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Abstract 

The effect of chemical activation and NH3 modification on activated carbons (ACs) 

was explored via two contrasting bamboo pyrolysis strategies involving either two 

steps (activation followed by nitrogen doping in NH3 atmosphere) or one step 

(activation in NH3 atmosphere) with several chemical activating reagents (KOH, 

K2CO3, and KOH+K2CO3). The ACs produced by the two-step method showed 

relatively smaller specific surface areas (~90% micropores) and lower nitrogen 

contents. From the one-step method, the ACs had larger pore diameters with about 90% 

small mesopores (2 to 3.5 nm). Due to a promotion effect with the KOH+K2CO3 

combination, the AC attained the greatest surface area (2417 m2 g-1) and highest 

nitrogen content (3.89 wt.%), endowing the highest capacitance (175 F g-1). The 

balance between surface area and nitrogen content recommends KOH+K2CO3 

activation via the one-step method as the best choice for achieving both greener 

production process and better pore structure. 

Keywords: Biomass activation; NH3 modification; Nitrogen-doped; Porosity; 

Supercapacitors 

  



1. Introduction 

Due to their easy preparation and porous structures with large surface areas, 

activated carbons (ACs) have been used in many scientific applications in which large 

adsorption areas are needed. When combined with biomass pyrolytic polygeneration, 

AC production becomes an environmentally friendly and low-cost technology (Yang 

et al., 2016). ACs have been widely used as electrode materials for energy storage 

(Frackowiak and Béguin, 2001), sorbents for gas separation/storage (Choi et al., 2009) 

and water purification (Li et al., 2017), additives for soil amendment (Tan et al., 2017), 

and supports for many important catalytic processes (Borghei et al., 2017). However, 

for all these applications, the mass diffusion and adsorption of, for example, 

electrolyte ions or gas molecules on the AC surface are processes of fundamental 

importance (Salanne et al., 2016), and certain reactions such as hydrolysis and oxygen 

reduction require active sites (Lee et al., 2017). Thus, the performance of these 

applications is highly contingent on the accessibility of adsorption and active sites 

dispersed throughout the internal and external surfaces of the ACs. 

To prepare high-quality AC materials, two main aspects must be considered 

(Bhatnagar et al., 2013): chemical activation, to tailor the micro- and mesopore 

structure with a high specific surface area; and the generation of active sites by the 

substitutional doping of heteroatoms such as nitrogen (Paraknowitsch and Thomas, 

2013), sulfur (Gu et al., 2013), boron (Shcherban et al., 2017), and phosphorus 

(Denisa et al., 2009) into the carbon lattice. To optimize the microstructure, chemical 

activating agents such as KOH, ZnCl2, Na2CO3, K2CO3, NaHCO3, NaOH, and H3PO4 



are often used (Kula et al., 2008; Li et al., 2015; Oliveira et al., 2018; Tian et al., 

2018). Among these, KOH is most frequently reported in the literature, because ACs 

activated by KOH possess well-defined micropore size distributions and ultrahigh 

specific surface areas (Lv et al., 2012). K2CO3, a frequently used food additive, is an 

environmentally friendly activator that can mitigate the corrosion of equipment at 

high temperatures compared to KOH. In addition, mixed activators have attracted 

attention by combining different activation effects. Li et al. (Li et al., 2015) obtained 

AC materials with perfect hierarchical pore structures by mixed activation. In that 

case, the use of KOH added new micropores by corrosion of the carbon surface, while 

the decomposition of K2CO3 enlarged the pore sizes at a certain temperature. To 

improve surface characteristics, the most important and widely introduced heteroatom 

is nitrogen, and nitrogen-containing functional groups can enhance the interactions 

between the AC surface and acidic molecules (Shen and Fan, 2013), which is 

beneficial for the oxygen reduction reaction (Guo et al., 2016), pseudocapacitance 

(Lota et al., 2005), catalysis (Shen et al., 2014), and so on. Among the common 

nitrogen sources (e.g., NH3, HCN, urea, melamine, and polyaniline), ammonia has 

been the most frequently used reagent for introducing nitrogen into porous carbons 

(Shen and Fan, 2013). 

