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Abstract—This paper proposes an efficient implementation of
the Poisson multi-Bernoulli mixture (PMBM) trajectory filter.
The proposed implementation performs track-oriented N-scan
pruning to limit complexity, and uses dual decomposition to
solve the involved multi-frame assignment problem. In contrast
to the existing PMBM filter for sets of targets, the PMBM
trajectory filter is based on sets of trajectories which ensures
that track continuity is formally maintained. The resulting
filter is an efficient and scalable approximation to a Bayes
optimal multi-target tracking algorithm, and its performance is
compared, in a simulation study, to the PMBM target filter, and
the delta generalized labelled multi-Bernoulli filter, in terms of
state/trajectory estimation error and computational time.

Index Terms—Bayesian estimation, multiple target tracking,
random finite sets, set of trajectories, data association, multi-
frame assignment.

I. INTRODUCTION

Multiple target tracking (MTT) refers to the problem of
jointly estimating the number of targets and their trajectories
from noisy sensor measurements [1]. The three most popular
approaches to solving the MTT are the joint probabilistic data
association filter [2], the multiple hypothesis tracker (MHT)
[3], [4], [5] and multi-target filters based on random finite sets
(RFS) [6].

During the last decade, RFS-based MTT algorithms have
received a great deal of attention. In the early stage, RFS-
based MTT algorithms were developed based on moment
approximations of posterior multi-target densities, including
the Probability Hypothesis Density (PHD) filter [7] and the
Cardinalised PHD (CPHD) filter [8]. In recent years, a signif-
icant trend in RFS-based MTT is the development of conjugate
multi-target distributions [9], [10], meaning that the posterior
multi-target distribution has the same functional form as the
prior. Comparisons have shown that PHD and CPHD filters
have worse tracking performance, compared to filters based
on MTT conjugate priors [11], [12].

We proceed to describe two MTT conjugate priors in the
literature for the standard point target measurement model,
which assumes that each target gives rise to at most one
measurement and that targets do not have any shared mea-
surement. The first conjugate prior, presented for unlabelled
RFSs in [10], consists of the disjoint union of a Poisson
point process (PPP) describing targets that have not yet been
detected, and a multi-Bernoulli mixture (MBM) considering all
the data association hypotheses. The second conjugate prior
is the generalized labelled multi-Bernoulli (GLMB) density

[9] presented for labelled RFS, in which labels are appended
to target states with the objective of the forming of target
trajectories.

The Poisson multi-Bernoulli mixture (PMBM) filter [12]
and the δ-GLMB filter [11] are two computationally tractable
approaches, respectively, based on the PMBM and GLMB con-
jugate priors. The PMBM filter has computational advantages
in relation to the δ-GLMB filter due to the structure of the
hypotheses [12]. This was further analyzed in the performance
evaluation study for point target filtering in [13]. However,
unlike the δ-GLMB filter, the PMBM filter on its own does
not provide information to estimate trajectories.

A Bayesian formulation of the MTT problem, in terms of
unlabelled RFS of trajectories, was recently provided in [14].
The PMBM filtering recursions based on this framework have
been derived in [15], which enables us to leverage on the
benefits with the PMBM recursions while also obtaining track
continuity. As a sequel to [15], the aim of this paper is to
complement its theoretical contributions with practical algo-
rithms. In particular, we present an efficient implementation
of the PMBM trajectory filter that estimates the trajectories
of the targets who are present in the surveillance area at the
current time.

In this paper, we propose an approximation to the exact
PMBM trajectory filter, by using track-oriented N-scan prun-
ing [5] and dual decomposition [16] to solve the multi-frame
assignment problem. The proposed algorithm therefore shares
some of the key properties of certain MHT algorithms [5],
[16], but is derived using RFS and birth/death models. Similar
work has been done in [17], where MHT algorithms con-
sidering multi-frame data association based on random finite
set/sequence formalism are derived but with the assumption
that the number of targets is unknown but constant over time.

Compared to the δ-GLMB filter, our algorithm is unlabelled,
and, given a global hypothesis, we obtain a distribution over
the set of trajectories based on which it is convenient to
construct trajectory estimates. The performance of the PMBM
trajectory filter and the existing PMBM target filter [12], along
with the δ-GLMB filter with joint prediction and update step
[18], are compared in a simulated scenario with coalescence.

The paper is organized as follows. In Section II, we in-
troduce the background on RFS modelling and the PMBM
conjugate prior on the set of trajectories. In Section III,
we present our proposed implementation. Simulation results
are presented in Section IV, and conclusions are drawn in



Section V.

II. BACKGROUND

In this section, we first outline the modelling assumptions
utilized in this work. Next, we give a brief introduction to
RFS of trajectories. Then, we give a summary to the PMBM
conjugate prior on the set of trajectories.

