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Abstract4

In this paper, we propose a generalisation to the Cramér-Lundberg risk model, by5

allowing for a delayed receipt of the required capital injections whenever the surplus6

of insurance firm is negative. Delayed capital injections often appear in practice due7

to the time taken for administrative and processing purposes of the funds from a third8

party or the shareholders of an insurance firm.9

The delay time of the capital injection depends on a critical value of the deficit10

in the following way: If the deficit of the firm is less than the fixed critical value,11

then it can be covered by available funds and therefore the required capital injection is12

received instantaneously. On the other hand, if the deficit of the firm exceeds the fixed13

critical value, then the funds are provided by an alternative source and the required14

capital injection is received after some time delay. In this modified model, we derive15

a Fredholm integral equation of the second kind for the ultimate ruin probability and16

obtain an explicit expression in terms of ruin quantities for the Cramér-Lundberg risk17

model. In addition, we show that other risk quantities, namely the expected discounted18

accumulated capital injections and the expected discounted overall time in red, up to19

the time of ruin, satisfy a similar integral equation, which can also be solved explicitly.20

Finally, we extend the capital injection delayed risk model, such that the delay of the21

capital injections depends explicitly on the amount of the deficit. In this generalised risk22

model, we derive another Fredholm integral equation for the ultimate ruin probability,23

which is solved in terms of a Neumann series.24
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1 Introduction28

Over the years, the fundamental Cramér-Lundberg risk model has experienced a large29

number of generalisations, in order to capture the reality of insurance business (whilst30

keeping its mathematical integrity). One such generalisation is the requirement of capital31

injections to restore the capital whenever the surplus drops into deficit. In the discussion of32

the seminal paper of Hans Gerber and Elias Shiu, Pafumi (1998) introduces the framework33

for capital injections when the company experiences a deficit below zero. In this model, the34

well known ruin time no longer exists and the process continues indefinitely. Since then,35

capital injections in the classical risk model have received a lot of attention with extensions36

to reinsurance and optimality under dividend strategies (see Kulenko and Schmidli (2009),37

Eisenberg and Schmidli (2009),(2011), Wu (2013) and Zhou and Yuen (2012), (2015)). Nie38

et al. (2011), (2015) and Dickson and Qazvini (2016) studied the infinite and finite-time39

ruin probabilities and the Gerber-Shiu function, respectively, in a risk model where capital40

injections are required if the surplus falls below some non-negative threshold k > 0, in41

order to regain this level. In this model it is assumed that the injections are funded by a42

reinsurer, with an instantaneous transaction time, in return for a single net premium paid43

at time zero.44

An important assumption throughout the current literature on capital injections is their45

instantaneous receipt. However, in the real world markets, insurance firms are required46

to raise capital when their surplus falls below the Solvency Capital Requirements (SCR)47

(in the context of the modern regulatory directives such as Solvency II, etc.), by means of48

capital injections, which are not usually received instantaneously. Capital injections are49

one the most popular recapitalisation mechanisms in insurance business [see for example50

the report of ING insurance group (2010), or MOODY’s report of April (2016)] and thus,51

to better reflect the reality, we have to consider that the transaction of capital injections52

need a certain amount of time to be carried out after the decision to inject capital is made.53

Time delays, for the receipt of capital injections, occur naturally in insurance business due54

to decision-making problems or regulatory delays (for example, preparatory and adminis-55

trative work), and need to be taken into account when the companies make decisions due56

to the uncertainty of insolvency during these delays. Hence, empirical studies indicate that57

traditional surplus models with instantaneous capital injections do not capture the realistic58

process of capital raising transactions.59

In order to model more accurately the reality of capital injection transactions, we have60

to consider that a certain amount of time is needed, after making the decision to inject61

capital and the receipt of the capital, to accommodate for the financial processing of the62

injection. The concept of delayed capital injections has been introduced in Jin and Yin63

(2014), for a pure diffusion risk model without jumps. In the aforementioned paper, the64

authors study the optimal dividends by means of a stochastic control problem, with mixed65

singular and delayed impulse controls, assuming that random injections occur at random66

stopping times throughout the time horizon.67
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In this paper, we are going to generalise the present models by incorporating a time68

delay for the receipt of capital injections that depends on the magnitude of the deficit69

below zero. That is, if the deficit below zero of an insurance firm is small enough (below70

some threshold), the shareholders are in a position to capital inject the required capital71

instantaneously. On the other hand, if the deficit of the insurance firm is large enough, then72

the shareholders need time to raise the required capital for a capital injection. Therefore,73

there exists a natural dependence between the amount of the required capital injection and74

the time delay of its receipt (the greater the deficit, the more time required to raise the75

necessary capital). Based on the above set up, we calculate closed form expressions for the76

ultimate ruin probability (and other risk quantities of interest) in three different scenarios:77

(a) discrete random and deterministic delay times, (b) continuous random delay times and78

(c) the delay time for the capital injection depends on the exact size of the deficit.79

The rest of this paper is organised as follows. In Section 2, we introduce the proposed80

risk process with deficit dependent delayed capital injections. In Section 3, we obtain an81

integral equation for the ultimate survival probability of the delayed surplus process and82

derive explicit results for this quantity in terms of the well known ruin quantities of the83

Cramér-Lundberg risk model. In the same section, we construct a system of simultaneous84

equations to solve the case of discrete time delays and use these results to analyse the85

deterministic delay time setting, where we present some special cases. Moreover, we derive86

and solve a Fredholm integral equation of the second kind for the case of continuous random87

time delays and consider exponential claim sizes as an example. In Section 4, we generalise88

the previous model and consider multiple critical values of the deficit which provide a89

stronger dependence structure between the size of the deficit and the corresponding delay90

time for the required capital injection. In Section 5, we consider further quantities of91

interest, such as the expected accumulated capital injections up to time of ultimate ruin and92

the expected overall time in deficit and show that these quantities also satisfy the Fredholm93

integral equation of the previous sections. Finally in Section 6, we further generalise the94

dependence of the corresponding delay for the capital injections by considering the case95

where the delay time for the capital injections depends on the exact size of the deficit. An96

inhomogeneous Fredholm equation of the second kind is derived for the ultimate probability97

of ruin and solved in terms of Neumann series.98

2 The model99

The surplus process in the Cramér-Lundberg risk model is given by100

U(t) = u+ ct−
N(t)∑
i=1

Xi, t > 0, (2.1)

where u > 0 is the insurer’s initial capital, c > 0 is the continuously received premium101

rate, {N(t)}t>0 is a Poisson process with parameter λ > 0, which denotes the number of102
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claims received up to time t > 0 and is characterised by the sequence of random variables103

{σi}i∈N+ , denoting the claim arrival epochs and τi = σi − σi−1, the inter-arrival time104

between the (i − 1)-th and i -th claim. The sequence of inter-arrival times, {τi}i∈N+ , are105

independent and identically distributed (i.i.d.) random variables with common distribution106

function (d.f.) Fτ (t) = 1 − e−λt and density fτ (t) = λe−λt, t > 0. The random variables107

{Xk}k∈N+ , form another sequence of i.i.d. random variables representing the amount of108

the k-th claim, having common d.f.FX(·), and finite mean µ = E(X) < ∞. Within the109

Cramér-Lundberg risk model, it is assumed that the sequence of individual claim sizes,110

{Xk}k∈N+ , and the counting process, {N(t)}t>0, are mutually independent.111

It is further assumed that the net profit condition holds, i.e. c > λµ, where the positive112

safety loading parameter, η > 0, is given by η = c
λµ − 1.113

Let us denote the random time T to be the time of classic ruin, defined by114

T = inf{t > 0 : U(t) < 0}, (with T =∞ if U(t) > 0 for all t > 0), (2.2)

from which it follows that the probability of ruin, denoted ψ(u), can be expressed as

ψ(u) = P(T <∞
∣∣U(0) = u), u ≥ 0,

with corresponding survival probability φ(u) = 1−ψ(u), u ≥ 0. This quantity has received115

a great deal of attention over the years and there exists an extensive library of results.116

