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Abstract

This study documents a positive relationship between the option-implied risk-

neutral skewness (RNS) of individual stock returns�distribution and future re-

alized stock returns during the period 1996-2012. A strategy that is long the

quintile portfolio with the highest RNS stocks and short the quintile portfolio

with the lowest RNS stocks yields an average Fama-French-Carhart alpha of 55

bps per month (t-stat : 2.47). The signi�cant underperformance of the portfo-

lio with the most negative RNS stocks is driven by those stocks that are also

perceived as relatively overpriced according to a series of overvaluation proxies

and are too costly or too risky to sell short, thereby hindering the price correc-

tion mechanism. Our �ndings indicate that a highly negative RNS value, when

re�ecting high hedging demand for options by investors who perceive the under-

lying stock as relatively overpriced but hard to sell short, is a robust signal of

signi�cant future stock underperformance.
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1 Introduction

This study examines the relationship between the risk-neutral skewness (RNS) of individ-

ual stock returns�distribution extracted from option prices, which are inherently forward-

looking, and future realized stock returns. We use daily option prices from 1996 to 2012 for

a large sample of US stocks. RNS is estimated for each stock using the model-free method-

ology of Baskhi et al. (2003). We �nd signi�cant and robust evidence that RNS is positively

related to future realized stock returns. In particular, a strategy that is long the quintile

portfolio with the highest RNS stocks and short the quintile portfolio with the lowest RNS

stocks yields an average return of 61 bps (t-stat : 2.24) per month, and Fama-French-Carhart

(FFC) alpha of 55 bps (t-stat : 2.47) per month. We further decompose RNS into its sys-

tematic and unsystematic components to �nd that the latter drives the positive relationship

between RNS and future realized stock returns.

Which of the stocks exhibiting low RNS values subsequently underperform? We �nd

that the signi�cant underperformance of the portfolio with the most negative RNS stocks

is mainly driven by those stocks that are also perceived to be relatively overvalued. We

use three proxies for relative overvaluation: the expected idiosyncratic skewness under the

physical measure (Boyer et al., 2010), the maximum daily stock return in the past month

(Bali et al., 2011), and the probability of jackpot stock return in the following year (Con-

rad et al., 2014). According to these proxies, over-optimistic investors or investors with

strong preference for their lottery-like payo¤s have temporarily driven up these stock prices.

However, RNS does not simply mimic an overvaluation e¤ect, since low RNS does not nec-

essarily coincide with high values of these overvaluation proxies. Using bivariate conditional

portfolio sorts, we show that it is the interplay between low RNS and high overvaluation

that yields future stock underperformance.

Why is highly negative RNS an informative signal of future stock underperformance and

the market fails to immediately correct this mispricing? We �nd that the signi�cant under-

performance of the portfolio with the most negative RNS stocks is mainly driven by those
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stocks that are also too costly or too risky to sell short, thus hindering the price correction

mechanism, in line with the arguments of Miller (1977). We use three proxies for short selling

constraints: the estimated shorting fee of Boehme et al. (2006), the relative short interest

that captures the demand for short selling (see Asquith et al., 2005), and stock returns�

idiosyncratic volatility under the physical measure (see Wurgler and Zhuravskaya, 2002).

Using bivariate conditional portfolio sorts, we show that it is the interplay between low

RNS and severe short selling constraints that yields the subsequent stock undeperformance.

In sum, we �nd that a highly negative RNS value signals future underperformance for

those stocks that are also perceived to be relatively overpriced and are too costly or too risky

to sell short. Using trivariate independent portfolio sorts, we con�rm that all these three

conditions are necessary for future stock underperformance. In most of the cases that we

examine, the portfolio of stocks with the lowest RNS values, the highest overvaluation and

the most severe short selling constraints yields a signi�cantly negative risk-adjusted return

of at least �60 bps per month.

These results imply that the predictive ability of highly negative RNS values is driven by

the hedging and insurance demand for options by those pessimistic investors who perceive

the stock as overvalued but cannot sell it short, and hence resort to trading in the option

market. Consistent with the demand-based option pricing framework of Garleanu et al.

(2009), these trades substantially move option prices, and hence drive down RNS, because

option market makers cannot hedge their positions due to the short selling constraints in

the stock market. We con�rm that the stocks characterized by the highest hedging demand

exhibit, on average, signi�cantly more negative RNS values relative to the other stocks.

We use four proxies for investor hedging demand. Following Acharya et al. (2013), we use

Zmijewski�s (1984) Z�score to capture �rm default risk and the ratio of CEO stock holdings

to their base salary to capture the managerial hedging motive. The third proxy is the ratio

of put to all options�trading volume (see Taylor et al., 2009), and the fourth proxy is the

aggregate open interest across all options for a given maturity (see Hong and Yogo, 2012).

Our study contributes to the growing literature that utilizes information embedded in
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option prices to predict future stock returns and to construct investment strategies.1 Option-

implied information may be valuable because it is inherently forward-looking and re�ects

investors� expectations under the risk-neutral measure about the future evolution of the

underlying stock prices (Bates, 1991, Jackwerth and Rubinstein, 1996, and Bakshi et al.,

1997). Moreover, estimates of risk-neutral higher moments have become popular because

the corresponding estimates from historical returns require long time series, they are rather

unstable to the addition of new observations and they are poor predictors of future realized

higher moments (see Hansis et al., 2010, and Conrad et al., 2013, for a discussion).

The most directly related studies to ours are the ones by Rehman and Vilkov (2012),

Bali and Murray (2013), Conrad et al. (2013), and Bali et al. (2014), who all use the

model-free methodology of Bakshi et al. (2003) to estimate RNS. In contrast to Bali and

Murray (2013), we examine the relationship between RNS and future realized stock returns,

while they consider option portfolios� returns, �nding a negative relationship. Contrary to

Conrad et al. (2013), who �nd a negative relationship between quarterly averages of daily

RNS estimates and realized quarterly stock returns during the �rst half of our sample period

(i.e., up to 2005), we use RNS estimates extracted on the last trading day of each month to

construct portfolios, that is we use the most recent available estimate. We argue that our

approach is more appropriate because daily RNS estimates are not highly persistent, and

hence averaging this information over a long period only weakens its signal; this fact explains

why their results di¤er from ours. Averaging RNS over a long period is also inappropriate

because RNS signals a temporary mispricing, which we �nd to be corrected within a month.

On the other hand, our benchmark evidence is in agreement with the results of Bali et

1Bali and Hovakimian (2009) �nd no relation between risk-neutral volatility and future stock returns.
Xing et al. (2010) �nd a negative relation between the steepness of the implied volatility smirk and future
stock returns. On the other hand, Cremers and Weinbaum (2010) �nd that the di¤erence between implied
volatilities of call and put options with the same strike and expiration date is positively related to subse-
quent stock returns. Furthermore, Goyal and Saretto (2009) �nd that the di¤erence between the historical
and option-implied stock volatilities is positively related to future option returns. Kostakis et al. (2011),
DeMiguel et al. (2013), and Kempf et al. (2014) show that option-implied distributions and their mo-
ments, respectively, can help to construct investment strategies and portfolios with superior out-of-sample
performance relative to those constructed solely on the basis of historical information. Giamouridis and
Skiadopoulos (2012) provide a review of recent studies that examine the value of option-implied information
for asset management.
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al. (2014), who �nd a positive relationship between RNS and stock returns, but they use

expected stock returns derived from �nancial analysts�price targets, while we use realized

stock returns from observable market prices.

Our benchmark results are also in line with the evidence of Rehman and Vilkov (2012).

We show that the positive relationship between RNS and future stock returns holds for a

longer sample period, including the recent �nancial crisis. However, contrary to Rehman and

Vilkov (2012), who argue that RNS is another proxy for stock overvaluation, we show that

this is not true. If low RNS were a valid overvaluation proxy, then all low RNS stocks should

subsequently underperform regardless of their partitioning. To the contrary, we �nd that it is

only the fraction of low RNS stocks that are simultaneously classi�ed as relatively overpriced

and exhibit severe short selling constraints that signi�cantly underperform. In other words,

low RNS is a necessary but not su¢ cient condition for future stock underperformance; it

is the interplay between low RNS, relative overvaluation and short selling constraints that

yields the underperformance.

The mechanism we put forward to explain our �ndings is motivated by the evidence of

Bollen and Whaley (2004) and the demand-based option pricing framework of Garleanu et

al. (2009). Since risk averse market makers cannot perfectly hedge their option positions

due to short selling constraints in the stock market, the demand for options impacts their

prices. As a result, when investors with negative expectations about future stock returns sell

out-of-the-money (OTM) call options and/or buy OTM put options, they drive RNS to very

low (negative) values. The e¤ect on RNS from constructing synthetic short stock positions

is similar. Investors are more likely to have negative expectations about the future returns

of those stocks that are perceived to be relatively overpriced; it is the realization of these

negative expectations that yields the positive relationship between RNS and future stock

returns. Obviously, for this mechanism to hold there needs to be investor disagreement,

otherwise no investor would perceive stocks to be relatively overpriced in the �rst place.

This argument is consistent with the evidence of Friesen et al. (2012), who �nd that stocks

with greater investor belief di¤erences are characterized by more negative RNS values.
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The previously described mechanism is also consistent with the sequential trade model

of Easley et al. (1998), where at least some informed investors choose to trade in options

before trading in the underlying stocks, and hence option prices carry information that leads

stock price movements. Along the same lines, Johnson and So (2012) show that, especially

in the presence of short selling constraints, option volume re�ects informed traders�private

information and option-to-stock volume ratio is negatively related to future stock returns

(see also Roll et al., 2010). More recently, Ge et al. (2015), using data on signed option

volume, con�rm that volume associated with new synthetic short positions in the underlying

stock negatively predicts returns, but also highlight the strong ability of new synthetic long

positions to positively predict returns. In our setup, investors with negative expectations

with respect to relatively overpriced stocks that are too costly or too risky to sell (short)

eventually resort to the option market to hedge against downside risk, driving RNS to very

low (negative) values. As a result, RNS extracted from option prices contains valuable

information that is not already incorporated into current stock prices due to limits-to-

arbitrage. As this mispricing information is di¤used to the stock market over time, prices

of relatively overvalued stocks subsequently decrease, giving rise to the positive relationship

between RNS and future stock returns.

Our empirical evidence is also consistent with the noisy rational expectations model

of An et al. (2014), where trading takes place simultaneously in the stock and option

markets but the informed investor chooses how much to trade on the basis of the relative

magnitude of noise trading present in each market, so as to disguise her trades. Market

makers ensure that stock and option prices satisfy arbitrage bounds. However, even though

stock and option prices contemporaneously move due to the trades of the informed investor,

they do not adjust to a fully revealing equilibrium because of the presence of noise trading.

Therefore, information embedded in option trades and prices can predict future stock returns

and vice versa. Contributing to this framework, our empirical evidence suggests that limits-

to-arbitrage, such as short selling constraints, could also be an important determinant of

which market the informed investor chooses to trade.
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The rest of this study is organized as follows. Section 2 describes the methodology

for extracting risk-neutral moments of stock returns�distributions from option prices and

decomposing them into their systematic and unsystematic components. In addition, it

provides the details for the dataset used and the data sources for the �rm characteristics

examined in this study. Section 3 examines the relationship between RNS and future realized

stock returns. Section 4 examines the validity of the mechanism that we propose to explain

the underperformance of the stocks exhibiting the most negative RNS values, while Section

5 concludes.

2 Data and Methodology

2.1 Risk-Neutral Moments

We use the model-free methodology of Baskhi et al. (2003) to calculate risk-neutral moments

for the return distribution of stock i using its option prices. These are the moments of the

return distribution under the risk-neutral measure for a given horizon � , which is equal to

the time to maturity of the options used to extract them. As Appendix A shows, following

Bakshi et al. (2003) and using OTM call and put options prices at time t, we compute the

Risk-Neutral Variance (RNV), Skewness (RNS) and Kurtosis (RNK) for each stock i as:

RNVi;t (�) = exp (r�)Vt (�)� �t (�)
2 (1)

RNSi;t (�) =
exp (r�) (Wt (�)� 3�t (�)Vt (�)) + 2�t (�)

3�
exp (r�)Vt (�)� �t (�)

2�3=2 (2)

RNKi;t (�) =
exp (r�)

�
Xt (�)� 4�t (�)Wt (�) + 6�t (�)

2 Vt (�)
�
� 3�t (�)

4�
exp (r�)Vt (�)� �t (�)

2�2 (3)

where Vt (�), Wt (�) and Xt (�) are the time t prices of ��maturity quadratic, cubic and

quartic contracts de�ned, respectively, as contingent claims with payo¤s equal to the second,
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third and fourth power of stock i log returns. The expressions for the prices of these contracts

are given in equations (9)-(11) in Appendix A. Moreover, r is the risk-free rate and �t (�)

is given by:

�t (�) = exp (r�)� 1�
exp (r�)

2
Vt (�)�

exp (r�)

6
Wt (�)�

exp (r�)

24
Xt (�) (4)

To compute Vt (�), Wt (�) and Xt (�), a continuum of option prices would be required.

However, traded options are available only at discrete strikes. In line with Conrad et al.

(2013), we require at least two OTM put options and two OTM call options per stock

with the same expiry date. We interpolate the implied volatilities of the available options

between the lowest and the highest available moneyness using a piecewise Hermite poly-

nomial separately for put and call options, and we extrapolate outside the lowest and the

highest moneyness using the implied volatility at each boundary, so as to �ll in 997 grid

points in the moneyness range from 1/3 to 3. We then use the Black-Scholes formula to

convert the implied volatilities into the corresponding option prices. Finally, using these

option prices, we apply Simpson�s rule, which is described in Appendix B, to compute the

integrals that appear in the formulae of Vt (�), Wt (�) and Xt (�). In a robustness check, we

alternatively compute these integrals using directly the available OTM option prices and

applying a trapezoidal rule, as in Dennis and Mayhew (2002) and Conrad et al. (2013).

2.2 Systematic and unsystematic components of RNS

We further decompose RNS into its systematic and unsystematic components, following the

decomposition approach in Theorem 3 of Bakshi et al. (2003, p. 112).2 In particular, the

systematic component of RNS for �rm i on day d is given by:

RNSi;d;Systematic = b
3
iRNV

3=2
m;dRNSm;d=RNV

3=2
i;d , (5)

2We would like to thank an anonymous referee for suggesting this decomposition approach.
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where bi is the risk-neutral beta of �rm i, RNVi;d is the risk-neutral variance of �rm i on day

d, while RNVm;d and RNSm;d denote, respectively, the risk-neutral variance and skewness

on day d of the market portfolio proxied by the S&P 500.

Following Bali et al. (2014), we compute risk-neutral betas, bi, for each �rm i, by

regressing on a monthly basis daily RNVi;d on RNVm;d using a rolling window of 12 months,

and taking the square root of the corresponding slope coe¢ cient. For the cases where this

regression approach yields a negative slope coe¢ cient, no risk-neutral beta is computed. In

a robustness check presented in the Supplementary Appendix, we alternatively use stock

betas estimated under the physical measure to compute systematic RNS values.

Given the de�nition of systematic RNS in equation (5), the unsystematic component of

RNS for each �rm i on day d is given by:

RNSi;d;Unsystematic = RNSi;d �RNSi;d;Systematic. (6)

We have additionally decomposed RNS into risk-neutral coskewness and idiosyncratic

skewness, following the de�nition of risk-neutral coskewness in Bakshi et al. (2003, p. 114)

and the regression decomposition approach of Conrad et al. (2013). This methodology, its

limitations and the corresponding results are presented in the Supplementary Appendix.

2.3 Data description and �lters

We obtain option data from OptionMetrics. We use daily prices for all OTM options

maturing within 10 to 180 days from January 1996 to December 2012. We discard options

with zero open interest, zero bid price, negative strike, price less than $0.50 and non-standard

settlement. Moreover, on a given day, we �lter out stocks with fewer than two OTM put

options and two OTM call options of the same maturity. If more than one maturities are

available in OptionMetrics, we use the set of options with the shortest maturity. Closing

option prices are calculated as the averages of the closing bid and ask prices. We use the

3-month T-Bill rate from the Federal Reserve H.15 release as a proxy for the risk-free rate.
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Following Conrad et al. (2013), we exclude stocks with highly illiquid options by discarding

those for which RNS values cannot be extracted for at least 10 trading days in a given

month. Furthermore, to exclude highly illiquid stocks, we discard those that have less than

750 trading days of non-missing returns in the past 5 years.

Our benchmark portfolio analysis uses as a sorting criterion RNS estimates extracted

on the last trading day of each month. This sample of RNS values consists of 128,960

observations. Table 1 presents the descriptive statistics for the option dataset used to

compute these RNS values. Their average RNS value is -0.4462 and their average maturity

is 86.56 trading days. Most of the OTM options we use are relatively near-the-money and

their total trading volume is typically higher than the trading volume of the corresponding

ATM options.

-Table 1 here-

2.4 Other �rm characteristics

To compute portfolio returns, daily and monthly stock returns and market values are ob-

tained from CRSP. Market value is calculated as the closing share price times the number of

shares outstanding. We examine whether the relationship between RNS and stock returns

depends on various �rm characteristics. The exact de�nition of these �rm characteristics is

provided in Appendix C. First, we consider three proxies for relative stock overvaluation:

the expected idiosyncratic skewness (EISP ) of stock returns under the physical measure (see

Boyer et al., 2010), the maximum (Max) daily stock return over the previous month (see

Bali et al., 2011) and the probability of a stock achieving a Jackpot return (see Conrad et

al. 2014). Second, we employ three commonly used proxies for short selling constraints or,

more generally, limits-to-arbitrage. In particular, we use the Relative Short Interest (RSI),

which re�ects investor demand for short selling (see Asquith et al., 2005), and the Estimated

Shorting Fee (ESF) measure, proposed by Boehme et al. (2006), that captures the oppor-

tunity cost incurred by the short seller. In addition, we use the idiosyncratic volatility of
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realized stock returns under the physical measure (IVolP ), because arbitrage risk is higher

for stocks that exhibit high IVolP (see Wurgler and Zhuravskaya, 2002).

To examine the relationship between hedging demand and RNS, we use four hedging

demand proxies. In particular, we use the ratio of aggregate put options volume to total

option volume for a given maturity (see Taylor et al. 2009), and the aggregate open interest

across all options for a given maturity (see Hong and Yogo, 2012). Moreover, we follow

Acharya et al. (2013) in using the ratio of CEO stock holdings to base salary to proxy for

CEOs�background risk and the Z�score of Zmijewski (1984) to capture �rm default risk.