Numerous routes have been developed to synthesize N-doped porous carbons via 

a combination of the two aspects mentioned above (Liu et al., 2018), and include 

three different strategies: (1) a two-step method based on nitrogen functionalization 

followed by chemical activation; (2) a two-step method involving chemical activation 



followed by nitrogen functionalization; and (3) a one-step method entailing direct 

pyrolysis of the mixture of biomass, nitrogen source, and chemical activator. For 

method (1), according to our previous study, the activation step destroys the 

nitrogen-containing groups by an etching action (W. Chen et al., 2018b); therefore, 

this approach is not a good choice for increasing the amount of nitrogen. For method 

(2), the activation step can create a porous structure which allows NH3 to enter deep 

into the pore structure, thus facilitating uniform nitrogen doping. However, ammonia 

molecules (and ammonia free radicals) preferentially react with surface 

oxygen-containing functional groups, and hence, additional mild surface oxidation is 

usually needed (Laheaar et al., 2014). There seems to be a competition between 

optimizing the microstructure and improving surface characteristics. Moreover, for 

the one-step strategy (method (3)), compared with the two-step methods, interactions 

between the chemical activation and NH3 modification processes may exert as-yet 

unknown effects. Luo et al. (Luo et al., 2014) presented a simple one-step fabrication 

method for nitrogen-doped nanoporous carbon membranes by annealing cellulose 

filter paper under NH3. They found that the reaction between the N-doped carbon and 

NH3 leads to carbon gasification, resulting in a large surface area (up to 1973.3 m2 g-1). 

This result indicates that NH3 modification has some interesting effects in tailoring 

pore structure. Chen et al. (Chen et al., 2016) investigated the influence of the 

addition of NH3 and KOH on the fast pyrolysis of bamboo, and found that the amount 

of nitrogen dramatically increased to 10.4 wt% after the addition of KOH, indicating 

that there is a strong interaction effect for the combination of chemical activation and 



NH3 modification.	 According to results of previous studies, some interactions do 

happen between the chemical activation and the NH3 modification，but how the 

interaction happened, it is still unknown, furthermore, most researches are based on 

separated stages, like get char first, then activated with KOH or K2CO3, followed with 

N-doping with ammonia. As we known, there are few O-compound and not easy for 

activation and doping. Combined the three steps into one might be a good choice. 

Therefore, it would be interesting to further investigate these two aspects: first, 

chemical activation under NH3 atmosphere, for which the mechanisms of pore 

tailoring and nitrogen doping are yet unknown; and second, the different interaction 

effects that occur due to the use of various activating reagents. 

To analyze the interaction effects between chemical activation and NH3 

modification on the properties of ACs, the two processes were combined in either a 

two-step method (chemical activation followed by nitrogen doping in an NH3 

atmosphere) or a one-step method (chemical activation in an NH3 atmosphere), with 

KOH and K2CO3 as the chemical activating reagents. A mixed activator 

(KOH+K2CO3) was also studied to investigate any possible synergy, and 

simultaneously achieve greener production process and improved AC structure. The 

most essential factors affecting the performance of ACs (porous structure, N-doping 

concentrations and types) were the focal points of our investigation. Furthermore, the 

mechanisms of pore tailoring and nitrogen doping during the combined chemical 

activation/NH3 modification were studied in depth. Finally, to elucidate potential 

advantages for applications as supercapacitor electrodes, the electrochemical behavior 



of all the ACs was measured, especially that material	 with the highest specific 

capacitance. The results we present provide valuable insights that should aid in the 

development of porous carbon materials with improved properties. 

 

2. Materials and methods 

2.1 Materials 

Bamboo waste was obtained locally. The material was crushed and sieved to 

achieve a particle size of < 425 µm, and then dried at 105 °C overnight before use. 

The bamboo waste consisted of large volatile (80.57 wt%) and small ash (2.32 wt%) 

components, with carbon (41.97 wt%) and oxygen (43.18 wt%) as the main elements 

and negligible nitrogen content (0.27 wt%) (Chen et al., 2017). Activation chemicals 

KOH (≥ 85%) and K2CO3 (≥ 99%), both analytical reagent grade, were obtained from 

Sinopharm Chemical Reagent Co., Ltd. 

Bamboo waste was initially impregnated with the chemical activation reagent 

(chemical reagent/bamboo weight ratio 2:5) (Chen et al., 2016), using KOH, K2CO3, 

or a combination of KOH+K2CO3 (1:1 w/w). The mixture was stirred at 60 °C 

overnight until it was completely dry. 

2.2 Experimental methods 

Slow pyrolysis was performed in a fixed-bed system that consisted of a fixed-bed 

reactor (height, 1000 mm; diameter, 35 mm), electronic-control furnace, gas-flow 

controller, temperature controller, ice-water condensing unit, gas cleaner, and drying 

unit. (E-supplementary data of this work can be found in online version of the paper) 



For the two-step method, the dried, impregnated material was inserted into the 

fixed-bed system under a continuous flow of Ar (200 mL/min) for the entire process. 

When the system reached a steady state (no air in the reactor, about 30 min), the 

material was heated to 800 °C at a rate of 20 °C/min, maintained for 1 h, and then 

cooled to ambient temperature under Ar purging. To remove the potassium-containing 

compounds, the resultant grains were first immersed in a dilute solution of HCl, and 

then washed with abundant distilled water until pH ≈ 7 was obtained. After drying 

overnight at ~80 °C, the washed product was heated under a flow of NH3 (200 

mL/min) to 800 °C (at a rate of 20 °C/min), maintained for 1 h in the pyrolysis reactor, 

and then cooled to ambient temperature under Ar purging. The end products are 

designated as T-x, where x is the chemical activation reagent; the sample obtained 

without the addition of a chemical reagent is named T-AC. 

