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ABSTRACT: Trimethylaluminum finds widespread applications in chemical and materials synthesis, most prominently in its par-

tially hydrolyzed form of methylalumoxane (MAO) which is used as a co-catalyst in the polymerization of olefins. This work in-

vestigates the sequential reactions of trimethylaluminum with hexaprotic phosphazenes (RNH)6P3N3 (= XH6) equipped with sub-

stituents R of varied steric bulk including tert-butyl (1H6), cyclohexyl (2H6), isopropyl (3H6), isobutyl (4H6), ethyl (5H6), propyl 

(6H6), methyl (7H6) and benzyl (8H6). Similar to MAO, the resulting complexes of polyanionic phosphazenates [XHn]
n-6

 accommo-

date multinuclear arrays of [AlMe2]
+
 and [AlMe]

2+
. Reactions were monitored by 

31
P NMR spectroscopy and structures were de-

termined by single crystal X-ray diffraction. They included 1H4(AlMe2)2, 1H3(AlMe2)3, 2H3(AlMe2)3, 3(AlMe2)4AlMe, 

4H(AlMe2)5, 4(AlMe2)6, {5H(AlMe2)4}2AlMe, 5(AlMe2)6, 6(AlMe2)6, {7(AlMe2)4AlMe}2 and 8(AlMe2)6. The study shows that 

subtle variations of the steric properties of the R-groups influence reaction pathways, levels of aggregation and fluxional behavior. 

While [AlMe2]
+
 is the primary product of the metalation, [AlMe]

2+
 is utilized to alleviate overcrowding or to aid aggregation. At the 

later stages of metalation [AlMe2]
+
 groups start to scramble around congested sites. The ligands proved to be very robust and ex-

tremely flexible offering a unique platform to study complex multinuclear metal arrangements. 

INTRODUCTION  

Polyanionic phosphazenates are multi-site ligands that can 

accommodate arrays of metal centers.
1-3

 They are obtained via 

deprotonation of hexaprotic cyclotriphosphazenes (RNH)6P3N3 

(labelled XH6 hereafter).
4-6

 The steric and electronic properties 

of the R-groups in the ligand periphery control the size and the 

layout of the coordinated arrangement.
7-9

 The routes along 

which metalations can progress are manifold considering the 

large number of partially deprotonated ligand isomers that can 

exist (see Scheme 1). Nonetheless, metalations often proceed 

along distinctive pathways; for example reactions with butyl-

lithium advance via the trianionic C3v-symmetric isomer 

[X'''H3]
3-

 which distributes its negative charge most effective-

ly.
10-12

 

This work explores the metalation of XH6 with trimethyl-

aluminum, a reagent that is widely applied in chemical and 

materials synthesis. It is a precursor for mono- and dimethyl-

aluminum complexes that serve as catalysts in organic trans-

formations.
13-19

 The most prominent example is perhaps meth-

ylalumoxane (MAO), an ill-defined compound generated by 

controlled hydrolysis of AlMe3 which is used as a co-catalyst 

in the polymerization of olefins.
20-25

. Trimethylaluminum is 

also an important precursor for the deposition of aluminum 

oxide and nitride layers which find applications as insulators 

and large band-gap semiconductors.
26-29

 

Aggregates of organoaluminum oxides, hydroxides, amides 

and imides have been investigated in great detail, either as 

models for the structure of MAO or as precursors for chemical 

vapor deposition. As a result, a variety of cyclic and cage-like 

structures have been uncovered.
30-33

 The few reports of multi-

nuclear organoaluminum arrays that are supported by single 

multi-site ligands are limited to complexes of calixarenes, in 

which the metals are clustered around the rim of phenolate-O 

centers.
34,35

 

We were interested how arrays of [AlMe2]
+
 and [AlMe]

2+
 

behave when assembled around polyanionic phosphazenate 

ligands and how the steric factor of the ligand affects the 

modes of coordination and levels of metalation. To shed light 

on this we investigated sequential reactions of trimethylalumi-

num with phosphazenes XH6 equipped with different sized R 

groups and analyzed metalation pathways, coordination pat-

terns and dynamic behavior of the resulting complexes. 

RESULTS  

The phosphazenes XH6 used in this study included tert-butyl 

(1H6), cyclohexyl (2H6), isopropyl (3H6), isobutyl (4H6), ethyl 

(5H6), propyl (6H6), methyl (7H6) and benzyl (8H6) deriva-

tives. Apart from 5H6 the syntheses of these were reported 

previously.
36

 Metalations were conducted by stepwise addition 

of aliquots of trimethylaluminum in hexane at room tempera-

ture. If full deprotonation of the ligand was not achieved under 

these conditions the mixtures were heated to reflux. The reac-

tions were followed by 
31

P{
1
H} NMR spectroscopy (Figure 1 

shows the spectra of the sequential addition of AlMe3 to 5H6). 

It signals molecular symmetry thanks to the characteristic 

coupling patterns of the three 
31

P nuclei in the phosphazene 

ring: a set of three equivalent nuclei yields a singlet, two 

equivalent nuclei generate a doublet and a triplet (AX2) while 

three inequivalent nuclei show three doublets of doublets 



 

(AMX). If the spectra indicated the presence of a single prod-

uct then crystallization trials were set up to grow crystals suit-

able for X-ray structure analysis. The crystal structures are 

presented in Figure 2 while Chart 1 displays the types of che-

lation found in them. Scheme 2 lists the complexes encoun-

tered in this study. Further spectra of sequential additions and 

variable temperature runs can be found in the ESI alongside 

crystallographic data. 