As long as managerial risk aversion increases with background risk and the probability of

default, these are valid proxies of managerial hedging demand. CEOs�stock holdings and

base salaries are sourced from ExecuComp, while annual data items from Compustat are

used to calculate the Z�score. We also control for a series of other �rm characteristics, such

as stock illiquidity (ILLIQ) proxied by Amihud�s (2002) price impact ratio, price per share,

stock return momentum and reversal, steepness of the implied volatility smile (SKEW),

computed as in Xing et al. (2010), and the call-put implied volatility spread, computed as

in Bali and Hovakimian (2009).

3 RNS and future stock returns

3.1 RNS portfolio sorts

We �rstly form portfolios on the basis of RNS estimates extracted from daily option prices.

In particular, on the last trading day of each month t, we sort stocks in ascending order

according to their RNS estimates and assign them to quintile portfolios. Table 2 reports

the average �rm characteristics of the RNS-sorted portfolios. We �nd that there is a large

variation in RNS estimates across �rms, rendering it a meaningful sorting criterion. We also

�nd that, on average, the lowest RNS stocks have bigger market values, have performed

worse during the past year, they are less illiquid and are traded at higher prices relative

to the highest RNS stocks. Moreover, the OTM options used to extract the lowest RNS
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values are characterized by a signi�cantly higher average total trading volume and total

open interest relative to the OTM options used to extract the highest RNS values.

-Table 2 here-

Table 2 also shows that the portfolio of �rms exhibiting the lowest RNS values is char-

acterized by lower average EISP and Max values relative to the portfolio of �rms exhibiting

the highest RNS values. This �nding implies that low RNS does not mimic other proxies

for stock overvaluation. Furthermore, there is no clear-cut conclusion on whether stocks

exhibiting the lowest RNS values are, on average, more or less hard to short sell, relative

to stocks with the highest RNS values. On one hand, the portfolio with the lowest RNS

stocks is characterized by lower average ESF and IVolP values, but it also exhibits a higher

average RSI value, as compared to the portfolio with the highest RNS stocks. Finally, we

also �nd that the lowest RNS stocks exhibit, on average, lower RNV and higher RNK val-

ues relative to the highest RNS stocks. We control for all these �rm characteristics in the

Fama-MacBeth regressions presented below.

Next, we compute the equally-weighted returns of the RNS-sorted quintile portfolios at

the end of month t+1 (i.e., post-ranking returns). Table 3 reports the average portfolio re-

turns as well as their Fama-French-Carhart alphas (�FFC) estimated from the corresponding

4-factor model. We �nd that the portfolio of stocks with the lowest RNS values signi�cantly

underperforms the portfolio of stocks with the highest RNS values. In particular, a spread

strategy that is long the highest RNS quintile portfolio and short the lowest RNS quintile

portfolio yields an average return of 61 bps per month (t-stat: 2.24), and �FFC of 55 bps

per month (t-stat: 2.47). We also �nd a monotonic increase in performance as we move

from the lowest to the highest RNS portfolio.

-Table 3 here-

Table 3 also reports the loadings (��s) of these portfolios with respect to the excess

market (MKT ), size (SMB), value (HML) and momentum (MOM) factors using the
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FFC model. We �nd that the highest RNS portfolio exhibits signi�cantly higherMKT and

SMB beta relative to the lowest RNS portfolio, but it also exhibits signi�cantly lower (and

negative) HML beta. Finally, the highest RNS portfolio also exhibits a lower MOM beta,

but the di¤erence is negligible in economic terms. Nevertheless, the return spread between

the highest and the lowest RNS portfolios cannot be attributed to these di¤erences in factor

loadings, and hence it gives rise to an economically and statistically signi�cant alpha. It

should be also mentioned that these RNS-sorted portfolios are well diversi�ed, given the

average number of stocks (N) per portfolio reported in Table 3.

To ensure that the documented spread is not solely driven by stocks in the extreme ends

of the RNS cross-sectional distribution, we calculate the performance of the corresponding

spread strategy between the highest and the lowest RNS tercile portfolios, i.e., utilizing two-

thirds of the RNS distribution. The corresponding results presented in the Supplementary

Appendix show that this strategy yields an average return of 52 bps per month (t-stat:

2.30), and �FFC of 47 bps per month (t-stat: 2.58). It should be mentioned that for

both tercile and quintile portfolios, this signi�cant spread is mainly driven by the severe

underperformance of the portfolios containing the �rms with the most negative RNS values

(short leg of the strategy). These portfolios yield signi�cant negative alphas of at least �30

bps per month.

We have also examined whether this return spread is a¤ected by nonsynchroneity bias.

In line with the argument of Battalio and Schultz (2006), our benchmark portfolio sorting

approach may build in a potential nonsynchroneity bias because the stock and option mar-

kets do not close simultaneously. Therefore, the option prices recorded in OptionMetrics at

the close of the last trading day of the month, and hence the computed RNS, may not be

known to investors before the close of the stock market on the same day. To alleviate the

concern that our results are driven by this bias, we alternatively calculate portfolio returns

using stock prices from the open of the �rst trading day of the post-ranking month t+1 until

the close of the last trading day of the post-ranking month t+1. The corresponding results

are reported in the Supplementary Appendix. We �nd that the spread strategy between
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the highest and the lowest RNS quintile portfolios yields an �FFC equal to 46 bps (t-stat:

2.04). As a result, the documented underperformance of the lowest RNS stocks relative to

the highest RNS stocks is genuine and is not driven by nonsynchroneity bias.

3.2 Robustness checks

In this subsection, we examine the robustness of our benchmark portfolio results to alterna-

tive methodological choices. Table 4 reports the average portfolio returns and �FFC for each

of these robustness checks. First, following Dennis and Mayhew (2002) and Conrad et al.

(2013), we alternatively compute RNS by using directly the available OTM option prices

and applying a trapezoidal rule to compute the integrals that appear in the expressions

for Vt (�), Wt (�) and Xt (�). Using this alternative RNS estimate, we sort again stocks

into quintile portfolios and calculate their post-ranking performance. As Panel A of Table

4 shows, the portfolio with the highest RNS stocks signi�cantly outperforms the portfolio

with the lowest RNS stocks, and the corresponding spread strategy yields an �FFC equal

to 49 bps per month (t-stat: 2.81). Again, it is the portfolio with the lowest RNS stocks

that yields signi�cant negative risk-adjusted performance. Therefore, our benchmark results

are robust to this alternative approach of computing RNS, showing also that the di¤erence

between our �ndings and the results in Conrad et al. (2013) is not due to the method used

to calculate RNS.

-Table 4 here-

The second robustness check we carry out is to use the latest available daily RNS estimate

of the month for each �rm as a sorting criterion for portfolio construction, instead of using

the RNS estimate on the last trading day of the month as we do in our benchmark results.

In this way, we now include stocks that may have been excluded in the benchmark results

due to missing RNS on the last trading day of the month. In fact, this approach allows us

to include in our sample 100 more stocks, on average, relative to the benchmark case. Panel

B of Table 4 shows that the highest RNS stock portfolio still signi�cantly outperforms the
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lowest RNS stock portfolio and that this spread is mainly driven by the signi�cant negative

performance of the latter. The corresponding spread strategy still yields a positive and

signi�cant �FFC , equal to 45 bps per month (t-stat: 2.22).

Next, in our attempt to explain why our results di¤er from the ones reported in Conrad

et al. (2013), we alternatively sort �rms according to the monthly average value of their

daily RNS estimates, instead of using the RNS estimate on the last trading day of the

month, as we do in our benchmark results. This is an important modi�cation because

daily RNS is considerably time-varying, and hence monthly averages are bound to be very

di¤erent from the end-of-month daily values.3 The performance of portfolios constructed

on the basis of monthly average RNS values is reported in Panel C of Table 4 and con�rms

our conjecture. Both the gradient in returns across RNS-sorted portfolios and the spread

between the extreme portfolios have now disappeared, yielding no signi�cant pattern. These

�ndings support the argument that the RNS signal used for portfolio sorting should be

concurrent with the portfolio formation date. Since daily RNS is considerably time-varying,

if it is averaged over long time periods (e.g., over a month or a quarter, as in Conrad et al.,

2013), then its signal is blurred and its predictive ability disappears. This is the reason why

our results di¤er from those reported in Conrad et al. (2013).

3.3 Long-term performance of RNS portfolios

We further examine how long it takes the market to correct the mispricing signalled by RNS.

To this end, we examine the t + k monthly performance of portfolios constructed on the

basis of RNS values on the last trading day of month t. In particular, we compute portfolio

returns and alphas during month t + k, where k = 1; 2; :::; 6. We report these results in

the Supplementary Appendix. We �nd that the spread return between the highest and

the lowest RNS stock portfolios is economically and statistically signi�cant only in the �rst

post-ranking month (t + 1). All of the subsequent t + k monthly returns do not yield any

3In particular, the average AR(1) coe¢ cient of daily RNS values across the stocks in our sample is 0.596.
This result con�rms that RNS is not very persistent if one takes into account that these are daily values.
As a benchmark for comparison, the corresponding average AR(1) coe¢ cient of daily RNV values is 0.928.
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signi�cant spread between the highest and the lowest RNS stock portfolios. These results

show that the mispricing signalled by RNS is only temporary, since the market typically

corrects it within one month.

3.4 Weekly portfolio returns

If the stock mispricing signalled by RNS is temporary, then the post-ranking spread re-

turn between the lowest and the highest RNS stock portfolios should be more pronounced

under more frequent rebalancing. To test this conjecture, we examine the performance of

RNS-sorted portfolios using weekly rebalancing.4 In particular, we sort stocks into quintile

portfolios on the basis of their RNS value estimated on the last trading day of the week and

then compute their post-ranking weekly returns. Results are reported in the Supplementary

Appendix. Consistent with the argument that RNS signals temporary mispricing, we �nd

that, under weekly rebalancing, the strategy that goes long the quintile portfolio with the

highest RNS stocks and short the quintile portfolio with the lowest RNS stocks would yield

a strongly signi�cant �FFC of 37 bps per week (t-stat: 6.55), which is two-and-a-half times

higher than the risk-adjusted return of the same strategy under monthly rebalancing.

We should also note that in the case of weekly portfolio rebalancing, the temporary

mispricing information embedded in RNS appears to be more "symmetric". In particular,

in this case it is not only the portfolio with the lowest RNS stocks that yields a signi�cantly

negative �FFC of �14 bps per week (t-stat: �4.99), but it is also the portfolio with highest

RNS stocks that yields a signi�cantly positive �FFC of 24 bps per week (t-stat: 4.71).

This �nding also leads to the conclusion that a relatively high RNS value may signal stock

underpricing, but this e¤ect is far more short-lived than the overpricing signalled by a highly

negative RNS value, since it becomes insigni�cant as we move from weekly to monthly

portfolio rebalancing and returns.

4We would like to thank an anonymous referee for this suggestion.
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3.5 Fama-MacBeth regressions

The previous subsections utilized portfolio sorts to show that stocks exhibiting the lowest

RNS values signi�cantly underperform stocks exhibiting the highest RNS values. In this

subsection, we further examine how robust is the positive relationship between RNS and

future stock returns using a set of Fama-MacBeth (1973) regressions. In particular, for each

month in our sample, we run cross-sectional regressions of excess stock returns on lagged

RNS values and a series of other �rm characteristics. Table 5 reports the average slope

coe¢ cients estimated from these monthly cross-sectional regressions as well as their t-ratios

computed using Newey-West standard errors.

Model (1) uses only �rms�RNS values as an explanatory variable, documenting a signi�-

cant positive relationship between RNS and future stock returns. To assess the magnitude of

the RNS coe¢ cient, which is equal to 0.0073 (or 0.73% per month), we should bear in mind

that the spread in average RNS values between the highest and the lowest quintiles in Table

2 is 0.77. Therefore, the reported RNS coe¢ cient implies that the average return di¤erential

between the extreme RNS quintile portfolios should be equal to 56 bps(=0.77*0.0073) per

month, which is very close to the spread return reported in Table 3.

Model (2) includes a set of commonly used control variables. In particular, it controls

for �rms�beta, market value (MV), book-to-market value ratio (B/M), momentum, rever-

sal, stock illiquidity proxied by Amihud�s (2002) price impact ratio and price per share.

Interestingly, not only the coe¢ cient of RNS remains intact, but it also becomes much

more signi�cant in this case. Model (3) additionally controls for RNV and RNK, which

are also computed using the model-free methodology of Bakshi et al. (2003). In this case,

the magnitude of the RNS coe¢ cient is actually increased relative to the benchmark re-

sults, con�rming that the relationship between stock returns and RNS is distinct from the

relationship between RNV or RNK and stock returns.

-Table 5 here-

The Fama-MacBeth regression coe¢ cient of RNS remains positive and signi�cant even
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when we additionally control for SKEW in model (4) or the Call-Put Volatility spread in

model (5). SKEW is de�ned as the di¤erence between the implied volatilities of an OTM

put and an ATM call option, and hence it is computed on the basis of only two points of

the implied volatility curve. On the other hand, RNS takes into account the entire implied

volatility curve, and hence its informational content, though related, should be superior to

the one of SKEW. A characteristic example is the case of a symmetric implied volatility

smile. If this smile is steep, SKEW would be high even though RNS is zero (see also

Rehman and Vilkov, 2012). Intuitively, and crucially for the trading mechanism that we

propose, RNS captures the expensiveness of OTM puts relative to the expensiveness of OTM

calls. In particular, we argue that the degree of relative expensiveness between OTM puts

and calls contains information regarding future stock returns. On the other hand, SKEW

ignores the right-hand side of the implied volatility curve, and hence it does not contain any

information regarding the relative expensiveness between OTM puts and calls. Similarly,

the Call-Put Volatility spread is computed as the di¤erence between the implied volatilities

of ATM and very near-the-money put and call options. As a result, it cannot contain either

any information regarding the relative expensiveness between OTM puts and calls. This is

why neither SKEW nor the Call-Put Volatility spread subsume the signi�cant relationship

between RNS and future stock returns.

The coe¢ cient of RNS remains positive and signi�cant also when we include as control

variables the total trading volume or open interest of options used to compute RNS in models

(6) and (7), respectively. To further examine whether the positive relationship between

excess stock returns and RNS is a¤ected by option illiquidity, in model (8) we exclude �rm-

month observations if the total trading volume of OTM options used to compute RNS is less

than half of the total trading volume of all options (i.e., including ATM options). Similarly,

in model (9) we exclude �rm-month observations if the total open interest of OTM options

used to compute RNS is in the lowest 20% of the corresponding cross-sectional distribution

on the last trading day of the month. In both cases, the RNS coe¢ cient remains strongly

signi�cant and its magnitude is very similar to the one reported in the benchmark results.
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Another issue worth examining is whether the short sale ban imposed by SEC and ex-

changes during September-October 2008 had an e¤ect on the relationship between excess

stock returns and RNS.5 This issue is particularly important because our conjectured mech-

anism to explain this relationship assigns an important role to short selling constraints.6

To this end, in model (10), we compute Fama-MacBeth regression coe¢ cients excluding

the observations of September and October 2008. Moreover, in model (11) we truncate our

sample in August 2008 to ensure that the documented relationship is not driven by the

turbulent market period during and after the short sale ban or by investors�perception that

a short sale ban could be re-imposed even after the initial ban was lifted. In both cases,

the results show that the coe¢ cient of RNS remains positive and highly signi�cant even

when we exclude the corresponding sample periods. If anything, the magnitude of the RNS

coe¢ cient is higher for the pre-August 2008 period.

Finally, we examine whether this relationship was stronger for the �rms that were subject

to the short sale ban.7 We interact RNS with a dummy variable (Short sale ban dummy)

that takes the value 1 for the �rms in the short sale ban list during the period September-

October 2008, and zero otherwise. We add this interaction variable (RNS*Short sale ban

dummy) to our benchmark model (2). Since this interaction variable takes non-zero values

only during the two months of the short sale ban period, we cannot estimate such a model

using a Fama-MacBeth regression. A feasible alternative is to estimate a panel regression

with time �xed e¤ects (month dummies). Results are reported under model (13) in Table 5

and they should be compared with the results of the �xed e¤ects model (12) that does not

include the interaction term. In line with our conjectured trading mechanism, we �nd that

the relationship between RNS and stock returns was stronger for �rms that were subject to

the short sale ban, since the coe¢ cient of the interaction term is positive and equal to 0.0112

5We would like to thank an anonymous referee for suggesting this analysis.
6Nishiotis and Rompolis (2011) �nd a signi�cant increase in the magnitude of put-call parity violations

during the short sale ban period and show that these violations had signi�cant predictive ability over
subsequent stock returns.

7We would like to thank George Nishiotis for providing us with the list of �rms that were subject to the
short sale ban. See also: http://www.sec.gov/rules/other/2008/34-58592.pdf
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(or 1.12% per month). However, this coe¢ cient is found to be statistically insigni�cant.8

3.6 Systematic and Unsystematic RNS portfolio sorts

In Section 2.2 we described how RNS can be decomposed into its systematic and unsys-

tematic components. Here, we examine which of these two components drives the positive

relationship between excess stock returns and RNS. To this end, we use each of these two

components�estimates computed on the last trading day of month t to sort stocks in ascend-

ing order and form quintile portfolios. Table 6 presents the performance of these portfolios

in terms of raw returns and �FFC .

-Table 6 here-

The results reported in Panel A show that there is no clear gradient in performance as

we move from the portfolio with the lowest systematic RNS stocks to the portfolio with the

highest systematic RNS stocks. Nevertheless, the spread strategy that is long the quintile

portfolio with the highest systematic RNS stocks and short the quintile portfolio with the

lowest systematic RNS stocks yields a signi�cantly negative �FFC that is equal to �72 bps

per month (t-stat: �2.48). This signi�cant spread is driven by the severe underperformance

of the quintile portfolio containing the stocks with the highest systematic RNS values.

On the other hand, the results in Panel B reveal a clear gradient in performance as we

move from the portfolio with the lowest unsystematic RNS stocks to the portfolio with the

highest unsystematic RNS stocks. Moreover, the spread strategy that is long the quintile

portfolio with the highest unsystematic RNS stocks and short the quintile portfolio with

the lowest unsystematic RNS stocks yields a signi�cantly positive �FFC that is equal to

55 bps per month (t-stat: 2.16). This signi�cant spread is mainly driven by the severe

8In unreported results, we have alternatively estimated a pooled OLS regression including this interaction
term. In this case, the coe¢ cient of the interaction term is positive (0.1539) and highly signi�cant (t-
stat=11.50). However, this estimation approach ignores the time e¤ect that is obviously present, since the
regression residuals in a given month are correlated across stocks. Therefore, as Petersen (2009) convincingly
shows, this t-statistic is considerably in�ated because the standard errors are massively underestimated.
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underperformance of the portfolio containing the stocks with the lowest unsystematic RNS

values.

