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Abstract 

 In this paper, a local resonant (LR) rod with high-static-low-dynamic-stiffness 

(HSLDS) resonators is proposed to create a very low-frequency band gap for 

longitudinal wave propagation along the rod. The HSLDS resonator is devised by 

employing geometrical nonlinearity, and attached onto a periodic rod composed of 

rigid frames and rubbers to construct a LR rod. To reveal the band gaps, the LR rod is 

modeled as a lumped mass-spring chain. The effects of damping and nonlinearity of 

the HSLDS resonator on the dispersion relation is studied analytically by the 

Harmonic Balance method. The analytical results indicate that the damping mainly 

affects the width and depth of the band gap, while the nonlinearity can influence the 

central frequency and width of the band gap. In addition, both multi-body dynamic 

analyses and numerical simulations are conducted to predict longitudinal wave 

propagation along the LR rod, and thus to validate the very low-frequency band gap. 

The results show that the periodic rod with HSLDS resonators can create a very 

low-frequency band gap for longitudinal waves propagating along the rod. 

Keywords: high-static-low-dynamic stiffness; geometrical nonlinearity; very low 
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1. Introduction 

 Frequency band generated by periodic structures presents means for wave 

attenuation. Phononic crystal or sonic metamaterials are examples of such structures, 

and the frequency band called band gap or stop band. Generally, there are two 

mechanisms for opening a band gap, namely Bragg scattering (BS) [1] and local 

resonance (LR) [2]. However, the band structure and wave attenuating feature caused 

by these two mechanisms are visibly different from each other. Specifically, the center 

frequency of the BS band gap is related to the wave velocity and lattice constant of a 

periodic structure, but that of the LR band gap is only dependent on the resonant 

frequency. Thus, the LR band gap can be formed at a much lower frequency than the 

BS band gap, considering the practical dimension of a periodic structure.  

 There are numerous studies about LR band gaps, as reviewed by Hussein et al [3], 

but the literature review in this section does not try to be exhaustive, and only gives a 

brief review on the contributions to lowering LR band gaps and the works related to 

nonlinearity.  

 In order to form LR band gaps at low frequencies, many attempts to construct 

novel resonators have been made, such as in the form of a mass-spring device [4–7], a 

continuum beam [8,9], an inertial amplification mechanism [10], piezoelectric patches 

[11,12], electroactive polymer layers [13], a cylindrical tungsten pillar [14] and a ball 

coated with a soft material [2]. Especially, the simple mass-spring resonator was 

modified to broaden the band gap or to achieve multiple band gaps, such as lateral 

local resonators [15], a multi-stage resonators [16], a local resonator with 

multi-oscillator [6] and a force and moment resonator [17]. The results of these 

studies show that the local resonator can successfully create band gaps in low 

frequency range. However, because of the restrictive space and load-supporting 

capability of the resonator, it might be impossible to design a local resonator with 

ultra-large mass and ultra-low stiffness in a traditional way, and thus it is still a 

challenge for phononic control in the ultra-low frequency domain [3].  
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 Fortunately, a high-static-low-dynamic stiffness (HSLDS) can be realized by 

exploiting geometrical nonlinearity [18–25]. In our previous works [26,27], a local 

resonator with HSLDS was proposed to create a band gap of bending wave in very 

low frequency region along an Euler-Bernoulli beam. The HSLDS property was 

obtained by using the negative-stiffness (NS) mechanism to neutralize the positive 

stiffness partially, so that the residual stiffness of the oscillator can be tuned towards 

zero. Therefore, the local resonator containing the NS mechanism is a promising 

solution for shifting the band gap from a high frequency region to a low one. 

Nevertheless, the HSLDS has nonlinear attributes related to displacements and 

geometry. When the resonator undergoes large-amplitude oscillation, the effects of 

nonlinearity on the dispersions and band gaps cannot be ignored. In such a situation, 

the characteristics of nonlinear wave propagating along the sonic periodic structures 

should be investigated, which would provide valuable guidance for the application of 

nonlinear local resonators.  

