated via the simpler form shown in the right-

68

Table 3.7: Summary of the number of parameters for the main models. The rightmost
column shows the simplified number of parameters which makes the total numbers easy
to compare.

Model: Number of parameters: Approximation:

mPPCA m[g + gp+ gpq − gq(q−1)
2

] (mg +mq)p

mMCFA m[pq − q2 + p+ g(1 + q + q(q+1)
2

)] (m+mq)p

2L-MJFA pq − q2 + p+m[g + gq + gq(q+1)
2

] (q + 1)p

most table column. It can be seen that the proposed 2L-MJFA requires the least number
of parameters, which ultimately make it more suitable for dealing with S3 problems; this
is also verified by the experimental results.

3.3.2 Problem Definition

As a multi-linear model, Mixtures of Factor Analysers via a common loading decompos-
es a common factor loading to cross linear subspaces within the covariate vector space,
making factors have lower dimension than the covariates. The notation in this section
will largely follow Section 3.1.2. Let Y ∈ Rn×p denote n p-dimensional vectors of fea-
ture variables generated by a linear combination of latent variables Z. As a special case,
the MCFA model further reduces the MFA parameters by setting up a common compo-
nent factor loading A ∈ Rp×q. Moreover, the common loading can be considered as a
transformation that reduces the p-dimensional space to a latent q-dimensional one. For the
observed random samples, y1, . . . ,yn the MCFA model becomes a mixtures of Gaussians
with constrained mean and covariance as defined in Eq.(3.9) and is given by

P (y;θi) = πi

n∏
j=1

N (yj;Aξi,AΩiA
T +Ψ) , (3.21)

In the above, ξi is a q-dimensional vector, and Ωi is a q × q positive definite matrix,
and probability πi, with i = 1, . . . , g being the component indicator. The independen-
t noise variance matrix Ψ is a global parameter. where θi = {πi,A, ξi,Ωi,Ψ}gi=1 are
the model parameters. Each component can be modelled through a Gaussian distribution
N (yj;µi,σ

2
i). Given the mixture of g components, with ωij denoting the binary compo-

nent indicator that is one if and only if the jth object belongs to the ith component, the
posterior can be expressed with Bayes theorem as

P (ωi | yj;θ) = τi(yj;θi) =
πiN (yj;θi)∑g

h=1 πhN (yj;θh)
. (3.22)

69

Since the latent variables Zi1, . . . ,Zin, are distributed independently as in Eq.(3.7), the
probability density function is P (Zij | ωi) = N (Zij | ξi,Ωi).

For the training stage, the model parameters can be determined via maximum-likelihood
using the EM algorithm [40, 61]. The log-likelihood of the model is given by Eq. (3.12).
Therefore, the parameters θ can be optimised by maximising the expected log-likelihood
Eτi [logL(θ)]. The detailed algorithm can be found in 3.1.2.

3.3.3 Main Model

Let us consider the construction of a 2L-MJFA with two hidden layer factors, with these
factors sharing a common factor loading. For classification, the observation data are
known as Y = [Y1; . . . ;Ym], where Yl = [yl

1; . . . ;y
l
ln
], and l = 1, . . . ,m indicates

all the data of the lth class. In our model, the 1st layer defines a normal mixtures of factor
analysers with common loading, where each component represents a class, as

yl
j = AUl

j + elj, j = 1, . . . , ln,
m∑
l=1

ln = n . (3.23)

In the above, ln denotes the nth observation belonging to lth class, and Ul
j denotes the

hidden variables. A ∈ Rp×q is a joint factor loading to fit all classes of observations,
which can also be considered to be the transformation matrix that projects each pattern to
a q-dimensional latent space. elj denotes the Gaussian noise term for the lth class.

The 2nd layer of 2L-MJFA representing each class consists of an unspecified number
of mixtures. The key point here is that the joint factor loading A is also used as a common
loading that is shared across all the components in each class. Then all the observations
can be generated by a joint learning model with latent variables Zl

ij ∼ N (ξli,Ω
l
i) of all

classes.

For the observation vectors yl
j belonging to each class l, the model can then be de-

scribed as

yl
j = A

g∑
i=1

Zl
ij + elj , (3.24)

where j = 1, . . . , ln, and i = 1, . . . , g. ln denotes the nth observation belonging to lth

class, and elj the random noise distributed independently underN (0,Ψ), where Ψ is diag-
onal. This novel setting implies that each specific class is assumed to be an MCFA model,
whereas a joint factor loading exists for all the MCFA models across all data classes.
Specifically, the model shares a joint factor loading for all the classes and this is poten-
tially beneficial to both feature extraction and classification, especially in S3 situations.

70

We now calculate the total number of parameters involved in 2L-MJFA. Since we
share a single loading matrix across all the components, the total number of parameters is

N3 = pq − q2 + p+mg

[
1 + q +

q(q + 1)

2

]
,

where pq − q2 is the number of parameters in A, and p the parameters of the diagonal
matrix D. The mMCFA offers a great reduction in the parameters of the loading A for
each component. Compared with mMCFA, the proposed model significantly reduces the
parameter number by (m− 1)(pq − q2 + p).

3.3.4 Optimisation via a Modified EM Algorithm

The proposed 2L-MJFA model is composed of two layers of mixtures of Gaussians. The
overall distribution for the mixture of mixtures is the joint distribution of their components
given as

P (yl
j;θ) =

m∑
l=1

πl

ln∏
j=1

P (yl
j;θ) , (3.25)

where θ = {πi,A, ξli,Ω
l
i,Ψ}. Actually, the 2nd layer of each class is an MCFA model,

which can be easily written as the multivariate Gaussian distribution of Eq.(3.21). For
inference, the conditional expectation of the component indicators ωl

i with i = 1, . . . , g

and l = 1, . . . ,m, can be regarded as the posterior probability Pθ{ωl
i = 1 | yl

j}, implying
that yl

j belongs to the ith component of class l. With the above definitions, we obtain
the conditional distribution P (yl

j | Ul
ij) = N (yl

j | AUl
ij,θ). The posterior over all

components can then be obtained as

Eθ{ωl
i | yl

j} = Prθ{ωl
i = 1 | yl

j} = τ li (y
l
j;θ) , (3.26)

where

τ li (y
l
j;θ) =

πlP (yl
j;θ)∑m

h=1 πhP (yl
j;θ)

.

Maximum likelihood learning of 2L-MJFA can be conducted with a modified EM
algorithm. Within the modified EM framework, the global log-likelihood function of the
model is given by

logLl(θ) =
m∑
l=1

g∑
i=1

n∑
j=1

ωl
i

{
log πl + log ϕ(yl

j;AUl
ij,Ψ)

+ log ϕ(Ul
ij; ξ

l
ij,Ω

l
ij)
}
,

(3.27)

71

where

ϕ(yl
j;θ) =

g∑
i=1

πl
iN (yl

j;θ) .

Different from the alternating expectation-conditional maximisation algorithm (AECM) [99],
the M-step of the modified EM algorithm is turned into two layer loops. The outer loop
is used to update the global parameters A and D, and the other parameters within each
specific class are updated in the inner loop. The training of the above two layers alternate,
so that a local optimum could be finally achieved. The overall EM training procedure is
summarised in Algorithm 1, and specifics for each stage are explained in the following
subsections.

Algorithm 1: EM learning for 2L-MJFA.
Input : A training set with m classes [Y1; . . . ;Ym] and a test set

T ∈ RN×P .
Output : Optimal values of parameters θ.
Initialisation: Set θ = {π,A, ξ,Ω,Ψ}, and evaluate the initial value of the

log-likelihood.
Repeat

E-step :
Exploit the current parameter values to approximate the posterior
expectations with Eqs.(3.32,3.33): E(Z | yl

j, ω
l
ij) and E(ZZT | yl

j, ω
l
ij).

for l = 1 to m do
M-step :

Update A and Ψ.
Re-estimate the parameters A,Ψ using the current responsibilities with
Eqs.(3.35,3.36), by solving a set of liner equations: ∂Q(θ;θ(k))

∂A
= 0,

∂Q(θ;θ(k))
∂Ψ

= 0.
Update {πl

i, ξ
l
i,Ω

l
i}.

for i = 1 to g do
Re-estimate the parameters πl

i, ξ
l
i,Ω

l
i by solving the equations

π
(k+1)
i = 1

nl

∑ln
j=1 τ

(k)
ij , ∂Q(θ;θ(k))

∂ξi
= 0 and ∂Q(θ;θ(k))

∂Ωi
= 0 for each

class.

Until Convergence

Then, we introduce the convergence proof of the modified EM algorithm. By the
observations yl, the latent factor Ul and the parameter θ, the log-likelihood function of
each class can be written as

logL(θ) = log

∫
Ul

p(yl,Ul|θ)dUl . (3.28)

72

Based on the Jensen inequality, it is easy to derive the lower bound F (l) where q(Ul)

denotes the posterior of the latent variable,

logL(θ) = log

∫
Ul

q(Ul)
p(yl,Ul|θ)

q(Ul)
dUl

≥
∫
Ul

q(Ul) log
p(yl,Ul|θ)

q(Ul)
dUl = F (l) ,

(3.29)

F (l) =

∫
Ul

q(Ul) log p(yl,Ul|θ)dUl −
∫
Ul

q(Ul) log q(Ul|yl;θ)dUl . (3.30)

More concretely, the variational lower bound on the whole model F can be written as the
sum of class’s lower bounds,

F =
m∑
l=1

F (l) =
m∑
l=1

Eq(U l)[log p(y
l,Ul|θ)] +H(q) . (3.31)

Here H(q) denotes the information entropy and H(q) ≥ 0, thus EM usually maximises
the expectation part. In simple terms, the only difference process of the modified EM
algorithm is to alternatively construct class’s lower bounds and estimate the local param-
eters by optimising this function when the global parameters fixed. It is easy to prove
that any increase in the class’s lower bound will lead to an increase in the true likelihood
of the model. Finally, with a multi-linear Gaussian likelihood model, the per-iteration
complexity of the proposed model in E-step is calculated as O(n(p+mgq + 1)) and that
in M-step is O(n(m(p+ 1) + g(q + 1))).

E-step

In this step, Eq. (3.22) is used to compute the posterior over the latent variables. Given
the current setting of the model parameters, the expectations of the hidden variables E(Z |
yl
j, ω

l
ij) and E(ZZT | yl

j, ω
l
ij) are easily verified as the following derivations for all the

data points j = 1, . . . , ln and mixture components i = 1, . . . , g can be produced as

E(Z | yl
j, ω

l
ij) = ξ

l
i + γ

T
i yij , (3.32)

and

E(ZZT | yl
j, ω

l
ij) = (Iq − γT

i A)Ωl
ij + E(Z | yl

j, ω
l
ij)E(Z | yl

j, ω
l
ij)

T , (3.33)

where

yij = yl
j −Aξli ,

γi = (AΩl
iA

T +Ψ)−1AΩi .

73

For the iteration of each class, Q(θ;θ(k)) denotes the conditional expectation of log-
likelihood as Eq. (3.15), given the observed data y and θ(k), where θ(k) denotes the current
estimates. Denoting the posterior τ (k)ij = τ li (y

l
j;θ

(k)), we can transform the expectation
function as

Q(θ;θ(k)) =

g∑
i=1

ln∑
j=1

τ
(k)
ij

{
log πl

i + Eθ(k)

[
logN (yl

j;AZl
ij,Ψ)|yl

j, ω
l
ij = 1

]
+ Eθ(k)

[
logN (Zl

ij; ξ
l
i,Ω

l
i)|yj, ω

l
ij = 1

]}
.

(3.34)

Algorithm 2: Classification procedure for 2L-MJFA.
Input: A training set with m classes [Y1; . . . ;Ym] and a test set T ∈ RN×P .
Training phase :

Initialise the global parameters A,Ψ based on all the training data.
Divide each Yl, for l = 1, . . . ,m into g components randomly and then
initialise the local parameters πi, ξi,Ωi.
Repeat

for l = 1 to m do
Estimate the probability of data generated by each component in
Eq.(3.25) and the posterior probability Pθ{ωl

ij = 1|Tj}, for
j = 1, . . . , N that Tj belongs to the ith component by each class in
Eq. (3.26).
for i = 1 to g do

Use the alternate EM algorithm, and update local parameters by
calculating the expectation of log-likelihood in Eq. (3.34) of each
class.

Compute the log-likelihood value Ll(θ) using Eq. (3.27).

Until Ll(θ)
(new) − Ll(θ) < threshold value

Testing phase :
Compute the posterior probabilities τl(Tj;θ) of each class with test data.
Assign each test data point Tj to the l class for which τl(Tj;θ) ≥ τh(Tj;θ) for
h = 1, . . . ,m with h ̸= l.

M-step

In the subsequent step, the updated estimates of the global parameters can be obtained by
taking the partial derivatives of expectation log-likelihood function for each parameter.
The joint factor loading is updated as

A(k+1) =

(
m∑
l=1

g∑
i=1

A
(k)
li(1)

)(
m∑
l=1

g∑
i=1

A
(k)
li(2)

)−1

, (3.35)

74

where

A
(k)
li(1) =

ln∑
j=1

τ
(k)
ij

{
yl
jE(k)(Z | yl

j, ω
l(k)
ij)

}
,

A
(k)
li(2) =

ln∑
j=1

τ
(k)
ij

{
E(k)(ZZ′ | yl

j, ω
l(k)
ij)

}
.

The updated estimates of the common diagonal covariance matrix can then be written as

Ψ(k+1) =
1

n
diag

[m∑
l=1

ln∑
j=1

τ
(k)
ij (Ψ

(k)
1 +Ψ

(k)
2)
]
, (3.36)

where

Ψ
(k)
1 = Ψ(k)(Ip − β(k)) ,

Ψ
(k)
2 = β(k)T (y

(k)
ij)(y

(k)
ij)Tβ(k) ,

β(k) =
(
A(k)Ω(k)A(k)T +Ψ(k)

)−1

Ψ(k) ,

y
(k)
ij = yj −A(k)ξ

(k)
i .

For each class l, the updated estimates π
(k+1)
i , ξ(k+1)

i and Ω
(k+1)
i can be obtained by

calculating the equations ∂Q(θ;θ(k))
∂ξi

= 0, ∂Q(θ;θ(k))
∂Ωi

= 0. Specifically, it is easy to verify

that π(k+1)
i = 1

nl

∑ln
j=1 τ

(k)
ij , for i = 1, . . . g, where nl denotes the number of observations

in lthclass. The local parameter updates can be obtained via the following

ξ
(k+1)
i = ξ

(k)
i +

∑ln
j=1 τ

(k)
ij φ

(k)∑ln
j=1 τ

(k)
ij

, (3.37)

Ω
(k+1)
i =

∑ln
j=1 τ

(k)
ij φ

(k)φ(k)T∑ln
j=1 τ

(k)
ij

+ (Iq −φ(k))Ω
(k)
i , (3.38)

φ(k) = γ
(k)T

i y
(k)
ij .

Algorithm 2 summarises the overall classification procedure.

3.3.5 Experiments and Results

To demonstrate the effectiveness of our proposed algorithm, we conduct extensive exper-
iments on a variety of datasets. We compare our two-layer mixture approach with three
other competitive methods. Specifically, we compare it with mMCFA, mPPCA, and the
independent learning approaches of PCA followed by GMM (PCA-GMM), and LDA fol-
lowed by GMM (LDA-GMM).4 Unlike hard assignment methods (e.g. k-means), GMM
4PCA or LDA are first used to perform DR and then a GMM is used for the classification.

75

is a soft assignment method which gives the probability that the data points are assigned to
each class, rather than just giving a definitive class membership [118]. Obtaining a prob-
ability is beneficial as it provides confidence for the results. The used datasets include a
synthetic one, an ordinary one, and five S3 datasets. We report the error rate (ERR) of the
classification in terms of different reduced dimensionalities for the various algorithms on
the test data. All the experimented methods are implemented in the MATLAB platform.

Synthetic dataset To illustrate the advantage of the joint learning in the proposed mod-
el, we generate synthetic data to visualise the obtained subspaces for PCA, MCFA and
the 2L-MJFA. The synthetic dataset consists of 2 classes of 32-dimensional samples. For
each class, the first two dimensions are randomly generated by a multivariate normal dis-
tribution with means and covariance set to

µ1 = (3.2875, 3.4905)T , µ2 = (2.9185, 2.9732)T ,

Σ1 =

 23.2368 19.2956

19.2956 19.8985

 , Σ2 =

 5.0030 0.8919

0.8919 4.4236

 .

The other 30-dimensions are generated as random Gaussian noise.

The obtained 2-dimensional subspaces are visualised in Fig. 3.13. The top-left of
the figure shows the ground truth samples without the additional 30-dimensional noisy
features. It can be clearly seen that the class denoted by label 1 consists of two modali-
ties. The proposed 2L-MJFA shows to perform better than the other two, as its subspace
demonstrates a much better separability than PCA and MCFA. The mPPCA does not map
all the data in a subspace, since the approach is used to classification by building an mP-
PCA model of each class, which means that the patterns for different classes are mapped
into different subspaces. Also, LDA can generate subspaces up to m − 1 dimensions,
which is one dimension for the current dataset.

User knowledge data

The employed User Knowledge dataset describes students’ knowledge status about the
subject of Electrical DC Machines [119]. This dataset consists of 403 training samples and
206 test samples. Each sample is of 40 dimensions with 5 being attribute information, plus
35 random noisy features. The class labels correspond to four student knowledge levels.
We compare the 2L-MJFA and other mixture joint learning methods against different
reduced dimensionalities ranging from 1 to 20.

We report the comparative results in Table 3.8. We can see that the mixture joint
learning methods 2L-MJFA and mMCFA provide the lowest error rates. In particular,

76

D1
-10 -5 0 5 10 15

D
2

-6

-4

-2

0

2

4

6

8

10

12

Label 1
Label 2

(a) Original data without noise

D
2

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

D1
0 2 4 6 8 10

Conponent 1 of class1

Conponent 2 of class 1

Conponent 1 of class 2

Conponent 2 of class 2

(b) 2-d subspace by 2L-MJFA

D1
0.52 0.54 0.56 0.58 0.6 0.62

D
2

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

Label 1
Label 2

(c) 2-d subspace by MCFA

D1
-15 -10 -5 0 5 10

D
2

-6

-5

-4

-3

-2

-1

0

1

2

3

4

Label 1

Label 2

(d) 2-d subspace by PCA

Fig. 3.13: Visualisation of DR for 2L-MJFA, MCFA, and PCA on simulated data, where
(1) is the ground truth. Different patterns represent different classes, and different shapes
within the same grey scale indicate different class modalities.

Table 3.8: Error rate comparison for various dimensions, on the User Knowledge dataset.

Dimension: 1 3 5 10 15 20

2L-MJFA 0.1214 0.0689 0.0414 0.0620 0.0620 0.0620

mMCFA 0.2276 0.0552 0.0896 0.0758 0.1517 0.2827

mPPCA 0.3172 0.2897 0.2690 0.1931 0.1586 0.0897

PCA-GMM 0.6621 0.2483 0.2345 0.1214 0.1931 0.2966

LDA-GMM 0.4000 0.3724 - - - -

77

Dimension
10 15 20 25 30

E
rr

or
 r

at
e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
g = 2

2LMJFA
MMCFA
MPPCA
PCA-GMM

Fig. 3.14: Error rate comparison for the User Knowledge dataset.

when the dimensionality is reduced to 5 (the actual dimension), 2L-MJFA yields the best
performance with the error rate being 0.0414. This is significantly lower than mMCFA,
mPPCA and PCA-GMM. LDA-GMM just allows reducing dimensionality to 1− 3, since
this dataset has m = 4 classes. From the results, LDA does not provide an optimised
subspace for test data. To better illustrate the performance, we also plot the results in
Fig.3.14, where it can be seen that 2L-MJFA outperforms the other algorithms in most
cases.

Small sample size datasets

In this subsection, we compare the proposed 2L-MJFA with the various other algorithms
across five S3 datasets.

Experimental Setup We evaluate the performance of the various algorithms by using
a 5-fold cross-validation on the five S3 datasets, which are WDBC, WPBC, ULC, LSVT
and BT. To make the problems more challenging, we intentionally use one of the five
partitions as the training set, while the remaining four partitions as the testing set. The
average error rate on the test sets is then reported for varying mixture numbers and reduced
dimensionality. Table 3.9 summarises the statistics of these five S3 datasets. As seen in
the table, the number of dimensions are sometimes larger than the number of training
samples (e.g., in ULC and LSVT).

Breast cancer Wisconsin dataset This dataset contains two subsets, the Wisconsin
diagnostic breast cancer (WDBC) and the Wisconsin prognostic breast cancer (WPBC)
[120, 121]. WDBC contains 569 instances which are divided into the two diagnostic

78

Table 3.9: Summary of S3 datasets.

Dataset: Training samples: Test samples: Dimensions: Classes:

WDBC 114 455 60 2

WPBC 38 156 33 2

ULC 77 273 148 3

LSVT 56 42 309 2

BT 81 24 39 6

predictions of benign and malignant. The 60 attributes consist of 30 real-valued input
features and 30 additional Gaussian noise features. WPBC contains 194 instances, which
record two classes of patients, that is being recurrent or not post-surgical.

Dimension
10 15 20 25 30

E
rr

or
 r

at
e

0

0.1

0.2

0.3

0.4

g=2

Dimension
10 15 20 25 30

E
rr

or
 r

at
e

0

0.1

0.2

0.3

0.4
g=3

Dimension
10 15 20 25 30

E
rr

or
 r

at
e

0

0.1

0.2

0.3

0.4

g=4

Dimension
10 15 20 25 30

E
rr

or
 r

at
e

0

0.1

0.2

0.3

0.4

g = 5

2LMJFA
MMCFA
MPPCA
PCA-GMM

Fig. 3.15: Error rate comparison for the WDBC dataset.

Results on the Wisconsin diagnostic breast cancer (WDBC) Table 3.10 shows the
error rate comparison from reducing the dimensions from 10 to 30 and setting each class
to g = 2 to 5 mixture components for different subspaces (DIM). For LDA-GMM, the
dimensionality is just allowed to reduce to 1, because there are 2 classes in these two
datasets. We can find that the error rate of 2L-MJFA decreases as the number of mixture

79

Table 3.10: Error rate comparison for the WDBC dataset.

WDBC

DIM g 2L-MJFA mMCFA mPPCA PCA-GMM LDA-GMM

1

2 0.1023±0.02 0.0703±0.02 0.2846±0.03 0.0935 ±0.03 0.0350±0.01

3 0.1010±0.01 0.0686±0.02 0.2509±0.03 0.0935±0.03 0.0282± 0.01

4 0.1022±0.01 0.0703±0.03 0.2778±0.04 0.0935±0.03 0.0334±0.01

5 0.1076±0.01 0.0705±0.02 0.2759±0.01 0.0935±0.03 0.0334±0.01

10

2 0.0746±0.02 0.0742±0.01 0.3202±0.01 0.1502±0.12 -

3 0.0707±0.02 0.0861±0.02 0.3019±0.02 0.1528±0.15 -

4 0.0716±0.02 0.0817±0.02 0.2465±0.05 0.1571±0.12 -

5 0.0441±0.03 0.0842±0.02 0.2065±0.03 0.1600±0.11 -

15

2 0.0698±0.02 0.0707±0.01 0.3212±0.03 0.2182±0.15 -

3 0.0689±0.02 0.0830±0.01 0.3041±0.03 0.2050±0.10 -

4 0.0716±0.03 0.0922±0.02 0.3295±0.04 0.2114±0.11 -

5 0.0737±0.03 0.0963±0.03 0.2917±0.03 0.2147±0.09 -

20

2 0.0755±0.02 0.0703±0.02 0.3448±0.05 0.2406±0.12 -

3 0.0755±0.03 0.0707±0.01 0.3348±0.06 0.2343±0.08 -

4 0.0645±0.02 0.0914±0.04 0.3005±0.06 0.2536±0.08 -

5 0.0641±0.01 0.0833±0.03 0.2956±0.02 0.2749±0.09 -

25

2 0.0680±0.02 0.0707±0.01 0.3405±0.02 0.2481±0.11 -

3 0.0597±0.03 0.0712±0.02 0.3199±0.07 0.2775±0.06 -

4 0.0505±0.01 0.0776±0.02 0.3097±0.04 0.3189±0.07 -

5 0.0479±0.04 0.0782±0.02 0.2917±0.02 0.3633±0.02 -

30

2 0.0417±0.02 0.0707±0.01 0.3110±0.03 0.2938±0.07 -

3 0.0483±0.01 0.0743±0.02 0.2935±0.02 0.3229±0.09 -

4 0.0422±0.01 0.0738±0.02 0.3053±0.02 0.3628±0.02 -

5 0.0404±0.04 0.0681±0.01 0.2987±0.02 0.3606±0.03 -

80

components increases. For clarity, we also plot the results in Fig.3.15, where it can be
observed that 2L-MJFA achieves the significantly lowest error rate 0.0404 when the di-
mension is reduced to 30 and the number of components is set to 5. The best result of the
competitors is just 0.0279 given by LDA-GMM.

Dimension
5 10 15 20 25

E
rr

or
 r

at
e

0

0.1

0.2

0.3

0.4
g=2

Dimension
5 10 15 20 25

E
rr

or
 r

at
e

0

0.05

0.1

0.15

0.2

0.25

0.3

g=3

Dimension
5 10 15 20 25

E
rr

or
 r

at
e

0

0.1

0.2

0.3

g=4

Dimension
5 10 15 20 25

E
rr

or
 r

at
e

0

0.05

0.1

0.15

0.2

0.25

0.3

g=5

2LMJFA
MMCFA
MPPCA
PCA-GMM

Fig. 3.16: Error rate comparison for the WPBC dataset.