Under the framework of capital injections it is assumed that if the random time T117

occurs, the company experiences a deficit of some random amount |U(T )| > 0, at which118

point they receive a capital injection, equal to this amount, instantaneously restoring the119

surplus back to the zero level and allowing the company to continue, see for example Pafumi120

(1998) and Eisenberg and Schmidli (2011). In order to extend the model, we introduce the121

delay time setting, with a dependency structure, in the following way.122

Consider a deterministic value k > 0, which, in the following, will be referred to as123

the critical value for the magnitude of the deficit, indicating whether or not the receipt124

of a capital injection comes with some time delay. Note that throughout this paper, we125

assume that the critical value k > 0 is connected with the deficit below zero, i.e. when the126

surplus process becomes negative, however, for an environment with capital requirement127

regulations (such as SII), k > 0 may be associated with the deficit below the SCR of an128

insurance firm, without any loss of generality. Intuitively, the critical value k > 0 can be129

interpreted as the size of the deficit below which the injection is considered small enough130

to be covered by available funds and thus received instantaneously, whilst a deficit greater131

than the critical value requires time for the firm to raise the necessary funds and thus, a132

delay is required. That is, at the moment the surplus process, {U(t)}t>0, first becomes133

negative (which occurs at time T ) we have two different possibilities:134

(a) The deficit is at most k > 0, i.e. |U(T )| 6 k, which occurs with probability G(u, k),135

where136

G(u, y) = P(T <∞, |U(T )| 6 y
∣∣U(0) = u), (2.3)
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with density g(u, y) = ∂
∂yG(u, y) [the d.f.G(·, ·), of the well known deficit at ruin was137

first defined in Gerber et al. (1987) and has been extensively studied for the Cramér-138

Lundberg model]. Then, a capital injection of size |U(T )| 6 k is required to restore139

the surplus back to the zero level which occurs instantaneously, since the amount of140

the capital injection is of a size that can be covered by readily available funds.141

(b) The deficit is larger than the critical value k > 0, which occurs with probability142

G(u, k) =

∫ ∞
k

g(u, y) dy = ψ(u)−G(u, k). (2.4)

The available funds are unable to cover the required capital injection and thus, the143

injection is received after some delay time, denoted by the random variable L, with144

d.f.FL(·), to account for administration and processing time (see Fig: 1 for the two145

cases, respectively).146

Based on the above set up, it is clear that the company is allowed to continue when in147

deficit and it is assumed they will receive premium income during this time. However,148

if a subsequent claim occurs before the capital injection is received, i.e. τ < L, then the149

company is considered to be facing too much risk at any one time and is declared as150

‘ruined’. We call this time ‘ultimate ruin’ to distinguish from the classical ruin time defined151

in equation (2.2).152

(a) Delayed capital injection arriving before
subsequent claim in deficit.

(b) Subsequent claim arriving before delayed
capital injection, resulting in ultimate ruin.

Figure 1: Possible cases when dropping into deficit.

We can now consider the amended surplus process under such a framework, denoted by153

{U∗(t)}t>0, which is defined by154

U∗(t) = U(t) +

∞∑
i=1

|U∗(Ti)|I({|U∗(Ti)|6k}∪{(|U∗(Ti)|>k)∩ (Ti+Li6t)}), (2.5)
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where
Ti = inf{t > Ti−1 : U∗(t) < 0, U∗(t−) > 0},

is the i -th time the surplus falls below zero, due to a claim, with T0 = 0 and Li is the delay155

time corresponding to the i-th deficit, given that the deficit is larger than k > 0. Note that156

T1 = T is the classic ruin time defined in equation (2.2). We can now define the time of157

ultimate ruin by158

T ∗ = inf {σi > 0 : U∗(σi−1) < −k, σi < σi−1 + Lj} , (2.6)

for some i = 1, 2, . . ., where {σi}i∈N+ is the sequence of claim arrival epochs for the Poisson
process, as defined previously, and some j corresponding to the j-th deficit larger than
k > 0. Then, it follows that the ultimate ruin probability can be expressed as

ψ∗(u) = P(T ∗ <∞
∣∣U∗(0) = u), u > 0,

with the corresponding ultimate survival probability, given by

φ∗(u) = 1− ψ∗(u).

Note that a natural extension of this model is that ruin does not occur in the case that159

{Tj = σi−1, σi < Tj + Lj , U(σi) ≥ 0}, for some i and j. However, in order to keep the160

mathematical tractability of our results (without altering the key findings of the paper),161

we avoid to extend to this case. Also, the following market practice, usually the value of162

k > 0 is sufficiently large, so the probability of such event is minimal.163

3 Ultimate ruin probabilities for a single critical value164

In this section, we consider three separate types of delay times, for which, by using a165

conditioning argument and the Markov property, we derive integral equations and obtain166

explicit expressions for the ultimate ruin probability, ψ∗(u), for u > 0.167

In the first case, where the delay time of the capital injections is represented by a168

discrete time random variable, we derive a system of simultaneous equations, which are169

solved by the use of general matrix algebra, to obtain a linear expression for the ultimate170

ruin probability. We then proceed to a second case by considering a deterministic delay171

time for the capital injections, which can be seen as a special case of the aforementioned172

discrete time model, with similar methods of solution. Finally, in the third case, we consider173

a continuous time delay for the capital injections and derive a inhomogeneous Fredholm174

integral equation of the second kind, which is solved to obtain an explicit expression in175

terms of the classic ruin quantities for the Cramér-Lundberg risk model.176
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3.1 Capital injections with discrete time random delays177

Let us first consider the case where the capital injection delay time random variable, namely178

L, can take finitely many discrete values. That is, L ∈ {m1, . . . ,mN} with probability179

pi = P(L = mi) > 0, where mi > 0 for all i = 1, . . . , N and
∑N

i=1 pi = 1. Then, by180

conditioning on the amount of the first drop below zero (y > 0), the delay time random181

variable and the subsequent claim inter-arrival time, the law of total probability gives182

φ∗(u) = φ(u) +G(u, k)φ∗(0) +

∫ ∞
k

g(u, y)

∫ ∞
0

fτ (s)
N∑
i=1

piφ
∗(cmi)I{mi<s} ds dy, (3.1)

where I{·} is the indicator function and φ(u) is the well known (classic) survival probability
of the surplus process {U(t)}t>0, i.e. without the presence of capital injections for which
numerous results and explicit expressions exist in the actuarial literature. Following from
the definition of an indicator function, the above equation can be written as

φ∗(u) = φ(u) +G(u, k)φ∗(0) +

∫ ∞
k

g(u, y)

N∑
i=1

pi

∫ ∞
mi

fτ (s)φ∗(cmi) ds dy

= φ(u) +G(u, k)φ∗(0) +G(u, k)

N∑
i=1

piF τ (mi)φ
∗(cmi), (3.2)

where F τ (t) = 1− Fτ (t) = e−λt, t > 0, is the tail of the inter-arrival time distribution for183

the Poisson process. Thus, equation (3.2) reduces to184

φ∗(u) = φ(u) +G(u, k)φ∗(0) +G(u, k)
N∑
i=1

pie
−λmiφ∗(cmi). (3.3)

In order to complete the expression for φ∗(u), in equation (3.3), (since the risk quantities185

φ(u) and G(u, y) are well known for the Cramér-Lundberg risk model for various classes186

of claim size distributions) we need to determine the boundary value φ∗(0) and individual187

values φ∗(cmi), for i = 1, . . . , N .188

Setting u = 0, in the above equation, and solving with respect to φ∗(0), yields189

φ∗(0) =
φ(0) +G(0, k)

∑N
i=1 pie

−λmiφ∗(cmi)

1−G(0, k)
, (3.4)

which, after substituting this expression for φ∗(0) back into equation (3.3) and re-arranging,190

yields191

φ∗(u) = w(u, k) + v(u, k)
N∑
i=1

pie
−λmiφ∗(cmi), (3.5)
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where192

w(u, k) = φ(u) +
G(u, k)φ(0)