These results show that the performance patterns of the total RNS-sorted portfolios that

we reported in Table 3 are resembled only by the unsystematic RNS-sorted portfolios. This

�nding is also corroborated by the average total RNS values of systematic and unsystematic

RNS-sorted portfolios. In particular, the gradient of average total RNS values is much

steeper in the case of unsystematic RNS-sorted portfolios (Panel B) than in the case of

systematic RNS-sorted portfolios (Panel A). Taken together, these results suggest that it

is the unsystematic component of RNS that drives the positive relationship between total

RNS and future stock returns.

To compute systematic RNS values, we used in equation (5) stocks�risk-neutral betas

that are estimated as in Bali et al. (2014). In a robustness check presented in the Sup-

plementary Appendix, we alternatively use betas estimated under the physical measure to

perform this decomposition and repeat the previous analysis. The corresponding results

are very similar to the ones presented above and con�rm our main conclusion that it is the

unsystematic component of RNS that drives the positive relationship between total RNS

and future stock returns.

We have additionally performed a decomposition of RNS into risk-neutral coskewness and

idiosyncratic skewness, using the de�nition of risk-neutral coskewness of Bakshi et al. (2003,

p. 114) and the regression decompositon of Conrad et al. (2013). We report the performance

of stock portfolios constructed on the basis of risk-neutral coskewness and idiosyncratic

RNS estimates in the Supplementary Appendix. We �nd that the spread strategy that goes

long the quintile portfolio with the highest risk-neutral coskewness stocks and short the

quintile portfolio with the lowest risk-neutral coskewness stocks yields a signi�cant negative

�FFC that is equal to �72 bps per month (t-stat: �2.48). This signi�cant alpha is driven

by the severe underperformance of the portfolio containing the stocks with the highest

risk-neutral coskewness values. These results indicate a negative relationship between risk-

neutral coskewness and post-ranking portfolio returns, resembling the �nding of Harvey and
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Siddique (2000) for coskewness estimated under the physical measure.

On the other hand, the spread strategy that is long the quintile portfolio with the highest

idiosyncratic RNS stocks and short the quintile portfolio with the lowest idiosyncratic RNS

stocks yields a positive �FFC that is equal to 40 bps per month (t-stat: 1.81). This alpha is

mostly driven by the signi�cant underperformance of the quintile portfolio containing the

stocks with the lowest idiosyncratic RNS values.

4 Which highly negative RNS stocks subsequently un-

derperform?

4.1 Conjectured trading mechanism

In this section, we examine the sources of the positive relationship between RNS and future

stock returns that we documented in Section 3. To understand this relationship, we draw

insights from the evidence provided in Bollen and Whaley (2004), and the demand-based

option pricing framework of Garleanu et al. (2009).

In particular, the trading mechanism we put forward and subsequently test assumes that

some pessimistic investors perceive certain stocks as relatively overvalued. Some of these

overvalued stocks are also too costly or too risky to sell short. As a result, in line with Miller

(1977), short selling constraints hinder the price mechanism from re�ecting these investors�

beliefs. Therefore, these investors resort to the option market, buying OTM puts, selling

OTM calls or creating synthetic short positions on these potentially overvalued stocks in

order to hedge their underlying positions and/or speculate on their pessimistic expectations.

Since risk-averse market makers cannot perfectly hedge their options positions in the stock

market due to the short selling constraints, this hedging demand drives up (down) prices

for OTM puts (calls), leading to a highly negative RNS in the option-implied distribution

(see Garleanu et al., 2009). In this way, option prices contain information that it is not

already embedded in stock prices, consistent with the sequential trade model of Easley et

22



al. (1998) and the noisy rational expectations model of An et al. (2014). As this mispricing

information is subsequently di¤used to the stock market, relatively overpriced stocks may

yield negative returns, giving rise to a positive relationship between RNS and future realized

stock returns.

For this conjectured mechanism to be valid, four conditions are necessary to hold: First,

stocks characterized by higher hedging demand should exhibit more negative RNS values;

otherwise the demand-based arguments of Bollen and Whaley (2004) and Garleanu et al.

(2009) would not hold. Second, the underperformance of the portfolio with the lowest RNS

stocks should be driven by those stocks that are also perceived as relatively overpriced;

if there is no perceived overpricing, then there are no pessimistic beliefs to be traded in

the option market, and hence RNS cannot contain any mispricing information. Third, the

underperformance of the portfolio with the lowest RNS stocks should be driven by those

stocks that are also too hard to sell short; otherwise, either investors would not need to resort

to the option market in the �rst place or, if they do, their trades would not a¤ect option

prices because market makers would be able to hedge their positions in the stock market.

Fourth, since overvaluation and short selling constraints are necessary conditions for low

RNS stocks to subsequently underperform, then stocks that exhibit all three characteristics

should subsequently yield the most negative performance. The following subsections test,

in turn, the validity of each of these conditions.

4.2 Investor hedging demand and RNS

We �rst test whether the stocks characterized by high investor hedging demand exhibit

relatively lower RNS values. We use four proxies for investor hedging demand de�ned in

Appendix C: the ratio of aggregate put options volume to all options volume (see Taylor

et al. 2009), the aggregate open interest across all options (see Hong and Yogo, 2012),

and, following Acharya et al. (2013), the ratio of CEO stock holdings to base salary and the

Z�score of Zmijewski (1984) that captures default risk. Using each of these hedging demand

proxies, we sort the stocks in our sample into quintile portfolios and calculate their median
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RNS values. Table 7 shows the time-series averages of these median RNS estimates for the

quintile portfolios of stocks characterized by the highest and the lowest investor hedging

demand, respectively. We �nd that for all four proxies, the portfolio of stocks exhibiting

the highest hedging demand has signi�cantly lower median RNS values in comparison to

the portfolio of stocks exhibiting the lowest hedging demand.

-Table 7 here-

4.3 The role of relative overvaluation

The second necessary condition for the conjectured trading mechanism to hold is that the

underperformance of the most negative RNS portfolio is driven by those stocks that are also

perceived by some investors to be relatively overpriced.9 We use three proxies for relative

overvaluation: the maximum daily stock return in the previous month (Max, see Bali et al.,

2011), Expected Idiosyncratic Skewness under the physical measure (EISP , see Boyer et

al., 2010), and the probability of a Jackpot return (see Conrad et al., 2014). High values for

each of these proxies have been shown to capture relative stock overpricing either because

market participants are too optimistic regarding stocks�growth prospects or because they

have a strong preference for their lottery-like payo¤ structure. To test this implication of the

conjectured trading mechanism, we construct bivariate conditional portfolios. In particular,

we sort stocks into tercile portfolios according to their RNS estimates on the last trading

day of each month t and then, within each of these tercile RNS portfolios, we further sort

stocks into tercile portfolios according to each of the overvaluation proxies. This conditional

sorting approach yields nine portfolios, whose equally-weighted returns we calculate at the

end of month t+ 1.
9It should be stressed that, as the descriptive statistics of RNS-sorted portfolios reported in Table 2 show,

low RNS per se does not typically indicate stock overvaluation, as captured by the proxies that we use in
this study. Similarly, stocks that exhibit high values of these overvaluation metrics do not necessarily exhibit
low RNS values. For example, in the absence of short selling constraints and other limits-to-arbitrage, if
investors perceived a stock to be relatively overvalued, they could hedge themselves in the option market
without substantially moving option prices (and hence RNS) because option market makers could hedge
their positions in the stock market.
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Table 8 reports the Fama-French alpha (�FF ) of these portfolios.10 Regardless of the

overvaluation proxy used, we �nd that the underperformance of the most negative RNS

portfolio is driven by the stocks that are classi�ed in the most overpriced tercile. In par-

ticular, portfolios of stocks with the highest Max return, EISP and Jackpot probability

within the most negative RNS tercile yield signi�cant negative alphas of at least �58 bps

per month. To the contrary, the corresponding portfolios of stocks exhibiting the lowest val-

ues for these overvaluation proxies yield alphas that are not signi�cantly di¤erent from zero.

Moreover, the spread return between the portfolio with the most and the portfolio with the

least overpriced stocks within the most negative RNS tercile is signi�cant for all four proxies.

Hence, we con�rm that the underperformance of the most negative RNS portfolio is driven

by the relatively overpriced stocks. In other words, not all stocks with highly negative RNS

values underperform, con�rming that low RNS per se is not a su¢ cient condition for stock

underperformance, and hence it cannot be considered as another proxy for overvaluation.

-Table 8 here-

Next, to show that neither relative overvaluation is a su¢ cient condition for subsequent

stock underperformance, but that it is the interplay between low RNS and overvaluation that

yields the subsequent underperformance, we reverse the order of the bivariate conditional

portfolio sorts. In particular, we now �rst sort stocks into tercile portfolios according to each

of the overvaluation proxies, and then within each of these tercile portfolios, we further sort

stocks into tercile portfolios according to their RNS values. The post-ranking performance

of these bivariate conditional portfolios is presented in Table 9. We �nd that among the

most overvalued stocks, it is the portfolio that contains the lowest RNS stocks that yields

the most signi�cant underperformance. This is true for all three overvaluation proxies. To

the contrary, among the most overvalued stocks, the portfolio that contains the highest RNS

stocks does not signi�cantly underperform.

-Table 9 here-
10Fama-French-Carhart alphas yield results very similar to the ones presented here and they are readily

available upon request.
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4.4 The role of short selling constraints

The third necessary condition for the conjectured trading mechanism to hold is that the

underperformance of the most negative RNS portfolio is driven by those stocks that are

also too costly or too risky to sell short. We use three proxies to capture short selling

constraints: Estimated Shorting Fee (see Boehme et al., 2006), Relative Short Interest (see

Asquith et al., 2005), and Idiosyncratic Volatility under the physical measure (IVolP , see

Wurgler and Zhuravskaya, 2002). High values for these proxies typically re�ect severe short

selling constraints. To test our conjecture, we construct bivariate conditional porrtfolios. In

particular, we sort stocks into tercile portfolios according to their RNS estimates on the last

trading day of each month t and then within each of these tercile portfolios we further sort

stocks into terciles according to each of the short selling constraints proxies. This conditional

sorting approach yields nine portfolios, whose equally-weighted returns we calculate at the

end of month t+ 1.

Table 10 reports the risk-adjusted performance (�FF ) of these portfolios. Regardless

of the short selling constraints proxy used, we �nd that the underperformance of the most

negative RNS portfolio is driven by the stocks that are classi�ed in the tercile with the most

severe short selling constraints. In particular, portfolios of stocks with the highest ESF, RSI

and IVolP values within the most negative RNS tercile yield signi�cant negative alphas of at

least �64 bps per month. To the contrary, none of the portfolios with the least short selling

constrained stocks exhibits signi�cant negative alphas. Finally, within the most negative

RNS tercile, the spread return between the portfolio with the most short selling constrained

stocks and the portfolio with the least short selling constrained stocks is highly signi�cant.

Hence, we con�rm that the underperformance of the most negative RNS portfolio is almost

exclusively driven by those stocks that are also too costly or too risky to sell short.

-Table 10 here-

Moreover, we argue that severe short selling constraints alone do not necessarily lead

to subsequent stock underperformance. For example, in the case where the underlying

26



stock is not perceived to be overpriced in the �rst place, there is no incentive for investors

to resort to the option market to trade and drive RNS to lower values, so the presence

of short selling constraints is not associated with subsequent stock underperformance. To

show that it is the interplay between low RNS and short selling constraints that signals the

subsequent underperformance, we reverse the order of the bivariate conditional portfolio

sorts. In particular, we now �rstly sort stocks into tercile portfolios according to each of

the three short selling constraints proxies, and then within each of these tercile portfolios,

we further sort stocks into tercile portfolios according to their RNS values. The post-

ranking performance of these bivariate conditional portfolios is presented in Table 11. We

�nd that among the most hard to sell short stocks, it is mainly the portfolio that contains

the lowest RNS stocks that yields the most signi�cant underperformance. This is true for

all three proxies for short selling constraints. To the contrary, among the most hard to

sell short stocks, the portfolio that contains the highest RNS stocks does not signi�cantly

underperform.11

-Table 11 here-

4.5 Trivariate independent portfolio sorts

The trading mechanism we described in Section 4.1 states that relative stock overvaluation

and short selling constraints are necessary conditions for low RNS stocks to subsequently

underperform. A direct implication of this mechanism is that those stocks which meet all

these three conditions should exhibit the most negative risk-adjusted returns. To test the

empirical validity of this implication, we construct trivariate portfolios. To this end, we

11Another friction that can prevent investors from selling (short) stocks that are perceived to be relatively
overpriced is illiquidity. According to the proposed mechanism, the underperformance of the most negative
RNS stocks should be more pronounced for stocks that are also highly illiquid. To test this conjecture, we
�rstly sort stocks into tercile portfolios on the basis of their RNS values and then, within each tercile RNS
portfolio, we further sort stocks according to their degree of illiquidity, proxied by Amihud�s (2002) price
impact ratio (ILLIQ). Consistent with our conjecture, the results reported in the Supplementary Appendix
show that the underperformance of the portfolio with the lowest RNS stocks is mainly driven by those stocks
that are also highly illiquid. On the other hand, the lowest RNS stocks that are relatively liquid do not
yield signi�cant negative risk-adjusted returns. The spread between the most and the least illiquid stocks
within the lowest RNS tercile portfolio yields an �FF equal to �55 bps per month (t-stat: �2.23).
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independently sort stocks on the last trading day of each month according to i) their RNS

value, ii) their overvaluation proxy value, and iii) their short selling constraints proxy value,

and we classify them as high (H) or low (L) relative to the corresponding median value. The

intersection of these three independent classi�cations yields eight (2x2x2) portfolios. Since

we use three alternative proxies for overvaluation and three alternative proxies for short

selling constraints, we end up with nine di¤erent cases. The risk-adjusted performance of

these portfolios for each case is reported in Table 12.

-Table 12 here-

The reported results convincingly show that the portfolio of stocks that combine high

short selling constraints, high overvaluation, and low RNS (Portfolio P4) yields the most

severe underperformance. This �nding is consistent across all nine cases that we examine.

For most of the cases, this portfolio yields signi�cant negative �FF of at least �60 bps per

month. To the contrary, even if only one of these three conditions is not met, portfolio alphas

are typically found to be insigni�cantly di¤erent from zero. Taken together, the evidence

from the trivariate independently sorted portfolios strongly supports our conjectured trading

mechanism, showing that it is the interplay between low RNS, high short selling constraints

and overvaluation that leads to signi�cant stock underperformance.

These results also point to the conclusion that the portfolio of stocks that combine

relatively high RNS, low overvaluation, and loose short selling constraints (Portfolio P5)

subsequently outperform. The explanation for this �nding is based on the observation

that in the absence of short selling constraints, stocks�downside risk is higher than in the

presence of severe short selling constraints (see Grullon et al., 2015). As a result, the safest

way for investors to trade their optimistic beliefs for those stocks that are perceived to be

relatively undervalued but are also characterized by high downside risk is to purchase OTM

calls rather than directly buy and hold the potentially undervalued stock. This demand

for OTM calls drives up their price and renders the implied volatility curve less negatively

(or more positively) sloped, i.e., it drives up RNS. In this way, a relatively high RNS value
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for stocks that are perceived to be relatively undervalued but are characterized by high

downside risk due to the absence of short selling constraints can incorporate underpricing

information, and hence signal subsequent outperformance.

On the other hand, for the potentially undervalued stocks that are characterized by

severe short selling constraints, and hence their downside risk is much more limited, the

incentive for optimistic investors to resort to the option market is weaker. If downside risk

is limited, these investors would be more willing to directly buy and hold the potentially

undervalued stock, correcting this mispricing. This mechanism explains the �nding for

Portfolio P6 in Table 12 that in the presence of high short selling constraints, a relatively

high RNS value does not signal subsequent outperformance even though the stock may be

perceived as relatively undervalued.

5 Conclusion

This study contributes to the ongoing debate regarding the sign of the relationship between

the option-implied risk-neutral skewness (RNS) of individual stock returns�distribution and

future realized stock returns (see Rehman and Vilkov, 2012, Conrad et al., 2013, and Bali et

al., 2014). In particular, we document a signi�cant positive relationship between RNS and

future stock returns during the period 1996-2012. This relationship is remarkably robust

once we account for various �rm characteristics that have been shown to predict future stock

returns. To quantify the magnitude of the RNS-related premium, we sort stocks according

to their RNS estimates on the last trading day of each month, assign them to portfolios and

calculate their post-ranking monthly returns. A strategy that is long the quintile portfolio

with the highest RNS stocks and short the quintile portfolio with the lowest RNS stocks

yields an average return of 61 bps (t-stat : 2.24) per month, and Fama-French-Carhart alpha

of 55 bps (t-stat : 2.47) per month. Decomposing RNS into its systematic and unsystematic

components, we �nd that the latter drives the positive relationship between RNS and future

stock returns.
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To explain this positive relationship, we put forward a mechanism assuming that some

investors perceive certain stocks as relatively overpriced. For those stocks that are also too

costly or too risky to sell short, this overvaluation cannot be immediately corrected (see

Miller, 1977), and hence investors resort to the option market buying OTM puts, selling

OTM calls and/or constructing synthetic short positions on these stocks in order to hedge

their underlying positions or speculate on their pessimistic expectations. Since risk-averse

market makers cannot fully hedge their options positions in the stock market due to the

short selling constraints, this hedging demand drives up (down) prices for OTM puts (calls),

leading to a highly negative RNS in the option-implied distribution (see Garleanu et al.,

2009). In this way, option prices may contain information that it is not already embedded

in stock prices, consistent with the sequential trade model of Easley et al. (1998) and the

noisy rational expectations model of An et al. (2014). As this mispricing information is

di¤used to the stock market over time, these relatively overpriced stocks with very low RNS

values subsequently underperform, giving rise to a positive relationship between RNS and

future realized stock returns.

In fact, our empirical tests con�rm the validity of the mechanism described above. First,

stocks characterized by higher hedging demand exhibit, on average, more negative RNS val-

ues. Second, the underperformance of the portfolio with the lowest RNS stocks is driven

by those stocks that are also characterized as relatively overpriced. Third, the underperfor-

mance of the portfolio with the lowest RNS stocks is driven by those stocks that are also

too costly or too risky to sell short. In conclusion, low RNS is a necessary but not su¢ cient

condition for future stock underperformance. It is the combination of low RNS, relative

overpricing and short selling constraints that yields stock underperformance.
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Appendix A. Risk-Neutral Moments

This Appendix presents the formulae for Risk-Neutral Moments following Bakshi andMadan

(2000) and Bakshi et al. (2003). Bakshi and Madan (2000) prove that any payo¤ function

H(S) that is twice continuously di¤erentiable with respect to stock price S can be spanned

by a portfolio of zero-coupon bond, stock, and a continuum of OTM options as follows:

EQ [exp (�r�)H (S)] =
�
H
�
�S
�
� �SHS

�
�S
��
exp (�r�) +HS

�
�S
�
S +

+

Z 1

�S

HSS (K)C (t; � ;K) dK +

Z �S

0

HSS (K)P (t; � ;K) dK(7)

where HS
�
�S
�
denotes the �rst-order derivative of the payo¤ function evaluated at a given

�S and HSS (K) denotes the second-order derivative of the payo¤ function evaluated at K.

