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Abstract 

Although elastic metamaterials in a subwavelength scale can control macroscopic 

waves, it is still a big challenge to attenuate elastic waves at very low frequency (a 

few tens Hz). The main contribution of this paper is to develop a 

high-static-low-dynamic-stiffness (HSLDS) resonator with an inertial amplification 

mechanism (IAM), which is able to create a much lower band gap than a pure HSLDS 

resonator. The nonlinear characteristics of a locally resonant (LR) beam attached with 

such new resonators are also explored. The band gap of this LR-IAM beam is 

revealed by employing transfer matrix method and validated by numerical simulations 

using Galerkin discretization. It is shown that a very low-frequency band gap can be 

formed by tuning the net stiffness of the resonator towards an ultra-low value. In 

addition, the nonlinearity, arising from the restoring force of the resonator, the 

damping force and effective inertia of the IAM, gives rise to an intriguing feature of 

amplitude-dependent wave attenuation, which could potentially act as a switch or 

filter to manipulate flexural waves. 
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1. Introduction  

The radiated noise emitted from the machines onboard an underwater vehicle is 

detrimental to its acoustic stealth, especially when it is in low speed navigation [1]. In 

such a case, the main contributions to the radiated noise can be ascribed to the 

low-frequency vibrations arising from the machines and propagating along the raft 

and the hull. Hence, it is essential to attenuate the vibrations and prevent them from 

propagating along structures. Beside the common method of vibration isolation [2-4] 

for this issue, another potential solution is to exploit a periodic structure to engineer 

phononic crystals [5] or locally resonant (LR) metamaterials [6]. Especially, the LR 

metamaterials are capable of mitigating wave propagation at low-frequency regime, 

due to their intriguing feature of deep subwavelength [6, 7].  

 

Acoustic (elastic) metamaterials, man-made materials with unprecedented wave 

manipulation functions, have drawn more and more attention. The past nearly two 

decades have witnessed a surge on conceptual designs, theoretical studies and 

potential applications of acoustic (elastic) metamaterials, which has been well 

documented in the comprehensive review papers [7-9]. Fok et al [6] divided acoustic 

metamaterials into two types: the intrinsic and inertial ones. This paper mainly 

focuses on the latter realized by embedding local resonators into the elastic matrix for 

attenuating low-frequency waves. 

 

The first work on the LR metamaterials was carried out by Liu et al [10], where heavy 

spheres coated with soft silicon rubber were embedded into epoxy matrix. Such 

constituent components act as mass-spring resonators so as to exhibit a band gap at a 

frequency well below that arising from Bragg scattering, due to spatially periodic 

impedance mismatch. This broke a reliance on the lattice constant of Bragg scattering 

band gap, and opened a new mechanism to create a low-frequency band gap by 

employing a small sample that is deep-subwavelength at resonant frequencies [6]. A 

2 
 



 

beam with periodically suspended masses is a common category of LR metamaterials 

for manipulating flexural waves. Yu et al. [11] proposed an LR beam with resonators 

constituting of a soft rubber ring and a copper ring, and Yu et al. [12] also studied the 

propagation properties of flexural waves in an LR beam on an elastic foundation. 

Xiao et al. [13] studied the formation mechanism of band structures in LR beams 

theoretically, and obtained the analytical expressions of the bound frequencies of the 

band gap. Liu and Hussein [14] studied the transition criterion between Bragg 

scattering and local resonance for an LR beam. Zhu et al. [15] constructed a chiral 

metamaterial beam for vibration suppression.  

 

As well-known, the LR band gap has an intrinsic characteristic of narrow bandwidth. 

To broaden the band gap, Wang et al. [16] proposed a continuum-beam resonator, and 

Xiao et al. [17] suggested using multiple periodic arrays of oscillators with distributed 

resonant frequencies in one unit cell, which can merge multiple narrow band gaps into 

a wide one [18]. Chen et al. [19] periodically attached shunted piezoelectric patches 

onto host beams as tunable resonators for broadband flexural wave manipulations. 

Alternatively, the inertial amplification mechanism (IAM) [20-28] is also an 

important way to create low and wide band gaps. Yilmaz et al. [20, 21] first proposed 

the method of inertial amplification, which also was validated by experimental tests 

[22], and several novel inertial amplification mechanisms were achieved via design 

optimization [23, 24]. Frandsen et al. [25] proposed to use inertial amplification to 

generate band gaps in continuous structures by attaching light-weight IAM, and Barys 

et al. [26] realized this concept for flexural wave attenuation in a beam. Li and Li [27] 

also periodically attached IAMs onto an elastic beam to generate wide low-frequency 

band gap. Hou et al. [28] proposed beam-like inertial amplification metamaterials to 

obtain ultra-low frequency band gap. 

 

However, as mentioned in Ref [8], it is still a great challenge to achieve an 

ultralow-frequency band gap, due to the fact that it is almost impossible to 

substantially reduce the resonant frequency by making the mass of the resonator 
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ultra-large and the stiffness ultra-low. Additionally, the vibrations or waves from 

mechanical machines are usually dominated by low-frequency components from 1 Hz 

to a few tens Hz. To resolve this tough issue, a high-static-low-dynamic-stiffness 

(HSLDS) resonator has been proposed in our previous works [29, 30], which 

indicated that a negative-stiffness mechanism introduced into the resonator could 

effectively neutralize the originally positive stiffness of the resonator, leading to 

ultra-low dynamic stiffness, while the ability of supporting the mass of the resonator 

remains unchanged. Consequently, a much lower-frequency band gap was realized by 

employing such HSLDS resonators than the conventional ones. 

