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Abstract 

In-situ surface x-ray diffraction (SXRD) measurements have been performed to develop an 

increased understanding of electrocatalytic reactions and electrodeposition processes 

occurring on gold single crystal surfaces. The surfaces of gold exhibit a rich physical 

behaviour that is interesting not only from a structural perspective but also for applications in 

areas such as heterogeneous catalysis and electrocatalysis. The surface reconstructions of  

Au(111) and Au(100) have been found to undergo a potential dependent in plane surface 

compression in alkaline solution that is remarkably similar despite the underlying geometry. 

The compressibility is linked to the charge on the surface Au atoms with a simple free electron 

model. The surface compression and the reversible lifting of the reconstructions are 

determined by the interplay between surface charge and the adsorption of hydroxide species. 

Carbon monoxide adsorption is shown to supress both the potential-induced changes in 

surface compression and the lifting of the reconstruction leading to the promotion of 

electrocatalytic reactivity. Measurements of the Au(111)/Pb UPD system in acidic solution 

reveal a substitutional Au/Pb surface alloy of the ratio ~ 4:1 that forms at intermediate 

coverages of Pb during the stripping of Pb from the Au(111) electrode surface. Investigations 

into the adsorption of Acetonitrile (AcN) on the Au(111) electrode surface in sulphuric acid 

solution find that AcN has an enhancing effect on the adsorption of sulphate molecules. In the 

potential regions where sulphate is not adsorbed onto the Au(111) AcN is shown to weakly 

interact with the Au(111) electrode surface. The interaction between Cu and AcN ions in 

sulphuric acid solution and its effect on the Au(111)/Cu UPD process were investigated. AcN 

was shown to form a [Cu(C2H3N)4]+ complex with copper that enhances the the deposition of 

copper on the Au(111) surface and suppress the characteristic honeycomb (√3x√3)R30° 

structure in sulphuric acid. 
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1 Introduction 
 

The discipline of electrochemistry is becoming increasingly important as the need for 

harnessing and storing energy grows.  To develop a real understanding of the electrocatalytic 

reactions occurring at the solid/liquid interface, the atomic scale characterisation of model 

catalytic surfaces is essential. These reactions involve the transfer of charge across the 

interface between an electrode surface and an ionic solution (the electrolyte). The kinetics of 

the reaction are heavily dependent on the composition and surface atomic structure of the 

electrode. Cyclic Voltammetry (CV) measures the current flowing between a working 

electrode surface and a secondary electrode as a function of the applied electrode potential 

and is the primary measurement used in many electrochemical studies. The measurement 

yields a wealth of information in terms of the potential dependence of certain electrochemical 

reactions occurring at the electrode/electrolyte interface. However, as the measurable quantity 

of CV is the current flow, it is unclear as to the nature of the structural changes occurring on 

the surface key to understanding the processes that occur. Therefore, to gain a more complete 

picture, voltammetry must be combined with surface sensitive spectroscopic techniques if the 

interfacial region is to be investigated.  

Many of the techniques commonly used to investigate surfaces, such as Low Energy Electron 

Diffraction (LEED) and X-ray Photoelectron Spectroscopy (XPS), rely on ultra-high vacuum 

(UHV) and the free movement of electrons. In the past numerous approaches have been taken 

towards the study of the electrochemical interface, both in-situ and ex-situ, with the tendency 

to focus more on the use of ex-situ techniques. The theory behind ex-situ techniques is that 

when the electrode is transferred from the electrochemical cell to the UHV chamber, part of 

the double layer structure that forms at the interface remains intact[1]. While this approach 

has had some success [2–5], there remains a doubt as to what the effect of the loss of potential 

control and the electrolyte is which means there is never complete confidence that the interface 

is equivalent to its electrochemical counterpart. In-situ techniques have the benefit of enabling 

continuous potential control of the electrode/electrolyte interface during the structural or 

chemical examination. However, the experimental difficulties of in-situ techniques stem from 

the inherent nature of the electrochemical interface being a buried interface, making electron 

probe techniques unsuitable for direct studies due to electron absorption in the liquid 

overlayer.  The development of experimental techniques such as optical spectroscopy, 

scanning probe microscopy and diffraction techniques summarised in [6] have overcome this 

problem. 
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The principle technique used throughout this thesis is in-situ surface x-ray diffraction (SXRD). 

SXRD is capable of simultaneously providing information about the electrode surface and the 

electrolyte above it, as well as correlating the observed current in the voltammetry with the 

atomic structure of the electrode surface under reaction conditions. Chapter 2 describes the 

theoretical principles underpinning the work completed here. This begins with an overview of 

the development of the model for the solid-liquid interface over the past 150 years and a basic 

description of the CV technique employed to study the interface. This is followed by a 

description of the scattering techniques used to characterise the electrode surfaces, beginning 

with the elastic scattering from a single electron and then building up to the case of scattering 

from a 3D crystal; with a focus on the scattering due to the surface, e.g. Crystal Truncation 

Rods (CTRs). The contributions to the scattering from the electrolyte are described before 

finally briefly describing X-ray Voltammetry (XRV), an extremely useful technique that 

combines x-ray diffraction techniques with CV measurements. 

Chapter 3 provides an overview of the considerations required for an in-situ SXRD 

experiment. A description of the sample preparation, the experimental equipment and 

instrumentation used is provided. The data acquisition procedure is outlined, and the necessary 

correction factors and fitting procedures are described. 

Chapter 4 details an investigation into the potential dependent behaviour of the surface 

reconstructions of the low-index faces of gold in alkaline solution. Surface x-ray diffraction 

techniques are also used to explore the potential dependence of adsorbed CO on the Au(111) 

and Au(100) crystal surfaces. Surface reconstruction is where the outermost atomic layer 

assumes a periodicity different to that expected from termination of the bulk crystal lattice in 

a particular orientation. The ability of Au surfaces to reconstruct has been of great interest 

since its discovery in the UHV environment. It was revealed in subsequent experiments that 

these reconstructed surfaces could be formed in an electrochemical environment and the 

ability to control the nature of the electrode surface by the application of applied potential was 

also demonstrated. Gold has been shown to have a surprisingly high activity in electrocatalysis 

and heterogeneous catalysis studies[7]. However, the driving force behind such behaviour is 

largely unknown. In recent years it has been shown that adsorbed CO acts as a promoter for 

the electro-oxidation of certain alcohols on the hexagonal reconstructions of Au(111) and 

Au(100) [8].  

Chapter 5 provides an in-situ investigation into the underpotential deposition (UPD) of Pb on 

the Au(111) surface in 0.1 M HClO4 solution. Underpotential deposition is a phenomenon that 

indicates the onset of deposition of metal adatoms on a foreign metal substrate in potential 

ranges positive of the Nernst potential. Such phenomena allow for precise and reproducible 
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control of surface coverage and the study of the electronic and structural properties of the 

metallic adlayer[9]. The UPD of Pb on Au(111) electrodes is an extensively studied system, 

alloying/de-alloying process taking place during the deposition/stripping of Pb[10].  This 

chapter details a series of measurements at various stages of the Pb stripping process to 

identify the nature of the suspected surface alloy. 

Chapter 6 details an in-situ investigation into the structure of the electrochemical double layer 

of Au(111) in various concentrations of Acetonitrile (AcN) in 0.1 M H2SO4. The effect of 

AcN on the Au(111)/CuSO4 UPD system is also explored. Acetonitrile, is interesting for 

studying adsorption processes as the electrode is expected to have an altered reactivity when 

compared to that of AcN-free metal surfaces [11] due to the surface being chemically 

modified, a process known as reactive chemisorption. Acetonitrile is known to weakly adsorb 

on Au(111) in aqueous media[12]however, the structure of the electrochemical double layer 

in this system is unknown. In addition, the electrochemical reactivity of a metal electrode and 

the formation of metal adlayers via UPD can be significantly affected by the presence of small 

organic molecules. 
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2 Theoretical Principles 
 

2.1 Introduction 
When a particle of sufficiently high energy passes through ordered matter, the resulting 

scattering that occurs is known as diffraction. The experiments discussed in this work utilise 

x-ray diffraction, in conjunction with electrochemical techniques, to understand the 

electrochemical reactions occurring on the well-defined surfaces of fcc single crystal metals. 

The intensity of the scattered x-ray beam from a surface is approximately 106 times weaker 

than that of the bulk and thus synchrotron radiation is required to probe the surface. In this 

chapter the theoretical principles behind x-ray diffraction are built up. 

2.2 The Electrode/Electrolyte Interface 

2.2.1 Electrode Reactions 

 
Electrode reactions involve a transfer of electrons and it is this charge transfer that is measured 

in potential sweep experiments e.g. Cyclic Voltammetry. Such a transfer of electrons are 

oxidation-reduction or  redox reactions.  Oxidation is the reaction that involves the loss of one 

or more electrons. In the case where the reverse occurs, i.e. one or more electrons are gained, 

the reaction is known as reduction. These reactions are shown in equations (2.1) and (2.2) 

respectively. For a reaction to occur there must be a way of balancing charge transfer. 

Therefore, a functioning electrochemical cell must have at least two electrodes, where the 

second electrode acts as a source/sink for electrons. As such in an electrochemical cell, two 

half reactions occur, oxidation occurs at the anode and reduction occurs at the cathode. 

 

 𝑅 = 𝑂+ + 𝑛𝑒− (2.1) 

 

 

 

 𝑂+ + 𝑛𝑒− = 𝑅 (2.2) 

 

 

Where O is the oxidised species, R is the reduced species and ne- is the number of electrons 

transferred between them. As stated above, the basic electrochemical cell consists of at least 
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two electrodes. These electrodes also act as a path for the electrons to flow from the anode to 

the cathode through wires external to the cell. The current through such an external circuit, i,  

is given by: 

 𝑖 = 𝐴𝐼 (2.3) 

 

Where A is the electrode area and I is the current density. By measuring the current, the charge 

transfered, q, can be extracted. Using Faraday’s law, the number of moles, m, of the starting 

product in the reaction can be found: 

 
𝑞 = ∫ 𝑖 𝑑𝑡

𝑠

0

= 𝑚𝑛𝐹 
(2.4) 

 

 

Where t is time, n is the number of electrons transferred per molecule of reactant and F is the 

Faraday constant[13]. If the net change in free energy is negative the reactions will take place 

spontaneously. Assuming this is not the case the reaction must be driven by an applied 

potential between the two electrodes. The potential must be greater than the difference 

between the reversible potentials of the reactions at the anode and cathode. Therefore, the 

Gibbs free energy of the reactions taking place in the cell can be related to the cell potential: 

 ∆𝐺 = −𝑛𝐹𝐸𝑐𝑒𝑙𝑙 (2.5) 

 

Where Ecell is the sum of the potentials for each half reaction occurring at the cathode and 

anode. If the reaction is under standard conditions the relation becomes: 

 ∆𝐺0 = −𝑛𝐹𝐸𝑐𝑒𝑙𝑙
0  (2.6) 

 

 

  

 ∆𝐺 = ∆𝐺0 + 𝑅𝑇 𝑙𝑛
𝑎𝑜𝑥

𝑎𝑟𝑒𝑑
 (2.7) 

 

Where R is the gas constant (~8.3 J K-1 mol-1), T is the absolute temperature and aox/ared  are 

the activity of the reductant and the oxidant. 

Substituting the Gibbs free energy: 
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 −𝑛𝐹𝐸 = −𝑛𝐹𝐸0 + 𝑅𝑇 𝑙𝑛
𝑎𝑜𝑥

𝑎𝑟𝑒𝑑
 (2.8) 

 

Dividing both sides by -nF: 

 
∆𝐸 = ∆𝐸0 +

𝑅𝑇

𝑛𝐹
𝑙𝑛

𝑎𝑜𝑥

𝑎𝑟𝑒𝑑
 

(2.9) 

 

This is the Nernst equation which relates the equilibrium potential E to the standard electrode 

potential E0 and to the activities of the electroactive species which, under equilibrium 

condition, are the same as their values in the bulk solution[14]. 

 

2.2.2 Underpotential Deposition 

 
At potentials positive of that predicted by the Nernst equation (the Nernst potential) for bulk 

deposition processes, a phenomenon referred to as Underpotential Deposition occurs as 

discussed herewith. In solution metallic cations exist with a surrounding solvation shell. When 

the electrode surface possesses a net negative excess charge, these cations can be adsorbed 

onto the surface which, depending on the electrode potential, can be reduced to lower 

oxidation states or discharged completely. This allows for the formation of metal atoms on the 

surface in monolayer/sub-monolayer quantities and is known as Underpotential Deposition 

(UPD). This type of deposition arises from a difference in the chemical potential of the 

electroactive species in the bulk solution and that adsorbed on the electrode surface. This arises 

from stronger interactions between the electrode and deposited metal than the metal and the 

bulk metal[14]. It is of interest because the resulting properties of the UPD layer, and by 

extension the electrode, differ significantly to those of the original electrode material. 

Furthermore, UPD allows for the precise and reproducible control of the surface coverage and 

thus the study of the relation of surface coverage with its electronic properties and structure[9]. 

The UPD of metals on to gold single crystal surfaces is studied in chapters 5 and 6. 

 

2.2.3 The Electrochemical Double Layer 
 

Over a period of approximately 100 years, the current model for the electrode/electrolyte 

interface has been developed[14]. The first model for the solid/liquid interface assumed that 

no Faradaic processes occur at the interface, (i.e. no transfer of electrons between electrode 

and electrolyte). In this model it is assumed that electrical neutrality is upheld by an equal and 

opposite charge density from the electrolyte, balancing the excess charge density at the surface 

of the electrode[1]. These two opposing layers of charge were referred to as the 
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electrochemical double layer. A later model by Gouy and Chapman proposed the free 

movement of the charged ions in solution. In this model, ion concentration is highest near to 

the electrode and decreases with increasing distance to neutrality, where it is effectively the 

bulk electrolyte. Modifications to the Guoy-Chapman model by Stern[15] introduced a plane 

of closest approach accounting for the finite size of ions. A second plane of closest approach 

for ions with solvation shells was finally introduced in the Grahame model[16]. Grahame 

proposed that despite the closest zone of approach is mainly occupied by solvent molecules, 

some ionic or uncharged species may be able to penetrate into this region. This could occur 

even if the ion had no solvation shell or had recently lost its solvation shell when it approached 

the electrode surface. In this instance ions in contact with the surface are ‘specifically 

adsorbed’ as the interaction occurs for only certain ions or molecules irrespective of the charge 

on the ion. By including both specifically and non-specifically adsorbed ions, it is possible to 

model the bonding of the solute species to the surface. Once the surface was modelled the 

current responses of the electrode-electrolyte interface were able to be understood and thus 

allowed for the gathering of meaningful data during experiments such as cyclic voltammetry. 

A schematic of the model is presented in Figure 2.1. 

 

Figure 2.1:  Schematic diagram of the electrode/electrolyte interface and double layer model. Arrows indicate the 

direction of the orientation of the solvent molecules. In this diagram, IHP and OHP represent the inner and outer 

Helmholtz planes respectively[6]. The solid black line represents the potential drop across the interface in the case 

of fully solvated anions. 

2.2.4 Cyclic Voltammetry 

Cyclic Voltammetry (CV) is one of the most fundamental methods of studying electrochemical 

systems through the interpretation of current and voltage measurements. CV measures the 

electric current as a function of the applied potential as it is continuously scanned between 

two points at a constant sweep rate. Electrons transfer at the surface, resulting from the 

oxidation/reduction of species induced by this potential cycling, are observed as peaks in the 
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'cyclic voltammogram' at potentials dependent on the system. Furthermore, peaks in the CV 

can arise due to the adsorption/desorption of ionic species from the solution on to the electrode 

surface in addition to ordering/disordering of adsorbate layers or structural transitions within 

the electrode surface layer itself (surface reconstruction).  

 

 

Figure 2.2: Schematic of the three-electrode electrochemical cell. The electrolyte forms a hanging meniscus with 

the working electrode surface ensuring the obtained CV is due to the reactions occurring on the well-defined single 

crystal surface. The electrolyte is deoxygenated by purging with N2 gas.  

A schematic of a three-electrode electrochemical cell is shown in Figure 2.2, with a hanging 

meniscus geometry typical of the type employed in CV experiments. The three electrodes used 

are denoted as the working, counter and reference electrodes (WE, CE and RE respectively), 

with the working electrode being the single crystal sample of interest. The working electrode 

surface forms a hanging meniscus with the electrolyte in this geometry so that the observed 

CV can be interpreted in terms of processes occurring at the well-defined surface. As the name 

implies, the reference electrode is used to provide a stable and fixed potential against which 

the potential of the working electrode can be measured. Reference electrodes that are 

commonly used for CV experiments include Ag/AgCl- and the reversible hydrogen electrode 

(RHE). In this work Ag/AgCl-(3.5 M) electrodes were used for all measurements. The 

potential of the working electrode is held relative to the reference by a potentiostat, such that 

current flows between the counter and working electrodes. A graphical representation of the 

variation of the working potential with time dV/dt in a CV experiment is shown in Figure 2.3(a). 

The potential is scanned at a constant rate (typically between 1 to 100 mV/s), from an initial 

value, E1, to a second potential, E2, and back again producing a triangular potential cycle. The 

potential limits E1 and E2 are typically measured relative to the reference electrode. Figure 2.3 

(b), shows an example of a current response in the CV for a simple reversible one electron 

transfer reaction, 𝐴(𝑎𝑞)
+ + 𝑒(𝑚𝑒𝑡𝑎𝑙)

− ⇌ 𝐵(𝑎𝑞).  The nature of a reversible reaction means that as 

soon as sufficient potential is applied and thus reduction/oxidation becomes 

thermodynamically viable, the reaction will take place. This reaction can be described as fast 
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due to an equally large charge flowing in each direction at equilibrium and as such comes 

about by rapid electrode kinetics. 

 

Figure 2.3: (a) Variation of potential with time in a cyclic voltammogram measurement. (b) An example of a 

current-potential curve obtained from a solution phase single electron transfer reaction. 

 

As the potential is not great enough to induce a reaction initially, the CV shows that there is 

no current flowing as the potential is swept from E1 to E2. When sufficient potential is applied, 

the current increases and approaches a maximum due to the high concentrations of 𝐴(𝑎𝑞)
+  in 

the diffusion layer. The maximum is reached as more of the reactant 𝐴(𝑎𝑞)
+  is consumed and 

greater diffusion of 𝐴(𝑎𝑞)
+  from the bulk is required. The current then decreases and becomes 

a constant at E2 as the current becomes dominated by the diffusion rate. As the reverse 

potential sweep occurs back towards E1, in the same manner as the positive sweep, there is an 

initial abundance of reactant in the surface layer. This time the reactant is 𝐵(𝑎𝑞) and the current 

tends towards a maximum before becoming dominated by the diffusion of 𝐵(𝑎𝑞) and the 

current finally returning to 0. In general, the current response is dependent on the reversibility 

of the electrochemical reaction[14]. In the case of a fully reversible reaction the measured 

current peak is equal in size and opposite in sign to that of the positive sweep. For an 

irreversible reaction the charge transferred is reduced and/or the peak position is shifted. CVs 

not only yield valuable information for the potentials at which reactions occur but  also make 

it possible to calculate surface coverage by integration under the CV peaks. It is known that 

in CV an electron transfer takes place and usually the number of electrons is measurable. CV 

is usually paired with surface science techniques such as scanning probe microscopy and 

SXRD to give a more detailed view of the interface. 
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2.3 X-Ray Diffraction 

This section begins by detailing relevant crystallographic definitions, thereafter, providing a 

basic description of x-ray scattering from surfaces. The derivations in this section closely 

follow that of the comprehensive treatments carried out in references[17–22]. 

 

2.3.1 Crystallographic Definitions 

Crystal Lattice and Unit Cell 

The atoms in a crystal exist in a periodic array with long range order that can be described in 

terms of a space lattice with a group of atoms, known as the basis, attached to each lattice 

point. The lattice is defined by three vectors a, b and c, such that a similar lattice point can be 

located via integer translations in these directions from any point in the lattice. A 

parallelepiped characterised by sides of length a, b and c, with angles α, β and γ between them 

defines the unit cell. A representation of the fcc crystal structure is shown in Figure 2.4a cubic 

lattice where a, b and c vectors are all equal and the angles between them are all equal to 90°. 

The basis consists of four atoms located at (0,0,0), (½, 0, ½), (0, ½, ½) and (½, ½, 0) in terms 

of the primitive lattice vectors (a, b, c). 

 

Figure 2.4: The face centred cubic (fcc) crystal structure. This is a four-atom basis cubic lattice. In this case a=b=c 

and the angles between them α=β=γ=90° 

 

Crystal Planes and Miller Indices 

To complete the crystal structure, the unit cell must be translated over all space in the three 

directions of the primitive unit cell. The 3D lattice has an infinite number of parallel 2D planes 

associated with it. Groups of planes are specified by Miller Indices with the notation (hkl). A 

specific plane’s Miller indices are derived by finding the intercepts of the plane with the three 

axes in terms of primitive lattice vectors a, b and c.  Multiplying the reciprocals of the 
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intercepts and by their lowest common factor yields the integer values for (hkl). Figure 2.5 

displays the three lowest index planes for an fcc crystal. Directions in such cubic crystals are 

denoted [hkl] and are perpendicular to the plane denoted by (hkl). The inter-planer spacing, 

dhkl, can be calculated using the Miller indices for parallel planes associated with a cubic lattice 

according to: 

 𝑑ℎ𝑘𝑙 =
𝑎0

√ℎ2 + 𝑘2 + 𝑙2
 (2.10) 

 

 

Where a0 is the cubic lattice parameter.  

 

Figure 2.5: The 3 fcc crystal low-index planes: (a) (100), (b) (110) and (c) (111). 

 

2.3.2 Kinematical X-ray Diffraction 

The derivation of the scattering equations in this section assumes the interaction between the 

x-rays and the crystal is weak, therefore assuming the kinematical approximation. With this 

approximation, multiple scattering effects can be ignored in such a way that an individual 

scattering event can be considered as an elastic collision between the x-ray and an atomic 

electron, simplifying the description. The scattering formulae can then be formed in stages 

from a single electron and through to the bulk crystal, assuming the observed scattering is 

merely the sum of independent contributions from all individual electrons. 

 

Classical Description of Diffraction 

Starting with the classical interpretation of diffraction from parallel crystal atomic planes, the 

derivation of the Bragg law will be described. A schematic diagram of the scattering from two 

adjacent parallel planes separated by a distance d is shown in Figure 2.6(a). Assuming each 

plane of atoms scatters a small fraction of the incident x-rays, multiple layers of the bulk 

crystal therefore contribute to the observed diffraction. If the extra distance travelled by the 
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wave scattering from the lower plane (2x) is equal to an integer number of wavelength (nλ),  

maximum scattering is observed. Based on Figure 2.6(b), the distance x is equal to d sin θ, so 

that Bragg’s law can be stated as:  

𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃         𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ≥ 1 

 

 

Figure 2.6: Diagrams showing the scattering from a series of parallel atomic planes separated by a 

distance d. The incident x-ray beam has a wavevector ki and approaches the planes at an angle of 

incidence θ. The resulting scattered x-ray beam has a wavevector kf. 

 

While Braggs law provides the conditions for diffraction from parallel atomic planes, there is 

lack of information essential for structural analysis such as; consideration of the scattering 

power of the atoms comprising the crystal. The standard procedure for understanding the 

magnitude of the scattered intensity from a crystal starts with the scattering of one electron 

and builds up in stages: namely, scattering of the electrons belonging to an atom, the atoms in 

a unit cell and then finally, a crystal containing N unit cells in three dimensions. 

 

Momentum Transfer 

Momentum transfer (q) is the difference between the incoming (ki) and outgoing wavevectors  

(kf)where q = kf – ki. A graphical representation of this is shown in Figure 2.6(c). In the case 

of elastic scattering, |ki|=|kf|=|k| = 2π/λ, . This relationship in combination with principles of 

trigonometry (Figure 2.6(c)) can be used to derive Bragg’s law in terms of momentum transfer 

and the reciprocal vector such that: 
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|𝒒| = 2|𝒌| 𝑠𝑖𝑛 (

1

2
(2𝜃)) =

4𝜋

𝜆
𝑠𝑖𝑛 (

1

2
(2𝜃)) 

(2.11) 

 

Real Space vectors 

A definition of the real space vectors as adapted from Robinson & Tweet [10] is shown in 

Figure 2.7. Using point O as the origin of the crystal, it can be said that point A is the origin 

of the nth unit cell, point B the jth atom of the nth unit cell and point C is the location of an 

electron belonging to the atom at point B. At a distance R0 from the crystal origin, the scattered 

x-rays are observed. 