Results on the Wisconsin prognostic breast cancer (WPBC) The results of this com-
parison are shown in Table 3.11 and Fig. 3.16. We can clearly observe that the 2L-MJFA
again achieves the overall best performance. In particular, the 2L-MJFA achieves the low-
est error rate 0.1493 when the dimension is reduced to 25; this is significantly lower than
the error of 0.1702 from MCFA.

Results on the Urban land cover dataset (ULC) The ULC dataset contains nine types
of urban land cover from high-resolution aerial imagery [106, 107]. In this experiment,
for simplicity, we only extract three types of experimental data, that is building, concrete,
and grass. The number of components g are assumed to be between 2 and 5.

Table 3.12 reports the results across different dimensionalities ranging from 10 to
30 (1 to 2 for LDA-GMM). The best result of 0.1099 is achieved by 2L-MJFA model,
for 15 dimensions and 5 components. The other methods perform worse, especially as

81

Table 3.11: Error rate comparison for the WPBC dataset.

WPBC

DIM g 2L-MJFA mMCFA mPPCA PCA-GMM LDA-GMM

1

2 0.2498±0.03 0.2943±0.10 0.3351±0.07 0.25644±0.03 0.2479±0.05

3 0.2621±0.03 0.3045±0.14 0.2869±0.11 0.25644±0.03 0.2166±0.02

4 0.2459±0.02 0.3947±0.12 0.2631±0.03 0.25644±0.03 0.2166±0.04

5 0.2604±0.03 0.2887±0.13 0.2730±0.03 0.25644±0.03 0.1860±0.03

5

2 0.1896±0.01 0.2319±0.06 0.1859±0.03 0.2935±0.07 -

3 0.1946±0.02 0.2219±0.04 0.1855±0.01 0.2318±0.04 -

4 0.1854±0.02 0.2269±0.04 0.1751±0.02 0.2055±0.05 -

5 0.1854±0.03 0.2220±0.03 0.2250±0.03 0.1956±0.05 -

10

2 0.1793±0.02 0.1906±0.02 0.1929±0.04 0.1957±0.05 -

3 0.1649±0.02 0.1904±0.02 0.2007±0.03 0.1700±0.02 -

4 0.1544±0.01 0.2625±0.07 0.2009±0.02 0.1802±0.04 -

5 0.1802±0.02 0.2528±0.04 0.2000±0.02 0.1853±0.02 -

15

2 0.1700±0.03 0.2060±0.02 0.2010±0.04 0.1856±0.02 -

3 0.1647±0.02 0.2477±0.02 0.1804±0.03 0.1961±0.02 -

4 0.1647±0.02 0.2370±0.02 0.1752±0.02 0.1960±0.02 -

5 0.1699±0.02 0.2320±0.00 0.1750±0.04 0.2011±0.01 -

20

2 0.1700±0.01 0.2268±0.01 0.1959±0.04 0.1957±0.03 -

3 0.1544±0.02 0.2423±0.01 0.1856±0.01 0.2007±0.02 -

4 0.1493±0.02 0.2265±0.02 0.1702±0.02 0.2009±0.03 -

5 0.1545±0.02 0.2319±0.02 0.2000±0.03 0.2267±0.01 -

25

2 0.1648±0.01 0.2687±0.06 0.2063±0.01 0.2163±0.02 -

3 0.1493± 0.02 0.2531±0.04 0.1855±0.01 0.2214±0.06 -

4 0.1493± 0.02 0.2370±0.01 0.1907±0.02 0.2370±0.01 -

5 0.1545±0.02 0.2370±0.01 0.1806±0.02 0.2370±0.01 -

82

Table 3.12: Error rate comparison for the ULC dataset.

ULC

DIM g 2L-MJFA mMCFA mPPCA PCA-GMM LDA-GMM

2 2 0.5108 0.1209 0.5128 0.3301 0.6557

10

2 0.1319 0.1355 0.4945 0.2491 -

3 0.1282 0.1282 0.1832 0.2015 -

4 0.1355 0.1502 0.3736 0.2564 -

5 0.1245 0.1319 0.2418 0.2418 -

15

2 0.1172 0.3077 0.3846 0.3700 -

3 0.1172 0.2234 0.3773 0.3846 -

4 0.1392 0.2381 0.2418 0.3773 -

5 0.1099 0.1722 0.3223 0.4139 -

20

2 0.1209 0.4725 0.3773 0.3883 -

3 0.1209 0.3919 0.3443 0.4139 -

4 0.1245 0.3883 0.3883 0.3956 -

5 0.1172 0.3004 0.3516 0.4396 -

25

2 0.1172 0.4579 0.3114 0.4066 -

3 0.1392 0.3150 0.2454 0.4176 -

4 0.1319 0.3810 0.3480 0.4066 -

5 0.1319 0.4029 0.2930 0.4432 -

30

2 0.1245 0.4286 0.4249 0.4432 -

3 0.1209 0.2454 0.3443 0.4396 -

4 0.1429 0.3883 0.2527 0.4505 -

5 0.1392 0.3883 0.3077 0.4945 -

83

Dimension
10 15 20 25 30

E
rr

or
 r

at
e

0

0.1

0.2

0.3

0.4

0.5

0.6
g=2

Dimension
10 15 20 25 30

E
rr

or
 r

at
e

0

0.1

0.2

0.3

0.4

0.5

0.6
g=3

Dimension
10 15 20 25 30

E
rr

or
 r

at
e

0

0.1

0.2

0.3

0.4

0.5

0.6
g=4

Dimension
10 15 20 25 30

E
rr

or
 r

at
e

0

0.1

0.2

0.3

0.4

0.5

0.6
g=5

2LMJFA
MMCFA
MPPCA
PCA-GMM

Fig. 3.17: Error rate comparison for the ULC dataset.

the numbers of components and dimensions increase. mMCFA achieves better than the
remaining methods. The errors are also summarised in Fig. 3.17.

Results on the LSVT voice rehabilitation dataset (LSVT) The LSVT contains 98

instances with 309 attributes and is used for evaluating whether a phonation considered
acceptable or not after voice rehabilitation [122]. The results of Table 3.13 are reported
for different dimensions between 5 and 20 (1 for LDA-GMM). It can be seen, that mM-
CFA and mPPCA achieve their best performance when the dimensionality is reduced to
10. When the dimensions increase, the performance of different algorithms deteriorates
quickly due to a more pronounced S3 problem. The proposed 2L-MJFA model again
achieves the lowest error rate of 0.1792 (when the dimension is set to 20). Fig. 3.18
summarises these errors.

Results on the Breast tissue dataset (BT) This dataset [123] contains 106 objects de-
scribed by 9 features. For each object, a group of features are selected from excised breast
tissue samples using electrical impedance measurement. Six major diagnostic classes are
involved that consist of 4 normal breast tissues: connective, glandular, Fibro-adenoma
and adipose tissue, as well as 2 pathological tissues, that is: mastopathy and carcinoma.

84

Table 3.13: Error rate comparison for the LSVT dataset.

LSVT

DIM 2L-MJFA mMCFA mPPCA PCA-GMM LDA-GMM

1 0.3171±0.07 0.2897±0.12 0.3731±0.07 0.4019±0.06 0.4246±0.04

5 0.2143±0.08 0.2103±0.10 0.2143±0.04 0.2659±0.07 -

10 0.2023±0.06 0.1980±0.07 0.1964±0.06 0.2698±0.03 -

15 0.1984±0.06 0.2421±0.06 0.2183±0.06 0.2857±0.05 -

20 0.1792± 0.06 0.2659±0.05 0.2857±0.03 0.2857±0.06 -

Dimension
5 10 15 20

E
rr

or
 r

at
e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
2LMJFA
MMCFA
MPPCA
PCA-GMM

Fig. 3.18: Error rate comparison for the LSVT dataset.

85

We augment the features to 39 dimensions with random Gaussian noise, in order to accen-
tuate the S3 effect. We report the results across different dimensionalities ranging from
2 to 9 (2 to 5 for LDA-GMM) and different component number between 2 and 5. It is
worth noting that there are at most 21 samples for each class, which is less than the 39

dimensions.

Table 3.14: Error rate comparison for the BT dataset.

BT

g DIM 2L-MJFA mMCFA mPPCA PCA-GMM LDA-GMM

2

2 0.2468±0.05 0.3902±0.07 0.6692±0.03 0.6517±0.14 0.5576±0.11

4 0.1897± 0.01 0.4257±0.05 0.7261±0.03 0.6255±0.12 0.5350±0.09

6 0.1970±0.02 0.4533±0.05 0.6510±0.09 0.6159±0.13 -

9 0.2073±0.04 0.4902±0.06 0.6418±0.02 0.5899±0.09 -

3

2 0.2540±0.02 0.3900±0.06 0.6892±0.02 0.6032±0.15 0.5479±0.08

4 0.2359±0.02 0.4164±0.02 0.6713±0.03 0.6076±0.10 0.5053±0.09

6 0.2371±0.01 0.4615±0.04 0.6442±0.06 0.6088±0.08 -

9 0.2085±0.04 0.5457±0.04 0.6088±0.07 0.6573±0.06 -

4

2 0.2530±0.05 0.3616±0.07 0.6986±0.05 0.6043±0.15 0.5279±0.09

4 0.2528±0.05 0.4164±0.02 0.6345±0.04 0.6182±0.09 0.5550±0.06

6 0.2560±0.03 0.4995±0.02 0.6219±0.06 0.6585±0.06 -

9 0.2254±0.02 0.5553±0.05 0.6618±0.04 0.6964±0.03 -

5

2 0.2528±0.03 0.3892±0.06 0.6870±0.03 0.6149±0.12 0.5252±0.08

4 0.2454±0.03 0.4459±0.04 0.6310±0.03 0.5887±0.09 0.4961±0.08

6 0.2454±0.01 0.5362±0.04 0.6406±0.02 0.6973±0.07 -

9 0.2169±0.04 0.5553±0.05 0.6406±0.02 0.6677±0.05 -

Table 3.14 reports the results, where the proposed method outperforms the others. The
performance difference is more prominent as the number of components and dimensions
increases. Fig.3.19 summarises some errors.

86

Dimension
2 4 6 9

E
rr

or
 r

at
e

0

0.2

0.4

0.6

0.8

g=2

Dimension
2 4 6 9

E
rr

or
 r

at
e

0

0.2

0.4

0.6

0.8

g=3

Dimension
2 4 6 9

E
rr

or
 r

at
e

0

0.2

0.4

0.6

0.8

g=4

Dimension
2 4 6 9

E
rr

or
 r

at
e

0

0.2

0.4

0.6

0.8

g = 5

2LMJFA
MMCFA
MPPCA
PCA-GMM

Fig. 3.19: Error rate comparison for the BT dataset.

3.4 Summary

In this chapter, we have introduced an unsupervised method that learning both the op-
timal subspace and the parameters for GMM jointly and further extended it to a novel
two-layer joint learning model, referred to as 2L-MJFA, for supervised learning. These
joint learning models are very different from previous approaches, where dimensionality
reduction is usually independent of the subsequent parameter learning procedure. Specif-
ically, these models further reduce the parameters of the component-covariance matrices
by setting common loading matrix. Moreover, 2L-MJFA is based on a two-layer mixture
or a mixture of mixtures structure, with each component that represents each specific class
serving as another mixture model of factor analysers designed to share the same loading
matrix. The latter has a dual role with respect to being considered a dimensionality re-
duction matrix and being capable of reducing the model parameters, making, therefore,
the proposed algorithm very suitable for S3 problems. We have also described a modified
EM algorithm to train the proposed model. For unsupervised learning experiments, the
joint learning models have evaluated on both synthetic, real-world datasets and bench-
mark datasets. The performance of joint learning models is demonstrated to significantly
outperforms the independent learning models. Furthermore, the model with a common

87

loading is shown to be the best when compared with other joint models. For supervised
learning experiments, a series of experiments have demonstrated that 2L-MJFA signifi-
cantly outperforms four competitive algorithms. On six real-world datasets, our proposed
algorithm has an average decrease of 17.41% compared to the best result of the competi-
tive algorithms.

3.4.1 Discussion

There are several shortcomings with the proposed models in this chapter. On the one hand,
both the models need to pre-specify certain parameters beforehand. These parameters
include the number of clusters and the reduced dimensionality. In practice, a trial and
error procedure can usually be used for searching the best parameters; such procedure
is however often computationally slow and is also less elegant. On the other hand, by
assuming a common loading, these models exploit a shallow mixture model which may
be in lack of expressive ability. This may present difficulties when modelling complicated
data.

To mitigate the above mentioned shortcomings, an infinite model could be developed
which can determine the number of components and the dimensionality automatically.
This exactly motivates the model as discussed in Chapter 4. In addition, aiming to increase
the model’s expressive capability, we intend to study how to replace the shallow structure
with a deep structure which could then lead to an arbitrarily non-linear projection instead
of the multi-linear projection as discussed in this chapter. This idea directly motivates the
models which will be discussed in Chapter 6.

88

Chapter 4

Infinite Non-negative Binary Matrix
Tri-factorisation for Learning Latent
Features

Non-negative matrix factorisation (NMF) is a well-known matrix decomposition tech-
nique that has been widely applied in data analysis, and machine learning [124]. Es-
sentially, NMF decomposes the observation data into two matrices, which contain infor-
mation on the latent features and structures of the object. In other words, NMF can be
exploited to reveal latent structures through decomposing the observed variables into two
latent variables [125]. The NMF algorithms can be used for feature extraction or one-
sided clustering. For instance, Ding et al. [126] proposed a relaxed K-means clustering
approach based on NMF. In many real-world applications, people are interested in ad-
dressing objects of multiple types with features of much richer structures, also termed
dyadic data analysis [8]. To cope with such data, it becomes important to learn the in-
teraction among features and leverages the interrelation between data and features. This
is particularly the case in co-clustering or collaborative filtering [127–129]. In such cas-
es, the NMF with two factors can be restrictive and often provides poor low-rank matrix
approximation. Thus, a new factor is needed to absorb the additional scale.

To this end, an emerging technique based on Non-negative Matrix Tri-factorisation
(NMTF) has recently gained much attention [11]. For instance, Zhang et al. [130] intro-
duced NMTF for biclustering structures, whilst Wang et al. [131] developed a Fast NMTF
(FNMTF) method for large-scale data co-clustering. More recently, Wang et al. [132] pro-
posed a Penalty NMTF (PNMT) based approach by introducing three penalty constraints.
However, in all these feature-based models, a fixed number of latent features or clusters
are generally assumed. To achieve the optimal result, it usually requires this number to
be tuned or searched by trial and error. Further, in practice, factor matrices are often re-
quired in binary form, since binary features are cheaper to compute and more compact

89

to store. Binary features can also appear in various types of data, such as binary images,
and numbers of words occurring in an article [133, 134]. In this scenario, effective NM-
F or NMTF formulations become more challenging, since binary matrices usually pose
multiple optimisation demands.

To address the above problems, in this chapter, we extend the standard NMF to learn
binary features with a novel Bayesian model, termed infinite non-negative binary matrix
tri-factorisation (iNBMT). In contrast to the traditional NMF, the novel iNBMT model is
a statistical latent variable model which can automatically select an optimal feature set
from infinite latent features, by applying the Indian Buffet Process (IBP) prior to factor
matrices. Further, we decompose the input sample matrix Y into triple matrix factors,
i.e., Y = ZWXT , where Z and X are two binary matrices, and the non-negative matrix
W can be considered a weight matrix. In comparison with bi-factorisation, which is typ-
ically involved in NMF, tri-factorisation can better capture latent features and reveal hid-
den structures underlying the samples [11]. For illustration, we plot our proposed novel
iNBMT method as a graphic model in Fig. 4.1(b). Compared to the basic IBP based model
which involves two factors (bi-factorisation) Z and W in Fig. 4.1(a), the proposed model
employs one more binary matrix X with the IBP prior. The binary matrix Z can be con-
sidered to learn latent features, whilst the other binary matrix X extracts hidden structures
of objects. Furthermore, the interrelation is leveraged by a non-negative weight matrix W

which is also used to adjust the intensity of the features. Another well-known IBP-based
method, termed correlated IBP-IBP (or IBP-IBP) is shown in Fig. 4.1(c). This model is
also a tri-factorisation based method, which reveals relationships between categories and
features by defining a category assignment matrix U, and a set of category-feature rela-
tions V. However, this approach requires a number of constraints and is consequently
less flexible. More details are outlined in Section 4.4.

Approximation of the posterior in IBP is usually realised using Gibbs sampling. How-
ever, for large-scale matrices, variational methods can attain better performance than
Gibbs sampling. This is due to the use of samplers in the latter, that often lead to mix-
ing problems with growth in dimensionality [135]. Further, uncollapsed Gibbs samplers
can easily get stuck in local optima. To circumvent this, we propose an efficient, mod-
ified variational-Bayes (VB) algorithm to fit the massive matrix decomposition, which
can be thought of as a maximisation-expectation algorithm (ME-algorithm) [136]. More
importantly, the time complexity of our proposed ME-algorithm is proved to be one or-
der lower than other state-of-the-art models, such as the Maximisation-Expectation-IBP
(ME-IBP) [20] and the IBP-IBP model [21].

There are a number of other related methods reported in the literature for learning
latent binary features. For example, Zhang et al. extended the standard NMF to Bina-

90

(a) The basic model via IBP (b) iNBMT (c) IBP-IBP

Fig. 4.1: Comparison of different models via IBP. Y is the observed data, and W is the
real matrix (or non-negative matrix in iNBMT and ME-IBP). Z and X are binary ma-
trices (similar to U and V in IBP-IBP). θ, α, λ, µ, σ are fixed parameters. (a) ME-IBP:
Bi-factorisation with a non-negative matrix and a binary matrix. (b) Our proposed iNBM-
F method: Tri-factorisation with a non-negative real matrix and two binary matrices. (c)
IBP-IBP: Hierarchical structure includes a real matrix and two binary matrices (with con-
straints)

ry Matrix Factorisation (BMF) for producing biclustering structures [130]; the correlated
IBP-IBP model [21] is also able to generate binary features. However, both these two
models are limited. BMF requires input data to be strictly binary, which is too strong an
assumption in real cases. The IBP-IBP model [21] enforces a product of two binary ma-
trices to be binary, such assumption being invalid in general. Another recently-proposed
ME-IBP model [20] is a bi-factorisation approach, which does not consider relational
entities.

In summary, the contributions of this chapter can be outlined below:

• An IBP based infinite NMF model is proposed, which is able to automatically de-
termine an optimal number of features.

• The proposed model offers tri-factorisation and is able to deliver latent binary fea-
tures, addressing a more challenging optimisation problem.

• No extra constraints are enforced, presenting more appealing features when com-
pared with other models used to generate binary features, such as the BMF mod-
el [130] and the IBP-IBP model [21].

• The iteration complexity is one order lower than competitive IBP-based models.

• The proposed model outperforms state-of-the-art methods (such as ME-IBP, cor-
related IBP-IBP, and PNMT) on both synthetic and real data for feature exaction,
reconstruction, restoration and clustering.

The rest of this chapter is organised as follows. The Indian buffet process and maximisation-
expectation algorithm are introduced as preliminaries in Section 4.1. A detailed descrip-
tion of our proposed iNBMT model is presented in Section 4.2, and the optimisation

91

procedure is introduced in Section 4.3. In Section 4.4, related work is briefly reviewed.
In particular, the difference between our proposed method and other relevant work is em-
phasised. In Section 4.5, the experimental setup is presented, including visualisation and
quantitative results on seven datasets including a synthetic dataset, and six real-world
datasets. A complexity analysis is carried out and compared with two related IBP-based
methods in Section 4.6. Finally, concluding remarks, limitations and future work sugges-
tions are presented in Section 4.7.

4.1 Background

This section presents an overview of latent feature learning through matrix factorisation,
the infinite IBP prior and ME algorithm, as well as notations used throughout the chapter.

4.1.1 Learning Latent Feature via Matrix Factorisation

A latent feature model refers to a model where each object is associated with a subset of
possible latent features. In this family of methods, each latent feature can influence the
observations. Moreover, multiple latent features can be activated simultaneously. In a
probabilistic latent feature model, the marginal distribution is written as follows

p(Y) =
∑
F

p(Y,F) =
∑
F

p(Y|F)p(F) , (4.1)

where Y represents real-valued observed objects, the matrix F is used to indicate latent
features, p(Y|F) determines the probability of objects conditioned on these features, and
p(F) is the probability that objects are associated with each feature. In methods based
on matrix factorisation, the latent features F are decomposed to F = Z

⊗
W, where

⊗
denotes element-wise product, Z determines which features are assigned to each object,
and W indicates the value of each latent feature for each object. By specifying priors for Z
and W, the prior on F can be defined as p(F) = p(Z)p(W) when these two components
are independent. Therefore, the focus becomes how to identify a prior on Z, and hence
determine the effective dimensionality of latent features. IBP is often used as the prior on
infinite binary matrices. An IBP prior on Z can make the limit of feature numbers close
to infinity. In the next subsection, we introduce the concepts of IBP as well as IBP prior.

4.1.2 Indian Buffet Process

IBP is termed a sequential process used to represent an infinitely exchangeable distribu-
tion of a stochastic process [137]. The process of IBP is detailed in the description of
Figure 2.6 in Chapter 2. Further, the process reveals that IBP assumes an unbounded

92

number of features, but the observed objects represent only a finite subset of features.
IBP can be considered a prior for infinite binary matrices defined in these models. It is
typically used to infer the number of latent features each observation possesses. We as-
sume observed objects (N objects with D attributes) Y ∈ RN×D are generated by linear
combination of an assignment matrix Z ∈ RN×K and a matrix W ∈ RK×D (containing
K latent factors). As a consequence, a latent feature model is portrayed as Y = ZW+ ϵ.
ϵ is zero-mean, independently distributed Gaussian noise.

Assume an element of the binary matrix znk = 1 indicates that the object n has the
latent feature k, k = 1, . . . , K. Each column of binary feature matrix Z is assumed to be
over an IBP prior, derived independently by placing Beta priors from a Bernoulli distri-
bution. The feature k is assigned to each object with probability πk, which is generated
independently from a Bernoulli distribution and the bias πk is independently generated by
a Beta prior, over each column1

πk | α ∼ Beta(α/K, 1) , Z | πk ∼ Bernoulli(πk) ,

p([Z]) =
K∏
k=1

α
K
Γ(mk +

α
K
)Γ(N −mk + 1)

Γ(N + 1 + α
K
)

.
(4.2)

Here Γ denotes the gamma function, α is the IBP strength parameter, and mk =
∑N

n=1 znk

is used to count the number of objects possessing feature k.
For infinite models, several classic matrix factorisation models have been developed

as IBP inspired infinite-limit versions, for instance, infinite ICA models [138]. Intuitively,
an infinite limit implies that the probability of Z will be specified in the infinite classes. To
this end, Griffiths et al. made the number of attributes unbounded by proposing equiva-
lence classes over binary matrices, in order to take the IBP prior into the infinite limit [72].
More importantly, since customers and dishes are exchangeable, following the principle
of IBP, equivalence classes can be used to permutate the order of columns by eliminating
all the null columns. Consequently, the infinite number of active features K+ means K is
unbounded, which is learned from data, while remaining finite with probability one. By
rearranging the non-zero columns of Z, we can specify K →∞ and modify Eq. (4.2) as
follows

p([Z]) =
αK+∏
h>0Kh

e−αHN

K+∏
k=1

(N −mk)!(mk − 1)!

N !
, (4.3)

where HN =
∑N

j=1
1
j

denotes the N th harmonic number and Kh represents the number of
non-zero rows. Moreover, Kh and mk are both irrelevant to the objects sequence, which
proves that p([Z]) is an infinitely exchangeable distribution. In line with this property,

1A Beta prior is placed on πk with the shape parameter α/K for all k and scale parameter 1.

93

IBP has been shown to be useful for binary factor analysis, such as modelling protein
interactions, and similarity judgments [139, 140]. It has also been applied in other fields
such as choice behaviour modelling, link prediction, and dictionary learning for correlated
observations [141–144].

4.1.3 Maximisation-Expectation Algorithm

The variational Bayesian (VB) paradigm, as the basis of our proposed algorithm, has the
ability to automatically select an optimal number of clusters from observations [145, 146].
The approximation process is an Expectation-Maximisation (EM)-like method, alternat-
ing between estimations of cluster assignments and stochastic parameters. Kurihara at
al. further modified VB-clustering with fast implementation, termed the Maximisation-
Expectation (ME) algorithm [136]. The ME algorithm simply reverses the roles of two
steps in the classical EM algorithm, by maximising over hidden variables and marginalis-
ing over random parameters. We consider a probabilistic model p(Y,Z,W) with obser-
vations Y and hidden random variables Z and W. To carry out approximate Maximum-a-
Posteriori (MAP) inference, it is necessary to compute posterior or marginal probabilities
such as p(Z|Y), p(W|Y), or p(Y). In Mean-Field Variational Bayes (MFVB) approxi-
mation, the posterior p(Z,W|Y) cannot be computed analytically. Therefore, by assum-
ing independent variational distributions, the posterior distribution can be factorised to
variational distributions: p(Z,W|Y) ≈ q(Z)q(W) [147]. These results are then itera-
tively updated as follows

q(Z) ∝ exp
(
Eq(W)[ln p(Z,W | Y)]

)
↔ q(W) ∝ exp

(
Eq(Z)[ln p(Z,W) | Y)]

)
.