A. Modelling assumptions

In the traditional RFS of targets formulation, target states
and measurements are represented in the form of finite sets
[6]. Let xk denote a single target state at discrete time step k,
and let zjk denote the jth measurement at discrete time step k.
The set of measurements obtained at time step k is denoted as
Zk, including clutter and target-generated measurements with
unknown origin.

In this paper, the state variable is a RFS of trajectories, as
suggested in [14]. Single trajectories are parameterized using a
tuple X = (β, ε,xβ:ε) [15], [19], where β is the discrete time
of the trajectory birth, i.e., the time the trajectory begins; ε is
the discrete time of the trajectory’s most recent state (If k is
the current time, ε < k means that the trajectory ends at time
ε, and ε = k means that the trajectory is ongoing); xβ:ε is,
given β and ε, the sequence of states (xβ , xβ+1, ..., xε−1, xε).

We utilize the standard multi-target dynamics model, de-
fined in Assumption 1, and the standard point target measure-
ment model, defined in Assumption 2.

Assumption 1. The multiple target state evolves according to
the following time dynamics process:

• Targets arrive at each time according to a PPP with
intensity λb(xk), independently of any existing targets.

• Targets survive with a probability ps(xk), and targets
depart the surveillance area according to i.i.d. Markov
processes with probability 1− ps(xk).

• Target motion follows i.i.d. Markov processes with tran-
sition density π(xk|xk−1).

Assumption 2. The multiple target measurement process is
as follows:

• Each target can generate at most one measurement per
time scan with detection probability pd(xk).

• The clutter measurements are modelled a PPP with
Poisson rate λc(zk) and spatial distribution c(zk), and
the clutter PPP intensity is κ(zk). Clutter measurements
are independently of any targets and target-generated
measurements.

• Each target-generated measurement is only conditioned
on its corresponding target. The single target measure-
ment likelihood is `(zk|xk).

Expressions for recursively predicting and updating the
multi-trajectory filtering densities based on the above mod-
elling assumptions can be found in [14]. Following [15], we
recursively express these densities as PMBMs.

B. Densities of sets of trajectories

The basic building blocks in a PMBM density are the PPP
and the Bernoulli process. Let X denote the set of trajectories,
and let f(X) denote the corresponding density function. A
trajectory PPP is analogous to a target PPP, and has set density

f ppp(X) = e−〈λ
u,1〉

∏
X∈X

λ(X), (1)

where 〈a, b〉 denotes
∫
a(x)b(x)dx. The trajectory PPP in-

tensity λ(·) is defined on the trajectory state space, i.e.,
realizations of the PPP are trajectories with a birth time, a
time of the most recent state, and a trajectory.

A trajectory Bernoulli process is analogous to a target
Bernoulli, and has set density

f ber(X) =


1− r X = ∅
r · f(X) X = {X}
0 otherwise,

(2)

where f(X) is a trajectory state density, and r is the Bernoulli
probability of existence. Together, r and f(·) can be used
to find the probability that the target trajectory existed at
a specific time, or find the probability that the target state
was in a certain area at a certain time. Trajectory multi-
Bernoulli (MB) RFS and trajectory MBM RFS are both
defined analogously to target MB RFS and target MBM RFS:
a trajectory MB is the disjoint union of multiple trajectory
Bernoulli RFS; trajectory MBM RFS is an RFS whose density
is a mixture of trajectory MB densities.

C. PMBM trajectory filter

1) PMBM conjugate prior on the set of trajectories: The
PMBM conjugate prior was developed for point targets in [10]
and extended to trajectories in [15]. In this context, conjugacy
means that the family of PMBM densities is closed under the
prediction and update steps, though the number of terms in
the mixture grows rapidly with time. In the trajectory PMBM
form, the trajectory set X is a union of two disjoint sets Xu

and Xd, i.e., X = Xu]Xd. The trajectories in the set Xu are
hypothesised to exist but to be undetected, and Xu is presented
by a PPP. The set of detected trajectories Xd is presented by
an MBM. The PMBM density on the set of trajectories can
be expressed as

f(X) =
∑

Xu]Xd=X

f ppp(Xu)
∑
j∈J

W jf j(Xd), (3a)

f ppp(Xu) = e−〈λ
u,1〉

∏
X∈Xu

λu(X), (3b)

f j(Xd) =
∑

]i∈IjXi=Xd

∏
i∈Ij

f j,i(Xi), (3c)

where f j,i(Xi) denotes the ith Bernoulli component in the jth
MB f j(Xd) of the MBM, and W j is the weight of the jth
MB.