 

Furthermore, the stiffness of the HSLDS resonator is intrinsically nonlinear. As the 

amplitude of the excitation is increased, the nonlinearity would become too significant 

to be ignored, which could induce complicated behaviour of waves propagation in the 

phononic materials and acoustic (elastic) metamaterials, such as localization [31], 

breather [32], bifurcation [33] and chaos [34]. All of these phenomena were proved to 

be useful when manipulating waves for special functions. Vakakis et al. [31] studied a 

periodic chain of nonlinearly coupled oscillators under external excitations, which 

presented profound localized responses in the chain. Chakraborty and Malik [35] 

mainly focused on the nonlinear natural frequencies and the corresponding normal 

modes of the periodic chain considering both the hardening and softening types of 

nonlinearity. Narisetti et al. [36] gave an approximate close-form dispersion relation 

of the wave propagation in one-dimensional periodic structures, which exhibited a 

tunable band gap that shifts with wave amplitude. For the same system, Manktelow et 

al. [37] presented the interaction of two waves giving rise to different amplitude and 

frequency dependent dispersion relations. Boechler et al. [33] demonstrated a new 

mechanism for tunable rectification based on bifurcation and chaos in a granular chain 

with a defect (a lighter mass) near the boundary. However, the reports on the 

nonlinear LR metamaterials are rare in comparison with nonlinear periodic chain. 

Lazarov and Jensen [38] studied the wave propagation in a one-dimensional chain 

with attached nonlinear local resonators, which revealed the amplitude-dependent 
4 

 



 

dispersion and low-frequency band gaps. Fang et al. [34] reported a new chaos 

mechanism for ultra-low and ultra-broad band gaps in nonlinear LR metamaterials, 

which was realized by utilizing the strong nonlinearity arising from vibro-impact.  

 

The aim of this paper is to substantially reduce the central frequency of the band gap 

of an HSLDS resonator by introducing an inertial amplification mechanism (IAM). 

The dynamic feature of the resonator with the IAM is analysed to reveal the principle 

for magnifying the overall inertia of the resonator. And the dispersion of the beam 

with inertially amplified resonators (called LR-IAM beam for short) is obtained using 

the transfer matrix method to demonstrate the band structure, where one can see the 

effectiveness of the IAM for forming a very low-frequency band gap. The other 

contribution of this paper is to explore the nonlinear dynamic characteristics of the 

LR-IAM beam. The approximate analytical amplitude-frequency relationships are 

obtained by using the harmonic balance method, where one can observe the 

multi-value feature of the responses. Global bifurcations with respect to the amplitude 

of excitation are determined numerically to show an interesting phenomenon of 

amplitude-dependent wave attenuation in the band gap.  

 

The remainder of this paper is organized as follows. Section 2 shows how the IAM 

works, and presents the dispersion relations and band structures of the LR beam with 

HSLDS resonators containing the IAM. In section 3, the investigations on the wave 

attenuation characteristics of the LR-IAM beam are carried out numerically, when the 

actual nonlinear restoring forces, damping forces and effective inertia are considered. 

The nonlinear dynamic analysis, including multi-value responses and global 

bifurcations, are also conducted. Finally, some conclusions are drawn in Section 4. 

2. Band gaps of LR-IAM Beams 

Consider elastic wave propagating in an Euler-Bernoulli beam. In order to attenuate 
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low-frequency waves, the high-static-low-dynamic-stiffness (HSLDS) local 

resonators are periodically attached onto the beam, as shown in Fig. 1a. The resonator 

proposed here is to attach an additional inertia amplification mechanism (IAM) into 

the HSLDS resonator [29] to further lower the central frequency of the band gap, as 

depicted in Fig. 1b. The computational models of the LR-IAM beam and the resonator 

are illustrated in Fig. 1c and Fig. 1d, respectively. In this section, the stiffness 

characteristics are presented firstly, and then the band gaps are revealed by using 

transfer matrix method.  

 
Fig. 1 Conceptual design schemes of (a) the LR-IAM beam with (b) HSLDS resonators containing 
IAM, and schematic diagrams of the computational models for (c) the LR-IAM beam and (d) the 

resonator. 

2.1 Stiffness characteristics of the resonator 

The HSLDS feature is realized by combining a vertical spring kv and two oblique 

springs ko in parallel, as shown in Figs. 1b and 1d. Assume that the mass of the 

resonator mr can only move along the vertical direction, and two oblique springs 

deform symmetrically with respect to the vertical spring. At the static equilibrium 

position, these two oblique springs are compressed from the original length lo to a, 

which act as a negative-stiffness mechanism in the vertical direction, when the 

resonator deviates from the static equilibrium. Additionally, a half of the IAM is 

constructed by using four light connecting rods and two masses, and the two halves of 
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the IAM are mirror symmetrical. These light rods have the same length l, which are 

symmetrically installed with respect to the vertical spring, and their weights are 

neglected. At the static equilibrium position, the intersection angle between the axis of 

the rod and the vertical spring is θ. These two masses also have the identical mass 

a 2m , and the ratio of ma to mr is defined as 

 a

r

m
m

γ =   (1) 

 

Note that the IAM does not affect the static stiffness of the resonator. Therefore, the 

restoring force and stiffness of the HSLDS resonator as functions of the relative 

displacement y z w= −  can be given according to our previous work [29], 

 ( ) o
v 2 2

o

1 1 1laf k y
l a a y

η
  
  = − − −

 − +  
  (2) 

 ( ) 3
2

2
o

v
2 2o

1 1 1l aak k
l a a y

η
  
  = − − −  −  +    

 (3) 

where z is the absolute displacement of the resonator, w is the transverse displacement 

of the beam, kv is the stiffness of the vertical spring, lo and a are the original and 

compressed lengths of the oblique spring, respectively, and η  is a ratio of the 

designated stiffness of the resonator to kv at the static equilibrium position. The above 

features of the restoring force and stiffness are achieved under the so-called 

zero-stiffness condition 

 
( )
( )

o

v o

1
=

2
ak

k l a
η

χ
−

=
−

 (4) 

where ko is the stiffness of the oblique spring. Obviously, one can change the stiffness 

ratio χ  or the geometrical parameters of the oblique springs to regulate the stiffness 

vkη  of the HSLDS resonator, and even to tune it towards zero. In addition, from Eq. 

(3), it can be seen that the stiffness of the resonator is related to the displacement, and 
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it is equal to vkη  only at the static equilibrium position. Therefore, the HSLDS 

resonator is nonlinear. 