Scheme 1. Map of deprotonation pathways between ligand 

isomers ([X'H4]
2-

, [X''H3]
3-

 and [X'H2]
4-

 are chiral; only one 

enantiomer is shown) 

 

The first distinctive product forms after addition of two 

equivalents AlMe3 at room temperature to 1H6, 2H6, 3H6 and 

4H6, respectively. 
31

P{
1
H} NMR spectra of reaction solutions 

show an AX2 set of signals indicating the equivalence of two 

P-nuclei in the phosphazene ring. Crystals suitable for X-ray 

analysis were obtained of the tert-butyl derivative. The crystal 

structure consists of the C2 symmetric complex 1'H4(AlMe2)2. 

It contains the dianionic ligand isomer [X'H4]
2-

 featuring two 

deprotonated N(exo) sites positioned in non-geminal trans-

configuration. The two [AlMe2]
+
 groups occupy bidentate 

chelates of type I located at opposite sides of the phosphazene 

ring. 

After addition of three equivalents AlMe3 at room tempera-

ture the 
31

P NMR spectra of 2H6 and 3H6 show one AMX set. 

The crystals of the corresponding cyclohexyl derivative con-

tain the complex 2'H3(AlMe2)3. The trianionic ligand isomer 

[X'H3]
3-

 distributes its three deprotonated N-sites in non-

geminal cis-trans fashion. It accommodates the three [AlMe2]
+
 

groups in separate bidentate type I chelates which breaks the 

Cs symmetry of the ligand yielding three unique phosphorus 

environments in agreement with the observed AMX pattern. 

Addition of three equivalents AlMe3 to 4H6, 5H6 and 6H6 at 

room temperature generates two sets of AMX signals. At-

tempts to separate the two species were unsuccessful. The only 

two isomers of XH3(AlMe2)3 that are compatible with AMX 

pattern in the 
31

P{
1
H} NMR spectra while also providing three 

separate type I sites are the asymmetric complexes 

X'H3(AlMe2)3 and X''H3(AlMe2)3. The reaction of 1H6 with 

AlMe3 advances beyond the dianionic stage only after pro-

longed heating. Refluxing a mixture with three of more equiv-

alents AlMe3 gives a single product that exhibits an AMX 

signal pattern similar to those observed for 2'H3(AlMe2)3 and 

3'H3(AlMe2)3. Crystals of 1'H3(AlMe2)3 show a coordination 

pattern analogous to 2'H3(AlMe2)3. 

Metalations of 2H6 and 3H6 progress beyond the trianionic 

ligand stage only after continuous heating. Refluxing reaction 

mixtures containing more than three equivalents AlMe3 gener-

ates AMX sets that become the sole species with five or more 

equivalents. The crystal structure of the isopropyl derivative 

exhibits the complex 3(AlMe2)4AlMe featuring a fully depro-

tonated phosphazenate ligand [3]
6-

. It retains the three chelates 

found in X'H3(AlMe2)3, while the fourth [AlMe2]
+
 group is 

accommodated in a bidentate chelate of type II. The [AlMe]
2+

 

unit, formally the product of twofold deprotonation, occupies a 

tridentate type IV chelate. 
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Figure 1. 
31

P{
1
H} NMR spectra of the sequential addition of n 

equivalents AlMe3 to 5H6 in hexane at room temperature. Spe-

cies detected along the metalation pathway include 5H6 (a), 

5'H3(AlMe2)3 (b), 5''H3(AlMe2)3 (c), 5H(AlMe2)5 (d), 

5(AlMe2)6 (e). Reactions with n = 2 yielded only turbid mix-

tures. 

 

 



 

 

Figure 2. X-ray crystal structures (Al, orange; N, blue; P, purple; H, turquoise; C, grey; C-bound H-atoms are omitted for clarity). 

 

 

Chart 1. Types of chelates coordinating [AlMe2]
+
 and [Al-

Me]
2+

 groups, respectively. 

 

  



 

Scheme 2. Species observed along metalation routes (crystallographically characterized complexes are marked with an as-

terisk). 

 

 

Addition of five equivalents AlMe3 to 4H6 and 5H6 at room 

temperature gives rise to an AX2 set in the 
31

P{
1
H} NMR 

spectra. The spectrum of the reaction with 4H6 exhibits addi-

tional signals including an AMX set. The crystals obtained 

from the solution consist of the complex 4H(AlMe2)5. Its pen-

taanionic ligand [4H]
5-

 accommodates five [AlMe2]
+
 groups; 

three occupy type I chelates in an arrangement equivalent to 

that of X''H3(AlMe2)3; the fourth inhabits a bidentate type III 

site while the fifth is found in a type II chelate that contains 

the NH-site. Cooling the solution to 220 K converts the AX2 to 

an AMX set in agreement with the molecular symmetry of the 

crystal structure. The variable temperature study suggests a 

fluxional behavior that equivalences two P-nuclei in the phos-

phazene ring (see ESI). Crystallization of the product obtained 

from the reaction of the ethyl derivative leads to the aggregat-

ed complex {5H(AlMe2)4}2AlMe. In it two [5H(AlMe2)4]
-
 

fragments are linked via a [AlMe]
2+

 group which occupies the 

molecular C2 axis. The coordination pattern is equivalent to 

that of 4H(AlMe2)5, except that in the aggregate the type II 

chelate that contains the NH-site is now binding the bridging 

[AlMe]
2+

 unit. Remarkably, when crystals of 

{5H(AlMe2)4}2AlMe are re-dissolved, the spectrum of the 

resulting solution does not produce the AX2 set that was ob-

served prior to crystallization. Instead it yields an AMX set 

which is similar to the additional AMX set seen in the spec-

trum of the reaction of 4H6 with five AlMe3. This suggests that 

the ethyl derivative 5H(AlMe2)5 aggregates upon crystalliza-

tion while the isobutyl derivative aggregates slowly in solu-

tion. 