 

Figure 2.7: Real space vectors defining the position of an electron (C) belonging to the jth atom (B) of 

the nth unit cell (A). The origin of the unit cell is a distance Rn from the origin of the crystal and the 

scattering is observed at a distance R0 away. Reproduced with permission from [17]. 

Scattering from a Single Electron 

Scattering can be thought of most simply as the scattering from a free electron. The classical 

description of the scattering event states that the incident x-ray’s electric field sets the electron 

into oscillation via exerted force. As a result, the electron radiates a spherical wave with a 

wavelength equal to that of the incident plane wave. The Thompson formula describes the 

amplitude, Ae, of the scattered wave from an electron at re as a function of the incident wave 

amplitude, Ai: 

 
𝐴𝑒𝑒−𝑖(𝑘𝑓∙𝑟𝑒) = 𝐴𝑖

𝑒2

4𝜋𝜖0𝑚𝑐2

1

𝑅0
𝑒−𝑖(𝑘𝑖∙𝑟𝑒) (2.12) 

 

Where e and m are the electron charge and mass respectively. The 1/R0 terms arises due to the 

incoming wave being plane polarised whereas the outgoing wave is spherical. The pre-factor 

to the spherical wave term is known as the Thompson scattering length, r0, where: 
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𝑟0 =

𝑒2

4𝜋𝜖0𝑚𝑐2
 (2.13) 

Using 𝑒
𝑎

𝑒𝑏⁄ =  𝑒(𝑎−𝑏) and q = kf – ki, equation (2.13) can be rearranged to yield the scattered 

amplitude in terms of the incident amplitude and the momentum transfer: 

 𝐴𝑒 = 𝐴𝑖

𝑟0

𝑅0
𝑒−𝑖(𝒒∙𝑟𝑒) (2.14) 

 

Scattering from an Atom 

The scattering from an atom stems from the constructive interference of the spherical waves 

from each electron contained within the atom. Classically, each electron is defined as having 

an associated density distribution, ρ(r’), where r’ is the position of the electron shown in Figure 

2.7. The scattering amplitude of an atom, Aa, is given by substituting the electron position 

vector (re = Rn + rj + r’) into equation (2.14) and summing the separate electron contributions. 

The summation becomes an integration over the atom such that: 

 
𝐴𝑒 = 𝐴𝑖

𝑟0

𝑅0
∫ 𝜌(𝒓′)

+∞

−∞

𝑒−𝑖𝒒∙(𝑅𝑛+𝑟𝒋+𝒓′)𝒅𝟑𝒓′  

 = 𝐴𝑖

𝑟0

𝑅0
𝑓(𝑞)𝑒−𝑖𝒒∙(𝑅𝒏+𝑟𝑗) (2.15) 

 

 

Where f(q) is the atomic form factor given by: 

 
𝑓(𝒒) = ∫ 𝜌(𝒓′)

+∞

−∞

𝑒−𝑖𝒒∙(𝒓′)𝒅𝟑𝒓′ (2.16) 

 

Equation (2.16) shows a q dependence on the atomic form factor in the cases where the x-ray 

energy is well below the atomic absorption edge of a particular element. The International 

Tables of Crystallography[23] contains tabulations of the atomic from factors of most 

elements and list the appropriate coefficients for the Cromer-Mann equation. When q is less 

than ~20 Å-1, the Cromer-Mann equation provides a good approximation for the q dependence 

of atomic form factors: 
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𝑓(𝒒) = ∑ 𝑎𝑖

4

𝑖=1

𝑒−𝑏𝑖(
𝑞

4𝜋
)

2

+ 𝑐 (2.17) 

 

 However, in practice the form factor needs to account for the resonant effects of photon 

energies close to the absorption edges, referred to as anomalous dispersion. The so-called 

dispersion correction is then: 

 𝑓(𝒒, 𝐸) = 𝑓(𝒒) + 𝑓′(𝐸) + 𝑖𝑓"(𝐸) (2.18) 

 

Where 𝑓(𝒒, 𝐸) is the corrected form factor, 𝑓(𝒒) is the uncorrected form factor and 𝑓′(𝐸) and 

𝑖𝑓"(𝐸) are the real and imaginary parts of the dispersion correction respectively. The 

additional complex term, 𝑖𝑓"(𝐸), accounts for any shift in phase that occurs. Tabulations by 

Brennan and Cowan[24] show the energy dependence of the f’ and f” terms for most atoms 

and can be interpolated to find their values. 

 

Scattering from a Unit Cell 

By summing the contributions of all the atoms contained within a unit cell, the resulting 

scattering amplitude, Au, can be obtained. The atoms within a unit cell do not necessarily have 

the same chemical element, this is accounted for via the use of a separate form factor, 𝑓𝑗(𝒒). 

A unit cell containing a number of atoms, Nc, has a scattering amplitude: 

 

𝐴𝑢 = 𝐴𝑖

𝑟0

𝑅0
∑ 𝑓𝑗(𝒒)𝑒(𝑖𝒒∙(𝑅𝒏+𝑟𝑗))

𝑁𝑐

𝑗=1

 

= 𝐴𝑖

𝑟0

𝑅0
𝐹(𝒒)𝑒(𝑖𝒒∙𝑅𝒏) 

(2.19) 

 

Where F(q) is the structure factor given by 

 

𝐹(𝒒) = ∑ 𝑓𝑗(𝒒)𝑒(𝑖𝒒∙𝑟𝑗)

𝑁𝑐

𝑗=1

 (2.20) 

 

For which the value is dependent of the position of the atoms in the unit cell. 
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Scattering from a Crystal 

By summing the contribution from each unit cell, the scattering from the crystal can be 

evaluated. The crystal is defined as consisting of N1, N2 and N3 unit cells along the crystal 

axes directions a, b and c. Using the vector: 

 𝑹𝒏 = 𝑛1𝒂 + 𝑛2𝒃 + 𝑛3𝒄 (2.21) 

 

To give the position of each unit cell relative to the origin, the scattered amplitude is then 

given by: 

 

𝐴𝑐 = 𝐴𝑖

𝑟0

𝑅0
𝐹(𝒒) ∑ ∑ ∑ 𝑒𝑖(𝒒∙(𝑛1𝒂+𝑛2𝒃+𝑛3𝒄))

𝑁3−1

𝑛3=0

𝑁2−1

𝑛2=0

𝑁1−1

𝑛1=0

 (2.22) 

 

Equation 2.13 shows that the scattered amplitude is a combination of two factors; the structure 

factor, containing the chemical information, and the summation of the lattice of unit cells over 

three dimensions. To proceed further it is necessary to consider one of the independent terms 

from equation (2.22). A geometric progression from a one-dimensional crystal of N atoms, 

where x=q‧a, such that 

 

𝑆𝑁(𝑥) = ∑ 𝑒𝑖𝑥𝑛

𝑁−1

𝑛=0

 (2.23) 

 

=
1 − 𝑒𝑖𝑥𝑛

1 − 𝑒𝑖𝑥
 

 
=

𝑒𝑖𝑥𝑛 2⁄ (𝑒−𝑖𝑥𝑛 2⁄ − 𝑒𝑖𝑥𝑛 2⁄ )

𝑒𝑖𝑥 2⁄ (𝑒−𝑖𝑥 2⁄ − 𝑒𝑖𝑥 2⁄ )
 (2.24) 

 

In a diffraction experiment we are interested in the scattered intensity, the square modulus of 

𝑆𝑁(𝑥)∗ is proportional to the scattered intensity. Therefore, using 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃 and 

multiplying equation (2.24) by its complex conjugate the pre-factor becomes unity and the 

contribution to the scattered intensity is as follows: 

 
|𝑆𝑁(𝑥)|2 =

𝑠𝑖𝑛2(𝑥𝑁 2⁄ )

𝑠𝑖𝑛2(𝑥 2⁄ )
 (2.25) 

 

This Equation is known as the N-slit interference function, its magnitude reaching some 



2 Theoretical Principles 

17 
 

maxima of N2 separated by 2π in units of q‧a[17]. When ½ q‧a = mπ, where m is an integer, 

the denominator goes to zero and the value of |𝑆𝑁(𝑥)|2 is maximised. Extending this to three 

dimensions, i.e treating the other two components of the scattered intensity similarly, the 

scattered intensity from a large 3D crystal can be expressed as: 

 
𝐼(𝒒) = 𝐼𝑖 (

𝑟0

𝑅0
)

2

|𝐹(𝒒)|2𝑆𝑁1
(𝒒 ∙ 𝒂)𝑆𝑁2

(𝒒 ∙ 𝒃)𝑆𝑁3
(𝒒 ∙ 𝒄) (2.26) 

 

 

When the following conditions are met simultaneously, the so-called Laue conditions for 

diffraction, equation (2.25) displays maxima: 

𝒒 ∙ 𝒂 = 2𝜋ℎ 

𝒒 ∙ 𝒃 = 2𝜋𝑘 

        𝒒 ∙ 𝒄 = 2𝜋𝑙 (2.27) 

 

Where the Miller indices h, k and l take integer values. The Laue conditions are simultaneously 

satisfied by the vector: 

 𝒒 = ℎ𝒂∗ + 𝑘𝒃∗ + 𝑙𝒄∗ (2.28) 

 

Where a*, b* and c* are related to the real space vectors by: 

 
𝒂∗ = 2𝜋

𝒃 × 𝒄

𝒂 ∙ (𝒃 × 𝒄)
 , 𝒃∗ = 2𝜋

𝒄 × 𝒂

𝒂 ∙ (𝒃 × 𝒄)
 𝑎𝑛𝑑 𝒄∗ = 2𝜋

𝒂 × 𝒃

𝒂 ∙ (𝒃 × 𝒄)
 (2.29) 

 

A 3D lattice of q values that satisfy the Laue conditions can be formed by substituting arbitrary 

integer values of h, k and l into equation (2.28). This lattice is known as the reciprocal lattice 

and is defined by the reciprocal lattice vectors from equation (2.29). In a diffraction 

experiment the points on the reciprocal lattice are labelled by the (h,k,l) values of the crystal 

planes from which they are scattered and reveal the position of the Bragg peaks (maximum 

scattered intensity). The reciprocal lattice vector 𝑮(ℎ𝑘𝑙) = ℎ𝒂∗ + 𝑘𝒃∗ + 𝑙𝒄∗ is normal to the 

plane defined by h, k and l. As the real space vectors have units of angstroms (Å), the reciprocal 

lattice vectors have units of Å-1.  Outside of discrete values of q that lie on the reciprocal 

lattice, the diffracted intensity from a large 3D crystal is zero. Consequently, the scattered 

intensity in a diffraction experiment is measured as a function of the momentum transfer from 

which it is possible to infer a unit cells real space structure. The intensity at a position is 

reciprocal space is thus: 
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𝐼ℎ𝑘𝑙 = 𝐼𝑖 (

𝑟0

𝑅0
)

2

|𝐹(ℎ𝒂∗ + 𝑘𝒃∗ + 𝑙𝒄∗)|2𝑁1
2𝑁2

2𝑁3
2 (2.30) 

 

2.3.3 Surface X-ray Diffraction 

Scattering from a 2D monolayer and Crystal Truncation Rods 

Up to this point, only the general case of diffraction from a large 3D crystal has been 

considered. The model can then be progressed to consider the case of diffraction from a surface 

or a buried interface. First the case of a 2D monolayer can be considered as shown in Figure 

2.8(a left). This is corresponding to setting N3 in equation (2.25) to 1, where the c vector is 

along the surface normal and the vectors a and b are in the plane of the surface. The diffraction 

in this case is independent of the momentum transfer in the surface normal direction (q ‧ c). 

Therefore, for integer values of h and k, there is an intensity observed for all values of l when 

in the plane of the surface the Laue conditions are met. Figure 2.8(a right) shows the resultant 

diffraction where the scattering is sharp in directions parallel to the surface however, in the 

direction normal to the crystal surface is completely diffuse. Figure 2.8 (b right) shows the 

‘rods’ of scattering superimposed onto the scattering from the 3D crystal passing through the 

bulk reflections. Figure 2.8 (c right) shows the diffracted intensity pattern in the case of a real 

surface, created by slicing the crystal along a particular orientation, the intensity is streaked 

between the Bragg peaks along the l direction forming Crystal Truncation Rods or CTR’s. 

The intensity profile of the CTR can be understood via consideration of equation (2.25) for 

the case of a crystal extended in the directions defined by the a and b vectors (N1, N2→∞), 

and a finite thickness of N3c. The 𝑠𝑖𝑛2(𝑁3𝒒 ∙ 𝒄) term is a rapidly varying function of q for 

large N3 and is taken to be its average value of ½. Replacing this into equation (2.25) the 

scattered intensity as a function of the surface normal momentum transfer when the Laue 

conditions are met is given by: 

 
𝐼𝐶𝑇𝑅 = 𝐼0 (

𝑟0

𝑅0
)

2

|𝐹(𝒒)|2𝑁1
2𝑁2

2
1

2𝑠𝑖𝑛2(𝒒 ∙ 𝒄 2⁄ )
 (2.31) 

 

The expression generates sharp peaks in intensity i.e. Bragg peaks at values of 𝒒 ∙ 𝒄 = 2𝜋𝑙 

where l is an integer. In between the Bragg peaks the intensity is ‘smeared’ along the surface 

normal direction as shown by the solid black line in Figure 2.9. 
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Figure 2.8:Real space (left) and reciprocal space diffraction (right) for (a) a two-dimensional monolayer, 

(b) the surface of a crystal and (c) a crystal-crystal interface. 

 

2.3.4 Modelling Surface Structure 
So far, the derivation of the scattered intensity along the CTR’s has assumed a single crystal 

that is defect-free and perfectly terminated. However, surface properties such as surface 

relaxation, roughness and relative occupation affect the CTR profile and thus  need to be 

considered to accurately model the scattered intensity. The effect these surface properties have 

on the CTR profile is illustrated in Figure 2.9. The general form of the CTR profile for a 

perfectly terminated crystal surface is represented by the solid black line. The Bragg 

conditions are satisfied and a maximum in the intensity is observed when l is an integer.  
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Figure 2.9:Demonstration of the effect of the various parameters on the CTR profile compared to a 

perfectly terminated crystal surface (solid black line). The illustrations on the left highlight the physical 

definitions of each parameter. Each line shows how a [1 0 L] CTR for an Au(111) crystal would change 

if the value of the parameter highlighted in the illustrations were change to that of the values shown in 

the legend. Coverage is given as a fraction of the total coverage, the Debye-Waller factor is terms of 

root mean squared displacement given in Å and relaxation is given in units of percentage expansion 

from the bulk lattice spacing. 

 

When l has half integer values the scattering is at a minimum, known as ‘anti-Bragg’ positions. 

At these minima, the scattering is comparable to that of the scattering from a single monolayer, 

due to the cancelling out of scattering from the bulk crystal. A decrease in the relative 

occupation or an increased roughness of the topmost atomic layer causes the intensity between 

the Bragg peaks to fall off sharply, whereas changes in relaxation causes asymmetry around 

the Bragg peaks. The specular CTR is when the CTR is dependent only on the surface normal 

component of the momentum transfer. Measurement of the (0, 0, l) CTR is sensitive only to 

the atomic planes stacked in the direction of the surface normal. Non-specular CTRs have an 

additional in-plane component of the momentum transfer for integer values of h and k 

satisfying the Laue diffraction conditions. CTR measurements at these fixed (h, k) positions 

are sensitive to the registry of surface and bulk layers. If the surface layer has periodicity that 
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differs from that of the bulk, e.g. the Au(111) surface can reconstruct to form a (23 x √3) 

structure, then the scattering from the surface is able to be observed separately from the bulk 

CTR in reciprocal space. A detailed three-dimensional model for the surface structure can be 

formed through measurement and modelling of the specular and non-specular CTRs’. 

 

2.3.5 Reciprocal Lattice for the Low-Index fcc Metal Surfaces 

It is desirable during surface x-ray scattering experiments to define the Miller indices such 

that l is in the direction of the surface normal, and h and k lie in the plane of the surface. 

Therefore, the specular CTR will lie in the surface normal direction. In this thesis the results 

discussed pertain to [111], [110] and [100] oriented, face centred cubic (fcc) metals. As such, 

a description of the real-space parameters, the resultant reciprocal space lattices and the 

surface parameters used in the subsequent modelling will now be provided. 

 

The fcc(111) surface 

 

Figure 2.10:Fcc(111) real space surface structure: (a) 'side' view and (b) 'top' view. (c) corresponding 

reciprocal space lattice. 

The (111) surface is the most densely packed of the three low index faces. This surface defined 

such that the surface normal direction is along the (0, 0, l) hex direction and the (h, 0, 0)hex and 

(0, k, 0) directions lie in the surface plane and subtend 60°.  This is performed by defining a 

hexagonal surface unit cell such that the a and b vectors are equal to the nearest neighbour 

spacing, aNN, and subtend an angle of 120°. Figure 2.10(b) shows the hexagonally close packed 

(hcp) surface structure. The unit cell comprises of three atomic layers defining the c 
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parameters brought about by ABC stacking in the [111] direction as shown in Figure 2.10(a). 

The units of h, k and l are defined as: 

 
𝑎∗ = 𝑏∗ =

4𝜋

√3𝑎𝑁𝑁

              𝑎𝑛𝑑          𝑐∗ =
2𝜋

√6𝑎𝑁𝑁

 (2.32) 

 

In Figure 2.10(c) the Bragg peaks are represented as circles and are separated by three units of 

l due to the three atomic layer repetition in the [111] direction in the unit cell. The fcc unit cell 

notation can be related to the hexagonal unit cell notation via the following transforms: 

 ℎ𝑐 =
2

3
ℎ𝑠 −

2

3
𝑘𝑠 +

1

3
𝑙𝑠 

𝑘𝑐 =
2

3
ℎ𝑠 +

4

3
𝑘𝑠 +

1

3
𝑙𝑠 

𝑙𝑐 = −
4

3
ℎ𝑠 +

2

3
𝑘𝑠 +

1

3
𝑙𝑠 

(2.33) 

Such that (003) in surface notation represents the (111) Bragg peak. 

The bulk structure factor, FBulk, is initially considered to evaluate the CTR scattering profile 

from this surface. FBulk for an unrelaxed, unmodified crystal is given by: 

 

 
𝐹𝐵𝑢𝑙𝑘 = 𝑓 𝐷𝑊𝐵𝑢𝑙𝑘 ∑ 𝑒𝑖𝑛[2𝜋(

ℎ
3

−
𝑘
3

−
𝑙
3

)]

∞

𝑛=0

 

=  
𝑓 𝐷𝑊𝐵𝑢𝑙𝑘

1 − 𝑒2𝜋𝑖(
ℎ
3

−
𝑘
3

−
𝑙
3

)
 

(2.34) 

 

where 𝑓 is the q dependent atomic form factor. 𝐷𝑊𝐵𝑢𝑙𝑘 is the term representing the Debye-

Waller factor, which accounts for thermal disorder, that has the overall effect of decreasing the 

diffracted intensity. The bulk Debye-Waller factor is derived from the Debye temperature 

which  has been calculated for all elements[23]. This term is dependent on the root-mean-

square (rms) displacement about their average position (σ) of the atoms for which the 

relationship between 𝐷𝑊𝐵𝑢𝑙𝑘 and σ is shown in equation (2.36).  

 
𝐷𝑊𝐵𝑢𝑙𝑘 = 𝑒−

1
2

(𝒒𝜎)2

 (2.35) 

 

Scattering from the surface layers is considered as the continuation of the bulk structure in 

addition to the bulk structure factor. In the case of a metal crystal, where the bonds are not 

strongly directional, modelling the CTR data considering the relaxations in the three outermost 

surface layers is suitable. 
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𝐹𝑆𝑢𝑟𝑓 = 𝑓𝜃𝑛𝐷𝑊𝑛𝑒2𝜋𝑖[𝑛(−

ℎ
3

+
𝑘
3

+𝑙|
1
3

+𝜀𝑛|)]                  𝑓𝑜𝑟 𝑛 = 1,2,3 (2.36) 

As in the near surface region, there is a difference in the interatomic bond strengths compared 

to the bulk. The Debye-Waller factor is therefore considered for each layer individually (𝐷𝑊𝑛). 

The relative occupation of the surface layer is controlled by the 𝜃𝑛 term. This is simply a 

multiplicative fraction from 0 to 1ML that controls the density of the individual layers. The 

surface normal displacement of each layer, either expansion or relaxation, is controlled by the 

𝜀𝑛. Section 2.3.4 and Figure 2.9 show the induced asymmetry either side of the Bragg peak, 

compared to a perfectly terminated crystal surface brought about by this term. The change in 

the scattering is due to interference effects between x-rays scattered from solely the modified 

surface layer and those scattered from the bulk crystal. The total scattered intensity is given 

by: 

 𝐼𝑇𝑜𝑡 = |𝐹𝑇𝑜𝑡|2 = |𝐹𝐵𝑢𝑙𝑘 + 𝐹𝑆𝑢𝑟𝑓|
2
 (2.37) 

The fcc(110) surface 

Of the three low-index fcc structures, the (110) surface, depicted in Figure 2.11, is the most 

open. Here a rectangular unit cell is defined such that h and k are along the [11̅0] and [010] 

directions respectively.  l  is defined in the [110] direction which has ABAB stacking. As 

such the Bragg peaks are spaced out in the l direction in units of 2. The units of h, k and l are 

defined as: 

 
𝑎∗ = 𝑐∗ =

2𝜋

𝑎𝑁𝑁
              𝑎𝑛𝑑          𝑏∗ =

4𝜋

√2𝑎𝑁𝑁

 (2.38) 

 

The surface notation can be converted to bulk units via the following transformations: 

 ℎ𝑐 = ℎ𝑠 + 𝑙𝑠 

𝑘𝑐 = −ℎ𝑠 + 𝑙𝑠 

𝑙𝑐 = 𝑘𝑠 

(2.39) 

The CTR’s for this surface can then be described by: 

 
𝐹𝐵𝑢𝑙𝑘 =  

𝑓 𝐷𝑊𝐵𝑢𝑙𝑘

1 − 𝑒2𝜋𝑖(
ℎ
2

+
𝑘
2

+
𝑙
2

)
 (2.40) 

 

With the scattering factors from the outermost three layers given by: 

 
𝐹𝑆𝑢𝑟𝑓 = 𝑓𝜃𝑛𝐷𝑊𝑛𝑒2𝜋𝑖[𝑛(

ℎ
2

+
𝑘
2

+𝑙|
1
2

+𝜀𝑛|)]                  𝑓𝑜𝑟 𝑛 = 1,2,3 (2.41) 

 

Where the symbols have the same meaning as for the (111) crystal. The total scattering is 
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then given by equation (2.37). 

 

 

 

Figure 2.11Fcc(110) real space surface structure: (a) 'side' view and (b) 'top' view. (c) corresponding 

reciprocal space lattice. 

 

The fcc(100) surface 

 

Figure 2.12: Fcc(100) real space surface structure: (a) 'side' view and (b) 'top' view. (c) Corresponding 

reciprocal space lattice. 

Figure 2.12 displays the surface unit cell for the (100) surface utilised in the x-ray diffraction 

experiments along with the corresponding reciprocal space map. The units of h, k and l for 

this surface are given by: 
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𝑎∗ = 𝑏∗ =

2𝜋

𝑎𝑁𝑁
              𝑎𝑛𝑑          𝑐∗ =

4𝜋

√2𝑎𝑁𝑁

 (2.42) 

 

The bulk cubic unit cell is related to the surface tetragonal unit cell that is shown here via the 

following transformations. 