2.2 Inertial amplification mechanism 

As shown in Fig. 1d, when the resonator oscillates around the static equilibrium point, 

the mass ma moves both along the vertical and horizontal directions. There are two 

identical masses ma in the IAM, and their vertical displacements are the same, but the 

horizontal displacements have opposite signs. The displacement components of the 

left mass from its original position are ax  and za, which can be described as 

functions of the displacement,  

 
2

2 2
a asin sin cos ,

4 2
y z wx l l yl zθ θ θ +

= − − − =  (5) 

Recall that θ is the intersection angle between the axis of the rod and the vertical 

spring at the static equilibrium position, which is a constant (initial angle). Note that, 

when the oscillation is small, the original form of the displacement xa in Eq. (5) can be 

linearized as cot 2y θ  by Taylor expansion at y=0, which is the same as that in Ref 

[23]. 

 

The velocity components of the left mass are 

 
( )

a a2 2 2

2 cos
,

216 sin 16 cos 4

l y y z wx z
l yl y

θ

θ θ

+ +
= =

− −







   (6) 

Therefore, the total kinetic energy T of the resonator can be given by 

 
( )

( ) ( )

2 2 2
r a a a

2 2
2 2

r r r2 2 2

1 12
2 2

2 cos1
2 16 sin 16 cos 4 4

T m z m x z

l y z w
m z m y m

l yl y
θ

γ γ
θ θ

= + × +

+ +
= + +

− −



 





  (7) 

where the dot above the displacement denotes differentiation with respect to time. In 

addition, taking the initial potential energy as a reference, the change in potential 

energy can be given by 
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 2 2 2 2
v o o o

1 ( 2 2 )
2

U k y k y l a y al= + − + +   (8) 

Furthermore, the equation of motion of the resonator can be obtained by using the 

Lagrange equation, 

 

( )
( )

( ) ( )

22
2

r r 22 2 2 2 2 2

o
v r2 2

o

2 cos
1 2 2

4 sin 4 cos 4 sin 4 cos

1 1 1 1

l l yl m y m y
l yl y l yl y

lak y m w
l a a y

θ
γ γ

θ θ θ θ

η γ

+ 
+ + − −  − −

  
  + − − − = − +

 − +  

 



  (9) 

 

Note that the second term of Eq. (9) represents an equivalent damping force, which is 

derived from the inertial effect of the IAM. Obviously, all of the effective mass, 

damping force and restoring force of the resonator are nonlinear functions with 

respect to the displacement. However, under small-amplitude vibrations, the nonlinear 

dynamic system could be simplified by employing linearization at the equilibrium 

point y=0,  

 ( )v 1r rm y k y m wk η γ+ = − +   (10) 

where  

 21
2sin

γκ
θ

= +  (11) 

is a magnification factor of the inertia. This linearized equation (10) has a similar 

form as the equation of motion of the inertial amplification mechanism in Ref [23]. 

Most importantly, the above linearized equation of motion will be utilized to calculate 

the dispersion relations of the LR-IAM beam by using transfer matrix method in the 

following Section 2.3.  

 

Clearly, one can observe from Eq. (10) that the inertia of the resonator is amplified by 

the IAM, and the amplification is inversely proportional to 2sin θ , which implies that 

the smaller the incline angle θ  is, the larger the inertia amplification one can 

achieve. Note that vkη  is the net stiffness of the resonator at the static equilibrium 
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position after the neutralization by the negative-stiffness mechanism. Importantly, the 

parameter η  can be tuned to be at any desired low value by adjusting the stiffness 

ratio α  or the geometric parameters of the resonator.  

2.3 Dispersion relations by using transfer matrix method 

The equation of motion of an Euler-Bernoulli beam is  

 
4 2

4 2 0w wEI A
x t

ρ∂ ∂
+ =

∂ ∂
 (12) 

where E is the module of elasticity, I is the moment of area, ρ is the density, A is the 

cross-sectional area, and w(x, t) is the transverse deflection. By assuming the 

harmonic motion ( ) ( ) 1, tw x t W x e w−= , where ( )W x  is the mode function, as given 

by  

 ( ) cos( ) sin( ) cosh( ) sinh( )W x A x B x C x D xβ β β β= + + +  (13) 

where A, B, C, and D are unknown constants, and 4 2 A EIβ ω ρ= . For the ith unit 

cell of the LR-IAM beam, the mode function can be written as 

 ( ) cos( ) sin( ) cosh( ) sinh( )i i i i iW x A x B x C x D xβ β β β= + + +       (14) 

where cx x il= − , ( )c c1il x i l≤ ≤ + , and cl  is the lattice constant, i.e. the length of 

the unit cell. The ith resonator is attached at cx il= , i.e. 0x = , as shown in Fig. 1c. 

By assuming the harmonic small-amplitude oscillation of the ith resonator 

( ) 1 t
i iy t Y e ω−= , the linearized equation of motion of the resonator (Eq. (10)) is used, 

and thus the force acting on the beam from the ith resonator can be given by 

 ( ) ( ) ( ) ( )
2

v r 1
v 2

v r

1
0 t

i i i

k m
f t k y t W e

k m
ωη γ ω

η
η k ω

−+
= =

−
 (15) 

 

Considering the continuities of the displacement, slope and bending moment at the 

connecting point of the resonator, as well as the change of shear force due to the 

connecting force ( )if t , one can obtain the following boundary conditions  
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( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( )

1 c

1 c

1 c

2
v r

1 c 2
v r

0

0

0

1
0 0

i i

i i

i i

i i i

W l W

W l W

W l W

k m
W l W W

k m
η γ ω
η k ω

−

−

−

−

=

′ ′=

′′ ′′=

+
′′′ ′′′= −

−

  (16) 

By substituting Eq. (16) into Eq. (14), one can obtain the relations between the 

constants of the ith unit cell [ ]T, , ,i i i i iA B C D=ψ  and the (i-1)th one, 1i−ψ . Further, 

by employing the Floquet-Bloch theorem, c1
1

ql
i ie −

−=ψ ψ , one can derive the 

dispersion relation of the LR-IAM beam 

 c11 0qle −− − =G H I   (17) 

where q  is the wave number and I  is the identity matrix, and 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

c c c c

c c c c
2 2 2 2

c c c c
3 3 3 3

c c c c

cos sin cosh sinh
sin cos sinh cosh

=
cos sin cosh sinh

sin cos sinh cosh

l l l l
l l l l
l l l l

l l l l

β β β β
β β β β β β β β
β β β β β β β β
β β β β β β β β

 
 − 
 − −
 

−  

Η   (18) 