1−G(0, k)
> 0, (3.6)

and

v(u, k) =
G(u, k)G(0, k)

1−G(0, k)
+G(u, k) = ψ(u)− G(u, k)φ(0)

1−G(0, k)
< 1, (3.7)

such that w(u, k) + v(u, k) = 1, for all u, k > 0. The strict inequalities in equations (3.6)193

and (3.7), for the functions w(u, k) and v(u, k), follow from that fact that, under the net194

profit condition, the classical ruin function ψ(u) < 1, for all u > 0 [see Asmussen and195

Albrecher (2010)].196

Remark 1. The function w(u, k) > 0 (above) corresponds to the survival probability in197

the capital injection model without delays, as studied in Nie et al. (2011). Moreover, the198

function v(u, k) = 1− w(u, k) < 1 is the corresponding ruin probability.199

Now, in order to uniquely determine φ∗(u) in equation (3.5), it remains to determine the200

values φ∗(cmi), for i = 1, . . . , N .201

To do this, we will construct and solve N linear simultaneous equations. Setting u =
cmj , for j = 1, . . . , N , in equation (3.5), results in the simultaneous equation system

φ∗(cmj) = w(cmj , k) + v(cmj , k)
N∑
i=1

pie
−λmiφ∗(cmi), j = 1, . . . , N,

or equivalently(
1− v(cmj , k)pje

−λmj
)
φ∗(cmj) = w(cmj , k) + v(cmj , k)

N∑
i=1,i 6=j

pie
−λmiφ∗(cmi),

which can be written as the following first order matrix equation system

A~φ∗ = ~w,

where

A =


(
1− v(cm1, k)p1e

−λm1
)

−v(cm1, k)p2e
−λm2 · · · −v(cm1, k)pNe

−λmN

−v(cm2, k)p1e
−λm1

(
1− v(cm2, k)p2e

−λm2
)
· · · −v(cm2, k)pNe

−λmN

...
...

. . .
...

−v(cmN , k)p1e
−λm1 −v(cmN , k)p2e

−λm2 · · ·
(
1− v(cmN , k)pMe

−λmN
)
 ,

is an N -dimensional square matrix, with v(·, ·) given by equation (3.7), ~φ∗ = (φ∗(cm1), . . . ,202

φ∗(cmN ))> and ~w = (w(cm1, k), . . . , w(cmN , k))> are both N -dimensional column vectors,203

where (·)> denotes the transpose of a vector/matrix. In order to evaluate the vector of204

unknowns, ~φ∗, we will show in the following Lemma that that the matrix A is non-singular205

and thus invertible.206
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Lemma 1. For u > 0, 0 < pi 6 1, i = 1, . . . , N and
∑N

j=1 pj = 1, the matrix A is207

non-singular.208

Proof. To show that A is a non-singular matrix, by the Lévy-Desplanques Theorem [see
Horn and Johnson (1990)], it suffices to prove that A is a strictly diagonally dominant
matrix, i.e.

|1− v(cmi, k)pie
−λmi | >

∑
j 6=i
| − v(cmi, k)pje

−λmj |,

for all i = 1, . . . , N , or equivalently

1− v(cmi, k)pie
−λmi > v(cmi, k)

∑
j 6=i

pje
−λmj ,

since, from equation (3.7), we have 0 6 v(u, k) < 1, for all u > 0, which guarantees that209

v(u, k)pje
−λmj > 0 and v(u, k)pje

−λmj < pje
−λmj < 1, for every i, j = 1, . . . , N .210

Employing the fact that v(u, k) < 1, for all u > 0 (under the net profit condition), from
equation (3.7), we have that

1 > v(cmi, k) = v(cmi, k)
N∑
j=1

pj > v(cmi, k)
N∑
j=1

pje
−λmj , i = 1, . . . , N,

from which it follows that A is strictly diagonally dominant and thus, the result follows.211

Now, since the matrix A is non-singular, and thus invertible, the forms of φ∗(cmi), i =
1, . . . , N , can be determined by

~φ∗ = A−1 ~w,

where A−1 is the inverse of the matrix A. Finally, the ultimate survival probability, for
capital injections with a discrete random time delay, is given by the linear expression

φ∗(u) = w(u, k) + v(u, k)

N∑
i=1

pie
−λmi

[
A−1 ~w

]
i

where
[
A−1 ~w

]
i

is the i-th element of the vector A−1 ~w.212

Theorem 1. For u > 0, the ultimate ruin probability under capital injections with discrete213

time random delays, namely ψ∗(u), is given by214

ψ∗(u) = v(u, k)

(
1−

N∑
i=1

pie
−λmi

[
A−1 ~w

]
i

)
, (3.8)

where

v(u, k) = ψ(u)− ηG(u, k)

1 + η − Fe(k)

and Fe(x) = 1
µ

∫ x
0 FX(y) dy is the integrated tail distribution of the claim sizes.215
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Remark 2. For N = 0, the ultimate ruin probability, ψ∗(u) = v(u, k), reduces to the ruin216

probability in a risk model with instantaneous capital injections when below the critical217

value and ultimate ruin when larger than the critical value, as studied in Nie et al. (2011).218

Thus, it should be clear that, for N > 0, the term in the brackets of equation (3.8) is the219

contribution to ψ∗(u) due to the possible delays.220

3.2 Capital injections with deterministic delay times221

In practice, market studies indicate that the delay times for the capital injections may222

not be random, but instead a fixed amount of time, i.e. number of days needed to gather223

required capital injection or number of days needed for financial or regulatory purposes.224

Thus, a natural consideration is to consider the case of deterministic delay times. Let the225

delay time L = ρ > 0. Note that this is equivalent to the discrete time case with N = 1226

and random time delay m1 = ρ, with p1 = 1. Thus, equation (3.5) reduces to227

φ∗(u) = w(u, k) + v(u, k)e−λρφ∗(cρ). (3.9)

and from Theorem 1, we have the following Corollary.228

Corollary 1. For u > 0, the ultimate ruin probability under capital injections with deter-229

ministic time delay L = ρ > 0, namely ψ∗(u), is given by230

ψ∗(u) = v(u, k)

(
1− e−λρ

1− v(cρ, k)e−λρ

)
, (3.10)

where

v(u, k) = ψ(u)− ηG(u, k)

1 + η − Fe(k)
.

Remark 3 (ρ→∞). As ρ→∞, since limρ→∞ e
−λρ = 0, equation (3.10) reduces to

ψ∗(u) = v(u, k) = ψ(u)−G(u, k)
φ(0)

1−G(0, k)
,

which is equivalent to the results given in Nie et al. (2011).231

3.3 Capital injections with continuous time random delays232

In this section, we will consider the case where the delay time random variable, L, is a
continuous time random variable having probability density function fL(·) and finite mean
E(L) < ∞. If we apply a similar conditioning argument as in the discrete time case, i.e.
conditioning on the amount of the first drop below zero, the delay time and the subsequent
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claim inter-arrival time, we obtain the continuous time form of equation (3.1), given by

φ∗(u) = φ(u) +G(u, k)φ∗(0) +

∫ ∞
k

g(u, y)

∫ ∞
0

fL(t)

∫ ∞
0

fτ (s)φ∗(ct)I{t<s} ds dt dy

= φ(u) +G(u, k)φ∗(0) +G(u, k)

∫ ∞
0

fL(t)F τ (t)φ∗(ct) dt, (3.11)

or equivalently233

φ∗(u) = φ(u) +G(u, k)φ∗(0) +G(u, k)

∫ ∞
0

fL(t)e−λtφ∗(ct) dt. (3.12)

Now, as in the discrete case (since G(·, ·) and φ(·) are well known for the Cramér-Lundberg234

model), in order to complete the expression for φ∗(u) in equation (3.12), we first need to235

determine the boundary value φ∗(0).236

Setting u = 0, in equation (3.12), and solving with respect to φ∗(0), we have that