2) Structure of the hypotheses: The structure of the hy-
potheses in the PMBM trajectory filter is the same as the
structure of the hypotheses in the PMBM target filter [10].
In the PMBM trajectory filter, each MB corresponds to a
unique global hypothesis for the detected trajectories. A global
hypothesis is a partitioning of all measurements received so
far into subsets, where each subset is hypothesised to cor-
respond to a single trajectory hypothesis. A single trajectory
hypothesis is a subset of measurements, at most one from each
time scan, that are hypothesised to correspond to the same
target. A track is a collection of single trajectory hypotheses,
representing different possibilities of measurement sequences
corresponding to the trajectory. We initiate one new track per
measurement, and all single trajectory hypotheses initiated by
the same measurement belong to the same track. Each global
hypothesis must incorporate one single trajectory hypothesis
from each track.

Let mk be the number of measurements at time k ∈
{1, ..., τ} and j ∈ Mk = {1, ...,mk} be an index to each
measurement with value zjk ∈ Zk. Let Mk denote the set of
all measurement indices up to and including time step k; the
elements ofMk are of the form (k′, j), where j ∈ {1, ...,mk′}
is an index of a measurement in scan k′ ≤ k. Let the number
of tracks at time k be nk|k′ and i ∈ Xk|k′ = {1, ..., nk|k′}
be an index to each track, where k′ = k − 1 corresponds
to the prediction step and k′ = k corresponds to the update
step. A global hypothesis at time k can be represented as
Ak|k′ = (a1

k|k′ , ...,a
nk|k′

k|k′ ), where aik|k′ denotes the single
trajectory hypothesis utilized for the ith track. The set of single
trajectory hypotheses for the ith track at time k is denoted as
Aik|k′ . The set of measurement indices under single trajectory
hypothesis aik|k′ is represented as M(aik|k′) ⊆Mk.

In the PMBM trajectory filter, each global hypothesis should
explain the association of each measurement received so far. In
addition, every measurement should be associated to one and
only one (pre-existing or new) track in each global hypothesis.
In other words, the single trajectory hypotheses included in a
given global hypothesis cannot have any shared measurement.
Under these constraints, the set of global hypotheses at time
scan k can be expressed as [10]

Ak|k′ =

{
(a1
k|k′ , ...,a

nk|k′

k|k′ )

∣∣∣∣aik|k′ ∈ Aik|k′ , ⋃
i∈Xk|k′

M(aik|k′)

=Mk,M(aik|k′) ∩M(ajk|k′) = ∅ ∀ i 6= j

}
. (4)

3) Filtering recursion: The form of the PMBM conjugate
prior on the sets of trajectories is maintained by prediction and
update steps. Given the sequences of measurements up to time
step k, our objective is to calculate the PMBM multi-trajectory
filtering density at time k recursively. In the prediction step,
the MBs describing pre-existing tracks and the PPP describing
undetected trajectories are predicted independently. By using
a PPP birth model, the density of new born trajectories can be
easily incorporated into the predicted density of undetected
trajectories [10]. In the update step, the PPP and the MBs

are updated independently. The PPP intensity of undetected
trajectories is thinned by the missed detection probability, i.e.,
1 − pd(xk). According to the point target PMBM modelling
assumptions, each measurement creates a new track; thus, the
number of tracks after updating becomes nk|k = nk|k−1 +mk.

In what follows, we only present part of the update equa-
tions that are important to explain our proposed implementa-
tion due to page limits. We refer the reader to [15] for more
details.

Let wai

k|k′ denote the weight of single trajectory hypothesis
aik|k′ , and let the corresponding Bernoulli density denote
as fa

i

k|k′(X). For pre-existing tracks (i ∈ {1, ..., nk|k−1}),
each single trajectory hypothesis creates 1 + mk new single
trajectory hypotheses, one for missed detection,

Mk(ai) =Mk−1(ai), (5a)

wai

k|k = wai

k|k−1L
∅,ai
k , (5b)

L∅,a
i

k = (1− ra
i

k|k−1 + ra
i

k|k−1〈f
ai

k|k−1, 1− p
d〉), (5c)

where L∅,a
i

k is the likelihood that the potential trajectory
represented by ai is missed detected, and the others for
measurement updates (j ∈Mk),

Mk(ai) =Mk−1(ai) ∪ {(k, j)}, (6a)

wai

k|k = wai

k|k−1L
j,ai

k , (6b)

Lj,a
i

k = ra
i

k|k−1〈f
ai

k|k−1, `(z
j
k|·)p

d〉, (6c)

where Lj,a
i

k is the likelihood that single trajectory hypothesis
ai is updated by the jth measurement from time k.