(4.4)

Here, the symbol ↔ implies q(Z) and q(W) are updated iteratively. The VB approx-
imation is based on minimising the Kullback-Leibler (KL)-divergence, which is shown
as KL[q(Z)q(W)∥p(Z,W|Y)]. As a special case of MFVB, the ME algorithm max-
imises latent variables and then applies expectations over parameters. The results are
close-formed with updates as follows

q(W) = p(W | Z∗,Y)

↔ Z∗ = argmax
Z

Eq(W)[ln p(Z,W | Y)] .
(4.5)

4.2 Infinite Non-negative Binary Matrix Tri-factorisation

In this section, we present our proposed iNBMT model which exploits IBP priors to
associate an item and attributes with more than one cluster. We first describe the model

94

Fig. 4.2: Representation of the iNBMT model. The process f (·) applied to the linear
inner product of the three components. Here Z and X are infinite binary matrices, W
represents a non-negative matrix.

and its formulation, and then show how to employ a modified, efficient ME-algorithm to
perform approximate MAP inference.

4.2.1 Model Description

The iNBMT model is applied to real-valued observation data Y ∈ RN×D with exchange-
able rows and columns. Considering a probabilistic latent feature model in Eq. (4.1), our
focus is on latent features p(F), the difference being that these are further decomposed
into three components: F = Z

⊗
W
⊗

X. In this feature-based model, for the case of L
latent features, X is an L×D binary feature matrix. Furthermore, the Kth potential bina-
ry vector zi denotes the feature vector corresponding to entity i, and the K×L interactive
weight matrix W represents the primary parameters. Assuming the three components of
F are independent, the priors of the features are defined by: p(F) = p(Z)p(W)p(X).
In Fig. 4.2, the iNBMT model is illustrated pictorially, where the observations Y are
represented by ZWXT depending on a fixed observation distribution f (·)

Y | Z,W,X ∼ f (ZWXT ,θ) , (4.6)

where θ are hyperparameters specific to the model variant. This process is equivalent to
factorisation or approximation of the data.

Our focus is to learn the latent features automatically by placing Bayesian non-parametric
priors on binary matrices. Unlike the matrix factorisation method, our tri-factorisation
method does not need to place an upper bound on the number of features, or on the num-
ber of clusters. In infinite models, both the binary matrices Z and X are assumed to be
matrices with an unbounded number of columns. Specifically, the IBP priors are imposed
over infinite binary matrices with the property that, a finite number of entities will only
have a finite number of non-zero features, with a probability of 1. Thus, the binary matrix
always has a positive probability under the IBP prior. Our basic generative model can
then be shown as below

Z ∼ IBP(α) , X ∼ IBP(λ) , W ∼ F(W;µ,σ2
W) . (4.7)

95

Here, any non-negative prior F (e.g., exponential and truncated Gaussian) is assumed
on the weight matrix W. The IBP prior is stated in Eq. (4.2), and the hyperparameters
θ conjugate gamma priors on inference parameters. In our iNBMT model, each object
possesses multiple latent features, and each latent feature is also assigned to numerous
latent classes by using two IBP priors. Moreover, both latent features and latent classes
are associated with a distribution over attributes. Thus, our proposed method can be used
for discovering fundamental hidden structures in complex data.

4.2.2 Linear-Gaussian iNBMT Model: Formulation

In this section, we derive linear-Gaussian as an observation distribution, with mean ZWXT

and covariance (1/θ)I for capturing the latent features.
The Gaussian distribution of Y given A = {Z, W, X} and σ2

Y is shown as below

p(Y|A,σ2
Y) =

1

(2πσ2
Y)

ND
2

exp
−tr

(
(Y− E[Y])T (Y− E[Y])

)
2σ2

Y

, (4.8)

where E[Y] = ZWXT . The linear-Gaussian iNBMT model can be considered a two-
sided version of the linear-Gaussian model. The truncated Gaussian (TN) prior is placed
on the non-negative interactive matrix W, with mean zero and covariance matrix σ2

W

p(W|0,σ2
W) =

K∏
k=1

L∏
l=1

TN(wkl; 0,σ
2
W) . (4.9)

According to Eq. (4.3), the marginal probabilities p([Z]) and p([X]) are specified with the
infinite IBP prior

p(Z|α) = αK+

K+!
e−αHN

K+∏
k=1

(N −mk)!(mk − 1)!

N !
. (4.10)

Here, mk =
∑N

n=1 znk, the p(X|λ) follows the same formula structure with N ← D,
k ← l (l = 1, . . . , L) and mk ← sl =

∑D
d=1 xdl (← denotes a substitution).

From the Bayesian theorem, the likelihood can be written as follows

p(Y,A|θ) = p(Y|A,σ2
Y)p(W|0,σ2

W)p(Z|α)p(X|λ) . (4.11)

We assume the hyperparameters θ = {α, λ, σY , σW} are estimated from the data. By
placing conjugate gamma hyper-priors on these parameters, we can employ a straightfor-
ward extension to infer their values [146]. Formally, 2

p(α) ∼ G(aα , bα), p(λ) ∼ G(aλ, bλ) ,

p(σY) ∼ IG(aσY
, bσY

) , p(σW) ∼ IG(aσW
, bσW

) .
(4.12)

In the above, G denotes the Gamma prior, and IG refers to the inverse Gamma prior.
2A random variable X follows a gamma-distributed, X ∼ Γ(α, β) ≡ Gamma(α, β), where α is shape
parameter and β is rate parameter

96

4.2.3 Linear-Gaussian iNBMT Model: Variational Inference Proce-
dure

Here, the variational inference procedure is presented for the linear-Gaussian iNBMT
model. Consider a model with observations Y, hidden variables A = {Z,W,X}, and
hyperparameters θ. In the optimisation stage, these variables often work with the log-
marginal likelihood of the observations

log p(Y|θ) = log

∫
p(Y|A,θ)dA . (4.13)

However, the log-marginal probability is difficult to compute, which implies the true log-
posterior calculation is also intractable. In order to approximate the true posterior, the
mean field variational method is developed with a variational distribution qν(A) (where ν
is the variational parameter). The inference is then applied to the variational distribution,
by optimising the KL divergence. In particular, the aim is to minimise the KL divergence
D(q ∥ p) between qν(A) and p(A|Y,θ)

D(q ∥ p) = log p(Y|θ) + Eq[log qν(A)]− Eq[log p(Y,A|θ)] . (4.14)

Alternatively, this is equivalent to maximising a lower bound on the log-marginal likeli-
hood

ln p(Y|θ) =Eq[log p(Y,A|θ)]− Eq[log qν(A)] +D(q ∥ p)

≥Eq[ln p(Y,Z,W,X|θ)] +H[q] ≡ T ,
(4.15)

where H[q] is the entropy of q. Importantly, the approximate MAP inference is derived
from the ME framework by following Eq. (4.5), i.e., maximising the latent variables and
taking expectations over variational parameters. In the linear-Gaussian iNBMT model,
the lower bound of evidence, T , is written as follows

T ≡ 1

σ2
Y

[
− 1

2
(ZE[W]XT)(ZE[W]XT)T+ Z(E[W]YT+Zγ)XT

]
+ log p(Z|α) + log p(X|λ) +

K+∑
k=1

L+∑
l=1

φkl + const , (4.16)

with

γ =
1

2

K∑
k=1

L∑
l=1

[
E[wkl]

2 − E[w2
kl]
]T

,

φkl = −
KL

2
ln(

πσ2
W

2
)− E[w2

kl]

2σ2
W

+H
(
q(wkl)

)
.

Here E[W] is a matrix with each element defined as E[wkl]. The variational parameters
updating is described in the next subsection.

97

4.2.4 Linear-Gaussian iNBMT Model: Parameter Updating

Our proposed modified ME-algorithm adopts VB evidence to iteratively optimise a lower
bound on the model marginal likelihood. This optimisation algorithm is particularly tai-
lored to tri-factorisation, which has not been exploited previously in the literature. Specif-
ically, the major improvement over the previous ME algorithm is that we design two loops
in each iteration with a guaranteed convergence, which enables the algorithm to update
two different binary matrices. Note that the previous ME algorithm can merely be used
for bi-factorisation. In addition, compared with other popular Gibbs-sampler optimisation
algorithms [72], our proposed algorithm engages VB evidence for inference. The latter
is theoretically more rigorous than Gibbs-sampler based algorithms and usually leads to
better performance [135]. Algorithm 3 enumerates the steps of our proposed modified
ME algorithm. Specifically, parameters associated with the two infinite variables Z and
X are updated, in turn. For completeness, these VB update equations are provided in
Section 4.3.

Algorithm 3: Parameter Updating
Initial:
Give upper bounds of K and L.
Generate the N ×K binary matrix Z, L×D binary matrix X and K × L
non-negative matrix W randomly.
Repeat

for i = 1 to N do
Optimise the binary matrix Z (in Section 4.3) by reducing the number of K
with left-order form.
Resize and update the matrix W based on the resized Z (in Section 4.3.1).

for j = 1 to D do
Optimise the binary matrix X (in Section 4.3) by reducing the number of L
with left-order form.
Resize and update the matrix W based on the resized X (in Section 4.3.1).

Calculate the Log-likelihood LogL.
Until |LogLnew − LogLold| < threshold value.

4.3 Optimising Latent Features

We introduce latent features optimisation in this subsection. Updating Z and X is relative-
ly straightforward by computing Eq. (4.16). Similar to variational IBP methods, we split
the expectation in Eq. (4.5) into terms depending on each of the latent variables [135],
with the benefit that binary variables updates are not affected by inactive features. Thus,
we decompose the relevant terms of X in Eq. (4.15). Similarly, we also decompose the

98

terms depending on Z during updating. First, to decompose ln (D−sl)!(sl−1)!
D!

, we define a
quadratic pseudo-Boolean function

f(xdl) =

 0, if sl\d = 0 and xdl = 0 ;

ln
(D−sl\d−xdl)!(sl\d+xdl−1)!

D!
, otherwise .

Here sl\d indicates the sum of xdl after removing the dth row from X. The terms of
Eq. (4.16),

∑L+ [ln (D−sl)!(sl−1)!
D!

] + lnL+!, are changed to

L+∑
l=1

f(xdl) =

L+∑
l=1

xdl

(
f(xdl = 1)− f(xdl = 0)

)
+ f(xdl = 0) ,

lnL+! = ln
(
L+\d +

L+∑
l=1

[1{sl\d=0}xdl]
)
! ,

(4.17)

where 1{·} is the indicator function. Here we show that the lower bound of the evidence
Eq. (4.15) is well defined in the limit L→∞

T (Xdl) =−
1

2σ2
Y
(XdlΛ

T
nl)(XdlΛ

T
nl)

T+ Xdlω
T
dl +

L+∑
l=1

f(xdl)

− lnL+! + ln p(Z|α) +
K∑
k=1

(1{sl\d=0}xdlφkl)+ const ,

(4.18)

where ωdl = − 1
σ2

Y
(ΛT

nlYnd + γ) and Λnl = ZE[W].

4.3.1 Updating Variational Parameters

The updating of variational parameters for the non-negative matrix W, over a truncated
Gaussian distribution, is outlined below

q(W) =
K∏
k=1

L∏
l=1

TN(wkl;µkl, σ
2
kl) =

K∏
k=1

L∏
l=1

N(µkl, σ
2
kl)

Φ(∞)−Φ(0)
, (4.19)

where Φ(a) = 1
2
(1 + erf(a−µkl√

2σkl
)), Φ(∞) = 1 and erf(·) is the Gaussian error function.

In accordance with the upper tail truncation, the parameters are updated as follows

E[wkl] = µkl + σklλ(t) , E[w2
kl] = µklE[wkl] + σ2

kl , (4.20)

with λ(t) =
√
2/
√
πet

2
(1 − erf(t)), t = −µkl/

√
2σkl. It is worth noting that the mean

99

and variance of truncated Gaussian distributions need be computed twice per iteration

if K →∞, µk+l = τ 2
N∑

n=1

zTnk
(
ynd −

∑
k′/k

znk′E[wk′lx
T
dl]
)
xdl ,

σk+l = τσY ;

if L→∞, µkl+ = τ 2
D∑

d=1

xdl

(
yTnd −

∑
l′/l

xT
dlE[wkl′znk′]

)
zTnk ,

σkl+ = τσY ,

(4.21)

where τ = (mT
k sl +

σ2
Y

σ2
W
)−

1
2 . Finally, the entropy of truncated Gaussian distribution is

given as

H(q(wkl)) =
1

2σ2
kl

{
E[wkl]

2 − E[w2
kl]− (E[wkl]− µkl)

2

−
[1
2
ln

2

πσ2
kl

− ln(1− erf(t))
]}

.
(4.22)

4.4 Benchmarking Approaches

IBP is frequently used by computational intelligence and machine learning communities.
In particular, several feature-based models have been reported that exploit the IBP [138,
148]. In the following, we mainly introduce factorisation methods utilising IBP, that are
closely related to our proposed model.

The first benchmark, infinite latent-feature model based on IBP priors, was proposed
by Griffiths et al. [149]. Reed et al. introduced the linear-Gaussian IBP model by em-
ploying a maximisation-expectation framework to approximate the MAP inference (ME-
IBP) [20, 136]. This particular model can be regarded as a latent factor model in which
the binary matrix Z linearly combines the latent factors W. The graphic structure of ME-
IBP can be seen in Fig. 4.1(a) (detailed formulations are shown in Chaper 2.3.2). As can
be seen, the ME-IBP model draws Z from an IBP prior, with the strength parameter αz.
The full IBP model is shown in Eq. (4.2). The prior over the non-negative matrix W is an
independent, identically-distributed, truncated-Gaussian with zero mean and covariance
σ2

W . Further, Z can be optimised by maximising a submodule cost function

Z ∼ IBP(αz) , W ∼ T (W; 0,σ2
W) .

The ME-IBP is known to be significantly slower than many other methods reported in the
literature, and is apparently unable to learn binary features in bi-factorisation settings.

Some researchers [150, 151] have attempted to extend the basic IBP model, by con-
sidering the correlation between latent features and observations. In particular, the cor-
related IBP-IBP model employs a correlation framework for feature-based models [21].

100

This model is perhaps the most relevant for benchmarking our proposed method. The
tri-factorisation of this model is illustrated using a hierarchical structure in Fig. 4.1(c). As
can be seen from this hierarchical structure, the feature assignments matrix Z is further
decomposed into two binary matrices. Further, in this IBP-IBP model, the IBP prior is
drawn on both binary variables, and the Bernoulli function is set as the link function. The
latent feature matrix W follows an exponential prior, as below

U ∼ IBP(αu) ,V ∼ IBP(αv) , znk ∼ Bernoulli(1− qu
T
n vk) .

Here, αu, and αv are the strength parameters, and q ∈ [0, 1] is the noise parameter. In
the IBP-IBP model, un is the nth row of the binary category matrix U, and vk is the kth

column of the binary matrix V, which denotes the category-feature relations. znk = 1

means the feature k is presented in observation n. It is worth noting that, U, V, and Z are
all considered as the binary matrix, forcing observations to be associated with only one
category. This constraint limits the model’s flexibility. Thus, the weakness of the IBP-IBP
model is on identifiability issues commonly associated with feature-based models.

There are also other NMTF methods that do not adopt IBP. These models are usually
based on a discriminative model [11] aiming to minimise the following objective

argmin ∥ Y − ZWXT ∥2 , s.t. Z ∈ RD×l
+ ,X ∈ RN×k

+ .

Here, Y is a D × N observation matrix; l and k represent the number of object clusters
and feature clusters separately. For addressing co-clustering, this method was further
developed by constraining the factors Z and X [131]. More recently, PNMT further
decomposed each of the factors with three penalty-term constraints [132].

4.5 Experiments

In this section, we experimentally evaluate our proposed iNBMT model on seven dataset-
s, five of which are used for tasks of feature extraction, reconstruction and pre-image
restoration. We compare the performance of iNBMT with three state-of-art algorithm-
s: Maximisation-Expectation-IBP (ME-IBP), correlated IBP-IBP (IBP-IBP) and Penalty
NMTF (PNMT). In addition, the clustering performance of our proposed method is e-
valuated on two benchmark datasets and compared with four related methods, including
K-means, ME-IBP, PNMT, and Fast NMTF (FNMTF).

4.5.1 Datasets

We first evaluate our method on a synthetic dataset and then conduct experiments on six
real-world datasets obtained from real tasks. For the synthetic data, we modify the one

101

Table 4.1: Description of seven datasets used in the experiment

Datasets Noise term Training Testing Dimensions Classes

Syn σY = 0.8 4500 - 36 -

Com-USPS σY = 0.8 2000 - 1024 -

Com-NIST σY = 0.8 400 - 4096 -

Pre-USPS - 400 20 256 -

Pre-NIST - 600 15 1024 -

Coil-20 - 1440 - 4096 20

UMIST - 575 - 644 20

used in Griffiths [72]. For the remaining six datasets, Com-USPS, Pre-USPS, Com-NIST,
and Pre-NIST are reused from the well-known USPS and NIST datasets respectively,
whereas Coil-20 and UMIST are two widely-used benchmark clustering datasets. Infor-
mation on these seven datasets is given in Table 4.1, where Y denotes the observations
and σY indicates the variance of the Gaussian noise. The first three datasets, i.e., Syn,
Com-USPS, and Com-NIST, are used for evaluating the performance of different meth-
ods for feature extraction and reconstruction tasks, while the Pre-USPS and Pre-NIST are
used to validate various models for the pre-image restoration task. All the five datasets
are available online at: https://github.com/zzy8989/Data-iNBMT. Finally,
the Coil-20 and UMIST are used to evaluate the clustering performance.

Synthetic Data

The synthetic dataset was generated by modifying the dataset used in Griffiths [72].
Specifically, our dataset comprises 6 × 6 grey images adapted via three different lumi-
nance levels, as illustrated in Fig. 4.6(a). Each row of the observations Y is generated
using Z to linearly combine a subset of four binary factors X (see Fig. 4.3(a)). In addi-
tion, W loads different luminance combinations. The modified dataset presents a more
challenging problem and appears more appropriate for evaluating the different methods.

Com-USPS and Pre-USPS Data

We generated two datasets from USPS: the Com-USPS and the Pre-USPS. The digits,
used in these two datasets, are sampled randomly from the USPS. Moreover, our gen-
erated datasets are scaled to [0, 1]. Each row of the Com-USPS dataset is built up with
32 × 32 grey images. Various kinds of digits 0, 1, 2, 3 are combined with each sample,
as illustrated in Fig. 4.7(a). The Pre-USPS dataset contains merely a single handwritten
digit, which is also chosen randomly from 0, 1, 2, 3. In the training set, each digit has 100

102

https://github.com/zzy8989/Data-iNBMT

samples. Furthermore, in order to see if the various methods can restore an image, the test
samples are bottom-halved from the original images (see Fig. 4.10(b)).

Com-NIST and Pre-NIST Data

The rest two datasets were both generated from NIST handprinted forms and characters
database. It is worth mentioning that all the images are binary in this database. In the way
same as generating Com-USPS, we generated the Com-NIST dataset so that each sample
of the Com-NIST consists of 64 × 64 binary images combined from letters a, b, c, d (see
Fig. 4.5(a)). On the other hand, in the Pre-NIST dataset, each sample contains a single
handwritten letter chosen randomly from a, c, d. In the training set, each letter has 200

samples. Similarly, the test samples are top-halved from the original images so as to
validate if the various methods can restore them (see Fig. 4.11(b)).

Coil-20-product and UMIST

Coil-20-product is an object recognition benchmark dataset consisting of grayscaling im-
ages from 20 objects. These objects have diversified reflection properties and complex
geometric. Each object was rotated 360 degrees by the turntable, and 72 images were
taken per object (rotated once every 5 degrees) [108].

UMIST is a face recognition benchmark dataset containing 575 images from 20 dif-
ferent subjects [152]. Each subject is with the different view. Each image is rescaled to
28× 23.3

4.5.2 Feature Extraction

The three datasets Syn, Com-USPS, and Com-NIST are used to evaluate if different meth-
ods can extract the latent features.

Fig. 4.3 shows the results on the Syn dataset. Fig. 4.3(a) provides the ground-truth
latent features. Fig. 4.3(c) shows the inferred features by the ME-IBP, which matches
well the truth features. It is however noted that each feature is repeated twice with certain
noises. Compared with the ME-IBP, the learning features of the IBP-IBP are shown in
Fig. 4.3(d), where the features are also repeated. In Fig. 4.3(e), the inferred features by
the PNMT match the truth features, but with a lot of noise. In Fig. 4.3(b), it is evident that
the iNBMT outperforms the above three. It perfectly matches the truth features as well as
identifying the feature number automatically.

We next report the performance on the Com-USPS. The results are shown in Fig. 4.4.
We presented the 9 input images as examples without noise for comparison (see Fig. 4.4(a)).

3https://www.sheffield.ac.uk/eee/research/iel/research/face

103

https://www.sheffield.ac.uk/eee/research/iel/research/face

2 4 6

1

2

3

4

5

6

2 4 6

1

2

3

4

5

6

2 4 6

1

2

3

4

5

6

2 4 6

1

2

3

4

5

6

(a) Ground-truth latent features

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

(b) Features learned by
iNBMT

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

(c) Features learned by ME-IBP

2 4 6

2
4
6

2 4 6

2
4
6

2 4 6

2
4
6

2 4 6

2
4
6

2 4 6

2
4
6

2 4 6

2
4
6

2 4 6

2
4
6

2 4 6

2
4
6

2 4 6

2
4
6

2 4 6

2
4
6

2 4 6

2
4
6

2 4 6

2
4
6

2 4 6

2
4
6

2 4 6

2
4
6

2 4 6

2
4
6

2 4 6

2
4
6

2 4 6

2
4
6

2 4 6

2
4
6

2 4 6

2
4
6

2 4 6

2
4
6

(d) Features learned by IBP-IBP

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

(e) Features learned by PNMT

Fig. 4.3: Comparison of iNBMT, ME-IBP, IBP-IBP, and PNMT on the synthetic dataset.
iNBMT perfectly matches the truth features.

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

(a) 9 examples of training data
without noise

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30

(b) Features learned by
iNBMT

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

(c) Features learned by ME-
IBP

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30

(d) Features learned by IBP-IBP

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30

(e) Features learned by PNMT

Fig. 4.4: Comparison of iNBMT, ME-IBP, IBP-IBP, and PNMT on Com-USPS dataset.
The first sub-figure shows 9 examples of training data. The other four show the features
learned by each method. iNBMT clearly shows the best performance.

104

20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

(a) 9 examples of training data
without noise

20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60

(b) Features learned by
iNBMT

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60

(c) Features learned by ME-IBP
20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

(d) Features learned by IBP-IBP

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60

(e) Features learned by PNMT

Fig. 4.5: Comparison of iNBMT, ME-IBP, IBP-IBP, and PNMT on Com-NIST dataset.
The first sub-figure shows 9 examples of training data and the others show the features
learned by each method. iNBMT shows the best performance.

It is interesting to see from Fig. 4.4(b), our proposed iNBMT not only captures the latent
features, i.e., each of the clean digits, but also captures their image contours. In Fig. 4.4(e),
PNMT also captures the single digits, but the learned features have more noise. On the
other hand, the inferred features of the ME-IBP seem good, but these features are repeated
many times, as shown in Fig. 4.4(c). In Fig. 4.4(d), the learned features of the IBP-IBP
are provided. Apparently, its performance is not as good as our proposed iNBMT, and it
is also incapable of obtaining the feature of digit 1.

We then present the evaluation results on the Com-NIST data in Fig. 4.5. It is evi-
dent that none algorithm can filter noise perfectly. Nonetheless, iNBMT still learned the
underlying feature (the single letter) as clearly observed in Fig. 4.5(b). The ME-IBP and
PNMT also extracted clear letters, but their results contained merely combinations of let-
ters (see Fig. 4.5(c), Fig. 4.5(e)). It is usually tricky to cover all the possible combinations.
Consequently, its performance is often much worse than the proposed iNBMT model. In
summary, from the three groups of results, iNBMT demonstrates the best performance
and outperforms the ME-IBP, IBP-IBP, and PNMT on feature extraction.

4.5.3 Reconstruction

In this section, we report experiments to compare the reconstruction performance of dif-
ferent methods.

105

2 4 6

2

4

6
2 4 6

2

4

6
2 4 6

2

4

6

2 4 6

2

4

6
2 4 6

2

4

6
2 4 6

2

4

6

2 4 6

2

4

6
2 4 6

2

4

6
2 4 6

2

4

6

(a) Ground-truth without noise

2 4 6

2

4

6
2 4 6

2

4

6
2 4 6

2

4

6

2 4 6

2

4

6
2 4 6

2

4

6
2 4 6

2

4

6

2 4 6

2

4

6
2 4 6

2

4

6
2 4 6

2

4

6

(b) Ground-truth

2 4 6

2

4

6
2 4 6

2

4

6
2 4 6

2

4

6

2 4 6

2

4

6
2 4 6

2

4

6
2 4 6

2

4

6

2 4 6

2

4

6
2 4 6

2

4

6
2 4 6

2

4

6

(c) The reconstruction by
iNBMT

2 4 6

2

4

6
2 4 6

2

4

6
2 4 6

2

4

6

2 4 6

2

4

6
2 4 6

2

4

6
2 4 6

2

4

6

2 4 6

2

4

6
2 4 6

2

4

6
2 4 6

2

4

6

(d) The reconstruction by ME-
IBP

2 4 6

2

4

6
2 4 6

2

4

6
2 4 6

2

4

6

2 4 6

2

4

6
2 4 6

2

4

6
2 4 6

2

4

6

2 4 6

2

4

6
2 4 6

2

4

6
2 4 6

2

4

6

(e) The reconstruction by IBP-
IBP

2 4 6

2

4

6
2 4 6

2

4

6
2 4 6

2

4

6

2 4 6

2

4

6
2 4 6

2

4

6
2 4 6

2

4

6

2 4 6

2

4

6
2 4 6

2

4

6
2 4 6

2

4

6

(f) The reconstruction by PN-
MT

Fig. 4.6: Comparison of reconstruction of synthetic data. iNBMT best matches the
groundtruth than ME-IBP, IBP-IBP, and PNMT.