φ∗(0) =
φ(0) +G(0, k)

∫∞
0 fL(t) e−λtφ∗(ct) dt

1−G(0, k)
,

which is simply the continuous analogue of the expression given in equation (3.4). Substi-237

tuting this form of the boundary value φ∗(0) into equation (3.12), yields238

φ∗(u) = w(u, k) + v(u, k)

∫ ∞
0

fL(t)e−λtφ∗(ct) dt, (3.13)

where w(u, k) and v(u, k) are defined as in equations (3.6) and (3.7), respectively.239

Now, using a change of variables, the above equation can be written as240

φ∗(u) = w(u, k) +
1

c
v(u, k)

∫ ∞
0

fL

(
t

c

)
e−

λt
c φ∗(t) dt, (3.14)

which is the form of an inhomogeneous Fredholm integral equation of the second kind over241

a semi-infinite interval, with degenerate kernel [see Polyanin and Manzhirov (2008)]242

K(u, t) = v(u, k)fL

(
t

c

)
e−

λt
c . (3.15)

Following the general general theory of integral equations to derive a closed form expres-243

sion for the inhomogeneous Fredholm equation with degenerate kernel [see Polyanin and244

Manzhirov (2008)], we point out that the integral in equation (3.14) evaluates to a constant,245

say C1 (the existence of this constant is shown in Proposition 1, below).246

Proposition 1. The constant C1 =
∫∞
0 fL

(
t
c

)
e−

λt
c φ∗(t) dt is finite and bounded by the247

premium rate c > 0.248
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Proof. The function φ∗(x) is a probability measure, hence e−
λt
c φ∗(t) 6 1, for all t > 0.

Therefore, it follows that

C1 =

∫ ∞
0

fL

(
t

c

)
e−

λt
c φ∗(t) dt 6

∫ ∞
0

fL(
t

c
) dt = c,

since fL(·) is a proper density function.249

Then, the general solution to equation (3.14) is given by the linear combination250

φ∗(u) = w(u, k) +
C1

c
v(u, k), (3.16)

where C1 is some constant [see Proposition 1], that needs to be determined.251

To complete the solution for φ∗(u), in equation (3.16), it remains to calculate explicitly
the constant C1. In order to do this, let us: replace the variable u, in equation (3.14), by

t; multiply through by fL
(
t
c

)
e−

λt
c and integrate from 0 to ∞, to obtain the expression∫ ∞

0
fL

(
t

c

)
e−

λt
c φ∗(t) dt =

∫ ∞
0

fL

(
t

c

)
e−

λt
c w(t, k) dt+

C1

c

∫ ∞
0

fL

(
t

c

)
e−

λt
c v(t, k) dt.

Note that the left hand side of the above equality is simply the constant C1. Further, since252

we have that w(u, k) 6 1 and v(u, k) < 1, from equations (3.6) and (3.7), we can use a253

similar argument as in the proof of Proposition 1 to show that both
∫∞
0 fL

(
t
c

)
e−

λt
c w(t, k) dt254

and
∫∞
0 fL

(
t
c

)
e−

λt
c v(t, k) dt exist and are bounded by c > 0.255

Now, solving this equation with respect to C1, we find that

C1 =

∫∞
0 fL

(
t
c

)
e−

λt
c w(t, k) dt

1− 1
c

∫∞
0 fL

(
t
c

)
e−

λt
c v(t, k) dt

,

as long as 1
c

∫∞
0 fL

(
t
c

)
e−

λt
c v(t, k) dt 6= 1, which can be verified since v(u, k) < 1, for all256

u > 0.257

Substituting this form of C1 back into equation (3.14), we obtain the explicit expression258

for the survival probability given by259

φ∗(u) = w(u, k) +

∫∞
0 fL

(
t
c

)
e−

λt
c w(t, k) dt

c−
∫∞
0 fL

(
t
c

)
e−

λt
c v(t, k) dt

v(u, k). (3.17)

Finally, defining the Laplace-Stieltjes transform of the delay time distribution by f̂L(s) =260 ∫∞
0 e−sx dFL(x) and recalling that w(u, k) = 1− v(u, k), we have the following Theorem.261
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Theorem 2. For all u > 0, the ultimate ruin probability under capital injections with262

continuous time delays, namely ψ∗(u), is given by263

ψ∗(u) = v(u, k)

(
1− f̂L(λ)

1−
∫∞
0 fL(t)v(ct, k)e−λt dt

)
, (3.18)

where f̂L(s) is the Laplace-Stieltjes transform of the delay time distribution and264

v(u, k) = ψ(u)− ηG(u, k)

1 + η − Fe(k)
. (3.19)

Remark 4. Note that the two integral terms appearing in the expression for C1 are both265

finite. This can be proved using a similar argument as the proof of Proposition 1.266

In order to illustrate the applicability of Theorem 2, in the next proposition we give an267

explicit expression for the ultimate ruin probability, namely ψ∗(u), in the case where both268

the delay time of the capital injections and the individual claim sizes follow an exponential269

distribution with different parameters.270

Proposition 2. Assume that the delay time, L, follows an exponential distribution with271

parameter α > 0. Further, assume that the claim sizes also follow an exponential distri-272

bution with parameter β > 0. Then, the probability of ultimate ruin under delayed capital273

injections is given by274

ψ∗(u) = Ke−
λη
c
u, u > 0, (3.20)

where K is a constant of the form

K =
λ(α+ βc)

(α+ λ) (βc+ (α+ βc)ηeβk)

Proof. For a delay time, L, which is exponentially distributed with parameter α > 0,
we have that FL(x) = 1 − e−αx, with corresponding density fL(x) = αe−αx and Laplace
transform f̂L(s) = α

α+s . In addition, the forms of the quantities G(u, y) and G(u, y), for the
classical Cramér-Lundberg risk model, are known explicitly for the case of exponentially
distributed claim sizes, i.e. when FX(x) = 1 − e−βx, β > 0, and are given by G(u, y) =

ψ(u)
(
1− e−βk

)
and G(u, y) = ψ(u)e−βk, where ψ(u) = 1

1+ηe
−λη

c
u, for u > 0. Thus, from

equation (3.19), it follows that

v(u, k) = e−
λη
c
u

(
1

1 + ηeβk

)
,

and ∫ ∞
0

fL (t) v(ct, k)e−λt dt =
α

(1 + ηeβk)(α+ βc)
.

Employing equation (3.21) of Theorem 2, the result follows.275
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Remark 5. In this section, we have discussed three different methods of obtaining an
explicit expression for the ruin probability, corresponding to the different structures of the
delay time random variable. It is noted here that the method employed in the final subsection
for a continuous time delay (Fredholm integral equations) can be generalised to incorporate
all the previous results in one step. This is seen by considering a general distribution
function FL(·), resulting in the generalised constant

C1 =
c
∫∞
0 e−λsw(cs, k) dFL(s)

1−
∫∞
0 e−λsv(cs, k) dFL(s)

,

from which, using equation (3.16), we obtain the following Theorem.276

Theorem 3. Let FL(·) be a general distribution function for the delay time random variable277

L. Then, for all u > 0, the ultimate ruin probability under delayed capital injections,278

namely ψ∗(u), is given by279

ψ∗(u) = v(u, k)

(
1−

∫∞
0 e−λsw(cs, k) dFL(s)

1−
∫∞
0 e−λsv(cs, k) dFL(s)

)
. (3.21)

In the remainder of this paper, we consider the case of a continuous delay time random280

variable as it makes the methodologies clearer to follow. However, as in Remark 5, we point281

out that the results can be generalised to incorporate a general delay time distribution282

function.283

4 Extension to a model with N critical values284

In this section, we generalise the previous model for a continuous time delay, L, to allow285

for N independent deficit critical values, introducing a dependence between the size of the286

deficit and the corresponding delay time.287

Let ki, i = 0, 1, . . . , (N+1) be ordered, positive constants denoting the magnitude of the
critical values, between which the deficit lies (deficit thresholds) such that 0 = k0 < k1 <
. . . < kN < kN+1 = ∞. Similarly to Section 2, we define the joint probability functions
Gi(u) = P(T < ∞, ki < |U(T )| 6 ki+1