The dispersion features of a one-dimensional chain attached with nonlinear 

resonators have been studied widely. Lazarov and Jensen [28] revealed the band 

structure of a chain with local resonators possessing cubic nonlinearity. Fang et al. [29] 

attached oscillators with cubic stiffness to a chain to construct a nonlinear acoustic 

metamaterials and studied its dispersion feature. Chakraborty and Mallik [30] 

analyzed the wave propagation characteristics in a nonlinear periodic chain by using 

the perturbation approach. Manktelow et al. [31] studied the weakly nonlinear wave 

interactions in a periodic structure by using perturbation method of multiple time 

scales and proposed several potential applications of nonlinear wave interactions. 

Rothos and Vakakis [32] presented the dynamic interactions of travelling waves 

propagating in a linear chain with local essentially nonlinear attachments. 

Khajehtourian and Hussein [33] studied the band gap opened by a 1D nonlinear 

elastic metamaterial with spring-mass resonators and analyzed the effect of 

nonlinearity on the band gap.  
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In this paper, a local resonator containing an NS mechanism with geometrical 

nonlinearity is proposed to filter low-frequency longitudinal waves in a 

one-dimensional periodic rod. Note that, the NS mechanism is employed to neutralize 

the stiffness of the positive-stiffness element, and thus to construct an HSLDS 

resonator in this paper, which is completely different from those works [21,34,35] 

where the NS mechanism is used to construct a bistable resonator with pure negative 

stiffness. The stiffness of the HSLDS resonator can be tuned to any desired low values 

by adjusting the NS mechanism provided that the resonator does not undergo 

large-amplitude oscillations. A lumped mass-spring model is established to reveal 

dispersion properties and demonstrate band structures theoretically by using the 

harmonic balance method, which are also validated by numerical simulations. 

 This paper is organized as follows. In Section 2, the static analysis is carried out 

to show the tunable-low-stiffness feature of the local resonator. Then, the band 

structure of a longitudinal wave propagating in the LR rod is obtained theoretically 

and numerically in section 3. In section 4, the effects of both the number of unit cells 

and excitation amplitude on the wave attenuation performance are studied. Finally, 

some conclusions are drawn in section 5. 

2. Stiffness feature of the HSLDS local resonator 

 The physical model of a one-dimension periodic rod with HSLDS local 

resonators is shown in Fig.1. All the masses and springs of the HSLDS resonator are 

installed in the same horizontal plane. Therefore, the gravity of the mass is not 

considered in the static analysis, which is different from the HSLDS resonator in our 

previous work [27]. The resonator consists of a mass, two relaxed horizontal springs, 

and two pre-compressed vertical springs. For each spring, one end is connected to the 

mass, while the other end is connected to a rigid frame. Two nearby frames are 

connected by a rubber block (black area in Fig. 1). When the mass deviates from the 

static equilibrium along the horizontal direction, the vertical springs become oblique 
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and form a NS mechanism due to the geometrical nonlinearity. Hence, a tunable low 

stiffness can be realized by employing such a NS mechanism to counteract the 

positive stiffness of the horizontal springs. 

 

 

 
Fig.1 The physical model of the HSLDS-LR one-dimensional periodic rod with lattice constant l . 

 

When the resonator is at rest, the configuration of the resonator is shown in 

Fig.2a. Note that the resonator mass can only move in the horizontal direction, and 

two vertical springs deform symmetrically with respect to the horizontal springs. 

When an external load f is applied on the mass along the horizontal direction, the 

resonator mass will deviate from the static equilibrium by a distance x, as depicted in 

Fig. 2b. In the deformed configuration, one of horizontal springs is compressed but 

the other is stretched, and deformations of these two springs are equal.  

 

 

 
Fig.2 Schematic diagram of static analysis of the HSLDS resonator (top view). (a) Rest configuration, 

(b) deformed configuration and (c) free-body diagram of the resonator.  

  

Note that a parameter   is introduced to denote the ratio of the net stiffness of 

the HSLDS resonator at the static equilibrium position after neutralization by the NS 

mechanism to the stiffness of the horizontal springs xk [27]. By changing   from 1 

/ 2xk / 2xk
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to 0, the stiffness of the HSLDS resonator can be tuned towards a desired low value 

and even zero.  