For the one-step method, the dried, impregnated material was carbonized under a 

flow of NH3 (200 mL/min) at 800 °C (20 °C/min, 1 h), following the same procedure 

for the first step of the two-step method. Then, the washed product was dried 

overnight at around 80 °C. These samples are designated as O-x, where x is the 

chemical activation reagent; the sample obtained without the addition of a chemical 

reagent attained is named O-AC. 

2.3 Characterization 

The porous characteristics of our ACs were measured using nitrogen isothermal 

adsorption-desorption at 77 K with an accelerated surface area and porosimetry 

system (ASAP 3000, Micromeritics, USA). Prior to adsorption, the samples were 



degassed at 150 °C for 10 h. The Brunauer-Emmett-Teller (BET) specific surface area 

(SBET) was determined using the BET equation. The micropore surface area (Smic) and 

micropore volume (Vmic) were determined by the t-plot method. The total pore volume 

(Vtotal) was determined by single-point adsorption total pore volume analysis. The 

average pore diameter (D) was obtained as 4V/SBET, based on the BET method. The 

pore size distribution plot was obtained by the Barrett–Joyner–Halenda (BJH) method. 

The morphology of the ACs was measured using field emission scanning electron 

microscopy (FESEM; Sirion 200, FEI, Netherlands), operating at 10 kV. 

The crystal structure of the ACs was examined by X-ray diffraction (XRD; X’Pert 

PRO, PANalytical B.V., Netherlands), using a scanning step of 0.026° in the 2θ range 

from 10° to 90°. To determine the graphitic quality, Raman scattering spectra of the 

ACs were collected on a LabRAM HR800 (Horiba Jobin Yvon, Japan) over the range 

of Raman shifts from 500 to 3500 cm-1. 

Ultimate analysis of the samples was conducted using a CHNS/O elementary 

analyzer (Vario Micro Cube, Germany). The nitrogen-containing functional groups on 

the surface of the ACs were analyzed by X-ray photoelectron spectroscopy (XPS, 

Axis Ultra DLD, Kratos, UK) using the Al Kα line (15 kV, 10 mA, 150 W) as the 

radiation source. The C 1s peak position at 285 eV was used as an internal standard. 

The curves of the N 1s peaks were fitted by the XPS Peak 4.1 software. The content 

of each element was determined from the corresponding peak area and calibrated by 

the atomic sensitivity factor with C as reference. 



2.4 Electrochemical measurements 

The electrochemical performance of the ACs was measured in 6 M KOH using a 

three-electrode system (CH Instruments 760, USA) at room temperature. A platinum 

plate and saturated calomel electrode were used as the counter and reference 

electrodes, respectively. The working electrode was prepared by uniformly mixing the 

AC (80 wt%) with acetylene black (10 wt%) and poly(vinylidene fluoride) (PVDF, 10 

wt%) in N-methyl-2-pyrrolidone (NMP) to form a homogeneous slurry. The slurry 

was coated onto a 1 cm × 1 cm nickel foam current collector and dried at 105 °C for 

12 h in a vacuum oven. Finally, it was pressed at 10 MPa, and the mass difference was 

obtained to calculate the AC mass on the working electrode. 

 

3. Results and discussion 

3.1 Pore characteristics and morphology analysis 

The N2 sorption isotherms and pore size distributions of the prepared samples are 

shown in Figure 1. All the ACs produced by the two-step method have type I(a) 

isotherms with significant nitrogen adsorption amount at relative pressures p/p0 < 0.1, 

and no obvious hysteresis loop at high relative pressures p/p0 > 0.4 (Figure 1(a), inset); 

this behavior is typical of mainly narrow microporous materials. By contrast, all the 

ACs prepared by the one-step method show type I(b) isotherms in which the N2 

uptake capacity increases prominently at low relative pressure (p/p0 = 0.1–0.3, Figure 

1(b), inset), as is typical of wide microporous, and possibly narrow mesoporous, 

materials (Thommes et al., 2015). As expected, O-KOH and O-KOH+K2CO3 



absorbed larger volumes of nitrogen (about 400 cm3 g−1) than the other samples, 

which suggests their greater specific surface areas; their pore size distributions 

(Figure 1, main plots) are consistent with this analysis. Furthermore, the existence of 

some medium-sized mesopores (5 to 15 nm) in T-KOH can be proven by the small 

conspicuous hysteresis loop with a high relative pressure range (p/p0 = 0.45–1.0). 