 
ℎ𝑐 = ℎ𝑠 + 𝑘𝑠 

𝑘𝑐 = ℎ𝑠 − 𝑘𝑠 

𝑙𝑐 = 𝑙𝑠 

(2.43) 

In the same way as the case for the (111) surface the CTR’s for this surface can be described 

via the consideration of the contributions from the surface layers and the bulk separately. The 

bulk structure factor is given by: 

 
𝐹𝐵𝑢𝑙𝑘 =  

𝑓 𝐷𝑊𝐵𝑢𝑙𝑘

1 − 𝑒2𝜋𝑖(
ℎ
2

+
𝑘
2

+
𝑙
2

)
 (2.44) 

 

And the scattering from the outermost three layers is: 

 
𝐹𝑆𝑢𝑟𝑓 = 𝑓𝜃𝑛𝐷𝑊𝑛𝑒2𝜋𝑖[𝑛(

ℎ
2

+
𝑘
2

+𝑙|
1
2

+𝜀𝑛|)]                  𝑓𝑜𝑟 𝑛 = 1,2,3 (2.45) 

 

 

Where the terms have the same meaning as for the (111) crystal. The total scattering is then 

given by equation (2.37). 

 

2.3.6 Additional contributions to the scattered intensity 

The calculation for the scattered intensity can be modified by one of several schemes to 

account for additional factors such as pronounced roughness, and the contribution to the 

scattering brought about by the electrolyte. 

 

The β Factor 

While multiple methods exist to modify equation (2.31) to account for pronounce surface 

roughness, the simplest approach was proposed by Robinson [25]. This model has a similar 

form to that commonly used to explain the scattering from systems with partial stacking 

disorder. It assumes an exponential distribution of heights where the first layer is fully 

occupied, followed by a second layer with a fraction of β occupied sites, then another layer 

with β2 sites occupied and so on. This modifies the scattered intensity to: 
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 𝐼𝑅𝑜𝑢𝑔ℎ = 𝐼𝐶𝑇𝑅

(1 − 𝛽)2

1 + 𝛽2 − 2𝛽 cos(𝒒 ∙ 𝑎3)
 

(2.46) 

Electrolyte Contribution 

CTRs can be affected by ordering in the electrolyte and thus the contributions from the 

electrolyte need to be included in the structure factor. In plane ordering would only be 

expected in the case where the electrolyte species are strongly adsorbed. The more common 

case is considered here, where planes of concentrated electron density are parallel to the crystal 

surface. Such vertical ordering is expected in electrochemical systems, but some ordering may 

also be expected where any smooth hard wall meets a liquid [26–28]. A structure solely 

ordered perpendicular to the surface plane will only affect the specular CTR (00L), as in such 

a measurement there is no in plane momentum transfer. Also known as extended reflectivity, 

measurements of the specular CTR are a direct probe of the scattering along the surface 

normal. To account for this, additional structure factor needs to be added to equation (2.46). 

 

Figure 2.13: Demonstration of how the various structural parameters for a layer of adsorbed adatoms 

can affect the form of a specular CTR. The illustrations on the left side represent the physical meaning 

of the parameters being varied. The coloured lines demonstrate how a perfectly terminated Au(111) 

crystal is modified by changes in the adlayer. The black line shows the perfect termination of the bulk 

crystal with no adlayer. Unless indicated, the adlayer has a coverage θ=1, distance 3 Å from the crystal 

surface and a rms roughness of 0.2 Å. 

The simplest case is that of the adlayer, a single atomic layer above the surface at height Had 

with structure factor: 

 𝐹𝑎𝑑𝑙𝑎𝑦𝑒𝑟 = 𝜃𝑎𝑑𝑓𝑎𝑑𝑙𝑎𝑦𝑒𝑟𝑒−
1
2

〈𝑞𝑢𝑎𝑑〉2

𝑒2𝜋𝑖(𝐻𝑎𝑑𝑙) 

 

(2.47) 
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where θad is the fractional coverage of the layer to the metal surface, fadlayer the scattering factor 

for the atoms in the layer, the 𝑒−
1

2
〈𝑞𝑢𝑎𝑑〉2

term accounts for disorder and 𝑒2𝜋𝑖(𝐻𝑎𝑑𝑙) is the 

structure factor where the k=0 and h=0 since this is for the specular CTR only. The height is 

also in terms of the bulk unit cell. A comparison of how various coverages of carbon, as used 

in Chapter 6, affect the specular CTR is shown in Figure 2.13. Also depicted in Figure 2.13 is 

how the distance of such layers from the crystal affect the CTR. Changes in the layer height 

affect the CTR in a different manner to changes in coverage and roughness, due to its effect 

on the path difference of the interfering waves.  

 

 

Figure 2.14: Graph showing the difference between a liquid above the surface modelled with an error 

function (blue line) and a liquid modelled with layers that broadens as the layers move further away 

from the surface (red line). The metal surface is located at height 0 Å and is not shown here. The error 

function is modelled with σ0=0.5 Å, situated at a height of 4 Å. The liquid layer model has parameters 

σ0=0.7 Å, σbar=0.5 Å, d=3.5 Å at a height of 4 Å.  

  

A further matter to consider is that the discontinuity where the electron density in the 

electrolyte transitions towards the bulk electrolyte density affects the CTR. Figure 2.14 
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illustrates two ways the liquid structure at the interface can be modelled as vertical electron 

density plots. An error function is the most basic model shown, a smooth varying function that 

plateaus at the bulk liquid density. The structure factor of this function is as follows: 

 
𝐹 = 𝑖𝑓 (𝐴𝑢𝑐𝜌)

𝑒−
1
2

(𝑄𝜎0)2

𝑄
𝑒2𝜋𝑖(𝑙𝐻) 

 

(2.48) 

 

Where f is the scattering factor of the liquid, ρ(=0.033Å-3 for water) is the density of the bulk 

liquid, AUC is the area of the liquid unit cell, σ0 is width of the error function and H is the 

height above the surface in unit cell coordinates. 

1 2 3 4 5

S
tr

u
c
tu

re
 F

a
c
to

r 
(a

. 
u
.)

L (r. l. u.)

Figure 2.15: Comparison of how the various liquid models after the shape of a specular CTR compared 

to a perfectly terminated bulk Au(111) crystal (black line). The error function (blue line) and the layered 

model (red line) are modelled using the same parameters as those used in Figure 2.14 

 

An alternative approach is for a layered water profile where the where each successive layer 

is broadened away from the surface following the form: 

 𝜎𝑗 = √𝜎0
2 + 𝑗𝜎𝑏𝑎𝑟

2  
(2.49) 
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The structure factor is thus: 

 
𝐹 = 𝑖𝑓 (𝐴𝑢𝑐𝜌)

𝑒−
1
2

(𝑄𝜎0)2

1 − 𝑒−
1
2

(𝑄𝜎𝑏𝑎𝑟)2
𝑒𝑖𝑄𝑑

𝑒2𝜋𝑖(𝑙𝐻) (2.50) 

 

Where d in this equation is the spacing between layers, σbar is the broadening term from 

equation (2.49). The structure factor of an error function is recovered in the case where σbar 

tends to 0.  Figure 2.15 demonstrates how the form of a CTR is affected by these liquid 

components within each model. At low q the error function alters the CTR, but its contribution 

drops off rapidly, whereas the layered liquid model has a quasi-Bragg peak at Q=(2π/d) 

brought about by the layering of the liquid near the surface. For water at charged mineral 

surface the layered model has been found to work well[29] . However, for electrochemical 

interfaces with either a significant diffuse region or adsorbed species the layered model may 

not be appropriate. A detailed discussion of the error function and layered model along with 

their relative merits can be found in[30]. 

 

2.4 X-ray Voltammetry 

X-ray Voltammetry (XRV) combines both cyclic voltammetry and x-ray diffraction 

measurements. It was shown earlier via Figure 2.9 that the diffracted CTR intensity is sensitive 

to certain structural properties of the electrode surface. Therefore, it is possible to form an 

understanding of the structural effects occurring, as well as the stable potential range of any 

modified surface structures. This is achieved by measurement of the reflected intensity at a 

fixed (hkl) value that is sensitive to surface relaxation or an adsorption process, for example, 

as a function of potential. XRV measurements are typically used to highlight interesting 

structural changes that are then characterised by potentiostatic CTR measurements. 

Macroscopic electrochemical measurements can be linked to atomic scale structural changes 

through comparing the XRV data with CV measurements. In experiments where structural 

changes such as an ordered adsorbate layer or a reconstructed surface layer with an altered 

symmetry compared to the bulk lattice, XRV measurement are particularly useful. In these 

situations, it is possible to monitor the potential window of stability of the structure in a case 

where the scattering can be completely isolated from the scattering of the bulk of the crystal. 

XRV is a key tool employed in the studies in this thesis and multiple examples will be 

presented in chapters 4-6.



  

30 
 

3 Experimental Techniques 
 

The use of electrochemistry in conjunction with in-situ x-ray diffraction is an established 

method for investigation of the electrode/electrolyte interface. Using these methods, 

investigations are carried out and the collected data are processed and analysed to gain 

information on the structure of the interface. First, section one gives details of sample 

preparation methods and the equipment that is utilised to carry out in-situ surface x-ray 

diffraction investigations of single crystal surfaces. Secondly, section two describes the 

physical process of measuring the structural changes in the electrode/electrolyte interface and 

the data processing and analysis methods. 

 

3.1 Sample Preparation 

Reliable and reproducible preparation of the single crystal surface is a vital stage of 

experimental setup as small changes in a metal electrode can impact the electrochemical 

behaviour of a system . The samples used in the experiments detailed in this thesis are metallic 

fcc single-crystals (Au), oriented to either the [111], [100] or [110] crystallographic direction. 

Typically, they are 10.0 mm or 6.0 mm in diameter and have a depth of 3.0 mm, with a central 

groove for easy mounting in the UHV environment. The Au single crystals used in this work 

were purchased from Matek, where they had been grown, oriented to the specific 

crystallographic orientation with an accuracy of  at least 0.2° and polished.  

 

The single crystal samples were initially prepared in Ultra High Vacuum (UHV) in a series of 

argon ion sputter and thermal annealing cycles to produce a clean surface. Argon ion sputter 

cycles remove impurities from the sample’s surface via the bombardment of Ar ions. During 

anneal cycles, the sample is heated to temperatures below the surface melting temperature to 

recover long  range ordering in the surface layers. Samples are subjected to anneal cycles 

either by passing current through a filament in thermal contact with the sample or, for higher 

temperatures, using an e-beam heater. An e-beam heater works by heating through electron 

bombardment i.e., accelerating high energy electrons into a grounded sample. Low energy 

electron diffraction (LEED) and x-ray photoemission spectroscopy (XPS) are used between 

'sputter and anneal' cycles to assess the quality of the surface. LEED is a surface sensitive 

diffraction technique that entails the firing of a beam of electrons at the surface and collecting 

the scattered electrons on a photo-fluorescent screen. The scattered electrons produce a 

diffraction pattern caused by the interference of electrons on the screen. The strongly 
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interacting nature of electrons, which do not penetrate far into the sample, give rise to the 

surface sensitivity. A well-ordered surface is indicated by sharp spots on a LEED pattern. In 

the case of Au (111), which can reconstruct, any sharp satellite spots on the LEED pattern is a 

further sign of a well-ordered surface. XPS works by irradiating a sample with an x-ray beam 

and measuring the kinetic energy of the electrons ejected from the sample. The electron’s 

kinetic energy (Ek) can be converted to binding energy (Eb) through the relationship: 

𝐸𝑏 = 𝐸𝑝 − (𝐸𝑘 + 𝜙) 

where Ep is the photon energy (known in advance) and ϕ is the work function of the electron 

analyser. By plotting binding energy against the number of counts, several peaks are observed. 

These peaks correspond to the atomic (or molecular) energy levels of the sample being 

investigated. XPS can be used in the preparation of samples for electrochemistry to verify 

there are no surface contaminates. 

 

Preparing a sample via UHV before every measurement can be impractical to do prior to every 

measurement, therefore other simple techniques known to give reproducible surfaces were 

preferred in this work. The choice of technique depends on the sample to be measured. The 

primary technique selected for the measurements detailed here was ‘flame annealing’ [31]. 

Flame annealing gold with a butane torch produces large flat terraces and a reconstruction that 

survives transfer into an electrochemical cell[6]. The gold surface is heated until it reaches a 

bright red colour, while being careful to not cause any melting, by constantly moving the flame 

on and off the sample. The sample is then cooled in an inert atmosphere, typically nitrogen or 

argon, and then covered with a droplet of ultra-pure water. However, if the droplet is added 

too soon, it will quench the sample. This is known to lead to a poor surface and gradually, the 

thermal shock will damage the bulk of the crystal. 

 

3.2 Electrochemistry 

In Chapter 2 the standard three electrode cell was described. However, to make in-situ X-ray 

measurements the design requires significant modifications. A schematic of an X-ray thin 

layer cell is shown in Figure 3.1comparable to that described in [32, 33]. Given the nature of 

the contents of the cell, a material that is inert is required. For this reason, Kel-F or 

Polychlorotrifluoroethylene (PCTFE) is used as it is both inert and has good machinability. 

The fittings used are made of similar materials such as Teflon or PEEK. The counter electrode 

is typically a polycrystalline wire consisting of the same material as the working electrode. 

For most aqueous systems Ag/AgCl reference electrodes (WPI- Leak-Free reference 

electrode, catalogue no. 69-0023 [LF – 2]) appear to function adequately. As mentioned in 



3 Experimental Methods 

32 
 

Chapter 2 the working electrode is the single crystal sample being used in the study. This sits 

in a collet that tightens around the crystal as the collet is screwed into the cell. The contact for 

the working electrode is formed with a polycrystalline wire, coiled into a spring and passed 

through the base of the collet. The cell also has fittings to allow for in and out electrolyte 

tubing, this enables the addition/removal of electrolyte from the cell, controlled by opening 

taps to either an electrolyte reservoir (in) or a syringe (out). Covering the top of the cell is a 

polypropylene film that is transparent to x-rays and secured with an O-ring, preferably made 

of an inert material. The film can be ‘raised/lowered’ (inflated/deflated) by controlling the 

amount of electrolyte in the cell. The whole cell is then surrounded by an outer Kapton hood 

and has an overpressure of inert gas such as Nitrogen or Argon. 

An alternative X-ray electrochemical cell used in this work is the droplet cell shown in Figure 

3.2(a), comparable to that seen in references [34–39]. The base of the cell holding the working 

electrode is typically made of the same materials used in the X-ray thin layer cell mentioned 

previously. Rather than containing the electrolyte inside the cell with a polypropylene film, 

the electrolyte is fed through a crosspiece into a capillary tube that is held above the working 

electrode. This allows for a droplet of electrolyte to be held between the end of the capillary 

and the working electrode.  The capillary tube and crosspiece are made of glass, quartz, 

polytetrafluoroethylene (PTFE) or similar materials. However, any problems in the cell, for 

example an air bubble inside the capillary or the crosspiece, cannot be identified while in situ 

if the crosspiece is made of PTFE or similar opaque materials. Therefore, care must be taken 

during the piecing together of the crosspiece and capillaries. The crosspiece is held in place 

by the aluminium top piece of the Kapton hood as shown in the Figure 3.2(b). On either side 

of the crosspiece is an inlet to maintain the droplet on the surface of the working electrode. 

The electrolyte tubing has a comparable setup to the thin layer cell, except for the addition of 

a Hamilton syringe with a PTFE Luer lock attached to the inlet tubing, which can be depressed 

to ‘top up’ the droplet if required. The counter electrolyte, as in the thin layer setup, is a 

polycrystalline wire usually comprising of the same material as the working electrode. The 

counter electrode is fed down to the droplet through a small hole in the top of the Kapton hood 

and forms a ring above the working electrode that sits inside the droplet and helps to stabilise 

it. The reference is slightly different compared to the thin layer setup as it has to be fed from 

the top of the crosspiece and down through the capillary tube. Therefore, a ‘flexi-reference’ is 

used (World Precision instruments FLEXREF-Flexible Dri-Ref Reference Electrode) to give 

the added length required and providing the added benefit of lowering the RC of the circuit. 

Thus, allowing for the measuring of current transients of the system in situ. The fittings for 

the crosspiece are made of Ethylene tetrafluoroethylene (ETFE).  
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Figure 3.1(a) Illustration of the thin layer in situ electrochemical cell, around the cell a 'Kapton’ hood 

is also placed. (b) Photograph of the thin layer cell on a diffractometer, around the cell is the Kapton 

hood that allows for the atmosphere around the electrochemical cell to be controlled. 
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Tubing, cell, fittings and any required glassware are soaked overnight in a 50:50 mixture of 

concentrated H2SO4 and HNO3. They are then rinsed several times in ultrapure water (Milli-

Q), with a resistivity of 18.2 MΩ‧cm that has undergone several filtering and deionizing steps. 

Following this rinsing the parts are then boiled in fresh ultrapure water and rinsed a further 10 

times. Depending on the material being used, gold in the case of the experiments in this work, 

any polycrystalline wires are also dipped in acid and rinsed in ultrapure water. The wires are 

then flame annealed, allowed to cool and then rinsed once more in ultrapure water. The 

polypropylene film is rinsed several times in ultrapure water, then boiled and rinsed 3 times. 

The single crystal working electrode is prepared following the methodology outline in the 

previous section and then transferred into the cell via the collet as it is covered in a droplet of 

ultrapure water. Once the collet has been secured the cell is topped up with electrolyte and the 

polypropylene film secured. After this, any trapped air in the cell is removed and the 

electrolyte is exchanged for fresh deaerated electrolyte. The hood is then fastened over the cell 

and the full setup is transferred to the beamline and fitted on a diffractometer. The thin layer 

setup can limit diffusion and therefore voltammetry should be carried out with the film raised 

to reduce these effects. Nevertheless, for the conducting of x-ray measurements the thin-film 

should be deflated (the thickness when deflated is ~10μm) to reduce absorption of the x-ray 

beam. 

In the case of the droplet cell the preparation methodology is the same as the thin layer setup 

with the following exceptions. Once the components of the cell have been acid cleaned, rinsed 

and boiled, the crosspiece, capillary, reference electrode and electrolyte inlet are pieced 

together. The crosspiece and capillary are then filled with electrolyte and any bubbles are 

removed. The working electrode is mounted in the base of the cell is mounted in the 

methodology outlined above. The crosspiece is then mounted onto the hood and the counter 

electrode is fed through the top of the hood and down so that a loop of the wire sits just below 

the capillary. The electrolyte is then exchanged for fresh deaerated electrolyte and the hood is 

placed over the base of the cell so that the capillary and counter electrode sit above the working 

electrode. The droplet is then formed by depressing the Hamilton syringe attached to the 

electrolyte inlet gently. The hood is then fastened in place and the full setup is transferred to 

the beamline and mounted on the diffractometer.  
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Figure 3.2(a): Illustration of the droplet in situ electrochemical cell, around the cell a 'Kapton’ hood is 

placed that holds the crosspiece in place. (b) Photograph of the droplet cell on a diffractometer, around 

the cell is the Kapton hood that allows for the atmosphere around the electrochemical cell to be 

controlled. 

(a) 

(b) 
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3.3 Synchrotrons and Beamlines 

Scattering along a crystal truncation rod is approximately 105 times less intense than that of 

the scattering from Bragg peaks. In combination with the nature of the electrochemical set up; 

i.e.  a liquid layer on top of the working electrode sample surface, an extremely high photon 

flux is required. Whilst laboratory based rotating anode sources are improving, the availability 

of the fluxes high enough for in-situ experiments is still relatively low. Synchrotrons are a 

much better source of x-rays and have the added benefit of being a tuneable energy source of 

x-rays. 

The emission of synchrotron radiation is generated by the acceleration of charged particles on 

a curved path through a magnetic field. The use of synchrotrons began parasitically, when 

scientists realised the synchrotron radiation particle physicists viewed as ‘wasteful energy’ 

could be put to good use, these were known as 1st generation synchrotrons. 2nd generation 

synchrotrons used bending magnets and were solely dedicated to the production of 

synchrotron radiation. 3rd generation synchrotrons brought about the inclusion of arrays of 

magnets called insertion devices, allowing for more intense and tuneable beams of light. A 

typical 3rd generation light source arrangement is shown in Figure 3.3.An electron beam is 

initially produced, in like manner to a television cathode ray tube, and then accelerated in a 

linear accelerator (LINAC). After this it is passed around a booster synchrotron to achieve the 

required energy, the electrons are then transferred into the storage ring. The storage ring 

consists of several straight sections and large electromagnets (“bending magnets”) that curve 

the electron beam as it travels between straight sections. Radio frequency (RF) cavities are 

used to prevent the loss of energy from the electrons as the electron beam moves through the 

various components of the storage ring. Around the storage ring several beamlines are situated, 

located at either a bending magnet where synchrotron radiation is already produced or adjacent 

to a straight section where, to cause the electron beam to move and generate x-rays, a separate 

device is needed. This device is known as an insertion device and consists of two main types; 

undulators and wigglers. A wiggler brings about the emission of synchrotron radiation via 

periodic deflection of the electron beam by a series of magnets. As a result, the intensity from 

the wiggler is greater than that of a bending magnet as the contribution of all the magnets is 

additive. In contrast, an undulator provides a further enhancement in brightness by using a 

periodic arrangement of magnets that oscillate the beam by a small deviation such that the 

radiation emitted constructively interferes with subsequent oscillations.  
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Figure 3.3: A simplified schematic of a 3rd generation synchrotron. Also shown are simplified diagrams 

of an undulator and a bending magnet. 

The generated cone of synchrotron x-rays then enters a beamline, a typical layout can be seen 

in Figure 3.4. Generally, a diffraction beamline consists of three ‘hutches’: an optics hutch, an 

experimental hutch and a control hutch, from which the beamline is operated. For most 

experiments it is desirable to either select or be able to control the wavelength from the ‘white 

beam’ of the produced synchrotron radiation. This can be done via the use of a monochromator 

in the path of the beam. The monochromator needs to be a high-quality single crystal which 

allows for the selecting of the desired wavelength by varying the incident angle in accordance 

with Bragg’s law. Silicon is often the material of choice for this purpose, due to its relatively 

cheap cost, to produce a good defect free crystal. After passing through the monochromator, 

focussing lenses and mirrors are used to focus the beam towards the centre of the 

diffractometer in the experimental hutch. Various issues need to be considered regarding the 

desired properties of the incident beam before the beam reaches the diffractometer. If the 

feature being observed is so intense that it may damage the detector, e.g. a Bragg peak or the 

‘straight through beam’, the beam can be attenuated via the use of various filters consisting of 

metal foils (e.g. Molybdenum, Aluminium) of varying thicknesses. As a point of reference for 

the measured signal, the x-ray beam passes through a ‘monitor’ to measure the number of 

counts in the incident beam. This monitor can take the form of either an ion chamber that the 

beam is transmitted through or a mylar scatter form that deflects a fraction of the beam into 

the monitor detector. Before incidence on the sample, adjustable slits are used to define the 

beam in vertical and horizontal width. For diffraction the sample is mounted at the centre of 
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rotation of a diffractometer allowing its movement in the beam. The diffracted beam is 

subsequently measured by a detector, before which further attenuators, monitors and detectors 

slits, can also be in place on the detector arm in order to enhance the signal to noise ratio or 

adjust the spectrometer resolution. Detectors can take several forms; 2D arrays such as charge 

coupled devices (CCDs) or a scintillation/photomultiplier tube combination. Also becoming 

popular are single-count solid state 2D detectors like the PILATUS range, developed at the 

Swiss Light Source[40] . 

 

 

Figure 3.4: An illustration of a typical synchrotron beamline layout consisting of 3 hutches. The control 

hutch contains the user and computers to control operation, the sample and detector is housed inside 

the experimental hutch and the optics hutch is where the incident x-ray beam is prepared. The x-ray 

beam is shown as the blue line. 