The free-body diagram of the mass is drawn in Fig. 2c. From the equilibrium of 

forces acting on the mass, one can obtain the relationship between the restoring force f 

and the displacement x. The procedure for deriving both the force and stiffness 

expressions of the HSLDS resonator is the same as that in our previous work[27]. For 

the sake of brevity, the restoring force HSLDSf  and the stiffness HSLDSk  of the HSLDS 

resonator are given directly by 

   o
HSLDS 2 2

o

1 1x

bax
f k x

b a a x


 
      

  (1) 

  
 

2

HSLDS 3
2 2o 2

1 1x

a a
k k

b a
a x


 
        

  (2) 

where xk  is the stiffness of horizontal spring, a is the deformed length of the vertical 

spring at the static equilibrium position and ob  is the relaxed length of the vertical 

spring.  

By dividing both sides of Eq. (1) by 0xk b  and dividing both sides of Eq. (2) by 

xk , respectively, the dimensionless restoring force HSLDSf  and stiffness HSLDSk of the 

HSLDS resonator can be given by 

  HSLDS 2 2

1
1 1

1

a
f x x

a a x


 
    

  
  (3) 

  
 

2

HSLDS 3
2 2 2

1 1 1
1

a a
k

a
a x


 
 

       

  (4) 

where 0x x b  and 0a a b . 

It should be noted that the above restoring force and stiffness are achieved under 

the so-called zero-stiffness condition[27], which demonstrates a unique relationship 
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between the stiffness ratio o xk k  , the geometrical parameter 0/a a b , and the 

net stiffness ratio , as given by 

 
 
 

1

2 1

a

a








  (5) 

From Eq. (5), one can see that the net stiffness ratio   can be tuned to be any 

targeted values from 0 to 1 by adjusting the stiffness ratio  or the geometrical 

parameter a .  

To sum up, the main procedure of designing the HSLDS resonator can be listed 

as follows. Firstly, for a target band gap frequency t , the net stiffness ratio  

 2

t 0    is determined, where 0  is the natural frequency of the resonator 

without the NS mechanism. Then, the parameters of the resonator are designed under 

the constraint described by Eq. (5). 

From Eq. (4), it can be seen that the non-dimensional stiffness of the HSLDS 

resonator is equal to   only at the static equilibrium ( 0x  ), and increases with the 

displacement increasing, which presents a feature of hardening-stiffness nonlinearity. 

To broaden the displacement range where the stiffness is close to the targeted value 

  as much as possible, the optimal value of  3/2
2 / 3opta 

 
is selected [27]. 

For the HSLDS resonator, the non-dimensional stiffness against the displacement 

for different ratios of residual stiffness are shown in Fig. 3 when  3/2
2 / 3a  . As 

seen from Fig.3, in the vicinity of the static equilibrium, the stiffness is close to the 

targeted value  . In the displacement range  dmax dmax,x x , dmax 2 3 / 9x  , as 

presented by a gray rectangular area, the non-dimensional stiffness is lower than 1, 

which implies that the dimensional stiffness is smaller than xk .  
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Fig.3 Non-dimensional stiffness

 
of the HSLDS resonator with different residual stiffness ratios   

when  3/2
2 / 3a  . The gray area sketches the optimized low stiffness region. 

3. Band gaps generated by HSLDS local resonators 

3.1 Equations of motion 

 In order to analyze the band features of longitudinal waves, the HSLDS-LR 

periodic rod is modeled as a lumped mass-spring chain, as shown in Fig. 4a. The 

frame of the resonator is much stiffer than the rubber block, and thus only the stiffness 

of the rubber block is taken into account to calculate the equivalent stiffness of the 

connecting spring. The frame of the resonator is simplified as a mass and the rubber 

block is simplified as a spring with stiffness [36] 

 
 

2

3.6 1 2.22
2

ab ab
k G

a b h h

  
        

  (6) 

where a, b, h and G are the length, width, height and shear modulus of the rubber 

block, respectively. The damping of the resonator is mainly caused by the friction 

between each connecting parts, which is hard to be determined theoretically. Thus, a 

linear viscous damper is employed to take into account the energy dissipation in the 
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chain. 

 

 

Fig.4 (a) The lumped mass-spring model for the infinite-length HSLDS-LR periodic rod, and (b) the 

first Brillouin zone [-π/l, π/l] and the irreducible Brillouin zone [0, π/l] of the periodic rod.  