Each new track (i ∈ {nk|k−1+1, ..., nk|k−1+mk}) contains
two single trajectory hypotheses. The first one corresponds to a
Bernoulli density with zero existence probability, and it covers
the case that the new measurement is associated with one of
the pre-existing tracks,

Mk(ai) = ∅, (7a)

wai

k|k = 1. (7b)

The second one results from updating the PPP of undetected
trajectories with a new measurement, which can be either a
false alarm or the first detection of an undetected trajectory
(j ∈Mk),

Mk(ai) = {(k, j)}, (8a)

wai

k|k = Lu,j,a
i

k = κ(zjk) + 〈Du
k , `(z

j
k|·)p

d〉, (8b)

where Lu,j,a
i

k is the likelihood that the jth measurement from
time k is assigned to an undetected trajectory.

III. IMPLEMENTATION OF THE PMBM TRAJECTORY
FILTER VIA MULTI-FRAME ASSIGNMENT

In this section, we present an efficient implementation of
the PMBM trajectory filter that estimates the trajectories of the
targets who are present in the surveillance area at the current
time. The proposed implementation uses track-oriented N -
scan pruning to reduce the number of global hypotheses, and



dual decomposition to obtain the most likely global hypothesis
by solving a multi-frame assignment problem. In addition, we
discuss the connections and differences between the existing
PMBM target filter and the proposed PMBM trajectory filter.

A. Global hypothesis reduction

In the update step of the PMBM trajectory filter, each pos-
sible data association will create an updated global hypothesis
so that the number of MBs in the PMBM posterior density (3)
will increase exponentially over time. Hence, finding a feasible
approach to reduce the number of global hypotheses after
the update step is essential for designing a computationally
tractable PMBM trajectory filter.

In the PMBM trajectory filter, the posterior over the set of
detected trajectories is an MBM, i.e., a weighted mixture of
global hypotheses. Typically, the estimates of trajectories are
extracted from the most likely global hypothesis. Conditioning
on the most likely global hypothesis, we make use of the
track-oriented N -scan pruning [5], a conventional hypothesis
reduction technique used in MHT, to prune global hypotheses
with negligible weights.

Given the most likely global hypothesis A∗ at current time
scan τ , we trace the single trajectory hypotheses included
in A∗ back to their local hypotheses at scan τ − N . The
assumption behind the N -scan pruning method is that the data
association ambiguity is resolved before scan τ − N [5]. In
other words, global hypotheses which do not have the same
local hypotheses at scan τ − N − 1 as A∗ are assumed to
have negligible weights; these global hypotheses can then be
pruned. In what follows, we show that the most likely global
hypothesis A∗ can be obtained as the solution of a multi-frame
assignment problem.

B. Data association modelling and problem formulation

The posterior global hypothesis weight WA
k|k is proportional

to the product of different weights of the single trajectory
hypotheses waik|k , one from each track [10]:

WA
k|k ∝

∏
i∈Xk|k

waik|k , (9)

where the proportionality denotes that normalization is re-
quired to ensure that

∑
Ak|k∈Ak|kW

A
k|k = 1. Omitting time

indices and introducing the notation cA = − log(WA) and
c(ai) = − log(wai), yields

cA =
∑
i∈X

c(ai) + C, (10)

where C is the logarithm of the normalization constant in (9).
The most likely global hypothesis is the collection of single
trajectory hypotheses that minimizes the total cost, i.e.,

arg min
A∗=(a1,...,an)∈A

∑
i∈X

c(ai). (11)

The minimization problem (11) can be further posed as
a multi-frame assignment problem by decomposing the con-

straint A = (a1, ...,an) ∈ A into a set of smaller constraints,
as first stated in [16, Section III], in the form of

arg min
ρ∈

⋃τ
k=0 Pk

∑
i∈X

∑
ai∈Ai

c(ai)ρ(ai), (12)

with the constraints sets denoted as

P0 =

{
ρ

∣∣∣∣ ∑
ai∈Ai

ρ(ai) = 1,∀i ∈ X
}
, (13)

Pk =

{
ρ

∣∣∣∣∑
i∈X

∑
ai∈Ai:

(k,j)∈M(ai)

ρ(ai) = 1,∀j ∈ Mk

}
, (14)

where k = 1, ..., τ , ρ(ai) ∈ {0, 1} is a binary indicator
variable, indicating whether single trajectory hypothesis ai in
the ith track is included in a global hypothesis or not, and
ρ = {ρ(ai) ∈ {0, 1}|ai ∈ Ai ∀ i ∈ X} is the set of all
binary indicator variables. The first constraint (13) enforces
that each global hypothesis should include one and only one
single trajectory hypothesis from each track. The set of τ
constraints (14) enforce that each measurement from each scan
should be associated to one and only one track.