Finally, O-KOH, O-K2CO3, and O-KOH+K2CO3 contain a larger volume of small 

mesopores (2 to 3.5 nm), matching the “knees” in their N2 sorption isotherms. 

Detailed structural parameters of the porous carbons were calculated from the N2 

adsorption isotherms and are summarized in Table 1. The porosity of the AC materials 

is significantly influenced by the choice of activator and method. With the addition of 

the activators, all the ACs had greater specific surface areas and total pore volumes. 

The SBET values of T-KOH and T-K2CO3 increased to ~1270 m2 g-1, while that of 

T-KOH+K2CO3 was slightly lower at only 1123 m2 g-1, demonstrating the inhibition 

effect on surface area development when combining KOH and K2CO3. The O-KOH 

sample exhibited the largest surface area (up to 2892 m2 g-1) among the ACs, while 

O-K2CO3 and T-K2CO3 had similar surface areas. O-KOH+K2CO3 had a larger 

surface area (2417 m2 g-1) than T-KOH+K2CO3, and was also significantly higher than 

the equivalent average value for O-KOH and O-K2CO3; this result demonstrates the 

promotion of surface area development when combining KOH and K2CO3. The 

changes in the total pore volume trend are the same as those for SBET. 

All the ACs produced by the two-step method were observed to have 78–86% of 

their surface area as micropores, because the lower chemical reagent/bamboo weight 



ratio (2:5) promoted a microporous structure (Hou et al., 2014); whereas, all the ACs 

produced by the one-step method only showed 2–9% for this metric, and small 

mesopores instead formed the principal component of their pore structure. As 

described above, it is obvious that O-KOH, O-K2CO3, and O-KOH+K2CO3 produced 

larger numbers of pores with larger diameters than did T-KOH, T-K2CO3, and 

T-KOH+K2CO3, which is consistent with the changing trend of average pore diameter. 

Among these, T-KOH had an abnormal average pore diameter due to the existence of 

medium-sized mesopores (5 to 15 nm). 

To understand the inhibition and promotion effects on surface area development 

when combining KOH and K2CO3 as the activator, the differences between the KOH 

and K2CO3 activation mechanisms must be elucidated. Both KOH and K2CO3 tailor 

the porous structure through carbon oxidation and hydroxide reduction (Wang and 

Kaskel, 2012). The activation process can be described as follows. At temperatures in 

the range of 475–570 °C, microporosity develops due to the corrosion of the carbon 

surface by KOH, as shown in reaction (1) below. At higher temperatures, up to 700 °C, 

the decomposition of K2CO3 enlarges the pore size, with the release of CO and CO2 

and formation of metallic K, as shown in reactions (2)–(4). 

6KOH + 2C → 2K + 3H* + 2K*CO+                   (1) 

K*CO+ + 2C → 2K + 3CO                         (2) 

K*CO+ → K*O + CO*                           (3) 

K*O + C → 2K + CO                           (4) 

When present, NH3 starts to decompose during the heating process near 500 °C (E. 



P. Perman and G. A. S. Atkinson, 1904), resulting in various free radicals that attack 

the carbon active sites present on the AC surface. Due to its weak etching capacity, 

NH3 can slightly increase the micropore volume via the following possible pathway 

(Chen et al., 2016; Luo et al., 2014), which contributes to a bigger surface area of 

O-AC than T-AC: 

(C)./0.11 + NH+ → C∗ + H∗ + NH∗ + NH*∗ → H* + C − NH + C − NH*   (5) 

During the first stage (around 500 °C) of the slow pyrolysis to form T-KOH, 

alteration of the molecular chain structures results in the increment of multiple fused 

benzene rings and a sharp decrease of methylene and oxygen-containing functional 

groups (Huang et al., 2015). Therefore, under these conditions, the semi-char is 

believed to be in a “non-activating” state in which it is not easy to be etched further 

during the second stage with very limited active sites on its surface (Elmouwahidi et 

al., 2017). As the etching action of KOH destroyed many oxygen-containing 

functional groups on the surface of semi-char which is surrounded by inert 

atmosphere, exposing many defect sites without active substances to bind with; this is 

called the “non-activating carbon”. Then, in the second stage (up to 700 °C), an 

enlargement of the pore size commences via reactions (2)–(4), on the basis of reaction 

(1), leading to a quite large surface area. In the first stage of T-K2CO3 synthesis, many 

oxygen-containing functional groups in the semi-char are retained, so that a low-level 

“activating” state is preserved, without the KOH etching reaction. Then, the violent 

etching action of K2CO3 results in a surface area that is quite large. However, for 

T-KOH+K2CO3, the KOH etching reaction leads to the “non-activating carbon” state. 