 

The parameters of the HSLDS-LR periodic rod are listed in Table 1. The length 

of the HSLDS-LR periodic structure is assumed to be infinite for the purpose of 

deriving the dispersion relation of this structure.  HSLDSk x
 
denotes the nonlinear 

stiffness of the HSLDS-LR. In Fig. 4b, the region  , /l l 
 
represents the first 

Brillouin zone of this one-dimensional periodic rod, and  0, l
 
denotes the 

irreducible Brillouin zone. The j th unit cell, consisting of a lumped mass and an 

attached local resonator, is selected for dynamic analysis.  

 

Table 1. Parameters of the HSLDS-LR periodic rod 

Parameters Descriptions Magnitude Unit 

1E  Modulus of elasticity of the rubber 7.8 aMP  

2E  Modulus of elasticity of the frame 69 aGP  

1  Density of the rubber 31.23 10  
3kg/ m  

2  Density of the frame 32.7012 10  
3kg/ m  

A  Effective area 35 10  2m  

rm rmrmM M M

HSLDS ( )k x

ju1ju  1ju 

kk kk
l

0/ l / l

(a)

(b)

HSLDS ( )k x HSLDS ( )k x

c c c
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l  Lattice constant 0.158  m  

k  Equivalent stiffness 46.67 10  N/ m  

M  Equivalent mass 0.089 kg 

mr Mass of the resonator 0.0267 Kg 

0b  Length of oblique spring 336.74 10  m  

 

The equations of motion of the lumped mass and the resonator can be written as 

  
2 2

1 12 2

d d
2 0

d d
j j

r j j j r

u x
M m ku ku ku m

t t        (7) 

  
2 2

HSLDS2 2

d d d
0

d d d
j j j

r j r

x x u
m c f x m

t t t
     (8) 

where M is the lumped mass of the j th unit cell, k  is the equivalent stiffness of the 

connecting spring between the j th and  1j  th lumped mass, rm  is the mass of the 

attached resonator, ju is the displacement of the j th lumped mass, jx is the 

displacement of the j th resonator mass relative to ju , c and  HSLDS jf x
 
are the 

damping coefficient and restoring force of the resonator, respectively.  

 By using the notations 0t  , where 0 /k M  , rm M  , and 

/xk k  ,  Eq. (7) and Eq. (8) can be rewritten as non-dimensional forms below 

  1 1

1
2 0

1 1j j j j ju u u u x


       
 

 (9) 

  HSLDS

2
0j j j jx x f x u

 


       (10) 

where  / 2c Mk   is the damping ratio, /   , the prime   denotes 

differentiation with respect to  , and
  HSLDS jf x

 
represents the non-dimensional 

restoring force of the HSLDS resonator, which can be written as 

    HSLDS 2 2

1
1 1 1

1

a
f x x

a a x


  
     

    
 (11) 
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 In order to facilitate the subsequent dynamic analyses and calculations, the 

expression of the restoring force is simplified as a polynomial form 

    
 HSLDS

3

2

1

2 1
ja

j j

x
f x x

a a





 


 (12) 

Introducing a parameter    21 / 2 1p a a       
to characterize the degree of the 

nonlinearity, Eq. (12) can be rewritten as  

  
HSLDS

3a
j j jf x x px   (13) 

 The comparison between the exact and approximate expressions of the restoring 

force is illustrated in Fig. 5. It can be found that the closer to 1 the value of is, the 

smaller the difference becomes. Especially, the difference is 0 when 1  ，because 

the system degrades as a linear system in such a situation. Additionally, the difference 

increases steeply when the mass of the resonator moves far away from the equilibrium 

position; however, for a small deviation, the approximation of the restoring force 

matches well with the exact one. Therefore, the approximate expression, i.e. Eq. (13), 

will be utilized for nonlinear dynamic analysis in Section 3.3. 


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Fig. 5 Approximate expression of the restoring force 
HSLDS

af
 of the HSLDS resonator compared with 

the exact one 
HSLDS

f when (a) 0.1  , (b) 0.4  , (c) 0.7  , (d) 1  . 