C. Multi-frame assignment via dual decomposition
The multi-dimensional assignment problem (12) is NP-hard

for two or more scans of measurements. An effective solution
to this is to use Lagrangian relaxation; this technique has been
widely used to solve the multi-scan data association problem
in the MHT framework [20], [21]. In this work, we focus on
the dual decomposition formulation [22], i.e., a special case
of Lagrangian relaxation, which has been successfully applied
to solve the multi-frame assignment problem [16].

1) Decomposition of Lagrangian dual: We follow similar
implementation steps as in [16]. The original (primal) problem
(12) is separated into τ subproblems, one for each scan of
measurements, and for each subproblem a binary variable ρk

is used. The constraint that ρk are equal for each time scan k
is enforced through Lagrange multipliers that are incorporated
into the subproblems to act as penalty weights. The kth
subproblem can be written as [16]

min
ρk∈{P0,Pk}

∑
i∈X

∑
ai∈Ai

(
c(ai)

τ
+ δk(ai)

)
ρk(ai)

, min
ρk∈{P0,Pk}

S(ρk, δk), (15)

where the binary indicator variables and Lagrange multipliers
used for the kth subproblem are denoted, respectively, by

ρk = {ρk(ai) ∈ {0, 1}|ai ∈ Ai ∀ i ∈ X}, (16a)

δk = {δk(ai)|ai ∈ Ai ∀ i ∈ X}. (16b)

The Lagrange multipliers δk(ai) can be any real number, but
with the constraint that, for each single trajectory hypothesis,
they must add up to zero over different subproblems [22].
Thus, the set of Lagrange multipliers has the form

Λ = {δk|
∑
k

δk(ai) = 0, ∀ai ∈ Ai ∀ i ∈ X}. (17)



2) Subproblem solving: After eliminating all the constraints
sets except two, i.e., P0 and Pk, we obtain a 2-D assignment
problem. For the kth assignment problem, the objective is to
associate each measurement received at time scan k ≤ τ , i.e.,
j ∈Mk, either to a pre-existing track or a new track at current
time scan τ , i.e., i ∈ Xτ , such that the total assignment cost is
minimized. Problems of this type can be solved in polynomial
time using a modified auction algorithm [1, Chapter VII].

For a track that is created after time scan k, no measurement
from time scan k should be assigned to it; therefore, the
measurement-to-track assignment cost is infinity. For a track
that existed before and up to time scan k, i.e., i ∈ Xk, if
measurement zjk has never been associated to this track, let the
measurement-to-track assignment cost be infinity; if otherwise,
let the cost first be the minimum cost of the single trajectory
hypotheses in this track that were updated by zjk [1, Chapter
VII, Equation (7.24)], i.e.,

min
∑

ai∈Ai:
(k,j)∈M(ai)

(
c(ai)

τ
+ δk(ai)

)
. (18)

In order to keep the cost of a hypothesis that does not assign
a measurement to a track the same for a pre-existing and a new
track, the cost (18) should then be subtracted by the minimum
cost of hypotheses that this track is not updated by any of the
measurements at time scan k, i.e.,

min
∑

ai∈Ai:
(k,j)/∈M(ai),∀j∈Mk

(
c(ai)

τ
+ δk(ai)

)
. (19)

Note that, in the context of Lagrangian relaxation, the costs of
single trajectory hypotheses refer to the costs that are penalized
by the Lagrangian multipliers.

After solving this 2-D assignment problem, we can obtain
the associations for each measurement at time scan k. For
tracks not being associated to any measurements at time scan
k, if the track is created before and up to time scan k, i.e.,
i ∈ Xk, the single trajectory hypothesis

arg min
ai

∑
ai∈Ai:

(k,j)/∈M(ai),∀j∈Mk

(
c(ai)

τ
+ δk(ai)

)
(20)

is included in the most likely global hypothesis; if otherwise,
i.e., i ∈ Xτ \ Xk, we can simply choose the single trajectory
hypothesis

arg min
ai

∑
ai∈Ai

(
c(ai)

τ
+ δk(ai)

)
(21)

to be included in the most likely global hypothesis.
3) Subgradient updates: The objective of Lagrange relax-

ation is to find the tightest lower bound of the summation of
the cost of each subproblem (15). The dual problem can be
expressed as [16]

max
{δk}∈Λ

( τ∑
k=1

min
ρk∈{P0,Pk}

S(ρk, δk)

)
, (22)

where the maximum can be found using subgradient methods
[23]. The Lagrange multipliers {δk} are updated using

δk(ai) = δk(ai) + αt · gk(ai), (23)

where gk(ai) is the projected subgradient that can be calcu-
lated as

gk(ai) = ρk(ai)− 1

τ

τ∑
k′=1

ρk
′
(ai), (24)

and αt is the step size at iteration t. There are many rules to
set the step size, see [22]. In this work, we choose to use the
same setting as in [16], which has the form