In the experimental setup, all three groups of observations are corrupted with σY = 0.8

Gaussian noise. Examples of randomly generated images and their corrupted versions are
illustrated in (a) and (b) respectively, of each figure (Fig. 4.6, Fig. 4.7, Fig. 4.8). The
reconstructed images by four algorithms are shown in (c), (d), (e), (f) respectively, in
each figure. We can clearly see that the images reconstructed from the iNBMT are more
similar to the ground-truth. In particular, on the Com-USPS dataset, the iNBMT almost
perfectly recovers the images. Significantly, the iNBMT denoising ability is also superior
to that of other algorithms. Although several repeated features are extracted by iNBMT
in the Com-NIST data (as seen in the feature extraction section), it does not prevent the
iNBMT from producing reasonably good reconstructions of the data. In comparison, ME-
IBP, IBP-IBP, and PNMT cannot clearly extract single digits or letters, on account of the
latent features, and their reconstruction results being worse than those of the iNBMT.
Moreover, exploiting the iNBMT framework, W×XT can be considered as a set of basis
images which can be added together with binary coefficients Z to recover images. It is
apparent that all digit combinations are correctly detected. By adjusting features that are
non-zero in each row of Z, reconstructed images are composed by adding basis images
together.

In order to quantitatively evaluate the reconstruction performance of different algo-
rithms, we exploit Von-Neumann divergence as a criterion to measure the similarity be-

106

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

(a) Ground-truth without noise

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

(b) Corrupted ground-truth

10 20 30

5

10

15

20

25

30

10 20 30

5

10

15

20

25

30

10 20 30

5

10

15

20

25

30

10 20 30

5

10

15

20

25

30

10 20 30

5

10

15

20

25

30

10 20 30

5

10

15

20

25

30

10 20 30

5

10

15

20

25

30

10 20 30

5

10

15

20

25

30

10 20 30

5

10

15

20

25

30

(c) Reconstruction by
iNBMT

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

(d) Reconstruction by ME-IBP

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

(e) Reconstruction by IBP-IBP

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

10 20 30

10

20

30
10 20 30

10

20

30
10 20 30

10

20

30

(f) Reconstruction by PNMT

Fig. 4.7: Comparison of iNBMT, ME-IBP, IBP-IBP, and PNMT on the Com-USPS
dataset. The first sub-figure shows the ground-truth image without noise. The iNBMT
can be clearly seen to exhibit the best performance.

20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

(a) Ground-truth without noise

20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

(b) Corrupted ground-truth

20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

(c) Reconstruction by iNBMT

20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

(d) Reconstruction by ME-IBP

20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

(e) Reconstruction by IBP-IBP

20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

(f) Reconstruction by PNMT

Fig. 4.8: Comparison of iNBMT, ME-IBP, IBP-IBP, and PNMT on the Com-NIST
dataset. The first sub-figure shows the ground-truth image without noise. The 3rd to
6th sub-figures show the reconstruction result. iNBMT clearly produces the best perfor-
mance.

107

tween the reconstructed and ground-truth images without noise [153–156]. The von-
Neumann divergence is defined as:

DvN(A1,A2) = tr(A1 logA1 −A1 logA2 −A1 +A2) .

Here, the A1 and A2 are two matrices. The von-Neumann divergence (NvD) has been
shown to preserve the geometry information better when two images or matrices are com-
pared. It is considered a closer measure to human visual perception [154, 155]. To verify
this, we provide an illustrative example to explain the difference between the Mean Square
Error (MSE), the Mean Absolute Error (MAE), and NvD.

Specifically, we use the MSE and MAE to measure the discrepancy of two images (as
shown in Fig. 4.9). The image I can be seen to be more similar to image A than image B.
However, MSE(A, I) = 0.0222 > MSE(B, I) = 0.0111 and MAE(A, I) = 0.0556 >

MAE(B, I) = 0.0550, show that MSE and MAE may not be suitable. On the other
hand, the von-Neumann divergence result DvN(A, I) = 1.1325 < DvN(B, I) = 6.7802

indicates that A is more similar to I , which is the same as the human visual perception.

In Table 4.2, we report von-Neumann divergence produced by the various methods.
The proposed iNBMT model clearly leads to significantly smaller values than the other
methods, showing that the iNBMT reconstructed images are more similar to the ground-
truth. This result coincides with our intuition. as observed in Fig. 4.6, Fig. 4.7, and
Fig. 4.8.

1 2 3 4 5 6

1

2

3

4

5

6

(a) Image A

1 2 3 4 5 6

1

2

3

4

5

6

(b) Image I

1 2 3 4 5 6

1

2

3

4

5

6

(c) Image B

Fig. 4.9: Illustration of von-Neumann divergence measure, which is more consistent with
human visual perception than MAE and MSE.

4.5.4 Pre-image Restoration

In this section, we compare the performance of different algorithms for pre-image restora-
tion. Latent features are first obtained for each model using the training set and the various
features then evaluated in terms of their ability to restore test pre-images. The latter are
intentionally halved.

108

Table 4.2: Reconstruction results by Von neumann divergence (the smaller the value, the
better)

Datasets Syn Com-NIST Com-USPS

iNBMT 6.4530 310.2899 2598.5233

ME-IBP 33.4758 1556.6001 5027.6282

IBP-IBP 60.4408 2416.1324 16893.2936

PNMT 216.1765 1958.5674 3737.1268

On the second row of Fig. 4.10 and Fig. 4.11, we again illustrate the ability of the four
models to extract hidden features. Unlike previous experiments, here, each sample or an
image consists of one single digit or letter rather than four combined digits or letters.

The various methods are first used to learn latent features, which are then exploited
to restore incomplete images in the test set. Specifically, the features are learned from
the training set, and binary matrix Z’s updated with the test set. The new binary matrix
Z contains znk = 1 if the nth testing element is recognized as the kth row feature. 20

incomplete digits are used in testing (Fig. 4.10(b)), and each row is the same number
(0 − 3). The recovered images are illustrated on the bottom row in Fig. 4.10. The sub-
figures with red boxes are incorrectly restored. Similarly, for the Pre-NIST, each row of
the test images denotes the same letter in Fig. 4.11(b). To evaluate the result, we only
need to determine whether the number (letter) of each row is the label of the test image.
From the results in both Pre-NIST and Pre-USPS, the iNBMT can be seen to have almost
restored all the images correctly (except two errors in Pre-USPS and one error in Pre-
NIST), while ME-IBP, IBP-IBP, and PNMT could not restore many of the images. This
experiment demonstrates the advantages of our proposed iNBMT method.

Note that the above restorations were judged perceptually. Though subjective, it is
sufficiently clear (to the naked eye) that images restored by our iNBMT model are much
closer to the ground-truth images.

4.5.5 Clustering

In this section, we evaluate the clustering performance of the proposed iNBMT method on
benchmark datasets, Coil-20 and Umist, compared with five related approaches, specif-
ically, the classical clustering k-mean method, one-side clustering ME-IBP method, and
state-of-the-art NMFT methods: PNMT and FNMTF 4. The evaluation has been per-
formed on the basis of three standard clustering criteria. c and c′ have been set to true

4Code can be downloaded from https://github.com/lucasbrunialti/
nmtf-coclustering

109

https://github.com/lucasbrunialti/nmtf-coclustering
https://github.com/lucasbrunialti/nmtf-coclustering

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

(a) 20 samples of training
data

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

(b) Data for testing

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

(c) Features learned by
iNBMT

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

(d) Features learned by
ME-IBP

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

(e) Features learned by
IBP-IBP

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

(f) Features learned by P-
NMT

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

(g) Restored by iNBMT

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

(h) Restored by ME-IBP

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

(i) Restored by IBP-IBP

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

5 10 15

5
10
15

(j) Restored by PNMT

Fig. 4.10: Comparison of iNBMT, ME-IBP, IBP-IBP, and PNMT on the Pre-USPS dataset
for pre-image restoration. The first row shows 20 samples of training data, and test im-
ages with five halved letters (0, 1, 2, 3) are showing in each row respectively. The second
row demonstrates the features learned by each method. The third row shows restoration
results. Digits with red boxes are incorrectly restored.

110

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

(a) 15 samples of training
data

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

(b) Data for testing

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

(c) Features learned by
iNBMT

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

(d) Features learned by
ME-IBP

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

10 20 30

10
20
30

(e) Features learned by
IBP-IBP

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

(f) Features learned by
PNMT

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

(g) Restored by iNBMT

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

(h) Restored by ME-IBP

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

(i) Restored by IBP-IBP

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

(j) Restored by PNMT

Fig. 4.11: Comparison of iNBMT, ME-IBP, IBP-IBP, and PNMT on the Pre-NIST dataset
for pre-image restoration. The first row shows 15 samples of training data, and test im-
ages with five halved letters (a, c, d) are showing in each row respectively. The second
row demonstrates the features learned by each method. The third row shows restoration
results. Letters with red boxes are incorrectly restored.

111

labels and resulting cluster labels respectively, and N is the total number of samples. In
the following, we describe the considered evaluation measures:

Accuracy =

∑N
i=1 δ(ci,map(c′i))

N
;

where c and c′ have been set to true labels and resulting cluster labels, N is the total num-
ber of samples, and δ(·) denotes the Delta function, δ(x, y) = 1 if x = y and δ(x, y) = 0

otherwise. We also map each cluster to an original label. This is used to measure the
percentage of correctly clustered samples. The normalised mutual information (NMI) is
used to measure the mutual information between two sets of clusters c and c′. It is also
employed as an evaluation criterion.

NMI =
I(c′, c)(

H[c] +H[c′]
)
/2

, I(c′, c) =
∑

i∈c;j∈c′
pij log2

pij
pipj

.

Here, H[c] = −
∑N

i=1 pi log2 pi and pij = nij/N refers to the probability that a member
in the cluster j belongs to class i, where nij is the number of members in cluster j belong-
ing to class i. The purity measures percentage of total number of data points that were
classified correctly:

Purity =
∑
j∈c′

nj

N
pj ,

where nj is the number of all members in cluster j and pj =
1
nj
maxi(nij) [11].

The clustering experiment reports the results obtained by our method and four related
approaches. The K-means and ME-IBP are one-sided clustering methods. The FNMTF
and the PNMF are all co-clustering methods, but with the limitation that the number of
clusters has to be specified. The FNMTF and PNMF set the number of clusters as the true
number of classes and report the best average result. Results obtained in Tables 4.3 show
that accuracy is significantly increased when co-clustering methods are applied. Based
on the results of three criteria, the proposed method iNBMT can be seen to dramatically
outperform the other benchmark methods.

4.6 Complexity Analysis

For measuring the inference efficiency, the time complexity per iteration will be calculated
on a linear-Gaussian likelihood model. We show that the per-iteration complexity of our
IBP based model outperforms other recently-proposed latent feature models [20][21].

In the ME framework, updating p(Y|Z) and p(Y|X) are independent of remain-
ing observations and only require the computation of T (·). Therefore, the T (Z) up-
dating need O(N(K2 lnK)) operations, and O(D(L2 lnL)) operations are involved in

112

Table 4.3: Clustering results on two benchmark datasets (the higher, the better)

Data Coil-20 Umist

Metrics Accuracy NMI Purity Accuracy NMI Purity

iNBMT 0.7911 0.8631 0.7917 0.5426 0.7028 0.5461

k-means 0.5563 0.7768 0.6201 0.4696 0.5994 0.4713

ME-IBP 0.5792 0.6997 0.6042 0.4713 0.6128 0.4713

FNMTF 0.6937 0.7851 0.6944 0.4887 0.6355 0.4904

PNMT 0.6111 0.7554 0.6146 0.5009 0.6019 0.5026

updating T (X). In our proposed iNBMT model, it yields a per-iteration complexity of
O(N(K2L) + D(L2K)) for updating q(W), which consists of two parts: O(K2L) op-
erations on optimising p(Z), and O(L2K) operations on updating p(X). Hence, the to-
tal per-iteration complexity of iNBMF yields O(N(K2L) + D(L2K)) operations. The
latent feature model via IBP proposed in [20] uses similar ME inference over the la-
tent factors. Its total per-iteration complexity of ME-IBP model is easily checked as
O(NK2(D+lnK)) consisting of O(K2D) operations on q(W) and O(N(K2 lnK)) op-
erations on the infinite variable p(Y|Z). Clearly, the operations of our model are mainly
reduced when updating the parameters of non-negative matrices. In the correlated IBP-
IBP model, there are also two infinite variables, the category U and latent features V,
the per-iteration complexity of p(Y|Z) is O(NK2L lnN). In addition, O(NK2L(LD))

operations are needed when updating p(W). Therefore its total per-iteration complexity
is about O(NK2L(LD + lnN)).

In practice, N and D are usually sufficiently larger than K and L.5 Hence, the per-
iteration complexity of the proposed iNBMT can be written in a simple form: O(αN +

βD), while that of ME-IBP model is simplified to O(γND) and IBP-IBP is simplified to
O(δND), where α, β, γ, and δ are small coefficients. Clearly, our proposed iNBMT has
the per-iteration complexity one order lower than that of the competitive models. For bet-
ter comparison with the other feature-based models, we list the per-iteration complexity
in Table 4.4.

4.7 Summary

In this chapter, we propose a new Bayesian model, termed infinite Non-negative Bina-
ry Matrix Tri-factorisation (iNBMT). The proposed model is proven to be capable of

5Observations are consist with N objects with D attributes.

113

Table 4.4: Number of parameters comparison. The per-iteration time complexity of our
proposed iNBMT is one order lower than the other two models.

Methods Per-iteration complexity

iNBMT O(αN + βD)

ME-IBP O(γND)

IBP-IBP O(δND)

automatically learning latent binary features along with feature numbers, based on the In-
dian Buffet Process (IBP). The proposed iNBMT engages a tri-factorisation process that
decomposes a nonnegative matrix into the product of three components, including two
binary matrices and a non-negative real matrix. We impose an IBP prior on the two in-
finite binary matrices, while a truncated Gaussian distribution is assumed on the weight
matrix. To optimise the model, we develop an efficient modified, variational Bayesian al-
gorithm, with the iteration complexity one order lower than recently-proposed IBP-based
models. We have carried out a series of experiments which demonstrate that our proposed
iNBMT model significantly outperforms state-of-the-art algorithms on both benchmark
and real-world data.

4.7.1 Limitation and Future Work

Despite the remarkable performance of our model, some limitations still need to be ad-
dressed. First, while our IBP based method is faster than most other approaches, it is
not as fast as the traditional NMF. Second, as observed in experiments, repetitive binary
features can sometimes be extracted. Both these issues will be addressed in future work
to improve our iNMBT model further. Finally, similar to many factorisation methods, the
proposed model can be applied to a range of future applications, including gene expres-
sion clustering [157, 158], graph matching [159], and zero-shot learning [160].

114

Chapter 5

A Novel Deep Density Model for
Unsupervised Learning

Density models have been receiving much interest in multi-layered or deep architectures.
In the models with a single hidden layer (or shallow models), with the increase of the
component numbers, the scale of parameters will be significantly increased. When a
model has massive parameters, it is difficult to find the optimal solution by using a gra-
dient descent method. In the deep model, the layer-wise optimisation algorithm can be
used to optimise the parameters in a layer-by-layer procedure, and then to obtain the
optimal solution by fine-tuning. [29]. Compared to shallow models of a similar scale,
deep models are able to reduce greatly the computational difficulties of learning, tend to
resist overfitting through parameter sharing between successive layers [75], and can pro-
mote effectively cognitive capabilities [35, 78]. The knowledge of cognitive agents can
be modelled using more complex probability distributions and a deep density model can
provide better support for simulating complex data. Deep density models have theoretical
and practical significance in many disciplines and have attracted considerable attention
in prediction, reconstruction, clustering, and simulation [161]. Furthermore, probabilis-
tic graphical models have always had a fundamental role in constructing or estimating
sophisticated density in deep density models; these models include the restricted Boltz-
mann machine (RBM), Gaussian restricted Boltzmann machine (GRBM), and directed
belief networks (DBNs) [12, 13, 162]. Despite their lower optimisation difficulties than
shallow architectures, deep models still present computational difficulties in practice; for
instance, RBMs are tricky to train with a large number of free parameters, while DBNs
require costly inference procedures [14, 75, 163].

In this chapter, we look at two shortcomings of deep generative models: a large num-
ber of free parameters and costly inference procedures. Then the layer-wise learning ap-
proach is considered to address these concerns. This model is a directed graphical model
which has been developed by adopting a shallow latent variable model. In particular, the

115

deep architecture extends the same scheme in training each hidden layer. In addition,it
takes the expectation-maximisation (EM) algorithm to maximise the log-likelihood in
learning. Its inference and parameter computation procedure is more straightforward than
previous methods.

The remainder of this chapter is structured as follows. The proposed method and in-
ference procedure are described in Section 5.1. In Section 5.2, related work is briefly
reviewed. In particular, the difference between our proposed method and other relevant
work is emphasised. Section 5.3 demonstrates the density estimation and clustering re-
sults on four datasets and also includes the generation results on a benchmark dataset.
The results obtained illustrate the improved performance of the proposed model (called
DMCFA) over the other competitive models, e.g., MFA, DMFA, MCFA, and the shallow
forms collapsed from the deep models. Finally, a conclusion is given in the last section.
The content of this chapter has already been published on [22, 23].

5.1 Deep Mixtures of Factor Analysers with Common Load-
ings

This work addresses the previous limitations by proposing a novel greedy layer-wise
learning approach, referred to as the Deep Mixtures of Factor Analysers with Common
loadings (DMCFA). In developing the underlying idea, we extend the MFA model sharing
a common component factor loading (MCFA) [100] when constructing a deep generative
framework. The principal improvement is the common component factor loading which
can be considered to be a feature selection or dimensionality reduction matrix. This, con-
sequently reduces considerably the number of model parameters [164, 165]. DMCFA can
simultaneously perform deep learning or clustering, together with dimensionality reduc-
tion or feature selection. In this case, a common loading can be well justified and is phys-
ically more meaningful. This setting can potentially further increase the performance,
particularly in cases of large number of components or features [115]. The proposed
model is also flexible in estimating the data density by utilising the learnable Gaussian
distributions as the priors for each latent unit.

Fig. 5.1(b) offers an overview of the proposed model through a graphical example of
a two-layer DMCFA. The first layer is constructed with two global parameters, which are
the factor loading and the noise covariances. In the second layer, the common parameters
are extended to each latent unit. While we introduce the mean and variance matrices of
the latent factors, the number of free parameters is still dramatically reduced compared to
that of deep mixtures of factor analysers (DMFA) [75]. Under a two-layer model, the total
number of free parameters in DMCFA is far smaller than in DMFA; approximately, we

116

(a) Graphical model of DMFA. (b) Graphical model of DMCFA.

Fig. 5.1: Graphical models of a two-layer DMFA and DMCFA. DMCFA is a deep directed
graphical model utilising the multi-layer factor analysers which are developed by adopting
an MCFA model in each hidden layer.

have pq+cqd << cpq+sqd, where d < q ≪ p (the dimensionality), and the total number
of second-layer components s is a multiple of the total number of first layer components
c. It is easy to verify that DMCFA utilises approximately only 1/c parameters of DMFA
(details can be found in Section 5.1.4). Therefore, our model has the notable advantage
of dealing with multivariate data with a larger number of clusters or with insufficient
instances.

To optimise the proposed model, we further develop a simple yet efficient EM-type
algorithm for both learning and inference. The modified EM algorithm converts the M-
step into 2-layer loops and then performs learning in each layer independently. Compared
to the classical MCFA model, the layers are configured to contribute to a simpler objective
function within the EM algorithm with the same scale of mixtures [77]. This makes
DMCFA inference and learning more straightforward and efficient and less likely to get
trapped into a local optima. Meanwhile, the overfitting risk and the free parameters are
reduced by sharing the factor loadings amongst the layers. With mild variational inference
assumptions, when the bound is tight, any increase in the bound will improve the true
log-likelihood of the model. Therefore, the higher layer has the ability to model a better
aggregated posterior of the first layer, showing that the proposed deep model would be
much better than training a shallow model.

5.1.1 Main Model

The MCFA model considered here is fundamental to the proposed method (detailed for-
mulation in Chapter 3.1.2). We assume that a p-dimensional vector of observed variables
y can be generated through a linear combination with a q-dimensional vector of latent
factors z potentially corrupted by additive uncorrelated Gaussian noise ϵ. By introducing

117

the common factor loadings A ∈ Rp×q, the directed generative MCFA model is defined
as

y = A
C∑
c=1

zc + ϵ, with probability πc (c = 1, . . . , C) . (5.1)

The marginal density of the first-layer MCFA (PMCFA(y;θ)) is given by a mixture of
Gaussians with constrained mean and covariance, as

PMCFA(y;θ) =
C∑
c=1

πcN
(
y;Aξc,AΩcA

T +Ψ
)
. (5.2)

Here, the model parameters are denoted by θ = {πc,A,Ψ, ξc,Ωc}, for c = 1, . . . , C.

The same scheme was extended to train the DMCFA model. By illustrating a mixture
of the higher layer in Fig. 5.2, we can clearly see that a mixture model can better model
a non-Gaussian posterior component in the lower layer. The key improvement is that the

Fig. 5.2: The sketch of a mixture of the higher layer of DMCFA. Left: The aggregated
posterior of a component in the lower layer is not a Gaussian distribution. Right: The
higher layer has an ability to model a better aggregated posterior of the lower layer.

same load matrix is used for each mixture component that uses MCFA as an aggregated
prior. This would potentially further improve the performance. Since different loading
matrices are used in DMFA, the number of parameters may be unmanageable when the
data has a larger feature dimensional and/or smaller observations. Moreover, different
load matrices may not be physically essential or even unnecessary [23].

This section describes how to generalise an MCFA to multiple layers. In the shallow
form, the latent factors in each component would be distributed according to a single
Gaussian. However, this cannot describe the latent factors in practice, and the model can

118

be improved by using a more powerful mixture of Gaussian priors. With this in mind, it is
straightforward to form the second layer. Considering the same assumption as in MCFA,
observed variables y ∈ Rp, latent factors z ∈ Rq, and non-overlapping components c

are set in the first layer of the DMCFA model. After a shallow MCFA training reaches
convergence, the prior of latent factors in the first layer will be replaced by an MCFA
prior

p(z|c) = PMCFA(z
(1)
c ;θ(2)c) . (5.3)

Here, θ(2)c denotes the new parameters for the second-layer MCFAs specific to the com-
ponent c of the first layer. The same scheme can be extended to train more layers. In
the second layer of the cth component, z(1)c is the q-dimensional input pattern for the sec-
ond layer, which is sample drawn using the posterior distribution of the first-layer latent
factors

p(z|y, c) = N (z;κc,V
−1
c) , (5.4)

V−1
c = Ω−1

c +ATΨ−1A ,

κc = ξc +V−1
c ATΨ−1(y −Aξc) .

In the deep model, mc ∈ {1, . . . ,Mc} is set to be the sub-component indicator vari-
able1, which is associated with the first-layer component c. In the second layer, the mixing
proportion π

(2)
mc of component mc is defined as

p(mc) = π(2)
mc

,
Mc∑

mc=1

π(2)
mc

= 1 . (5.5)

The old MCFA prior is replaced by a new prior of DMCFA

p(z, c) = p(c)p(z|c)⇐ p(z, c) = p(c)p(mc|c)p(z|mc) . (5.6)

Different from the first layer where mc is specific to the first-layer component, a sim-
pler DMCFA formulation is established by enumerating all the second-layer components.
A new indicator s ∈ {1, . . . , S} is denoted as the second-layer component indicator vari-
able. S is the total number of the second-layer components satisfying S =

∑C
c=1mc.

Therefore the new mixing proportions are given by

π(2)
s = p(s) = p(cs)p(s|cs) ,

S∑
s=1

π(2)
s = 1 , (5.7)

1One component of the first layer can be divided into Mc sub-components. The size of the sub-components
in each first-layer component need not be the same.

119

where cs is the first component associated with s, and every s belongs to one and only one
c.

Specifically, the density on factors z(1) follows the joint density over z(2) and s ac-
cording to

p(z(1), z(2), s) = p(z(1), c|z(2), s)p(z(2)|s)p(s) . (5.8)

It is also necessary to consider the following density functions

p(z(1), c|s, z(2)) = N
(
z(1);A

(2)
c z(2),Ψ

(2)
c

)
, (5.9)

p(z(2)|s) = N
(
z(2); ξ(2)s ,Ω(2)

s

)
. (5.10)

The marginal distribution can also be written through a shallow form by integrating
out the latent factors

p(y|c) =
∫
z
p(y|c, z)p(z|c)dz = N (y;µc,Σc) , (5.11)

µc = Aξc , Σc = AΩcA
T +Ψ .

According to this equation, the Gaussian density can be expressed on the observed data y
given z(1) and c, as

p(y|c, z(1)) = N
(
y;A(1)z(1),Ψ(1)

)
. (5.12)

Here, A(1) ∈ Rp×q, Ψ(1) ∈ Rp×p, z(1) ∈ Rq, A(2)
c ∈ Rq×d, Ψ(2)

c ∈ Rq×q, z(2) ∈ Rd,
ξ(2)s ∈ Rd and Ω

(2)
s ∈ Rd×d.2 Conventionally, the joint distribution with the second layer-

latent variables is given by

p(z(1), z(2), s) = p(z(1), c|z(2), s)p(z(2)|s)p(s). (5.13)

The same scheme can be extended to train the following layers of MCFA.