3.4 Diffractometers 

For the purposes of orienting a sample to meet the Bragg condition, in principle only four 

degrees of freedom are needed. However, extra degrees of freedom are needed in practice to 

keep certain angles constant or to overcome limitations brought on by experimental apparatus 

blocking areas of reciprocal space. For surface diffraction there are many types of 

diffractometers available, some of the common diffractometers are: 4 circle[41], 2+2 

circle[42], z-axis[43], 2+3 circle[44, p. 3] and 6 circle[45]. The results discussed in chapter 4 

were taken at the ESRF on the ID-3 beamline using a 2+3 circle diffractometer and on the UK 

CRG beamline, XMaS using a 6-circle diffractometer in 4 -circle mode. Chapter 5 contains 

results also obtained from the XMaS beamline in 4-circle mode. The results in chapter 6 

consist of data taken from I07 at Diamond Light Source (UK) and MS - X04SA: Materials 

Science surface diffraction at the Swiss Light Source, both of which were using a 2+3 

diffractometer. Figure 3.5(a) illustrates a schematic of a 4-circle diffractometer with the 

various angles indicated and Figure 3.5(b) similarly displays the schematic for the 2+3 circle 

diffractometer and its various angles. The methodology for successful completion of 

synchrotron x-ray diffraction experiments follows a well-established routine.  Diffractometers 

today are computer controlled and at all facilities specialist software for diffractometry is 

available. The ESRF and SLS use a UNIX based software called SPEC to drive the motors 

along with other parts of the beamline (slit size, energy, attenuation, electrode potential etc.) 
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as well as being the tool for data acquisition. On the XMaS beamline the ‘fourc’ version of 

spec can be used to operate the standard diffractometer in the four-circle geometry. DLS uses 

a Jython based program called the Generic Data Acquisition system (GDA) for their motor 

control and data acquisition.  As mentioned earlier diffractometers today are controlled via 

computer, meaning a user can simply enter a coordinate in reciprocal space and the computer 

will convert this into the corresponding diffractometer angles for the respective sample and 

wavelength. To calculate this an orientation matrix, known as a UB matrix, is required. The 

description for a 4-circle diffractometer is found in[41]. This orientation matrix gives the 

sample orientation with respect to the diffractometer angles and can thus be used to calculate 

for a scattering vector Q the angles required. The U matrix is a rotation matrix that rotates the 

frame of reference (FOR) of the sample into the diffractometer’s FOR. B transforms a 

reciprocal space coordinate into a real-space coordinate in the sample’s FOR. Two or more 

reciprocal space positions (typically Bragg peaks) are required to first calculate the 

diffractometer angles, the procedure for which will now be described for a four-circle 

diffractometer. 

First, it must be verified that the beam passes through the diffractometer’s centre of rotation. 

This is achieved by placing a pin in the sample goniometer and focussing an optical telescope 

on the head of the pin. The φ and χ circles are each rotated 180° and the goniometer adjusted 

until the pin-head does not move as the circles rotate (i.e. it is in the centre). Next, burn paper 

is placed in the path of the beam, after which the diffractometer is translated so that the pin is 

in the centre of the burn mark. The χ, 2θ and θ motors should be checked to make sure they 

are correctly zeroed (φ is arbitrary), the sample can then be mounted on the goniometer. A 

laser beam is then reflected from the sample onto the wall to ensure the sample is as flat as 

possible. The goniometer tilts are then adjusted so that the reflected laser beam does not 

change position with the rotation of the φ motor. Following this the sample is then adjusted in 

height by scanning the z-axis motor through the incident beam and then setting the motor 

value to a point at which the intensity is that of half the ‘straight through’ beam. This ensures 

that the sample is in the centre of rotation of the diffractometer (at which point the x-ray beam 

is focussed) and that the sample is horizontal with respect to the beam. The next step is to 

locate two Bragg peaks to calculate a UB matrix. Locating a specular peak first can be useful 

due to having no dependence on φ therefore θ and χ can be optimised without the need to 

consider the φ position; making finding a non-specular position afterward easier. Optimisation 

of the motor positions is an iterative procedure where the diffractometer is rotated while 

measuring intensity, the diffractometer is then moved to the maximum peak intensity and then 

the next angle rotated and optimised. This process is then repeated until an overall maximum 

is reached. Once a specular position is located the computer can then make an improved 

calculation of the location of an off-specular Bragg peak for all rotations except for φ. As such, 
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to locate the Bragg peak, the φ circle must first be rotated. Once a Bragg peak has been found 

it can then be optimised using the procedure outlined for the specular position with the 

inclusion of the φ motor and then this position used for calculation of the UB matrix. This 

should then be repeated for another reflection. However, care should be taken when labelling 

Bragg peaks so that the sense of the φ rotation is correct, i.e. φ rotates in the correct direction 

from one reflection to another. If this is not the case, the reflection should be labelled as a 

symmetry equivalent. 

 

 

 

 

 

Figure 3.5  (a): Diagram of a 4-circle diffractometer used to orient samples to meet various diffractions 

conditions. Indicated are the laboratory frame of reference and sense of rotations. A full description can 

be found in reference[41]. (b): Diagram of a 2+3 circle diffractometer in vertical mode. Indicated are 

the laboratory frame of reference and sense of rotations. A full description can be found in 

reference[44]. 

 

(a) 

(b) 
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3.5 Data Acquisition and Extraction 

Several types of scan can be carried out to take crystal truncation rod measurements or 

fractional rod measurements (brought about by surface reconstruction). Those used in this 

work are detailed below: 

 

3.5.1 Rocking Scans 

Rocking scans are one of the most common x-ray measurements used. This type of scan is 

carried out by initially setting the sample and detector to a reciprocal space position along a 

CTR, meeting the Bragg condition in 2 of the 3 directions. One of the motors is then moved 

to rotate the sample and the scattered intensity is measured with the detector position fixed in 

place. Adjusting the position along the rod and repeating this measurement allows for the CTR 

profile to be obtained via the integrated area. A rocking scan’s width is a convolution of the 

instrumental resolution and an intrinsic width of the crystal, brought about by defects such as 

sample mosaicity and dislocations. Significant mosaic spread would give rise to a broader 

peak due to the Bragg condition being met for a range of angles. To enable good determination 

of the background signal, the crystal needs to be rocked over a sufficient angle.  

 

The integrated intensity, i.e. the area under the peak, is directly proportional to the structure 

factor. The integrated area can be calculated in several ways. In general, this is accomplished 

by fitting a line-shape and analytically calculating the area. The typical line-shape to use is a 

Lorentzian. An example rocking scan is shown in Figure 3.6 with a Lorentzian line-shape fitted 

to it with an additional straight-line background. There is an associated counting error, √n 

(where n is the signal and √n is the error according to Poisson statistics), with every data point 

and this is combined with the counting error on the monitor. Defining a Lorentzian function 

as: 

𝐿(𝑥) =
ℎ𝑤2

𝑤2 + 4(𝑥 − 𝑐)2
 

where h is the height, w is the full width half maximum (FWHM) and c the peak centre, then 

the area under the peak simply will be ½ πhw. An alternative approach is to numerically 

integrate the area under the peak, using a numerical procedure such as the Simpson’s rule. If 

the peak is non-standard, this approach would give a more accurate determination of the area 

however meaningful determination of the errors is difficult. The integrated intensities typically 

have a counting error around 1-3%. Nevertheless, there is a systematic error, determined from 

comparing symmetry equivalent reflections, that must also be included of around 5-10%. 
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Figure 3.6: Demonstration of the difference between a 2D stationary scan and a rocking scan reproduced 

with permission from[46] . Both measurements were made on the same system at (1 0 3.7), a position 

close to the Bragg peak. More information can be found in [47]. (a) 2D detector image measured 

through the (1 0 L) CTR. The sum of the intensity in the ‘CTR signal’ ROI minus the sum of the 

intensity in the two background regions is proportional to the structure factor. The (1 0 4) Bragg peak 

is also visible. (b) Rocking scan for which the sample is rotated around an angle, ω, therefore scanning 

the detector resolution function over the CTR. The area of the peak is proportional to the structure 

factor. Each point has an error √n. 

3.5.2 Stationary Scans 
 

Stationary scans offer an alternative to angular rocking scans by using an area detector to 

integrate the entire width of the CTR at once, an example of this measurement is shown in 

Figure 3.6(a) reproduced with permission from [46]. There are several advantages in this 

approach; decreased collection time, increased counting statistics and improved background 

detection. Peak asymmetries and unwanted contributions to the signal are also easier to 

recognise. 

The most straightforward way of extracting the intensity of the CTR is by choosing a region 

of interest (ROI) that contains the signal and sums the counts in each pixel. A region 

representative of the background is chosen and then subtracted from the signal. However, this 
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method is not without its difficulties, if for example the sample has a significant mosaicity the 

integrated intensity in this scanning mode will not reflect this, whereas a rocking scan would. 

Furthermore, this method comes with an increased complexity of data analysis, even when 

using ROIs. In addition, fitting a 2D Lorentzian would possibly be more appropriate as the 

use of ROIs alone may not be the most accurate method of extracting intensities. Each pixel 

on the detector technically has a different reciprocal space coordinate that should be accounted 

for. 

 

3.5.3 Reciprocal Space Scan 
 

In a reciprocal space scan, the diffractometer scans along a plane in reciprocal space, normally 

at a fixed QZ  or l value in hkl reciprocal space. With this type of scan structures with a different 

periodicity can be investigated, e.g. surface reconstruction. This type of scan is used 

throughout chapter 4. 

3.6 Data Analysis 

3.6.1 Correction Factors 
 

Depending on the diffractometer angles, there are several factors relating to the beam and the 

sample that affect the measured integrated intensities. For an x-ray beam of incidence βin and 

the diffracted beam exiting the sample at angle βout,  the correction factors for both the 4-circle 

(Figure 3.5 (a))  and 2+3 circle (Figure 3.5 (b)) geometries, using their associated motor 

angles, are given below: 

 

The Lorentz Factor 

This factor corrects for the fact that rocking scan intensity is integrated not in reciprocal space 

but in angular space. For a 4-circle diffractometer it is simply: 

𝑳 =  
𝟏

𝐬𝐢𝐧 𝟐𝜽
 

L for a 2+3 circle diffractometer is given by: 

𝑳 =  
𝟏

𝐬𝐢𝐧 𝜽 𝐜𝐨𝐬 𝜸
 

 

Rod Interception 

The angle that the detector makes with the rod is accounted for by rod interception. The area 

of interception of a plane cutting a rod at 90° will be that of a circle, at any other angle it will 

be that of an ellipse. The correction factor for both geometries will be: 
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𝑹 = 𝐜𝐨𝐬 𝜷𝒐𝒖𝒕 

 

 

Active Area Correction 

This accounts for the overlap of both the beam footprint and the detector footprint on the 

sample. This correction depends on beam defining slits, detector slits and sample geometry, it 

is best calculated numerically as in [48]. Ignoring the footprint and sample size, the active 

sample area for a 2+3 diffractometer is: 

𝑨 =
𝐜𝐨𝐬 𝜷𝒐𝒖𝒕

𝐬𝐢𝐧 𝜹
 

The integrated intensities are converted to structure factors via division by these factors. 

 

 

3.6.2 Non-Linear Least Squares Fitting 
 

Having obtained structure factors, the model outlined in chapter 2 is fit to the data using a 

non-linear least squares method in which structural parameters such as the surface atomic 

layer expansion (ε), relative surface occupations (θ) and the surface roughness (σ) can be used 

as variables. The parameters defining the model are varied to minimise a χ2 value given by: 

𝝌𝟐 = ∑
(𝑴 − 𝑻)𝟐

𝝈𝟐
 

Where M and T are the measured and theoretical values respectively and σ2 is the variance of 

the data. The reduced χ2 is calculated by division of the number of degrees of freedom i.e. the 

number of values – number of parameters -1. 
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4 The Au(hkl) Surface Reconstructions 

and the Effect of CO on the 

Surface/Electrolyte interface 
 

4.1 Introduction 

Gold surfaces represent key model systems for the understanding of general surface processes 

such as surface reconstruction, adsorption and electrocatalytic reactions. At room temperature, 

the low index surfaces of Au single crystals all exhibit a reconstruction of the surface layer, 

adopting a different symmetry to the underlying bulk crystal. As the surface atoms are exposed 

to a different environment to that of the bulk, surface reconstruction occurs in an effort to 

minimise the surface energy. In recent decades, the discovery of the enhanced catalytic activity 

towards the oxidation of carbon monoxide of gold nanoparticles on oxide supports reported 

by Haruta and co-workers[7, 49] has stimulated renewed interest into the surfaces of Au for 

both heterogeneous catalysis and electrocatalysis applications. Considerable attention has 

been directed towards the surface reconstructions of Au in the electrochemical environment 

due to the ability to control the surface atomic structure via the applied electrode potential. 

Recently work by Rodriguez, Koper and co-workers has revealed a rather surprising 

promoting effect of adsorbed carbon monoxide on the electrooxidation of alcohols by gold 

catalysis. In a series of papers describing the enhanced electrocatalytic properties[8, 50–53], 

it was shown that the enhancement effect only occurs on the Au surfaces that exhibit 

hexagonal reconstruction, i.e., Au(111) and Au(100). 

The experiments outlined in this chapter were part of a detailed SXS study[54]1of the 

structural changes that occur at the interface between the Au(111)  Au(100), and Au(110) 

electrodes and 0.1 M KOH electrolyte. The aim of the experiments was to explore the 

dependence of the Au surface reconstructions on the applied electrode potential, in particular 

at the high negative potentials achievable due to the high pH in alkaline solutions. In addition, 

the effect of the presence of CO in solution on the  potential dependent behaviour of the low 

index surface reconstructions is explored. 

                                                           
1 J. J. Fogg’s contributions to the work are as follows. Measurement and analysis of the data taken at 

ID-03 on the Au(111) crystal, measurement and 50% analysis of the data measured at the Xmas 

beamline on the Au(100) crystal. Measurement of the data taken on the Au(110) crystal at I-07. 
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4.1.1 The Au(hkl) Surface Reconstructions 

The clean, low index surfaces of gold have been shown to reconstruct under certain conditions 

of sample temperature and surface preparation in the UHV environment. For the Au(111) and 

Au(001) surfaces this leads to the formation of a surface layer with a higher density than the 

underlying bulk crystal. In contrast the Au(110) surface reconstruction has a density of the 

order of 50% less than the underlying bulk crystal. These reconstructions all survive the 

transfer into the electrolyte and the nature of the surface layer, be it reconstructed or 

unreconstructed, can then be controlled by applying electrical potential across the 

electrode/electrolyte interface. The right side of Figure 4.1 illustrates the bulk terminated (1 

x1) surface structures for the three low index surface orientations. The left side shows a 

simplified schematic representation of the reconstructed surfaces. 

 

Figure 4.1: Simplified real space models for left: reconstructed; right: the bulk terminated low-index surfaces of 

gold. (a) Au(111)- (23 x√ 3)↔  Au(111)-(1 x 1); (b) Au(100)-(5x20) ↔Au(100)-(1 x 1) and (c) Au(110)-(1 x 2) 

↔Au(110)-(1 x 1). 

Au(111)-(p x √3) Surface Reconstruction 

The Au(111) reconstructed surface has been intensively studied in UHV[55–57], SXS[58, 59] 

as well as in the electrochemical environment[60, 61]. When reconstructed, the Au(111) 

surface undergoes a distortion in the surface stacking from an ABC to an ABA stacking 
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sequence in the centre of the unit cell leading to stripes that can be seen using techniques such 

as STM and thus is often called the ‘striped’ phase or ‘herringbone’ reconstruction. This 

distortion leads to an increase in surface density that corresponds with a uniaxial compression 

where p+1 surface atoms sit in place of p, a compression of (p+1)/p-1=1/p (~4.5%for p=22). 

This (p x √3) reconstruction produces a well-defined diffraction pattern that is characterised 

by a hexagon of additional diffraction spots, in the surface plane of reciprocal space, around 

the scattering that occurs for the bulk Au(111) crystal [58, 60]. Figure 4.2 (a) shows an 

illustration of the in-plane diffraction pattern from the reconstructed Au(111) surface, the solid 

circles represent the diffraction from the underlying hexagonal lattice with the surrounding 

symbols originating from the (p x √3) reconstructed phase. Figure 4.2 (b) shows a ‘zoomed 

in’ map of the scattering that occurs in reciprocal space around (0, 1, l) plane. 

 

Figure 4.2 (a): In plane diffraction pattern from the Au(111) surface. Solid circles represent diffraction from the 

underlying hexagonal lattice. The symbols surrounding it originate from the (p x √3) reconstructed phase with three 

equivalent rotated domains (squares, triangles and rhombus’). (b) : ‘Zoomed in’  Schematic of the scattering in the 

surface plane around the (0,1, l) CTR (solid blue circle) , around the CTR are the peaks that arise due to the (p x 

√3) reconstruction (faded blue symbols) and the direction qr of the example scan made in of Figure 4.7. 
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Au(100)-(5 x 20) Surface Reconstruction  

The Au(100) surface also exhibits a hexagonal reconstruction despite its underlying cubic 

symmetry. Often referred to as either a (5 x 20) or ‘hex’ reconstruction, the surface layer is 

buckled and slightly distorted and the hexagonal structure is aligned close to the [110] bulk 

direction[55, 62]. The ‘hex’ surface has an atomic density that is ≳ 20% of the bulk terminated 

(1 x 1) surface. The Au(100)-hex reconstruction  forms two symmetry-equivalent domains 

that are rotated by 90° with respect to each other, closely aligned to the underlying bulk lattice. 

The principle diffraction peak for one of these domains is observed at the (1+δ, 1+δ, 0) in-

plane position, where δ~0.2. This defines the in-plane lattice constant of the hexagonal 

overlayer and corresponds to the layer’s incommensurability[63]. The reconstructed Au(100) 

surface structure has been extensively studied in UHV[63–65], STM[66–69], by 

electrochemical methods[61, 70] and in-situ SXS[60, 71]. Figure 4.3 shows the corresponding 

diffraction pattern due to the reconstructed hex phase in terms of the bulk fcc unit cell notation. 

The solid black circles and lines represent the scattering from the Au(100) bulk lattice, with 

the hex domains being represented by the blue squares and lines. 

 

Figure 4.3: Schematic representation of the x-ray scattering from the ‘hex’ surface. Solid circles represent the 

position of the Bragg peaks along the bulk CTR's. Blue squares and lines represent the positions of the 'surface 

rods' due to the (hex) phase. 

Au(110)-(1 x p) Surface Reconstruction 

The Au(110) surface in the electrochemical environment undergoes a potential dependant 

transition from the  unreconstructed (1 x 1)  surface structure to what is known as the ‘missing 

row’ (1 x 2) or (1 x 3) reconstruction in the negative potential region[72, 73]. UHV studies[74, 

75] have shown that the missing row reconstruction, named as such due to alternate rows of 

gold atoms being absent, can consist of higher order (1 x n) domains. Figure 4.4 shows the 
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‘side’ and ‘top’ views for the basic models of  (a) the (1 x 1) phase, (b) the (1 x 2) surface 

reconstruction and (c) the (1 x 3) surface reconstruction. The lower sections of the figures 

show the corresponding diffraction patterns in terms of the surface cell unit notation (a = c = 

4.078 Å, b = 2.884 Å and α = β = γ = 90°). 

The Au(110) surface reconstruction has been extensively studied by a combination of 

electrochemistry and surface science techniques, including STM[73, 76, 77]and in-situ 

SXS[72]. In the electrochemical environment, the nature of the dominating reconstructed 

domains is dependent upon the composition of the supporting electrolyte. Furthermore, the 

Au(110) crystal surface is intrinsically complex due to the inhomogeneous nature of the 

missing row reconstruction. Indeed, in-situ STM studies[67] showed that in acidic solution 

the surface can be inherently stepped. This is due to reconstructed (1 x n) domains, of which 

n can equal 2,3 or higher, are able to coexist on the surface. Via in-situ SXS measurements[72] 

it was revealed that, in salt solution, only  (1 x 3) domains of the Au(110) surface 

reconstruction can exist. Conversely in acidic media, a poorly correlated intermediate phase 

between the (1 x 2) and (1 x 3) reconstruction was observed.  

 

Figure 4.4: Illustrations of the 'side' and 'top' views with the corresponding in-plane scattering geometry for (a) the 

(1 x 1) surface of Au(110); (b) the (1 x 2) 'missing row' surface reconstruction and (c) the (1 x 3) reconstruction. 

The filled circles on the in-plane diffraction correspond to scattering from the substrate structure. The solid squares 

and triangles correspond to the scattering from the reconstructed surface. For example, the appearance of a 

diffraction peak at (5/3, 0, 0.6). 
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4.2 Experimental 

The experimental procedure that follows is outlined in chapter 3 and other studies such as 

references[34–39]. The electrolyte used for these experiments was 0.1M KOH (99.995% 

purity) solution, the counter electrode consisted of 0.5mm polycrystalline gold wire (99.999% 

purity). For the experiments conducted on the Au(111) surface, the droplet cell was used. The 

reference electrode was Ag/AgCl (World Precision instruments FLEXREF-Flexible Dri-Ref 

Reference Electrode). X-ray measurements were performed on the beam line ID-03 at the 

ESRF, Grenoble using focussed incident X-rays at an energy of 25keV. During the experiment 

and the experiments carried out on the Au(100) and Au(110) electrode surface, the ‘hood’ of 

the x-ray cell was constantly purged with nitrogen to protect the surfaces from oxygen.  

X-ray measurements conducted on the Au(100) surface were carried out using the thin layer 

x-ray cell at BM28 (XMaS), the UK-CRG beamline at the ESRF, Grenoble using focussed 

incident x-rays at an energy of 11.8 keV. The reference electrode used was Ag/AgCl (WPI- 

Leak-Free reference electrode, catalogue no. 69-0023 [LF – 2]). For the CO studies the 

electrolyte was saturated with CO and the CO saturated electrolyte was pulled through the 

electrochemical cell with the potential held at -1 V for the experiments on CO adsorption. The 

electrolytes investigated were 0.1 M KOH solution, and 0.01 M KH2PO4 + 0.01 M 

K2HPO4solution. For both the Au(111) and Au(100) systems, prior to each experiment the 

potential was cycled between -1.0 V and -0.1V (at 50mV/s) for 30-60 minutes and then held 

at -1.0 V. This was to ensure reproducible surface preparation (‘surface conditioning’) in each 

case[59]. 

X-ray measurements on the Au(110) crystal surface were carried out at the I-07 beamline at 

the Diamond Light Source, Didcot, UK using focussed energy of 18 keV. The Au(110) crystal 

was prepared in UHV via sputtering and annealing cycles as described in 3.2. The crystal 

surface was then observed in LEED to be reconstructed in the (1 x 2) domain as shown in 

Figure 4.5. The crystal was then transferred into the thin layer x-ray cell. 
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Figure 4.5: LEED measurement of the Au(110) electrode surface at an electron beam energy of 150 eV. 

The white rectangle highlights the (1 x 2) reconstructed phase of the Au(110) surface following sputter-

anneal cycles in the UHV environment. 

4.3 0.1M KOH 

4.3.1 Au(111)  

The Au(111) surface was first investigated in 0.1 M KOH solution. Utilising the Maxipix 2D 

detectors, a series of continuous acquisition theta scans along the l=0.5 plane around the (0, 1, 

L) CTR were measured at a range of potentials starting from -0.7 V stepping positively to 0.05 

V. The measured scans were then binned using the BINoculars software[78] and then 

combined to form an image of the reconstruction with pixels coordinated to the corresponding 

(h, k) value. Following the processing of the scans in BINoculars, the binned images had to 

undergo an extra layer of processing as BINoculars software places the (h, k) axes orthogonal 

to each other. By using an image shear transformation, the (h, k) axes were adjusted to have 

60° separation, the resulting output is shown in Figure 4.6(a). The central reflection is the 

resulting scattering from the (0 1 0.3) reflection, the surrounding reflections highlighted by a 

white circle arise from the scattering due to the three rotated domains of the reconstructed 

surface layer like that shown in the schematic of the reconstruction in Figure 4.2(b).The 

information was then extracted from each image by measuring a series of regions of interest 

(ROI’s) along a set path, as displayed by the solid white rectangle in Figure 4.6 (b), and 

integrating the intensity of each ROI. The resulting output is akin to that of a reciprocal space 

scan. The extracted profiles were then fit to a double Lorentzian lineshape, shown in Figure 

4.7, thus, enabling both the values of the correlation length, ζ, and the stripe separation, p, for 

each point of the reconstruction to be obtained. The Lorentzian line shape originates from a 

1D real space atomic model where ζ decays exponentially with a length ζ=a/(2πσ), where σ is 

the full width half maximum (FWHM) of the peak in units of H. The correlation length 

measures the distance that the atoms in the reconstructed surface layer are positionally 
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correlated. p is given by p=1/(2∆H) in these units, where ∆H is the separation from the CTR 

position to the position of the peak due to the reconstruction, projected along the H reciprocal 

space direction [58]. Thus, p is the stripe separation in terms of the lattice constant a, where 

the real space distance is thus L=pa. It is worth noting however, that the line shape can be 

affected by mosaic effects on the substrate that have both a Gaussian component and an 

asymmetry brought about by a distribution of domains with a range of p values. The 

Lorentzian model does not account for these effects, nevertheless, from the analysis the 

essential structural information can be obtained. 