αt =
BESTPRIMALt − DUALt

‖{gk}‖2
, (25)

where BESTPRIMALt is the best (minimum) feasible primal
cost so far obtained, and DUALt is the dual cost calculated
at iteration t from (22). The optimal solution is assumed to
be attained when the relative gap between the primal cost and
the dual cost is less than a specified threshold ε [22], where

gap =
BESTPRIMALt − DUALt

BESTPRIMALt
. (26)

Each subproblem solution will, in general, be infeasible with
respect to the primal problem (12); nevertheless, subproblem
solutions will usually be nearly feasible since large constraints
violations got penalized [22]. Hence, feasible solutions ρ can
be obtained by correcting the minor conflicting binary ele-
ments on which subproblem solutions ρk disagree. For tracks
for which we have not yet selected which single trajectory
hypothesis to included in the most likely global hypothesis,
we use the branch and bound technique to reconstruct the best
feasible solution at each iteration of the Lagrange relaxation.
Note that there are many other ways to recover a feasible
primal solution from subproblem solutions, see [22].

D. Discussion

As discussed in [10], the structure of the data association
hypotheses in the PMBM density is similar to that of the track-
oriented MHT. Benefiting from the separability of the global
hypothesis weight (9), in this work, we make use of the same
approximation technique in the track-oriented MHT to find
the most likely global hypothesis by solving a multi-frame
assignment problem. It should be noted that, the approximated
filtering density describing the set of detected trajectories
in our proposed implementation, strictly speaking, is not an
MBM but a set of Bernoulli components. The objective of
solving the multi-frame assignment problem is to know which
Bernoulli components are included in the MB with the highest
weight. At each update step, Bernoulli components forming
the highest weight MB, together with the other Bernoulli
components that survive from N -scan pruning, are carried over
to the next filtering recursion. Because the data association
ambiguity is assumed to be resolved before time τ − N ,
obtaining the most likely global hypothesis at time τ , which
explains the origin of each measurement from scan τ −N to



current scan τ , requires the solution of a N + 2 dimensional
assignment problem [5].

In contrast, the existing PMBM target filter in [10] operates
by propagating a number of global hypotheses with explicitly
calculated weights over time. The number of global hypotheses
grows exponentially over time due to data association; thus it
is intractable to enumerate all the possible global hypotheses.
In order to have a tractable solution, each predicted global
hypothesis only generates a set of most likely updated global
hypotheses by approximately selecting the M most likely data
associations, using, e,g., Murty’s algorithm [24] or Gibbs sam-
pling [18]. Further, updated global hypotheses with negligible
normalized weights are assumed to be unlikely to generate
any high-weight global hypothesis in subsequent time steps;
thus they can be pruned. Only maintaining global hypotheses
with non-negligible weights means that we prune single target
hypotheses that are not included in any of the remaining global
hypotheses. One can relate this pruning procedure to the N-
scan pruning used in the PMBM trajectory filter, in which the
same intuition applies: single trajectory hypotheses are pruned
if their updates are assumed to be unlikely to be included in
the most likely global hypothesis in subsequent time steps.

The computational complexity of both filters can be further
reduced by limiting the number of single target/trajectory
hypotheses. For the PMBM target filter, we can prune sin-
gle target hypothesis with small enough Bernoulli existence
probability. A more efficient approximation method is called
recycling [25], in which Bernoulli components are first approx-
imated as being Poisson and then added to the PPP density
representing undetected targets. The benefits of applying recy-
cling in the PMBM target filter has been demonstrated in [13].
As for the PMBM trajectory filter, pruning single trajectory
hypotheses will sometimes harm the solvability of the multi-
frame assignment problem, since the problem is formulated
using the measurement assignment information contained in
single trajectory hypotheses. Instead, we can choose single
trajectory hypotheses ai ∈ Ai,∀i ∈ X with small Bernoulli
existence probability ra

i

at time step k to be updated only by
missed detection at time step k + 1.

IV. SIMULATIONS AND RESULTS

In this section, we show simulation results that compare
the proposed PMBM trajectory filter with the PMBM target
filter [12], and the δ-GLMB filter with joint prediction and
update steps [18]. For the δ-GLMB filter and the PMBM target
filter, the M most likely data associations are approximately
found using the Gibbs sampling solution proposed in [18].
In the implementation, all the codes are written in MATLAB,
except the Gibbs sampling and the auction algorithm, which
are written in C++.