 

3.2 The undamped linearized case  

 According to the static analysis of the HSLDS resonator (Fig. 3), the 

non-dimensional stiffness of the HSLDS resonators is close to a constant   in the 

vicinity of the equilibrium position. Therefore, the linearized stiffness of the HSLDS 

resonator is used to analyze band structures of the HSLDS-LR periodic rod under 

small-amplitude oscillations. In addition, the damping of the HSLDS resonator is not 

considered here. Therefore, for the undamped linearized system, the equation of 

motion of the jth resonator can be written as  

 0j j jx x u     (14) 

(a) (b)

(c) (d)

0.1 

1 

0.7 

0.4 

1 
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 By analogy with the monatomic chain, the displacement of the j th lumped mass 

can be written in the form of a traveling wave solution [37] 

  ie jql
ju    (15) 

where  is the oscillation amplitude, 0/    is the frequency ratio of the 

excitation frequency   to the natural frequency 0 /k M   of the unit cell of the 

lumped mass-spring model, l  is the lattice constant and q  is the wave number of 

the longitudinal wave. According to the theorem of lattice vibration [37], two adjacent 

atoms vibrate with the same amplitude but with a phase difference. Therefore, the 

displacements of the  1j  th and  1j  th lumped masses can be given by 

 
   i 1 i 1

1 1e , ej ql j ql
j ju u          
      (16) 

 Substituting Eq. (16) and Eq. (15) into Eq. (9) and Eq. (14), the displacement of 

the mass of the j th resonator can be written as 

    i 21
e 2 e ejql ql ql

j jx  


        (17) 

 Substituting Eq. (15) and Eq. (17) into Eq. (14) and using the identity 

   cosh / 2ql qlql e e  , the dispersion relation of the HSLDS-LR periodic rod can 

be given by 

    
 

4 2

2
cosh 1

2
ql

   
 

 
 


 (18) 

 Note that, the above dispersion relation is independent of the mass index j  and 

displacement amplitude Z, but it can be influenced by stiffness ratio   and mass 

ratio  . Therefore, one can tune the band gaps by adjusting the stiffness ratio and 

mass ratio. For a given frequency, the wave propagation constant ql  can be obtained 

by solving Eq. (18), as shown in Fig. 6, which illustrates the dispersion feature and 

band structure of the HSLDS-LR periodic rod. The solution of the propagation 

constant ql is complex. Assuming that the solution is written as 1 2iql Q Q   and 
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substituting it into the displacement of the jth lumped mass, one can obtain 

   1 2 12
i i i-e e ej Q Q jQjQ

ju          . Obviously, the real component 1Q  decides the 

propagation direction, called phase constant, while the imaginary component 2Q  

decides the wave attenuation, called attenuation constant. Additionally, with the 

decrease in the imaginary component of ql ( 2Q ), the wave attenuation becomes less 

effective. The band gaps are highlighted by shaded areas in Fig. 6.  

Obviously, both the position and width of the band gaps are dependent on the 

residual stiffness of the HSLDS resonator, due to the fact that, for a local resonance 

band gap, its edging frequencies are determined by the resonant frequency, as given 

by [38] 

 
 

x
beginning

r

x r
ending

r

k

m

k M m

Mm











  (19) 

where beginning  denotes the beginning frequency, namely the lower edge, and ending  

the ending frequency, namely the upper edge of the band gap. Note that the 

normalized band, defined as   /ending beginning beginning   , is independent of the net 

stiffness ratio. Therefore, with the decrease in the net stiffness ratio, the normalized 

band keeps unchanged. 

According to Eq. (19), one can find that when the residual stiffness of the 

HSLDS resonator decreases from 1 to 0, the position of the band gap moves towards a 

lower frequency and the bandwidth becomes narrower. For example, the beginning 

frequency of the band gap is 131.7 Hz when 1  , and it moves towards 13.75 Hz 

when the dimensionless stiffness is tuned to 0.01  , i.e. a hundredth of the stiffness 

of the horizontal spring that provides the positive stiffness. For the periodic chain 

without any attached resonators, constructed by removing all resonator from the 
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HSLDS-LR chain, the center frequency of the BS band gap is 02  [3], i.e. 275.56 

Hz. Therefore, the HSLDS resonator is capable of shifting the band gap towards a 

very low frequency by tuning its net stiffness.  

 
Fig. 6 Theoretical band gaps of the undamped linearized case for different residual stiffness when the 

mass ratio 0.3  and the stiffness ratio 0.3  . (a) 1  , (b) 0.5  , (c) 0.1  , (d) 0.01  .  