5.1.2 Inference

According to Eq. (5.4), we sample z(1) ∼ p(z|y, c) by selecting the component ĉ =

argmax
c

q(c|y;θc). Then z(1) and ĉ are treated as the input data for the second layer.

The posterior probability q(s|z(1), ĉ;θs) and the posterior distribution p(z(2), s|z(1), ĉ) are

2The superscript represents which layer these variables belongs to. Since in the second layer, the sub-
components corresponding to a component of the first layer share a common loading and the variance
of the independent noise, A(2)

c and Ψ
(2)
c are marked with the subscript c. d denotes the d-dimensional

subspace of the second layer, where d < q.

120

computed similarly by the inference for the Maximum A Posteriori (MAP). The formu-
lations of the posterior distribution are a similar fashion in Chapter 2.2.5 & 2.2.6 with
respect to the second-layer parameters3

q(z(2), s|z(1), c) = N
(
z(2);κ

(2)
cs ,V

(2)−1

cs

)
, (5.14)

where

V
(2)−1

cs = Ω(2)−1

s +A
(2)T

c Ψ(2)−1

c A
(2)
c ,

κ
(2)
cs = ξ(2)c +V

(2)−1

cs A
(2)T

c Ψ(2)−1

c (z(1) −A
(2)
c ξ

(2)
c) .

The posterior of the components can be found as follows

q(s|z(1), c) ∝ p(z(1), c|s)p(s) , (5.15)

ŝ = argmax
s

p(s)q(s|z(1)) .

In maximum likelihood estimation, the likelihood of the mixture model correspond-
ing to the cth component derived from the first layer is estimated concerning the new
observations z(1)c and parameters θ(2)cs

P (z(1)c ;θ(2)cs) =
∑
s∈c

πs

q∏
i=1

{
N (z

(2)
i |A(2)

c ξ
(2)
c ,A(2)

c Ω(2)
s A(2)T

c +Ψ(2)
c)
}
, (5.16)

where s is just allowed to belong to one and only one c, and q denotes the number of
dimensions of the new observations.

The algorithm we proposed for training DMCFA is based on the EM algorithm. Since
the mixtures are independent in a layer due to the greedy layer-wise optimisation, the
EM algorithm can be used to estimate the parameters of each mixture and find a local
maximum of the log-likelihood. Given the complete data y, the first-layer log-likelihood
objective function is formulated as

L(θc|y, ωc, zc) =
C∑
c=1

∫
z

q(z, c|y;θc){
log p(y|c, z) + log p(z|c) + log πc

}
dz ,

(5.17)

where q(z, c|y;θc) is the posterior distribution. The bound is tight when q(z, c|y;θc) =
p(z, c|y;θc). With regard to the second-layer parameters θ(2)c which are specific to com-
ponent c of the first layer, the DMFA formulation seeks to substitute a more effective
prior log p(z(1)|ĉ;θ(2)c). Holding the first-layer parameters fixed, maximising Eq. (5.17)

3The subscript emphasises the sub-component s which is specific to a component c of the first layer.

121

with the second-layer parameters is equivalent to maximising

L(θ(2)c |z(1)) =
S∑

s=1

∫ (2)

z

q(z(2), s|z(1), ĉ;θ(2)c)
{
log p(z(1), ĉ|z(2), s;θ(2)c)

+ log p(z(2)|s) + log p(s)
}
dz .

(5.18)

The second-layer parameter vector consists of θ(2)c = {πs,Ac,Ψc, ξs,Ωs}, and c =

1, . . . , C. Parameters of the mixture model on the new observations z
(1)
c can be updat-

ed

θ̂(2)c = argmax
θ
(2)
c

L(θ(2)c |z(1)). (5.19)

In the layer-wise learning scenario, an MCFA is trained in a standard way for the first
layer. For the second layer, the parameters of the first layer become fixed, and new
training data are sampled depending on the posteriors from the first layer. The modi-
fied EM-algorithm is developed to alter the M-step into 2-layer loops. The procedure is
summarized in Algorithm 4.

Algorithm 4: The procedure of the 2-loop M-step
Input : Initialized paremeters θ = {πc,A, ξ,Ωc,Dc}, and the initial value of the

log-likelihood.
Output: Optimal values of parameters θ.

M-step :
Update the global parameters θg = {A, D} :

Re-estimate the parameters A,D by maximisation of E[L(θc|y, ωc, zc)];

Calculating partial derivatives of the expectation equations for each global
parameters ∂E[L(θ|θ(k))]/∂θg = 0.

Update the local parameters θl = {πc, ξc,Ωc} :
for c = 1 to C do

Re-estimate the parameters θl = πc, ξc,Ωc by calculating partial
derivatives of the expectation equations for each local parameters
∂E[L(θ|θ(k))]/∂θl = 0.

Note that, since A is orthogonal, any upper triangular matrix U can be absorbed in
A by setting A ← AUT , where U is the Cholesky factor of Ωc. Therefore, the updated
estimates ξc and Ωc are adjusted by setting ξc ← Uξc and Ωc ← UΩcU

T .

122

5.1.3 Collapse Model

Although a DMCFA model can be collapsed back into a standard shallow MCFA by
multiplying the factor loading matrices at each layer, the learning of these two models is
entirely different since the lower layer shares the parameters with the components of the
upper layers in the deep model. Therefore, DMCFA is more efficient and straightforward
than the shallow form, which attributes to the conditional distribution of the components
in the previously hidden layer which is not modelled using the parameters of the following
hidden layers. Moreover, the over-fitting risk and the computational cost of learning can
be significantly reduced by sharing the factor loadings among the layers.

After the first-layer factors z(1) are integrated out, we obtain a multivariate Gaussian
density

p(y|z(2), s) = N
(
y;A(1)(A(2)

c z(2)),A(1)Ψ(2)
c A(1)T +Ψ(1)

)
. (5.20)

By further integrating out the second-layer factors z(2), the final shallow form is then
obtained by

p(y|s) =
∫
z(2)

p(y|z(2), s)p(z(2)|s)dz(2) = N (y;ms,Σs) , (5.21)

ms = A(1)(A
(2)
c ξ

(2)
s) , Σs = A(1)(A

(2)
c Ω(2)

s A
(2)T

c +Ψ(2)
c)A(1)T +Ψ(1) .

Finally, the marginal density of the shallow model is given by a mixture of Gaussians with
the complete data y, given as

p(y) =
S∑

s=1

p(s)p(y|s) =
S∑

s=1

πsN (y;ms,Σs) . (5.22)

Conventionally, θcs = {πs,A,Ψ,Ac,Ψc, ξs,Ωs}S,Cs=1,c=1 represents the parameters of this
shallow MCFA. The posterior distribution of the latent factor zs can also be collapsed to
a shallow form

q(zs, s|y) = N (zs;κs,V
−1
s) , (5.23)

V−1
s = (A

(2)
c ΩsA

(2)
c +Ψ(2)

c)−1 +A(1)TΨ(1)−1

A(1) ,

κs = A(1)T ξs +V−1
s A(1)TΨ(1)−1

(y −ms) .

5.1.4 Complexity Analysis

To measure the inference efficiency, the time complexity per iteration is calculated on the
E-step and M-step. It is shown that the per-iteration complexity of our model outperforms
the standard EM-algorithm and the free parameters are further reduced compared with the
recently proposed deep mixture model.

123

The following calculations are all based on the two-layer mixture model, in which n

and p denote the sample size and the number of dimensions, c and s are the numbers of
mixtures in the first and second layer, and q and d are the dimensions of representation
space in the first and second layer, respectively. A rough estimation of the computation
complexity is calculated similar to [166]. With a multi-linear Gaussian likelihood model,
both DMFA and DMCFA have same per-iteration complexity in E-step: O(cn(p+q+1))

on the first layer and O(sn(q + d + 1)) on the second layer. DMFA yields O(3cnp)

and O(3snq) operations on the first and second layers per-iteration by using the standard
M-step. In our proposed DMCFA model, an efficient M-step is developed by updating
the global parameters and local parameters alternatively. DMCFA yields O(2np+ 2cnq)

operations in the first step and O(2nq + 2snd) operations in the second step. Clearly, the
operations of the proposed model are mainly reduced when updating the global parame-
ters of the common factor loadings.

Since a common component loading matrix is shared across the components, the num-
ber of free parameters is dramatically reduced when compared with DMFA, even though
the mean and variance matrices of latent factors are introduced. In practice, the diag-
onal matrix covariance just has p parameters, and the covariance matrix contains q(q−1)

2

constraints. From all the above settings, the total numbers of parameters are

TDMCFA = s− 1 + p+ pq − q2 + c

[
2q +

q(q + 1)

2
+ qd− d2

]
+ s

d2 + 3d

2
.

TDMFA = s− 1 + c

[
2p+ pq − q(q − 1)

2

]
+ s

[
2q + qd− d(d− 1)

2

]
.

Practically, in the deep mixture models, it is usually the case that p ≫ q > d, c >

1, and the second-layer component number s must be a positive integer multiple of c.
TDMCFA can be roughly given as p(1 + q), while TDMFA is approximately c(2 + q)p.
Hence, TDMCFA/TDMFA = (1 + q)/(2c + qc) < 1/c, which means that the proposed
DMCFA merely uses 1/c parameters of DMFA.

5.2 Benchmarking Approaches

The work most related to the proposed model is the deep mixtures of factor analysers
(DMFA), which is a deep directed graphical model utilising the multi-layer factor anal-
ysers developed by adopting an MFA in each hidden layer [31, 75]. MFA introduces a
multivariate standard normal prior that is specified via the latent factors for all compo-
nents. The principal method is to sample the data regarding the posterior distributions of
the current layer and treat it as the training data for the next layer. Fig. 5.1(a) presents
an instance of DMFA, where the observation vector and the first hidden layer are treated

124

as an MFA component, while the parameters are used for the learning. After fixing the
first-layer parameters, the priors of next-layer MFAs are replaced by sampling the hid-
den units of the current layer. The same scheme can be extended to the training of the
subsequent layers. Importantly, different loading matrices are exploited for the different
components in DMFA. Therefore, if the data has large feature dimensionality and/or s-
mall number of observations, the number of parameters may not be manageable. On the
other hand, different loading matrices may be even less physically meaningful. In com-
parison, the proposed DMCFA model adopts the common component factor loadings to
cope with these situations and provides both theoretical and empirical justification for its
effectiveness.

The proposed model is also compared with several classical shallow models. With
regard to the model itself, a deep MCFA structure can be collapsed into a standard shal-
low MCFA by multiplying the factor loading matrices at each layer. However, since the
lower layer shares the parameters with the components at the upper layers, the learn-
ing of these two models is entirely different. For a shallow model, large-scale mix-
tures could render the objective function sufficiently complex. On the other hand, the
model parameter redundancy may also lead to overfitting during learning. If we as-
sume that d < q ≪ p denotes the number of the second and the first layer factors,
and that the number of attributes and the second layer component number are an a mul-
tiple of the first-layer component number, then we have s > ac. A standard shallow
MFA has s components and q factors. The reduced parameters are then calculated as
T = spq − (cpq + sqd) = q (p(s− c)− ds) > 0.

5.3 Experimental Results

In this section, we evaluate the DMCFA’s performance for model-based density estimation
and clustering using five real datasets with: two standard models MFA and MCFA, a deep
model DMFA (detailed shown in Chapter 2.4.2), and the shallow forms collapsed by
the deep models (details in Chapter 2.4.4 & 5.1.3). Moreover, we conduct a qualitative
experiment on a benchmark dataset to evaluate the performance in terms of generation.

5.3.1 Experimental Setup

In the experiment, we follow the work of DMFA [75], where according to their findings,
adding a third layer can only bring little value. Therefore, we implement two layers
for all deep models and for all experiments. The same mixture settings are used in the
second layer. To reduce clutter, the scenarios of density estimation and clustering exploit
the same parameter settings. The detailed settings of two deep models are described in

125

Table 5.1: Parameter settings. ♯Layers denotes the layer numbers of the deep models.
MIX and FAC denote the number of mixture components and the factors, respectively.

Dataset ♯Layers
DMFA DMCFA

MIX FAC MIX FAC

ULC-3
1 3 90 3 90
2 6 20 6 8

Coil-4-proc
1 4 16 4 16
2 8 8 8 12

Leuk72 3k
1 3 16 3 16
2 6 6 6 6

USPS1-4
1 4 16 4 10
2 8 8 8 8

Table 5.1. These settings are achieved by using a trial and error approach to get the best
empirical performance. For the standard MFA and MCFA, we set the same number of
mixture components and factors, with the first layer of their “deep” counterparts.

To assess the model-based clustering performance, we compute the error rate (ERR)
defined as

ERR = 1−
∑N

i=1 δ(ci,map(c′i))

N
,

where δ(x, y) = 1 if x = y and δ(x, y) = 0 otherwise, and N denotes the total number of
observations. The true labels and the result cluster labels are set to c and c′, respectively.
Smaller values indicate better clustering performance.

5.3.2 Datasets Description

We use an artificial dataset, a multivariate physical dataset and 3 image collection datasets
to evaluate the proposed model throughout this section. The details are listed as below:

• ULC-3: The urban land cover (ULC) data consists of 3 types with 273 training
samples, 77 test samples, and 147 attributes which are collected by classifying a
high-resolution aerial image [106, 107].

• Leuk72 3k: This is an artificial dataset drawn from randomly generated Gaussian
mixtures [167]. There are 3 classes with 39 attributes including 54 training samples
and 18 test samples.

• Coil-4-proc: This dataset is a collection of 4 objects consisting of gray-scale im-
ages and each object has 72 samples [108]. These images discard the background

126

Table 5.2: Performance on various real data in terms of the average log-likelihood (the
larger, the better) on the training set. DMFA and DMCFA are each set to two layers.
S-MFA and S-MCFA denote the shallow form by collapsing the deep models.

Training Results

Dataset MFA MCFA DMFA DMCFA S-MFA S-MCFA

ULC-3 -434.0364 -216.7516 -98.4912 -89.2465 -424.0828 -212.7775

Coil-4-proc -3813.9950 -1521.7157 -24.3242 -10.8630 -3759.5424 -1494.3084

Leuk72 3k -154.8025 -117.4220 -16.9911 -12.8301 -152.1288 -114.1186

USPS1-4 -1078.2457 -451.4169 -14.9465 -19.6103 -1073.4724 -442.0988

and downsampled to resolutions of 32 × 32. We reshaped each image to a 1024-
dimensional vector. We divide the data into a training set and a test set, with 248

samples and 40 samples separately by randomly sampling.

• USPS1-4: This dataset contains 16× 16 images of 1 to 4 handwriting digits of size
pixels. Each image is reshaped to a vector, hence, the dimensionality is equal to
256. Both the training set and the testing set include 100 (random sampled) images
of each digit.

• MNIST: The benchmark handwritten digits dataset which is composed of 60, 000
28× 28 handwriting digit images [168].4

5.3.3 Results
Empirical results

We first examine the quality of the density evaluation produced by the DMCFA and the
other rival methods on a variety of datasets. Empirically, the log-likelihood value can
reflect the fitting degree of the model parameters. Hence, the average log-likelihood is
exploited to evaluate the quality of density estimation. Table 5.2 lists the mean log-
probability values for the deep models versus the shallow models on their training set.
The DMCFA has a better performance in training on most datasets except the USPS1-4
dataset. On the USPS1-4 dataset, DMFA has the highest value in training, but it cannot
gain the best clustering result (in Fig. 5.5). This may be caused by overfitting due to the
limited samples. The average log-probabilities values on the test set are listed in Table 5.3
.
4http://yann.lecun.com/exdb/mnist/

127

http://yann.lecun.com/exdb/mnist/

ULC-3 Coil-4-proc Leuk72_3k USPS1-4
Dataset

-104

-103

-102

-101

-100

Lo
g-

lik
el

ih
oo

d
(T

ra
in

in
g

se
t)

DMFAs
DMCFAs
S-MFAs
S-MCFAs

Fig. 5.3: Performance on various real data (on the training set) in terms of the average log-
likelihood (the larger, the better). DMFA and DMCFA are all set in two layers. S-MFA
and S-MCFA denote respectively the shallow form by collapsing the deep models.

ULC-3 Coil-4-proc Leuk72_3k USPS1-4
Dataset

-104

-103

-102

-101

-100

Lo
g-

lik
el

ih
oo

d
(T

es
tin

g
se

t)

DMFAs
DMCFAs
S-MFAs
S-MCFAs

Fig. 5.4: Performance on various real data (on the testing set) in terms of the log-
likelihood (the larger, the better). DMFA and DMCFA are all set in two layers. S-MFA
and S-MCFA denote respectively the shallow form by collapsing the deep models.

128

Table 5.3: Performance on various real data in terms of the average log-likelihood (the
larger, the better) on the test set. DMFA and DMCFA are each set to two layers. S-MFA
and S-MCFA denote the shallow form by collapsing the deep models.

Test Results

Dataset MFA MCFA DMFA DMCFA S-MFA S-MCFA

ULC-3 -737.4383 -295.4271 -110.1660 -89.6897 -732.2352 -291.4142

Coil-4-proc -4504.3847 -1570.5914 -38.4105 -9.7465 -4466.2764 -1564.2895

Leuk72 3k -191.3275 -120.6031 -17.4814 -11.9715 -189.5890 -117.2442

USPS1-4 -1140.2889 -461.5310 -21.2674 -19.4758 -1137.2793 -451.6439

In order to make the results of the deep model and the collapse model more visible,
we conduct the empirical analysis through illustration. Here, all the results are all the
results are logarithmically computed which makes the results of different datasets more
conveniently compared. The average log-likelihood value on training data are shown
in Fig. 5.3 by multiple trials. The results of the testing data are also obtained without
updating parameters, as shown in Fig. 5.4. we can observe that the deep models can
improve the true log-likelihood of the standard model dramatically.

Clearly, the DMCFA demonstrates better performance on all the datasets. By com-
paring the results of each group of training and testing, we can see that DMCFA is more
capable in resisting overfitting. These results also reveal that the proposed deep model
improves the true log-likelihood of the standard model dramatically.

Clustering results

To assess the model-based clustering performance, we compute the error rate on 4 real
datasets for comparing the performance of DMCFA with the other methods. In the ex-
periments, all of the methods have been initialised by random assortment. The clustering
results for the deep models versus the shallow models on the training sets are shown in
Fig. 5.5, and the results on the test sets are shown in Fig. 5.6. Also, we have done many
trials to choose the best result by dropping attributes into different dimensions. Table 5.3
shows the detailed numerical results. The results shown here are the best from each mod-
el in the most appropriate dimensions. For each approach, the best results are reported,
and it can be seen that the lowest error rate is obtained consistently with DMCFA which
outperforms the other competitors. Although the DMFA and the shallow form collapsed
by the DMCFA achieve the lowest error rate in some training sets, the results deteriorate

129

Fig. 5.5: Clustering performance (error rate) on all the datasets. The best result is reported
from each model on the training set.

in the test set. Moreover, it can be clearly observed that the collapsed shallow form-
s hardly improve performance. Also, the deep models are consistently better than their
shallow counterparts. This observation further confirms the advantages of deep models
over shallow ones.

Table 5.4: Clustering accuracy (error rate) on all the datasets. The best result is reported
from each model on the training and testing sets.

Error Rate

Dataset
MFA MCFA DMFA DMCFA Shallow MFA Sallow MCFA

Train Test Train Test Train Test Train Test Train Test Train Test

ULC 0.3297 0.2857 0.1429 0.1818 0.3187 0.2597 0.1392 0.1558 0.3297 0.2727 0.1392 0.1948

Coil-4-proc 0.0726 0.1250 0.0605 0.0500 0.0645 0.1000 0.0565 0.0250 0.0726 0.2000 0.0645 0.0500

Leuk72 3k 0.0667 0.1111 0.0667 0.0741 0.0444 0.0741 0.0444 0.0370 0.0667 0.1111 0.0667 0.0741

USPS1-4 0.2150 0.2375 0.1100 0.1725 0.2100 0.2325 0.1075 0.1400 0.2075 0.2350 0.1125 0.1475

Qualitative results

To demonstrate the generation results of all models, a qualitative study is conducted on the
MNIST dataset. [169]. In this experiment, we try to generate the handwritten digits with
a two-layer model given by DMCFA and DMFA. The deep models are trained with 10

first-layer components and 64 first-layer factors. Furthermore, we stack the second layer
with 40 components (four components for each of the 10 first-layer components) and 16

130

Fig. 5.6: Clustering performance (error rate) on all the datasets. The best result is reported
from each model on test set.

factors. The process of generating a sample is as follows. First, we sample the variables
within the latent space. Then, we can generate real samples from the density estimation
in the observation space according to the reversibility property of the generative model.
Fig. 5.7 presents some of the generated digits, with each column showing the same digit
(since the mixture model can aggregate each type of numbers). From the results shown
in Fig. 5.7(a), although the generated 4’s and 9’s could be easily confused, we can still
clearly observe that the DMCFA model is able to generate a variety of samples with
high quality. The results of the comparison model DMFA are shown in Fig. 5.7(b). The
generated digits are similar, although they also have high quality. Here, we also compare
the results of the shallow models, as shown in Fig. 5.7(c) and Fig. 5.7(d). Obviously, the
results of the deep models are complete and more clear.

5.4 Summary

A novel deep density model, the DMCFA, is presented in this paper. Our approach bor-
rows ideas from deep learning, multilayered factor analysis, and Gaussian mixture model-
ing to ensure that the learned density models for high-dimensional data are tractable. Ex-
ploiting the greedy layer-wise algorithm, we design an efficient expectation-maximisation
algorithm to maximise the posterior and learn the parameters. Compared with existing
deep density models, this approach enjoys an easy inference procedure, lower time com-
plexity, and a significantly smaller number of free parameters. We evaluate our model on

131

(a) 2-layer DMCFA (b) 2-layer DMFA

(c) MCFA (d) MFA

Fig. 5.7: Comparison of two-layer DMCFA, two-layer DMFA, MCFA, and MFA on the
MNIST dataset for generation.

empirical and clustering tasks using real-world datasets, which is shown to achieve better
results compared to the state-of-the-art methods. Our generative model also allows us to
produce real samples via sampling within the latent representation space of the learned
clusters.

5.4.1 Limitation and Future Work

There are also some disadvantages of the proposed model. First, it may not be flexible
enough, since it is required to pre-specify the parameters. Moreover, it is not natural to
model arbitrarily non-linear representations with a mixture as used in the model. Second,
the performance may be degraded when the involved layers are too many.

Future work includes the extension of the common loading idea to other deep density
models. Also, an investigation of Bayesian methods will be conducted so that the num-
ber of mixtures and dimensions (of the latent representation space) can be automatically
learned. Lastly, we intend to introduce the Neural Network framework so as to achieve
an arbitrarily non-linear representation and deeper architecture (in Chapter 6).

132

Chapter 6

Deep Neural Network-Based Models via
Density Estimation

Deep learning is perhaps the most popular learning method and a powerful tool for build-
ing intelligence systems. As deep neural networks, deep learning also can be considered
as a nonlinear function but with a large number of parameters across various layers [170–
172]. In contrast with shallow neural networks, there have been substantial improvements
for deep models in the computational, algorithmic, and architectural aspects. Particularly,
advances in software tools or platforms (e.g., Tensorflow and Torch) have enabled more
convenience in building deep networks easily.

Compared with the traditional machine learning method, especially the probability
models as the core of this dissertation, deep learning can realise multi-layer nonlinear
mappings with a relatively mature and standard inference process. Moreover, deep learn-
ing can usually lead to excellent performance in many benchmark tasks. Despite these
advantages, it is also widely recognised that there are still some limitations to the deep
learning systems. These limitations or flaws are shown in Fig. 6.1 [173–175].

Fig. 6.1: Flaws of the deep learning systems.

133

Among these shortcomings, how to represent uncertainty is the concern of our re-
search. First of all, the learning models are expected to make predictions with an uncer-
tainty measure. In another word, it is desirable if the models can know when they do
not know, rather than giving a wrong answer directly (as the current deep models usually
make a hard decision). To alleviate this problem, it is very important if the model can
generate a probability while the decision is made [176]. On the other hand, probabilistic
models are usually easy to manipulate in terms of complexity control or structure learn-
ing. Moreover, these models can even avoid the need for regularisation which is normally
used to prevent overfitting.

In this chapter, for the purpose of enabling the advantages caused by the probabilistic
approaches, we intend to develop several novel deep models by combining the density
models with the deep Autoencoder. More specifically, in Section 6.1, a deep generative
model is developed based on our previous work which extends the 2-layer joint learning
model into a deep neural network framework. This model can be referred to as an Deep
Autoencoder-Based Joint Learning Model. Section 6.1.1 and Section 6.1.2 will describe
the model and the training strategy. Section 6.2 will then report the qualitative and quanti-
tative results comparing our proposed new models against the other competitive methods
on benchmark data. Also the network configuration will be presented in Section 6.2.2.
Section 6.3 finally shows the discussion and future work.

6.1 A Deep Autoencoder-Based Joint Learning Model

In recent years, due to the great improvement in both hardware and the optimisation,
deep learning has quickly become the most popular method in the learning community.
Deep Autoencoder-Based Model is one of the generative frameworks which is an essential
branch of deep learning.1 Since Variational Autoencoder (VAE) is proposed to make
density estimation on latent variables, the embedding of the density estimation into the
autoencoder framework has been promoted as a hot topic. Many variants of VAE have
been proposed to perform unsupervised clustering, semi-supervised classification, and
supervised classification through deep generation models [80, 81, 177]. These recent
advances show that these deep generative models and approximate Bayesian inference can
significantly improve the flexibility, efficiency, and scalability of the traditional models.
The autoencoder framework can be widely applied in classic applications such as the
speech/image recognition, identifying and restoring damaged and contaminated images,
and detection/rejection of anomalies.