When six equivalents AlMe3 are added to 5H6 and 6H6 at 

room temperature, the 
31

P{
1
H} NMR spectra of the reaction 

mixtures contain a triplet accompanied by a very broad signal. 

Variable temperature measurements indicate a dynamic pro-

cess. They show a sharpening of the broad signal into a dou-

blet that becomes part of an AX2 set upon warming and a split-

ting into an AMX pattern upon cooling. Crystals grown from 

the solution contain complexes of composition 5(AlMe2)6 and 

6(AlMe2)6, respectively. The fully deprotonated ligands ac-

commodate six [AlMe2]
+
 groups, four in chelates of type I and 

two in chelates of type III. These are distributed around the 

ligand in asymmetric fashion in agreement with the AMX set 

observed at lower temperature. Considering the coordination 

pattern of the low temperature form corresponds to that of the 

crystal structure, a dynamic process that equivalences two P-

nuclei in accordance with the AX2 signal at higher temperature 

must involve the rearrangement of at least two [AlMe2]
+
 

groups (Figure 3). 

Reactions of 4H6 and 8H6 reach the fully deprotonated lig-

and stage only after prolonged refluxing in the presence of six 



 

equivalents AlMe3. This led in both cases to the emergence of 

a dominant AMX set in the 
31

P{
1
H} NMR spectrum. Crystals 

obtained from the reaction solution of the isobutyl derivative 

contain the complex 4(AlMe2)6. It comprises a fully deproto-

nated ligand accommodating four AlMe2 units in type I and 

two in type III chelates. The coordination pattern is very simi-

lar to that of 5(AlMe2)6 with the only difference that one type I 

chelate has shifted to a neighboring site. The resulting molecu-

lar C2 symmetry varies from the asymmetric structure found in 

solution. We conclude that either different coordination pat-

terns exist in the crystal and in solution, or that the crystal 

structure is not representative for the bulk of the compound in 

solution. The crystal structure of the benzyl derivative exhibits 

the complex 8(AlMe2)6. Its coordination pattern is different to 

those seen in 4(AlMe2)6 and 5(AlMe2)6. Three [AlMe2]
+
 occu-

py type I, one a type II and one a type III site, while the re-

maining group is coordinated to one N(exo) site. In addition, it 

interacts loosely in side-on fashion with the phenyl ring of a 

benzyl group. The closest Al...C-contact is towards an ortho-

C-atom measuring 267 pm. 

The metalation of 7H6 was conducted in tetrahydrofuran due 

to its low solubility in hydrocarbons which can be attributed to 

its tendency to form dense hydrogen bonding networks.
36

 Ad-

dition of AlMe3 at room temperature resulted in opaque mix-

tures that gave only poorly resolved spectra. Refluxing with 

six equivalents produces a clear solution exhibiting an AMX 

signal in the 
31

P{
1
H} NMR spectrum. The crystal structure of 

the product consists of the dimeric aggregate 

{7(AlMe2)4AlMe}2. The ligands in the centrosymmetric dimer 

are bridged by two [AlMe]
2+

 groups. They are coordinated by 

one ligand via a bidentate type II site and by the other in 

monodentate fashion via an N(exo) site. The [AlMe2]
+
 groups 

occupy type I and III chelates similar as in 4(AlMe2)6. 

The X-ray structures show that the phosphazene rings are 

highly distorted in the aluminum complexes. Analysis of ring 

puckering parameters
37

 reveals that the rings adopt twist con-

formations and become more puckered upon increasing meta-

lation (see ESI). While in XH6 the P-N(ring) bonds are close 

to 160 pm,
36

 they cover an enormous range in the aluminum 

complexes reaching from 156 to 175 pm. The P-N(exo) bonds 

exhibit a similar distribution stretching from 157 to 174 pm 

(see ESI for distribution of P-N bonds). Long P-N bonds occur 

where either the N-atom binds to two Al-centers or an NH-site 

is involved in metal coordination. It is remarkable to what 

extent the P-N(ring) bonds are stretched when compared to 

other phosphazene species. Some are longer than phosphazene 

bonds adjacent to alkylated N(ring) sites or phosphate 

groups.
38-40

 They even exceed the bond lengths found in for-

mally saturated cyclophosphazanes
41-45

 and phosphazene-

phosphazane hybrids.
46-48

 The N-P-N angles are equally af-

fected by Al-coordination resulting in severely distorted PN4 

tetrahedra. For example, type I and type II chelation can re-

duce the N-P-N angle to below 95°. On the other hand, the 

average P-N bond lengths per PN4 tetrahedron are narrowly 

clustered between 162 and 165 pm (see ESI). This suggests 

that the strain experienced by the longer P-N bonds is offset 

by a shortening of neighboring bonds. The ligands have prov-

en to be very robust; degradation of the phosphazene ring was 

not observed despite the high level of stress put on them. 

The Al-N bond lengths show also great variations ranging 

from 185 to 218 pm. Again, they are long where two Al-

centers coordinate to the same nitrogen or one Al interacts 

with an NH-site. Al-C bonds of [AlMe2]
+
 groups average 195 

pm in line with the terminal Al-C bonds in the dimer of tri-

methylaluminum.
49,50

 The lengths of Al-C bonds of [AlMe]
2+

 

groups are similar: 192.4(3) pm for the group in 

3(AlMe2)4AlMe; 194.7(4) and 194.8(10) pm for the bridging 

groups in {5H(AlMe2)4}2AlMe and {7(AlMe2)4AlMe}2, re-

spectively. The C-Al-C angles of [AlMe2]
+
 groups reflect the 

interaction with the ligand. They are widest for the mono-

coordinated group in 8(AlMe2)6 (123.33(14)°), followed by the 

group that occupies the chelate featuring a NH group in 

4H(AlMe2)5 (120.3(2)°), while groups in bidentate chelates 

involving pure N-sites range somewhere between 112 and 

118°; groups that bind to congested sites tend to be found to-

wards the higher end of this range. 