 2 2

2 2
3 3v r v r

2 2
v r v r

1 0 1 0
0 0

0 0=
1 1k m k m

EI k m EI k m

β β
β β

η ω η ωβ β
η k ω η k ω

 
 
 
 −
 
 − − − − − 

G   (19) 

 

The band structure of the LR-IAM beam can be obtained by solving the above 

dispersion relation. For any frequencyω , one can get four solutions for the wave 

number q. Note that the evanescent waves are not investigated here, and thus the two 

pure imaginary solutions are not considered. Moreover, when the solution is real, the 

flexural wave can propagate through the beam without attenuation. In contrast, the 

wave would be attenuated when the solution is imaginary in certain frequency ranges, 

called band gaps.  
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2.4 Band gaps 

For the local resonant band gap, the lower bound frequency lω  is determined by the 

natural frequency of the resonator, and the upper bound frequency uω  is related to 

both the natural frequency of the resonator and the mass ratio of the resonator to the 

unit cell of the beam [8, 29], which can be given by 

 ( )v v
l u

r r

, 1 1k k
m m

η ηωω  m γ
k k

= = + +    (20) 

where r cm Alm r= . Recall that ( )21 2sinκ γ θ= +
 
is the inertia magnification 

factor. When the resonator does not have the IAM and negative-stiffness mechanism, 

both κ  and η  are 1. Obviously, the bound frequencies can be tuned towards quite 

low values, when the negative-stiffness mechanism is active, causing η  to become 

smaller than 1. In addition, when the IAM is switched on, κ  become larger than 1, 

and thus, the bound frequencies also can be reduced by the IAM.  

 

In order to highlight the effect of the IAM on the band gaps, the parameters are 

selected from our previous work [29], which did not consider any IAMs. For the sake 

of completeness, those parameters are listed in Table 1. From Eq. (11), one can see 

that the mass ratio γ  and the incline angle θ  of the connecting rod in the IAM are 

essential to inertial magnification. Therefore, the effects of these two parameters on 

the band gaps will be discussed in detail. 
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Table 1 Parameters of the LR-IAM beam 

Parameters  Values 
Module of elasticity E 70 GPa 
Area moment of inertia I 5.968×10-9 m4 
Density ρ  2600 kg/m3 
Cross-sectional area A 1.602×10-4 m2 
Length of unit cell lc 0.125 m 
Mass of resonator mr 0.0437 kg 
Stiffness of vertical spring kv 1.65×105 N/m 
Length of oblique spring lo 0.0459 m 
Length of vertical spring lv  0.05 m 

 

The dispersion curves of the LR-IAM beam for different parameters are shown in Fig. 

2, where the band gaps are illustrated by green shadow areas. In such frequency 

regions, the solutions of the wave number q are imaginary, which implies that the 

flexural wave in the LR-IAM beam would be attenuated. 

 

 
Fig. 2 Dispersion curves of the LR-IAM beam and the band gaps illustrated by the green shadow 

areas. 

 
Furthermore, the lower and upper bound frequencies of the band gaps are illustrated 

with respect to the net stiffness of the resonator, as depicted in Fig.3. The band gaps 

are denoted by the green shadow areas surrounded by the bound frequencies, which 

are obtained by Eq. (20) and depicted as hollow marks. Obviously, the markers almost 
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coincide with the borders of the shadow areas, which means that the band gaps 

estimated by the analytical expressions match well the transfer matrix results. 
 

 
Fig. 3 Band gaps of the LR-IAM beam predicted by the transfer matrix method (green areas), and 
the lower and upper bound frequencies given by Eq. (20) and denoted by hollow markers, when 

the IAM is switched on ( 0.1γ = ) or off ( 0γ = ). 
 

As expected, the bound frequencies decrease as the net stiffness ratio η  is tuned 

from 1 to 0. This is an interesting and inherent feature of the metamaterials with 

HSLDS local resonators, whose net stiffness can be tuned towards any designated low 

values by adjusting the negative-stiffness element to partly or totally neutralize the 

stiffness of the positive-stiffness element. 

 

More importantly, from Fig. 2 and Fig. 3, one can observe that both the lower and 

upper bound frequencies of the band gaps are substantially shifted towards lower 

frequencies by the IAM, even with a small mass ratio 0.1γ = , i.e. 20% of the 

resonator mass ( a r2m m ), and 8.36% of the unit cell mass ( ( )a r a c2 2m m m Alr+ + ). 

Additionally, the lower and upper bound frequencies are reduced by the proportion of 

1 1 κ−  and 1 ϑ κ−  ( ( ) ( )1 1 1ϑ µ γ µ= + + +   ), respectively, for a selected 

θ . For example, in Fig. 3, the lower and upper bound frequencies are reduced by 38.7% 
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and 37.3%, respectively, for all the values of η , when 10θ =  .  

 

The effects of the parameters of the IAM on the bound frequencies lω  and uω  of 

the band gaps are shown in Fig. 4. As seen from Fig. 4a, the bound frequencies are 

reduced by increasing the mass of the IAM, which can be attributed to the fact that the 

inertial amplification factor κ  is in proportion to the mass ratio γ , and the bound 

frequencies vary inversely with κ . However, the influence of γ on the bound 

frequencies decreases step by step with increasing γ . As mentioned before, even a 

small γ  could lead to large reductions in the bound frequencies. Therefore, for the 

proposed IAM, a large physical mass is not indispensable to magnify the inertia of the 

resonator, and a small one could perform well, which agrees well with the finding by 

Yilmaz et al. [20]. 
 

 

Fig. 4 Effects of the parameters of the IAM on the bound frequencies lω  and uω  of the band 
gaps. (a) Mass ratio γ  when 10θ =  ; (b) incline angle θ  when 0.1γ = . 

 

The effect of the incline angle θ  is shown in Fig. 4b. Obviously, the bound 

frequencies are increased but the increases are reduced as θ  increases. From Eq. 