Comparing the second stage of T-K2CO3 and T-KOH+K2CO3, the impregnated 

K2CO3 in T-K2CO3 etched the low-level “activating” semi-char, but the impregnated 

K2CO3 in T-KOH+K2CO3 etched the “non-activating” semi-char, leaving less site for 

K2CO3 etching than in the case of T-K2CO3. Thus, an inhibition effect occurs: the 

surface area of the T-KOH+K2CO3 sample is reduced with respect to that of either the 

T-KOH or T-K2CO3 sample. 

For the one-step method, the reaction process is the same as that of the two-step 

method, except that it occurs under NH3 atmosphere (Figure 2). For O-KOH, when 

the temperature reaches ~500 °C, reaction (1) begins to play a major role in the 

etching decomposition of the bamboo. The methylene and ether bridges linking the 

high molecular weight compounds break to form gas fuel, bio-oil, and semi-char. 

However, considering the highly active atmosphere, NH3 and its free radicals (NH2*, 

NH*, and H*) become heavily involved, introducing many nitrogen-containing 

functional groups to the semi-char surface. Therefore, it can be inferred that the 

semi-char is placed in an “activating” state in which it is easy to be etched further 

with many active sites on its surface, since NH3 has been involved into the etching 

action of KOH, introducing many nitrogen-containing functional groups to the 

semi-char surface by NH3 binding with those defect sites. And it may therefore be 

designated an “activating carbon” under these conditions. When the temperature 

reaches 700 °C, reactions (2)–(4) begin to play a greater role in expanding the pore 

structure. Due to the high reactivity of this “activating carbon,” a violent etching 

action results in the highest value of SBET. For O-K2CO3, when the temperature 



reaches ~500 °C, due to the weight loss via the bamboo pyrolysis that occurs mainly 

between 300 and 550 °C (Zhu et al., 2008), the semi-char still includes some 

nitrogen-containing functional groups but also attains a relatively low-level 

“activating” state due to the lack of etching reaction (1). Thus, the surface area of the 

AC treated with K2CO3 is lower than that of O-KOH. In theory, the degree of the 

“activating” state obtained is similar to that of O-K2CO3, which is supported by the 

fact that we observe similar SBET values for T-K2CO3 and O-K2CO3. Interestingly, for 

O-KOH+K2CO3, the presence of KOH meant that the semi-char reached the 

“activating” state during the first stage, and then K2CO3 (including the original 

impregnant material as well as the product of reaction (1)) expanded the pore 

structure during the second stage. It is worth mentioning that during the second stage 

of the generation of O-KOH+K2CO3, the impregnated K2CO3 has more scope for 

etching than it does during O-K2CO3 generation. Thus, promotion effect occurs which 

results in a greater surface area for the O-KOH+K2CO3 sample than the average of the 

AC surface areas produced by the individual KOH and K2CO3 activators. 

In addition, larger pore diameters result from the strong interaction effect between 

chemical activation and NH3 modification in the one-step method. Chemical 

activation creates many oxygen-containing functional groups at the pores by the 

etching decomposition of the bamboo, while NH3 and its free radicals (NH2*, NH*, 

and H*) react with them to increase pore diameters, form new pores, and increase the 

number of nitrogen-containing functional groups (Zhang et al., 2016). This effect is 

another factor that contributes to the larger surface areas and total pore volumes in 



samples produced by the one-step method. 

The ACs produced by the two-step method show similar morphologies to those 

produced by the one-step method with the corresponding activators (E-supplementary 

data of this work can be found in online version of the paper). The microscopic 

morphology of O-AC is characterized by a smooth surface and multiple highly 

ordered empty spaces (of several microns in size) which could be mainly attributed to 

the inherent structure of the biomass material (Ray et al., 2004). With KOH, K2CO3, 

and KOH+K2CO3 activation, the surface becomes uneven and many randomly 

arranged holes (hundreds of nanometers) are observed, due to the thinning or breaking 

of the barriers between the empty spaces. The interconnected hole structure not only 

provides good bearing surfaces for mesopores and micropores, but also facilitates 

rapid mass diffusion, buffering, and storage, thus promoting the utilization of the 

porous networks (Presser et al., 2011). In conclusion, in our experiment, activation by 

the potassium compounds had the strongest effect on the microscopic morphology of 

the ACs, and this process may even have the power to destroy the initial structure of 

the bamboo. In contrast, we observed that NH3 modification played a much lesser role 

in the modification of the microscopic structure. 

3.2 Chemical structure  

All the ACs produced by potassium-compound activation, whether via the one- or 

two-step method, display low-intensity peaks (E-supplementary data of this work can 

be found in online version of the paper), suggesting relatively low graphitic 

crystallinity, with their graphitic architecture severely disrupted through chemical 



activation (Chen et al., 2018). No obvious difference is seen between the one-step and 

two-step methods, indicating that there might be no obvious interaction effect on the 

crystallographic structure of the ACs. 