In this section, a novel method is proposed with the goal of performing joint learning

1Another generative framework is based on the Generative Adversarial Networks

134

through deep generative models, which well combines Deep Autoencoder and density
model. This approach, called the autoencoder-based joint learning model, can be con-
sidered as an enhanced version of our previous work 2L-MJFA as stated in Chapter 3.
With the same motivation, the difference lies at the point that the traditional autoencoder
(AE) is developed as a dimension reduction (DR) method. Similarly, though the inde-
pendent realisation of AE and GMM can be easily implemented, it may notably diminish
the final performance as the optimal low-dimensional subspace obtained by the AE may
not be maximally beneficial to the targeted density estimation task [8, 9]. In comparison,
the deep autoencoder-based joint learning network interacts the AE with GMM together
which would optimise the parameters of both the models simultaneously. Such a joint
optimisation can well balance autoencoding reconstruction, latent representation of den-
sity estimation, and regularisation terms. This helps the autoencoder to escape the less
attractive local optimal solution and further reduces the reconstruction error. Importantly,
this network is designed in an end-to-end fashion that does not require pre-training the
autoencoder network [83, 85]. Another merit with the proposed model is that the stan-
dard backpropagation can be straightforwardly applied due to convex nature of the energy
function (a part of the loss function), enabling an easy yet effective model inference pro-
cess.

6.1.1 Model Description

The proposed Deep Autoencoder-Based Joint Learning Model is an end-to-end approach
for supervised recognition and rejection. It utilises a deep autoencoder to generate a low-
dimensional representation, which is further used to perform density estimation. The
model structure is shown in Fig. 6.2, which consists of two networks.

The DR network performs low-dimensional representation z for input image x by a
deep convolutional autoencoder

z = h(x;θe) , x′ = g(z;θd) , (6.1)

where an input image is encoded by the encoding function h(·) with parameter θe , and
an image x′ is reconstructed by the decoding function g(·) with parameter θd. The loss
function is given by an L2-norm that characterises the reconstruction error caused by the
deep autoencoder

LAE(x,x
′) = ∥x− x′∥22 . (6.2)

The classification network performs c-dimensional probability vector for input low-
dimensional representations z by a multi-layer fully-connected network

p = MLP (z;θp) , p(c) = softmax(p) . (6.3)

135

Fig. 6.2: Schematic structure of a Deep Autoencoder-Based Joint Learning Mod-
el. Conventionally, COVN denotes the convolutional layer, DCOVN denotes the de-
convolutional layer, and FC denotes the fully-connected layer.

136

p(c) is denoted as the class prediction of each image and is exploited as the only latent
variable for the subsequent Gaussian mixture model, where p is the output of the multi-
layered perceptions MLP (·), softmax(·) denotes the soft-max function. By considering
a mixture of C multinomial distributions, the density of z could be modelled as a finite
mixture model. The mixing proportion ϕc, mean µc, and covariance Σc for the cth class
in GMM are calculated by the following equations

ϕc =
∑
i∈c

p(c)i
N

, µc =

∑
i∈c

p(c)izi∑
i∈c

p(c)i
, (6.4)

Σc =

∑
i∈c

p(c)i(zi−µc)(zi−µc)
T∑

i∈c
p(c)i

. (6.5)

The energy function of each class is inferred by the likelihood with their estimated pa-
rameters

E(zi) = ϕcN (zi;µc,Σc) . (6.6)

Consequently, the maximum likelihood estimation of the parameters can be reduced to
the maximum point of E(z). Since the logarithmic function is a monotonically increasing
function, the log-likelihood logE(z) has the same maximum value as E(z). Moreover, in
many cases, it is relatively simple to find the maximum value of the logarithmic function,
so the maximum point of the likelihood is usually changed to the maximum point of the
log-likelihood.

For measuring the similarity between the energy and truth class label y, it is hoped that
the likelihood function of z reaches a maximum or the negative log-likelihood− logE(z)

reaches a minimum, when z belongs to the y class. However, when z does not belong
to class y, we should minimise logE(z). Since logE(z) does not have a minimum, the
natural loss function (cross entropy) is not applicable. Here we introduce p(c) whose
value is within [0, 1], and the value of logE(z) is proportional to p(c). We then minimise
the loss function by leveraging the minimum of these two terms. Then the loss function
of the classification network (Categorical losses) is inferred as

Lc(E(z), y) = −
C∑
c=1

y logE(z) +
C∑
c=1

(1− y) log
(
1− p(c)

)
logE(z) . (6.7)

Besides, the regularisation P (Σc) =
∑C

c=1

∑d
j=1(Σ̂cjj)

−1 solves the singularity prob-
lem by penalising small values on the diagonal entries, where d is the low-dimensional
representations’ dimensions. Given the above, this objective function can be constructed
as follows

J(θc,θd,θp) =
1

N

N∑
i=1

LAE(xi,x
′
i) +

λ1

N

N∑
i=1

Lc

(
E(zi), yi

)
+

λ2

N
P (Σ̂c), (6.8)

137

where λ1 and λ2 are the meta parameters. Furthermore, the class label can be predicted
with the highest energy E(z) of the test image among all classes.

6.1.2 Optimisation Strategy

From Fig. 6.2, the proposed network consists of two sub-networks, including deep AE-
based generation network and the classification network. Through experiments, we found
that the gradient direction is difficult to obtain during the initial training, which makes the
network converge slowly. One reason is that the generation network and the classification
network may have conflicted objectives, i.e., the optimisation objective of the deep AE
is to minimise the difference between the generated and the original images, while the
optimisation objective of the classification network is to estimate the distribution of each
category which could push further the different classes. Moreover, the parameters of
the likelihood function are usually sensitive to initialisation. However, the parameters of
the density estimation are randomly initialised by the encoder network in the proposed
network. In order to solve the problem, we adopt an optimisation strategy as shown in
Algorithm 5. The algorithm intends to optimise the classification network M epochs first,
and then the generator is involved for optimisation. Here, M is set to a number that is
not big enough for the classifier to converge (with the validation accuracy around 60%).
It is worth mentioning that this optimisation strategy is only used to enable the network
to find a good optimisation direction quickly. In terms of results, there is an only minor
improvement by using this strategy.

Algorithm 5: Optimisation procedure for AE-based joint learning. M is the number
of epochs to update the parameter of the density network. η denotes the learning
rate.

Input : A training set [x1, . . . ,xD].
Density Model: Lc(E(zi), y;θd).
Whole Model : J(Φ), Φ = {θe,θc,θd,θp}.
for k = 1 to M − 1 do

Update θd,
θk+1
d ← θkd + η∇θk

c
Lc(E(zi), y;θ

k
d).

Update θp,
θk+1
p ← θkp + η∇θk

p
P (Σ̂c,θ

k
p).

for k = M to K do
Update all parameters,
Φk+1 ← Φk + η∇ΦkJ(Φk)

138

6.2 Preliminary Experimental Results

We mainly design two parts of experiments to validate the proposed model in both a qual-
itative and quantitative way. First, we will give the qualitative results on the handwritten
digits dataset MNIST, including the reconstruction results compared with several deep
neural networks, and the generated result compared with the deep density model shown
in Chapter 5. Then, we conduct quantitative experiments on a variety of datasets to eval-
uate the classification error rate, including three handwritten datasets and one S3 dataset.
The experimental results will be compared with 2L-MJFA which is shown in Chapter 3.3.
Also, the rejection results on handwritten characters are reported and compared with the
convolutional neural network (CNN).

6.2.1 Datasets

The following datasets are utilised in our quantitative experiments.

• ULC: The urban land cover (ULC) data are used to classify high-resolution aerial
images which consists of 9 types with 273 training samples, 77 test samples and
147 attributes [106][107].

• MNIST: This handwriting digit data contain 0 to 9 digits images of size 28 by 28

pixels [169]. Each image is reshaped to a 784-dimensional vector for two provirus
work. The training set includes 1, 000 samples of each digit, and the test set also
consists of 1, 000 of each digit.

• CASIA-HWDB: The off-line Chinese handwriting character dataset contains 3, 755
classes of size 64 × 64 images. The training set includes around 236 samples of
each Chinese character and the test set also consists of around 60 of each Chinese
character [178]. To facilitate the 2L-MJFA model, we used a benchmark feature ex-
traction method 8-direction histogram feature extraction combined with pseudo-2D
bi-moment normalisation for representing a character sample. The feature dimen-
sionality is further reduced to 160 by FDA [179].

– HZ-20: The extracted data of the first 20 classes.

– HZ-297: The extracted data of the first 297 classes.

6.2.2 Network Configuration

The network structures of the proposed deep autoencoder-based joint learning model
(AE-based JL) are summarised for the individual datasets as follows.

139

• The network structure employed on ULC dataset is presented as follows.

The deep AE network runs with

FC(147, 64, tanh)− FC(32, 4, tanh)− FC(64, 12, tanh)− FC(12, 10, none)−
FC(10, 12, tanh)− FC(12, 64, tanh)− FC(64, 147, none),

and the GMM network performs with

FC(10, 10, tanh)−Drop(0.5)− FC(10, 20, tanh)

−Drop(0.5)− FC(20, 9, softmax).

• The network structure employed on MNIST dataset is presented as follows.

The deep AE network runs with

CONV (1, 28, c(5, 2, 1), BatchNorm2d(28), LeakyReLU(0.2))−

CONV (28, 64, c(3, 2, 1), BatchNorm2d(64), LeakyReLU(0.2))−

CONV (64, 128, c(3, 2, 1), BatchNorm2d(128), LeakyReLU(0.2))−

FC(128 ∗ 16, 32, tanh)− FC(32, 4, none)−

FC(4, 32, tanh)− FC(32, 128 ∗ 16, BatchNorm2d(128))−

DCONV (128, 64, c(3, 2, 1), BatchNorm2d(64), ReLU(0.2))−

DCONV (64, 28, c(3, 2, 1), BatchNorm2d(28), ReLU(0.2))−

DCONV (28, 1, c(5, 2, 1), Sigmoid),

and the GMM network performs with

FC(4, 10, tanh)−Drop(0.5)−FC(10, 20, tanh)−Drop(0.5)−FC(20, 10, softmax).

• The network structures employed on HZ-20 and HZ-297 dataset are presented as
follows.

The deep AE network runs with

CONV (1, 64, c(3, 2, 1), BatchNorm2d(64), LeakyReLU(0.2))−

CONV (64, 128, c(3, 2, 1), BatchNorm2d(128), LeakyReLU(0.2))−

CONV (128, 256, c(3, 2, 1), BatchNorm2d(256), LeakyReLU(0.2))−

CONV (256, 256, c(3, 2, 1), BatchNorm2d(256), LeakyReLU(0.2))−

FC(256 ∗ 16, 32, tanh)− FC(32, 16, none)−

FC(16, 32, tanh)− FC(32, 256 ∗ 16, BatchNorm2d(256))−

DCONV (256, 256, c(3, 2, 1), BatchNorm2d(256), ReLU(0.2))−

140

DCONV (256, 128, c(3, 2, 1), BatchNorm2d(128), ReLU(0.2))−

DCONV (128, 64, c(3, 2, 1), BatchNorm2d(64), ReLU(0.2))−

DCONV (64, 28, c(3, 2, 1), BatchNorm2d(28), ReLU(0.2))−

DCONV (28, 1, c(3, 2, 1), Sigmoid),

and the GMM network performs with

FC(16, 64, tanh)−Drop(0.5)− FC(64, 128, tanh)−Drop(0.5)−

FC(128, 128(256), tanh)−Drop(0.5)− FC(128(256), 20(297), softmax).

Here CONV/DECONV (a, b, c(kernelsize, stride, padding), d, f) means a convolu-
tional/ deconvolutional layer with a input neurons and b output neurons activated by
function f , FC(a, b, f) means a fully-connected layer with a input neurons and b out-
put neurons activated by function f (none means no activation function is exploited), and
Drop(p) denotes a dropout layer with keep probability p during training. In practice, the
settings of the meta parameters are λ1 = 0.1 , λ2 = 0.005 for generation and λ1 = 0.5 ,
λ2 = 0.005 for classification.

It is worth noting that we only selected standard autoencoder and convolution net-
works as the compression network in the preliminary experimental. Other better per-
forming networks, such as DenseNet or ResNet, can be used as alternative compression
networks.

6.2.3 Benchmarking Approaches

The network structures of the competitive methods are listed in following. The competi-
tive methods on reconstruction and rejection experiments.

• Deep autoencoder - Adopting the same deep AE network of the AE-based JL model
employed on MNIST dataset.

• Convolutional neural network (reconstruction):

CONV (1, 28, c(5, 2, 1), BatchNorm2d(28), LeakyReLU(0.2))−

CONV (28, 64, c(3, 2, 1), BatchNorm2d(64), LeakyReLU(0.2))−

CONV (64, 128, c(3, 2, 1), BatchNorm2d(128), LeakyReLU(0.2))−

FC(128 ∗ 16, 32, tanh)− FC(32, 20, tanh)−Drop(0.5)− FC(20, 20, tanh)−

Drop(0.5)− FC(20, 10, softmax).

• Joint learning the deep autoencoder and convolutional neural network - The same
network structures of AE-based JL model on the MNIST dataset is adopted, but
there is no process of density estimation after it.

141

• Convolutional neural network (rejection):

CONV (1, 64, c(3, 2, 1), BatchNorm2d(64), LeakyReLU(0.2))−

CONV (64, 128, c(3, 2, 1), BatchNorm2d(128), LeakyReLU(0.2))−

CONV (128, 256, c(3, 2, 1), BatchNorm2d(256), LeakyReLU(0.2))−

CONV (256, 256, c(3, 2, 1), BatchNorm2d(256), LeakyReLU(0.2))−

FC(256 ∗ 16, 64, tanh)−Drop(0.5)− FC(64, 128, tanh)−Drop(0.5)−

FC(128, 128, tanh)−Drop(0.5)− FC(128, 20, softmax).

The competitive methods on generation and classification experiments have been de-
scribed in detail in the previous sections: 2L-MJFA have been shown in Chapter 3.3.3,DM-
FA have been shown in Chapter 2.4.2, and DMCFA have been shown in Chapter 5.1.

6.2.4 Qualitative Results

The experiments presented in this section only demonstrate qualitative results. First,
we engage the public benchmark data MNIST to demonstrate the performance of the
proposed model in feature extraction. Then, we measure the ability of the AE-based joint
learning model as a generative model to capture the data distribution by comparing the
generated images on the MNIST.

Empirical Results

Figure 6.3 demonstrates the 2-D hidden layers (latent features) yielded by the proposed
AE-based JL network, the deep autoencoder (AE) network, the convolutional neural net-
work (CNN), joint learning the deep autoencoder and convolutional neural network (AE-
CNN), separately. In these qualitative experiments, the classification accuracies of CNN,
AE-CNN, and AE-based joint learning are 96%, 97%, and 97%, respectively. Note that
we reduced the latent feature space to 2-dimension for better illustration on AE-based JL,
AE and AE-CNN, and set two neurons in the penultimate layer of the CNN, leading their
performance not as high as the state-of-the-art.

The visualised points of AE and our proposed network are from the output layers
of the encoder, and the visualised points for CNN are from the previous layer of the
class output layer. The results of the AE show that the digits do not exhibit significant
boundaries in the low-dimensional feature space without the guidance of the category
information. As shown in Fig. 6.3(a), the feature points of 9, 4, and 7 are mixed together,
leading that 9 is restored as 4 or 7 in reconstruction (see the results of AE in 8th and 10th
columns of Fig. 6.4).

142

Fig. 6.3(b) shows the low-dimensional feature space of CNN. The results in two-
dimensional space show that, though the classification boundary is well obtained, the
distance between classes is not pushed away in this feature space. However, by learning
AE and CNN jointly, the distance of each category is pushed further in the feature space,
as seen in Fig. 6.3(c) .

For AE-based JL, the hidden layer is encoded into a 2-D Gaussian distribution. The
two-dimensional representations are shown in Fig. 6.3(d). In this low-dimensional feature
space, 3, 5, and 8 are relatively close; in fact, they are similar in writing. After the category
information is used, 7 and 9 are completely separated, and the results of AE-CNN are
the same. From the shape of each type of cluster, they all conform to the shape of a
two-dimensional Gaussian distribution. It is clear to see that the latent features of each
class can be aggregated as a Gaussian distribution and the label information can better
regularise the hidden code.

Fig. 6.4 demonstrates the reconstructed hand-writing digits of the AE-based JL, AE,
and AE-CNN. The first row shows ground-truth images, and each of the remaining rows
shows the reconstructed images give by each different method. The hidden code z is
fixedly reduced to 2-dimension. Also, the category information is utilised to guide the
encoder except for the AE systematically. The results of AE imply that it can improve the
accuracy of the reconstruction by using the classification information.

The difference between AE-based JL and AE-CNN is that the former method expects
each class to conform to a Gaussian distribution. The reconstructed images by AE-CNN
are indistinct and dedicated to restoring each type of number to the same shape. However,
AE-based JL is able to generate high-quality digits which are closer to the ground-truth.

Generation Results

In the second set of this experiment, we engage one example to demonstrate the generation
result of the deep autoencoder-based joint learning network learned by the end-to-end
training, compared with two deep density models that rely on the Deep Belief Network.
All the three methods can generate new samples with low-dimensional features which
are sampled with the mean and variance of each class. The results of the generation are
shown in Fig. 6.5. In the figure, each block presents a digit, including 0 − 9. In each
block, the first two rows present the results of Deep MFA and Deep MCFA (details are
shown in Chapter 5), which are models based on the DBN framework with the layer-
wise algorithm. The last two rows show the results of AE-based JL using different meta
parameter, λ1 = 0.1 or 0.5. When the meta parameter λ1 is increased, the impact of
the category information is enlarged. As expected, the last two rows’ results show that,
when the classification sub-network is enhanced, the clarity of the generated samples will

143

(a)

(b)

(c)

(d)

Fig. 6.3: The sketch of classification and dimensionality reduction. From top to bottom:
the 2-dimensional representation of the features by using (a) the deep autoencoder model,
(b) the convolutional neural network, (c) the deep autoencoding convolutional neural net-
work (AE-CNN) and (d) the AE-based joint learning model, where each colour denotes a
class. 144

Fig. 6.4: Reconstruction results on the testing set of MNIST. In each block, the top row
shows the ground-truth images; the second row shows the reconstructed images by deep
autoencoder which has the same structure as the AE part of the AE-based joint learning;
the third row shows the reconstructed images by learning the deep autoencoder and CNN
jointly, where the AE structure is also the same as that of the AE-based joint learning; the
bottom row demonstrates the reconstruction images by the AE-based joint learning.

145

be reduced, but the impact on diversity is not obvious. In Chapter 5.3.3, the generation
results of the deep density models are clearer than their shallow forms. In this work, from
the comparison, AE-based JL demonstrates superior performance over the other two deep
density models in both the diversity and quality.

Fig. 6.5: Generation results of the handwriting digits. In each block, the top to bottom
rows show the generative digits of 2-layer DMCFA, 2-layer DMFA, AE-based joint learn-
ing model with λ1 = 0.5, and λ1 = 0.1, separately.

146

6.2.5 Quantitative Results

For the quantitative result, we design two experiments: the comparison with the 2L-MJFA
(shown in Chapter 3.3) on classification, and the comparison with CNN on rejection.

Classification

We report the classification accuracy (error rate as the metric) by comparing our proposed
work, AE-based joint learning (AE-JL) and our previous work 2L-MJFA. The results on
4 real-world datasets are shown in Table 6.1. The result shows that the mixture joint
learning methods 2L-MJFA provides lower error rates on the S3 dataset (ULC dataset).
The proposed network gets 99.4% accuracy on the training set of the S3 dataset. But it
just gets 55.63% accuracy on the test set, which is mainly caused by over-fitting due to
the insufficient number of observed samples. Therefore, 2L-MJFA is a better choice when
the samples are insufficient.

On the MNIST data, the AE-based JL outperforms the 2L-MJFA. Note that, there
are 10, 000 samples for training and 10, 000 samples for testing, where each digit has
1, 000 training samples. From the results, it is unwise to search for a low-dimensional
representation space by using just one multi-linear projection when working on the image
data. In addition, when there are many categories, it is difficult to find the optimal low-
dimensional feature space only by using multi-linear mapping. To better illustrate the
performance, we also give the results of 2L-MJFA classification in a small number of
categories. When the number of categories is randomly taken at 2, 4, 6 and 8, the results
are 0.0013, 0.0799, 0.1035 and 0.1055, respectively.

In the latter two sets of Chinese character handwritten recognition experiments, the
features used by 2L-MJFA are the 8-direction histogram features extracted from the char-
acter images, while the AE-based JL is directly trained on raw data features. In particular,
when the dimensionality is reduced to 140 (the actual dimension), 2L-MJFA yields the
best performance with the error rates being 0.04598 and 0.1012. During the experiment,
the network structure and meta parameters setting on HZ-20 and HZ-297 are the same.
When the hidden code z is fixedly reduced to 16-dimension, the error rates is 0.04682 and
0.1978. The insufficient samples should be the main reason that limits its performance of
the deep network.

Rejection

The results of the rejection shown in this experiment are based on a multi-classifier for
handwritten character recognition. The general definition of rejection is to determine the
confidence of the recognition results according to a certain strategy when the classifier

147

Table 6.1: Performance on 4 real-world datasets in terms of the error rate (the smaller, the
better).

—Error Rate—

Dataset ULC MNIST HZ-20 HZ-297

2L-MJFA 0.1099 0.2100 0.04598 0.1012

AE-based JL 0.4437 0.0324 0.04682 0.1978

recognises the unknown sample. This strategy is called a rejection mechanism. If the
rejection mechanism considers the recognition results to be untrustworthy, the learning
system rejects to recognise the samples and indicates that the recognition fails; otherwise,
the recognition results are employed. If the learning system does not adopt the rejection
mechanism, it degenerates into a standard classifier and directly returns the recognition
results.

The first step in rejection is to train the classifier. In this experiment, two classifiers,
the AE-based JL, and CNN, are trained on the handwriting digits datasets (the training
set of MNIST), and both of them achieved 99% accuracy in the test dataset. Then, we
created two datasets for the rejection task. The first dataset is to add 600 handwritten letter
samples (from the MNIST test set) in 1, 000 handwritten digit samples (from MNIST test
set). Another is to add 1, 128 Chinese handwritten character samples (the test set of
HZ-20) in 1, 000 MNIST test samples. Here, we set the test set of MNIST as normal-
samples, and the other test set is used for rejection is rejection-samples. Finally, the
rejection mechanism of this experiment is directly set by a threshold of the return result.
The learning system returns a rejection when the result is greater than the threshold. The
threshold of the AE-based JL is set on the value of energy function (E(z)), and CNN’s
is set on the output results after softmax. CNN returns a rejection when the result is less
than the threshold.

The criteria used to measure the rejection results are established as follows.

• Ground-truth Positive (GTP): The ground-truth of the normal-samples.

• Ground-truth Negative (GTN): The ground-truth of the rejection-samples.

• True Positive Rate (TPR): True positive (TP) means that the test sample is correctly
classified as the normal-sample. The true positive rate is calculated as TPR =

TP/GTP .

• True Negative Rate (TNR): True negative (FN) means that the test sample is classi-

148

Table 6.2: Rejection results regarding three metrics. For TPR and TNR, the bigger, the
better. For TER, the smaller, the better. There are 600 rejection-samples with letters,
1, 128 rejection-samples with Chinese characters, and 1, 000 normal-samples.

—Rejection Results—

Dataset MNIST EMNIST-Letter Chinese Characters

Criteria TPR TNR TER TNR TER

AE-based JL 0.9700 0.6217 0.1600 0.8528 0.0921

CNN 0.9600 0.5017 0.2119 0.6773 0.1898

fied as the rejection-sample, and their ground-truths are the rejection-samples. The
true negative rate is calculated as TNR = TN/GTN .

• Total Error Rate (TER): Error results on all test dataset, including the misclassified
normal-samples (FP) and the rejection-samples that are detected as normal-samples
(FN). The total error rate is calculated as TER = (FP + FN)/(GFP +GTN).

The results of rejection are shown in Table 6.2. For the AE-based JL, the threshold is
set to 9.999× 108. When E(z) > 9.999× 108, the sample will be rejected. For the CNN,
the sample will be rejected when the output result is less than 99%, The first column
in the table presents the true positive rate. This rate actually equals the accuracy after
considering the threshold. Compared with the test accuracy, the recognition values of both
the methods are reduced to 97% and 96%, separately. This suggests that the confidences of
some correct classification results are not high enough. From the EMNIST-Letter results,
although our proposed method is superior to CNN in both metrics, the results are still not
very good.

To better illustrate the performance, we also plot the recognition results and the raw
images of the first 120 handwritten letters in Fig. 6.6, where it can be observed that many
letters are similar to the handwriting of digits, such as Z and 2, O and 0, S and 5. In
this figure, the red labels R denote the rejections, and the black labels show the recog-
nised results. Obviously, the true negative rate is much higher on Chinese characters in
our proposed method, which also outperforms CNN. Note that this experiment is still
quite preliminary. The performance can be further improved if a threshold is set for each
category.

149

Fig. 6.6: Rejection results of 120 handwriting letters. The red R denotes the rejected
results.

150

6.3 Discussion and Future Work

In this chapter, we proposed a novel Deep Neural Network-Based Joint Learning Model,
which well combines Deep Autoencoder and Density Model.