∣∣U(0) = u) which can be expressed in terms of the
deficit at ruin functions G(u, y) since

Gi(u) =

∫ ki+1

ki

g(u, y) dy = G(u, ki+1)−G(u, ki),

with G0(u) = G(u, k1) and GN (u) = G(u, kN ) = P(T < ∞, |U(T )| > kN
∣∣U(0) = u) being288

the probability that ruin occurs with a deficit larger than the greatest deficit critical value,289

namely kN .290
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Similarly to the previous section, we assume that if ruin occurs with a deficit less than291

the smallest barrier k1, i.e. |U(T )| 6 k1, then the required capital injection can be covered292

by available funds and is received instantaneously. On the other hand, if ruin occurs and293

the deficit has magnitude |U(T )| = y ∈ (ki, ki+1], i = 1, 2, . . . , N , then the capital injection,294

of size y, is received after some random time delay, Li, having d.f.FLi(·) and density fLi(·).295

Finally, it is assumed that the time delay time random variable Li is ‘less than’ the time296

delay random variable Li+1, in the sense of stochastic ordering, i.e.Li 6st Li+1, such297

that there exists a positive correlation between the size of the required injection and the298

corresponding delay time.299

Using the same conditioning argument as in Section 2, we obtain an equation for the
ultimate survival probability, underN deficit threshold barriers and continuous delay times,
given by

φ∗(u) = φ(u) +G(u, k1)φ
∗(0) +

N∑
i=1

∫ ki+1

ki

g(u, y)

∫ ∞
0

fLi(t)

∫ ∞
0

fτ (s)φ∗(ct)I{t<s} ds dt dy

= φ(u) +G(u, k1)φ
∗(0) +

N∑
i=1

Gi(u)

∫ ∞
0

fLi(t)F τ (t)φ∗(ct) dt,

or equivalently300

φ∗(u) = φ(u) +G(u, k1)φ
∗(0) +

N∑
i=1

Gi(u)

∫ ∞
0

fLi(t)e
−λtφ∗(ct) dt. (4.1)

To complete the the solution for φ∗(u) in equation (4.1), as in the previous sections, we
need to determine the boundary value φ∗(0). Setting u = 0, in the above equation, and
solving with respect to φ∗(0), yields

φ∗(0) =
φ(0) +

∑N
i=1Gi(0)

∫∞
0 fLi(t)e

−λtφ∗(ct) dt

1−G(0, k1)
,

which, after substitution back into equation (4.1), gives301

φ∗(u) = w(u, k1) +

N∑
i=1

vi(u)

∫ ∞
0

fLi(t)e
−λtφ∗(ct) dt, (4.2)

where w(u, k) is defined as in equation (3.6) and vi(u), for i = 1, 2, . . . , N , is defined by302

vi(u) =
G(u, k1)Gi(0)

1−G(0, k1)
+Gi(u), (4.3)

with
∑N

i=1 vi(u) = 1− w(u, k1).303
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Now, using a change of variables, equation (4.2) takes the form of an inhomogeneous304

Fredholm equation of the second kind, given by305

φ∗(u) = w(u, k1) +
1

c

N∑
i=1

vi(u)

∫ ∞
0

fLi

(
t

c

)
e−

λt
c φ∗(t) dt, (4.4)

with degenerate kernel of the form

K(u, t) =
N∑
i=1

vi(u)fLi

(
t

c

)
e−

λt
c .

Following similar arguments as in Section 3.3 and Proposition 1, we note that the integral
terms on the right hand side of the Fredholm integral equation, given in equation (4.4),

evaluate to constants, say Ci =
∫∞
0 fLi

(
t
c

)
e−

λt
c φ∗(t) dt < ∞. Thus, the general solution

to equation (4.4) is given by the linear combination

φ∗(u) = w(u, k1) +
1

c

N∑
i=1

Civi(u). (4.5)

It remains to calculate explicitly the constants Ci, i = 1, 2, . . . , N . Following similar ar-
guments to Section 3.3, we first replace the variable u, in equation (4.5), by t, multiply

through by fLj
(
t
c

)
e−

λt
c , for j = 1, 2, . . . , N , and integrate from 0 to ∞, to obtain the

expression∫ ∞
0

fLj

(
t

c

)
e−

λt
c φ∗(t) dt =

∫ ∞
0

fLj

(
t

c

)
e−

λt
c w(t, k1) dt+

1

c

N∑
i=1

Ci

∫ ∞
0

fLj

(
t

c

)
e−

λt
c vi(t) dt,

which, after recalling the definition of the constants Ci, i = 1, 2, . . . , N , reduces to the form

Cj =

∫ ∞
0

fLj

(
t

c

)
e−

λt
c w(t, k1) dt+

1

c

N∑
i=1

Ci

∫ ∞
0

fLj

(
t

c

)
e−

λt
c vi(t) dt,

or equivalently, leads to the system of N simultaneous equations, of the form306 ∫ ∞
0

fLj

(
t

c

)
e−

λt
c w(t, k1) dt =

(
1− 1

c

∫ ∞
0

fLj

(
t

c

)
e−

λt
c vj(t) dt

)
Cj

−1

c

N∑
i 6=j

Ci

∫ ∞
0

fLj

(
t

c

)
e−

λt
c vi(t) dt, j = 1, 2, . . . , N.

In a more concise matrix form, the above linear system of equation for Ci, i = 1, . . . , N ,
can be expressed by

M~C = ~w,
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where M is an N dimensional square matrix given by

M =

 1− 1
c

∫∞
0 fL1

(
t
c

)
e−

λt
c v1(t) dt · · · −1

c

∫∞
0 fL1

(
t
c

)
e−

λt
c vN (t) dt

...
. . .

...

−1
c

∫∞
0 fLN

(
t
c

)
e−

λt
c v1(t) dt · · · 1− 1

c

∫∞
0 fLN

(
t
c

)
e−

λt
c vN (t) dt

 ,

~C = (C1, . . . , CN )> and ~w =
(∫∞

0 fL1

(
t
c

)
e−

λt
c w(t, k1) dt, . . . ,

∫∞
0 fLN

(
t
c

)
e−

λt
c w(t, k1) dt

)>
307

are both N -dimensional column vectors. In order to evaluate the vector of unknowns, ~C,308

we will show in the following Lemma that the matrix M is non-singular and thus invertible.309

Lemma 2. The N -dimensional square matrix M is non-singular.310

Proof. As in the proof of Lemma 1, in order to prove the matrix M is non-singular, it311

suffices to prove that it is a strictly diagonally dominant matrix. That is, the i-th diagonal312

element of M, for all i = 1, . . . , N , satisfies313 ∣∣∣∣1− 1

c

∫ ∞
0

fLi

(
t

c

)
e−

λt
c vi(t) dt

∣∣∣∣ >∑
j 6=i

∣∣∣∣−1

c

∫ ∞
0

fLi

(
t

c

)
e−

λt
c vj(t) dt

∣∣∣∣ ,
or equivalently

1− 1

c

∫ ∞
0

fLi

(
t

c

)
e−

λt
c vi(t) dt >

∑
j 6=i

1

c

∫ ∞
0

fLi

(
t

c

)
e−

λt
c vj(t) dt,

since (similarly to the proof of Lemma 1) vi(u) < 1, for u > 0, which guarantees that314