Bakshi et al. (2003) de�ne the payo¤ of the ��maturity quadratic, cubic and quartic

contract, respectively, as:

H(S) =

8>>>><>>>>:
R(t; �)2, quadratic contract

R(t; �)3, cubic contract

R(t; �)4, quartic contract

9>>>>=>>>>; , (8)

where R (t; �) = log (S (t+ �))�log (S (t)) is the ��period log stock return. These contracts

are essentially contingent claims with payo¤s equal to the second, third and fourth power of

the log stock return, respectively. Based on the spanning result in (7), Bakshi et al. (2003)

show that Risk-Neutral Variance (RNV), Skewness (RNS) and Kurtosis (RNK) are given

by equations (1), (2) and (3), respectively, where Vt (�), Wt (�) and Xt (�) denote the time

t prices of the quadratic, cubic and quartic contracts and they are given by:

Vt (�) =

Z 1

St

2
�
1� log

�
K
St

��
K2

Ct (� ;K) dK +

Z St

0

2
�
1 + log

�
St
K

��
K2

Pt (� ;K) dK (9)
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Appendix B. Simpson�s rule

Simpson�s rule uses quadratic polynomials to approximate the value of a de�nite integral.

Consider the de�nite integral
R b
a
f(x)dx, where f(x) is continuous on [a; b]. De�ning the

step length h = (b � a)=n and xj = a + jh for j = 0; 1; :::; n, Simpson�s rule approximate

this integral by:

Z b

a

f(x)dx � h

3
[f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + :::+ 2f (xn�2) + 4f (xn�1) + f (xn)] :

Simpson�s rule converges to the value of the de�nite integral at a much faster rate

relative to the trapezoidal rule. De�ne the error of the numerical integration as the absolute

di¤erence between the value of the de�nite integral and the result of numerical integration.

If the domain of integration consists of n grid points, then as n ! 1, the error decays at

the rate n4 under Simpson�s rule, while it decays at the rate n2 under the trapezoidal rule
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(see Section 5.1 in Atkinson, 1989).

Appendix C. De�nitions of Variables

This Appendix presents in alphabetical order the de�nitions of the variables used in the

study.

Call-Put Volatility Spread

Following Bali and Hovakimian (2009), the Call-Put Volatility spread is calculated as

the di¤erence between the implied volatilities of ATM and very near-the-money call and

put options.

CEO Stock Holdings

Following Acharya et al. (2013), the ratio of CEO stock holdings to base salary for �rm

i is calculated as the number of shares owned by �rm�s CEO times the share price and

divided by the CEO salary. In terms of ExecuComp and Compustat data items, the ratio

is given by:

CEO =
PRCC_F x SHROWN_EXCL_OPTS

SALARY
(12)

We use December values of year y � 1 for the period from June of year y until May of year

y + 1.

Default risk

Following Acharya et al. (2013), we measure the default risk of �rm i, using the Zmi-

jewski (1984) Z�score, which is a weighted index of �rm�s ratios of net income (NI) to total

assets (AT), total debt (LT) to total assets and current assets (ACT) to current liabilities

(LCT). In terms of Compustat data items, the Z�score is computed as:

Z = �4:3� 4:5NI
AT

+ 5:7
LT

AT
� 0:004ACT

LCT
(13)
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We use December values of year y � 1 for the period from June of year y until May of year

y + 1.

Estimated Shorting Fee (ESF)

To compute the ESF for �rm i, we use the �tted regression model of Boehme et al.

(2006):

Fee = 0:07834 + 0:05438V RSI � 0:00664V RSI2 + 0:000382V RSI3 � 0:5908Option+

0:2587Option � V RSI � 0:02713Option � V RSI2 + 0:0007583Option � V RSI3(14)

where RSI is the relative short interest and V RSI is the vicile rank of RSI (i.e., it takes

the value 1 if the �rm�s RSI is below the 5th percentile of all �rms�RSI distribution, 2 if

the �rm is between the 5th and 10th percentile, etc.). We obtain the short interest data

from Compustat. Option is a dummy variable that takes the value 1 if there is non-zero

trading volume for the �rms�options in the month and 0 otherwise. Trading volume data

for options are sourced from OptionMetrics.

Expected idiosyncratic skewness under the physical measure (EISP )

Following Boyer et al. (2010), to estimate EISP for �rm i in month t, we use the �tted

part of the following regression model:

ISkewPi;t = 
0 + 
1ISkew
P
i;t�60 + 
2IV ol

P
i;t�60 + 
3Momi;t�60 + 
4Turni;t�60 +

+
5NASDi;t�60 + 
6Smalli;t�60 + 
7Medi;t�60 + �Indi;t�60 + "i;t (15)

This cross-sectional regression is estimated every month. ISkewPi;t and IV ol
P
i;t denote, re-

spectively, the idiosyncratic skewness and idiosyncratic volatility for �rm i under the physical

measure, computed from daily �rm-level residuals of the Fama and French (1993) three-

factor model over the past 60 months. Momt denotes the cumulative stock return from
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month t � 12 to month t � 1. Turn is the average monthly turnover in the past year

calculated as the trading volume divided by the number of shares outstanding. Trading vol-

ume and number of shares outstanding are both obtained from CRSP. To calculate average

monthly turnover, 5 valid monthly observations are required in each year. NASDAQ volume

is adjusted for the double counting following Gao and Ritter (2010): NASDAQ volume is

divided by 2 for the period from 1983 to January 2001, by 1.8 for the rest of 2001, by 1.6 for

2002-2003, and is unchanged from January 2004 to December 2012. NASD is NASDAQ

dummy: it takes the value 1 if the �rm is listed on NASDAQ and 0 otherwise. Small is a

small �rms dummy: it takes the value 1 if the �rm is in the bottom three size deciles and 0

otherwise. Med is a medium �rms dummy: it takes the value 1 if the �rm is in one of the

size deciles between the fourth and the seventh and 0 otherwise. Ind are a series of industry

classi�cation dummies. Each takes the value 1 if the �rm belongs to a certain industry and

0 otherwise. We use the 30 industry classi�cations of Fama and French (1997).

Idiosyncratic volatility under the physical measure (IVolP )

IV olPi;t for �rm i in month t is computed as:

IV olPi;t =

 
1

N(d)� 1
X
d2D

"2i;d

!1=2
(16)

where "i;d is the daily �rm-level residual of the Fama and French (1993) three-factor model

regression over the past 60 months, D is the set of non-missing daily returns in the past 60

months and N(d) denotes the number of days in D. We require at least 15 observations in

the past 60 months to compute IV olPi;t.

Idiosyncratic skewness under the physical measure (ISkewP )

Following Boyer et al. (2010), ISkewPi;t for �rm i in month t is computed as:

ISkewPi;t =
1

(N(d)� 2)

P
t2D "

3
i;d�

IV olPi;t
�3 (17)

where "i;d is the daily �rm-level residual of the Fama and French (1993) three-factor model
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regression over the past 60 months, D is the set of non-missing daily returns in the past 60

months and N(d) denotes the number of days in D. We require at least 15 observations in

the past 60 months to compute ISkewPi;t.

Maximum daily return (Max)

Max for �rm i in month t is the highest daily stock return during the previous month

t� 1.

Momentum

Momentum for �rm i in month t is de�ned as its cumulative stock return from month

t� 12 to month t� 1.

Open interest

Open interest for �rm i is calculated as the sum of open interest across all put and

call options for a given maturity on a given trading day. The options used to compute the

aggregate open interest have the same maturity as the options used to estimate RNS.

Probability of a �rm achieving a jackpot return (Jackpot)

A Jackpot return is de�ned as a log return greater than 100%. To compute the proba-

bility of a �rm achieving a jackpot return over the next year, we use the �tted regression

model of Conrad et al. (2014):

Jackpot =
exp(ŷ)

1 + exp(ŷ)
, where (18)

ŷ = �3:29 + 0:06SKEW P + 0:18RET12� 0:02AGE � 0:25TANG

+0:29SALEGRTH � 0:43TURN + 0:99STDEV � 0:22SIZE. (19)

SKEWP denotes the skewness of daily log stock returns in the past 3 months and RET12 is

the log return in the past year. AGE is the number of years since the stock �rst appeared

on CRSP and TANG is the asset tangibility, which is de�ned as the gross value of property,

plant, and equipment divided by total assets (TANG = PPEGT=AT ). SALESGRTH
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denotes the sales growth during the last year. For asset tangibility and sales growth, we use

December values of year y � 1 during the period from June of year y to May of year y + 1.

TURN is the average monthly turnover in the past 6 months minus the average monthly

turnover in the past 18 months. STDEV denotes the volatility of daily returns in the past

3 months and SIZE is the logarithm of market value measured in millions.

Put-to-All Options Volume ratio

The Put-to-All Options Volume ratio on a given trading day is the ratio of the total

volume across all put options for a given maturity using all available strikes divided by

the total volume across all put and call options for the same maturity using again all

available strikes. The options used to calculate these volumes have the same maturity as

the corresponding options used to estimate RNS.

Relative Short Interest (RSI)

RSI is de�ned as the outstanding shorts reported by NYSE and NASDAQ divided by

the number of shares outstanding. Outstanding shorts are sourced from CRSP.

Reversal

Reversal for �rm i in month t is given by its monthly return in the previous month t�1.

SKEW

Following Xing et al. (2010), SKEW is de�ned as the di¤erence between the implied

volatilities of an OTM put option and an ATM call option.

Stock Illiqudity (ILLIQ)

We use Amihud�s (2002) price impact ratio to proxy for stock illiquidity. In particular,

this price impact ratio for stock i over a year y is de�ned as:

ILLIQi;y =

PDi;y
d=1 jRi;dj =V OLDi;d

Di;y

where jRi;dj is the absolute daily return of stock i on day d, V OLDi;d is the dollar trading

volume of stock i on day d, and Di;y is the number of trading days during year y. We

compute ILLIQi;y using a 12-month rolling window.
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Table 1: Descriptive Statistics for OTM options used to compute Risk-Neutral Skewness 
This Table shows the descriptive statistics for the out-of-the-money (OTM) call and put options used to compute Risk-Neutral Skewness (RNS) 

estimates of individual stock returns' distributions on the last trading day of each month during the period 1996-2012. Moneyness denotes the ratio 

of the underlying stock price to the strike price of the OTM call and put option, respectively. The open interest and trading volume per OTM 

option used to compute RNS are measured in thousands of contracts. The last row shows the ratio of total trading volume for the OTM options 

used to compute RNS on a given trading day and a given expiry date relative to the total trading volume of all options available on the same 

trading day with the same expiry date.   

 Mean Median 5th pctl 95th pctl St. Dev. 

RNS -0.4462 -0.4175 -1.0261 0.0197 0.3378 

Days to expiration for OTM options 86.56 81 18 169 46.77 

Moneyness of OTM call options 0.8958 0.9155 0.7333 0.9925 0.0846 

Moneyness of OTM put options 1.1424 1.1048 1.0092 1.3972 0.1346 

No. of OTM options used per RNS observation 5.60 5 4 9 2.39 

Open interest per OTM option used 1,775.84 296 11 6,943 7,623.33 

Trading volume per OTM option used 191.80 1 0 581 1,716.74 

Ratio of OTM/All options total trading volume 0.66 0.72 0 1 0.31 
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Table 2: Characteristics of RNS-sorted Quintile Portfolios 
This Table shows the average characteristics of quintile stock portfolios sorted on the basis of their Risk-Neutral Skewness (RNS) estimates on the last trading day of each month t 

during the period 1996-2012. MV stands for firms' market value. B/M stands for the firms' book-to-market value ratio. MOM stands for the cumulative stock return from month t-12 to 

month t-1. ILLIQ stands for the price impact ratio of Amihud (2002), multiplied by 10
8
. PRICE denotes the price per share. EIS

P
 stands for the expected idiosyncratic skewness of daily 

stock returns under the physical measure computed as in Boyer et al. (2010). Max denotes the maximum daily stock return over the previous month. IVol
P
 denotes the idiosyncratic 

volatility of daily stock returns from month t-60 to month t. ESF denotes the Estimated Shorting Fee for each stock computed as in Boehme et al. (2006). RSI denotes the Relative Short 

Interest for each stock. Option Volume denotes the total number of traded contracts (in thousands) for the options used to compute RNS on the last trading day of each month t. Open 

Interest denotes the total number of outstanding contracts (in thousands) for the options used to calculate RNS on the last trading day of each month t. The pre-last line shows the 

difference (spread) between the portfolio with the highest RNS stocks and the portfolio with lowest RNS stocks in each case. t-values calculated using Newey-West standard errors with 

5 lags are provided in parentheses. ***, **, * indicate statistical significance at the 1%, 5%, and 10% level, respectively.     

RNS 

Quintiles RNS ln(MV) B/M MOM ILLIQ PRICE EIS
P 

Max IVol
P 

ESF RSI 

Option 

Volume 

Open 

Interest 

1 (Lowest RNS) -0.83 22.65 0.87 0.29 0.22 59.3 0.45 0.051 0.022 0.540 0.073 1,354 13,273 

2 -0.52 22.39 0.73 0.31 0.19 51.6 0.50 0.057 0.025 0.529 0.062 827 8,864 

3 -0.39 22.11 0.78 0.35 0.28 46.4 0.55 0.062 0.028 0.536 0.059 662 7,599 

4 -0.27 21.83 0.78 0.38 0.36 41.9 0.60 0.066 0.030 0.557 0.060 624 6,634 

5 (Highest RNS) -0.06 21.44 0.97 0.42 0.76 38.1 0.68 0.074 0.033 0.569 0.062 811 7,492 

5-1 

t(5-1) 

0.77*** 

(5.79) 

-1.21*** 

(-5.39) 

0.10 

(0.97) 

0.13*** 

(2.92) 

0.54*** 

(2.75) 

-21.2*** 

(-5.59) 

0.23*** 

(4.96) 

0.023*** 

(5.62) 

0.011*** 

(5.57) 

0.029** 

(2.24) 

-0.011** 

(-2.37) 

-543*** 

(-3.43) 

-5,781*** 

(-4.77) 
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Table 3: Risk-Neutral Skewness Quintile Portfolio Sorts 
This Table shows the characteristics and performance of stock portfolios constructed on the basis of option-implied Risk-Neutral (RN) Skewness estimates of individual stock 

returns' distributions, during the period 1996-2012. RN Volatility, Skewness and Kurtosis are computed from daily option prices using the model-free methodology of Bakshi 

et al. (2003), as described in Section 2.1. On the last trading day of each month t, stocks are sorted in ascending order according to their RN Skewness estimate and they are 

assigned to quintile portfolios. We then calculate the equally-weighted returns of these portfolios at the end of the following month t+1 (i.e. post-ranking monthly returns). 

Mean return stands for the average monthly portfolio return during the examined period, and αFFC stands for the monthly portfolio alpha estimated from the Fama-French-

Carhart (FFC) 4-factor model. The Table also reports the portfolios' loadings (β's) with respect to the market (MKT), size (SMB), value (HML) and momentum (MOM) 

factors estimated from the FFC model as well as its explanatory power (R
2
). Moreover, it reports the average values of RN Skewness, Volatility and Kurtosis and the number 

of stocks (N) in each portfolio. The pre-last line shows the difference (spread) between the portfolio with the highest RN Skewness stocks and the portfolio with lowest RN 

Skewness stocks in each case. t-values calculated using Newey-West standard errors with 5 lags are provided in parentheses. ***, **, * indicate statistical significance at the 

1%, 5%, and 10% level, respectively. 

Quintiles 
RN 

Skewness 

Mean 

return FFC  MKT  SMB  HML  MOM  R
2 RN 

Volatility 

RN 

Kurtosis 
N 

1 (Lowest RNS) -0.8268 0.46 -0.32** 1.07*** 0.28*** -0.02 0.00 0.90 0.4224 3.6497 127 
   (-2.36) (28.75) (6.67) (-0.29) (0.02)     

2 -0.5249 0.56 -0.29** 1.16*** 0.34*** 0.03 -0.01 0.93 0.4487 3.2313 127 
   (-2.04) (44.97) (8.87) (0.83) (-0.36)     

3 -0.3866 0.80 -0.08 1.20*** 0.45*** -0.05 -0.01 0.92 0.4808 3.1026 127 
   (-0.55) (35.19) (12.87) (-0.93) (-0.15)     

4 -0.2651 0.82 -0.04 1.23*** 0.52*** -0.13* -0.08** 0.89 0.5124 3.0294 127 
   (-0.20) (35.30) (8.88) (-1.75) (-2.04)     

5 (Highest RNS) -0.0564 1.07 0.23 1.24*** 0.65*** -0.31*** -0.09** 0.88 0.5640 3.0346 127 
   (1.10) (26.52) (10.26) (-5.50) (-2.21)     

5-1 0.7704*** 0.61** 0.55** 0.17*** 0.37*** -0.29*** -0.09* 0.37 0.1416*** -0.6151***  
t(5-1) (5.79) (2.24) (2.47) (3.53) (5.74) (-4.09) (-1.69)  (5.61) (-5.29)  
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Table 4: Robustness checks 
This Table shows the average number of stocks (N), the average monthly returns (mean return), and the monthly 

Fama-French-Carhart alphas (αFFC) estimated from the corresponding 4-factor model for quintile portfolios 

constructed on the basis of Risk-Neutral Skewness (RNS) estimates for individual stocks extracted from daily 

option prices. The sample period is 1996-2012. In Panel A, RNS is estimated using a trapezoidal rule to compute 

the integrals in equations (9)-(11) of Appendix A. In Panel B, we use the latest available daily RNS estimate of 

the month as a sorting variable, instead of using only the RNS estimate computed on the last trading day of the 

month. In Panel C, we take monthly averages of the daily RNS estimates for each firm and use this monthly 

RNS average as a sorting variable to construct portfolios. The pre-last line in each panel shows the difference 

(spread) between the quintile portfolio with the highest RNS stocks and the quintile portfolio with the lowest 

RNS stocks in each case. t-values calculated using Newey-West standard errors with 5 lags are provided in 

parentheses. ***, **, * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 

Panel A: Alternative method to extract RNS 

Quintiles Mean return FFC  N 

1 (Lowest RNS) 0.41 -0.43*** 127 

2 0.69 -0.13 127 

3 0.90 0.06 127 

4 0.81 -0.07 127 

5 (Highest RNS) 0.91 0.07 127 

5-1 0.50** 0.49***  
t(5-1) (2.34) (2.81)  

Panel B: Latest available RNS estimate of the month as sorting variable 

Quintiles Mean return FFC  N 

1 (Lowest RNS) 0.51 -0.27** 147 

2 0.57 -0.30** 147 

3 0.76 -0.11 147 

4 0.86 -0.01 147 

5 (Highest RNS) 1.02 0.18 147 

5-1 0.51** 0.45**  
t(5-1) (2.14) (2.22)  

Panel C: Average monthly value of RNS as sorting variable 

Quintiles Mean return FFC  N 

1 (Lowest RNS) 0.58 -0.19* 147 

2 0.91 0.07 147 

3 0.67 -0.21 147 

4 0.77 -0.10 147 

5 (Highest RNS) 0.78 -0.08 147 

5-1 0.20 0.11  
t(5-1) (0.66) (0.51)  
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Table 5: Fama-MacBeth Regressions 
This Table reports the Fama-MacBeth coefficients of cross-sectional regressions of monthly excess stock returns on lagged 

Risk-Neutral Skewness (RNS) and a set of firm characteristics during the period 1996-2012. RNS is computed on the last 

trading day of each month using the model-free methodology of Bakshi et al. (2003). Models (2)-(13) control for firms' beta, 

market value (MV), book-to-market value ratio (B/M), momentum, 1-month reversal, stock illiquidity proxied by Amihud's 

(2002) price impact ratio and price per share. Model (3) additionally controls for RN Volatility and Kurtosis, which are also 

computed using the model-free methodology of Bakshi et al. (2003). Model (4) controls for the steepness of the option-implied 

volatility smile (SKEW). Model (5) controls for the spread between the implied volatilities of ATM calls and puts (Call-Put 

Vol. Spread). Model (6) controls for the total trading volume of options used to compute RNS. Model (7) controls for the total 

open interest of options used to compute RNS. Model (8) excludes firm-month observations if the total trading volume of 

OTM options used to compute RNS is less than half of the total option trading volume, including ATM options. Model (9) 

excludes firm-month observations if the total open interest of OTM options used to compute RNS is in the lowest 20% of the 

corresponding cross-sectional distribution on the last trading day of the month. Model (10) excludes the observations in 

September and October 2008. Model (11) reports the Fama-MacBeth regression coefficients for the sample period up to 

August 2008. Model (12) reports the estimates from a panel regression with time fixed effects (i.e., including month dummies). 