 

 

 

Figure 3. Variable temperature 31P{1H} NMR spectra of 

5(AlMe2)6 in hexane (*denotes impurities). The conversion of the 

AMX () into an AX2 set (+) towards higher temperature indi-

cates a fluxional process that equivalences two of the three P-

nuclei in the phosphazene ring. Considering that at low tempera-

ture the asymmetric coordination pattern of the crystal is main-

tained, a viable process that equivalences PB and PC would require 

the re-arrangement of two [AlMe2]
+ groups (A = stationary [Al-

Me2]
+, B =  fluxional [AlMe2]

+). The Al-N bonds that are broken 

in the process are comparatively long in the crystals (drawn here 

as dashed lines). The broadening of the signal due to PA at inter-

mediate temperatures indicates that PA is also engaged in a dy-

namic process. This is not a consequence of an exchange with 

either PB or PC as simulations reveal, but may be due to slow ad-

justment of the quasi-tetrahedral environment around PA follow-

ing the re-arrangements of [AlMe2]
+ groups. 

DISCUSSION  

The study shows that the progress of metalation is finely 

controlled by the steric demand of the alkyl groups, or more 

precisely, their level of branching in the vicinity of the N-

atom. In the presence of the bulky tert-butyl group the reaction 

ceases at the dianionic stage at room temperature, while pro-

longed heating takes it only to the trianionic stage. Derivatives 

equipped with isopropyl and cyclohexyl groups proceed to the 
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trianionic stage at room temperature, while refluxing accom-

plishes full deprotonation. The -C-branched isobutyl substit-

uent allows the reaction to reach the pentaanionic stage at 

room temperature, while complete deprotonation is accom-

plished after reflux. Only ligands carrying small linear ethyl 

and propyl groups achieve full deprotonation at ambient con-

ditions. Figure 4 illustrates how the steric effect of the R-

groups governs the space available for coordination of [Al-

Me2]
+
 and [AlMe]

2+
. It shows that the ligand alkyl and the Al-

bound methyl groups form a densely packed spherical shell 

with an approximate radius of 5 Å around the ligand core. It is 

also at this distance from the center where -C-branching of 

alkyl groups occurs and thus exerts maximum steric effect. 

 

Figure 4. Steric effect of -C branching at ligand alkyl groups: 

The ligand alkyl (grey) and Al-bound methyl groups (red) form 

dense packings around the ligand core on a sphere with a radius of 

approximately 5 Å (blue). Increased branching of alkyl groups at 

-C positions restricts the space available to accommodate addi-

tional Al-bound methyl groups. Their highest achievable number 

decreases from twelve (for R = ethyl in 5(AlMe2)6, full meta-

lation is completed at room temperature) to nine (for R = isopro-

pyl in 3(AlMe2)4AlMe, full metalation is only accomplished 

under reflux and integration of the smaller [AlMe]2+ group) to six 

(for R = tert-butyl in 1'H3(AlMe2)4AlMe, the metalation does not 

progress beyond at the trianionic stage even when refluxed). 

The ligands that were observed along the route comprise the 

dianionic isomer [X'H4]
2-

, the two isomers of the trianion 

[X'H3]
3-

 and [X''H3]
3-

, the pentaanion [XH]
5-

 and the hexaan-

ion [X]
6-

. The perceived absence of the monoanion from the 

spectra suggests that once it has formed it swiftly reacts to 

produce X'H4(AlMe2)2. The preference for the dianionic iso-

mer [X'H4]
2-

 can be attributed to its non-geminal trans config-

uration which places its two deprotonated N-sites as far apart 

as possible. Further deprotonation leads to the trianion 

[X'H3]
3-

 if substituents are branched at -C atoms. With less 

bulky groups it yields a mixture of isomers [X'H3]
3-

 and 

[X''H3]
3-

. Complexes containing trianionic ligands are particu-

larly stable as they offer three separate type I chelates. In con-

trast, the tetraanionic ligand cannot provide four separate che-

lates without involving NH sites. Considering that Al-

coordination will activate the deprotonation of NH-sites, 

XH2(AlMe2)4 can be deemed more reactive towards AlMe3 

than XH3(AlMe2)3 which may explain the more transient ex-

istence of the tetraanion. The pentaanion [XH]
5-

 is the only 

ligand in this series that coordinates via its NH site while sup-

porting a stable complex. It is less crowded than the hexaanion 

[X]
6-

 which may explain its relative stability. For example, 

while in 4H(AlMe2)5 only one N-site is shared between two Al 

centres, three are shared in 4(AlMe2)6. X-ray structures show 

that Al-N contacts involving shared sites are significantly 

longer. This suggests that overall coordination is becoming 

weaker at full metalation. 

The metalations follow selective pathways which is remark-

able considering the large number of possible ligand isomers 

and the many ways in which chelating sites can be arranged 

around them. The high selectivity may be a consequence of 

the strong interdependence between metal coordination and 

ligand conformation since chelation locks the orientation of 

the N-bound steric group and thereby limits the options for 

metal coordination at neighboring sites. The co-existence of 

ligand isomers [X'H3]
3-

 and [X''H3]
3-

 and their direct descend-

ance from the dianionic isomer [X'H4]
2-

 (see Scheme 1) sug-

gest that pathways are kinetically controlled to some extent. 