0 6 1
c

∫∞
0 fLi

(
t
c

)
e−

λt
c vi(t) dt < 1, for all i = 1, . . . , N .315

Now, since
∑N

i=1 vi(u) = 1− w(u, k1) < 1, for all u > 0, we have that

1 =

∫ ∞
0

fLi(t) dt >

∫ ∞
0

fLi(t)(1− w(ct, k1)) dt >
∫ ∞
0

fLi(t)e
−λt

N∑
j=1

vj(ct) dt

=
N∑
j=1

1

c

∫ ∞
0

fLi

(
t

c

)
e−

λt
c vj(t) dt,

which completes the proof.316

Using the results of Lemma 2, the constants Ci can be evaluated by

~C = M−1 ~w,

where M−1 is the inverse of the matrix M. Now, since the constants Ci, for i = 1, . . . , N , are317

uniquely determined, we can employ the form of general solution to the Fredholm integral318

equation, given by equation (4.5), to obtain the following Theorem for the corresponding319

probability of ruin.320
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Theorem 4. For u > 0, the ultimate ruin probability under capital injections with contin-321

uous time random delays and N critical values, namely ψ∗(u), is given by322

ψ∗(u) =
1

c

N∑
i=1

(
c−

[
M−1 ~w

]
i

)
vi(u), (4.6)

where
[
M−1 ~w

]
i

is the i-th element of the vector M−1 ~w.323

Remark 6. It is worth pointing out that the methodologies used in subsections 3.1 and324

3.2, for the discrete time random delays and the deterministic time delays for the capital325

injections, can also be extended to the model with N critical values.326

5 Further quantities with continuous delay times327

In this section, we consider two further quantities that will be of interest to an insurance328

company when it comes to risk management and mitigation. The first is the expected329

discounted accumulated capital injections up to the time of ultimate ruin, which gives an330

indication of the (discounted) amount of funds needed to keep the company solvent during331

its lifetime. This particular quantity can be used to determine the net single premium of a332

reinsurance contract, which may provide the necessary capital injections, as seen in Pafumi333

(1998) and Nie et al. (2011), or to determine the present value of dividends to be paid to334

the companies shareholders, who may contribute to such injections when needed.335

The second, closely related, quantity of interest is the discounted expected overall336

time in red (deficit), up to the time of ultimate ruin. This is a natural consideration, since337

knowledge of the expected time in deficit (or below the SCR) provides valuable information338

to an insurance firm. For example, if we assume the firm is subject to a continuous constant339

penalty during the time in which it is in a deficit, the discounted expected overall time in340

red, up to the time of ultimate ruin, provides the present value of this penalised time in341

red, allowing the company to more accurately calculate its capital requirements.342

For simplicity of calculations, we revert back to the simplest model of a single critical343

value, given by k > 0 as in Section 2, but point out that the following results hold for the344

N barrier setting by employing a similar method to that discussed in Section 4.345

5.1 The expected discounted accumulated capital injections up to the346

time of ultimate ruin347

Let {Z∗u(t)}t>0 be a pure jump process denoting the accumulated capital injections in a348

continuous time delayed setting, up to time t > 0, for the risk process U∗(t), defined in349

equation (2.5), with initial capital u > 0. We are interested in the expected discounted ac-350

cumulated capital injections, up to the time of ultimate ruin, i.e. z∗δ (u) = E
(
e−δT

∗
Z∗u(T ∗)

)
,351

where δ > 0 is a constant discount rate and T ∗ is the time of ultimate ruin, defined in352

equation (2.6).353
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Further, let us first define

W (u, y, t) = P
(
T 6 t, |U(T )| 6 y

∣∣U(0) = u
)
,

to be the joint probability of classic ruin time (before time t > 0) and the deficit at ruin
for the Cramér-Lundberg risk process U(t), defined in equation (2.1), and let

w(u, y, t) =
∂2

∂t∂y
W (u, y, t),

denote the (defective) joint density of T and |U(T )|. Note that limt→∞W (u, y, t) = G(u, y),
where G(u, y) is defined in equation (2.3). The risk quantity W (u, y, t) has been studied in
Dickson and Drekic (2006), Landriault and Willmot (2009) and Nie et al. (2011), (2015),
for the capital injection model without delays, and explicit expressions exist for certain
claim size distributions. Finally, we denote by

g
δ
(u, y) =

∫ ∞
0

e−δtw(u, y, t) dt, and Gδ(u, y) =

∫ y

0
g
δ
(u, x) dx,

the (defective) discounted density function and d.f., respectively, of the deficit at ruin, with354

initial surplus u > 0 and force of interest δ > 0.355

Conditioning on the time and amount of the first fall into deficit and the subsequent356

delay and claim inter-arrival times, we obtain that357

z∗δ (u) =

∫ ∞
0

∫ k

0
e−δtw(u, y, t)[y + z∗δ (0)] dy dt

+

∫ ∞
0

∫ ∞
k

e−δtw(u, y, t)

∫ ∞
0

e−δsfL(s)

∫ ∞
0

fτ (v)[y + z∗δ (cs)]I{s<v} dv ds dy dt.

(5.1)

Then, by recalling that in the Cramér-Lundberg model, the inter-arrival times are expo-
nentially distributed with parameter λ > 0, equation (5.1) can be re-written as

z∗δ (u) =

∫ k

0
yg

δ
(u, y) dy +Gδ(u, k)z∗δ (0) +

∫ ∞
k

g
δ
(u, y)

∫ ∞
0

e−s(δ+λ)fL(s)[y + z∗δ (cs)] ds dy

=

∫ k

0
yg

δ
(u, y) dy +Gδ(u, k)z∗δ (0) +

∫ ∞
k

yg
δ
(u, y)

∫ ∞
0

e−s(δ+λ)fL(s) ds dy

+Gδ(u, k)

∫ ∞
0

e−s(δ+λ)fL(s)z∗δ (cs) ds. (5.2)

To complete the solution for z∗δ (u), in equation (5.2), we need to determine an explicit
expression for the boundary value z∗δ (0). Setting u = 0, in equation (5.2), and solving with
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respect to z∗δ (0), yields

z∗δ (0) =
1

1−Gδ(0, k)

(∫ k

0
yg

δ
(0, y) dy +

∫ ∞
k

yg
δ
(0, y)

∫ ∞
0

e−s(δ+λ)fL(s) ds dy

+ Gδ(0, k)

∫ ∞
0

e−s(δ+λ)fL(s)z∗δ (cs) ds

)
,

and thus, equation (5.1), can be written in the form358

z∗δ (u) = hδ(u, k) + vδ(u, k)

∫ ∞
0

e−(δ+λ)tfL(t) z∗δ (ct) dt, (5.3)

where359

hδ(u, k) =

∫ k

0
yg

δ
(u, y) dy +

∫ ∞
k

yg
δ
(u, y)

∫ ∞
0

e−s(δ+λ)fL(s) ds dy

+
Gδ(u, k)

1−Gδ(0, k)

(∫ k

0
yg

δ
(0, y) dy +

∫ ∞
k

yg
δ
(0, y)

∫ ∞
0

e−s(δ+λ)fL(s) ds dy

)
,

(5.4)

and360

vδ(u, k) =
Gδ(u, k)Gδ(0, k)

1−Gδ(0, k)
+Gδ(u, k) < 1, (5.5)

such that, when δ = 0, we have v0(u, k) = v(u, k) given by equation (3.7).361

Note that, equation (5.3) is of a similar form to equation (3.13). Thus, by a change of362

variable in the integral term, we have that363

z∗δ (u) = hδ(u, k) +
1

c
vδ(u, k)

∫ ∞
0

e−
(δ+λ)t
c fL

(
t

c

)
z∗δ (t) dt, (5.6)

which is an inhomogeneous Fredholm equation of the second kind and of similar form to364

equation (3.14). Hence, provided that both
∫∞
0 e−

(δ+λ)t
c fL

(
t
c

)
z∗δ (t) dt <∞ and365 ∫∞

0 e−
(δ+λ)t
c fL

(
t
c

)
hδ(t, k) dt <∞, the general solution of equation (3.14), given by equation366

(3.17), can be employed to solve equation (5.6).367

Proposition 3. Let g(x) be a continuous function defined on the positive half line [0,∞),368

which is bounded by its finite maximum M = maxx∈[0,∞){g(x)} <∞. Then,369 ∫∞
0 e−

(δ+λ)t
c fL

(
t
c

)
g(t) dt is finite and we have

∫∞
0 e−

(δ+λ)t
c fL

(
t
c

)
g(t) dt < cM .370

Proof. Firstly, by dividing
∫∞
0 e−

(δ+λ)t
c fL

(
t
c

)
g(t) dt through by M , we obtain the nor-

malised integral
∫∞
0 e−

(δ+λ)t
c fL

(
t
c

)
ω(t) dt, where ω(t) = g(t)