 

3.3 The damped nonlinear case 

 In this section, the nonlinearity of the stiffness [28] and the damping [39] are 

taken into account, and its effect on the wave propagation properties will be studied in 

detail. The harmonic balance method is used to solve the nonlinear equations of 

motion of the nonlinear HSLDS-LR rod, and then the feature of nonlinear wave 
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propagation alone this periodic rod is revealed.  

 Considering the fundamental harmonic response only, the displacement of the 

mass of the jth HSLDS resonator in the form of complex Fourier series can be given 

as 

   i i
, ,e ej k j k jx A A     (20) 

Substituting Eq. (20) into Eq. (9) and Eq. (10) and integrating twice with respect to

 , one can obtain the displacement of the j th lumped mass, as given by 

  
2

1, 1, 1, 1, i
1, 2 2

2i 3
ej j j j

j j

A A p A A
u t A   

  
 

      
 

 (21) 

According to the Bloch theorem [40], the displacements of the  1j  th lumped mass 

and  1j  th lumped mass can be given by 

 
2

1, 1, 1, 1, i
1 1, 2 2

2 i 3
e ej j j j ql

j j

A A p A A
u A   

  

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 Substituting Eq. (20), Eq. (21), Eq. (22) and Eq. (23) into Eq.(9) and Eq.(10), and 

using the identity    cosh / 2ql qlql e e 
 
again, a nonlinear dispersion relation for 

the HSLDS-LR periodic rod can be given by 

     2 2 4

2
1, 1,

1 1
cosh 1

2 2 2i 3 j j

ql
pA A

   
   


  

   
 (24) 

 Compared with the undamped linearized case, the damping and the nonlinearity 

are included in the dispersion relation for the nonlinear case. The effect of damping on 

the dispersion relation for different nonlinear parameters is illustrated in Fig.7. The 

black and pink arrows represent the center frequencies of the band gap for the damped 

linearized case and damped nonlinear case, respectively. Obviously, as the damping 

ratio increases, the magnitude of the imaginary component of ql in the band gap 

reduces for both the damped linearized case (Fig. 7a) and damped nonlinear case (Fig. 
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7b-Fig. 7d), which implies the wave attenuation becomes worse, but the bandwidth 

become wider. This is an inherent influence of damping on the performance of a local 

resonator. So that adding damping into the HSLDS resonator would be useful to 

broaden the band gap.  

 

Fig. 7 Dispersion relation of the one-dimensional chain influenced by damping ratios for different 

nonlinear parameters (a) 1, 1, 0j jpA A  , (b) 1, 1, 0.01j jpA A  , (c) 1, 1, 0.05j jpA A  and (d) 1, 1, 0.1j jpA A    

when the residual stiffness ratio 0.5  . 

 

In addition, the effect of the nonlinearity of the HSLDS resonator on the band 

gap is represented in Fig. 8. As seen from Fig.8, the impact of nonlinearity on the 

position of band gap is more significant than damping ratio. The blue line and area 

denote the dispersion relation when nonlinear parameter 1, 1,j jpA A  is 0.01, the red 0.05 

and green 0.1. Regardless of the amount of damping ratio, the location of the band 

gap moves towards higher frequencies and the bandwidth is broadened when the 
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nonlinearity becomes stronger. This can be attributed to the hardening-stiffness 

feature of the HSLDS resonator. In other words, as the oscillation amplitude increases, 

the stiffness becomes larger.  

 

Fig. 8 Dispersion relation of the one-dimensional chain effected by nonlinear parameter for damping 

ratios (a) 0  , (b) 0.001  , (c) 0.01  and (d) 0.02  when the residual stiffness ratio 0.5  . 

 

Fig. 9 shows the dispersion relations in the undamped linearized case (Fig. 9a), 

undamped nonlinear case (Fig. 9b), damped linearized case (Fig. 9c) and damped 

nonlinear case (Fig. 9d). It can be seen that the band gap is widened and the wave 

attenuation is enhanced by increasing the mass ratio, when the resonant frequency is 

kept unchanged by increasing the stiffness by the same proportion. In fact, this 

observation is an intrinsic characteristic of local resonance, namely, both the ending 

frequency of the band gap and the wave attenuation at the resonant frequency are 

positively correlated to the mass ratio [41,42].  
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Fig. 9 Dispersion relation of the one-dimensional chain influenced by mass ratio and stiffness ratio for 

(a) undamped linearized case, (b) undamped nonlinear case, (d) damped linearized case and (c) damped 

nonlinear case when the residual stiffness ratio 0.5  . 