Model (13) includes the interaction of RNS with a short sale ban dummy variable that takes the value 1 for firms that were 

subject to the SEC and exchanges' short sale ban during September-October 2008 and zero otherwise. The last row reports the 

total number of firm-month observations used in each model. t-ratios derived from the time-series of the monthly estimated 

coefficients using Newey-West standard errors with 5 lags are provided in parentheses. ***, **, * indicate statistical 

significance at the 1%, 5%, and 10% level, respectively. 

 (1) (2) (3) (4) (5) (6) (7) 

RN Skewness 0.0073** 0.0080*** 0.0118*** 0.0048** 0.0073*** 0.0087*** 0.0083*** 

 (2.45) (3.70) (4.24) (2.21) (2.91) (4.15) (3.85) 

Beta  -0.0021 0.0014 -0.0021 -0.0013 -0.0011 -0.0014 

  (-0.50) (0.38) (-0.48) (-0.29) (-0.26) (-0.34) 

ln(MV)  -0.0004 -0.0018** -0.0007 -0.0005 0.0006 0.0006 

  (-0.41) (-1.99) (-0.72) (-0.44) (0.51) (0.46) 

B/M  0.0020 0.0015 0.0024 0.0009 0.0021 0.0021 

  (1.54) (1.44) (1.44) (0.58) (1.62) (1.58) 

Momentum  0.0020 0.0032 0.0019 0.0014 0.0023 0.0022 

  (0.66) (1.06) (0.63) (0.46) (0.75) (0.73) 

Reversal  -0.0067 -0.0030 -0.0054 -0.0038 -0.0067 -0.0065 

  (-0.88) (-0.41) (-0.68) (-0.49) (-0.87) (-0.84) 

Stock Illiquidity  -0.1184 -0.0904 -0.2299 -0.1569 -0.1319 -0.1165 

  (-0.66) (-0.51) (-1.10) (-0.68) (-0.74) (-0.66) 

Price per share  0.0044** 0.0015 0.0043** 0.0042** 0.0041** 0.0033* 

  (2.33) (0.66) (2.11) (2.22) (2.17) (1.65) 

RN Volatility   -0.0316***     

   (-3.29)     

RN Kurtosis   0.0054**     

   (2.46)     

SKEW
 

   -0.0444***    

    (-2.65)    

Call-Put Vol. Spread     0.0309   

     (1.36)   

Option Trading Volume
 

     -0.0010***  

      (-2.84)  

Open Interest       -0.0013** 

       (-2.02) 

Intercept 0.0082 0.0002 0.0369 0.0080 0.0013 -0.0173 -0.0081 

 (1.50) (0.01) (1.55) (0.33) (0.05) (-0.69) (-0.33) 

Observations 128,960 97,171 97,171 92,046 92,142 97,171 97,171 
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Table 5: Fama-MacBeth Regressions- continued  

 

 

Excl.  

low volume 

OTM options 

(8) 

Excl. low 

open interest 

OTM options 

(9) 

Excl. 

Sep.-Oct. 

2008 

(10) 

Until 

Aug. 2008  

 

(11) 

Time  

Fixed Effects 

 

(12) 

Time  

Fixed Effects 

 

 (13) 

RN Skewness 0.0066** 0.0066*** 0.0086*** 0.0104*** 0.0095*** 0.0094*** 

 (2.37) (2.72) (3.97) (4.08) (6.45) (6.34) 

Beta -0.0017 -0.0029 -0.0018 -0.0010*** -0.0047*** -0.0046*** 

 (0.37) (-0.67) (-0.42) (-0.20) (-5.54) (-5.48) 

ln(MV) -0.0001 -0.0001 -0.0005 -0.0003 -0.0001 -0.0001 

 (-0.09) (-0.07) (-0.46) (-0.23) (-0.23) (-0.22) 

B/M 0.0024 0.0009 0.0020 0.0027 0.0001 0.0001 

 (1.57) (0.47) (1.55) (1.56) (1.07) (1.07) 

Momentum 0.0019 0.0024 0.0024 0.0043** 0.0003 0.0003 

 (0.58) (0.74) (0.78) (2.14) (0.64) (0.63) 

Reversal -0.0027 -0.0061 -0.0085 -0.0052 -0.0063** -0.0062** 

 (-0.33) (-0.74) (-1.08) (-0.57) (-2.23) (-2.20) 

Stock Illiquidity -0.3794 -0.1923 -0.1669 -0.1391 -0.0217*** -0.0217*** 

 (-1.40) (-0.62) (-0.99) (-0.66) (-2.93) (-2.93) 

Price per share 0.0044** 0.0036* 0.0044** 0.0061*** 0.0034*** 0.0034*** 

 (2.16) (1.80) (2.28) (2.61) (3.89) (3.89) 

RNS* 

Short sale ban dummy 

     0.0112 

     (1.23) 

Intercept -0.0092 -0.0040 0.0031 -0.0085 0.0019 0.0017 

 (-0.37) (-0.16) (0.13) (-0.28) (0.28) (0.26) 

Observations 61,880 78,362 95,422 56,310 97,171 97,171 
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Table 6: Systematic and Unsystematic Risk-Neutral Skewness Portfolio Sorts  
This Table shows the average monthly returns (Mean return), and the monthly Fama-French-Carhart alphas 

(αFFC) estimated from the corresponding 4-factor model for quintile portfolios constructed on the basis of 

systematic risk-neutral skewness (RNS) (Panel A) and unsystematic RNS (Panel B) estimates for individual 

stocks extracted from daily option prices. The sample period is 1996-2012. We follow the methodology of 

Bakshi et al. (2003), as described in Section 2.2, to decompose total RNS into its systematic and 

unsystematic components, using risk-neutral stock betas estimated as in Bali et al. (2014). On the last trading 

day of each month t, stocks are sorted in ascending order according to their systematic RNS (Panel A) or 

unsystematic RNS (Panel B) estimates and they are assigned to quintile portfolios. We then calculate the 

equally-weighted returns of these portfolios at the end of the following month t+1 (i.e. post-ranking monthly 

returns). The Table also reports the average portfolio total RNS value in each case as well as the average 

number (N) of stocks in each portfolio. The pre-last line shows the difference (spread) between the portfolio 

with the highest and the portfolio with the lowest systematic RNS (Panel A) or unsystematic RNS (Panel B) 

stocks in each case. t-values calculated using Newey-West standard errors with 5 lags are provided in 

parentheses. ***, **, * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 

Panel A: Systematic RNS sorts 

Quintiles Total RNS Mean return FFC  N 

1 (Lowest Systematic RNS) -0.5690 0.77 
0.13 
(1.09) 

109 

2 -0.4629 0.92 
0.18 
(1.33) 

109 

3 -0.4028 0.97 
0.19 
(0.89) 

109 

4 -0.3689 0.84 
0.00 
(0.05) 

109 

5 (Highest Systematic RNS) -0.3423 0.32 
-0.59** 

(-2.45) 109 

5-1 0.2267*** -0.45 -0.72**  
t(5-1) (5.34) (-0.76) (-2.48)  

Panel B: Unsystematic RNS sorts 

Quintiles Total RNS Mean return FFC  N 

1 (Lowest Unsystematic RNS) -0.7727 0.51 
-0.35** 

(-2.04) 
109 

2 -0.4936 0.67 
-0.14 
(-0.82) 

109 

3 -0.3670 0.85 
0.02 
(0.15) 

109 

4 -0.2645 0.94 
0.18 
(1.03) 

109 

5 (Highest Unsystematic RNS) -0.2483 0.84 
0.20 
(1.00) 

109 

5-1 0.5244*** 0.33 0.55**  
t(5-1) (5.57) (1.33) (2.16)  
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Table 7: Median Risk-Neutral Skewness of Hedging Demand-Sorted Quintile Portfolios 
This Table shows the time-series averages of the median portfolio Risk-Neutral Skewness (RNS) estimate for 

quintile portfolios containing the stocks characterized by the highest and the lowest investor hedging demand, 

respectively. RNS for each stock is computed from daily option prices using the model-free methodology of 

Bakshi et al. (2003). The examined period is 1996-2012. We use the following four proxies for investor hedging 

demand: the ratio of aggregate put options volume to total option volume on a given trading day for a given 

expiry, the aggregate open interest across all options on a given trading day for a given expiry, the ratio of CEO 

stock holdings to base salary and the Z-score of Zmijewski (1984) to capture default risk. The pre-last line 

reports the difference in average RNS values between the highest and the lowest hedging demand quintile 

portfolios. t-values calculated using Newey-West standard errors with 5 lags are provided in parentheses. ***, 

**, * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 

 Put/All  

Volume ratio 

Open Interest CEO Stock 

Holdings 

Default risk 

Lowest Hedging 

Demand Quintile (1) 

-0.3933 -0.3840 -0.3895 -0.3544 

Highest Hedging 

Demand Quintile (5) 

-0.4564 -0.4493 -0.4380 -0.4021 

5-1 -0.0630*** -0.0653*** -0.0485*** -0.0477*** 

t(5-1) (-5.58) (-3.30) (-5.20) (-4.74) 
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Table 8: Bivariate conditional portfolio sorts: Risk-Neutral Skewness and Overvaluation 
This Table shows the performance of bivariate stock portfolios constructed on the basis of Risk-Neutral Skewness (RNS) 

estimates and each of the overvaluation proxies considered, during the period 1996-2012. RNS is computed from daily 

option prices using the model-free methodology of Bakshi et al. (2003). We use the following three proxies for stock 

overvaluation: Expected Idiosyncratic Skewness (EIS
P
) estimated from daily stock returns under the physical measure in 

Panel A, the Maximum (Max) daily stock return over the previous month in Panel B and the probability of a stock achieving 

a Jackpot return over the next year in Panel C. The definitions and data sources for these variables are provided in Appendix 

C. On the last trading day of each month t, stocks are sorted in ascending order according to their RNS estimate and 

assigned to tercile portfolios. Within each RNS tercile portfolio, we further sort stocks according to each of the 

overvaluation proxies and construct again tercile portfolios. We then calculate the equally-weighted returns of these 9 

portfolios at the end of the following month t+1 (i.e. post-ranking monthly returns). The Table reports monthly Fama-

French (FF) portfolio alphas estimated from the corresponding 3-factor model. t-values calculated using Newey-West 

standard errors with 5 lags are provided in parentheses. ***, **, * indicate statistical significance at the 1%, 5%, and 10% 

level, respectively. 

Panel A: Expected Idiosyncratic Skewness (EIS
P
) 

 EIS
P
 Low EIS

P
 Medium EIS

P
 High Difference 

RNS 1 (Lowest) 0.08 -0.30 -0.58*** -0.67*** 
 (0.74) (-1.64) (-3.57) (-3.89) 

RNS 2 0.21 -0.03 -0.45** -0.66*** 
 (1.31) (-0.18) (-2.45) (-3.00) 

RNS 3 (Highest) 0.38* 0.14 -0.24 -0.63*** 
 (1.84) (0.56) (-1.21) (-2.63) 

Difference -0.30 -0.44* -0.34  
 (-1.49) (-1.82) (-1.35)  

Panel B: Maximum past month return (Max) 

 Max Low Max Medium Max High Difference 

RNS 1 (Lowest) 0.01 -0.22 -0.77*** -0.78*** 
 (0.06) (-1.59) (-3.12) (-2.59) 

RNS 2 0.38*** -0.12 -0.68*** -1.06*** 
 (2.98) (-0.62) (-3.27) (-4.51) 

RNS 3 (Highest) 0.41** 0.08 -0.21 -0.62** 
 (2.11) (0.39) (-0.78) (-2.34) 

Difference -0.40** -0.30 -0.56*  
 (-1.98) (-1.28) (-1.87)  

Panel C: Probability of Jackpot return 

 Jackpot Low Jackpot Medium Jackpot High Difference 

RNS 1 (Lowest) -0.06 -0.23 -0.60** -0.54* 
 (-0.54) (-1.63) (-2.17) (-1.74) 

RNS 2 0.25* -0.01 -0.48** -0.73*** 
 (1.70) (-0.08) (-1.96) (-2.66) 

RNS 3 (Highest) 0.26 0.37 -0.04 -0.30 
 (1.17) (1.32) (-0.15) (-1.08) 

Difference -0.32 -0.60** -0.56**  
 (-1.47) (-2.24) (-2.23)  
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Table 9: Reverse bivariate conditional portfolio sorts:  

Overvaluation and Risk-Neutral Skewness 
This Table shows the performance of bivariate stock portfolios constructed on the basis of each of the overvaluation 

proxies considered and Risk-Neutral Skewness (RNS) estimates, during the period 1996-2012. We use the following 

three proxies for stock overvaluation: Expected Idiosyncratic Skewness (EIS
P
) estimated from daily stock returns 

under the physical measure in Panel A, the Maximum (Max) daily stock return over the previous month in Panel B 

and the probability of a stock achieving a Jackpot return over the next year in Panel C. The definitions and data 

sources for these variables are provided in Appendix C. RNS is computed from daily option prices using the model-

free methodology of Bakshi et al. (2003). On the last trading day of each month t, stocks are sorted in ascending 

order according to an overvaluation proxy and assigned to tercile portfolios. Within each portfolio constructed on the 

overvaluation proxy, we further sort stocks according to their RNS estimate and construct again tercile portfolios. 

We then calculate the equally-weighted returns of these 9 portfolios at the end of the following month t+1 (i.e. post-

ranking monthly returns). The Table reports monthly Fama-French (FF) portfolio alphas estimated from the 

corresponding 3-factor model. t-values calculated using Newey-West standard errors with 5 lags are provided in 

parentheses. ***, **, * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 

 Panel A: Expected Idiosyncratic Skewness (EIS
P
) 

 RNS 1 (Lowest) RNS 2 RNS 3 (Highest) Difference 

EIS
P
 Low -0.04 0.29 0.37* 0.41** 

 (-0.38) (1.59) (1.86) (2.02) 

EIS
P
 Medium -0.30* -0.03 0.12 0.43* 

 (-1.65) (-0.15) (0.55) (1.76) 

EIS
P
 High -0.59*** -0.45** -0.16 0.44* 

 (-3.53) (-2.11) (-0.79) (1.90) 

Difference 0.55*** 0.73*** 0.53**  

 (2.90) (2.71) (2.25)  

 Panel B: Maximum past month return (Max) 

 RNS 1 (Lowest) RNS 2 RNS 3 (Highest) Difference 

Max Low -0.08 0.30** 0.47*** 0.55*** 
 (-0.65) (2.34) (2.87) (3.78) 

Max Medium -0.26 -0.07 0.14 0.40** 
 (-1.48) (-0.36) (0.73) (2.11) 

Max High -0.88*** -0.60** -0.16 0.72** 
 (-3.12) (-2.53) (-0.64) (2.40) 

Difference 0.81** 0.90*** 0.63**  
 (2.38) (3.42) (2.38)  

 Panel C: Probability of Jackpot return 

 RNS 1 (Lowest) RNS 2 RNS 3 (Highest) Difference 

Jackpot Low 0.01 0.10 0.22 0.20 
 (0.11) (0.75) (1.08) (1.06) 

Jackpot Medium -0.21 0.05 0.25 0.46** 
 (-1.11) (0.32) (0.98) (1.98) 

Jackpot High -0.67*** -0.48* 0.20 0.87*** 
 (-2.42) (-1.66) (0.78) (3.29) 

Difference 0.68** 0.59* 0.02  

 (2.26) (1.96) (0.07)  

 



52 
 

Table 10: Bivariate conditional portfolio sorts: Risk-Neutral Skewness and Short Selling Constraints 
This Table shows the performance of bivariate stock portfolios constructed on the basis of Risk-Neutral Skewness (RNS) 

estimates and each of the short selling constraints proxies, during the period 1996-2012. RNS is computed from daily option 

prices using the model-free methodology of Bakshi et al. (2003). We use the following three proxies for short selling 

constraints: Estimated Shorting Fee (ESF) in Panel A, Relative Short Interest (RSI) in Panel B and stock returns' idiosyncratic 

volatility under the physical measure (IVol
P
) in Panel C. The definitions and data sources for these variables are provided in 