The contributions of this method can be summarised as follows. (1) The generation
and the classification networks are learned simultaneously; (2) it is trained in an end-to-
end fashion that does not require pre-training of the autoencoder network, and (3) the
parameter optimisation is more straightforward than the previous methods. However, the
singular matrix problem caused by the density estimation still needs to be solved. To
this end, how to embed the density estimation into deep neural networks through the
representation of some hidden layers will be the focus of our future work. Moreover,
further applications can be extended to, such as anomaly detection and out-of-distribution
detection. Finally, how to embed the infinite mixture model into a deep neural network is
also one of our concerned topics.

151

152

Chapter 7

Conclusion and Future Work

In this chapter, the conclusion of this thesis is provided. First, the whole journey of this
dissertation will be briefly reviewed, which starts from the challenges of density learning
in the literature. Motivated from these challenges, we study three types of structured
latent variables including the finite latent variables, the infinite latent features, and deep-
structured latent variables. These study eventually leads to different models as discussed
in this thesis. Following that, we then present future perspectives within the intended
framework.

7.1 Review of the Journey

This dissertation is focused on learning density models with structured latent variables
typically from high-dimensional data. In the literature, five major how-to concerns are
outlined: how to capture the crucial attributes in lower-dimensional space, how to reduce
the free parameters, how to estimate distributions to fit the complicated data manifold,
how to increase model flexibility, and how to reduce the learning difficulties. In this
dissertation, these challenges are managed by constructing the different latent variable
structures of density models. The structured latent variables can correspond to different
concepts by assuming the different density distributions on latent variables. We have
reviewed the state-of-the-art topics in the areas of finite mixture models, infinite latent
features models, and deep models. More importantly, we have made our contributions in
each of these topics.

Based on the finite latent variable structures, we have introduced several joint learning
models which are further applied in both clustering and classification. First, by design-
ing a common loading matrix, a finite mixture model is proposed managing to perfor-
m learning with dimensionality reduction simultaneously. It is noted that the common
loading matrix can be regarded as a global dimensionality reduction matrix, making the
effective low-dimensionality representations can be captured and calibrated for the sub-

153

sequent learning tasks. One additional advantage is that the proposed model can reduce
significantly the free parameters as used in the traditional finite mixture model. Then, we
propose a two-layer mixture model with a global loading matrix for discriminant analysis.
This is a mixture of mixtures structure which is used to capture the complex properties
of each class better. The approach has been validated on both synthetic datasets and
real-world datasets including the benchmark clustering datasets and the small sample size
datasets. The performance of the proposed joint learning models is demonstrated to sig-
nificantly outperform the separated learning models in clustering. Also, this two-layer
mixture model with a global loading matrix leads to the best results compared with other
mixture component models in classification, when the sample numbers of each class are
limited.

In order to address the limitation that certain parameters need to be pre-specified
in many finite mixture models, an infinite latent feature model is proposed. The non-
parametric prior (IBP prior) is involved for improving the flexibility of the infinite model,
which can automatically determine an optimal number of features. Meanwhile, we have
contributed a tri-factorisation framework to reveal the latent structures among items (sam-
ples) and attributes (features). This model also delivers latent binary features needing no
extra constraints. An efficient optimisation algorithm is also developed accordingly. In
the experiments, the proposed infinite latent feature model significantly outperforms the
other four competitive algorithms on various tasks including reconstruction, pre-image
restoration, and clustering. Moreover, a series of experiments on feature extraction have
demonstrated that the proposed tri-factorisation model has superior ability to extract both
the latent structures and the features particularly from the data with complex structures.

Finally, we have introduced two models via deep-structured latent variables: a layer-
wise-based model, and a deep autoencoder-based model. Both the deep models are pro-
posed with the purpose of fitting the complicated data manifold as well as alleviating the
learning difficulty. The first deep density model adopts a greedy layer-wise learning ap-
proach exploiting the same scheme to train each hidden layer. Its inference and parameter
computation procedure are more straightforward than previous methods. This model is
evaluated on empirical tasks including clustering and generation on real-world datasets.
The results show that the proposed model achieves better performance compared with
those standard and state-of-the-art layer-wise-based methods. The other deep density
model employs a deep autoencoder as a dimensionality reduction procedure and tries to
optimise the parameters jointly. The deep autoencoder is more powerful than a simple
multi-linear projection in finding low-dimensional representations. Importantly, this is an
end-to-end model that does not require the pre-training of the autoencoder network. It
can also be straightforwardly optimised with the standard backpropagation. In the experi-

154

ment, this model was evaluated on reconstruction, generation, classification, and rejection
tasks. The results show that, in the case of insufficient data, our previous works are more
applicable. In addition, the proposed model has demonstrated outstanding performance
compared with the general deep autoencoder and convolutional neural network.

7.2 Future Work

Although several contributions have been made in solving the above problems, there is
still much room for further improvement.

First, despite their excellent expressive ability, deep networks usually need to specify
many parameters beforehand. To determine these parameters automatically, infinite deep
density model involving non-parametric prior might be a possible option.

Second, the layer-wise-based model is closely related to distribution estimation of the
convolutional kernels, which is called deep dictionary learning. Our next future work is
to perform deep dictionary learning and classifier design jointly.

Third, to further extend the deep autoencoder-based model, we intend to study how
the parameters of Gaussian distribution can be represented by hidden layers rather than
a sub-network. This would avoid certain computational problems and can lead to more
stable and simple network structures.

Finally, how to build up adaptive neural networks is also an interesting problem. When
new categories of data are fed, a good learning system should be able to first detect these
abnormalities and then adapt its network rather than having to retrain the network. We
will also look into this issue in the future.

155

156

Publication List

Here is the publication list during my Ph.D. study:

1. Xi Yang, Kaizhu Huang, Rui Zhang, John Y. Goulermas, “A Novel Deep Density
Model for Unsupervised Learning,” Cognitive Computation, pp. 1− 11, 2018.

2. Xi Yang, Kaizhu Huang, Rui Zhang, John Y. Goulermas, Amir Hussain, “A New
Two-layer Mixture of Factor Analyzers with Joint Factor Loading Model for the
Classification of Small Dataset Problems,” Neurocomputing, vol. 312, pp. 352 −
363, 2018.

3. Xi Yang, Kaizhu Huang, Rui Zhang, Amir Hussain, “Learning Latent Features with
Infinite Non-negative Binary Matrix Tri-factorisation,” IEEE Transactions on E-
merging Topics in Computational Intelligence, vol. 2, no. 3, 2018.

4. Xi Yang, Kaizhu Huang, John Y. Goulermas, Rui Zhang, “Joint Learning of Unsu-
pervised Dimensionality Reduction and Gaussian Mixture Model,” Neural Process-
ing Letters, vol. 45, no. 3, pp. 791− 806, 2017.

5. Xi Yang, Kaizhu Huang, Rui Zhang, “Deep Mixtures of Factor Analyzers with
Common Loadings: A Novel Deep Generative Approach to Clustering,” in Pro-
ceedings of International Conference on Neural Information Processing, Springer,
2017, pp. 709− 719.

6. Xi Yang, Kaizhu Huang, Rui Zhang, Amir Hussain, “Learning Latent Features with
Infinite Non-negative Binary Matrix Tri-factorisation,” in Proceedings of Interna-
tional Conference on Neural Information Processing, Springer, 2016, pp. 587−596.

7. Xi Yang, Kaizhu Huang, Rui Zhang, John Y. Goulermas, “Two-layer Mixture of
Factor Analysers with Joint Factor Loading,” in Proceedings of International Joint
Conference on Neural Networks, IEEE, 2015, pp. 1− 8

8. Xi Yang, Kaizhu Huang, Rui Zhang, “Unsupervised Dimensionality Reduction for
Gaussian Mixture Model,” in Proceedings of International Conference on Neural
Information Processing, Springer, 2014, pp. 84− 92.

157

158

Appendix

Here is the real-world dataset list adopted in this dissertation:

1. User Knowledge Modeling Dataset [119]: It is the real dataset about the students’
knowledge status about the subject of Electrical DC Machines. This dataset consists
of 4 knowledge levels of the students with 403 training samples, 206 test samples.
and 5 attributes.

2. Physical Dataset [103]: These data are the results of a chemical analysis of wines
grown in the same region in Italy but derived from three different cultivars. The
analysis determined the quantities of 13 constituents found in each of the 3 types of
wines. This dataset consists of 178 training samples and 13 attributes.

3. Iris Dataset [180]: It is the real dataset about the iris plant. The dataset contains 3
classes of 50 instances each and 4 attributes, where each class refers to a type of
iris plant. One class is linearly separable from the other 2; the latter are not linearly
separable from each other.

4. Seeds Dataset [181]: The examined group comprised kernels belonging to 3 dif-
ferent varieties of wheat: Kama, Rosa and Canadian, 70 elements with 7 attributes
each, randomly selected for the experiment. High quality visualization of the inter-
nal kernel structure was detected using a soft X-ray technique. It is non-destructive
and considerably cheaper than other more sophisticated imaging techniques like s-
canning microscopy or laser technology. The images were recorded on 13 × 18

cm X-ray KODAK plates. Studies were conducted using combine harvested wheat
grain originating from experimental fields, explored at the Institute of Agrophysics
of the Polish Academy of Sciences in Lublin.

5. Breast Cancer Wisconsin Dataset [120, 121]: This dataset contains two subsets, the
Wisconsin diagnostic breast cancer (WDBC) and the Wisconsin prognostic breast
cancer (WPBC). WDBC contains 569 instances which are divided into the two
diagnostic predictions of benign and malignant. The 60 attributes consist of 30

159

real-valued input features. WPBC contains 194 instances, which record two classes
of patients, that is being recurrent or not post-surgical.

6. LSVT Dataset [122]: The LSVT Voice Rehabilitation Data Set (LSVT) contain-
s 98 instances with 309 attributes and is used for evaluating whether a phonation
considered acceptable or not after voice rehabilitation (2 classes classification prob-
lem) [122].

7. Breast Tissue Dataset [123]: This dataset contains 106 objects described by 9 fea-
tures. For each object, a group of features are selected from excised breast tis-
sue samples using electrical impedance measurement. 6 major diagnostic classes
are involved that consist of 4 normal breast tissues: connective, glandular, Fibro-
adenoma and adipose tissue, as well as 2 pathological tissues, that is: mastopathy
and carcinoma.

8. Coil-20-product Dataset [108]: Columbia Object Image Library 20 (Coil-20-product)
is an object recognition benchmark dataset consisting of grayscaling images from
20 objects. These objects have diversified reflection properties and complex geo-
metric. Each object was rotated 360 degrees by the turntable, and 72 images were
taken per object (rotated once every 5 degrees). The object is clipped out from the
black background using a rectangular bounding box. The bounding box is resized
to 128× 128 using interpolation-decimation filters to minimize aliasing.

9. UMIST [152] The face recognition benchmark dataset, Sheffield Face Database(UMIST),
consists of 575 images of 20 individuals (mixed race/gender/appearance). Each
individual is shown in a range of poses from profile to frontal views.Each sub-
ject is with the different view. Each image is re-scaled to 28 × 23 (https:
//www.sheffield.ac.uk/eee/research/iel/research/face).

10. ULC [106, 107]: The urban land cover (ULC) data are used to classify high-
resolution aerial images which consists of 9 types with 273 training samples, 77
test samples and 147 attributes.

11. MNIST [169]: This handwriting digit data contain 0 to 9 digits images of size 28

by 28 pixels. Each image is reshaped to a 784-dimensional vector for two provirus
work. The training set includes 1, 000 samples of each digit, and the test set also
consists of 1, 000 of each digit (http://yann.lecun.com/exdb/mnist/).

Here is the synthetic dataset list adopted in this dissertation:

160

https://www.sheffield.ac.uk/eee/research/iel/research/face
https://www.sheffield.ac.uk/eee/research/iel/research/face
http://yann.lecun.com/exdb/mnist/

1. Synthetic Data with 4 Features: The synthetic dataset was generated by modifying
the dataset used in Griffiths [72]. Specifically, our dataset comprises 6× 6 grey im-
ages adapted via three different luminance levels, as illustrated in Fig. 4.6(a). Each
row of the observations Y is generated using Z to linearly combine a subset of four
binary factors X (see Fig. 4.3(a)). In addition, W loads different luminance com-
binations. The modified dataset presents a more challenging problem and appears
more appropriate for evaluating the different methods.

2. Com-USPS & Pre-USPS Data: We generated two datasets from USPS: the Com-
USPS and the Pre-USPS. The digits, used in these two datasets, are sampled ran-
domly from the USPS. Moreover, our generated datasets are scaled to [0, 1]. Each
row of the Com-USPS dataset is built up with 32 × 32 grey images. Various kinds
of digits 0, 1, 2, 3 are combined with each sample, as illustrated in Fig. 4.7(a). The
Pre-USPS dataset contains merely a single handwritten digit, which is also chosen
randomly from 0, 1, 2, 3. In the training set, each digit has 100 samples. Further-
more, in order to see if the various methods can restore an image, the test samples
are bottom-halved from the original images (see Fig. 4.10(b)).

3. Com-NIST & Pre-NIST Data: The rest two datasets were both generated from
NIST handprinted forms and characters database. It is worth mentioning that all
the images are binary in this database. In the way same as generating Com-USPS,
we generated the Com-NIST dataset so that each sample of the Com-NIST consists
of 64 × 64 binary images combined from letters a, b, c, d (see Fig. 4.5(a)). On the
other hand, in the Pre-NIST dataset, each sample contains a single handwritten
letter chosen randomly from a, c, d. In the training set, each letter has 200 samples.
Similarly, the test samples are top-halved from the original images so as to validate
if the various methods can restore them (see Fig. 4.11(b)).

4. ULC-3 Dataset [106, 107]: The Urban land cover (ULC) dataset contains 9 types of
urban land cover from high-resolution aerial imagery. In this dissertation, for sim-
plicity, we only extract three types of experimental data, that is building, concrete,
and grass. This dataset consists of 273 training samples, 77 test samples and 147

attributes.

5. Coil-4-proc Dataset [108]: This dataset contains images for 4 objects discarding
the background and each object has 72 samples. The images are downsampled into
32 by 32 pixels and then reshaped to a 1024-dimensional vector. There are just 248
samples in the training set and 40 samples in the test set.

161

6. Leuk72 3k Dataset [167]: This dataset is an artificial dataset including 3 classes
which have been drawn from randomly generated Gaussian mixtures. The Leuk72 3k
has only 54 training samples and 18 test samples with 39 attributes.

7. USPS1-4 Dataset [182]: This handwriting digit data contains 1 to 4 digits images
of size 16 by 16 pixels. Each image is reshaped to a 256-dimensional vector. The
training set includes 100 samples of each digit and the test set also consists of 100
of each digit.

8. CASIA-HWDB: The off-line Chinese handwriting character dataset contains 3, 755
classes of size 64 × 64 images. The training set includes around 236 samples of
each Chinese character and the test set also consists of around 60 of each Chinese
character [178]. To facilitate the 2L-MJFA model, we used a benchmark feature ex-
traction method 8-direction histogram feature extraction combined with pseudo-2D
bi-moment normalisation for representing a character sample. The feature dimen-
sionality is further reduced to 160 by FDA [179].

• HZ-20: The extracted data of the first 20 classes.

• HZ-297: The extracted data of the first 297 classes.

The synthetic datasets are available online at: https://github.com/zzy8989/
Data-iNBMT

162

https://github.com/zzy8989/Data-iNBMT
https://github.com/zzy8989/Data-iNBMT

Reference

[1] C. Robert, Machine Learning, a Probabilistic Perspective. Taylor & Francis,
2014.

[2] O. Rippel and R. P. Adams, “High-dimensional probability estimation with deep
density models,” arXiv preprint arXiv:1302.5125, 2013.

[3] Z. Ghahramani, “Probabilistic machine learning and artificial intelligence,” Nature,
vol. 521, no. 7553, p. 452, 2015.

[4] C. M. Bishop, “Latent variable models,” in Learning in Graphical Models.
Springer, 1998, pp. 371–403.

[5] B. D. Haig, Aspects of Latent Variable Theory. Taylor & Francis, 2008.

[6] K. E. Masyn, C. E. Henderson, and P. E. Greenbaum, “Exploring the latent struc-
tures of psychological constructs in social development using the dimensional–
categorical spectrum,” Social Development, vol. 19, no. 3, pp. 470–493, 2010.

[7] M. Kadar, “Enterprise interoperability maturity levels assessed through latent trait
models,” in Proceedings of International Conference on Software Engineering,

Knowledge Engineering and Information Engineering, 2015, pp. 75–79.

[8] K. Huang, H. Yang, I. King, and M. R. Lyu, Machine Learning: Modeling Data

Locally and Gloablly. Springer Verlag, 2008.

[9] X. Yang, K. Huang, R. Zhang, and A. Hussain, “Learning latent features with infi-
nite non-negative binary matrix tri-factorization,” in Proceedings of International

Conference on Neural Information Processing, 2016, pp. 587–596.

[10] S. R. Waterhouse, D. MacKay, and A. J. Robinson, “Bayesian methods for mixtures
of experts,” in Proceedings of Advances in Neural Information Processing Systems,
1996, pp. 351–357.

163

[11] C. Ding, T. Li, W. Peng, and H. Park, “Orthogonal nonnegative matrix tri-
factorizations for clustering,” in Proceedings of International Conference on

Knowledge Discovery and Data Mining, 2006, pp. 126–135.

[12] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for deep belief
nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[13] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[14] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltzmann machines for
collaborative filtering,” in Proceedings of International Conference on Machine

Learning, 2007, pp. 791–798.

[15] Z. Ghahramani, “Bayesian non-parametrics and the probabilistic approach to mod-
elling,” Philosophical Transactions of the Royal Society A, vol. 371, no. 1984,
2013.

[16] X. Yang, K. Huang, and R. Zhang, “Unsupervised dimensionality reduction for
gaussian mixture model,” in Proceedings of International Conference on Neural

Information Processing, 2014, pp. 84–92.

[17] X. Yang, K. Huang, R. Zhang, and J. Y. Goulermas, “Two-layer mixture of factor
analyzers with joint factor loading,” in Proceedings of International Joint Confer-

ence on Neural Networks, 2015, pp. 1–8.

[18] X. Yang, K. Huang, J. Y. Goulermas, and R. Zhang, “Joint learning of unsupervised
dimensionality reduction and gaussian mixture model,” Neural Processing Letters,
vol. 45, no. 3, pp. 791–806, 2017.

[19] X. Yang, K. Huang, R. Zhang, J. Y. Goulermas, and A. Hussain, “A new two-layer
mixture of factor analyzers with joint factor loading model for the classification of
small dataset problems,” Neurocomputing, vol. 312, pp. 352–363, 2018.

[20] C. Reed and Z. Ghahramani, “Scaling the indian buffet process via submodular
maximization,” in Proceedings of International Conference on Machine Learning,
2013, pp. 1013–1021.

[21] F. Doshi-Velez and Z. Ghahramani, “Correlated non-parametric latent feature mod-
els,” in Proceedings of Conference on Uncertainty in Artificial Intelligence, 2009,
pp. 143–150.

164

[22] X. Yang, K. Huang, R. Zhang, and A. Hussain, “Learning latent features with in-
finite nonnegative binary matrix trifactorization,” IEEE Transactions on Emerging

Topics in Computational Intelligence, vol. 2, no. 3, 2018.

[23] X. Yang, K. Huang, and R. Zhang, “Deep mixtures of factor analyzers with com-
mon loadings: A novel deep generative approach to clustering,” in Proceedings of

International Conference on Neural Information Processing, 2017, pp. 709–719.

[24] X. Yang, K. Huang, R. Zhang, and J. Y. Goulermas, “A novel deep density model
for unsupervised learning,” Cognitive Computation, pp. 1–11, 2018.

[25] K. Dehnad, Density Estimation for Statistics and Data Analysis. Taylor & Francis
Group, 1987.

[26] R. P. Duin and D. Tax, “Statistical pattern recognition,” in Handbook of Pattern

Recognition and Computer Vision. World Scientific, 2005, pp. 3–24.

[27] M. E. Tipping and C. M. Bishop, “Probabilistic principal component analysis,”
Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 61,
no. 3, pp. 611–622, 1999.

[28] B. S. Everitt, “Factor analysis,” in An Introduction to Latent Variable Models. Dor-
drecht: Springer Netherlands, 1984, pp. 13–31.

[29] G. E. Hinton, “Deep belief networks,” Scholarpedia, vol. 4, no. 5, p. 5947, 2009.

[30] D. Reynolds, “Gaussian mixture models,” Encyclopedia of Biometrics, pp. 827–
832, 2015.

[31] G. J. McLachlan and D. Peel, “Mixtures of factor analyzers,” in Proceedings of

International Conference on Machine Learning, 2000, pp. 599–606.

[32] J. K. Vermunt and J. Magidson, “Latent class analysis,” The Sage Encyclopedia of

Social Sciences Research Methods, pp. 549–553, 2004.

[33] M. C. Neale, S. M. Boker, G. Xie, and H. M. Maes, Mx: Statistical Modeling.
Richmond, VA: Department of Psychiatry, Virginia Commonwealth University,
1999.

[34] J. Galbraith, I. Moustaki, D. J. Bartholomew, and F. Steele, The Analysis and Inter-

pretation of Multivariate Data for Social Scientists. Chapman & Hall/CRC Press,
2002.

165

[35] B. Everett, An Introduction to Latent Variable Models. Springer Science & Busi-
ness Media, 2013.

[36] J. C. Loehlin, Latent Variable Models: An Introduction to Factor, Path, and Struc-

tural Analysis. Lawrence Erlbaum Associates Publishers, 1998.

[37] P. Smaragdis, B. Raj, and M. Shashanka, “A probabilistic latent variable model for
acoustic modeling,” Advances in Models for Acoustic Processing, NIPS, vol. 148,
pp. 8–1, 2006.

[38] S. Lipovetsky, Latent Variable Models and Factor Analysis. Taylor & Francis,
2001.

[39] D. J. Bartholomew, M. Knott, and I. Moustaki, Latent Variable Models and Factor

Analysis: A Unified Approach. John Wiley & Sons, 2011.

[40] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-
plete data via the em algorithm,” Journal of the Royal Statistical Society. Series B

(Methodological), pp. 1–38, 1977.

[41] A. Mackiewicz and W. Ratajczak, “Principal components analysis (pca),” Comput-

ers and Geosciences, vol. 19, pp. 303–342, 1993.

[42] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemomet-

rics and Intelligent Laboratory Systems, vol. 2, no. 1-3, pp. 37–52, 1987.

[43] M. E. Tipping and C. M. Bishop, “Mixtures of probabilistic principal component
analyzers,” Neural Computation, vol. 11, no. 2, pp. 443–482, 1999.

[44] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis. New
York: John Wiley & Sons, 2001.

[45] J. Ye, R. Janardan, and Q. Li, “Two-dimensional linear discriminant analysis,” in
Advances in neural information processing systems, 2005, pp. 1569–1576.

[46] I. Jolliffe, Principal Component Analysis. Springer Verlag, 1986.

[47] P. Demartines and J. Hérault, “Curvilinear component analysis: A self-organizing
neural network for nonlinear mapping of data sets,” IEEE Transactions on Neural

Networks, vol. 8, no. 1, pp. 148–154, 1997.

[48] J.-M. Lee, C. Yoo, S. W. Choi, P. A. Vanrolleghem, and I.-B. Lee, “Nonlinear
process monitoring using kernel principal component analysis,” Chemical Engi-

neering Science, vol. 59, no. 1, pp. 223–234, 2004.

166

[49] Z. Zivkovic, “Improved adaptive gaussian mixture model for background subtrac-
tion,” in Proceedings of International Conference on Pattern Recognition, vol. 2,
2004, pp. 28–31.

[50] Z. Ghahramani and G. Hinton, “The em algorithm for mixtures of fac-
tor analyzers,” in Technical Report CRG-TR-96-1, University of Toronto.
http://www.gatsby.ucl.ac.uk/.zoubin/papers.html, 1996, pp. 11–18.

[51] Y. Huang, K. B. Englehart, B. Hudgins, and A. D. Chan, “A gaussian mixture
model based classification scheme for myoelectric control of powered upper limb
prostheses,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 11, pp.
1801–1811, 2005.

[52] J. A. Bilmes et al., “A gentle tutorial of the em algorithm and its application to pa-
rameter estimation for gaussian mixture and hidden markov models,” International

Computer Science Institute, vol. 4, no. 510, p. 126, 1998.

[53] A. Montanari and C. Viroli, “Maximum likelihood estimation of mixtures of factor
analyzers,” Computational Statistics & Data Analysis, vol. 55, no. 9, pp. 2712–
2723, 2011.

[54] M. A. T. Figueiredo and A. K. Jain, “Unsupervised learning of finite mixture mod-
els,” IEEE Transactions on pPattern Analysis and Machine Intelligence, vol. 24,
no. 3, pp. 381–396, 2002.

[55] E. Fokoué, “Mixtures of factor analyzers: an extension with covariates,” Journal

of Multivariate Analysis, vol. 95, no. 2, pp. 370–384, 2005.

[56] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for real-
time tracking,” in Proceedings of Conference on Computer Vision and Pattern

Recognition. IEEE, 1999, p. 2246.

[57] W. R. Gilks, S. Richardson, and D. Spiegelhalter, Markov Chain Monte Carlo in

Practice. CRC press, 1995.

[58] E. Helfand, “Theory of inhomogeneous polymers: Fundamentals of the gaussian
random-walk model,” The Journal of Chemical Physics, vol. 62, no. 3, pp. 999–
1005, 1975.

[59] J. Ma and L. Xu, “Asymptotic convergence properties of the em algorithm with
respect to the overlap in the mixture,” Neurocomputing, vol. 68, pp. 105–129, 2005.

167

[60] C. B. Do and S. Batzoglou, “What is the expectation maximization algorithm?”
Nature Biotechnology, vol. 26, no. 8, pp. 897–899, 2008.