The Raman spectra further confirm the graphitic structure through the peak-height 

ratio of the D and G peaks, which is denoted as ID/IG. A higher value of ID/IG indicates 

a lower graphitization degree. Due to the overlap of the D and G bands, peak fitting 

was performed, following the procedure outlined by Vallerot (Vallerot et al., 2006). 

All the samples show features that are similar to those of the main peaks of graphitic 

materials, with D and G bands at ~1335 and ~1587 cm-1, respectively. The value of 

ID/IG is increased for the samples that underwent chemical activation, indicating a 

reduction in the degree of graphitization. This implies that activation results in the 

generation of many defects, i.e., a structural disorder reflected in the intensity of the 

Raman D band. Furthermore, similar inhibition and promotion effects can be seen by 

comparing the values of ID/IG for KOH, K2CO3, and KOH+K2CO3. However, the 

detailed mechanism is still unclear and will need to be investigated in the future. The 

values of ID/IG for the ACs produced by the two-step method are slightly higher than 

those of the one-step method corresponding to the same activators; this phenomenon 

may be related to the pair of heat-treatment steps of the two-step method (Huang et al., 

2013). 

3.3 N-doping concentrations and types 

Treatment of bamboo with NH3 introduces an appreciable amount of nitrogen into 

the AC matrix (Table 2). For the two-step method, the use of KOH results in a lower 



nitrogen content (1.15 wt%) than that of T-AC (1.68 wt%), but using K2CO3 produces 

a higher content (2.64 wt%). With KOH+K2CO3 activation, however, only 1.08 wt% 

nitrogen was measured in the resulting AC, which is	obviously much lower than the 

amounts measured in T-KOH and T-K2CO3, indicating the inhibition effect on 

nitrogen doping when combining KOH and K2CO3. For the one-step method, O-KOH 

(2.27 wt%) had a lower nitrogen content than O-AC (2.99 wt%), and a higher 

nitrogen content was measured for O-K2CO3 (3.17 wt%). The O-KOH+K2CO3 sample 

had the highest nitrogen content (3.89 wt%), indicating the clearly promotion of 

nitrogen doping when combining KOH and K2CO3. 

For all the AC samples generated with the same activator, the amount of nitrogen 

detected in the sample produced by the one-step method is higher than in that 

produced by the two-step method, indicating that the former is more effective for 

nitrogen doping. This is because, in the one-step method, chemical activation by 

attack of the bamboo creates many active substances with which NH3 can react to 

form nitrogen-containing functional groups. This mechanism is consistent with the 

interaction effect on increasing pore diameter. By contrast, during the first step of the 

two-step method, the active substances are removed. 

The mechanism of the promotion and inhibition effects on nitrogen doping is the 

same as the effect on surface area. For the two-step method, KOH etching (reaction 

(1)) destroys many oxygen-containing functional groups, leaving a “non-activating 

carbon” in the inert atmosphere. Thus, the amount of nitrogen in the T-KOH sample is 

lower than that in T-AC. Further, the etching ability of K2CO3 is obviously lower than 



that of KOH, leaving more active substances in the resultant AC at the end of the first 

step. Thus, the amount of nitrogen measured in the T-K2CO3 sample is higher than 

that produced by KOH activation. When combining KOH and K2CO3, on the one 

hand, KOH still produces the “non-activating carbon”, accompanied by a sharp 

decrease of oxygen-containing functional groups; on the other hand, the impregnated 

K2CO3 consumes the active substances. Thus, an inhibition effect occurs, such that the 

amount of nitrogen in the AC produced by KOH+K2CO3 activation is slightly lower 

than that produced by the use of either KOH or K2CO3 as the activator. 

For the one-step method, it is worth mentioning that NH3 modification also has a 

competitive relationship with chemical activation because the activation process can 

destroy active substances, including nitrogen-containing functional groups, but 

nitrogen doping is achieved mainly by the reaction of NH3 with active substances 

(those containing C=O or –OH, Eqs. (6) and (7)) (W. Chen et al., 2018a). For O-KOH, 

etching reaction (1) results in the “activating carbon” at the cost of many 

oxygen-containing functional groups, due to excessive corrosion. This is not 

conducive to nitrogen doping during the second stage when K2CO3 destroys many of 

the nitrogen-containing functional groups. However, for O-K2CO3, etching reactions 

(2)–(4) improve the amount of nitrogen doping by the abovementioned interaction 

effect. When combining KOH and K2CO3, a good balance is achieved between the 

degree of the obtained “activating” state and the number of oxygen-containing 

functional groups. Thus, the amount of nitrogen in O-KOH is lower than that in O-AC, 

and the amount of nitrogen in O-K2CO3 is almost equal to that in O-AC. However, the 



amount of nitrogen in O-KOH+K2CO3 is higher than the average of that in O-KOH 

and O-K2CO3. 