Appendix C. On the last trading day of each month t, stocks are sorted in ascending order according to their RNS estimate and 

assigned to tercile portfolios. Within each RNS tercile portfolio, we further sort stocks according to each of the short selling 

constraints proxies and construct again tercile portfolios. We then calculate the equally-weighted returns of these 9 portfolios at 

the end of the following month t+1 (i.e. post-ranking monthly returns). The Table reports monthly Fama-French (FF) portfolio 

alphas estimated from the corresponding 3-factor model. t-values calculated using Newey-West standard errors with 5 lags are 

provided in parentheses. ***, **, * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 

Panel A: Estimated Shorting Fee (ESF) 

 ESF Low ESF Medium ESF High Difference 

RNS 1 (Lowest) 0.03 0.04 -0.64*** -0.67*** 
 (0.20) (0.31) (-2.97) (-2.96) 

RNS 2 0.11 -0.02 -0.47** -0.59*** 
 (0.75) (-0.16) (-2.15) (-2.80) 

RNS 3 (Highest) 0.43** 0.32 -0.54** -0.98*** 
 (2.05) (1.38) (-2.21) (-3.86) 

Difference -0.40** -0.28 -0.10  

 (-2.20) (-1.34) (-0.33)  

Panel B: Relative Short Interest (RSI) 

 RSI Low RSI Medium RSI High Difference 

RNS 1 (Lowest) 0.21 -0.07 -0.72*** -0.93*** 
 (1.62) (-0.53) (-3.17) (-3.79) 

RNS 2 0.24 -0.13 -0.50** -0.74*** 
 (1.50) (-0.79) (-2.25) (-3.22) 

RNS 3 (Highest) 0.41 0.27 -0.46** -0.87*** 
 (1.63) (1.19) (-1.97) (-3.15) 

Difference -0.19 -0.34* -0.26  

 (-0.01) (-1.69) (-0.80)  

Panel C: Idiosyncratic Volatility (IVol
P
) 

 IVol
P
 Low IVol

P
 Medium IVol

P
 High Difference 

RNS 1 (Lowest) 0.00 -0.32** -0.67*** -0.67** 
 (0.03) (-2.30) (-2.57) (-2.25) 

RNS 2 0.37*** -0.13 -0.65** -1.02*** 
 (3.40) (-0.73) (-2.50) (-3.48) 

RNS 3 (Highest) 0.26 0.25 -0.23 -0.49 
 (1.50) (1.08) (-0.83) (-1.61) 

Difference -0.25 -0.57** -0.44  

 (-1.53) (-2.33) (-1.54)  
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Table 11: Reverse bivariate conditional portfolio sorts: 

Short Selling Constraints and Risk-Neutral Skewness 
This Table shows the performance of bivariate stock portfolios constructed on the basis of each of the short selling 

constraints proxies and Risk-Neutral Skewness (RNS) estimates, during the period 1996-2012. We use the following 

three proxies for short selling constraints: Estimated Shorting Fee (ESF) in Panel A, Relative Short Interest (RSI) in 

Panel B and stock returns' idiosyncratic volatility under the physical measure (IVol
P
) in Panel C. The definitions and 

data sources for these variables are provided in Appendix C. RNS is computed from daily option prices using the model-

free methodology of Bakshi et al. (2003). On the last trading day of each month t, stocks are sorted in ascending order 

according to a short selling constraints proxy and assigned to tercile portfolios. Within each portfolio constructed on a 

short selling constraints proxy, we further sort stocks according to their RNS estimate and construct again tercile 

portfolios. We then calculate the equally-weighted returns of these 9 portfolios at the end of the following month t+1 

(i.e. post-ranking monthly returns). The Table reports monthly Fama-French (FF) portfolio alphas estimated from the 

corresponding 3-factor model. t-values calculated using Newey-West standard errors with 5 lags are provided in 

parentheses. ***, **, * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 

 Panel A: Estimated Shorting Fee (ESF) 

 RNS 1 (Lowest) RNS 2 RNS 3 (Highest) Difference 

ESF Low 0.03 0.10 0.34 0.31* 
 (0.20) (0.67) (1.60) (1.68) 

ESF Medium 0.04 0.07 0.23 0.19 
 (0.23) (0.40) (1.04) (0.96) 

ESF High -0.73*** -0.69*** -0.27 0.47 
 (-3.45) (-2.84) (-1.03) (1.48) 

Difference 0.76*** 0.78*** 0.60**  
 (3.49) (3.40) (2.23)  

 Panel B: Relative Short Interest (RSI) 

 RNS 1 (Lowest) RNS 2 RNS 3 (Highest) Difference 

RSI Low 0.22* 0.23 0.35 0.13 
 (1.81) (1.44) (1.49) (0.63) 

RSI Medium -0.20 0.14 0.21 0.41** 
 (-1.36) (0.89) (0.96) (2.12) 

RSI High -0.73*** -0.67*** -0.33 0.40 
 (-3.30) (-2.96) (-1.27) (1.24) 

Difference 0.95*** 0.91*** 0.68**  
 (3.89) (3.88) (2.33)  

 Panel C: Idiosyncratic Volatility (IVol
P
) 

 RNS 1 (Lowest) RNS 2 RNS 3 (Highest) Difference 

IVol
P
 Low -0.13 0.17 0.33*** 0.46*** 

 (-1.22) (1.36) (2.67) (3.81) 

IVol
P
 Medium -0.47*** 0.00 0.18 0.65*** 

 (-2.97) (-0.02) (0.85) (3.49) 

IVol
P
 High -0.68** -0.67** 0.14 0.82*** 

 (-2.21) (-2.56) (0.50) (3.00) 

Difference 0.55 0.84*** 0.19  
 (1.63) (2.70) (0.62)  
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Table 12: Trivariate independent portfolio sorts: Risk-Neutral Skewness, Overvaluation and Short Selling Constraints 
This Table shows the performance of trivariate stock portfolios constructed on the basis of Risk-Neutral Skewness (RNS) estimates, each of the overvaluation proxies and each of the short 

selling constraints proxies considered, during the period 1996-2012. We use the following three proxies for stock overvaluation: Expected Idiosyncratic Skewness (EIS
P
) estimated from daily 

stock returns under the physical measure, the Maximum (Max) daily stock return over the previous month and the probability of a stock achieving a Jackpot return over the next year. We use 

the following three proxies for short selling constraints: Estimated Shorting Fee (ESF), Relative Short Interest (RSI) and stock returns' idiosyncratic volatility under the physical measure 

(IVol
P
). The definitions and data sources for these variables are provided in Appendix C. On the last trading day of each month t, stocks are independently sorted according to their i) RNS 

estimate, ii) overvaluation proxy value and iii) short selling constraints proxy value and classified for each sorting criterion as Low (L) or High (H) relative to the corresponding median value. 

The intersection of these three classifications yields 8 portfolios. We then calculate the equally-weighted returns of these 8 portfolios at the end of the following month t+1 (i.e. post-ranking 

monthly returns). The Table reports monthly Fama-French (FF) portfolio alphas estimated from the corresponding 3-factor model. t-values calculated using Newey-West standard errors with 

5 lags are provided in parentheses. ***, **, * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 

Overvaluation proxy EIS
P  Max  Jackpot 

Short selling constraints proxy ESF RSI IVol
P  ESF RSI IVol

P  ESF RSI IVol
P 

P1 

RNS L &  

Overvaluation L & 

Constraints L 

0.13 
(0.89) 

0.17 
(1.30) 

0.03 
(0.28) 

 0.19 
(1.52) 

0.21* 
(1.75) 

0.07 
(0.65) 

 0.05 
(0.42) 

0.11 
(0.93) 

0.03 
(0.31) 

P2 

RNS L &  

Overvaluation L & 

Constraints H 

-0.27 
(-1.34) 

-0.35* 
(-1.81) 

-0.10 
(-0.41) 

 -0.30* 
(-1.71) 

-0.36* 
(-1.89) 

0.00 
(-0.02) 

 -0.35* 
(-1.66) 

-0.63*** 
(-3.01) 

0.05 
(0.14) 

P3 

RNS L &  

Overvaluation H & 

Constraints L 

-0.05 
(-0.28) 

0.15 
(0.99) 

-0.03 
(-0.20) 

 -0.12 
(-0.73) 

-0.12 
(-0.71) 

-0.49*** 
(-2.58) 

 0.19 
(0.73) 

0.29 
(0.90) 

-0.11 
(-0.42) 

P4 

RNS L &  

Overvaluation H & 

Constraints H 

-0.49** 
(-2.45) 

-0.61*** 
(-3.18) 

-0.87*** 
(-3.48) 

 -0.65*** 
(-3.20) 

-0.64*** 
(-3.33) 

-0.76*** 
(-2.73) 

 -0.63*** 
(-3.15) 

-0.57*** 
(-2.89) 

-0.66** 
(-2.46) 

P5 

RNS H &  

Overvaluation L & 

Constraints L 

0.30 
(1.52) 

0.32 
(1.58) 

0.48*** 
(3.26) 

 0.50*** 
(2.76) 

0.52*** 
(2.73) 

0.36** 
(2.50) 

 0.40** 
(2.03) 

0.41* 
(1.95) 

0.26 
(1.58) 

P6 

RNS H &  

Overvaluation L & 

Constraints H 

0.15 
(0.65) 

0.16 
(0.70) 

0.07 
(0.27) 

 0.09 
(0.41) 

0.12 
(0.65) 

0.31 
(1.10) 

 0.09 
(0.33) 

0.00 
(-0.02) 

-0.07 
(-0.22) 

P7 

RNS H &  

Overvaluation H & 

Constraints L 

0.36 
(1.60) 

0.11 
(0.43) 

0.27* 
(1.65) 

 0.12 
(0.54) 

0.07 
(0.28) 

0.06 
(0.26) 

 0.31 
(1.15) 

0.40 
(1.35) 

0.30 
(1.19) 

P8 

RNS H &  

Overvaluation H & 

Constraints H 

-0.41* 
(-1.85) 

-0.22 
(-1.09) 

-0.28 
(-1.23) 

 -0.47** 
(-2.12) 

-0.38* 
(-1.80) 

-0.31 
(-1.31) 

 -0.37 
(-1.63) 

-0.31 
(-1.40) 

-0.07 
(-0.29) 

 



What Does Risk-Neutral Skewness Tell Us About

Future Stock Returns?

Supplementary Online Appendix

1 Tercile Portfolios

The main body of the paper presents results from quintile RNS-sorted portfolios. Here, we

present the post-ranking performance of tercile portfolios constructed on the basis of �rms�

RNS values computed on the last trading day of the ranking month t. In this way, we ensure

that the documented spread return in our benchmark results is not solely driven by stocks

in the extreme ends of the RNS cross-sectional distribution. In particular, Table A.1 reports

the average portfolio returns as well as their Fama-French-Carhart (�FFC) alphas estimated

from the corresponding 4-factor model during the period 1996-2012. We �nd that the tercile

portfolio of stocks with the most negative RNS values signi�cantly underperforms the tercile

portfolio of stocks with the least negative RNS values. In particular, a spread strategy that

is long the highest RNS tercile portfolio and short the lowest RNS tercile portfolio yields an

average return of 52 bps per month (t-stat: 2.30), and �FFC of 47 bps per month (t-stat:

2.58).

-Table A.1 here-

Table A.1 also reports the loadings (��s) of these portfolios with respect to the excess

market (MKT ), size (SMB), value (HML) and momentum (MOM) factors using the

FFC model as well as its explanatory power. We �nd that the highest RNS tercile portfolio

exhibits signi�cantly higher MKT and SMB beta relative to the lowest RNS tercile portfolio,

but it also exhibits signi�cantly lower (and negative) HML beta. Finally, the highest RNS

tercile portfolio also exhibits a lower MOM beta, but the di¤erence is very small.

2 Open-to-close Stock Portfolio Returns

Our benchmark results presented in the main body of the paper rely on portfolio returns

computed from the closing price of the last trading day of the ranking month t until the

1



closing price of the last trading day of the post-ranking month t+1. In line with the evidence

of Battalio and Schultz (2006), this approach may be plagued by nonsynchroneity bias. Since

the option market closes after the stock market, option prices recorded in OptionMetrics,

and hence the computed RNS, may not be known to investors before the close of the stock

market on the last trading day of the ranking month t. In that case, the return spread we

document in our benchmark results may not be feasible, as investors could not have formed

these RNS portfolios at the close of the stock market.

To address this concern, here we alternatively calculate portfolio returns using stock

prices from the open of the �rst trading day of the post-ranking month t+ 1 until the close

of the last trading day of the post-ranking month t + 1.1 In this way, we ensure that RNS

estimates computed from option prices recorded in OptionMetrics on the last trading day

of the ranking month t would be available to investors before the beginning of the holding

period of the examined trading strategy.2

The performance of RNS-sorted tercile and quintile portfolios following this alternative

approach is shown in Table A.2 of the Supplementary Appendix. These results show that the

documented return spread between the highest and the lowest RNS stock portfolios remains

intact. In particular, the 4-factor alpha of the spread between the highest and the lowest

RNS quintile stock portfolios is equal to 46 bps per month (t-stat=2.04). Similarly, the

4-factor alpha of the spread between the highest and the lowest RNS tercile stock portfolios

is equal to 40 bps per month (t-stat=2.12).3

-Table A.2 here-

3 Long-term Performance of RNS Portfolios

Our benchmark results examine the performance of RNS-sorted portfolios only during the

�rst post-ranking month, t + 1. Here we examine if the strategy that is long the highest

RNS stocks and short the lowest RNS stocks continues to yield abnormal returns beyond

the �rst post-ranking month t+ 1. In this way, we can assess how long it takes the market

to correct the mispricing signalled by RNS.4 To this end, we examine the t + k monthly
1We would like to thank an anonymous referee for suggesting this alternative approach.
2This approach essentially yields the most conservative estimate for the performance of this trading

strategy because it assumes that none of the option-implied RNS estimates were available to investors
before the close of the stock market on the last trading day of the ranking month t.

3To estimate the risk-adjusted performance of these stock portfolios, we had to re-calculate the corre-
sponding returns of the MKT, SMB, HML and MOM factors using monthly stock returns from the open of
the �rst trading day of each month until the close of the last trading day of the month. This is because the
factor returns provided on Kenneth French�s website are constructed using stock returns from the close of
the last trading day of each month until the close of the last trading day of the following month, and hence
they are inappropriate for risk-adjusting portfolio returns calculated under this alternative approach.

4We would like to thank an anonymous referee for suggesting this analysis.

2



performance of portfolios constructed on the basis of �rms�RNS on the last trading day of

month t. In particular, we compute portfolio returns and alphas during month t+ k, where

k = 1; 2; :::; 6. Results are reported in Table A.3. We �nd that the spread return and alpha

between the quintile portfolio with the highest and the quintile portfolio with the lowest

RNS stocks is economically and statistically signi�cant only in the �rst post-ranking month,

t+1. All of the subsequent t+k monthly returns do not yield any signi�cant spread between

the highest and the lowest RNS stock portfolios. These results show that the mispricing

signalled by RNS is only temporary, since the market corrects most of it within one month.

-Table A.3 here-

4 Fama-MacBeth regressions-Further robustness checks

In this section, we utilize Fama-MacBeth (1973) regressions to further examine how robust is

the positive relationship between RNS and future stock returns in the presence of additional

control variables, complementing the evidence presented in the main body of the study. In

addition to the �rm characteristics that we use as control variables in models (2)-(13) of

Table 5 in the main paper, here we also control for the utilized overvaluation and short

selling constraints proxies.

In particular, models (1)-(3) that are presented in Table A.4 include, in turn, Max,

EISP , and Jackpot, which are the utilized proxies for stock overvaluation. We �nd that

in the presence of each of these proxies, the positive relationship between excess stocks

returns and lagged RNS remains intact. The magnitude and the signi�cance of the RNS

coe¢ cient are found to be very similar to the benchmark results presented in Table 5 of

the main paper. This �nding con�rms that RNS does not simply mimic the relationship

between overvaluation proxies and future stock returns that has been documented in prior

studies (see Boyer et al., 2010, Bali et al., 2011, and Conrad et al., 2014). It should be also

mentioned that the Fama-MacBeth coe¢ cient of each overvaluation proxy has the expected

negative sign but only the coe¢ cient of EISP is statistically signi�cant.

Models (4)-(6) that are presented in Table A.4 include, in turn, ESF, RSI, and IVolP ,

which are the utilized proxies for short selling constraints. We �nd again that the magnitude

and signi�cance of the RNS coe¢ cient remain intact across these three models. Moreover,

the coe¢ cient of each short selling constraints proxy has the expected negative sign but it

is signi�cant only at the 10% level.

-Table A.4 here-
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5 RNS and Future Earnings Surprises

In this section we examine whether our benchmark result that �rms with low RNS values

subsequently yield negative risk-adjusted stock returns can be attributed to the informa-

tional content of RNS with respect to �rms� future cash �ows.5 To this end, following

the approach of Xing et al. (2010, Section IV, p. 655), we sort stocks into quintile port-

folios on the basis of their RNS estimates on the last trading day of ranking month t,

and then calculate each portfolio�s average quarterly earnings surprise over the subsequent

n = 4; 8; 12; 16; 20; and 24 weeks. Following Xing et al. (2010), earnings surprise (UE) for

each �rm is de�ned as the di¤erence between the announced quarterly earnings and the

latest consensus earnings forecast before the announcement, if there has been an earnings

announcement within the subsequent n weeks. Moreover, standardized quarterly earnings

surprise (SUE) is computed as the ratio of earnings surprise (UE) divided by the stan-

dard deviation of the latest consensus quarterly earnings forecast. The source of analysts�

forecasts data is I/B/E/S.

Results are reported in Table A.5. Overall, these results show that the subsequent

underperformance of the lowest RNS stocks cannot be attributed to information that RNS

carries regarding �rms�decreasing future cash �ows. While it is true that, on average, the

�rms with the lowest RNS estimates typically yield more negative earnings surprises (UE)

in the subsequent weeks relative to the �rms with the highest RNS estimates, this di¤erence

is insigni�cant. Moreover, this pattern is not robust to the standardization of UE by the

volatility of earnings forecasts. In particular, as Table A.5 shows, the �rms with the lowest

RNS estimates actually yield less negative SUE in the subsequent weeks relative to the �rms

with the highest RNS estimates. This sign reversal from UE to SUE is driven by the �rms

that drop out of the sample because the standard deviation of their earnings forecasts is not

available on I/B/E/S, as these �rms are not followed by the required number of analysts.