M 6 1 for all t > 0. Now,
applying similar arguments as the proof of Proposition 1, we have∫ ∞

0
e−

(δ+λ)t
c fL

(
t

c

)
ω(t) dt < c.
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The result follows by multiplying the above inequality through by the maximum value371

M <∞.372

From Proposition 3 and the assumption that the expected deficit at ruin is finite, i.e.373 ∫∞
0 yg0(u, y) dy < ∞, such that hδ(u, k) and consequently z∗δ (u) are finite, for all u > 0,374

we have the following Theorem.375

Theorem 5. Let z∗δ (u) denote the expected discounted accumulated capital injections, in376

the continuous time delayed capital injection setting, up to the time of ultimate ruin with377

initial capital U∗(0) = u. Then, if
∫∞
0 yg0(u, y) dy < ∞, the solution to the Fredholm378

integral equation (5.6) is given by379

z∗δ (u) = hδ(u, k) +

∫∞
0 fL

(
t
c

)
e−

(δ+λ)t
c hδ(t, k) dt

c−
∫∞
0 fL

(
t
c

)
e−

t(δ+λ)
c vδ(t, k) dt

vδ(u, k), (5.7)

where hδ(u, k) and vδ(u, k) are given by equation (5.4) and (5.5), respectively.380

5.2 Expected overall time in red up to the time of ultimate ruin381

We will now turn our attention to another quantity, namely the expected discounted time
in red, which reflects the expected discounted duration in deficit or below the SCR, up to
the time of ruin. That is, let {V ∗u (t)}t>0 be a stochastic process denoting the the overall
time in red up to time t > 0, from initial capital u > 0, defined by

V ∗u (t) =

∫ ∞
0

I{U∗(s)<0} ds, with U∗(0) = u.

We are interested in the expected discounted overall time in red up to the time of ultimate382

ruin, i.e. ν∗δ (u) = E
(
e−δT

∗
V ∗u (T ∗)

)
. Using a similar conditioning argument to the previous383

subsection, that is conditioning on the time and amount of the first fall into deficit, the384

subsequent delay and claim inter-arrival time, and recalling that the capital injection is385

received instantaneously if the deficit is less than k > 0, we have386

ν∗δ (u) =

∫ ∞
0

∫ k

0
e−δtw(u, y, t)ν∗δ (0) dydt+

∫ ∞
0

∫ ∞
k

e−δtw(u, y, t)

∫ ∞
0

fL(s)

∫ ∞
0

fτ (w)

×
[
e−δwwI{w<s} + e−δs(s+ ν∗δ (cs))I{s<w}

]
dw ds dy dt

= Gδ(u, k)ν∗δ (0) +Gδ(u, k)

(∫ ∞
0

s
[
λFL(s) + fL(s)

]
e−(δ+λ)s ds

+

∫ ∞
0

e−δsfL(s)F τ (s)ν∗
δ
(cs) ds

)
.

(5.8)
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To complete the solution for ν∗δ (u), in equation (5.8), we need to determine an explicit
expression for the boundary value ν∗δ (0). Setting u = 0, in the above equation, and solving
with respect to ν∗δ (0), yields

ν∗δ (0) =
Gδ(0, k)

1−Gδ(0, k)

(∫ ∞
0

s
[
λFL(s) + fL(s)

]
e−(δ+λ)s ds+

∫ ∞
0

e−δsfL(s)F τ (s)v∗
δ
(cs) ds

)
,

and thus, equation (5.8), can be written in the form

ν∗δ (u) = bδ(u, k) + vδ(u, k)

∫ ∞
0

e−(δ+λ)tfL(t)ν∗
δ
(ct) dt, (5.9)

where387

bδ(u, k) = vδ(u, k)

∫ ∞
0

s
[
λFL(s) + fL(s)

]
e−(δ+λ)s ds, (5.10)

and vδ(u, k) is defined in equation (5.5).388

Now, equation (5.9) is again of a similar form to equation (3.13) and thus the general389

solution of equation (3.13) can be employed to solve the Fredholm integral equation in equa-390

tion (5.9), provided both
∫∞
0 e−

(δ+λ)t
c fL

(
t
c

)
ν∗
δ
(t) dt <∞ and

∫∞
0 e−

(δ+λ)t
c fL

(
t
c

)
bδ(t, k) dt <391

∞.392

In order to show that these conditions are satisfied, let us consider the behaviour of the
function bδ(u, k), given by equation (5.10) and recall that the function vδ(u, k) < 1, for all
u > 0. Then, we have

bδ(u, k) = vδ(u, k)

∫ ∞
0

s
[
λFL(s) + fL(s)

]
e−(δ+λ)s ds <

∫ ∞
0

s
[
λFL(s) + fL(s)

]
e−(δ+λ)s ds

6 λ

∫ ∞
0

se−λs ds+

∫ ∞
0

sfL(s) ds = 1 + E(L) <∞,

since it is assumed that the delay time distribution has finite mean E(L) < ∞ [see393

Section 3.3]. Using this result, the fact that the function ν∗δ (u) is bounded and apply-394

ing the result of Proposition 3 to show the two integrals
∫∞
0 e−

(δ+λ)t
c fL

(
t
c

)
ν∗
δ
(t) dt and395 ∫∞

0 e−
(δ+λ)t
c fL

(
t
c

)
bδ(t, k) dt are finite, we have the following Theorem.396

Theorem 6. Let ν∗δ (u) denote the expected discounted time in red, in the continuous time397

delayed capital injection setting, up to the time of ultimate ruin with initial capital U∗(0) =398

u. Then, the solution to the Fredholm integral equation (5.9) is given by399

ν∗δ (u) = bδ(u, k) +

∫∞
0 e−

(δ+λ)t
c fL

(
t
c

)
bδ(t, k) dt

c−
∫∞
0 e−

(δ+λ)t
c fL

(
t
c

)
vδ(t, k) dt

vδ(u, k), (5.11)

where bδ(u, k) is given by equation (5.10).400

Remark 7. We point out that the second moments (and thus the variance) can be calculated401

for the above two quantities using similar arguments, however, due to these calculations402

being somewhat cumbersome, we omit them from this paper.403
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6 Capital injections with explicit delay time dependence404

In the previous sections we have considered a dependency structure based on a deficit405

falling between certain threshold barriers. In this section, we generalise the dependence406

between the deficit and the delay of the capital injections such that, when the deficit is407

greater than the critical value k > 0 (there exists a delay), the random delay time depends408

explicitly on the size of the deficit (y > 0), in the following way:409

Let the delay time be denoted by a continuous random variable, L, (the argument410

holds true for the discrete and deterministic settings as well) which depends on the size411

of the deficit via the its conditional distribution FL|Y=y(·) =: FL|Y (·; y) and corresponding412

density fL|Y (·; y), where Y = |U(T )| is a random variable denoting the size of the deficit.413

Intuitively, if the insurance company experiences a deficit of Y = y > k, then the delay414

time, L, increases as Y increases (the more capital the firm requires through a capital415

injection, the more time that will be needed to gather and process the funds), hence it is416

assumed that the conditional distribution, FL|Y (·; y), is a decreasing function of y > 0.417

Then, conditioning on the size of the deficit, the subsequent delay time and claim
inter-arrival time, we have

φ∗(u) = φ(u) +G(u, k)φ∗(0) +

∫ ∞
k

g(u, y)

∫ ∞
0

∫ ∞
0

fL|Y (t; y)fτ (s)φ∗(ct)I{t<s} ds dt dy

= φ(u) +G(u, k)φ∗(0) +

∫ ∞
k

g(u, y)

∫ ∞
0

e−λtfL|Y (t; y)φ∗(ct) dt dy. (6.1)

In order to determine the boundary value, φ∗(0), we set u = 0, in equation (6.1), and solve
for ψ∗(0), to obtain

φ∗(0) =
φ(0) +

∫∞
k g(0, y)

∫∞
0 e−λtfL|Y (t; y)φ∗(ct) dt dy

1−G(0, k)
.