(11), one also can find that the smaller the incline angle θ  is, the larger the inertial 

amplification is. This trend also has good agreement with that observed by Yilmaz et 

al. [20]. Hence a small incline angle θ  is preferable theoretically. Nevertheless, the 

mobility of the resonator should be taken into account. A small incline angle θ  
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would limit the mass of the resonator to move free along the vertical direction in a 

very small displacement range, which would be detrimental to the locally resonant 

mechanism. Therefore, the incline angle θ  should be as small as possible, under the 

pre-condition for the mobility of the resonator. 

3. Wave attenuations in the LR-IAM beams 

The dynamic responses of the LR-IAM beams with finite length are obtained by 

employing Galerkin discretization, and then the wave attenuations are evaluated in 

terms of displacement transmittance. Firstly, the first three modes of the beam are 

taken into account to reveal the amplitude-frequency characteristics of the LR-IAM 

beam analytically. Then, fifteen modes are considered, and the equations of motion 

are solved numerically to calculate the transmittance. Finally, the global bifurcation 

and nonlinear dynamic behaviours of the LR-IAM beam are studied. 

 

The equations of motion of the finite-length LR-IAM beam can be given by 

 ( ) ( ) ( ) ( ) ( )
4 2

e d s4 2
1

0 , ,
n

i i i
i

w wEI A f t x f x t f x t x x
x t

ρ d d
=

∂ ∂
+ = − + + −  ∂ ∂ ∑  (21) 

 ( ) ( ) ( ) ( ) ( )e d s r, , , 1 , , 1, 2,i i i im y x t f x t f x t m w x t i nγ+ + = − + = 
  (22) 

where n is the number of resonators, ( )xδ  is the Dirac function, ( )ef t  is the 

excitation force acting on the left-hand end of the beam (x=0), ( )d ,if x t  and 

( )s ,if x t  are the internal damping and restoring forces between the resonator and 

beam (x=xi), respectively, and em  is the effective mass of the resonator with the IAM. 

According to Eq. (9), em , df  and sf  can be given by 

 
2

e r2 2 21 2
4 sin 4 cosi i

lm m
l y l y

γ
θ θ

 
= + − − 

 (23) 
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2
2

d r 22 2 2

2 cos
2

4 sin 4 cos
i

i

i i

l l y
f m y

l y l y

θ
γ

θ θ

+
=

− −
  (24) 

 ( ) o
s v 2 2

o

1 1 1 i

i

laf k y
l a a y

η
  
  = − − −

 − +  
 (25) 

Note that ( ) ( ) ( ),i i iy t z t w x t= −  is the relative displacement of the ith resonator. 

Obviously, all of the effective mass, the restoring force and the damping force are 

nonlinear functions of the relative displacement. 

 

According to Galerkin discretization, the response of the beam can be assumed as  

 ( ) ( ) ( )
1

,
P

p p
p

w x t W x Q t
=

=∑  (26) 

where ( )pW x  and ( )pQ t  are the mode function and generalized displacement, 

respectively. For the free-free end condition, the mode function ( )pW x  of the beam 

can be given by 

 

( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )

sin sinh

sin sinh
cos cosh 1,2

cosh cos

p p p

p p
p p

p p

W x x x

L L
x x p

L L

β β

β β
β β

β β

= +

−
 + + = −



 (27) 

where L is the length of the beam, and  

 
2

4 p
p

A
EI

ρ ω
β =  (28) 

where pω  is the pth natural frequency of the beam, which is determined by the 

frequency equation, cos cosh 1p pL Lβ β = .  

 

By substituting Eq. (26) into Eq. (21), multiplying both sides of the resultant equation 

by the mode function ( )pW x , and then integrating along the length of the beam L, 

one can obtain  
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 ( ) ( ) ( ) ( ) ( )e d s
1

0 , ,
n

p p p p p p i i i
i

m Q k Q W f t W x f x t f x t
=

+ = + +  ∑  (29) 

where ( )2

0
d

L

p pm A W x xρ= ∫ , and ( ) ( ) ( )4

0
d

L

p p pk EI W x W x x= ∫ . Note that the 

superscript (4) denotes the 4th partial derivative with respect to x.  

3.1 Approximately analytical solutions  

In order to analytically reveal the dynamic response of the LR-IAM beam when the 

nonlinearity is taken into account, all the expressions of effective mass em , restoring 

force sf  and damping force df  are approximated by Taylor expansions at the static 

equilibrium position 0iy = , as listed below 

 
( )2

r2 2r
e 0 1 2 r 4 2 6

1 3coscos
2 sin 4 sini i i i

mmm y y m y y
l l

γ θγ θκ
θ θ

+
= Μ +Μ +Μ = + +  (30) 

 

( )
( ) ( )

2 2
d d0 d1 d2

2 2
r r 2 2r

4 2 6 3 8

1 3cos 3 cos 1 coscos
4 sin 8 sin 4 sin

i i i

i i i

f y y y

m mm y y y
l l l

γ θ γ θ θγ θ
θ θ θ

= Γ +Γ +Γ

 + +
 = + +
  







 (31) 

 
( )
( )

o3 3
s s1 s3 v v 2

o

1
i i i i

l
f y y k y k y

l a a
η

η
−

= Γ +Γ = +
−

  (32) 

 

Both the exact expressions and the approximate ones of the effective mass, damping 

coefficient and restoring force are depicted in Fig. 5. Obviously, in most of the 

displacement range, the approximations are in good agreement with the exact ones, 

especially in the vicinity of the equilibrium point yi=0. Therefore, these approximate 

expressions of the effective mass, damping force and restoring force in Eqs. (30)-(32) 

can be used for the following dynamic study for approximately analytical solutions of 

the LR-IAM beam. It also can be observed that the effective mass and damping 

coefficient might approach infinity when the relative displacement yi is close to its 

critical value ( )cri 1 cosy l θ= − . This critical condition happens when the intersectional 
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angle of these two connecting rods becomes 180o and their axes are parallel with the 

vertical direction, which is an extreme position for the resonator. Additionally, the 

effective mass and damping coefficient become very large to prevent the resonator 

from getting across the limit position, as the displacement approaches the critical 

value. 

 
Fig. 5 Comparison between the exact values (solid lines) and the approximations (dashed lines) of 
(a) effective mass, (b) damping coefficient and (c) restoring force of the resonator, when 0.1η = , 

0.1γ =  and 30θ =  .  
 