It is worth commenting here on the apparent stepped background visible on the images in 

Figure 4.6 (a) and (b). This became apparent after the processing of the images using 

BINoculars and arises from a slight overlap in the continuous acquisition scans. As can be 

seen in the figure, several of the reflections brought about by the Au(111) surface 

reconstruction lie on these overlaps. Nevertheless, the essential information of the peaks could 

be extracted by subtracting the background from the most positive scan and thus removing the 

stepped background. However, despite the reconstruction still being visible on the in-plane 

images, it was impossible to distinguish the reflections from the background at potentials 

positive of -0.2 V. 

Figure 4.6 (c)-(f) shows the intensities and p-value as a function of the applied potential for 

each of the rotated domains from the reconstruction. Comparing the intensities, the reflections 

at points 1 and 2; 3 and 4 respectively follow similar trends. The lower intensity at the 

symmetry equivalent reflections, 1 and 2, is also visible just from inspection of the contour 

map in Figure 4.6 (a).   For each domain an almost identical potential dependent compression 

of the surface is shown with p varying between 27 and 22.5. This corresponds to a change in 

the near neighbour spacing, aNN, between 2.78 Å and 2.76 Å in the p direction of the 

reconstruction as the reconstruction is uniaxially incommensurate. Discrepancies in the values 

obtained for each domain may have arisen from systematic errors introduced in the processing 

of the acquisition scans and the extraction of the data from the images to create the linescans. 
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Figure 4.6: (a)BINoculars processed image of the measured x-ray intensity in the l=0.5 plane around the (0, 1, l) 

CTR. Each of the reflections brought about by the reconstruction are outlined by a white circle and correspond to 

reflections from the 3 rotated domains of the reconstruction. The numbers next to each reflection is to allow for 

ease of reference. (b) BINoculars processed image of the measured x-ray intensity in the l=0.5 plane around the 

(0,1,l) CTR. The white rectangle with solid lines represents an example of the area over which the block integrals 

were measured. The dotted white rectangle represents an example ROI used in the extraction of the line-shape. (c) 

Integrated intensity(top) and p-value (bottom) versus potential for the reflection labelled as “1”. (d) Integrated 

intensity(top) and p-value (bottom) versus potential for the reflection labelled as “2”. (e) Integrated intensity(top) 

and p-value (bottom) versus potential for the reflection labelled as “3”. (f) Integrated intensity(top) and p-value 

(bottom) versus potential for the reflection labelled as “4”. 
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Figure 4.7: Extracted line-profiles of the in-plane diffraction from the reconstructed Au(111) electrode 

surface in 0.1M KOH, measured along the [0, 1, 0] direction through the (0, 1, 0.3) CTR position at (a) 

-0.2 V (b) -0.42 V (c) -0.52 V (vs. Ag/AgCl). The data is fitted with a double Lorentzian lineshape 

(solid line). The solid vertical lines indicate the peak positions for the CTR and the reflection brought 

about by the reconstruction. It is worth noting here that the stepped background visible in Figure 4.6(a) 

has been removed manually prior to the fitting of the double Lorentzian profiles. 

The potential dependent in-plane compression of the Au(111) reconstructed surface layer can 

be seen in the in-plane x-ray diffraction through the (0, 1, 0.3) CTR position and the reflection 

labelled as ‘point 3’ in Figure 4.6 at (a) -0.2 V, (b) -0.42 V and (c) -0.52 V. A movie depicting 

the in-plane surface compression can also be found in the supplementary materials of [54]. 

The results detailed here can be compared to results obtained from a previous experiment 

measured by Yvonne Gründer shown in Figure 4.8. These results were obtained at beamline 

7-2 at SSRL, Stanford. Following the same surface conditioning outlined here, a series of 

reciprocal space scans in the [1, 0, 0] direction, the qr direction shown in Figure 4.2(b), through 
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the (0, 1, 0.3) reciprocal lattice point at varied electrode potentials. Comparing aNN, shown in 

Figure 4.8(b) to the results obtained at ID-03, over the same potential range i.e. -0.54 V to -

0.2 V, there is a very similar variation in near neighbour spacing between ~2.78 Å and ~2.76 

Å. Furthermore, the variation in the integrated intensity shown by the black symbols in Figure 

4.8(a) a comparable trend is observed with that of the integrated intensities for the reflections 

at points 3 and 4 highlighting the reproducibility of the results and the potential dependent in-

plane surface compression. The red triangles in Figure 4.8(a) represent the integrated intensity 

from the (0, 1, 0.3) CTR reflection, the sharp increase in intensity beginning at ~0.2 V 

correlates with the lifting of the surface reconstruction. 

 

 

Figure 4.8: (a) Integrated intensity of the reconstruction peak shown in Figure 2 as a function of the applied 

electrode potential. The red symbols (triangles) correspond to the integrated intensity measured at the CTR 

position, (0, 1, 0.3). (b) Near neighbour, in-plane lattice constant, aNN, of the Au(111)-(p x 3) reconstruction 

derived from fits to the data such as that shown in Figure 2. (c) Domain size of the (p x 3) reconstruction. The 

black dotted vertical line acts as a guide for the eye indicating the pzc. Measurements conducted at the 7-2 beamline 

at the SSRL by Yvonne Gründer 
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4.3.2 Au (100)  

A series of measurements analogous to those carried out on the Au(111) surface were 

performed on the Au(100) electrode surface. X-ray voltammetry measurements were taken at 

the (1.206, 1.206, 0.3) reciprocal lattice position over the potential range -0.9 V to -0.45 V at 

1 mV/s. This is a position is where one of the domains of the ‘hex’ reconstructed surface layer 

is situated. This measurement was repeated at the (1, 1, 0.3) CTR position. Both XRV’s are 

shown in Figure 4.9 (a) and (b) for the (1, 1, 0.3) CTR position and the (1.206, 1.206, 0.3) 

reflection respectively, the arrows displayed on each figure represent the direction of the 

potential sweep.  Following the XRV measurements, a series of reciprocal space scans 

measured along [1, 1, 0] direction through the (1, 1, 0.3) CTR position and the reconstruction 

peak at ~ (1.2, 1.2, 0.3) in steps of 25 mV over the potential range -0.9 V to -0.45 V. These 

measurements were repeated for the [1, 1  , 0] direction through the (1, 1  , 0.3) CTR 

position and the reconstruction peak at ~ (1.2, 1.2  , 0.3). The peaks were then fitted to a 

double Gaussian lineshape, an example of which is shown by the solid line in Figure 4.10. 

Similar to the scans through the Au(111) reconstruction peaks, fitting the data enable the 

extraction of the near neighbour spacing, coherence length. 

 

Figure 4.9: X-ray  voltammetry measurements of the Au(100) electrode surface in 0.1 M KOH between -0.9 V and 

-0.45 V at a sweep rate of  1 mV/s at (a) the (1, 1, 0.3) CTR position (b) (1.206, 1.206, 0.3) reciprocal lattice 

position. The blue and red lines represent the cathodic and anodic sweeps respectively. 

The nearest neighbour, in plane lattice constant, aNN, can be derived from the fits to the data 

via: 

𝑎𝑛𝑛 =
√2𝑎0

√3ℎ
 

Where a0= 4.078 is the bulk lattice constant of Au and h is the reciprocal lattice co-ordinate 

of the surface rod from the (hex) reconstruction. In this case, the equation only really depends 
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on the h reciprocal lattice co-ordinate due to scanning along either the [1, 1  , 0] or the [1 1 

0] direction and thus, the position in h will be of equal magnitude to the position in k at any 

point along either direction. Figure 4.11 shows the potential dependence of the integrated 

intensity of the (hex) reconstructed peak and the near neighbour, in-plane lattice spacing. The 

red and blue arrows indicate the scan direction. In both data sets, there is a notable transition 

in the reconstruction evidenced by a change in both intensity and the near neighbour spacing, 

occurring around -0.7 V. The intensity for both positions appears to begin to increase upon 

reaching -0.7 V before decreasing as the potential for the lifting of the reconstruction is 

approached. During the cathodic sweep, the intensity then increases as the potential 

approaches -0.6 V before reaching its original value at the start of the scan. 

 

Figure 4.10:In plane x-ray diffraction from the reconstructed Au(100) electrode surface in 0.1 M KOH electrolyte, 

measured along the [1, 1, 0] direction through the(1, 1, 0.3) CTR and the  reconstruction peak at ~(1.2, 1.2, 0.3) 

(solid shapes) measured at an electrode potential of -0.9 V (vs. Ag/AgCl). The data is fitted with a double Gaussian 

lineshape (solid line). 

As the potential is shifted anodically, a decrease in the near neighbour spacing, aNN is 

observed. In the [1, 1  , 0] direction, the transition where aNN decreases between -0.7 V and -

0.55 V from a stable value of 2.763 ± 0.001 Å to 2.756 ± 0.001 Å is more noticeable in 

comparison to a gentler decrease from 2.768 ± 0.001 Å and 2.760 ± 0.001 Å over the same 

potential range in the [1, 1, 0] direction. When the (hex) reconstruction is in a high 

compression state, it would be expected that the lattice constant measured at both rotated 

domains would be the same however, there appears to be a discrepancy of around 0.005 Å. 

This could be attributed to a systematic error in the scale of the measurement due to crystal 

alignment.  Nevertheless, it is worth noting the reproducibility between the two rotated 

domains of the (hex) reconstructed surface layer indicating that the change in the near 

neighbour spacing is isotropic.  
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Figure 4.11: (a) Integrated intensity of the Au(100)-(hex) reconstruction peak at ~ (1.2, 1.2  , 0.3) shown in Figure 

4.10as a function of the applied electrode potential. (b)  Integrated intensity of the reconstruction peak at ~(1.2, 

1.2, 0.3) (c) Near-neighbour, in-plane lattice constant, aNN, of the Au(100)-hex reconstruction derived from fits to 

the data taken at ~(1.2, 1.2  , 0.3) (d) Near-neighbour, in-plane lattice constant, aNN, of the Au(100)-hex 

reconstruction derived from fits to the data taken at ~(1.2, 1.2, 0.3). The blue and red points represent the anodic 

and cathodic sweeps respectively. 

A series of reciprocal space scans along the [1, 1, 0] direction analogous to the previous 

measurements was carried out over a wider potential range of -0.9 V and 0 V. The extracted 

intensities are plotted as a function of potential in Figure 4.12(a). The intensities follow a 

similar trend with that shown in Figure 4.11(a) over the same potential range in the anodic 

direction before falling to zero at -0.2 V, when the (hex) phase has been lifted and no scattering 

due to the reconstruction is observed. When the potential is stepped in the cathodic direction 

(red markers) no scattering from to the (hex) reconstruction is observed until -0.68 V. The in-

plane lattice constant is plotted against potential in Figure 4.12(b). In the anodic direction, a 

change in aNN comparable to that from the previous measurement in Figure 4.11(b) is observed 

starting at -0.6 V and stabilising again at -0.4 V where aNN reaches a maximum value for 

surface compression. The observation of the in-plane surface compression and the agreement 

of these results with the previous measurement highlight the reproducibility of the 

measurements.  
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Figure 4.12 : (a) Integrated intensity of the Au(100)-(hex) reconstruction peak at ~ (1.2, 1.2, 0.3) shown 

in Figure 4.10as a function of the applied electrode potential. (b) Near-neighbour, in-plane lattice 

constant, aNN, of the Au(100)-hex reconstruction derived from fits to the data taken at ~ (1.2, 1, 0.3). 

The blue and red points represent the anodic and cathodic sweeps respectively.  

4.3.3 Au(110)  

Following alignment of the Au(110) electrode surface on the diffractometer, a reciprocal space 

scan in the [0 1 0] direction (Figure 4.13(a)) was measured to detect if the (1 x 2) reconstructed 

domain shown via LEED in Figure 4.5 survived the transition into the x-ray thin layer cell.  

As can be seen from Figure 4.13(a), no evidence of the (1 x n) reconstructed domains are 

present. The potential was then contacted at -0.3 V and a series of potential scans between 0.1 

V and -0.7 V were conducted and the reciprocal space scan was repeated following each 

potential cycle. Figure 4.13 (b) shows the integrated intensity of one of the potential cycles 

measured at the (0, 1, 0.6) CTR position. As the potential is swept in the positive direction, 

there is a general decrease in the intensity which increases and returns to its original point as 

the potential is scanned in the negative direction. Over the course of the measurements, a peak 

was observed at (0 1.667, 0.6) via reciprocal space scans(Figure 4.13(c) black line), this peak 

continued to grow in intensity over further potential scans as evidenced by the red and blue 

lines in Figure 4.13(c). The peak at (0, 1.667, 0.6) corresponds to the Au(110) electrode 

surface being reconstructed in a (1 x 3) phase. Following the series of potential cycles and 

reciprocal space scans, the potential was held at -0.7 V and a rocking scan of the peak 

measured at (0, 1.667, 0.6) was taken. Unfortunately, from the rocking scan shown in Figure 

4.13(d) it became apparent that the observed peak was not brought about by the (1 x 3) domain 

of the ‘missing row’ reconstruction but a powder line that had grown over time, this is further 



4 The Au(hkl) Surface Reconstructions and the Effect of CO on the Surface/Electrolyte interface 

60 
 

confirmed by Figure 4.13(e) that is an in-plane image captured using the 2D detector during 

the rocking scan measurement. This prevented measurements similar to those taken on both 

the Au(111) and Au(100) electrode surfaces from being measured. 

 

 

Figure 4.13: (a) Reciprocal space scan of the Au(110) surface in 0.1 M KOH along the [0 1 0] direction through 

the (0 1 0.6) CTR position. (b) Scattered intensity measured as a function of applied electrode potential at the (0 1 

0.6) CTR position between -0.7 V and 0.1 V (vs. Ag/AgCl) at a scan rate of 4 mV/s.(c) Reciprocal space scans 

along the [0 1 0] direction through a peak found at (0, 1.667, 0.6) thought to be brought about by the (1 x 3) 

reconstructed domain of the Au(110) surface. The arrow indicates the growth of the peak with time through 

subsequent potential scans. (d) Rocking scan measurement of the peak found at (0 1.667, 0.6), the blackline shows 

the background subtracted measurement, the red line represents the fitted Lorentzian line shape to the peak. (e) In-

plane image taken during the rocking scan measurement at (0, 1.667, 0.6), the curved white line is characteristic of 

a powder line. 
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4.3.4 Au(111) and Au(100) in 0.1 M KOH 

It is now worth discussing the results of the measurements taken on both the Au(100) and 

Au(111) electrode surfaces in terms of two potential regions determined by the 

electrochemistry[79, 80]. The onset of adsorption of hydroxide species correlates to a potential 

of -0.45 V. There is no specific adsorption onto the Au for potentials <-0.45 V. Based on 

differential capacitance measurements[81] on Au(111) it has been suggested that -0.45 V 

corresponds to the local potential of zero charge (pzc). As has been shown, in the potential 

range of -1.0 V and -0.45 V, both the Au(111) and Au(100) surface display similar behaviour 

i.e. an in-plane surface compression. The observed increase of the in-plane Au-Au spacing 

can be understood as a pure charging effect. Excess surface charge, in the absence of specific 

adsorption, determines the Au-Au surface interaction independent of the underlying Au 

substrate. Halide anion adlayers with hexagonal geometry adsorbed onto noble metal surfaces 

have displayed similar electrocompresibility[82–84]. The 2D isothermal compressibility of 

the reconstructed monolayer is:  

𝜅2𝐷 =
1

𝑁𝑖𝑜𝑛𝑒
(

𝑑𝐴

𝑑𝐸
) 

Where (
𝑑𝐴

𝑑𝐸
) is the change in area A per adsorbate atom with the applied potential E and Nion 

is the ionic charge of the surface atom. The exact charge of the surface atom is unknown. 

Assuming a 2D free electron gas model, the electrocompressibility is given by: 

𝜅𝜏 =
𝑚𝑒𝐴2

𝜋ℏ(𝑍 − 𝑁𝑖𝑜𝑛)2
 

Where (𝑍 − 𝑁𝑖𝑜𝑛) denotes the number of electrons contributing to the free electron gas, me is 

the electron mass, ℏ is the Planck’s constant ℏ = ℎ/(2𝜋). In the case of gold, Z=1 for the 6s 

electron and Nion gives the modification through the additional charge of the surface atom. 

Obtaining (
𝑑𝐴

𝑑𝐸
) and the surface area, A, per atom from the experimental value for the nearest 

neighbour distance, aNN, the charge of the surface gold atoms, Nion, can be obtained by 

assuming a 2D isothermal compressibility for the electrocompressibility (𝜅2𝐷 = 𝜅𝜏). This is 

shown in Figure 4.14 as a function of the applied potential. From these values an 

electrocompressibility of the order  1 Å2/eV is obtained which is of the same order as the 

values found for electrochemically deposited metal monolayers [85–87]. Although the 

assumed model is based on the free electron model and neglects any possible influence of the 

5d electrons, it shows that the change in electrocompressibility observed can be explained 

through a change in the charge of the surface atoms. The minimal nearest neighbour distance 

corresponds in this case to the point where the charge on the surface atom changes signs. 
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Figure 4.14: Potential dependent surface charge per atom obtained for the reconstructed Au(001) and 

Au(111) surfaces by comparing the experimental electrocompressibility to the compressibility for a 2D 

layer in the free electron model. 

Both the Au(111) and Au(100) surfaces exhibit reconstructions closest to the phases observed 

in UHV at -0.45 V. As previously stated, this potential marks the onset of hydroxide 

adsorption onto the Au surfaces and leads to the lifting of the surface reconstructions. 

However, for the Au(111) surface, a stable intermediate phase forms during the initial stages 

of lifting between -0.2 V and 0 V before the complete lifting of the reconstruction. Similar 

intermediate phases prior to the lifting of the reconstruction have also been observed in acidic 

electrolyte solution by STM[88]. Vaz-Domínguez and co-workers found that in both 0.1 M 

H2SO4 and 0.1 M HClO4 + 1 mM KCl solutions in the potential region coinciding with the 

peak potential of the peak attributed to the lifting of the reconstruction (0.36-0.37 V vs 

Ag/AgCl), a network of dislocation lines arranged in domains rotated 120° were observed.  

Some of which having merged and forming geometrical figures such as triangles and 

chevrons, all maintaining the trigonal geometry of the surface. These domains were observed 

to grow with potential until around 0.49 V where the reconstruction was observed to be 

completely lifted. Chen and Lipkowski[80] proposed in their study of hydroxide adsorption 

onto Au(111), that the OH- forms a polar bond at negative potential. At positive charge the 

polarity of this bond decreases due to strong screening of the anion charge by either significant 

charge transfer from OH- to Au or by the charge on the metal. Recent studies into the effect 
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of halide adsorption onto Cu(001) electrode surfaces have explicitly shown that the sub-

surface metal layers play a key role in the bonding mechanism[88, 89]. By a change in the in-

plane compression, or p value, it is clear that the Au(111) surface is able to accommodate 

significant OH- adsorption. Density functional theory (DFT) calculations have recently shown 

that for the formation of these reconstructed phases, there are only small energy differences. 

In contrast to the Au(111) reconstruction, beyond -0.45 V the Au(100)-(hex) surface 

reconstruction immediately begins to lift and there is no change in the Au-Au surface 

compression. In this case the adsorption of hydroxide species appears to drive the lifting of 

the reconstruction[90, 91].  

4.4 Au(hkl): the CO effect 

Whilst the observed potential-dependent changes in the Au surface are interesting from a 

fundamental perspective, an additional point to consider is whether the changes in the structure 

are connected to electrocatalytic behaviour. Following the measurements in 0.1M KOH on 

Au(100), the electrolyte was exchanged to a CO saturated 0.1M KOH electrolyte in order to 

gain insight into the mechanism behind the promotion of electrocatalytic reactivity by the 

adsorption of CO. Figure 4.15 shows the XRVs on the (hex) reconstruction peak, at ~ (1.2, 

1.2, 0.3), and at the (1, 1, 0.3) CTR position between -0.9 V and -0.45 V at a sweep rate of 1 

mV/s. In contrast to the XRV measurements in CO free electrolyte, there is no significant 

change in the intensities of either the reconstruction or the CTR. This would appear to agree 

with previous SXS studies where the adsorbed CO was observed to have a stabilising effect 

on the reconstructed surface layer allowing the reconstructed phase to exist over a much larger 

potential range[79]. A series of measurements analogous to those taken earlier on the CO free 

system between -0.9 V and -0.45 V in the [1, 1, 0] direction was taken. 

 

Figure 4.15: X-ray Voltammetry measurements of the Au(100) electrode surface in CO saturated 0.1 

M KOH between -0.9 V and -0.45 V (vs. Ag/AgCl) at a sweep rate of 1 mV/s at (a) the Au(100)-(hex) 



4 The Au(hkl) Surface Reconstructions and the Effect of CO on the Surface/Electrolyte interface 

64 
 

reconstruction peak at (1.212, 1.212, 0.3)  (b) the (1, 1, 0.3)   CTR position. The blue and red lines 

represent the anodic and cathodic scans respectively. 

Figure 4.16 (a) shows the extracted integrated intensities vs. potential for the  (1.2, 1.2 ,0.3) 

reflection of the (hex) reconstruction. Contrary to the measurements shown in Figure 4.11 and 

4.13, no significant change in intensity is observed. Comparing the calculated near neighbour 

spacing, aNN, in Figure 4.16(b) no specific trend is observed. In fact, the results show no 

evidence of the in-plane surface compression that is observed in the non-CO saturated KOH 

electrolyte in Figure 4.11 and 4.13. This can visually be seen in the location of the peak 

positions shown in Figure 4.17(a) of the (1.2, 1.2, 0.3) reflection in CO saturated 0.1 M KOH 

solution at -1.0 V and -0.5 V respectively. As can be seen the peak position stays at a constant, 

this corresponds to a value for the in-plane lattice constant to be near to the maximum surface 

compression, i.e. aNN ~2.76 Å.  

 

Figure 4.16: Measurements of the Au(100) electrode surface in CO saturated 0.1M KOH (a) Integrated 

intensity of the Au(100)-(hex) reconstruction peak at ~ (1.2, 1.2, 0.3) as a function of the applied 

electrode potential (b) Near-neighbour, in-plane lattice constant, aNN, of the Au(100)-hex reconstruction 

derived from fits to the data taken at ~(1.2, 1.2, 0.3). The blue and red points represent the anodic and 

cathodic sweeps respectively. 

These results will now be compared to measurements taken on the Au(111) (p x √3) in CO-

saturated 0.1M electrolyte. The left side of Figure 4.17 shows a comparison of the peaks 

obtained from reciprocal space scans through the Au(100)-(hex) reconstruction, measured in 

the [1, 1, 0] direction in CO saturated 0.1 M KOH at -1.0 V and -0.5 V.  The right side of 
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Figure 4.17 shows a comparison of the peaks obtained from the the  Au(111)  (0, 1, 0.3) CTR 

position and the peak due to the (p x √3) reconstruction at (0.019, 1.019, 0.3) -1.0 V and -0.5 

V in CO saturated solution (right).  As can be seen for the measurements made on the Au(111) 

(p x √3) reconstruction in CO saturated solution, the CO appears to have a stabilising effect 

as it did with the Au(100) ‘hex’ reconstruction, effectively locking the (p x √3) reconstruction 

at a value of p~23.6 or aNN ~ 2.76.  It has previously been shown that on the Au(100) surface, 

adsorbed CO stabilises the Au(100) over a much larger potential range. This is demonstrated 

in Figure 4.18 which shows a comparison of two XRVs measured at the (0, 0, 1.02) ‘anti-

Bragg’ position on the specular CTR in CO free and CO saturated 0.1 M KOH solution. This 

position is sensitive to changes in the atomic density of the Au surface atomic layer and thus 

shows large changes when the surface reconstruction is formed and lifted. As can be seen, the 

Au(100) surface reconstruction is preserved in the presence of CO right up to the onset of 

oxide formation at positive potentials. In fact, the lifting of the Au(111) and  Au(100) surface 

reconstructions occur at similar potentials in CO-saturated electrolyte, i.e. after or concurrent 

with the oxidation of adsorbed CO. 