Fast proton exchange between N-sites can be ruled out in the 

absence of strongly basic transfer reagents.
10

 It is interesting to 

note that the metalation with n-butyllithium takes a different 

pathway which proceeds straight to the C3v-symmetric isomer 

[X'''H3]
3-

. It allows the ligand to distribute its negative charge 

more effectively by distorting into a chair conformation while 

spreading its deprotonated N-sites along equatorial posi-

tions.
10-12

 Although [X'''H3]
3-

 offers three distinct chelates 

similar to the other two trianionic isomers, it was not observed 

in the reactions with trimethylaluminum. The reason may be 

the lesser ionic character of the aluminum complexes and the 

lack of a direct deprotonation pathway from the preceding 

dianionic isomer [X'H4]
2-

 (see Scheme 1). 

The crystal structures reveal an increasing variety of coordi-

nation modes upon progressive metalation. Up to the trianion-

ic stage [AlMe2]
+
 groups reside exclusively in separate biden-

tate type I chelates comprising a deprotonated N(exo) and an 

N(ring) site. Those added at the later stages tend to occupy the 

more peripheral bidentate type II and III chelates that have 

only N(exo) sites. The resulting four- and six-membered 

metallacycles resemble those found in mononuclear aluminum 

complexes with ligands containing linear N-P-N and N-P-N-P-

N backbones, respectively.
51-53

 Monodentate coordination can 

arise when the ligand becomes highly congested and if addi-

tional means of contact are provided, for example in the form 

of -donating aryl groups. One such interaction was found in 

the crystal structure of 8(AlMe2)6 where one [AlMe2]
+
 group 

connects to one N(exo)-site and, in addition, makes a loose 

contact to a phenyl ring. A similar interaction, albeit shorter 

and intermolecular in nature, was observed in crystals of 

tribenzylaluminum.
54

 

In this series [AlMe2]
+
 is the primary product of metalation 

while [AlMe]
2+

 is produced only at the later stages either to 

mitigate overcrowding or to facilitate aggregation. Integration 

of the small and formally dicationic [AlMe]
2+

 unit offsets two 

deprotonation steps but takes considerably less space than two 

[AlMe2]
+
 groups. This enables full deprotonation of the rela-

tively bulky isopropyl derivative resulting in the pentanuclear 

complex 3(AlMe2)4AlMe. The ligand provides the [AlMe]
2+

 

group with a tridentate type IV site which supports the famil-

iar tetrahedral coordination environment around the Al-center. 

The [AlMe]
2+

 group can also bind two ligands and thereby 

allowing complexes to aggregate. In this way it acts as a bridg-

ing unit in {7(AlMe2)4AlMe}2 and {5H(AlMe2)4}2AlMe. In 

the latter the bridging Al center is five-coordinate forming two 

long bonds to NH sites of either ligand. A possible mechanism 

for the aggregation is the condensation of two [AlMe2]
+
 

groups. The detection of monomeric 5H(AlMe2)5 prior to and 

aggregated {5H(AlMe2)4}2AlMe after crystallization supports 

this scenario. In this case, the crystallization brings two com-

plexes into sufficiently close contact to trigger condensation. 



 

Variable temperature NMR studies of 4H(AlMe2)5, 

5(AlMe2)6 and 6(AlMe2)6 indicate that fluxional processes can 

occur during the later stages of metalation (see Figure 3 and 

ESI). A possible mechanism for this behavior is a dynamic 

interchange of [AlMe2]
+
 groups at crowded N-sites. It is evi-

dent from X-ray structures that Al-N bonds are significantly 

longer when N-sites coordinate to two Al centers. During the 

interchange one of the Al-N interactions gradually weakens 

until it breaks. The departing [AlMe2]
+
 group then approaches 

another N-site where it either replaces an existing Al-N inter-

action or bounces back to its previous position. As a result, 

[AlMe2]
+
 groups will fluctuate between a given set of N-sites. 

Fluxional behavior was also observed for the bimetallic phos-

phazenate complex (PhN)6P3N3H2AlMe2Li3thf6. However, in 

this case the lithium ions oscillate while the [AlMe2]
+
 group 

remained stationary.
55

 

CONCLUSION 

The study has revealed a multifaceted coordination behavior 

of [AlMe2]
+
 and [AlMe]

2+
 with polyanionic phosphazenates. 

The polydentate ligands provide a variety of bidentate and 

tridentate binding pockets; their size is determined by the ste-

ric demand of the peripheral sphere of substituents which 

gives control over the progress of metalation, levels of aggre-

gation and dynamic behavior. While [AlMe2]
+
 groups consti-

tute the primary product of the metalation, [AlMe]
2+

 groups 

are utilized to alleviate overcrowding at spatially restricted 

sites or to aid aggregation by forming bridges between ligands. 

At higher grades of metalation [AlMe2]
+
 groups can become 

fluxional, scrambling around congested ligand sites. The lig-

ands proved to be very robust and at the same time extremely 

flexible offering a unique platform for the exploration of com-

plex multinuclear metal arrangements. 