Again, the di¤erences in average portfolio SUE between the �rms with the lowest RNS

estimates and the �rms with the highest RNS estimates are mostly insigni�cant.6

-Table A.5 here-

Rejecting the hypothesis that RNS contains signi�cant information regarding �rms�fu-

ture cash �ows is also consistent with our benchmark �ndings and our conjectured mecha-

nism, i.e., that RNS provides a signal of temporary mispricing that arises due to limits-to-

arbitrage in the stock market and that is mostly corrected within the next month.
5We would like to thank an anonymous referee for suggesting this analysis.
6In addition, following Xing et al. (2010), we have performed Fama-MacBeth regressions of future �rms�

earnings surprises on their lagged RNS estimates. Results that are readily available upon request con�rm
the portfolio results presented in Table A.5, since the Fama-MacBeth coe¢ cient of RNS is insigni�cant and
changes sign when we use SUE instead of UE.
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6 Systematic and Unsystematic RNS- Physical betas

In this section we repeat the performance analysis of stock portfolios constructed on the

basis of the systematic and unsystematic components of RNS. However, instead of using

risk-neutral stock betas for the decomposition of RNS into its systematic and unsystematic

components, as described in Section 2.2 of the main body of the paper, we alternatively use

stock betas estimated under the physical measure. Table A.6 presents the performance of

these portfolios in terms of raw returns and �FFC .

-Table A.6 here-

The main conclusions from these results are very similar to the ones derived from the

benchmark analysis using risk-neutral betas. In particular, as Panel A of Table A.6 shows,

the spread strategy that is long the quintile portfolio with the highest systematic RNS stocks

and short the quintile portfolio with the lowest systematic RNS stocks yields a negative �FFC
that is equal to �57 bps per month (t-stat: �1.90). This spread is mostly driven by the
underperformance of the quintile portfolio containing the stocks with the highest systematic

RNS values. Moreover, the results in Panel B show that the spread strategy that is long the

quintile portfolio with the highest unsystematic RNS stocks and short the quintile portfolio

with the lowest unsystematic RNS stocks yields a highly signi�cant positive �FFC that is

equal to 79 bps per month (t-stat: 2.81). This signi�cant spread is mainly driven by the

severe underperformance of the portfolio containing the stocks with the lowest unsystematic

RNS values.

In sum, we �nd that the performance patterns of the total RNS-sorted portfolios that we

reported in Table 3 of the main body of the paper are resembled only by the unsystematic

RNS-sorted portfolios. Therefore, these results con�rm the conclusion of our benchmark

decomposition analysis that it is the unsystematic component of RNS that drives the positive

relationship between total RNS and future stock returns.

7 Risk-Neutral Coskewness and Idiosyncratic Skew-

ness

In this section we perform an alternative decomposition of RNS from the one presented in

the main body of the paper. In particular, we decompose RNS into risk-neutral coskewness

and idiosyncratic skewness, using the de�nition of risk-neutral coskewness in Bakshi et al.

(2003, p. 114) and the regression decompositon of Conrad et al. (2013). In particular,

to derive risk-neutral coskewness, Bakshi et al. (2003) use the single index model de�ned

5



under the risk-neutral measure:

ri;d = ai + birm;d + ei;d (1)

where ri;d is the daily return of stock i, rm;d is the daily market return and ei;d is a zero-mean

error term that is independent of rm;d. Thus, risk-neutral coskewness for stock i on day d is

given by:

RNCOSKEWi;d = biRNSm;d
RNVm;dp
RNVi;d

(2)

where bi is the risk-neutral beta of stock i, RNVi;d is the risk-neutral variance of stock i

on day d, while RNVm;d and RNSm;d denote, respectively, the risk-neutral variance and

skewness on day d of the market portfolio proxied by the S&P 500. Following Bali et al.

(2014), we compute risk-neutral betas, bi, for each stock i, by regressing on a monthly basis

RNVi;d on RNVm;d using a rolling window of 12 months, and taking the square root of

the corresponding slope coe¢ cient. For the cases where this regression approach yields a

negative slope coe¢ cient, no risk-neutral beta is computed. For robustness, we alternatively

compute risk-neutral coskewness by plugging in equation (2) stocks�physical betas.

To calculate idiosyncratic RNS, we follow Conrad et al. (2013) and we regress on a

monthly basis the daily RNS estimate for each stock i on the corresponding daily risk-

neutral coskewness estimate:

RNSi;d = �
S
i;0 + �

S
i;1RNCOSKEWi;d + �

S
i;d. (3)

The idiosyncratic RNS estimate for stock i on day d is given by the sum �Si;0 + �
S
i;d.

7

A limitation of this approach is that these regressions typically have low explanatory

power. In fact, the average R2 of these regressions was around 10.5% in our sample. As a

result, RNS is almost mechanically captured by idiosyncratic RNS through the error term.

Therefore, this regression decomposition approach is not very informative.8 Nevertheless,

for completeness, we present below the performance of stock portfolios constructed on the

basis of risk-neutral coskewness and idiosyncratic RNS estimates. Table A.7 presents the

results when risk-neutral betas are used to compute risk-neutral coskewness in (2), while

7Interestingly, it turns out that, even though the systematic RNS estimates are di¤erent from the corre-
sponding risk-neutral coskewness estimates, these two alternative measures yield identical rankings of the
stocks in our sample. This is due to the fact that, as one can observe from the corresponding formulae (see
also Section 2.2 of the main paper), systematic RNS is a positive transformation of risk-neutral coskew-
ness. As a result, the compositions, and hence the performances of the portfolios constructed on the basis
of systematic RNS and risk-neutral coskewness, respectively, are identical. On the other hand, there is
no such relationship between unsystematic RNS and idiosyncratic RNS, and hence the compositions and
performances of the corresponding portfolios are di¤erent.

8We would like to thank an anonymous referee for this remark.
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Table A.8 presents the corresponding results when physical betas are used.

Panel A of Table A.7 shows that the spread strategy that is long the quintile portfolio

with the highest risk-neutral coskewness stocks and short the quintile portfolio with the low-

est risk-neutral coskewness stocks yields a signi�cant negative �FFC that is equal to �72 bps
per month (t-stat: �2.48). This signi�cant spread is driven by the severe underperformance
of the quintile portfolio containing the stocks with the highest risk-neutral coskewness val-

ues. These results indicate a negative, though not strictly monotonic, relationship between

risk-neutral coskewness and post-ranking portfolio returns, resembling the �nding of Harvey

and Siddique (2000) for coskewness estimated under the physical measure.

On the other hand, as Panel B shows, the spread strategy that is long the quintile

portfolio with the highest idiosyncratic RNS stocks and short the quintile portfolio with the

lowest idiosyncratic RNS stocks yields a positive �FFC that is equal to 40 bps per month (t-

stat: 1.81). This spread is mostly driven by the signi�cant underperformance of the quintile

portfolio containing the stocks with the lowest idiosyncratic RNS values.

-Table A.7 here-

Very similar are the portfolio performance patterns that are reported in Table A.8.

In particular, the quintile portfolio that contains the stocks with the highest risk-neutral

coskewness estimates underperforms relative to the quintile portfolio that contains the stocks

with the lowest risk-neutral coskewness estimates. On the other hand, the quintile portfolio

that contains the stocks with the highest idiosyncratic RNS values signi�cantly outperforms

relative to the quintile portfolio that contains the stocks with the lowest idiosyncratic RNS

values.

-Table A.8 here-

With the caveat that under this decomposition approach total RNS is almost mechan-

ically captured by idiosyncratic RNS, these results still show that it is the idiosyncratic

component of RNS that drives the positive relationship between total RNS and future stock

returns.

8 The Role of Stock Illiquidity

The mechanism we put forward in the main body of the study to explain which of the

stocks with low RNS values subsequently underperform crucially relies on the existence of

limits-to-arbitrage that prevent investors from selling (short) stocks that are perceived to

be relatively overpriced. Another friction that can have such an e¤ect is stock illiquidity.

7



In this section, we examine how stock illiquidity a¤ects the relationship between RNS and

future stock returns.9 In line with the proposed mechanism, the underperformance of the

most negative RNS stocks should be more pronounced for stocks that are also illiquid. To

test this conjecture, we �rstly sort stocks into tercile portfolios on the basis of their RNS

values and then, within each tercile RNS portfolio, we further sort stocks according to their

degree of illiquidity. We use Amihud�s (2002) price impact ratio (ILLIQ) as a proxy for

stock illiquidity. Results are reported in Table A.9. Consistent with our conjecture, we �nd

that the underperformance of the portfolio with the lowest RNS stocks is mainly driven by

those stocks that are also highly illiquid. On the other hand, the lowest RNS stocks that are

relatively liquid do not yield signi�cant negative risk-adjusted returns. The spread between

the most and the least illiquid stocks within the lowest RNS portfolio is economically and

statistically signi�cant, yielding �FF equal to �55 bps per month (t-stat: �2.23).

-Table A.9 here-

9 Weekly portfolio returns

In this section, we examine the performance of RNS-sorted portfolios under weekly rebal-

ancing. In particular, we sort stocks into quintile portfolios on the basis of their RNS values

estimated on the last trading day of the week and we compute their post-ranking weekly re-

turns using close-to-close stock prices. In this way, we can assess whether the informational

content of RNS with respect to stock mispricing is stronger under more frequent rebalanc-

ing, and hence to further test the conjecture that this e¤ect is temporary. Results for the

performance of the weekly rebalanced RNS-sorted portfolios are reported in Table A.10.

-Table A.10 here-

Consistent with the argument that RNS signals temporary mispricing, the reported

results show that under weekly rebalancing, the strategy that goes long the quintile portfolio

with the highest RNS stocks and short the quintile portfolio with the lowest RNS stocks

would yield a strongly signi�cant �FFC of 37 bps per week (t-stat: 6.55), which is two-

and-a-half times higher than the risk-adjusted return of the same strategy under monthly

rebalancing.

Apart from the fact that the spread return between the highest and the lowest RNS stock

portfolios is more signi�cant under weekly rebalancing, the reported results also show that

the temporary mispricing information embedded in RNS appears to be more "symmetric".

In particular, we �nd that it is not only the portfolio with the lowest RNS stocks that yields

9We would like to thank an anonymous referee for suggesting this analysis.
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a signi�cantly negative �FFC of �14 bps per week (t-stat: �4.99), but it is also the portfolio
with highest RNS stocks that yields a signi�cantly positive �FFC of 24 bps per week (t-stat:

4.71). The main conclusion from this �nding is that a relatively high RNS value may signal

stock underpricing, but this e¤ect is far more short-lived than the overpricing signalled by

a highly negative RNS value, since it becomes insigni�cant as we move from weekly to

monthly portfolio rebalancing and returns.
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Table A.1: Risk-Neutral Skewness Tercile Portfolio Sorts 
This Table shows the characteristics and performance of stock portfolios constructed on the basis of option-implied Risk-Neutral (RN) Skewness estimates of individual 

stock returns' distributions, during the period 1996-2012. RN Volatility, Skewness and Kurtosis are computed from daily option prices using the model-free methodology 

of Bakshi et al. (2003), as described in Section 2.1 of the main body of the study. On the last trading day of each month t, stocks are sorted in ascending order according to 

their RN Skewness estimate and they are assigned to tercile portfolios. We then calculate the equally-weighted returns of these portfolios at the end of the following month 

t+1 (i.e. post-ranking monthly returns). Mean return stands for the average monthly portfolio return during the examined period and αFFC stands for the monthly portfolio 

alpha estimated from the Fama-French-Carhart (FFC) 4-factor model. The Table also reports the portfolios' loadings (β's) with respect to the market (MKT), size (SMB), 

value (HML) and momentum (MOM) factors estimated from the FFC model as well as its explanatory power (R
2
). Moreover, it reports the average values of RN 

Skewness, Volatility and Kurtosis and the number of stocks (N) in each portfolio. The pre-last line shows the difference (spread) between the portfolio with the highest RN 

Skewness stocks and the portfolio with lowest RN Skewness stocks in each case. t-values calculated using Newey-West standard errors with 5 lags are provided in 

parentheses. ***, **, * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 

Terciles 
RN 

Skewness 

Mean 

return FFC  MKT  SMB  HML  MOM  R
2 RN 

Volatility 

RN 

Kurtosis 
N 

1 (Lowest RNS) -0.7166 0.48 -0.32*** 

(-2.78) 

1.10*** 

(36.67) 

0.30*** 

(9.28) 

0.01 

(0.21) 

-0.01 

(-0.32) 

0.93 0.4310 3.4930 212 

2 -0.3877 0.74 -0.13 

(-0.93) 

1.20*** 

(45.40) 

0.44*** 

(11.51) 

-0.06 

(-1.09) 

-0.02 

(-0.67) 

0.93 0.4799 3.1073 212 

3 (Highest RNS) -0.1316 1.01 0.15 

(0.81) 

1.24*** 

(34.07) 

0.61*** 

(9.99) 

-0.23*** 

(-4.19) 

-0.09** 

(-2.35) 

0.90 0.5461 3.0282 212 

3-1 0.5850*** 0.52** 0.47*** 0.14*** 0.31*** -0.24*** -0.08* 0.40 0.1151*** -0.4649***  
t(3-1) (5.79) (2.30) (2.58) (4.12) (5.67) (-3.66) (-1.79) (5.62) (-5.30)  
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Table A.2: Open-to-Close Monthly Returns of Risk-Neutral Skewness-Sorted Portfolios 
This Table shows the characteristics and performance of stock portfolios constructed on the basis of Risk-Neutral Skewness (RNS) estimates of individual stock returns' 

distributions, during the period 1996-2012. RNS is computed from daily option prices using the model-free methodology of Bakshi et al. (2003). On the last trading day of 

each month t, stocks are sorted in ascending order according to their RNS estimate and they are assigned to tercile (Panel A) or quintile (Panel B) portfolios. We then calculate 

the equally-weighted returns of these portfolios using opening stock prices on the first trading day of the following month t+1 and closing stock prices on the last trading day 

of the following month t+1. Mean return stands for the average monthly portfolio return during the examined period and αFFC stands for the monthly portfolio alpha estimated 

from the Fama-French-Carhart (FFC) 4-factor model. The Table also reports the portfolios' loadings (β's) with respect to the market (MKT), size (SMB), value (HML) and 

momentum (MOM) factors estimated from the FFC model as well as its explanatory power (R
2
). Moreover, it reports the average number of stocks (N) in each portfolio. The 

pre-last line shows the difference (spread) between the portfolio with the highest RN Skewness stocks and the portfolio with lowest RN Skewness stocks in each case. t-values 

calculated using Newey-West standard errors with 5 lags are provided in parentheses. ***, **, * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 

Panel A: Tercile Portfolios 

Terciles RN Skewness Mean return FFC  MKT  SMB  HML  MOM  R
2 

N 

1 (Lowest RNS) -0.7166 0.52 -0.22* 

(-1.64) 

1.05*** 

(26.78) 

0.31*** 

(8.04) 

-0.11** 

(-2.56) 

-0.05 

(-1.35) 

0.90 212 

2 -0.3877 0.74 -0.02 

(-0.16) 

1.15*** 

(34.45) 

0.43*** 

(10.72) 

-0.18*** 

(-5.23) 

-0.07** 

(-2.32) 

0.90 212 

3 (Highest RNS) -0.1316 0.91 0.18 

(0.97) 

1.20*** 

(28.45) 

0.60*** 

(12.2) 

-0.30*** 

(-9.40) 

-0.12*** 

(-3.02) 

0.88 212 

3-1 0.5850*** 0.39* 0.40** 0.15*** 0.30*** -0.19*** -0.07 0.40  

t(3-1) (5.79) (1.78) (2.12) (3.45) (7.86) (-4.96) (-1.53)  

Panel B: Quintile Portfolios 

Quintiles RN Skewness Mean return FFC  MKT  SMB  HML  MOM  R
2 

N 

1 (Lowest RNS) -0.8268 0.49 -0.24* 1.03*** 0.30*** -0.10** -0.02 0.87 127 
   (-1.65) (21.84) (7.04) (-2.28) (-0.71)   

2 -0.5249 0.58 -0.17 1.11*** 0.34*** -0.11*** -0.06* 0.89 127 
   (-1.13) (31.86) (7.52) (-2.64) (-1.90)   

3 -0.3866 0.79 0.03 1.15*** 0.44*** -0.18*** -0.07* 0.89 127 
   (0.22) (27.32) (11.16) (-4.73) (-1.83)   

4 -0.2651 0.78 0.07 1.18*** 0.51*** -0.25*** -0.12*** 0.86 127 
   (0.34) (29.63) (9.34) (-7.82) (-2.99)   

5 (Highest RNS) -0.0564 0.95 0.21 1.21*** 0.65*** -0.32*** -0.12*** 0.86 127 
   (1.10) (23.71) (13.67) (-9.03) (-2.66)   

5-1 0.7704*** 0.45* 0.46** 0.18*** 0.35*** -0.22*** -0.09 0.39  
t(5-1) (5.79) (1.76) (2.04) (3.19) (8.19) (-5.69) (-1.63)   
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Table A.3: Long-Term Performance of Risk-Neutral Skewness-Sorted Portfolios  
This Table shows the k

th
-month ahead performance of stock portfolios constructed on the basis of option-implied Risk-Neutral Skewness (RNS) estimates of individual stock 

returns' distributions, during the period 1996-2012. RNS is computed from daily option prices using the model-free methodology of Bakshi et al. (2003). On the last trading 

day of each month t, stocks are sorted in ascending order according to their RNS estimate and they are assigned to quintile portfolios. We compute the post-ranking equally-

weighted returns of these portfolios at the end of the month t+k, where k=1, 2, 3, 4, 5, and 6. Mean return stands for the average t+k monthly portfolio return and αFFC stands 

for the t+k monthly portfolio alpha estimated from the Fama-French-Carhart (FFC) 4-factor model. In each case, the pre-last line shows the difference (spread) between the 

portfolio with the highest RNS stocks and the portfolio with lowest RNS stocks in each case. t-values calculated using Newey-West standard errors with 5 lags are provided in 

parentheses. ***, **, * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 

 Month t+1 Month t+2 Month t+3 Month t+4 Month t+5 Month t+6 

Quintiles 
Mean 

return FFC  
Mean 

return FFC  
Mean 

return FFC  
Mean 

return FFC  
Mean 

return FFC  
Mean 

return FFC  

1 (Lowest RNS) 0.46 -0.32** 0.58 -0.20* 0.61 -0.14 0.61 -0.11 0.54 -0.18 0.77 0.09 
  (-2.36)  (-1.70)  (-1.13)  (-0.82)  (-1.61)  (0.76) 

2 0.56 -0.29** 0.81 -0.02 0.78 -0.03 0.78 0.04 0.75 0.02 0.70 -0.04 

  (-2.04)  (-0.14)  (-0.21)  (0.29)  (0.15)  (-0.40) 

3 0.80 -0.08 0.70 -0.19 0.82 -0.01 0.79 0.02 0.76 0.02 0.79 0.02 

  (-0.55)  (-1.47)  (-0.08)  (0.11)  (0.12)  (0.15) 