 

Figure 4.17: (left) In-plane x-ray diffraction from the Au(100)-(hex) reconstructed electrode surface in 

CO saturated 0.1 M KOH electrolyte, measured along the [1, 1, 0] direction at an electrode potential (a)  

-1.0 V (b) -0.5 V (vs. Ag/AgCl). (right) In plane X-ray diffraction from the (p x √3) reconstructed 

Au(111) electrode surface in CO saturated 0.1 M KOH electrolyte, measured along the [1, 1, 0] direction 

through the (0, 1, 0.3) CTR position and the reconstruction peak at electrode potential (c) -1.0 V (d) -

0.5 V. The dashed vertical lines are guides for the eye. 
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Both the reconstructed phases of the Au(111) and Au(100) surfaces appear to be stabilised at 

a lattice constant close to that of the maximum surface compression, aNN ~ 2.76 Å, when CO 

is adsorbed onto the surface, it is thus apparent that the adsorbed CO suppresses the potential-

induced changes in the Au near neighbour spacing. No electrocompression is observed and 

thus the simple model of a 2D electron gas fails as a description, possibly due to a modification 

of the electron density of the surface atoms through a bonding to the CO. It is therefore likely 

that the adsorbed CO molecule acts as a tuneable dipole, accommodating the changes in the 

surface charge rather than the Au surface atoms. Indeed, combined Fourier transform infrared 

reflection−absorption spectroscopy (FTIRRAS) studies and DFT calculations[52] have found 

that on the Au(111) electrode surface, CO adsorbed on: hollow, bridge and top sites undergoes 

a potential-dependent shift in the CO stretching frequency. This shift corresponds to a Stark 

tuning rate, i.e. the change in the C–O stretching frequency with applied potential, of 40 – 20 

cm-1 V-1. This could be the origin of the observed enhanced electrocatalytic activity as the 

reactions no longer require a through-gold interaction and take place in the outer layer of the 

double layer structure at the interface. This is consistent with the model of CO-promoted OH- 

adsorption as the mechanism for the enhanced electrooxidation of alcohols on the hexagonal 

Au surfaces unique to the Au(111) and Au(100) single crystals. 

 

Figure 4.18: Scattered intensity measured as a function of potential at (0, 0, 1.02) an 'anti-Bragg' 

position on the specular CTR. The potential was swept at a sweep rate of 2 mV/s. The black symbols 

show the results obtained in 0.1 M KOH and the red symbols show the scattered intensity following the 

saturation of the electrolyte with CO. 
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To give a complete picture of the effects of CO adsorption on the low index surfaces of gold, 

the effects of CO adsorption on Au(110) electrode surfaces are reproduced here from the 

scientific literature. On Au(110) crystals, in 0.1 M KOH solution the ‘missing row’ 

reconstruction in a mixed phase bringing about a highly defected (1 x 3) surface with 

numerous stacking faults and steps. A comparison of the rocking scans in CO-free 0.1M KOH 

solution and CO-saturated solution measured at (1.7, 0, 0.1) shifted from the expected position 

for the reconstructed (1 x 3) domain of (1.667, 0 0.1) is shown in Figure 4.19(b’) taken from 

[79].  The sharp increase in intensity in CO-saturated solution was suggested to be indicative 

of significant enhancement of the reconstruction in the presence of CO in solution. Figure 4.19 

(b) and (c)show XRV measurements on the reconstruction position at (1.7, 0, 0.1) and the (0, 

0, 1.7) position on the specular rod respectively in CO- free (dashed lines) and CO saturated 

solution (solid lines). In N2 purged 0.1 M KOH solution, the lifting of the ‘missing row’ 

surface reconstruction is evidenced by the decrease in intensity on the positive potential sweep 

of the XRV shown by the black line in  Figure 4.19 (b) measured at the (1.7, 0, 0.1) position. 

This decrease in intensity on the reconstruction position coincides with OH- adsorption in like 

behaviour to both Au(100) ‘hex’  and Au(111) (p x √3) surface reconstructions. The lifting of 

the ‘missing row’ reconstruction also corresponds to an increase in intensity at the (0, 0, 1.7) 

position shown in Figure 4.19 (c).  In CO saturated solution the onset of CO oxidation 

coincides with OH- adsorption. In addition, the presence of CO in solution acts to stabilise the 

Au(110) surface reconstruction up to potentials as positive at 1.2 V (vs. RHE), a similar effect 

that is observed on Au(111) and Au(100). Recent FTIRRAS[52] measurements of CO 

adsorption on Au(110) have found that in contrast to Au(111) and Au(100) electrodes, where 

the CO adsorbs on top, bridge and hollow sites, CO only adsorbs on top sites.  Furthermore, 

no evidence of the potential dependent change in the CO stretching frequency was observed. 

It was concluded from these studies that this potential dependent change seems to only occur 

on surfaces with hexagonal orientations. 
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Figure 4.19: Reproduced with permission from [79]. (a) Cyclic voltammetry of the Au(110) electrode 

surface in 0.1 M KOH along with the polarisation curve for CO oxidation in CO-saturated 0.1 M KOH 

solution at a sweep rate of 50mV/s. (b’)Rocking scans measured through the (1.7, 0, 0.1) position in 

both CO-free (black line) and CO-saturated (grey line) solution. (b) XRV measurements at the (1.7, 0, 

0.1) reconstruction position in CO-free (dashed line) and CO saturated (solid line) solution. (c) XRV 

measurements at the specular position (0, 0, 1.7) that is sensitive to the surface reconstruction in both 

CO free and CO saturated solution. (c’) Rocking scan measurements at the specular CTR position in 

CO-free and CO-saturated solution at a potential of (0.1 V vs. RHE) where the Au(110) surface is 

reconstructed. For all XRV data the scan rate was 5 mV/s. 

4.5 Au(100): the effect of pH on the ‘hex’ reconstruction 

Another series of measurements were conducted on the Au(100) electrode in a pH 7 

electrolyte. Following repreparation the electrolyte was changed to a 0.01 M KH2PO4 + 0.01 

M K2HPO4 (neutral) solution. Figure 4.20 shows an XRV measured at the (1, 1, 0.6) CTR 
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reflection over the potential range -0.5 V to 0.5 V at a sweep rate of 1 mV/s. The changes in 

intensity correlate with the lifting and reformation of the (hex) reconstructed phase for the 

anodic and cathodic sweeps respectively. On the anodic sweep, the sharp increase in intensity 

starting ~ -0.1V implies that the (hex) reconstruction is lifted positive of this potential. Indeed, 

looking at the extracted intensity curves versus potential, for a series of reciprocal space scans 

measured in the [1, 1, 0] direction, no evidence of scattering due to the reconstructed peak is 

observed beyond -0.2 V in the cathodic direction. 

 

Figure 4.20: X-ray voltammetry measurement of the Au(100) electrode surface in 0.01 M KH2PO4 + 

0.01 M K2HPO4  electrolyte over the potential range -0.5 V to 0.5 V (vs. Ag/AgCl) at a sweep rate of 1 

mV/s at the  (1, 1, 0.6) CTR reflection. The blue and red lines represent the anodic and cathodic sweeps 

respectively. 

When the potential is stepped back from 0.5 V cathodically, the reconstruction is not observed 

to reform until 0 V where the peak intensity goes on to increase back to its position at the start 

of the measurement. Looking at the in-plane lattice spacing versus potential for the (hex) 

reconstruction the in-plane surface compression observed in the previous measurements is 

apparent during the anodic scans, albeit over a larger potential range. The near neighbour 

spacing, aNN, begins to decrease from -0.45 V and then stabilises at a maximum compression 

of 2.752 ± 0.001 Å. During the cathodic measurements, once the (hex) reconstruction reforms 

at 0 V, aNN is shown to remain constant at a value of 2.765 ± 0.001 Å. The presence of this in-

plane surface compression in pH 7 solution suggests that this potential dependent change in 

the surface density is a charging effect on the electrode surface which occurs irrespective of 

pH. 
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Figure 4.21: In-plane X-ray diffraction the (hex) reconstructed Au(100) electrode surface in 0.01 M  

KH2PO4 + 0.01 M K2HPO4  electrolyte over the potential range -0.5 V to 0.5 V (vs. Ag/AgCl), measured 

in the [1, 1, 0]  direction. (a) Integrated intensity of the Au(100)-‘hex’ reconstruction peak at ~ (1.2, 

1.2, 0.6) as a function of the applied electrode potential. (b) Near-neighbour, in-plane lattice constant, 

aNN, of the Au(100)-hex reconstruction derived from fits to the data taken at ~ (1.2, 1.2, 0.6). The blue 

and red points represent the anodic and cathodic sweeps respectively. 

 

4.6 Conclusions 

In the electrochemical environment, the hexagonal reconstructions that occur on the Au(111) 

and Au(100) surfaces both exhibit a potential dependent compressibility in alkaline solution. 

The origin of the compressibility is explained as a pure charging effect at potentials negative 

of -0.45 V with the highest Au compression observed at -0.45 V. Analysis of the data within 

a free electron model suggests that the compression is driven by the charge on the Au atoms 

which reaches a minimum at -0.45 V.  This potential marks the onset of OH- adsorption which 

leads to a reduction in the surface compression on Au(111) and on Au(100) which marks the 

onset of the lifting of the (hex) reconstructed phase. Measurements of the Au(100) surface in 

pH 7 electrolyte suggest the compressibility being a charging effect on the electrode surface 

irrespective of pH. Attempts to investigate the same type of potential dependent 

compressibility on Au(110) were unsuccessful due to the formation of a powder line at a 

position in reciprocal space correlating with the where the (1 x n) missing row reconstruction 

is expected to be observed. In CO-saturated electrolyte, where CO is adsorbed onto the surface 
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at a potential of -1.0V, the previously observed surface compressibility is suppressed and both 

the Au(111) and Au(100) surfaces are locked into the highly compressed phases observed at 

-0.45 V in CO-free electrolyte. From this it is suggested that adsorbed CO can act as a tuneable 

dipole and accommodate the excess surface charge induced by the applied potential. 

Therefore, this is the mechanism that underpins the previously observed enhancement in both 

electrocatalytic reactivity and the increased stability on the reconstructed surfaces over a larger 

potential range. Measurements from the scientific literature of the effect of CO adsorption on 

the Au(110) surface reconstruction were also discussed. It was shown that CO stabilises the 

missing row reconstruction over a larger potential range in a similar manner to that observed 

on the surface reconstructions of Au(111) and Au(100). Nevertheless, the potential dependent 

change in the CO stretching frequency observed on the Au(111) and Au(100) surface 

reconstructions is not observed on Au(110) suggesting that this behaviour only occurs on 

surfaces with hexagonal reconstructions. 
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5 Formation of a Au/Pb Surface Alloy 

in the Au(111)/Pb UPD system 
 

5.1  Introduction 
The development of new functional materials is transforming many technological fields from 

electronics and catalysis to detection and bio-sensing. Pivotal to these advancements is surface 

alloying and self-organisation phenomena, driven by surface stress and elastic interactions in 

metals. In general, alloying between two surfaces is driven by the negative enthalpy of mixing 

and lowering of surface free energy. Nevertheless, alloying can be observed even in systems 

where it does not occur in the bulk phase when confined to a few surface layers. Theoretical 

models[93] have shown that in general elements with a large lattice mismatch, so called 

immiscible systems, form surface alloys at intermediate coverage regimes during the 

deposition processes in an effort to reduce surface strain and thus the total surface energy for 

the system.   

The Au(111)/Pb UPD system has been extensively studied via electrochemical techniques[93–

101], UV-vis reflectance studies[99], STM[102–107], AFM[108, 109], SXS[33, 110, 111] and 

SHG[113]. As Pb atoms are approximately 20% larger than Au atoms they favour the 

formation of incommensurate adlayers during the UPD process. Indeed, surface X-ray 

diffraction studies have found that the Pb atoms form a hexagonally close packed (hcp) 

incommensurate adlayer that is rotated between 0° and 2.5° depending on the applied 

potential,[111]. This coincides with a change in the Pb-Au vertical separation over the same 

potential region[112]. In the last two decades there has been debate as to whether a surface 

alloy is formed during the Pb UPD process on the Au(111) electrode surface[9]. In some 

studies, no alloy formation was observed[107, 108] whereas others reported a significant 

roughening of the gold surface following the stripping of the Pb UPD layer, indicative of a 

surface alloy[106]. Surface stress studies of the UPD process have noted what they call a 

‘hump’ in the surface stress versus potential curve between a coverage of θPb=0.41 and 

θPb=0.83 when the potential was scanned in the cathodic direction at θPb=0.43 and θPb=0.83 in 

the anodic direction[114].  

Figure 5.1 shows the characteristic CV overlaid with the observed surface stress curve taken 

from Shin et al.[115]. The stress for the initial scan is set arbitrarily to zero. As the potential 

is scanned cathodically, the stress is observed to change in a positive, or tensile, direction. 

This is identical, in the initial potential region, to that of Au(111) in Pb2+ free solution 
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represented by the dotted line in the figure. The surface stress changes in a compressive 

direction around -0.43V (vs. sulphated silver electrode, SSE, this is equal to 0.22 V vs. 

Ag/AgCl) due to the formation of Au-Pb bonds, reducing the tensile surface stress inherent to 

the clean Au surface. This compression continues until stress relaxation in a tensile direction 

is observed over a narrow potential region between -0.635 to -0.670 V (-0.035 V to -0.07 V 

vs. Ag/AgCl). As the deposition continues, the stress once again shifts in a compressive 

direction as further Pb atoms are incorporated into the adlayer, bringing about contraction of 

the interatomic spacings and eventual rotation of the monolayer. This compressive-tensile-

compressive transition is termed the stress relaxation hump[115]. As the potential is swept 

anodically, the surface stress exhibits reversible behaviour. After the hump, larger hysteresis 

is observed with the anodic sweep appearing to be more compressive than the cathodic 

direction. As the potential reaches 0 V, the surface stress returns to its initial value indicating 

that all the Pb atoms have been stripped from the Au surface. 

 

 

Figure 5.1: Surface stress potential curve for Pb UPD on Au(111).  The red lines represent the CV and 

the solid blue line represents the surface stress curve. The dotted blue line represents the expected 

surface stress change for clean Au(111). The black dotted line acts as a guide for the eye to mark the 

potential location of 0.19 V vs. Pb/Pb+2 Reprinted with permission from [115]. Copyright 2010 

American Chemical Society.  

Seo and Yamazaki[114] suggested that this so called surface relaxation hump coincides with 

the rotation of the hexagonal incommensurate Pb adlayer from 0° to 2.5°. However, Stafford 

and Bertocci[116] surmise that the rotation found via x-ray diffraction studies occurred in the 

potential range of full monolayer coverage. Furthermore, the rotation of the adlayer causes no 

corresponding change in the nearest neighbour spacing of the adlayer. They therefore suggest 

that this ‘hump’ is brought about by Pb island coalescence during the deposition process. They 
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rationalise the stress change during the stripping process by pointing out that the stress moves 

in the tensile direction as Pb atoms are removed from the adlayer and relieve the compressive 

elastic strain. Toney et al.[111], note a point at around 0.19 V (vs. Pb/Pb2+, -0.01 V vs. 

Ag/AgCl) at which the near-neighbour distance exceeds the 0.35 nm value for that of bulk Pb. 

This suggests that the strain can become slightly positive. Green et al.[106] showed via STM 

studies that the stripping of the Pb layer initially occurs at the step edges. The stripping is then 

followed by pit formation in the adlayer terrace plane, leaving isolated islands on the surface. 

As the monolayer is broken up, tensile stress in the isolated islands relaxes and thus produces 

the compressive hump in the stress vs potential curve. 

Shin et al. [115] attributed most of the stress response and the stress relaxation hump to 

kinetically controlled surface alloying occurring solely at low coverages of Pb. Whilst at high 

coverages, a Pb monolayer is formed and the surface alloy is removed. Thus, the stress hump 

would appear to be caused by the formation and removal of the surface alloy. Nutariya et 

al.[10] in a series of surface stress, in-situ STM and extended polarisation measurements, 

found evidence of significant mass transport and removal/displacement of Au surface atoms 

during the Pb UPD process. This can be attributed to the incorporation of Pb and surface 

mixing during the early stages of deposition and subsequent de-alloying at higher Pb coverage. 

STM images taken of the Pb-free Au(111) surface following repeated CV cycles showed clear 

indication of surface alloying during the Pb UPD process, in particular the presence of new 

Au ad-islands formed during Pb dissolution brought about by expulsion of Au atoms from the 

top surface layer. This is driven by the Pb overlayer transitioning to a Pb-Au surface alloy as 

the Pb coverage decreases. However, at this time the surface alloying transformation and the 

nature of the surface alloy in-situ has not yet been fully investigated.  

In the case of the underpotential deposition of Pb on Au(100) electrode surfaces, three types 

of structures have been observed: c(2 x 2)[116, 117], c(3√2 x 2)R30°[118] and an 

incommensurate hexagonal layer similar to that observed during Pb UPD on Au(111). 

However, the x-ray study carried out by K. M. Robinson et al. [117]claim to have observed 

via CTR analysis an alloying effect as the potential was scanned in the cathodic direction. It 

is suggested that initially a (1x1) structure of around 60% coverage adsorbs weakly onto the 

(5 x 20) reconstructed surface and then as the potential is shifted the reconstruction is lifted 

and during this process the Pb atoms form a substitutional alloy with the gold surface. 

The experiments outlined in this chapter endeavour to elucidate the nature of the surface alloy 

via the use of in-situ surface x-ray diffraction measurements on the Au(111) surface. In 

addition, in-situ surface x-ray diffraction studies exploring the nature of the Au(100)/Pb 

interface will also be discussed.  
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5.2 Experimental 

Measurements were conducted at BM28 (XMaS), the UK-CRG beamline at the ESRF, 

Grenoble using focussed x-rays at energies of 11.5 keV and 12.835 keV. The Au(111) and 

Au(100) crystals were prepared and transferred into the x-ray thin layer electrochemical cell 

using the methodology outlined in section 3.1, the sample was then transferred into the thin 

layer x-ray electrochemical cell and mounted on the diffractometer. For the measurements on 

the Au(111) electrode surface, the electrolyte comprised of 0.1 M HClO4 + 10 mM PbCO3 

solution, the counter electrode was Au polycrystalline wire and the reference electrode was 

Ag/AgCl ((WPI- Leak-Free reference electrode, catalogue no. 69-0023 [LF – 2])). 

Measurements on the Au(100) electrode were conducted as part of an investigation of the 

oxygen reduction reaction in alkaline solution, as such the electrolyte used in the 

measurements described here was 0.1 M KOH + 1 mM PbCO3 solution. 

 

5.2 Characterisation of the Pb/Au(111) UPD system 

Initially the Au(111) surface was characterised at 0.75 V, a potential where no deposition of 

Pb is observed. The potential was then stepped to -0.05 V and a radial scan of the double peak 

brought about by contributions from the two Pb domains of the rotated Pb UPD overlayer at 

(0, 0.8167, 0.4) can be seen in Figure 5.2(a).  The Pb overlayer was found to be rotated 2.2° 

from the Au [010] direction, in the range of 0-2.5° found in x-ray diffraction studies[33, 110]. 

A reciprocal space map of the scattering brought about by the rotated incommensurate hcp Pb 

overlayer is shown in Figure 5.2(b).  In the Au [010] direction the peaks arising from the Pb 

overlayer are found at a position (0, 2δ) where 2δ is a measure of the incommensurability of 

the Pb structure [119]. The coverage of the Pb overlayer can be calculated by θPb = aau/aPb, 

where aau and aPb are the near neighbour spacings of Au (2.885 Å) and Pb respectively. The 

near neighbour spacing of Pb can be calculated by aAu/2δ = 3.489 Å, in line with the values 

calculated by Toney et al.[111]. The coverage it therefore directly equal to 2δ and thus θPb = 

0.8267. Specular CTR data measured via the use of rocking scans in intervals of l is shown in 

Figure 5.3 for (a) 0.75 V, (b) 0.35 V and (c) -0.05 V. The solid black line represents the best 

fit obtained for each potential. The best fit parameters and their associated errors obtained 

from the output of the linear least squares fitting program obtained for the CTR data at each 

potential is shown in Table 5.1. 
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Figure 5.2: (a) Radial scan of the two Pb domains plotted relative to the Au [010] direction at (0, 0.8267, 

0.4). (b) reciprocal space map of the scattering brought about by the formation of the rotated 

incommensurate hcp Pb overlayer relative to the scattering from Au(111) electrode surface. 

 

Figure 5.3: Fits to the specular crystal truncation rods measured at (a) 0.75 V, (b) 0.35 V (c) -0.05 V. 

The parameters for the model are given in Table 5.1 . The solid black lines represent the best fit obtained 

for the data at each potential. 

From the best fit parameters outlined in Table 5.1, the results at -0.05 V show a coverage of 

the Pb adlayer of 0.77 ±0.06, within error of the calculated coverage based on the radial scan 

of the rotated Pb domains. Contrary to the studies conducted by Chabala et al.[112] that find 
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the Pb-Au planar spacing of 2.3 Å, the best fit to the CTR data finds a Pb-Au planar spacing 

of 2.87 ± 0.05 Å. A simplified illustration of the structural model measured at -0.05 V is 

displayed in Figure 5.4. Contrary to previous SXS studies[111] a significant outward 

relaxation of the Au surface layer of an 0.27 ± 0.04 Å is observed. This could be indicative of 

a Pb/Au dealloying process occurring prior to the completion of the Pb adlayer. Furthermore, 

when the potential is swept up to -0.35 V there is evidence of significant roughening on the 

Au surface (β ~ 0.25). This would correlate with STM studies[106] that have reported 

significant roughening of the Au surface observed following the stripping of the Pb layer.  At 

this potential the majority of the Pb adatoms have been stripped from the Au(111) electrode 

surface with only ~10% remaining. The remaining Pb adatoms are found at a vertical 

separation of 2.82 ± 0.13 Å from the Au(111) surface.  

 
Parameter 0.75 V 0.35 V -0.05 V 

M
et

a
l 

L
a
y
er

s 

ε34 (Å) 0 0 0 

ε23 (Å) 0.008 ± 0.004 0 0.08 ± 0.02 

ε12 (Å) -0.008 ± 0.003 0.021 ± 0.008 0.27 ± 0.04 

σ2 (Å) 0.07 ± 0.01 0 0 

σ1 (Å) 0.10 ± 0.01 0 0 

θ1 0.95 ± 0.02 1 1 

Β 0 0.24 ± 0.02 0.05 ± 0.01 

P
b

 a
d

la
y
er

 Θ 0 0.09 ± 0.03 0.77 ±0.07 

d (Å) 0 2.82 ± 0.13 2.87 ± 0.05 

σ (Å) 0 0.2 0.35 ± 0.02 

E
rr

o
r 

F
u

n
ct

io
n

 

d (Å) 5.75 ± 0.48 0 0 

σ (Å) 1.27 ± 0.23 0 0 

χ2 red 1.89 2.13 3.7 

Table 5.1:Best fit parameters and their associated errors obtained via linear least squares fitting 

techniques for the CTR data measured at 0.75 V, 0.35 V and -0.05 V. The definitions and physical 

meanings of these parameters can be found in 2.3.4. 
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Figure 5.4: Illustration of the structural model obtained from the CTR data measured at -0.05 V. The 

left side represent the 'top' view of the model showing the incommensurate hcp Pb adlayer (grey circles) 

rotated at an angle Ω from the underlying Au surface (yellow circles). The right side displays the ‘side’ 

view of the surface with the roughened Au surface layer and the Pb adlayer at a distance of 3.48 Å from 

the Au surface. 

5.4   Formation of an Au/Pb surface alloy 

As CTR measurements yield electron density profiles, Au and Pb can be hard to discern as 

they have comparable electron densities. By measuring the changes in intensity at a position 

in reciprocal space as a function of the incident x-ray energy through the adsorption edge on 

an atom in the sample, it is possible to differentiate between elements of similar electron 

densities. The atomic form factor of the element being probed must be adjusted for the 

dispersion corrections: 

𝑓(𝑄, 𝐸) = 𝑓(𝑄) + 𝑓′(𝐸) + 𝑖𝑓′′(𝐸) 

where f(Q,E) is the corrected form factor, comprising of 3 components; the atomic form factor 

f(Q) and the real and imaginary parts of the dispersion corrections f'(E) and if”(E). In terms 

of physical measurements f” is directly related to the absorption spectrum and can be obtained 

by measuring the fluorescent signal from the element being probed[120]. By using a Multi-

Channel Analyser (MCA), both the elastic and fluorescent signals can be separated 

simultaneously during the same measurement. To carry out the energy measurements, the 

detector was switched from a photo diode to Vortec detector. The signal is then passed through 

an MCA, allowing for the exclusion of fluorescence from the measurements. The energy of 

the incident x-rays was increased to 12.835 keV close to the lead L(III) edge (13.035 keV). 