EXPERIMENTAL SECTION 

All manipulations were performed under a dry nitrogen atmos-

phere. Solvents were dried over potassium (thf, hexane) and sodium 

(toluene). Precursors XH6 were prepared as reported previously
36

 

apart from 5H6, which is described in here. Trimethylaluminum (2.0 

M in hexane) was purchased from Aldrich and used as received. FT-

IR spectra were recorded on a Perkin-Elmer Paragon 1000 spectrome-

ter in nujol between CsI plates. NMR spectra were recorded on a 

Bruker AMX 400 spectrometer (
1
H NMR: 400.13 MHz, 

13
C{

1
H} 

NMR: 100.62 MHz, 
31

P{
1
H} NMR: 161.97 MHz) at room tempera-

ture (if not stated otherwise) in C6D6 using SiMe4 (
1
H, 

13
C) and 85% 

H3PO4 (
31

P) as external standards. 

Single crystal X-ray structure analysis was carried out using MoKα 

radiation (λ = 0.71073 Å). Crystal structures were refined with full-

matrix least-squares against F
2
 using all data (crystallographic tables 

are found in the ESI).
56

 CCDC deposition numbers are as follows: 

1'H4(AlMe2)2, CCDC 1881689; 1'H3(AlMe2)3, CCDC 1881692; 

2'H3(AlMe2)3, CCDC 1881690; 3(AlMe2)4AlMe, CCDC 1881691; 

4H(AlMe2)5, CCDC 1881696; 4(AlMe2)6, CCDC 1881695; 

{5H(AlMe2)4}2AlMe, CCDC 1881694; 5(AlMe2)6, CCDC 1881688; 

6(AlMe2)6, CCDC 1881697; {7(AlMe2)4AlMe}2, CCDC 1881698; 

8(AlMe2)6, CCDC 1881693; 5H6, CCDC 1881699. 

1'H4(AlMe2)2: 1.76 mL (3.52 mmol) AlMe3 (2.0 M in hexane) was 

added to 1.00 g (1.76 mmol) 1H6 in 10 mL of hexane. The solution 

was stirred for 1 h, filtered and then reduced to 2 mL. Colorless crys-

tals formed at 5˚C overnight. Yield 0.93 g (78%). 
1
H NMR  -0.5 -

 -0.2 [m, 12H, AlMe], 1.27 - 1.42 [m, 54H, tBu], 2.08 [m, 4H, NH]. 
13

C{
1
H} NMR  19 [m, C(CH3)3], 30 [m, C(CH3)3]. 

31
P{

1
H} NMR  

5.6 [t, 
2
JP-P = 44 Hz], 8.3 [d, 

2
JP-P = 44Hz]. IR  (cm

-1
) 1263, 1224, 

1184, 1022 (P-N), 989, 891, 861, 805, 626. 

1'H3 (AlMe2)3: 2.64 mL (5.28 mmol) AlMe3 (2.0 M in hexane) was 

added to 1.00 g (1.76 mmol) 1H6 in 20 mL of hexane. The solution 

was refluxed for 1 h, filtered and then reduced to 2 mL. Colorless 

crystals formed from a mixture of hexane and toluene after a few days 

at room temperature. Yield 0.93 g (72%). 
1
H NMR  -0.4 - -0.2 [m, 

18H, AlMe], 1.2 - 1.5 [m, 54H, tBu], 2.0 - 2.1 [m, 3H, NH]. 
13

C{
1
H} 

NMR  -2 [m, AlMe], 32 (m, C(CH3)3), 51 (m, C(CH3)3). 
31

P{
1
H}NMR  2.3 [dd,

 2
JP-P, 24 Hz and 5 Hz], 4.83 [dd, 

2
JP-P = 24 

and 18 Hz], 7.2 [dd, 
2
JP-P = 18 and 5 Hz]. IR  (cm

-1
) 1260, 1229, 

1192, 1148, 1080 (P-N), 1042 (P-N), 1020 (P-N), 906, 813, 754, 672, 

613. 

2'H3(AlMe2)3: 2.02 mL (4.14 mmol) AlMe3 (2.0 M in hexane) was 

added to 1.00 g (1.38 mmol) 2H6 in 20 mL of hexane. The solution 

was stirred for 1 h, filtered and then reduced to 2 mL. Colorless crys-

tals formed at 5˚C overnight. Yield 0.92 g (75%). 
1
H NMR  -0.2 -

 -0.1 [m, 18H, AlMe], 1.0 - 2.6 [m, 60H, Cy], 3.2 - 3.5 [m, 6H, 

NCH2]. 
13

C{
1
H} NMR  -7 [m, AlMe], 26, 37, 50, 68 [m, Cy]. 

31
P{

1
H} NMR  9.9 [dd, 

2
JP-P = 19 Hz and 4 Hz], 13.0 [dd, 

2
JP-P = 19 

Hz and 16 Hz], 16.6 [dd, 
2
JP-P = 16 and 4 Hz]. IR  (cm

-1
) 1293, 1260, 

1191, 1095 (P-N), 1022 (P-N), 956, 848, 815, 713, 668. 

3'H3(AlMe2)3: 2.07 mL (6.21 mmol) AlMe3 (2.0 M in hexane) was 

added to 1.00 g (2.07 mmol) 3H6 in 20 mL of hexane. The solution 

was stirred for 1 h, filtered and then reduced to 2 mL. Colorless crys-

tals formed at 5˚C overnight. Yield 1.20 g (89%). 
1
H NMR  -0.1 -

 -0.3 [m, 18H, AlMe], 1.1 - 1.7 [m, 36H, CH(CH3)2], 3.6 - 3.8 [m, 6H, 

CH(CH3)2 ], 3.58 [m, 3H, NH]. 
13

C{
1
H} NMR  2 [m, AlMe], 26 [m, 

CH(CH3)2], 46 [m, CH(CH3)2]. 
31

P{
1
H} NMR  9.1 [dd, 

2
JP-P 22 and 3 

Hz], 12.7 [dd, 
2
JP-P = 22 and 17 Hz], 15.9 [dd, 

2
JP-P = 17 and 3 Hz]. IR 

 (cm
-1

) 1303, 1222, 1189, 1081 (P-N), 1035 (P-N), 934, 863, 786, 

707, 675. 