The responses of the beam are mainly dominated by the low-order modes, and the 

central frequency of the band gap is much lower than the lowest natural frequency of 

the beam. In addition, the analytical solutions of a high-dimensional nonlinear system 

are hard to be achieved. Hence, only the first three modes of the beam and only two 

resonators at x1=L/3 and x2=2L/3 are considered here as an example to analytically 

reveal the band gaps and the effect of nonlinearity on the band gaps. Taking into 

account the mode damping of the beam, the equations of motion of the LR-IAM beam 

can be rewritten as  

( ) ( ) ( ) ( ) ( )
2

2 2 3
d0 d1 d2 s1 s3 e

1

2

0 , 1,2,3

p p p p p p p p

p i i i i i i p
i

m Q m k Q k Q

W x y y y y y W f t p

ζ

=

+ +

 = Γ +Γ +Γ + Γ +Γ + = ∑

 



 (33) 
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( ) ( ) ( )

( ) ( )

2 2 2 3
0 1 2 d0 d1 d2 s1 s3

3

r
1

1 , 1, 2

i i i i i i i i

p i p
p

y y y y y y y y

m W x Q iγ
=

Μ +Μ +Μ + Γ +Γ +Γ + Γ +Γ

= − + =∑

 



 (34) 

where pζ  is the mode damping ratio, and ( )e 0 cosf t F tω=  is a harmonic external 

force acting at the left-hand end of the beam (x=0). Assume the fundamental solutions 

are harmonic 

 0 1 2

0 1 2

cos sin , 1,2,3

cos sin , 1,2
p p p p

i i i i

Q t t p
y Y Y t Y t i

ωω

ωω

= Q +Q +Q =

= + + =
 (35) 

By substituting Eq. (35) into Eq. (33) and Eq. (34) and equating the coefficient of 

each of the harmonics to zero, one can obtain 15 algebraic equations relating 0pΘ , 

1pΘ , 2pΘ  (p=1, 2, 3) and 0iY , 1iY , 2iY  (i=1, 2) can be obtained, as given in 

Appendix A.  

 

The amplitude-frequency relations of the LR-IAM beam under a harmonic force are 

depicted in Fig. 6, when 0 10 NF = , 0.1η = , 0.1γ = , 30θ °=  and 

( )0.05 1, 2, 3p pζ = = . The vibration amplitudes at the left-hand end x=0 and at the 

right-hand end x=L can be given by 

 

( ) ( ) ( )

( ) ( ) ( )

2 2
3 3

1 2
1 1

2 2
3 3

1 2
1 1

0 0 0p p p p
p p

p p p p
p p

W W W

W L W L W L

= =

= =

   
= Θ + Θ   

   

   
= Θ + Θ   

   

∑ ∑

∑ ∑
 (36) 

which are shown in Fig. 6a and Fig. 6b, respectively. To validate the approximate 

analytical solutions, numerical simulations are also carried out by numerically solving 

the equations of motion of the LR-IAM beam (Eq. (33) and Eq. (34)) with the 

Runge-Kutta algorithm. Both forward and backward sweep frequency response 

analyses are done to reveal the jump phenomenon and multi-solution characteristics 

of the nonlinear system. 
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Fig. 6 Amplitude-frequency relations of the LR-IAM beam (a) at x=0 and (b) at x=L, when 

0 10 NF = , 0.1γ = , 0.1η = , 30θ °=  and ( )0.05 1, 2, 3p pζ = = . Solid and dashed lines 
represent stable analytical solution (AS-Stable) and unstable one (AS-Unstable), respectively. 

Hollow and solid circles denote the numerical simulations by forward sweep frequency response 
analysis (NS-Forward sweep) and backward one (NS-backward sweep), respectively. 

 
In Fig.6, the analytical solutions are represented by lines, including stable one (solid 

line) and unstable one (dashed line), and the numerical solutions obtained by using 

sweep frequency response analysis are denoted by circular dots, including forward 

sweep (hollow circle) and backward sweep (solid circle). Obviously, there is excellent 

agreement between the analytical solutions and the numerical ones, which verifies the 

accuracy of the analytical solutions. 

 

Furthermore, there are three branches for response amplitudes in two frequency bands 

from 85.5Hz Hz to 89Hz and from 98Hz to 124Hz, which is an inherent 

multi-solution feature of a nonlinear dynamic system. The numerical solutions by 

forward sweep (hollow circle) can predict the resonant amplitude and the jump-down 

phenomenon, while those by backward sweep (solid circle) is capable of revealing the 

non-resonant amplitude on the lowest branch and the jump-up phenomenon. 

Nevertheless, one of the three analytical solutions cannot be obtained by both the 

forward and backward sweep frequency analyses, which could be considered as an 

unstable and unrealized solution [39].  

 

On the lowest branch, notable vibration attenuations can be observed in the vicinity of 
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the resonant frequency 89.28Hz. In addition, the vibration attenuation at the 

right-hand end (x=L) are much larger than that at the left-hand end (x=0), which 

implies flexural wave attenuations along the LR-IAM beam by the attached resonators, 

when the driving frequency falls into the band gap. However, when the response 

amplitude is on the resonant branch, no vibration attenuation can be observed around 

the resonant frequency 89.28 Hz.  

 

As well-known, the resonant responses are sensitive to damping. Fig. 7 shows the 

analytical solutions when the mode damping ratio is selected as

( )0.005 1, 2, 3p pζ = = . Comparing Fig. 7 and Fig. 6, it can be observed that, with 

decrease in the damping ratio, the resonant branch becomes longer, which implies that 

the frequency band of multiple solutions is broadened, and the possibility of 

undergoing large-amplitude responses is increased. From the perspective of vibration 

or wave attenuations, relative large damping is needed for the LR-IAM beam to 

effectively narrow the multi-solution frequency band and suppress the jump 

phenomenon. 

 

Fig. 7 Amplitude-frequency relations of the LR-IAM beam (a) at x=0 and (b) at x=L, when 

0 10 NF = , 0.1γ = , 0.1η = , 30θ °=  and ( )0.005 1, 2, 3p pζ = = . Solid and dashed lines 
represent stable analytical solution (AS-Stable) and unstable one (AS-Unstable), respectively. 