These measurements were employed in conjunction with CTR measurements to identify the 

Au/Pb alloy in-situ.  

The potential was stepped to -0.15 V and in a series of x-ray voltammetry (XRV) 

measurements at the (0, 0, 1.52) position, the potential was swept up to 0.3 V, in stages (A-F) 

at a sweep rate of 2.5 mV/s, shown in Figure 5.5. From -0.15 V to 0.0 V (points A to C) the 

stripping of the Pb overlayer is evidenced by the decrease in intensity. This followed by slow 
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stripping of the incommensurate UPD layer evidenced by the increase in the intensity as a 

function of applied potential (D to F). The insets (a-e) of Figure 5.5 represent rocking ‘check’ 

scans of the (0, 0, 1.52) CTR position measured before (black line) and after (red line) the 

XRV sweeps: (a) B-C, (b) C-D, (d) D-E and (e) E-F. These rocking scans were used to monitor 

for any changes in the background during the XRV measurement to ensure that the observed 

change is real via background subtraction. 

 

Figure 5.5: Linear XRV sweeps taken from -0.15 V to 0.3 V at (0 0 1.52) at a rate of 2.5mV/s. The 

insets show the rocking scans measured at (0 0 1.52) prior to and following the XRV measurements (a) 

-0.15 V to -0.05 V, (b) -0.05 V to 0.05 V, (c) 0.05 V to 0.175 V and (d) 0.175 V to 0.3 V.  The black 

and red lines represent the rocking scans measured prior to and following the XRV measurement 

respectively. 

  

CTR measurements were then taken at 0.05 V, 0.175 V and 0.3 V (Points D, E and F in Figure 

5.5 respectively) to attempt to identify the presence of an Au/Pb surface alloy at intermediate 

potentials between the clean surface and the surface upon which the rotated hcp Pb layer is 

observed. These measurements were taken at 12.835 keV with energy scans through the lead 

L(III) edge taken at each potential as well as at -0.05 V (point B on the potential scale in Figure 

5.5). The energy scans were measured at the specular anti-Bragg position (0, 0, 1.52) and were 
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run in a ‘fixed Q’ mode, this enabled automated corrections of the diffractometer angles to 

allow for the position in reciprocal space to remain constant as the wavelength changes.  Using 

the models obtained from the specular CTR profiles, the structure factor at (0 0 1.52) was 

calculated as a function of energy and then convoluted with a gaussian function representing 

the energy resolution of the monochromator. A comparison of the model against the energy 

scans for the data taken at -0.05 V is shown in Figure 5.6.  

 

 

Figure 5.6: Energy scan measured at (0 0 1.52) a so called ‘anti Bragg’ position at -0.05 V vs Ag/AgCl 

between 12.985 keV and 13.125 keV. The red line represents the approximation of the scan based on 

the model for the CTR measured at the same potential. 

The next CTR and energy measurements were taken at 0.05 V, the energy data along with the 

fit to the model is shown in Figure 5.7 (right). The inversion of the ‘peak’ as it passes through 

the absorption edge suggests a change in phase, possibly brought about by a variance in the 

surface layer expansions the lead atoms are present in. Given the significant change in the line 

shape of the scattered intensity as the energy was increased through the Pb L(III) edge, it was 

suspected that the surface alloy had formed at this potential. The alloy was modelled as a 

substitutional alloy of the top Au surface layer with a coverage of Pb equal to 1- θAu. The Pb 

atoms were assigned an expansion parameter separate to the Au surface layer to allow for the 

buckling of the top layer brought about by the surface alloy formation. The best fit to the 

measured CTR data at this potential utilising this model is displayed on the left side of Figure 
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5.7. The parameters for the models obtained at this potential along with the successive 

measurements at 0.175 V and 0.3 V are shown in Table 5.2. The results show a substitutional 

surface alloy in the Au:Pb coverage ratio of 0.85:0.15 ± 0.02 with the top Au layer outwardly 

relaxed by 0.1 Å and the Pb atoms inwardly relaxed by 0.20 Å. This in combination with the 

large rms of the layer (σ~0.28 Å) implies a buckling of the surface layer. Pb islands are at a 

distance of 2.84 ± 0.25 Å from the Au(111) electrode surface, closer than that measured at -

0.05 V, which implies that the Pb atoms are strongly bonded to the surface, possibly using the 

substitutional Pb atoms as a nucleation point for the growth of the Pb adlayer. An illustration 

of the surface structure based on this model is shown in Figure 5.8. Given the nature of the 

alloy, it is likely that a portion of the Au atoms removed from the surface are intermixed with 

the Pb adlayer. Indeed, recent STM studies[10] have shown the presence of such Au ad-islands 

on the Au(111) surface during the UPD process.  

 

Figure 5.7 left: CTR data of the specular [00L] and non-specular rods [01L] [10L], from top to bottom 

respectively, measured at 0.05 V. The solid lines represent the best fit found using the outlined 

substitutional alloy model displayed in Figure 5.8. The CTR data were fit simultaneously.  Right: energy 

scan measured at 0.05 V vs. Ag/AgCl measured at (0 0 1.52). The red line represents the calculated line 

shape based on the model. 
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  Parameter 0.05 V 0.175 V 0.3 V 
M

et
a
l 

L
a

y
er

s 
ε34 (Å) 0 0 0 

ε23 (Å) 0 0 0 

ε12 (Å) 0.1 ± 0.15 0.016 ± 0.006 0.004 ± 0.005 

ε12 (Pb) (Å) -0.39 ± 0.15 0 0 

σ2 (Å) 0.10± 0.01 0.08 ± 0.02 0.08 ± 0.02 

σ1 (Å) 0.28 ±0.05 0.22 ± 0.01 0.20 ± 0.01 

θ1(Au) 0.85 ± 0.02 1 1 

θ1(Pb) 0.15 ±  0.02 0 0 

P
b

 a
d

la
y

er
 

θ 0.47 ± 0.02 0.33 ± 0.02 0.29 ± 0.03 

d (Å) 2.84 ± 0.25 2.85 ± 0.05 2.88± 0.06 

σ (Å) 0.5 ± 0.3 0.1 0.1 

'O
' 

a
d

la
y
er

 

θ 0 0.51 ± 0.21 0.34 ± 0.22 

d (Å) 0 5.76 ± 0.23 5.55± 0.40 

σ (Å) 0 0.2 0.2 

E
rr

o
r 

F
u

n
ct

io
n

 d (Å) 0 0 0 

σ (Å) 0 0 0 

χ2 red 4.22 3.09 2.71 

Table 5.2: Best fit parameters and their associated errors for the CTR data measured at 0.05 V, 0.175 

V and 0.3 V. 

 

Figure 5.8: Illustrations showing the 'top' and 'side' views of the substitutional surface alloy model used 

for the data measured at 0.05 V. Pb atoms and Au atoms are displayed as the grey and yellow circles 

respectively. 

CTR data and energy scans were measured at 0.175 V following potential sweep D to E. The 

best fit to the CTR data and the resultant fit to the model vs. the measured energy scan data is 

shown in Figure 5.9. No evidence of the substitutional alloy found at 0.05 V is observed at 

this potential, instead the coverage of the Pb adlayer remains constant at a coverage of 
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approximately 0.3 and a negligible change in the layer spacing from 2.84 ±0.38 Å to 2.85 ± 

0.05 Å. Comparing these values, along with the final set of CTR and energy measurements 

taken at 0.3 V that is shown in Figure 5.10 and the best fit parameters are shown in Table 5.2, 

is perhaps of more value as the parameters for the data taken at 0.175 V and 0.3 V are almost 

identical. This would appear to suggest that, once the surface has de-alloyed the remaining Pb 

islands are relatively stable until the final stripping peak around 0.4 V. To achieve the best 

possible fit for the specular CTRs, the introduction of an oxygen adlayer was required. The 

‘oxygen’ layer was used to approximate the adsorption of hydroxide molecules. The presence 

of OH- at potentials positive of the main UPD peaks correlate with the measurements taken in 

AFM[109] and results on Pt(111) electrodes[120, 121]. 

 

 

Figure 5.9  left CTR data of the specular [00L] and non-specular rods [01L] [10L], from top to bottom 

respectively, measured at 0.175 V. The solid lines represent the fit to the data using the model in Figure 

5.11 Right: Energy scan measured at 0.175 V vs. Ag/AgCl measured at (0 0 1.52). The red line 

represents the calculated line shape based on the model. 

 

. 
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Figure 5.10 left: CTR data of the specular [00L] and non-specular rods [01L] [10L], from top to bottom 

respectively, measured at 0.3 V. The solid lines represent the fit to the data using the model in Figure 

5.11. Right: Energy scan measured at 0.3 V vs. Ag/AgCl measured at (0 0 1.52). The red line represents 

the calculated line shape based on the model. 

 

Figure 5.11: Illustrations of the 'top' and 'side' views for the model obtained from the best fits to the 

data measured at 0.175 V and 0.3 V. 

 

From the results reported here the following process is suggested. As the Pb hcp overlayer is 

stripped from the surface brought about by the potential being scanned anodically, a 

substitutional Pb/Au surface alloy forms in an effort to reduce the total surface energy of the 

system[93]. As the potential continues to be scanned anodically and Pb adatoms continue to 

be stripped from the Au electrode surface it is likely more energetically favourable for the 
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electrode surface to de-alloy prior to the complete stripping of Pb adatoms from the Au 

surface. As a result, the coverage of the deposited Pb adlayer remains fairly constant up to the 

final anodic stripping peak at 0.4 V. It can therefore be inferred that there is a threshold of 

deposited Pb on the Au(111) electrode of  coverage ~0.33, prior to which the deposited Pb is 

stable without surface alloying occurring. It is possible that the adsorption of hydroxide 

species at these potentials stabilises the Pb islands at these coverages.  

Studies of Pb UPD on Pt(111) systems share similarities with the processes observed 

on Au(111). Indeed, the voltammetric profile for gold and platinum electrodes in the presence 

of lead cations in solution changes slightly in the oxide region[94, 101, 120, 121].This 

suggests the presence of residual lead on the electrode surface brought about by an irreversible 

adsorption process. Furthermore, as already mentioned at potentials positive of the main UPD 

peaks, AFM studies[109] indicate the presence of hydroxide species based on the adlayer 

height being larger than that of metallic lead. The presence of partially charged lead species 

at these potentials has also been indicated by electroreflectance studies[99], which would 

appear to agree with the results found here. Lead has also been found to alloy with Pt(111) 

electrodes in the presence of bromide[123]. Contrary to the apparent alloy formation reported 

here, the Pt3Pb alloy consists of a p(2 x 2) structure that forms when the potential is held at ~0 

V (vs. Ag/AgCl) over a period of ca. 2 h. This structure is not present in bromide-free solutions 

however, suggesting that bromide in solution ‘catalyses’ the kinetics of alloy formation. 

5.5 Au(100)  in 0.1 M KOH +1 mM PbCO3 

Although analysis of the Au(100)/Pb UPD system is as yet incomplete, the data shows some 

interesting features that are worthy of discussion. Figure 5.12 displays XRV measurements 

taken between 0.05 V and -0.7 V at a scan rate of 5 mV/s. Figure 5.12(a) shows the XRV 

measurement taken at (1, 1, 0.2), a position near to the ‘anti-Bragg’ position sensitive to 

ordering commensurate to the Au surface. As the potential is scanned in the cathodic direction, 

the intensity remains constant until approximately -0.55 V where the intensity sharply 

decreases. On the anodic sweep, the intensity continues to decrease until around -0.65 V where 

the intensity then gradually increases back to its original value at the anodic limit. This change 

in intensity is also observed  (Figure 5.12(b)) at (0, 0 ,3.02) and ‘anti-Bragg’ position on the 

specular CTR. This could imply that the decrease in intensity is indicative of the formation of 

the incommensurate hcp overlayer prior to bulk deposition beginning to occur around -0.6 V. 
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Figure 5.12: scattered intensity as a function of applied electrode potential between 0.05 V and -0.7 V 

at a scan rate of 5 mv/s at (a) the (1, 1, 0.2) CTR position; (b) (0, 0, 3.02) an 'anti-Bragg' position on the 

specular CTR and The arrows indicate the direction of the scanned potential for the red and black lines 

respectively. 

Figure 5.13(a) shows specular and non-specular CTR measurements taken at 0.05 V (black), -

0.4 V(red) and -0.6 V(blue). From inspection of the CTRs, at 0.05 V and -0.4 V there appears 

to be slight oscillation along the L direction. The oscillation is not present in the data measured 

at -0.6 V which is possibly due to a structural change of the deposited Pb at his potential. This 

oscillation is more prominent in the CTR measurements shown in Figure 5.13(b). These 

measurements were taken following repreparation of the Au(100) electrode surface by 

repeated potential cycles in Pb-free electrolyte to ensure no lead was deposited on the surface 

and then flame annealed as outlined in 3.1.  Following alignment of the crystal, the potential 

was contacted at 0.05 V and specular and non-specular CTR data were measured at 0.05 V 

(black), -0.4 V (red) and -0.55 V (blue). From inspection of Figure 5.13(b) the oscillation 

observed in Figure 5.13(a) at 0.05 V and -0.4 V is significantly more pronounced and is present 

at all measured potentials following repreparation. The increase in the size of the oscillation 

the measurements conducted at -0.55 V show evidence of the structure observed at 0.05 and -

0.04 V although with a significantly reduced intensity, this correlates with the reduction in 

intensities observed on the XRV measurements and is likely indicative of a change in the Pb 

structure, possibly the formation of an incommensurate hcp overlayer.  The presence of this 

structure following  re-preparation is indicative of either spontaneous formation of a Pb 

structure on the Au(100) surface or an irreversible change having occurred to the Au(100) 

electrode. Further experiments have since been conducted using the same Au(100) crystal and 

no evidence of an irreversible change brought about by the measurements outlined here has 

been observed. This is evidenced by the measurements of the Au(100) ‘hex’ reconstruction 

discussed in Chapter 4. Therefore, it can be concluded that the observed changes to the CTR 

profiles are brought about by a spontaneous formation of a deposited Pb structure on the 
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Au(100) surface. This type of behaviour has not been reported in the literature before, however 

previous investigations into the Au(100)/Pb interface have been conducted in acid solution 

implying that the observed changes here could be an effect brought about by the measurements 

being conducted in alkaline solution. 
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Figure 5.13: Specular(top) and non-specular(bottom) crystal truncation rod data measured on the 

Au(100) electrode surface in the presence of 0.1 M KOH +1 mM PbCO3 (a) 0.05 V  (black), -0.4 V(red) 

and  -0.6 V(blue). (b) CTR measurements conducted following the repreparation of the Au(100) 

electrode surface at 0.05 V (black), -0.4 V (red) and -0.55 V(blue).  

Current attempts to analyse the CTR data have focussed on the data measured at 0.05 V 

following the repreparation of the Au(100) electrode as this has the most prominent oscillation 

along the L direction. Attempts to fit the data using the structures reported in the literature (c(2 

x 2) and c(3√2 x 2)R30°)[116, 117]  have so far been unsuccessful. The current best 

approximation of a fit to the data is shown in Figure 5.14. The values for the parameters for the 

best fit to the data are shown in Table 5.3. The model was calculated by varying the layers of 
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Au. The bottom gold layer (layer 3 in the table) is assumed to be the Au surface with the two 

layers above it approximating the Pb structure. The model positioned the second layer on the 

bridge site (1/2, 0) of Au(100) surface with the layer above being located at a position (3/2, 

3/2) relative to the assumed top gold layer. Both layers have an occupancy of approximately 

0.5. With this information it appears to suggest that the Pb structure that has formed is a (2 x 

1) bilayer structure, nevertheless, attempts to fit this using a (2 x 1) structure have been as yet 

unsuccessful.  
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Figure 5.14: Specular (top) and non-specular (bottom) CTR data measured at 0.05 V following 

repreparation of the Au(100) electrode surface. The solid line represents the current best approximation 

of a fit to the data. 

  Parameter 0.05 V 

M
et

a
l 

L
a

y
er

s 

ε34 (Å) 0 

ε23 (Å) 0.70 ± 0.03 

ε12 (Å) 0.33 ± 0.03 

σ3 (Å) 0.01 

σ2 (Å) 0.05 

σ1 (Å) 0.05 

θ3 1 

θ2 0.47 ± 0.01 

θ1 0.44 ± 0.02 
 

χ2 red 9.7 

Table 5.3: Parameters and their associated errors obtained from linear least squares fitting methods for 

the best fit to the CTR data measured at 0.05 V. The model consists of three layers of Au with the top 

two layers being used to approximate the Pb structure. The second gold layer is located on the bridge 
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sites of the layer beneath and the third layer of gold. 

5.6 Conclusions and Summary 

Using in-situ x-ray scattering studies, a substitutional Au/Pb surface alloy in the ratio of  ~ 4:1 

has been identified at partial coverages of  Pb which had formed during the stripping process 

of Pb from the Au(111) electrode surface. It is proposed that the alloy forms to reduce the 

surface strain and as a result the total surface energy as has been suggested by theoretical 

models of surface alloy formation on immiscible systems. As the potential is scanned 

anodically, it is shown that the surface has de-alloyed prior to the complete removal of the 

deposited Pb adatoms from the Au surface.  It is suggested that at Pb coverages below 0.33  

surface alloying does not occur. Measurements on the Au(100) electrode surface show an 

apparent spontaneous formation of a (2 x 1) Pb bilayer structure. This is observed to occur 

irrespective of potential or surface preparations. A series of exploratory reciprocal space scans 

and x-ray voltammetry measurements would yield insight into the nature of the Pb structure 

forming on the Au(100) surface and enable accurate fitting of the CTR data.
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6 The Adsorption of Acetonitrile at the 

Au(111)/Electrolyte Interface 
 

6.1 Introduction  

An important aspect of surface electrochemistry and the development of new catalysts is 

understanding the effect of adsorbed species on electrode surfaces. This is because adsorbed 

molecules can strongly affect electrode reactions. The study of the adsorption of small organic 

molecules and their influence on electrode surfaces can help to resolve the following key 

questions remaining before a fundamental understanding of interfacial phenomena at a 

molecular level can be achieved: the influence of water on electrocatalytic reactions and its 

structure, the role of anions in the electrochemical double layer and the nature of bonding 

between metals and organic species. Acetonitrile (CH3CN) is one of the most widely used 

polar aprotic solvents in electrochemistry since it is miscible in aqueous solutions, has a high 

dielectric constant and a wide potential window [124].  In addition, acetonitrile (AcN) is a 

mildly dissociative organic solvent comprised of polar, covalent bonds and functions primarily 

as a weak Lewis base and can bond with charge-withdrawing sites such as transition metal 

centres[125].  

AcN adsorption from aqueous solutions has been extensively studied on Pt(111)[125, 126], 

polycrystalline platinum Pt(poly)[1, 4] and platinised platinum Pt/Pt[128–130] via cyclic 

voltammetry and various spectrometry techniques.  Some references[11, 125, 126] report that 

chemisorbed AcN undergoes reduction/oxidation quasi-reversibly during potential cycling. 

Cyanide ions have been detected in Raman spectroscopy studies[132] at potentials around 0.1 

V (vs. Ag/AgCl) on polycrystalline platinum electrodes as well as copper[133] and silver 

foils[134]. A combination of CV and mass spectrometry measurements on porous Pt 

electrodes in aqueous solution 0.005 M H2SO4 + 0.05 M AcN have shown that at higher 

potentials (> 0.5 V) adsorbed acetonitrile may undergo oxidation to CO2 and NOx and 

reduction to ethane and ammonia at potentials below -0.1 V. There has also been discussion 

based upon high-resolution vibrational spectroscopy (HREELS), Auger electron spectroscopy 

(AES) and LEED measurements, of AcN being partially converted to acetamide CH3CONH2, 

a product of AcN hydration. However, it has been shown that cyclic voltammetry 

measurements [127] in sulphuric acid solutions containing acetamide differ from those 

obtained in the presence of acetonitrile. Radioactive-tracer techniques[130] have established 

that the adsorption of AcN occurs around 0.8 V (vs. Ag/AgCl) after partial desorption of 

oxygen. In the same study it was suggested that the kinetics of AcN adsorption on Pt electrodes 
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is slow. More recent studies of AcN adsorption on Pt electrodes in sulphuric acid have 

confirmed that above 0.8 V there is no electrochemical conversion of AcN whilst at higher 

potentials on polycrystalline Pt electrodes, the oxidation of AcN proceeds simultaneously with 

the desorption of its products[12]. AcN has also been shown to block adsorption sites for H+ 

and OH- ions[128].  

Similar studies on Au electrodes have been carried out however, to a lesser extent. On 

polycrystalline gold in perchloric acid solutions it was shown, via in-situ vibrational 

spectroscopy[135], that two types of bonding of AcN molecules existed at the interface. One 

of which being a chemisorbed AcN molecule with its dipole vector perpendicular to the 

interface with its negative end bonded to the surface. The other being AcN molecules 

hydrogen bonded to chemisorbed water molecules which results in AcN being situated further 

away from the electrode surface. Studies on both polycrystalline gold in perchloric acid and 

Au(111) in sulphuric acid have shown that the effect of AcN adsorption is much weaker on 

those systems in comparison to that of polycrystalline Pt and Pt(111) electrodes 

respectively[4, 11]. Figure 6.1 shows a series of CV measurements taken from [12] of the 

Au(111) electrode surface in 0.5 M H2SO4 and increasing concentrations of AcN. In sulphuric 

acid the presence of the “disordered (bi)sulphate -(√3 x √7)R19.1°” structure found on 

Au(111) electrodes[136] is still present around 0.8 V (~1 V vs SHE in Figure 6.1)  and almost 

independent of the AcN concentration. In perchloric acid, the inhibiting effects of AcN on the 

kinetics of the oxygen reduction reaction on polycrystalline gold are shown to be very 

pronounced[128].  

 

Figure 6.1: Cyclic voltammetry measurements (vs. Standard Hydrogen electrode) of Au(111) in 0.5 M 

H2SO4 with the addition of AcN at 0.1 V/s . AcN concentration, mM: (1) 0; (2) 0.04; (3) 200. Reprinted 

from[12]. Copyright 2009, with permission from Elsevier. 
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The underpotential deposition of copper onto transition metal single crystals in AcN free 

solutions has been extensively studied in the past using many of the techniques available to 

investigate the behaviour of these systems, ranging from electrochemical methods[136–139], 

in-situ STM[140–143], AFM[144, 145], X-ray techniques[146–148] and ex-situ UHV 

techniques such as LEED[149–151]. These studies have provided detailed knowledge of these 

systems particularly Cu UPD on Au(111) electrodes in sulphuric media. Initial structural 

studies of the copper adlayer were carried out in the UHV environment via RHEED and LEED 

measurements[149–151]. The results yielded two different structures at two stages of 

deposition; a (√3 x √3)R30° honeycomb structure at a coverage θCu = 0.67 and a (1 x 1) 

structure at coverage θCu = 1.  There was some controversy as to the nature of the honeycomb 

structure, initial STM[19, 21, 31–33] and AFM[145] measurements yielded a (√3x√3)R30° 

structure, taking the highest points on the surface to be Cu adatoms implying a coverage of 

copper for this structure to be θCu = 0.33. These contradicted results found via electrochemical 

quartz crystal microbalance (EQCM)[155–159] and chronocoulometry[155, 156] 

measurements that indicated a coverage of copper for this initial stage in the deposition 

process to be θCu = 0.67 with (bi)sulphate anions deposited with a coverage θanions = 0.33. These 

results were reconciled via in-situ surface x-ray scattering studies carried out by Toney et 

al.[148] which found that the Cu adlayer at intermediate coverages has a honeycomb 

(√3x√3)R30° structure. In this structure θCu = 0.67 with copper atoms occupying 3-fold hollow 

sites of the Au(111) surface and  (bi)sulphate anions occupying the centres of the honeycombs 

with θanions = 0.33, in agreement with EQCM and chronocoulometry measurements. Therefore, 

what had previously been interpreted as Cu atoms in STM and AFM measurements were the 

(bi)sulphate anions protruding well above the Cu plane occupying the centres of the 

honeycomb. At the second stage of the UPD process, copper atoms fill the honeycomb 

structure to form a pseudomorphic (1 x 1) structure with (bi)sulphate adsorbed on top of the 

copper adlayer.  The nature of this (bi)sulphate layer had been under some debate, 

thermodynamic and coulometry studies by Shi et al.[140] revealed that the (bi)sulphate anions 

form a (√3 x √7)R19.1° structure on top of the Cu UPD monolayer, the same structure 

observed on both bulk Au(111) and Cu(111). In contrast to this in-situ x-ray scattering 

studies[161] and EQCM[162] measurements showed that the sulphate structure actually 

formed a (√3x√3)R30° structure. Recent STM studies by Madry et al.[144] found that at 

monolayer coverage of copper the (bi)sulphate anions form a (√3 x √7)R19.1° structure and 

as the copper coverage increases to θCu = 1.67 the honeycomb (√3x√3)R30° structure that is 

found at coverage θCu = 0.67  is formed on top of the (1 x 1) copper monolayer. Figure 6.2 

displays a characteristic CV in the Cu UPD region taken from [143] of the Au(111)/ Cu UPD 

system in sulphuric acid. On the cathodic sweep the first sharp peak at 0.2 V represents the 

formation of the honeycomb (√3x√3)R30° structure at copper coverage 0.67, the second sharp 
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peak represents the formation of the pseudomorphic (1 x 1) layer at copper coverage 1. Figure 

6.3(a) and (b) show illustrations of the (√3 x √7)R19.1° (bi)sulphate structure and the copper 

honeycomb (√3x√3)R30° structure respectively. 