Substituting this form of φ∗(0), into equation (6.1), and changing the order of integration
in the resulting integral, yields

φ∗(u) = w(u, k) +

∫ ∞
0

e−λt
(∫ ∞

k
z(u, k, y)fL|Y (t; y) dy

)
φ∗(ct) dt, (6.2)

where w(u, k) is given by equation (3.6) and418

z(u, k, y) =
G(u, k)g(0, y)

1−G(0, k)
+ g(u, y). (6.3)

We note that, since
∫∞
k z(u, k, y) dy = v(u, k), defined in equation (3.7), it is not difficult419

to show that the right hand side of equation (6.2) is less than equal to 1 and thus, the420

integral equation is well defined.421
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Now, using a change of variables, equation (6.2) can be transformed to422

φ∗(u) = w(u, k) +
1

c

∫ ∞
0

e−
λt
c

(∫ ∞
k

z(u, k, y)fL|Y

(
t

c
; y

)
dy

)
φ∗(t) dt, (6.4)

which is an inhomogeneous Fredholm integral equation of the second kind with kernel423

K(u, t) = e−
λt
c

(∫ ∞
k

z(u, k, y)fL|Y

(
t

c
; y

)
dy

)
. (6.5)

Remark 8. The kernel K(u, t), given above, is non-degenerate and an explicit solution is424

no longer obtainable, however, it is possible to derive a solution in terms of the Neumann425

series. For details of the following method of solution see Zemyan (2012).426

To derive the Neumann series solution, let us first rewrite equation (6.4) in the following427

form428

φ∗(u) = w(u, k) + α

∫ ∞
0

K(u, t)φ∗(t) dt, (6.6)

where α = c−1 > 0 and K(u, t) is given in equation (6.5). Then, by the method of successive
substitution (see Chapter 2 of Zemyan (2012)), i.e. substituting the form of φ∗(u), given in
equation (6.6), back into the integral itself, we have

φ∗(u) = w(u, k) + α

∫ ∞
0

K(u, t)

[
w(t, k) + α

∫ ∞
0

K(t, s)φ∗(s) ds

]
dt

= w(u, k) + α

∫ ∞
0

K(u, t)w(t, k) dt+ α2

∫ ∞
0

∫ ∞
0

K(u, t)K(t, s)φ∗(s) ds dt,

which, after changing the order of integration in the last term, yields

φ∗(u) = w(u, k) + α

∫ ∞
0

K(u, t)w(t, k) dt+ α2

∫ ∞
0

K2(u, t)φ
∗(t) dt,

where

K2(u, t) =

∫ ∞
0

K(u, s)K(s, t) ds.

Repeating the above iterative process, n times, we get that

φ∗(u) = w(u, k) +

n∑
m=1

αm
∫ ∞
0

Km(u, t)w(t, k) dt+ αn+1

∫ ∞
0

Kn+1(u, t)φ
∗(t) dt,

where K1(u, t) = K(u, t) and

Km(u, t) =

∫ ∞
0

Km−1(u, s)K(s, t) ds,
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or equivalently429

φ∗(u) = w(u, k) + ασn(u) + ρn(u), (6.7)

where

σn(x) =
n∑

m=1

αm−1
(∫ ∞

0
Km(u, t)w(t, k) dt

)
and

ρn(u) = αn+1

∫ ∞
0

Kn+1(u, t)φ
∗(t) dt.

Following the methodology of Fredholm integral equations of the second kind with general430

kernels (sometimes called iterated kernels), equation (6.7) has a unique solution as long431

as the sequence {σn(u)}n∈N+ of continuous functions converges uniformly to a continuous432

limit function on the interval [0,∞), and the sequence ρn(u)→ 0, as n→∞ (see Zemyan433

(2012) for more details).434

Theorem 7. Assume that the conditional density fL|Y (·; y) is bounded for all y > k and435

let M = max{fL|Y (x; y) : x ∈ [0,∞), y ∈ [k,∞)} be its maximum value. Then, the ruin436

probability under an explicit delay dependence, namely ψ∗(u), is given by437

ψ∗(u) = v(u, k)−
∞∑
m=1

c−m
(∫ ∞

0
Km(u, t)w(t, k) dt

)
, (6.8)

provided
λ > M,

where w(u, k) and v(u, k) are given by equations (3.6) and (3.7), respectively, and Kn(u, t)438

is the n-th iterated kernel of K(u, t), given in equation (6.5).439

Proof. Let M = max{fL|Y (x; y) : x ∈ [0,∞), y ∈ [k,∞)} be the maximum value of all440

delay time density functions, for y > k. Then, it follows that441

|K(u, t)| = e−
λt
c

∫ ∞
k

z(u, k, y)fL

(
t

c
; y

)
dy 6Me−

λt
c

∫ ∞
k

z(u, k, y) dy, ∀t > 0,

= Me−
λt
c v(u, k) < Me−

λt
c , ∀u > 0,

since v(u, k) < 1. Now, using the bound for K(u, t) = K1(u, t), we can determine an upper
bound for |K2(u, t)|, since

|K2(u, t)| =
∫ ∞
0

K(u, s)K(s, t) ds < M2e−
λt
c

∫ ∞
0

e−
λs
c ds =

cM2

λ
e−

λt
c .
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By repeating this argument it is not hard to show that

|Km(u, t)| <
(
cM

λ

)m−1
Me−

λt
c ,

for all m ∈ N. Now, using the bound for |Km(u, t)|, we can show that {σn(u)}n>1 uniformly
converges and that ρn → 0, as n → ∞. For the former, first note that each summand of
the summation in σn(u), satisfies the inequality∣∣∣∣αm−1(∫ ∞

0
Km(u, t)w(t, k) dt

)∣∣∣∣ < (αcMλ
)m−1

M

∫ ∞
0

e−
λt
c w(t, k) dt

6

(
αcM

λ

)m−1 cM
λ

= c

(
M

λ

)m
,

since α = c−1. Then, provided λ > M , the sequence, {σn(u)}n∈N+ , of partial sums is a
Cauchy sequence, i.e. for some arbitrary ε > 0, we have that

|σn(x)− σp(x)| < c
n∑

m=p+1

(
M

λ

)m
<

c(M/λ)p

1− (M/λ)
< ε,

for large enough p. Thus, the sequence {σn(u)}n∈N+ converges uniformly to the continuous
limit function given by

∞∑
m=1

αm−1
(∫ ∞

0
Km(u, t)w(t, k) dt

)
.

Finally, we have that |ρn(u)| < (M/λ)n+1 → 0 as n→∞, since λ > M , which after using442

the fact that ψ∗(u) = 1− φ∗(u), in equation (6.7), completes the proof.443

Example 1 (Exponential delay time and exponential claim sizes). Assume that the con-
ditional distribution of the delay time random variable, given a deficit size |U(T )| = y,

follows an exponential distribution, with parameter y−1, i.e. fL|Y (x; y) = y−1e
−x
y , y > k.

Then, since a delay occurs only when the deficit is larger than k > 0, we have that

M = max{y−1e−
x
y : x ∈ [0,∞), y ∈ [k,∞)}

= k−1.

Then, by Theorem 7, the ruin probability is given by444

ψ∗(u) = v(u, k)−
∞∑
m=1

c−m
(∫ ∞

0
Km(u, t)w(t, k) dt

)
, (6.9)

as long as λk > 1.445
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