NH+/NH*∗/NH∗ + (−C = O) → −CO − NH*               (6) 

NH+/NH*∗/NH∗ + (−C − OH) → (−C − NH*) + H*O           (7) 

XPS measurements and ultimate analysis were employed to study the surface 

functionalities and compositions of the ACs. The nitrogen content in the ACs 

produced by the two-step method, as measured by ultimate analysis (T-NUA), is higher 

than that measured by XPS (T-NXPS) for all activators, while equivalent values for the 

one-step method, O-NUA and O-NXPS, are quite similar. These results indicate a 

distribution of T-NUA mainly localized on the surface of the micropore channels due 

to NH3 and its free radicals (NH2*, NH*, and H*) having greater capacity to enter 

deep into the micropores. Moreover, the distribution of O-NUA and O-NXPS values 

indicates that there are no differences between the external surfaces and the surfaces 

of small mesopore channels. Due to the etching decomposition of the bamboo, 

volatile compounds was thoroughly exposed to NH3 atmosphere, leaving the uniform 

distribution of nitrogen. 

The N 1s spectra can be deconvoluted into four peaks, specifically pyridinic-N 

(398.5 ± 0.3 eV), pyrrolic-N (400.5 ± 0.3 eV), quaternary-N (401.2 ± 0.3 eV), and 

oxidized-N (403.2 ± 0.3 eV) (Hulicova-Jurcakova et al., 2009b; Sun et al., 2014; Xu 

et al., 2012). Typical XPS spectra for the nitrogen-doped ACs are provided in Figure 3. 

With the addition of the K compounds, irrespective of method, the area proportions of 

pyridinic-N and pyrrolic-N in the spectra increase, while the quaternary-N area 



proportions decrease sharply. For the two-step method, both for T-KOH and T-K2CO3, 

pyridinic-N attains the greatest percentage (about 38%). However, when combining 

the KOH and K2CO3 activators, the amounts of pyridinic-N and pyrrolic-N in the end 

products are similar (about 33%), and the total amount of pyridinic-N and pyrrolic-N 

does not change with respect to those of T-KOH or T-K2CO3 (about 65%). For the 

one-step method, with KOH addition, pyridinic-N dominates (up to 42.08%), while 

pyrrolic-N is the main species when K2CO3 is added (up to 51.64% ), and the total 

amount of pyridinic-N and pyrrolic-N is similar (about 75%). When KOH and K2CO3 

are used in combination, the main N species are pyridinic-N and pyrrolic-N (up to 30% 

for each), and their total amount drops to about 65%. It is well-known that 

pyridinic-N and pyrrolic-N are especially beneficial in enhancing the performance of 

an AC material, for example, by generating pseudo-capacitive behaviour in 

supercapacitor applications (Cordero-Lanzac et al., 2018) and providing oxygen 

reduction sites (Guo et al., 2016). These functional groups might result from NH3 

reacting with oxygen-containing groups (Eqs. (6) and (7)), while the more stable 

quaternary-N might result from transformation of pyridinic-N through rearrangement 

of carbon and nitrogen atoms (Lin et al., 2012; Zhao et al., 2015). 

3.4 Electrochemical behavior 

To qualitatively evaluate the electrochemical performance of these AC electrode 

materials, cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and 

electrochemical impedance spectroscopy (EIS) were carried out in a three-electrode 

system using 6 M KOH aqueous electrolyte (E-supplementary data of this work can 



be found in online version of the paper). 

The CV curves of the AC electrode materials at a scan rate of 10 mV s-1, show not 

only nearly rectangular shapes but also some peaks, especially for the nitrogen-doped 

ACs produced by the one-step method. This indicates that the increased CV curve 

area is the result of both the electric double-layer capacitance of the AC and the 

faradic pseudo-capacitance of nitrogen in the AC lattice. 

The GCD curves of the AC electrode materials at a charge–discharge current 

density of 1.0 A g-1 with a potential window from −0.9 to 0.1 V. Clearly, due to the 

greater specific surface areas and the higher nitrogen content, the ACs produced by 

One-step method show the higher specific capacitances and the more obvious 

pseudo-capacitance peak respectively. And O-KOH+K2CO3 presents the best 

supercapacitive performance among them, with a specific capacitance as high as 175 

F g-1 at 1.0 A g-1. This may be due to the greater surface area (2417 m2 g-1) and highest 

nitrogen content (3.89 wt.%). In particular, T-KOH and O-K2CO3 have greatly 

different nitrogen content (1.15 wt.% and 3.17 wt.%, respectively) and similar 

specific areas (about 1260 m2 g-1), but similar specific capacitance (108 F g-1). This 

may be due to pore-size differences where T-KOH mainly consists of micropores but 

T-K2CO3 is small mesopores. And certain pore-size micropore (less than 1nm) is 

beneficial to double-layer capacitance (Chmiola et al., 2006). The curves of the 

nitrogen-doped electrode materials deviate slightly from linearity, which is probably 

due to the presence of a pseudo-capacitance effect of the quick redox reaction. 