 
Moreover, which branch the response would locate on is determined by the initial 

condition of the LR-IAM beam. The influence of the initial condition of the resonator 
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on the response of the LR-IAM beam is demonstrated in Fig. 8, where 0x  and 0x  

are the initial displacement and velocity of the resonator at x1=L/3, respectively. Both 

the beam and the resonator at x2=2L/3 are in rest state at the beginning. Thus, the 

initial condition for numerically solving Eq. (33) and Eq. (34) is (0, 0, 0, 0, 0, 0, 0x , 

0x , 0, 0). In Fig. 8, the initial condition making the LR-IAM beam undergo resonant 

response is marked as cross, while that leading to non-resonant response is denoted as 

hollow circle. Note that the excitation frequency 178ω π=  is selected from the band 

gap.  

 
Fig. 8 Response dependence of the LR-IAM beam on the initial condition. (a) 0.05pζ = , (b) 

( )0.005 1, 2, 3p pζ = = , when 0 10 NF = , 0.1γ = , 0.1η = , 30θ °= and 178ω π= . Hollow 
circles and crosses represent the non-resonant and resonant responses, respectively 

 
Apparently, there exists a region of initial condition for resonant response, which 

would make the response fall onto the resonant branch. In such a case, neither the 

vibration mitigations of the host beam nor the attenuations of flexural wave 

propagating along the LR-IAM beam occur. Additionally, comparing Fig. 8b with Fig. 

8a, one can see that the initial-condition region of resonant response becomes larger 

as the damping is reduced. Nonetheless, when the damping is relative heavy and the 

initial displacement and velocity are small, as shown in the down-right area of Fig. 8a, 

the response will fall onto the non-resonant branch, and the vibration and wave 

attenuation can be achieved.  
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Practically, the LR-IAM beam is in a state of rest at the beginning (zero initial 

condition), and both the beam and the resonators have physical damping. As a result, 

the response corresponds to the lowest non-resonant branch in most cases. Therefore, 

the LR-IAM beam is effective for low-frequency flexural wave attenuations, as long 

as the LR-IAM beam is not in an initial state to make the response approach the 

resonant branch. 

3.2 Numerical simulations 

In this section, the dynamic system of the LR-IAM beam is solved by a numerical 

method. The attenuation performance of the flexural wave propagating along the 

LR-IAM beam is evaluated in terms of the transmittance, which is defined as the ratio 

of the transverse vibration amplitude at the free end of the beam (x=L) to that at the 

end where an excitation force is acting (x=0). All of the exact expressions for the 

nonlinear effective mass (Eq. (23)), damping force (Eq. (24)) and storing force (Eq. 

(25)) are taken into account here to obtain the responses of the LR-IAM beam. In 

addition, the responses are calculated by numerically solving both the equations of 

motion of the beam in generalized coordinates (Eq. (29)) and those of the resonators 

(Eq. (22)) using Runge-Kutta method. Note that fifteen modes ( 15P = ) of the beam 

are considered in the Garlerkin discretization, and the modal damping factor 0.1 for 

each mode is taken into account to make the transient responses die away quickly.  

 

For different net stiffness of the resonator, the transmittances are depicted in the form 

of 3D plots and contour plots, respectively, in Fig. 9, when 24 resonators are attached 

onto the beam and 0.1γ = , 0.1η = , 10θ °= . Obviously, there is a green gap where 

the transmittance in dB is below zero, which implies wave attenuations when the 

frequency of the flexural wave locates in such a band gap. By Comparing Fig. 9b with 

Fig. 3, one can see good agreement between the theoretical prediction of the band gap 

and that revealed by numerical simulations, when the IAM is switched on ( 0.1γ = ).  
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Fig. 9 Transmittance of the flexural wave propagating along the LR-IAM beam for different net 

stiffness of the resonator when n=24, 0.1γ = , 0.1η =  and 10θ °= . (a) 3D plot and (b) contour 
plot. The green area demonstrates the band gap for wave attenuations. 

 
From Fig. 9, one also can see that the band gap moves towards a lower frequency and 

becomes narrower as the net stiffness of the resonator decreases, because both the 

lower and upper frequencies can be reduced by decreasing the net stiffness, as 

mentioned in Section 2.4. Therefore, the band gap for wave attenuations in this 

LR-IAM beam can be effectively tuned towards a desired low frequency by adjusting 

the net stiffness of the resonator with the IAM.  

3.2.1 Effects of the parameters of the IAM on wave attenuation 

The effects of the parameters γ  and θ  of the IAM on wave attenuation are 

demonstrated in Fig. 10, where the conspicuous green areas with the minus 

transmittances represent the band gaps. It can be seen from Fig. 10 that the bound 

frequencies of the band gap are reduced as the ratio γ  of the mass of the IAM to that 

of the resonator increases, while the band gap moves towards higher frequency range 

and become wider as the incline angle θ  of the connecting rod in the IAM increases. 

Additionally, these observations match well with theoretical predictions presented in 

Fig. 4. Most importantly, one can also observe that the LR-IAM beam can effectively 

attenuate the flexural wave, even when the band gap locates in a very low-frequency 

range by tuning the net stiffness of the resonator towards a very low value, such as 

=0.1η , and by adding the IAM with small incline angle and large mass ratio, such as 
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=10θ   and =0.5γ .  

 
Fig. 10 Effects of the parameters of IAM on the transmittances. (a) Mass ratio γ  with 0.1η =  

and 30θ °= , (b) incline angle θ  with 0.1η =  and 0.1γ = . 
 

3.2.2 Effects of nonlinearity on wave attenuation 

In general, the nonlinearity is related to the displacement amplitude, which cannot be 

ignored as the excitation amplitude increases. The strong nonlinearity might cause 

complicated dynamic behaviours, such as quasi-periodic and chaotic oscillations. 

Both the bifurcation diagram (maximum amplitude) of the transverse displacement 

responses at x=0 and x=L are plotted as functions of the excitation amplitude F0 in Fig. 

11, when 0.1γ = , 0.1η =  and 30θ =  . Note that the harmonic excitation acts at x=0, 

and the driving frequency 95Hz locates in the band gap.  