A. State space model

A two-dimensional Cartesian coordinate system is used
to define measurement and target kinematic parameters. The
kinematic target state is a vector of position and velocity
xk = [px,k, py,k, ṗx,k, ṗy,k]T . A single measurement is a
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Fig. 1. Scenario of simulations. There are six targets born at times
{1,11,21,31,41,51} and dead at times {61,71,81,91,101,101} respectively.
Targets move from left to right, and they are in close proximity around the
mid-point.

vector of position zk = [zx,k, zy,k]T . Targets follow a lin-
ear Gaussian constant velocity model fk|k−1(xk|xk−1) =
N (xk;Fkxk−1, Qk), with parameters

Fk = I2 ⊗
[
1 T
0 1

]
, Qk = 0.002I2 ⊗

[
T 3/3 T 2/2
T 2/2 T

]
,

where ⊗ is the Kronecker product, Im is an identity matrix
of size m×m, and T = 1. The linear Gaussian measurement
likelihood model has density g(zk|xk) = N (zk;Hkxk, Rk),
with parameters Hk = I2 ⊗ [1, 0] and Rk = I2.

B. Parameter setting

We consider 101 time steps and the scenario in Figure 1.
For each trajectory, we initiate the midpoint from a Gaussian
with mean [0, 0, 0, 0]T and covariance matrix 10−6I4, and
the rest of the trajectory is generated by running forward
and backwards dynamics. This scenario is challenging due
to the high number of targets in close proximity and the
fact that one target is born when and where the other five
are in close proximity. In the simulation, we consider cases
with constant target survival probability ps = 0.99, constant
detection probability pd ∈ {0.7, 0.9}, and Poisson clutter
uniform in the region of interest with rate λc ∈ {10, 30}.

For the PMBM target/trajectory filter, targets are born
according to a PPP with intensity 0.05 and Gaussian
density with mean [0, 0, 0, 0]T and covariance matrix
diag([1002, 1, 1002, 1]), which covers the region of interest.
For the PPP part, components are pruned with weight smaller
than 10−4. For the PMBM target filter, Bernoulli components
with existence probability less than 0.1 are recycled. For the δ-
GLMB filter, targets are born according to a Bernoulli process
with existence probability 0.05 and the same Gaussian density
as the PPP birth model. For the PMBM target filter and
the δ-GLMB filter, for a global hypothesis with weight W ,
we use Gibbs sampling to select at most dW · Nhe updated
global hypotheses with the highest weights. In addition, global
hypotheses are truncated to only contain those that correspond
to 99.99% of the likelihood. For all the filters, gating is per-
formed to remove unlikely target-to-measurement association.



An implementation of the PMBM trajectory filter propagat-
ing the whole trajectory (full state sequence) using information
Gaussian representation has been provided in [15]. A more
computational efficient implementation is to consider only the
target states of the last L steps [26]. In the simulation, we
compare three filters: the δ-GLMB filter, which provides fil-
tered estimates; a PMBM trajectory filter that provides filtered
estimates (L = 1); and a PMBM trajectory filter that provides
smoothed estimates (L is equal trajectory length). Smoothed
estimates can be easily obtained using Rauch-Tung-Striebel
smoother, since the measurement assignment information is
contained in single trajectory hypotheses. As for the δ-GLMB
filter, a closed form for forward-backward smoothing was
developed in [27] but the implementation has not yet been
proposed.

C. Performance evaluation

Given a multi-target posterior density, several state estima-
tors are available [11]. In this work, we choose to extract the
target states by finding the maximum a posteriori cardinality
estimate, following the methods suggested in [11], [12]. Fil-
tering performance is assessed using the generalized optimal
subpattern (GOSPA) metric [28] (α = 2, c = 20, p = 1),
which allows for decomposing the estimation error into loca-
tion error, missed detection error and false detection error.

The δ-GLMB filter provides estimates of a target trajectory
by estimating the current state at each time, and connecting
estimates from different times with the same label. For the
PMBM trajectory filter, we can choose to either provide the
trajectory estimation directly from single trajectory hypothesis
density [15] or connect current state estimates which belong
to the same track. In the simulation, the latter one is used. For
assessing the estimation performance on the sets of trajectories
for the δ-GLMB filter and the PMBM trajectory filter, we use
the metric proposed in [29] (c = 20, p = 1, γ = 2), which
allows for decomposing the estimation error into location error,
missed detection error, false detection error and error due to
track switches.

D. Results

The results are obtained over 100 Monte Carlo trials. The
average localization error per target, missed and false detection
error, measured using GOSPA, of different filters are listed in
Table I. The performance comparison regarding computational
time and GOSPA error among different filters is presented in
Fig. 2. Overall, the PMBM target filter has the best filtering
performance, followed by the PMBM trajectory filter, with the
δ-GLMB filter in last.

Table II presents the trajectory estimation error1 of the
δ-GLMB filter and the PMBM trajectory filter. By only
looking at the trajectory estimation results without smoothing,
the PMBM trajectory filter has significantly smaller missed
detection error, similar track switch error, and slightly larger
localization and false detection error than the δ-GLMB filter.