The CV curves (Figure 4(a)) of the O-KOH+K2CO3 electrode at different voltage 



sweep rates display similar rectangular shapes but no obvious peaks are observed, 

even at a scan rate of 100 mV s-1, which is attributed to the lower inner resistance and 

hysteresis effect of the redox reaction of the nitrogen heteroatoms, respectively. In 

addition, the porous structure also facilitates the diffusion of electrolyte ions, thus 

improving the electrochemical performance. The GCD curves of the O-KOH+K2CO3 

electrode at different current densities are displayed in Figure 4(b) (inset). The mild 

decrease in specific capacitance with the increase in current density, shown in Figure 

4(b), occurs because the slower redox reaction of the nitrogen heteroatoms and faster 

diffusion of electrolyte ions cannot keep pace with the increased current density. From 

Figure 4(b), it can also be observed that, at a current density of 1 A g-1, the 

capacitance reaches 175 F g-1. After increasing the current density to 20 A g-1, the 

capacitance decreases to 100 F g-1, retaining ~57.1% of the initial value, suggesting 

that O-KOH+K2CO3 has a high rate performance. Comparing with the results of 

literature (González-García, 2018; Wang et al., 2017), its specific capacitance is at 

medium level, but the great surface area is really competitive. In short, the 

O-KOH+K2CO3 electrode material demonstrates good capacitive behavior due to its 

competitive porous structure and relatively higher nitrogen content (up to 3.89 at%). 

 

4. Conclusion 

For the one-step method, larger pore diameters and higher doped-nitrogen 

contents result from the interaction effect where NH3 and its free radicals react with 

oxygen-containing functional groups at the pores by chemical etching that induces the 



decomposition of the bamboo. When combining KOH and K2CO3, a good balance 

between the degree of the “activating” state and the number of oxygen-containing 

functional groups, causes a significantly larger SBET (2417 m2 g-1) and the highest NUA 

(3.89 wt%). The promoting effect recommends the one-step method with the 

KOH+K2CO3 as the best choice for simultaneously achieving greener production 

process and better pore structure. 
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Figure 1. Adsorption pore size distributions and N2 sorption isotherms (insets) of the 

ACs prepared via the (a) two-step and (b) one-step methods. 

  



 

Figure 2. Proposed reaction process for the one-step method under NH3 atmosphere.
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Figure 3. N 1s spectra of ACs prepared via (a), (b), (c), and (d) the two-step method 

and (e), (f), (g), and (h) the one-step method. 



Figure 4. (a) CV curves of O-KOH+K2CO3 at scan rates from 5 to 100 mV s-1; (b) 

Specific capacitance of O-KOH+K2CO3 at current densities from 1 to 20 A g-1 (inset 

shows GCD curves at different densities). 
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Table 1 Pore characteristics of ACs derived from pyrolysis of bamboo waste 

Sample 
SBET 

（m2 g-1） 

Smic 

（m2 g-1） 

Smic/SBET 

(%) 

Vtotal 

(cm3 g-1) 

D 

(nm) 

T-AC 245 - - 0.081 - 

T-KOH 1276 996 78 0.756 2.369 

T-K2CO3 1268 1095 86 0.623 1.965 

T-KOH+K2CO3 1123 925 82 0.548 2.020 

O-AC 521 - - 0.075 - 

O-KOH 2892 63 2 1.533 2.120 

O-K2CO3 1249 113 9 0.676 2.164 

O-KOH+K2CO3 2417 184 8 1.270 2.102 

  



Table 2 N-doping concentrations, types, and proportions in the ACs from the ultimate 

and XPS analyses 

Sample NUA
a/wt% NXPS/at% Pyridinic-N/% Pyrrolic-N/% Quaternary-N/% Oxidized-N/% 

T-AC 1.68 0.91 36.66 20.60 34.17 8.57 

T-KOH 1.15 0.50 38.16 27.15 27.82 6.87 

T-K2CO3 2.64 2.10 37.01 32.30 25.76 4.94 

T-KOH+K2CO3 1.08 0.78 32.71 33.91 27.38 6.00 

O-AC 2.99 2.87 19.09 31.37 40.88 8.65 

O-KOH 2.27 2.96 42.08 31.66 16.69 9.57 

O-K2CO3 3.17 2.76 26.08 51.64 16.15 6.14 

O-KOH+K2CO3 3.89 3.82 30.75 34.22 26.56 8.47 

aultimate analysis, dry basis. 