4 0.82 -0.04 0.64 -0.22 0.95 0.12 0.98 0.21 1.00 0.30 0.96 0.21 

  (-0.20)  (-1.28)  (0.60)  (1.04)  (1.31)  (1.06) 

5 (Highest RNS) 1.07 0.23 0.62 -0.20 0.95 0.16 0.97 0.24 0.85 0.15 0.79 0.09 
  (1.10)  (-0.97)  (0.81)  (1.07)  (0.79)  (0.58) 

5-1 0.61** 0.55** 0.04 0.01 0.34 0.30 0.35 0.35 0.30 0.33 0.02 0.00 
t(5-1) (2.24) (2.47) (0.18) (0.03) (1.14) (1.37) (1.20) (1.55) (0.99) (1.51) (0.06) (0.03) 
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Table A.4: Fama-MacBeth regressions-Further robustness checks 

This Table reports the Fama-MacBeth coefficients of cross-sectional regressions of monthly excess stock returns on 

lagged Risk-Neutral Skewness (RNS) and a set of firm characteristics during the period 1996-2012. RNS is computed 

on the last trading day of each month using the model-free methodology of Bakshi et al. (2003). Models (1)-(6) control 

for firms' beta, market value (MV), book-to-market value ratio (B/M), momentum, 1-month reversal, stock illiquidity 

proxied by Amihud's (2002) price impact ratio and price per share. Model (1) additionally controls for the maximum 

daily stock return over the month (Max). Model (2) controls for the Expected Idiosyncratic Skewness (EIS
P
) estimated 

from daily stock returns under the physical measure. Model (3) controls for the probability of a stock achieving a 

Jackpot return over the next year. Model (4) controls for the stock's Estimated Shorting Fee (ESF). Model (5) controls 

for the stock's Relative Short Interest (RSI). Model (6) controls for stock returns' idiosyncratic volatility under the 

physical measure (IVol
P
 ). The last row reports the total number of firm-month observations used in each model. t-ratios 

derived from the time-series of the monthly estimated coefficients using Newey-West standard errors with 5 lags are 

provided in parentheses. ***, **, * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 

 (1) (2) (3) (4) (5) (6) 

RN Skewness 0.0080*** 0.0079*** 0.0088*** 0.0065*** 0.0061** 0.0086*** 

 (3.72) (3.42) (3.94) (2.66) (2.44) (4.28) 

Beta -0.0014 -0.0004 -0.0003 -0.0024 -0.0023 -0.0005 

 (-0.34) (-0.09) (-0.08) (-0.68) (-0.65) (-0.14) 

ln(MV) -0.0006 -0.0009 -0.0012 -0.0009 -0.0010 -0.0014 

 (-0.60) (-0.96) (-0.94) (-1.00) (-1.09) (-1.54) 

B/M 0.0019 0.0003 0.0017 0.0001 0.0003 0.0013 

 (1.54) (0.42) (1.45) (0.20) (0.66) (1.13) 

Momentum 0.0020 0.0018 0.0012 0.0033 0.0033 0.0027 

 (0.67) (0.56) (0.42) (0.89) (0.89) (0.90) 

Reversal -0.0068 -0.0059 -0.0069 0.0006 0.0015 -0.0052 

 (-0.92) (-0.71) (-0.92) (0.06) (0.17) (-0.68) 

Stock Illiquidity -0.1063 -0.1748 -0.1026 -0.3530 -0.3828 -0.0751 

 (-0.59) (-0.70) (-0.56) (-1.04) (-1.12) (-0.41) 

Price per share 0.0043** 0.0036** 0.0056*** 0.0021 0.0021 0.0032 

 (2.28) (2.01) (2.66) (1.42) (1.42) (1.50) 

Max -0.0161      

 (-0.65)      

EIS
P 

 -0.0059***     

  (-2.62)     

Jackpot   -0.6521    

   (-1.24)    

ESF    -0.0061*   

    (-1.88)   

RSI
 

    -0.0384*  

     (-1.83)  

IVol
P 

     -0.3023* 

      (-1.85) 

Intercept 0.0049 0.0170 0.0150 0.0218 0.0228 0.0349 

 (0.22) (0.67) (0.46) (0.98) (0.98) (1.31) 

Observations 97,171 81,533 84,032 79,881 79,881 97,171 
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Table A.5: Risk-Neutral Skewness and Future Earnings Surprises 
This Table shows the future quarterly earnings surprise of portfolios constructed on the basis of stocks’ Risk-

Neutral Skewness (RNS) estimates during the period 1996-2012. RNS is computed from daily option prices 

using the model-free methodology of Bakshi et al. (2003). On the last trading day of each month t, stocks are 

sorted in ascending order according to their RNS estimate and assigned to quintile portfolios. For each portfolio, 

we calculate the average firms’ quarterly unexpected earnings (UE) during the subsequent n=4, 8, 12, 16, 20, 24 

weeks, defined as the difference between announced quarterly earnings and the latest earnings forecast 

consensus. Similarly, for each portfolio, we calculate the average firms’ standardized unexpected earnings 

(SUE), defined as the ratio of UE divided by the standard deviation of latest consensus quarterly earnings 

forecast. The source of analysts’ forecasts data is I/B/E/S. The Lowest-Highest RNS column shows the 

difference between the average UE or SUE of the lowest RNS and the highest RNS quintile portfolios. N 

denotes the average total number of firms across all quintile portfolios, for which UE or SUE have been 

calculated at each horizon. t-statistics are calculated using Newey-West standard errors with 5 lags are also 

provided. * indicates statistical significance at the 10% level. 

 UE SUE 

n weeks Lowest-Highest RNS t-statistic N Lowest-Highest RNS t-statistic N 

4 -0.0145 -0.82 153 0.3438 1.35 135 

8 -0.0046 -0.44 301 0.2764* 1.95 264 

12 -0.0044 -0.42 443 0.1576 1.45 391 

16 -0.0074 -0.69 504 0.1423 1.33 445 

20 -0.0076 -0.70 509 0.1525 1.42 449 

24 -0.0078 -0.70 511 0.1547 1.43 450 
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Table A.6: Systematic and Unsystematic Risk-Neutral Skewness Portfolio Sorts- Physical betas 
This Table shows the average monthly returns (Mean return) and the monthly Fama-French-Carhart alphas (αFFC) 

estimated from the corresponding 4-factor model for quintile portfolios constructed on the basis of systematic risk-

neutral skewness (RNS) (Panel A) and unsystematic RNS (Panel B) estimates for individual stocks extracted from 

daily option prices. The sample period is 1996-2012. We follow the methodology of Bakshi et al. (2003), as 

described in Section 2.2 of the main body of the study, to decompose total RNS into its systematic and unsystematic 

components, using physical stock betas. On the last trading day of each month t, stocks are sorted in ascending order 

according to their systematic RNS (Panel A) or unsystematic RNS (Panel B) estimates and they are assigned to 

quintile portfolios. We then calculate the equally-weighted returns of these portfolios at the end of the following 

month t+1 (i.e. post-ranking monthly returns). The Table also reports the average portfolio total RNS value in each 

case as well as the average number (N) of stocks in each portfolio. The pre-last line shows the difference (spread) 

between the portfolio with the highest and the portfolio with the lowest systematic RNS (Panel A) and unsystematic 

RNS (Panel B) stocks in each case. t-values calculated using Newey-West standard errors with 5 lags are provided 

in parentheses. ***, **, * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 

Panel A: Systematic RNS sorts 

Quintiles Total RNS Mean return FFC  N 

1 (Lowest Systematic RNS) -0.4818 0.88 
0.14 
(0.87) 

127 

2 -0.4235 0.91 
0.13 
(0.80) 

127 

3 -0.3997 0.76 
-0.09 
(-0.55) 

127 

4 -0.3969 0.63 
-0.25 
(-1.24) 

127 

5 (Highest Systematic RNS) -0.3579 0.55 
-0.43** 

(-2.06) 127 

5-1 0.1240*** -0.33 -0.57*  
t(5-1) (4.85) (-1.05) (-1.90)  

Panel B: Unsystematic RNS sorts 

Quintiles Total RNS Mean return FFC  N 

1 (Lowest Unsystematic RNS) -0.6925 0.25 
-0.54*** 

(-2.92) 
127 

2 -0.4342 0.58 
-0.32* 
(-1.71) 

127 

3 -0.3492 0.97 
0.09 
(0.60) 

127 

4 -0.3037 0.89 
0.01 
(0.08) 

127 

5 (Highest Unsystematic RNS) -0.2802 1.05 
0.26 
(1.19) 

127 

5-1 0.4123*** 0.80** 0.79***  
t(5-1) (5.64) (2.42) (2.81)  
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Table A.7: Risk-Neutral Coskewness and Idiosyncratic RNS Portfolio Sorts 
This Table shows the average monthly returns (Mean return) and the monthly Fama-French-Carhart alphas 

(αFFC) estimated from the corresponding 4-factor model for quintile portfolios constructed on the basis of 

Risk-Neutral (RN) Coskewness (Panel A) and Idiosyncratic RNS (Panel B) estimates for individual stocks. 

The sample period is 1996-2012. We follow the methodology of Bakshi et al. (2003) to extract RNS from 

daily option prices and the methodology of Conrad et al. (2013), as described in Section 7 of the 

Supplementary Appendix, to compute RN Coskewness and Idiosyncratic RNS, using risk-neutral stock betas 

estimated as in Bali et al. (2014). On the last trading day of each month t, stocks are sorted in ascending 

order according to their RN Coskewness (Panel A) or Idiosyncratic RNS (Panel B) estimate and they are 

assigned to quintile portfolios. We then calculate the equally-weighted returns of these portfolios at the end 

of the following month t+1 (i.e. post-ranking monthly returns). The Table also reports the average portfolio 

total RNS value in each case. The pre-last line shows the difference (spread) between the portfolio with the 

highest and the portfolio with the lowest RN Coskewness (Panel A) or Idiosyncratic RNS (Panel B) stocks in 

each case. t-values calculated using Newey-West standard errors with 5 lags are provided in parentheses. 

***, **, * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 

Panel A: RN Coskewness sorts 

Quintiles Total RNS Mean return FFC  N 

1 (Lowest RN Coskewness) -0.5690 0.77 
0.13 
(1.09) 

109 

2 -0.4629 0.92 
0.18 
(1.33) 

109 

3 -0.4028 0.97 
0.19 
(0.89) 

109 

4 -0.3689 0.84 
0.00 
(0.05) 

109 

5 (Highest RN Coskewness) -0.3423 0.32 
-0.59** 

(-2.45) 109 

5-1 0.2267*** -0.45 -0.72**  
t(5-1) (5.34) (-0.76) (-2.48)  

Panel B: Idiosyncratic RNS sorts 

Quintiles Total RNS Mean return FFC  N 

1 (Lowest Idiosyncratic RNS) -0.7737 0.42 
-0.34*** 

(-2.69) 
109 

2 -0.5241 0.74 
-0.03 
(-0.18) 

109 

3 -0.4021 0.86 
0.07 
(0.55) 

109 

4 -0.3030 0.96 
0.16 
(0.86) 

109 

5 (Highest Idiosyncratic RNS) -0.1430 0.83 
0.06 
(0.29) 

109 

5-1 0.6307*** 0.41 0.40*  
t(5-1) (5.58) (1.54) (1.81)  
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Table A.8: Risk-Neutral Coskewness and Idiosyncratic RNS Portfolio Sorts-Physical betas 
This Table shows the average monthly returns (Mean return) and the monthly Fama-French-Carhart alphas 

(αFFC) estimated from the corresponding 4-factor model for quintile portfolios constructed on the basis of Risk-

Neutral (RN) Coskewness (Panel A) and Idiosyncratic RNS (Panel B) estimates for individual stocks. The 

sample period is 1996-2012. We follow the methodology of Bakshi et al. (2003) to extract RNS from daily 

option prices and the methodology of Conrad et al. (2013), as described in Section 7 of the Supplementary 

Appendix, to compute RN Coskewness and Idiosyncratic RNS, using physical stock betas. On the last trading 

day of each month t, stocks are sorted in ascending order according to their RN Coskewness (Panel A) or 

Idiosyncratic RNS (Panel B) estimate and they are assigned to quintile portfolios. We then calculate the equally-

weighted returns of these portfolios at the end of the following month t+1 (i.e. post-ranking monthly returns). 

The Table also reports the average portfolio total RNS value in each case. The pre-last line shows the difference 

(spread) between the portfolio with the highest and the portfolio with the lowest RN Coskewness (Panel A) or 

Idiosyncratic RNS (Panel B) stocks in each case. t-values calculated using Newey-West standard errors with 5 

lags are provided in parentheses. ***, **, * indicate statistical significance at the 1%, 5%, and 10% level, 

respectively. 

Panel A: RN Coskewness sorts 

Quintiles Total RNS Mean return FFC  N 

1 (Lowest RN Coskewness) -0.4818 0.88 
0.14 
(0.87) 

127 

2 -0.4235 0.91 
0.13 
(0.80) 

127 

3 -0.3997 0.76 
-0.09 
(-0.55) 

127 

4 -0.3969 0.63 
-0.25 
(-1.24) 

127 

5 (Highest RN Coskewness) -0.3579 0.55 
-0.43** 

(-2.06) 127 

5-1 0.1240*** -0.33 -0.57*  
t(5-1) (4.85) (-1.05) (-1.90)  

Panel B: Idiosyncratic RNS sorts 

Quintiles Total RNS Mean return FFC  N 

1 (Lowest Idiosyncratic RNS) -0.7750 0.46 
-0.34** 

(-2.41) 
127 

2 -0.5057 0.63 
-0.22 
(-1.58) 

127 

3 -0.3872 0.86 
0.01 
(0.05) 

127 

4 -0.2873 0.80 
-0.06 
(-0.36) 

127 

5 (Highest Idiosyncratic RNS) -0.1246 0.97 
0.12 
(0.61) 

127 

5-1 0.6304*** 0.50** 0.46**  
t(5-1) (5.76) (2.18) (2.35)  
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Table A.9: Bivariate conditional portfolio sorts: Risk-Neutral Skewness and Stock Illiquidity 
This Table shows the performance of bivariate stock portfolios constructed on the basis of Risk-Neutral Skewness (RNS) 

estimates and stock illiquidity, during the period 1996-2012. RNS is computed from daily option prices using the model-

free methodology of Bakshi et al. (2003). Stock illiquidity (ILLIQ) is proxied by the price impact ratio of Amihud (2002). 

On the last trading day of each month t, stocks are sorted in ascending order according to their RNS estimate and assigned 

to tercile portfolios. Within each RNS tercile portfolio, we further sort stocks according to their illiquidity proxy values and 

construct again tercile portfolios. We then calculate the equally-weighted returns of these nine portfolios at the end of the 

following month t+1 (i.e. post-ranking monthly returns). The Table reports monthly Fama-French (FF) portfolio alphas 

estimated from the corresponding 3-factor model. The column labeled 'Difference' reports the alpha of the spread between 

the portfolio with the most illiquid stocks and the portfolio with the least illiquid stocks within each RNS tercile portfolio. 

t-values calculated using Newey-West standard errors with 5 lags are provided in parentheses. ***, **, * indicate statistical 

significance at the 1%, 5%, and 10% level, respectively. 

 ILLIQ Low ILLIQ Medium ILLIQ High Difference 

RNS 1 (Lowest) -0.11 -0.22 -0.66*** -0.55** 
 (-1.01) (-1.48) (-2.92) (-2.23) 

RNS 2 0.24* -0.03 -0.62** -0.85*** 
 (1.75) (-0.22) (-2.50) (-3.23) 

RNS 3 (Highest) 0.14 0.17 -0.03 -0.17 
 (0.63) (0.87) (0.13) (-0.71) 
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Table A.10: Risk-Neutral Skewness Quintile Portfolio Sorts- Weekly Rebalancing and Returns 
This Table shows the characteristics and performance of stock portfolios constructed on the basis of option-implied Risk-Neutral (RN) Skewness estimates of individual stock 

returns' distributions, during the period 1996-2012. RN Volatility, Skewness and Kurtosis are computed from daily option prices using the model-free methodology of Bakshi 

et al. (2003), as described in Section 2.1. On the last trading day of each week, stocks are sorted in ascending order according to their RN Skewness estimate and they are 

assigned to quintile portfolios. We then calculate the equally-weighted returns of these portfolios at the end of the following week (i.e. post-ranking weekly returns). Mean 

return stands for the average weekly portfolio return during the examined period, and αFFC stands for the weekly portfolio alpha estimated from the Fama-French-Carhart 

(FFC) 4-factor model. The Table also reports the portfolios' loadings (β's) with respect to the market (MKT), size (SMB), value (HML) and momentum (MOM) factors 

estimated from the FFC model as well as its explanatory power (R
2
). Moreover, it reports the average values of RN Skewness, Volatility and Kurtosis and the number of 

stocks (N) in each portfolio. The pre-last line shows the difference (spread) between the portfolio with the highest RN Skewness stocks and the portfolio with lowest RN 

Skewness stocks in each case. t-values calculated using Newey-West standard errors with 7 lags are provided in parentheses. ***, **, * indicate statistical significance at the 

1%, 5%, and 10% level, respectively. 

Quintiles 
RN 

Skewness 

Mean 

return FFC  MKT  SMB  HML  MOM  R
2 RN 

Volatility 

RN 

Kurtosis 
N 

1 (Lowest RNS) -0.8270 0.04 -0.14*** 1.03*** 0.19*** 0.02 -0.01 0.93 0.4264 3.6580 131 
   (-4.99) (56.77) (6.97) (0.82) (-0.44)     

2 -0.5297 0.14 -0.04 1.13*** 0.31*** -0.05 -0.03 0.92 0.4514 3.2350 131 
   (-1.37) (73.57) (10.92) (-1.39) (-1.43)     

3 -0.3915 0.19 -0.01 1.19*** 0.40*** -0.07 -0.04 0.92 0.4836 3.1042 131 
   (-0.23) (56.10) (12.85) (-1.62) (-1.44)     

4 -0.2720 0.26 0.06 1.25*** 0.53*** -0.13*** -0.06** 0.91 0.5180 3.0264 131 
   (1.64) (53.05) (15.74) (-2.98) (-2.03)     

5 (Highest RNS) -0.0680 0.43 0.24*** 1.25*** 0.60*** -0.17*** -0.11*** 0.86 0.5735 3.0162 131 
   (4.71) (36.01) (12.23) (-3.62) (-2.61)     

5-1 0.7591*** 0.39*** 0.37*** 0.22*** 0.41*** -0.20*** -0.10** 0.30 0.1470*** -0.6419***  
t(5-1) (10.37) (5.10) (6.55) (5.27) (7.21) (-3.31) (-1.98)  (10.00) (-9.44)  

 