1We compared all the trajectories that had existed in the simulation to the
ground truth (six true trajectories).

In the simulation, we found that, for the δ-GLMB, missed
detection frequently occurs when targets become in close
proximity, which leads to the result that the trajectories ob-
tained using the δ-GLMB filter are usually shorter than those
obtained by the PMBM filter. This explains the results since
a shorter trajectory implies lower error due to track switches,
localization mismatch and possible false detections.

V. CONCLUSION

This paper has proposed an efficient implementation of the
PMBM trajectory filter. Compared with the existing PMBM
target filter, the PMBM trajectory filter is able to estimate
all target trajectories. Also, a simulation study shows that the
PMBM trajectory filter has better performance than the δ-
GLMB filter in terms of state/trajectory estimation error and
computational time in a scenario with coalescence.
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TABLE I
SIMULATION RESULTS: THE AVERAGE STATE ESTIMATION ERROR PER TIME STEP. LEGEND: TE– TOTAL GOSPA ERROR; LE–AVERAGE LOCATION ERROR

PER TARGET; MT–MISSED TARGETS; FT–FALSE TARGETS; Nh : THE MAXIMUM NUMBER OF UPDATED GLOBAL HYPOTHESES PER PREDICTED GLOBAL
HYPOTHESIS; N: N-SCAN PRUNING; GLMB: δ-GLMB FILTER WITH JOINT PREDICTION AND UPDATE STEPS; PMMT: PMBM TARGET FILTER; PMDD: PMBM

TRAJECTORY FILTER

pd = 0.9, λc = 10 pd = 0.9, λc = 30 pd = 0.7, λc = 10 pd = 0.7, λc = 30
Filter TE LE MT FT TE LE MT FT TE LE MT FT TE LE MT FT

GLMB(Nh = 300) 7.36 0.81 4.40 0.34 10.73 0.77 8.12 0.36 11.33 0.86 8.27 0.61 16.65 0.82 14.21 0.49
GLMB(Nh = 200) 7.97 0.80 5.08 0.34 11.89 0.76 9.39 0.35 12.12 0.86 9.16 0.57 18.50 0.79 16.36 0.42
GLMB(Nh = 100) 9.04 0.79 6.21 0.38 15.47 0.74 13.35 0.28 13.27 0.83 10.37 0.62 21.86 0.76 20.16 0.31
PMMT(Nh = 200) 6.07 0.79 2.75 0.52 6.33 0.80 3.02 0.54 8.79 0.88 5.19 0.78 9.75 0.87 6.19 0.82
PMMT(Nh = 100) 6.40 0.76 3.12 0.53 6.37 0.79 3.06 0.55 8.85 0.88 5.24 0.79 9.80 0.88 6.24 0.80
PMMT(Nh = 50) 6.71 0.74 3.45 0.54 6.48 0.78 3.19 0.54 8.97 0.86 5.38 0.78 9.87 0.87 6.32 0.81

PMDD(N = 5) 5.94 0.83 2.63 0.42 6.60 0.82 3.35 0.45 9.18 0.90 5.57 0.78 10.65 0.89 7.20 0.78
PMDD(N = 4) 5.98 0.83 2.69 0.40 6.63 0.82 3.41 0.44 9.26 0.90 5.67 0.76 10.91 0.89 7.52 0.73
PMDD(N = 3) 6.06 0.83 2.81 0.39 6.80 0.82 3.62 0.42 9.46 0.91 5.91 0.72 11.51 0.89 8.28 0.64
PMDD(N = 2) 6.50 0.82 3.41 0.34 7.44 0.81 4.39 0.38 10.54 0.91 7.25 0.61 13.06 0.89 10.10 0.53
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Fig. 2. Performance comparison among the δ-GLMB filter (triangle), the PMBM target filter (circular) and the PMBM trajectory filter (rectangle): simulation
time versus GOSPA error (in logarithm). Plots from left to right, respectively, correspond to scenario parameter setting: 1) pd = 0.9, λc = 10, 2) pd =
0.9, λc = 30, 3) pd = 0.7, λc = 10 and 4) pd = 0.7, λc = 30. For the same filter in each subplot, the scatter points from left to right marked with the same
color, respectively, correspond to Nh = {100, 200, 300} for the δ-GLMB filter, Nh = {50, 100, 200} for the PMBM target filter, and N = {2, 3, 4, 5} for
the PMBM trajectory filter.

TABLE II
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FE–FALSE DETECTION; TS–TRACK SWITCH ERROR; PMDDS: PMBM TRAJECTORY FILTER WITH SMOOTHING

pd = 0.9, λc = 10 pd = 0.9, λc = 30 pd = 0.7, λc = 10 pd = 0.7, λc = 30
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