  

3.4 Numerical verification 

 In order to validate the theoretical analysis, numerical simulations are carried out 

by two ways. On the one hand, the equations of motion of the simplified lumped 

mass-spring chain (Eq. (9) and Eq. (10)), are solved by using Matlab® function ode45; 

on the other hand, this chain is modeled and analyzed by using Adams®. Note that, for 

the lumped mass-spring chain, the response of the chain can be more easily and 

quickly obtained by using the multi-body dynamic simulation than by utilizing the 

finite element analysis. 

Applying a displacement excitation on the left end of the lumped mass-spring 

chain (Fig. 4), the equations of motion can be rewritten as 
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  HSLDS

2
0j j j jx x f x u

 


       (26) 

Note that the actual nonlinear stiffness of the HSLDS resonator, i.e. Eq. (11), is used 

rather than the approximate one, and damping is also taken into account to dampen 

transient responses.  

The boundary condition of this chain is free-free. In order to avoid rigid-body 

motion, the first unit cell is excited by a time-harmonic displacement rather than a 

force. Therefore, the displacement and velocity boundary conditions of the first unit 

cell can be given by [43] 

    1 1 1 1cos , sinu u        (27) 

where 1 1 0/Z Z b  is the displacement amplitude in dimensionless form. Solving Eq. 

(25) and Eq. (26) by the Runge-Kutta method embedded in ode45, the responses of 

each lumped mass and resonators can be obtained. In the numerical simulations, the 

number of unit cells is selected to be eight. The wave attenuation performance is 

evaluated by wave transmittance in decibel (dB), which is defined as the ratio of the 

root-mean-squared (RMS) displacement of the right-end (eighth) lumped mass to that 

of the left-end (first) lumped mass.  

The numerical simulations are reported in Fig. 10, where the solid lines denote 

multi-body dynamic simulations by using Adams®, and the dotted lines represent 

numerical results by solving the equations of motion. From Fig.10, one can observe 

good agreement between the results obtained by these two methods. Nevertheless, the 

difference would increase when the non-dimensional stiffness of the resonator is 

tuned from 1 to 0, which can be attributed to the fact that the nonlinearity of the 

resonator becomes significant when its stiffness is reduced, as illustrated in Fig. 3, but 
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the nonlinearity cannot be taken into account when the multi-body dynamic 

simulations are carried out by Adams®. 

 
Fig. 10 Comparison of wave transmittance between numerical simulations (SNS) and multi-body 

dynamic simulations (Adams®) for (a) 1  , (b) 0.75  , (c) 0.5  , (d) 0.25  when the number of 

the unit cell 8n  and the damping ratio 0.01  . Shadow areas denote the band gaps. 

 

  Furthermore, the wave transmittance in dB is less than zero when the excitation 

frequency locates in the band gap marked by the shade area, which implies wave 

attenuation, namely, the displacement amplitude at the end of the lumped mass-spring 

chain is smaller than the excitation amplitude. Note that, the band gap in this figure is 

determined by finding an area in which the wave transmittances are less than zero and 

equal to zero at the lower and upper edges. As shown Fig. 11, the blue lines with 

pentagrams and triangles denote the ending frequency (EF) and beginning frequency 

0.25 

0.5 

0.75 

1 
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(BF) of the band gap obtained by the analytical analyses in Section 3.2, respectively. 

And the red lines with squares and hexagons indicate the EF and BF by numerical 

simulations, respectively. The difference between the BF and EF demonstrates the 

band gap. From this figure, it can be found that the band gap revealed by the 

numerical simulations matches well with the theoretical ones, although the linearized 

stiffness is used in the analytical analyses. Therefore, the analytical dispersion 

relations of the linearized system can be utilized to demonstrate the band structure of 

the HSLDS-LR periodic rod. Most importantly, as mentioned in Section 3.2, the band 

gap induced by the proposed HSLDS local resonator can be created at a very low 

frequency by employing the NS mechanism to reduce its stiffness. 