3(AlMe2)4AlMe: 2.64 mL (10.35) AlMe3 (2.0 M in hexane) was 

added to 1.00 g (2.07 mmol) 3H6 in 20 mL of hexane. The solution 

was refluxed for 3 h, filtered and then reduced to 10 mL. Colorless 

crystals formed at 5˚C overnight. Yield 1.41 (91%). 
1
H NMR  -0.2 - 

0.1 [m, 27H, AlMe],1.2 - 1.6 [m, 36H, CH(CH3)2], 3.5 - 4.0 [m, 6H, 

CH(CH3)2]. 
13

C{
1
H} NMR  -4 [m, (CH3)2Al], 29 [m, CH(CH3)2], 46, 

[m, CH(CH3)2]. 
31

P{
1
H} NMR  12.6 [dd, 

2
JP-P, 11 and 3 Hz], 15.6 

[dd,
 2
JP-P, 9 and 3 Hz], 16.8, [dd, 

2
JP-P, 11 and 9 Hz]. IR  (cm

-1
) 1190, 

1158, 1108 (P-N), 1084 (P-N), 1051 (P-N), 1008, 929, 905, 864, 850, 

826, 809, 784, 712. 

4H(AlMe2)5: 4.40 mL (8.80 mmol) AlMe3 (2.0 M in hexane) was 

added to 1.00 g (1.76 mmol) 4H6 in 20 mL of hexane. The solution 

was stirred for 1 h followed by 15 min. reflux, filtered and then re-

duced to 10 mL. Colorless crystals formed after a few days storage at 

room temperature. Yield (1.28 g) 86%. 
1
H NMR  = -0.6 - -0.2 [m, 

30H, AlMe], 0.7 - 1.0 [m, 36H, CH2CH(CH3)2], 1.6 - 1.8 [m, 6H, 

CH2CH(CH3)2], 2.7 - 3.2 [m, 12H, CH2CH(CH3)2]. 
13

C{
1
H} NMR 

 -6 [m, AlMe], 21 [m, CH2CH(CH3)2], 30 [m, CH2CH(CH3)2], 51 

[m, CH2CH(CH3)2]. 
31

P{
1
H} NMR  16.9 [t, 

2
JP-P = 8 Hz], 28.6 [d, 

2
JP-P = 8 Hz], at 213 K:  15.1 [dd, 

2
JP-P = 9 and 8 Hz] , 27.0 [dd, 

2
JP-P 

= 9 and < 1 Hz], 28.4 [dd, 
2
JP-P = 8 and < 1 Hz]. IR  (cm

-1
) 1256, 

1198, 1084 (P-N), 1043 (P-N), 998, 944, 876, 799, 699. 

4(AlMe2)6: 5.37 mL (10.56 mmol) AlMe3 (2.0 M in hexane) was 

added to 1.00 g (1.76 mmol) 4H6 in 20 mL of hexane. The solution 

was refluxed for 24 h, filtered and then reduced to 10 mL. Colorless 

crystals formed at 5˚C overnight. Yield 1.19 g (75%). 
1
H NMR  -0.8 

- -0.3 [m, 36H, AlMe], 0.6 - 1.0 [m, 18H, CH2CH(CH3)2], 1.4 - 1.7 

[m, 12H, CH2CH(CH3)2], 2.4 - 2.8 [m, 12H, CH2CH(CH3)2]. 
13

C{
1
H} 

NMR  -8 [m, AlMe], 12 [m, CH2CH(CH3)2], 25 [m, CH2CH(CH3)2], 

41 [m, CH2CH(CH3)2]. 
31

P{
1
H} NMR  20.3, 24.8, 28.7 [

2
JP-P < 1 

Hz]. IR  (cm
-1

) 1262, 1194, 1107 (P-N), 1071 (P-N), 1034 (P-N), 

980, 944, 858, 799, 685. 

{5H(AlMe2)4}2AlMe: 6.23 mL (12.50 mmol) AlMe3 (2.0 M in 

hexane) was added to 1.00 g (2.50 mmol) 5H6 in 20 mL of hexane. 

The solution was stirred for 1 h. Colorless crystals formed at 5˚C 

overnight. Yield 0.85 g (53%). 
1
H NMR  -0.7 - -0.4 [m, 51H, AlMe], 

0.6 - 1.1 [m, 36H, CH2CH3], 2.6 - 3.0 [m, 24H, CH2CH3]. 
13

C{
1
H} 

NMR  -5 [m, 17C, AlMe], 17 [m, 6C, CH2CH3], 38 [m, 6C, 

CH2CH3]. 
31

P{
1
H} NMR  26.5 [dd,

 2
JP-P = 20 and < 1 Hz], 31.3 [dd,

 

2
JP-P = 20 and 15 Hz], 32.0 [dd,

 2
JP-P = 15 and < 1 Hz]. IR  (cm

-1
) 

1298, 1190, 1101 (P-N), 1069 (P-N), 1043 (P-N), 993, 881, 707, 680. 