[61] G. McLachlan and T. Krishnan, The EM Algorithm and Extensions. John Wiley
& Sons, 2007, vol. 382.

[62] C. Bishop, Pattern Recognition and Machine Learning. Springer-Verlag New
York, 2006.

[63] A. Y. Lo, “On a class of bayesian nonparametric estimates: I. density estimates,”
The Annals of Statistics, pp. 351–357, 1984.

[64] I. Porteous, E. Bart, and M. Welling, “Multi-hdp: A non parametric bayesian model
for tensor factorization.” in Proceedings of Association for the Advancement of

Artificial Intelligence, vol. 8, 2008, pp. 1487–1490.

[65] P. Müller and F. A. Quintana, “Nonparametric bayesian data analysis,” Statistical

Science, pp. 95–110, 2004.

[66] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Sharing clusters among
related groups: Hierarchical dirichlet processes,” in Proceedings of Advances in

Neural Information Processing Systems, 2005, pp. 1385–1392.

[67] Z. Ghahramani, T. L. Griffiths, and P. Sollich, “Bayesian nonparametric latent fea-
ture models,” Bayesian Statistics, vol. 8, pp. 1–25, 2007.

[68] P. Orbanz and J. M. Buhmann, “Nonparametric bayesian image segmentation,”
International Journal of Computer Vision, vol. 77, no. 1-3, pp. 25–45, 2008.

[69] S. J. Gershman and D. M. Blei, “A tutorial on bayesian nonparametric models,”
Journal of Mathematical Psychology, vol. 56, no. 1, pp. 1–12, 2012.

[70] C. E. Rasmussen, “Gaussian processes in machine learning,” in Advanced Lectures

on Machine Learning. Springer, 2004, pp. 63–71.

[71] D. B. Dahl, “Model-based clustering for expression data via a dirichlet process
mixture model,” Bayesian Inference for Gene Expression and Proteomics, vol. 201,
p. 218, 2006.

[72] Z. Ghahramani and T. L. Griffiths, “Infinite latent feature models and the indian
buffet process,” in Proceedings of Advances in Neural Information Processing Sys-

tems, 2006, pp. 475–482.

168

[73] R. Thibaux and M. I. Jordan, “Hierarchical beta processes and the indian buffet
process,” in Artificial Intelligence and Statistics, 2007, pp. 564–571.

[74] C. W. Fox and S. J. Roberts, “A tutorial on variational bayesian inference,” Artifi-

cial intelligence review, vol. 38, no. 2, pp. 85–95, 2012.

[75] Y. Tang, R. Salakhutdinov, and G. E. Hinton, “Deep mixtures of factor analysers,”
in Proceedings of International Conference on Machine Learning, 2012.

[76] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training
of deep networks,” in Proceedings of Advances in Neural Information Processing

Systems, 2007, pp. 153–160.

[77] L. Arnold and Y. Ollivier, “Layer-wise learning of deep generative models,” CoRR,
vol. abs/1212.1524, 2012. [Online]. Available: http://arxiv.org/abs/1212.1524

[78] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends in Ma-

chine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[79] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. N. Sainath et al., “Deep neural networks for acoustic model-
ing in speech recognition: The shared views of four research groups,” IEEE Signal

processing magazine, vol. 29, no. 6, pp. 82–97, 2012.

[80] N. Dilokthanakul, P. A. Mediano, M. Garnelo, M. C. Lee, H. Salimbeni, K. Arulku-
maran, and M. Shanahan, “Deep unsupervised clustering with gaussian mixture
variational autoencoders,” arXiv preprint arXiv:1611.02648, 2016.

[81] X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman,
I. Sutskever, and P. Abbeel, “Variational lossy autoencoder,” arXiv preprint arX-

iv:1611.02731, 2016.

[82] M. E. Abbasnejad, A. Dick, and A. van den Hengel, “Infinite variational autoen-
coder for semi-supervised learning,” in Proceedings of Conference on Computer

Vision and Pattern Recognition, 2017, pp. 781–790.

[83] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for clustering
analysis,” in Proceedings of International Conference on Machine Learning, 2016,
pp. 478–487.

[84] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint

arXiv:1312.6114, 2013.

169

http://arxiv.org/abs/1212.1524

[85] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and H. Chen,
“Deep autoencoding gaussian mixture model for unsupervised anomaly detection,”
in Proceedings of International Conference on Learning Representations, 2018.

[86] S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-distribution
image detection in neural networks,” in Proceedings of International Conference

on Learning Representations, 2018.

[87] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards k-means-
friendly spaces: Simultaneous deep learning and clustering,” arXiv preprint arX-

iv:1610.04794, 2016.

[88] S. Zhai, Y. Cheng, W. Lu, and Z. Zhang, “Deep structured energy based models for
anomaly detection,” arXiv preprint arXiv:1605.07717, 2016.

[89] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images,” in Proceedings of Con-

ference on Computer Vision and Pattern Recognition, 2015, pp. 427–436.

[90] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and out-of-
distribution examples in neural networks,” arXiv preprint arXiv:1610.02136, 2016.

[91] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint arX-

iv:1312.6199, 2013.

[92] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adver-
sarial perturbations,” arXiv preprint, 2017.

[93] T. Devries and G. W. Taylor, “Learning confidence for out-of-distribution detection
in neural networks,” arXiv preprint, 2018.

[94] B. Xu, K. Huang, and C.-L. Liu, “Maxi-min discriminant analysis via online learn-
ing,” Neural Networks, vol. 34, pp. 56–64, 2012.

[95] R. T. Trevor Hastie, “Discriminant analysis by gaussian mixtures,” Journal of the

Royal Statistical Society. Series B (Methodological), vol. 58, no. 1, pp. 155–176,
1996.

[96] K. Huang, I. King, and M. R. Lyu, “Direct zero-norm optimization for feature
selection,” in Proceedings of International Conference on Data Mining, 2008.

170

[97] K. Huang, D. Zheng, J. Sun, Y. Hotta, K. Fujimoto, and S. Naoi, “Sparse learning
for support vector classification,” Pattern Recognition Letters, vol. 31, no. 13, pp.
1944–1951, 2010.

[98] K. Huang, H. Yang, M. R. Lyu, and I. King, “Maxi-min margin machine: Learning
large margin classifiers localy and globally,” IEEE Transactions on Neural Net-

works, vol. 19, no. 2, pp. 260–272, 2008.

[99] G. J.Mclanchlan, D. Peel, and R. W. Bean, “Modelling high-dimensional data by
mixtures of factor analyzers,” Computational Statistics & Data Analysis, vol. 41,
pp. 379–388, 2003.

[100] J. Baek, G. J. McLachlan, and L. K. Flack, “Mixtures of factor analyzers with
common factor loadings: Applications to the clustering and visualization of high-
dimensional data,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 32, no. 7, pp. 1298–1309, 2010.

[101] K. Huang, I. King, and M. R. Lyu, “Finite mixture model of bound semi-naive
bayesian network classifier,” in Proceedings of International Conference on Artifi-

cial Neural Networks, vol. 2714, 2003, pp. 115–122.

[102] ——, “Discriminative training of bayesian chow-liu tree multinet classifiers,” in
Proceedings of International Joint Conference on Neural Network, vol. 1, 2003,
pp. 484–488.

[103] A. Asuncion and D. Newman, “UCI machine learning repository,” in
http://www.ics.uci.edu/∼mlearn/MLRepository.html, 2007.

[104] G.Schwarz, “Estimating the dimension of a model,” Annals of Statistics, vol. 6, pp.
461–464, 1978.

[105] L. Hubert and P. Arabie, “Comparing partitions,” Classification, vol. 2, pp. 193–
218, 1985.

[106] B. Johnson and Z. Xie, “Classifying a high resolution image of an urban area us-
ing super-object information,” Journal of Photogrammetry and Remote Sensing,
vol. 83, pp. 40–49, 2013.

[107] B. Johnson, “High resolution urban land cover classification using a competitive
multi-scale object-based approach,” Remote Sensing Letters, vol. 4, no. 2, pp. 131–
140, 2013.

171

[108] S. A. Nene, S. K. Nayar, and H. Murase, “Columbia object image library (coil-20),”
Technical Report CUCS-005-96, Tech. Rep., February 1996.

[109] M. Lavine and M. West, “A bayesian method for classification and discrimination,”
Canadian Journal of Statistics, vol. 20, no. 4, pp. 451–461, 1992.

[110] Y. Zhang, C. Bingham, M. Gallimore, and J. Chen, “Steady-state and transient op-
eration discrimination by variational bayesian gaussian mixture models,” in Pro-

ceedings of International Workshop on Machine Learning for Signal Processing,
2013, pp. 1–5.

[111] K. Copsey and A. Webb, “Bayesian approach to mixture models for discrimina-
tion,” in Joint IAPR International Workshops on Statistical Techniques in Pattern

Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), 2000,
pp. 491–500.

[112] S. J. Raudys and A. K. Jain, “Small sample size effects in statistical pattern recogni-
tion: Recommendations for practitioners,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 13(3), pp. 252–264, 1991.

[113] R. Huang, Q. Liu, H. Lu, and S. Ma, “Solving the small sample size problem of
LDA,” in Proceedings of International Conference on Pattern Recognition, 2002,
pp. 29–32.

[114] X. Wei and C. Li, “Bayesian mixtures of common factor analyzers: Model, vari-
ational inference, and applications,” Signal Processing, vol. 93, no. 11, pp. 2894–
2905, 2013.

[115] W. Wang, “Mixtures of common factor analyzers for high-dimensional data with
missing information,” J. Multivariate Analysis, vol. 117, pp. 120–133, 2013.

[116] G. Hinton, P. Dayan, and M. Revow, “Modeling the manifolds of images of hand-
written digits,” IEEE Transactions on Neural Networks, vol. 8, pp. 65–74, 1997.

[117] A. Basilevsky, Statistical Factor Analysis and Related Methods. New York: Wiley,
1994.

[118] M. Kearns, Y. Mansour, and A. Y. Ng, “An information-theoretic analysis of hard
and soft assignment methods for clustering,” in Learning in Graphical Models.
Springer, 1998, pp. 495–520.

172

[119] H. T. Kahraman, S. Sagiroglu, and I. Colak, “The development of intuitive knowl-
edge classifier and the modeling of domain dependent data,” Knowledge-Based

Systems, vol. 37, no. 13, pp. 283–295, 2013.

[120] W. Street, W. Wolberg, and O. Mangasarian, “Nuclear feature extraction for breast
tumor diagnosis,” IST/SPIE 1993 International Symposium on Electronic Imaging:

Science and Technology, vol. 1905, pp. 861–870, 1993.

[121] O. Mangasarian, W. Street, and W. Wolberg, “Breast cancer diagnosis and progno-
sis via linear programming,” Operations Research, vol. 43(4), pp. 26–30, 1995.

[122] A. Tsanas, M. Little, C. Fox, and L. Ramig, “Objective automatic assessment of
rehabilitative speech treatment in parkinson disease,” IEEE Transactions on Neural

Systems and Rehabilitation Engineering, vol. 22, pp. 181–190, 2014.

[123] J. E. Silva, J. P. Marques de Sa, and J. Jossinet, “Classification of breast tissue
by electrical impedance spectroscopy,” Medical and Biological Engineering and

Computing, vol. 38, pp. 26–30, 2000.

[124] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,”
in Proceedings of Advances in Neural Information Processing Systems, 2001, pp.
556–562.

[125] ——, “Learning the parts of objects by non-negative matrix factorization,” Nature,
vol. 401, p. 788791, 1999.

[126] T. Li and C. H. Q. Ding, “Nonnegative matrix factorizations for clustering: A
survey,” in Proceedings of Data Clustering: Algorithms and Applications, 2013,
pp. 149–176.

[127] J. Yoo and S. Choi, “Orthogonal nonnegative matrix tri-factorization for co-
clustering: Multiplicative updates on stiefel manifolds,” Information Processing

& Management, vol. 46, no. 5, pp. 559–570, 2010.

[128] R. G. Soares, H. Chen, and X. Yao, “A cluster-based semisupervised ensemble for
multiclass classification,” IEEE Transactions on Emerging Topics in Computation-

al Intelligence, vol. 1, no. 6, pp. 408–420, 2017.

[129] X. Luo, M. Zhou, Y. Xia, and Q. Zhu, “An efficient non-negative matrix-
factorization-based approach to collaborative filtering for recommender systems,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1273–1284, 2014.

173

[130] Z. Zhang, T. Li, C. H. Q. Ding, X. Ren, and X. Zhang, “Binary matrix factoriza-
tion for analyzing gene expression data,” Data Mining and Knowledge Discovery,
vol. 20, no. 1, pp. 28–52, 2010.

[131] H. Wang, F. Nie, H. Huang, and F. Makedon, “Fast nonnegative matrix tri-
factorization for large-scale data co-clustering,” in Proceedings of International

Joint Conference on Artificial Intelligence, 2011, pp. 1553–1558.

[132] S. Wang and A. Huang, “Penalized nonnegative matrix tri-factorization for co-
clustering,” Expert Systems with Applications, vol. 78, pp. 64–73, 2017.

[133] B. Fan, Q. Kong, T. Trzcinski, Z. Wang, C. Pan, and P. Fua, “Receptive fields
selection for binary feature description,” IEEE Transactions on Image Processing,
vol. 23, no. 6, pp. 2583–2595, 2014.

[134] B. Fan, Q. Kong, W. Sui, Z. Wang, X. Wang, S. Xiang, C. Pan, and P. Fua, “Do
we need binary features for 3d reconstruction?” in Proceedings of Conference on

Computer Vision and Pattern Recognition Workshops, 2016, pp. 53–62.

[135] F. Doshi-velez, K. T. Miller, J. V. Gael, and Y. W. Teh, “Variational inference for
the indian buffet process,” in Proceedings of International Conference on Artificial

Intelligence and Statistics, 2009, pp. 137–144.

[136] S. Hasler, H. Wersing, and E. Körner, “Combining reconstruction and discrimi-
nation with class-specific sparse coding,” Neural Computation, vol. 19, no. 7, pp.
1897–1918, 2007.

[137] K. T. Miller, T. L. Griffiths, and M. I. Jordan, “The phylogenetic indian buffet pro-
cess: A non-exchangeable nonparametric prior for latent features,” in Proceedings

of Conference in Uncertainty in Artificial Intelligence, 2008, pp. 403–410.

[138] D. A. Knowles and Z. Ghahramani, “Infinite sparse factor analysis and infinite
independent components analysis,” Independent Component Analysis and Signal

Separation, pp. 381–388, 2007.

[139] R. KRAUSE and D. L. WILD, “Identifying protein complexes in high-throughput
protein interaction screens using an infinite latent feature model,” in Proceedings

of Advances in Pacific Symposium on Biocomputing, vol. 11, 2006, pp. 231–242.

[140] D. J. Navarro and T. L. Griffiths, “Latent features in similarity judgments: A non-
parametric bayesian approach,” Neural Computation, vol. 20, no. 11, pp. 2597–
2628, 2008.

174

[141] D. Görür, F. Jäkel, and C. E. Rasmussen, “A choice model with infinitely many
latent features,” in Proceedings of International Conference on Machine Learning,
2006, pp. 361–368.

[142] K. Miller, M. I. Jordan, and T. L. Griffiths, “Nonparametric latent feature models
for link prediction,” in Proceedings of Advances in Neural Information Processing

Systems 22, 2009, pp. 1276–1284.

[143] H. P. Dang and P. Chainais, “Indian buffet process dictionary learning: Algorithms
and applications to image processing,” International Journal of Approximate Rea-

soning, vol. 83, pp. 1–20, 2017.

[144] Q. Pan, D. Kong, C. H. Q. Ding, and B. Luo, “Robust non-negative dictionary
learning,” in Proceedings of Conference on Artificial Intelligence, 2014, pp. 2027–
2033.

[145] Z. Ghahramani and M. J. Beal, “Variational inference for bayesian mixtures of
factor analysers,” in Proceedings of Advances in Neural Information Processing

Systems, 1999, pp. 449–455.

[146] H. Attias, “A variational baysian framework for graphical models,” in Proceedings

of Advances in Neural Information Processing Systems, 1999, pp. 209–215.

[147] Z. Ghahramani and M. J. Beal, “Propagation algorithms for variational bayesian
learning,” in Proceedings of Advances in Neural Information Processing Systems,
2000, pp. 507–513.

[148] S. Gershman, P. I. Frazier, and D. M. Blei, “Distance dependent infinite latent
feature models,” EEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 37, no. 2, pp. 334–345, 2015.

[149] T. L. Griffiths and Z. Ghahramani, “The indian buffet process: An introduction and
review,” Journal of Machine Learning Research, vol. 12, pp. 1185–1224, 2011.

[150] P. Rai and H. D. III, “Multi-label prediction via sparse infinite CCA,” in Proceed-

ings of Advances in Neural Information Processing Systems, 2009, pp. 1518–1526.

[151] S. Williamson, P. Orbanz, and Z. Ghahramani, “Dependent indian buffet process-
es,” in Proceedings of International Conference on Artificial Intelligence and S-

tatistics, 2010, pp. 924–931.

[152] D. B. Graham and N. M. Allinson, “Characterising virtual eigensignatures for gen-
eral purpose face recognition,” in Face Recognition. Springer, 1998, pp. 446–456.

175

[153] I. S. Dhillon and J. A. Tropp, “Matrix nearness problems with bregman diver-
gences,” SIAM J. Matrix Analysis Applications, vol. 29, no. 4, pp. 1120–1146,
2007.

[154] B. Kulis, M. A. Sustik, and I. S. Dhillon, “Low-rank kernel learning with bregman
matrix divergences,” Journal of Machine Learning Research, vol. 10, pp. 341–376,
2009.

[155] P. Yang, K. Huang, and C. Liu, “Geometry preserving multi-task metric learning,”
Machine Learning, vol. 92, no. 1, pp. 133–175, 2013.

[156] P. Yang, K. Huang, and C.-L. Liu, “A multi-task framework for metric learning
with common subspace,” Neural Computing and Applications, vol. 22, no. 7-8, pp.
1337–1347, 2013.

[157] H. Wang, H. Huang, C. Ding, and F. Nie, “Predicting protein–protein interactions
from multimodal biological data sources via nonnegative matrix tri-factorization,”
Journal of Computational Biology, vol. 20, no. 4, pp. 344–358, 2013.

[158] C. Li, Z.-Y. Liu, X. Yang, Jianhua-Su, and H. Qiao, “Stitching contaminated im-
ages,” Neurocomputing, vol. 214, pp. 829–836, 2016.

[159] Z.-Y. Liu and H. Qiao, “Gnccp - graduated nonconvexity and concavity procedure,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36(6), pp.
1258–1267, 2014.

[160] X. Xu, F. Shen, Y. Yang, D. Zhang, H. T. Shen, and J. Song, “Matrix tri-
factorization with manifold regularizations for zero-shot learning,” in Proceeding

of Conference on Computer Vision and Pattern Recognition, 2017.

[161] A. B. Patel, T. Nguyen, and R. G. Baraniuk, “A probabilistic theory of deep learn-
ing,” arXiv preprint arXiv:1504.00641, 2015.

[162] R. P. Adams, H. M. Wallach, and Z. Ghahramani, “Learning the structure of deep
sparse graphical models,” in Proceedings of International Conference on Artificial

Intelligence and Statistics, 2010, pp. 1–8.

[163] J. Zhang, S. Ding, N. Zhang, and Y. Xue, “Weight uncertainty in boltzmann ma-
chine,” Cognitive Computation, vol. 8, no. 6, pp. 1064–1073, 2016.

[164] J. Baek and G. J. McLachlan, “Mixtures of common t-factor analyzers for cluster-
ing high-dimensional microarray data,” Bioinformatics, vol. 27, no. 9, pp. 1269–
1276, 2011.

176

[165] C. Tortora, P. D. McNicholas, and R. P. Browne, “A mixture of generalized hyper-
bolic factor analyzers,” Adv. Data Analysis and Classification, vol. 10, no. 4, pp.
423–440, 2016.

[166] S. Y. Kung, M.-W. Mak, and S.-H. Lin, Biometric authentication: a machine learn-

ing approach. Prentice Hall Professional Technical Reference Upper Saddle River,
2005, ch. Expectation-Maximization Theory.

[167] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algorithm,”
Pattern Recognition, vol. 36, no. 2, pp. 451 – 461, 2003.

[168] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[169] L. Deng, “The mnist database of handwritten digit images for machine learning
research [best of the web],” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
141–142, 2012.

[170] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Net-

works, vol. 61, pp. 85–117, 2015.

[171] C. F. Higham and D. J. Higham, “Deep learning: An introduction for applied math-
ematicians,” arXiv preprint arXiv:1801.05894, 2018.

[172] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning. MIT press
Cambridge, 2016, vol. 1.

[173] Z. Ghahramani, “A history of bayesian neural networks,” in Proceedinds of Ad-

vances in Neural Information Processing Systems Workshop on Bayesian Deep

Learning, 2016.

[174] G. Marcus, “Deep learning: A critical appraisal,” arXiv preprint arXiv:1801.00631,
2018.

[175] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and ac-
curate method to fool deep neural networks,” in Proceedings of Conference on

Computer Vision and Pattern Recognition, 2016, pp. 2574–2582.

[176] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing
model uncertainty in deep learning,” in Proceedings of International Conference

on Machine Learning, 2016, pp. 1050–1059.

177

[177] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-supervised
learning with deep generative models,” in Proceedings of Advances in Neural In-

formation Processing Systems, 2014, pp. 3581–3589.

[178] C.-L. Liu, F. Yin, D.-H. Wang, and Q.-F. Wang, “Casia online and offline chinese
handwriting databases,” in Proceedings of International Conference on Document

Analysis and Recognition, 2011, pp. 37–41.

[179] C.-L. Liu and X.-D. Zhou, “Online japanese character recognition using trajectory-
based normalization and direction feature extraction,” in Proceedings of Interna-

tional Workshop on Frontiers in Handwriting Recognition, 2006.

[180] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals

of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[181] M. Charytanowicz, J. Niewczas, P. Kulczycki, P. A. Kowalski, S. Łukasik, and
S. Żak, “Complete gradient clustering algorithm for features analysis of x-ray im-
ages,” in Information technologies in biomedicine. Springer, 2010, pp. 15–24.

[182] J. J. Hull, “A database for handwritten text recognition research,” IEEE Transac-

tions on pattern analysis and machine intelligence, vol. 16, no. 5, pp. 550–554,
1994.

178

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions of This Thesis
	Summary of Remaining Chapters

	Background
	Density Model with Latent Variables
	Notation
	Factor Analysis
	Probabilistic Principal Component Analysis

	Dimensionality Reduction (DR)
	Discussion

	Finite Mixture Models
	Notation
	Gaussian Mixture Model
	Mixtures of Factor Analysers
	Inference
	Maximum Likelihood
	Maximum A Posteriori
	Expectation-Maximisation Algorithm
	Unsupervised Learning and Discussion

	Infinite Latent Variable Models
	Notation
	Linear-Gaussian IBP Model
	Variational Bayes Inference

	Deep Density Model
	Deep Density Model via Greedy Layer-wise Learning
	Deep Generative Models
	Inference
	Collapse Model

	Deep Autoencoding Density Model
	Notation
	Deep Autoencoding Gaussian Mixture Model
	Rejection

	Density Model with Finite Mixture for Unsupervised and Supervised Learning
	Unsupervised Dimensionality Reduction for Gaussian Mixture Model
	Preliminaries
	Unsupervised Dimensionality Reduction with MCFA
	Model Description
	Optimisation

	Experiments
	Simulation Data
	Comparison on Real Data

	Joint Learning
	Supplementary Experiments: MFA vs MCFA
	Empirical Results
	Clustering Result

	Two-layer Mixtures of Factor Analysers with Joint Factor Loading
	Related Model Architectures and Computational Complexities
	Problem Definition
	Main Model
	Optimisation via a Modified EM Algorithm
	E-step
	M-step

	Experiments and Results
	User knowledge data
	Small sample size datasets

	Summary
	Discussion

	Infinite Non-negative Binary Matrix Tri-factorisation for Learning Latent Features
	Background
	Learning Latent Feature via Matrix Factorisation
	Indian Buffet Process
	Maximisation-Expectation Algorithm

	Infinite Non-negative Binary Matrix Tri-factorisation
	Model Description
	Linear-Gaussian iNBMT Model: Formulation
	Linear-Gaussian iNBMT Model: Variational Inference Procedure
	Linear-Gaussian iNBMT Model: Parameter Updating

	Optimising Latent Features
	Updating Variational Parameters

	Benchmarking Approaches
	Experiments
	Datasets
	Synthetic Data
	Com-USPS and Pre-USPS Data
	Com-NIST and Pre-NIST Data
	Coil-20-product and UMIST

	Feature Extraction
	Reconstruction
	Pre-image Restoration
	Clustering

	Complexity Analysis
	Summary
	Limitation and Future Work

	A Novel Deep Density Model for Unsupervised Learning
	Deep Mixtures of Factor Analysers with Common Loadings
	Main Model
	Inference
	Collapse Model
	Complexity Analysis

	Benchmarking Approaches
	Experimental Results
	Experimental Setup
	Datasets Description
	Results
	Empirical results
	Clustering results
	Qualitative results

	Summary
	Limitation and Future Work

	Deep Neural Network-Based Models via Density Estimation
	A Deep Autoencoder-Based Joint Learning Model
	Model Description
	Optimisation Strategy

	Preliminary Experimental Results
	Datasets
	Network Configuration
	Benchmarking Approaches
	Qualitative Results
	Empirical Results
	Generation Results

	Quantitative Results
	Classification
	Rejection

	Discussion and Future Work

	Conclusion and Future Work
	Review of the Journey
	Future Work

	Publication List
	Appendix
	Reference