 

 
Fig. 11 Band structures for different residual stiffness ratios   calculated both analytically and 

numerically, when the number of unit cell 8n  , the mass ratio 0.3  , the stiffness ratio 0.3 

and the damping ratio 0.001  . The analytical ending frequency (EF) and beginning frequency (BF) 

are denoted by stars and triangles, respectively, while the numerical EF and BF by squares and 

hexagons, respectively. 

 

4. Wave attenuations by HSLDS local resonators 

In order to find out the wave attenuation performance of the proposed resonator, 

this section will discuss influences of the number of unit cells and excitation 
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amplitude on the longitudinal wave attenuation in the HSLDS -LR periodic rod.  

4.1 Influence of the number of unit cells 

 The effect of the number of unit cells on wave attenuation is shown in Fig.12, 

when 0.5  , 0.001  and 1 1mmZ  . In this figure, the wave attenuation is 

represented by the minus transmittance (in dB) on the contour map, which is 

calculated by using numerical simulations, and thus the band gap is shown by a belt 

with distinct colors in the vicinity of 100 Hz. Obviously, as the number of unit cells 

increases, the band gap becomes wider, and the wave attenuation performance is 

enhanced notably. Also shown is that more resonant peaks occur as the number of unit 

cells increases, due to new emerging natural frequencies of the system after adding 

more unit cells.  

 
 

Fig. 12 Wave transmittance of the HSLDS-LR rod for different numbers of unit cells when the 

damping ratio 0.001  , the displacement amplitude 1 1mm   and the residual stiffness ratio 
0.5  .  

 

4.2 Influence of the excitation amplitude  
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 As mentioned in Section 2, the stiffness of the HSLDS resonator is nonlinear and 

related to the displacement. When the resonator undergoes large-amplitude vibration, 

both the location and width of the band gap would change with the variation of the 

excitation amplitude. Fig.13 shows the effect of the excitation amplitude on the wave 

transmittance, which is also obtained by numerical simulations. From Fig.13a, a wide 

and deep band gap can be observed under a small-amplitude excitation. When the 

excitation amplitude increases, the band gap moves to high frequencies, as shown in 

Fig. 13b-d, which agrees well with the theoretical observation in Fig. 8.  

However, the width and depth of the band gap are reduced by increasing 

excitation amplitude, leading to worse wave attenuation performance, which is 

opposite to theoretical results in Fig. 8. The reason for this disparity is that only the 

fundamental harmonic is considered in the theoretical analyses, but in the numerical 

simulations, sub-harmonics, super-harmonics, or even chaos would appear, when the 

nonlinear system is under large excitations. Therefore, in order to achieve a targeted 

band gap, large-amplitude oscillations of the HSLDS resonator should be avoided as 

much as possible. 

 

1 0.2mm  1 1mm 

1 1.5mm 
1 2mm 
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Fig. 13 Influences of excitation amplitude on the wave transmittance of the HSLDS-LR rod with 8 unit 

cells and the damping ratio 0.001  , the residual stiffness ratio 0.5  .  

 

5. Conclusions 

 In this paper, a high-static-low-dynamic stiffness (HSLDS) local resonator with 

geometrical nonlinearity is proposed to lower the band gap of longitudinal waves 

propagating in a one-dimensional periodic rod. The HSLDS-LR periodic rod is 

modeled as a lumped mass-spring chain to analyze its dispersion relation and reveal 

the band structure, which is validated by numerical simulations and multi-body 

dynamic simulations. Several conclusions are drawn as follows. 

 Firstly and most importantly, the stiffness of proposed HSLDS local resonator can 

be tuned towards an ultra-low targeted value by employing negative-stiffness 

mechanisms, and thus the longitudinal wave band gap can be significantly shafted 

from high into very low-frequency range. This conceptual design can be considered as 

a potential solution for very low-frequency wave and vibration manipulation, such as 

longitudinal wave filter and mechanical vibration isolator. Furthermore, the width and 

depth of the band gap are related to the mass ratio, nonlinearity and damping ratio of 

the HSLDS resonator, and a large mass ratio and a small damping ratio are favorable. 

In addition, a sufficient number of unit cells are needed to form wide and deep band 

gaps. A large excitation might induce complicated responses, leading to worse wave 

attenuating capability; therefore, large-amplitude oscillations of the HSLDS resonator 

should be avoided as much as possible.  
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