 

5(AlMe2)6: 7.64 mL (15.00 mmol) AlMe3 (2.0 M in hexane) was 

added to 1.00 g (2.50 mmol) 5H6 in 20 mL of hexane. The solution 

was refluxed for 1 h, filtered and reduced to 10 mL. Colorless crystals 

formed at 5˚C overnight. Yield 1.53 g (83%). 
1
H NMR  -0.7 - -0.5 [s, 

36H, AlMe], 0.6 - 0.9 [m, 18H, CH2CH3], 2.5 - 2.9 [m, 12H, 

CH2CH3]. 
13

C{
1
H} NMR  -6 [m, AlMe], 16 [m, CH2CH3], 38 [m, 

CH2CH3]. 
31

P{
1
H} NMR  28.1 [t, 

2
JP-P = 8 Hz], 32.0 [br]; at 223 K:  

26.5 [dd, 
2
JP-P = 7 and 8 Hz], 27.4 [dd, 

2
JP-P = 11 and 7 Hz], 37.0 [dd, 

2
JP-P = 11 and 8 Hz]. IR  (cm

-1
) 1202, 1175, 1098 (P-N), 1039 (P-N), 

998, 944, 908, 849, 708, 667. 

6(AlMe2)6: 6.21 mL (12.42 mmol) AlMe3 (2.0 M in hexane) was 

added to 1.00 g (2.07 mmol) 6H6 in 20 mL of hexane. The solution 

was refluxed for 2 h, filtered and then reduced to 10 mL. Colorless 

crystals formed at 5˚C overnight. Yield 1.51g (89%). 
1
H NMR  -0.6 -

 -0.1 [m, 36H, AlMe], 0.7 - 1.0 [m, 18H, CH2CH2CH3], 1.4 - 1.5 [m, 

12H, CH2CH2CH3], 3.0 - 3.3 [m, 12H, CH2CH2CH3]. 
13

C{
1
H} NMR 

 -6 [m, 12C, AlMe], 10 [m, CH2CH2CH3], 28 [m, CH2CH2CH3], 42 

[m, CH2CH2CH3]. 
31

P{
1
H} NMR  27.3 [t, 

2
JP-P = 9 Hz], 31.8 [br]; at 

213 K:  26.3 [dd, 
2
JP-P = 11 and 7 Hz], 26.7 [dd, 

2
JP-P = 8 and 7 Hz], 

36.2 [dd, 
2
JP-P = 11 and 8 Hz]; at 233 K:  27.9 [t, 

2
JP-P = 8 Hz], 31.9 

[dd, 
2
JP-P = 8 Hz]. IR  (cm

-1
) 1313, 1259, 1201, 1094 (P-N), 1032 (P-

N), 952, 903, 845, 805, 685.  

{7(AlMe2)4AlMe}2: 9.67 mL (19.) AlMe3 (2.0 M in hexane) was 

added to a suspension of 1.00 g (3.17 mmol) 7H6 in 20 mL of thf. The 

solution was refluxed for 1 h and filtered. Colorless crystals were 

obtained from toluene at 5˚C overnight. Yield 1.43 g (78%). 
1
H NMR 

 -0.8 - -0.4 [m, 54H, AlMe], 1.8 - 2.5 [m, 36H, NMe]. 
13

C{
1
H} NMR 

 = -9 [m, AlMe], 30 [m, NMe]. 
31

P{
1
H} NMR  37.9, 34.3, 24.9 

[
2
JP-P < 1 Hz]. IR  (cm

-1
) 1256, 1193, 1084 (P-N stretch), 1021 (P-N 

stretch), 930, 853, 803, 686. 

8(AlMe2)6: 3.90 mL (7.80 mmol) AlMe3 (2.0 M in hexane) was 

added to 1.00 g (1.30 mmol) 8H6 in 20 mL of hexane. The solution 

was reflux for 24 h, filtered and reduced to 10 mL. Colorless crystals 

formed at 5˚C overnight. Yield 1.16 g (81%). 
1
H NMR  -0.5 - -0.1 

[m, 36H, AlMe], 3.4 - 5.3 [m, 12H, NCH2], 6.6 - 8.1 [m, 30H, Ph]. 
13

C{
1
H} NMR  = -9 [m, AlMe], 58 [m, 12H, NCH2], 132 - 139 [m, 

12H, Ph]. 
31

P{
1
H} NMR  40.1, 25.6, 20.2 [

2
JP-P < 1 Hz]. IR  (cm

-1
) 

1260, 1194, 1110, 1073 (P-N), 1042 (P-N), 1026 (P-N), 942, 796, 

697. 

5H6: To a stirred solution of 10 g (28.8 mmol) hexachlorocyclotri-

phosphazene in 200 ml of toluene were added 50 mL (358 mmol) 

triethylamine followed by 16 g (355 mmol) ethylamine. Precipitation 

of hydrochloride salts indicated the onset of the reaction. After the 

mixture was stirred for 24 h all volatiles were removed in vacuo. A 

suspension of 15 g finely ground KOH in 150 mL diethylether was 

added to the residue. The mixture was stirred for 12 h after which all 

volatiles were removed in vacuo. The product was extracted from the 

residue by Soxhlet extraction with toluene (24 h). Yield 7.1 g (62%). 

Colorless single crystals suitable for X-ray structure determination 

were obtained by slow cooling from the melt (m.p.: 105-107C). 
1
H 

NMR (CDCl3)  1.04 (t, 18H, CH2CH3, 
3
JH-H = 7.2 Hz), 1.97 (br, 6H, 

NH), 2.88 (d, 12H, CH2CH3, 
3
JH-H = 7.2 Hz). 

13
C{

1
H} NMR (CDCl3) 

 16.5 (s, 6C, CH2CH3), 34.6 (s, 6C, CH2CH3). 
31

P{
1
H} NMR (tolu-

ene d8)  18.2 (s). IR  (cm
-1

) 1183 (P-N), 1120 (P-N), 1069 (P-N), 

951, 880, 850, 812, 749, 715. 
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