 
Fig. 11 Bifurcation diagram of the responses of the LR-IAM beam with respect to the excitation 
amplitude when 190 rad sω π= , 30θ °= , 0.1γ =  and 0.1η = . (a) Displacement response at 

x=0; (b) displacement at x=L. 
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From Fig. 11, one can see a route to chaos [40], which shows how the response of the 

transverse displacement of the LR-IAM beam changes from periodic motion to 

chaotic one, when the excitation amplitude increases from 5N to 55N. Obviously, at 

F0=48.35N, the response suddenly changes into chaotic motion. In order to reveal the 

dynamic behaviour, the phase portraits and the corresponding Poincare sections under 

zero initial condition and an excitation with different amplitudes are illustrated in Fig. 

12. The scales of both the abscissa and ordinate are fixed to be identical for the same 

excitation amplitude, and thus one can clearly observe the flexural wave attenuation 

along the LR-IAM beam by comparing the response at x=L to that at x=0.  
 

 
Fig. 12 Phase portraits (blue curves) and the corresponding Poincare sections (red markers). The 
upper and lower rows are for the responses at x=0 and x=L, respectively. (a) (d) F0=5N; (b) (e) 

F0=20N, (c) (f) F0=50N, when 190 rad sω π= , 30θ °= , 0.1γ =  and 0.1η = . 
 
It can be seen from Fig. 12a and Fig. 12d that, for the responses at both ends, the 

phase portrait is a circle and the Poincare section is a point, so that the responses are 

periodic when F0=5N. However, as the exciting amplitude F0 increases, the dynamic 

behaviours might become more complicated. For example, when F0=20N, the phase 

portrait contains many elliptic orbits, and the Poincare section is a very flat and closed 

curve, which seems like a line, as shown in Fig. 12b and Fig. 12e; therefore, the 

responses are quasi-periodic. When the excitation is increased further, such as 
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F0=50N, the phase portrait becomes cluttered with orbits, and the Poincare section is 

composed of a cloud of points, as presented in Fig. 12c and Fig. 12f, which implies 

that the responses might be chaotic for a light damped nonlinear system.  

 

More importantly, by comparing Fig. 12a and Fig. 12d, Fig. 12b and Fig. 12e, 

respectively, one can observe that the response at x=L is much smaller than that at x=0,  

which means that flexural wave attenuations occur in the band gap when the 

responses are periodic or quasi-periodic. But, by comparing Fig. 12c and Fig. 12f, it 

can be seen that the maximum transverse displacement response at x=L is close to that 

at x=0, which indicates that the attenuation of displacement cannot be realized when 

the responses are chaotic, although the mitigation of transverse velocity can be 

observed. This is an interesting feature for manipulating flexural wave. This proposed 

LR-IAM beam can be used as an amplitude-dependent filter to attenuate the 

small-amplitude wave while pass the large-amplitude wave.  

3.2.3 Effects of periodicity on wave attenuation 

Generally, the spatial arrangement of the resonator plays no significant role in 

determining the main characteristics of a LR beam [10, 41]. To study the effect of 

losing periodicity on wave attenuation, five resonators are removed randomly from 

the original periodic LR-IAM beam with 24 resonators for two cases, and the numbers 

of the removed resonators are (2, 3, 5, 10, 21) and (1, 10, 12, 19, 23), respectively. 

The wave transmittances for such two cases are demonstrated in Fig. 13a and Fig. 13b, 

respectively, when 0.1γ = , 0.1η = , 10θ °= .  
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Fig. 13 Effects of periodicity on the transmittances. The numbers of the removed resonators are (a) 
(2, 3, 5, 10, 21) and (b) (1, 10, 12, 19, 23), when n=24, 0.1η = , 10θ °=  and 0.1γ = . 

 
Comparing Fig. 13 with Fig. 9b, one can observe that losing periodicity has no impact 

on the lower bound frequency (i.e. central frequency) of the band gap. This is because 

the central frequency is only related to the resonant frequency but independent of the 

periodicity of the locally resonant structure [10]. However, the bandwidth and wave 

attenuation of the LR-IAM beam can be influenced by losing periodicity, which can 

be attributed to a fact that removing resonators at different locations results in 

different natural frequencies and mode shapes of the LR-IAM beam, especially for 

high order ones. For example, it can be seen from Fig. 13 that there is good agreement 

of the first five resonance peaks between these two cases, but differences would 

appear for higher order resonant peaks.  

4. Conclusions   

In this paper, a high-static-low-dynamic-stiffness (HSLDS) resonator with an inertial 

amplification mechanism (IAM) is developed as an elastic metamaterial structure that 

can attenuate very low-frequency flexural wave propagation along an Euler-Bernoulli 

beam. The static and dynamic features of the IAM are studied to reveal how this 

mechanism magnifies the inertia of the resonator. The band gaps are determined by 

both theoretical predictions (transfer matrix method) and numerical simulations 
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(Galerkin discretization). The results indicate that the proposed beam with inertially 

amplified resonators exhibits a capability of creating a very low-frequency band gap, 

when the net stiffness of the resonator is tuned to an ultra-low value. Moreover, a 

relatively large mass ratio and a small incline angle of the IAM are favourable to 

achieve better wave attenuations.  

 

Furthermore, the nonlinearity, caused by the restoring force of the HSLDS resonator 

as well as both the damping force and effective inertia of the IAM, is studied 

analytically and numerically. This indicates that the nonlinearity leads to strong 

amplitude-dependent wave attenuation, which could be used as an 

amplitude-dependent switch or filter to control flexural waves. Additionally, damping 

has a significant impact on the multi-value feature of the LR-IAM beam. Light 

damping can increase the frequency range of multiple solutions and cause resonance 

more easily, which would reduce the wave attenuation capability. The periodicity on 

the wave transmittance is also discussed, which shows that losing periodicity has no 

effect on the central frequency of the band gap, but has influences on the bandwidth 

and wave attenuation. 
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Appendix A 
 

The algebraic equations with respect to 0pΘ , 1pΘ , 2pΘ  (p=1, 2, 3) and 0iY , 1iY , 

2iY  (i=1, 2) are given by 
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where 1 3x L= , 2 2 3x L= . 
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