 

Figure 6.2: CV profile of the Au(111) electrode in 0.05 M H2SO4 +1 mM CuSO4. Scan rate 1 mV/s. 

Reprinted from[143]. Copyright 1991, with permission from Elsevier.  

Studies into the effect acetonitrile has on Cu UPD on gold electrodes are limited[162, 163]. In 

the presence of AcN Cu+ ions can be stabilised by forming a [Cu(C2H3N)4] + complex[165], 

whereas in aqueous solutions copper cations are rapidly reduced from Cu(II) to Cu(0). As such 

it has been suggested that the [Cu(C2H3N)4] + ion may interact directly with the electrode 

surface via much weaker electrostatic forces and as such have a much smaller distance 

between the [Cu(C2H3N)4] + ion and the electrode surface compared to Cu deposited in AcN 

free solutions[164]. Furthermore, due to the formation of this complex, in sulphuric acid 

solutions the formation of the characteristic copper honeycomb (√3x√3)R30° structure would 

be hindered. The effect of AcN on Cu deposition on Pt electrodes in sulphuric acid has also 

been studied[166] and found that AcN competes with Cu atoms for adsorption sites at step 

edges. 
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Figure 6.3:Illustrations showing the 'top' and 'side' views for (a) the (bi)sulphate(√3 x √7)R19.1° 

structure on the bulk Au(111) electrode surface and (b) the (√3x√3)R30°copper honeycomb structure. 

The gold atoms are represented by the yellow circles, copper atoms are represented by the brown circles. 

Sulphur atoms and oxygen atoms are represented by the grey circles and blue circles respectively.  

In this chapter in-situ scattering is used to probe the adsorption of AcN on the  Au(111) 

electrode surface in sulphuric acid solution at various concentrations of AcN. The interaction 

between Cu and AcN and its effect on the Au(111)/Cu UPD process in sulphuric acid solution 

is also explored. 

6.2 Experimental  

Measurements were conducted at MS - X04SA: Materials Science surface diffraction 

beamline at the Swiss Light Source in Villigen, Switzerland, using focussed x-rays at an 

energy of 11.8 keV. The Au(111) crystal was prepared and transferred into the x-ray 

electrochemical cell using the methodology outlined in chapter 3.1, the sample was then 

transferred into the thin layer x-ray electrochemical cell and mounted on the diffractometer. 

The electrolyte consisted of 0.1 M H2SO4 solution, for the Cu UPD measurements, 1 mM of 

CuSO4 was added to the electrolyte solution. For the measurements with 10 mM and 1 M 

acetonitrile, the potential was disconnected, and the electrolyte was exchanged. The counter 

electrode was Au polycrystalline wire and the reference electrode was Ag/AgCl (WPI- Leak-

Free reference electrode, catalogue no. 69-0023 [LF – 2]). Prior to x-ray measurements the 
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potential was cycled between 0.8 V and -0.2 V at a sweep rate of 50 mV/s to improve the 

surface ordering as was similarly carried out in Chapter 4. 

6.3 Au(111) in H2SO4 

To provide a comparison for the effect of AcN on the Au(111) electrode in sulphuric acid 

media, the system was first characterised in clean 0.1 M H2SO4. Figure 6.4 (a) shows an XRV 

measured at the (0.0185 1.0185 0.52) reciprocal lattice position, sensitive to the formation and 

lifting of the Au(111) (p x √3) surface reconstruction, between -0.2 V and 0.8 V at a sweep 

rate of 5 mV/s. The sharp decrease in intensity on the anodic sweep at ~0.3 V at this position 

is characteristic of the lifting of the (p x √3) surface reconstruction on the Au(111) electrode 

surface. On the cathodic sweep the intensity remains constant until ~0.1 V where the intensity 

starts to gradually increase however, does not reach the intensity observed at the beginning on 

the scan showing the reconstruction reforms very slowly. Figure 6.4(b) shows reciprocal space 

scans measured in the [0, 1, 0] direction through the (0, 1, 0.52) CTR position and the 

reconstruction peak at ~(0.02, 1.02, 0.52) .The black line represents the scan measured prior 

to the XRV scan and the other lines represent repeated measurements taken after the XRV at 

0.55 V. The reconstruction peak that is present in the initial scan is absent in following scans 

in accordance with the XRV measurement and does not recover on subsequent scans. This is 

expected as 0.55 V is too positive for the formation of the surface reconstruction to begin. 

Figure 6.4 (e) shows a comparison of XRV measurements at (0 1 3.2) over the potential range 

of 0.55 V to 1 V and 0.55 V and 0.9 V for the AcN free solution (black line) and 10 mM AcN 

(red line) electrolytes respectively, both measurements were taken at a sweep rate of 5 mV/s. 

As can be seen from the comparison, the addition of 10 mM AcN to the electrolyte appears to 

have no effect on the metal layer ordering when compared to AcN free solution. 



6 The Adsorption of Acetonitrile at the Au(111)/Electrolyte Interface 

96 
 

(e) 

 

 

Figure 6.4(a)Scattered intensity as a function of the applied potential for the Au(111) electrode surface 

in 0.1 M H2SO4 measured at (0.0185, 1.0185, 0.52) a position sensitive to the (23 x √3) surface 

reconstruction between -0.2 V and 0.8 V. (b) reciprocal space scans taken in the [1 1 0] direction at a 

potential of -0.2 V through the peak at the  (0, 1, 0.52) CTR position  and the peak at ~(0.02, 1.02 0.52) 

arising from the surface reconstruction. The black line indicates the initial reciprocal space scans with 

the other coloured lines representing subsequent scans measures at 0.55 V. (c) X-ray voltammetry 

measurements between 0.55 V and 1.0 V at (0, 1, 3) . (d) XRV measurement between 0.55 V and 1.0 

V at (0, 0, 1.52) an ‘anti-Bragg’ position on the specular CTR. (e) Comparison of XRV measurements 

between 0.55 V and 1.0 V in AcN free (black) and 10 mM AcN solution (red) at the (0, 1, 3.2) CTR 

position. 
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 CTR data were measured at potentials of 0.7 V, 0.8 V and 1.15 V in AcN free and 10 mM 

AcN solutions. The model used to fit the CTR data in this chapter and account for adsorbates 

and the scattering from the bulk electrolyte is detailed in Chapter 2. An illustration of the 

model used is shown in Figure 6.5  Sulphate molecules for the data in this chapter have been 

modelled as single scattering centres, instead of the individual elements and corresponding 

bonds.  The AcN molecule has been modelled by using the atomic form factor for carbon as 

nitrogen and carbon have similar atomic numbers. For each adsorbate layer the rms roughness 

was fixed slightly above the rms of Au at 0.15 Å. To account for scattering from the bulk 

electrolyte the model included an error function representing the bulk electrolyte of width 0.5 

Å and a maximum density equal to that of the bulk density of water at a height determined by 

the best fit to the data. The number of adlayers chosen and thus the complexity of the model 

was determined by whether there was any reduction in the reduced χ2 between the data and 

the model. Figure 6.6 shows the CTR data measured in AcN free (black) and 10 mM AcN 

(red) solutions overlaid to show a comparison of the data. The models for the best fit to the 

data for the measurements in AcN free solution and 10 mM AcN solution are also shown as 

the solid lines. Table 6.1 displays the best fit parameters for the models. From inspection of the 

CTR data in Figure 6.6(a-c) it can be seen that there are negligible changes between the AcN 

free data and the data measured in 10 mM AcN solution except for the [00L] ‘specular’ CTRs. 

Indeed, the parameters in Table 6.1 show changes of <0.01 Å in terms of metal layer relaxation 

and small changes in the rms disorder. 

Specular CTR data or extended reflectivity are only sensitive to ordering along the surface 

normal and are therefore a measure of the vertical electron density profile. Figure 6.5(b) shows 

how a vertical electron density profile relates to the model for AcN adsorption used here. 

Figure 6.7 shows the vertical electron density profiles normalised to the bulk density of water 

for the data measured in 10 mM AcN solution at 0.8 V (blue) and 0.7 V (red). Each profile 

includes a resolution broadening where the electron density is plotted as a Gaussian 

distribution that has an effective vibrational amplitude (ueff) corresponding to the vibrational 

amplitude of the atom (σ) and a resolution determined width (ures) added in quadrature, or 

𝑢𝑒𝑓𝑓 = √𝑢𝑟𝑒𝑠
2 + 𝜎2

2
 where ures = 1.1/Qmax and Qmax is the maximum momentum transfer of 

the measurement. The choice of ures is determined by consideration of a Patterson function 

and is discussed in more detail in Ref. [167]. The effective electron density is then: 

𝜌𝑒𝑓𝑓(𝑧) =
𝜏𝜃𝑍

(2𝜋)2𝑢𝑒𝑓𝑓𝑒
1
2

(
𝑧−𝑧0
𝑢𝑒𝑓𝑓

)
2 

where z0 is the position above the surface of an atom with charge Z, θ is the coverage and τ is 

the inverse unit cell area. 
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Figure 6.5: (a) illustration of the model used to fit the data. The model comprises of bulk metal layers 

and surface layers. Above the metal layers, several adlayers are included, modelled with the form factor 

for carbon. Above that is an error function to account for scattering from the bulk electrolyte. (b) The 

graph shows how a vertical electron density map corresponds to various components in the model. 
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Figure 6.6: Fits to, from top to bottom, the specular and non-specular crystal truncation rods for the 

Au(111) electrode surface in 0.1 M H2SO4 AcN free(black symbols) and 10 mM AcN (red symbols) 

solutions measured at (a) 1.15 V; (b) 0.8 V and (c) 0.7 V. Measured data is shown as squares with error 

bars and corresponds to the background subtracted intensity normalised to the monitor and corrected 

for the diffraction geometry. A systematic error of 10% is assumed. The soli lines represent the best fits 

obtained to the data. 
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  Parameter 0.7 V 0.8 V 1.15 V 

  10 mM 

AcN  

  10 mM AcN   10 mM 

AcN 

M
et

a
l 

la
y

er
s 

ε23 (Å) 0 0.008 ± 

0.002 

0 0 0 -0.004 ± 

0.003 

ε12 (Å) 0.014 ± 0.003 0.014 ± 

0.004 

-0.007 ± 

0.003 

-0.004 ± 

0.002 

-0.020 ± 

0.003 

-0.028 ± 

0.003 

σ2 (Å) 0.100  ± 0.004 0.085 ± 

0.006 

0.100 ± 0.004 0.082 ± 

0.005 

0.100  ± 

0.004 

0.100 ± 

0.004 

σ1 (Å) 0.140  ± 0.002 0.150 ± 

0.05 

0.157 ± 0.007 0.150 ± 

0.008 

0.140  ± 

0.002 

0.150 ± 

0.004 

θ1(Au) 1 1 1 1 1 1 

S
u

lp
h

a
te

 θ 0 0 0.24 ± 0.08 0.27 ± 0.08 0 0 

d (Å) 0 0 2.984 ± 0.39 3.084 ± 0.4 0 0 

σ (Å) 0 0 0.05 0.05 0 0 

 A
d

la
y
e
r 

1
 

Layer n/a C O C O O 

θ 0 1.44 ± 0.25 0.48 ± 0.12 0.22 ± 0.14  0.21  ± 0.07  1.63  ± 

0.37 

d (Å) 0 2.29 ± 0.04 2.40 ± 0.10 2.33 ± 0.45   2.48 ± 0.17   2.43 ± 

0.08 

σ (Å) 0 0.15 0.05 0.15 0.05 0.2 

A
d

la
y
e
r 

2
 

Layer n/a C n/a C n/a n/a 

θ 0 0.89 ± 0.17 0 0.91 ± 0.09 0 0 

d (Å) 0 4.72 ± 0.05 0 3.89 ± 0.08 0 0 

σ (Å) 0 0.15 0 0.15 0 0 

E
rr

o
r 

F
u

n
ct

io
n

 d (Å) 0 5.70 ± 0.42 3.55 ± 2.16 5.20 ± 0.19 0 3.17 ± 0.25 

σ (Å) 0 0.5 2.25 ± 0.94 0.5 0 0.5 

χ2 red 1.96 3.06 2.78 2.39 2.02 3.7 

 

Table 6.1: Parameters obtained for the best fit to the crystal truncation rod data for the Au(111) electrode 

in 0.1 M H2SO4 AcN free and 10 mM AcN solution displayed in Figure 6.6. The parameters and their 

associated errors were obtained via a least-squares fit to the CTR data. Numbers without error represent 

parameters that were fixed during the fitting procedure. 

The data measured at 0.7 V and 0.8 V in the presence of AcN were modelled, by including 

two adlayers and an error function thereby producing the best possible fit. While the electron 

density profiles displayed in Figure 6.7, show that the heights above the electrode surface 

appear to be constant, the model used here assumes the electrode surface terminates at the 

height of commensurately adsorbed adlayers. Therefore, at 0.8 V, 0 in the electron density 
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profile is at the height of the adsorbed sulphate layer. Thus, the AcN molecule is located at a 

height closer to 5 Å in relation to the Au(111) electrode surface. Furthermore, at 0.8 V, the 

contribution from AcN is significantly smaller than that measured at 0.7 V.  In fact, from Table 

6.1 there is a correlation between the coverage of carbon in the adlayer and the occupancy of 

the (bi)sulphate layer. It can therefore be inferred that at this potential, AcN is possibly 

enhancing the adsorption of (bi)sulphate molecules. At 0.7 V, when the (√3 x√7)sulphate has 

been lifted, the occupancy of adsorbed AcN increases revealing that AcN molecules compete 

with sulphate for adsorption sites as previously suggested from voltammetry measurements 

[12]. Nevertheless, the bond lengths observed here are greater than molecular bonds in AcN 

and therefore could be an indication of the molecule having dissociated into a cyanide and 

methyl group. This has been observed on platinum, copper and silver surfaces[131–133] 

although at more negative potentials than were measured here.  

 

Figure 6.7: Vertical electron density profiles, normalised to the bulk density of water, of the best fit to 

the CTR data obtained at 0.8 V (blue) and 0.7 V (red) in the presence of 10 mM AcN. The metal layers 

and adsorbed sulphate molecules have been neglected. 

A further set of measurements was taken in solution where the concentration of AcN was 

increased to 1 M. Figure 6.8 (a) and (b) show XRV measurements taken between 0 V and 1.15 

V on the (0 1 0.52) and the (0 0 1.9) positions respectively. From inspection of the XRV 

measured at (0 1 0.52) an ‘anti-Bragg’ position sensitive to changes in the ordering of 

adsorbates commensurate with the Au electrode, significant hysteresis is observed. The 

intensity plateaus in the anodic direction up until ~0.65 V after which the intensity decreases 

at a steady rate. After reaching 1.15 V, as the potential is swept in the cathodic direction the 

0 2 4 6

0

2

4

6

8

10

12


 (

B
u

lk
 w

a
te

r 
=

1
) 

Height from electrode surface (Å)



6 The Adsorption of Acetonitrile at the Au(111)/Electrolyte Interface 

102 
 

intensity continues to decrease until it reaches 0.75 V after which there is a sharp increase in 

intensity before reaching a plateau. Figure 6.8 (c) shows a comparison of a reciprocal space 

scan of the reconstruction measured in AcN free electrolyte (black) and in 1 M AcN solution 

(red) at -0.2 V. No evidence of the formation of the (p x √3) reconstruction is observed in this 

solution.   Attempts to extract CTR data from this system following the x-ray voltammetry 

measurements proved unsuccessful due to evidence, via the comparison of repeated rocking 

scans of the (0, 1, 0.52) ‘anti-Bragg’ CTR position as shown in Figure 6.8 (d), of significant 

roughening of the electrode surface.  

 

Figure 6.8:Scattered intensity as a function of the applied electrode potential for the Au(111) electrode 

surface in 0.1 M H2SO4 + 1 M AcN  between 0 V and 1.15 V at (a) the (0, 1, 0.52) ‘anti-Bragg’ position 

and (b) (0, 0, 1.9) ‘specular’ CTR position. The insets  represent rocking scans  measured at the 

respective reciprocal space position before (black) and after (red) the XRV measurements to monitor 

any changes in background noise (c) Reciprocal space scans measured in the [1 1 0] direction through 

the (0, 1, 0.52) CTR position and the peak arising from the Au(111) (23 x √3) surface reconstruction at 

(0.02, 1.02, 0.52). The black line represents the reciprocal space scan measured in AcN free 0.1 M 

H2SO4 solution and the red line represents the scan measured in 1 M AcN solution -0.2 V. (d) Rocking 

scan measurements of the (0, 1, 0.52) CTR ‘anti-Bragg’ position used as ‘check scans’ during the 

measurement of the CTR data at 0.8 V. The black line displays the intensity measured at the beginning 

of the measurement, the red, green purple and blue lines represent the scans taken over the course of 

the measurement. 
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6.4 Cu UPD on Au(111) in H2SO4 

 To investigate the effect of AcN on the Cu UPD system on the Au(111) electrode surface in 

sulphuric acid solution, a combination of XRV and CTR measurements was carried out.  

Figure 6.9 displays x-ray voltammetry measurements of the Au(111) electrode surface in 0.1 

M H2SO4 + 1 mM CuSO4 solution between 0.58 V and 0.05 V at a scan rate of 5 mV/s.  Figure 

6.9 (a) shows the XRV measurement at the (2/3, -1/3, 1.2) reciprocal lattice position that is 

sensitive to the (√3 x √3) R30° structure. As the potential is swept in the cathodic direction, 

the intensity can be seen to be stable at potentials above 0.2 V at which it increases sharply 

and begins to level off near the cathodic limit. In the anodic direction the intensity follows a 

similar pattern, decreasing sharply as the potential approaches 0.2 V and then remaining 

constant. This sharp change in the intensity is indicative of the lifting/formation of the (√3 x 

√3)R30° structure at 0.2 V. It is interesting to note the intensity continues to evolve following 

the formation of (√3 x √3)R30°  as the potential approaches the completion of the 

pseudomorphic (1 x 1)   Cu layer, a similar change was reported by Nakamura et al.[161] . 

The XRV measured at (0, 0, 1.8) a position on the specular CTR ( Figure 6.9 (c)) shows a 

similar transition at 0.2 V where in the cathodic direction the intensity increases up to 0.2 V 

before sharply decreasing. Figure 6.9 (b) shows the XRV measured at (1, 0, 3.6), a position 

sensitive to the adsorption of ordered layers commensurate to the Au electrode surface. In a 

similar trend, the intensity appears to increase slightly as the potential is swept negatively 

before 0.2 V and then decreases. In addition, the XRV measured at (0, 0, 3.3), a position on 

the specular CTR, a significant increase in the intensity as the potential is swept below 0.2 V. 

This coincides with the formation of the (√3 x √3)R30° structure.  
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Figure 6.9: Scattered intensity as a function of the applied electrode potential for the Au(111) in 0.1 M 

H2SO4 + 1 mM CuSO4 solution measured between 0.58 V and  0.05 V at a sweep rate of 5 mV/s at (a) 

The (2/3, -1/3, 1.2) reciprocal lattice position sensitive to the (√3x√3)R30° structure;(b) the (1, 0, 3.6) 

CTR position; (c) (0, 0, 1.8) a position on the ‘specular’ CTR and (d) the (0, 0, 3.3) specular CTR 

position. 

 

Figure 6.10 displays x-ray voltammetry measurements of the Au(111) electrode surface when 

the electrolyte has been substituted to 0.1 M H2SO4 + 1 mM CuSO4 + 10 mM ACN solution. 
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In contrast to the XRVs measured in AcN free solution, the x-ray voltammetry measured at 

(2/3, -1/3, 1.2) displayed in  

Figure 6.10 (a) shows no changes in intensity thus presenting no evidence of the formation of 

the (√3 x √3)R30° structure. This is likely due to the formation of a [Cu(C2H3N)4] + complex 

hindering the honeycomb structure as suggested by Pekmez et al.[164]. Furthermore, the 

XRVs measured at (0, 0, 2.7) and (0, 0, 1.8) shown in 

 

Figure 6.10(b) and (c) respectively show minimal changes in intensity, gradually decreasing as 

the potential is scanned negatively which increases back to its original state for the (0, 0, 1.8) 

position. This change in intensity is indicative of some ordering on the surface, i.e. copper 

deposition. However, it should be noted that for the XRV measured at (0, 0, 2.7) the intensity 

does not return to its original value on the positive sweep, possibly indicating an irreversible 

change on the surface.  
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Figure 6.10: Scattered intensity as a function of the applied electrode potential for the Au(111) in 0.1 M H2SO4 + 

1 mM CuSO4 + 10 mM AcN solution measured between 0.58 V and  0.05 V at a sweep rate of 5 mV/s at (a) The 

(2/3, -1/3, 1.2) reciprocal lattice position sensitive to the (√3x√3)R30° structure;(b) the (0, 0, 2.7) specular CTR 

position; (c) (0, 0, 1.8) a position on the ‘specular’ CTR and (d) the (1, 0, 3.6) CTR position.(e) Cyclic 

voltammogram of the Au(111) electrode surface in 0.1 M H2SO4 + 1 mM CuSO4 + 10 mM AcN solution at a scan 

rate of 5 mV/s by Nikolaos Antonatos. 
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Comparing the XRV measured in Figure 6.9(b) to 

 

Figure 6.10 (d) at (1, 0 3.6), a much larger change in the intensity is observed correlating to the 

adsorption of Cu. Significant hysteresis is also observed, with the intensity returning to its 

original position at 0.58 V at a much more gradual rate. Figure 6.10 (e) displays a cyclic 

voltammogram of the Au(111)/Cu UPD system in  0.1 M H2SO4 + 10 mM ACN solution 

measured off-site by Nikolaos Antonatos. What is interesting to note is the absence of the 

characteristic double peak that is present in  Figure 6.2.  Thus it can be inferred that the Cu 

UPD process in the presence of ACN occurs in one distinct stage as opposed to the two stage 

process observed in ACN free solution. 
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Figure 6.11: Fits to, from top to bottom, the specular and non-specular crystal truncation rods for the 

Au(111) electrode surface in 0.1 M H2SO4 + 1mM CuSO4 AcN free(black symbols) and 10 mM 

AcN(red symbols) solutions measured at (a) 0.9 V; (b) 0.3 V. Measured data is shown as squares with 

error bars and corresponds to the background subtracted intensity normalised to the monitor and 

corrected for the diffraction geometry. A systematic error of 10% is assumed. The solid lines represent 

the best fits obtained to the data. 

CTR data measured at MS - X04SA at   0.9 V and 0.3 V in AcN free (black) and in 10 mM 

AcN solutions is shown in Figure 6.11. Table 6.2 shows the parameters for the best fits to the 

CTR data. The data measured at 0.3V shows an occupancy of deposited copper of only 

approximately 10%. At 0.9 V no evidence of the (√3 x √7)R19.1° sulphate structure is 

observed. Comparing this with the data measured in 10 mM AcN solution there is a significant 
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increase in the amount of copper deposited on the Au(111) electrode surface at 0.3 V of  

approximately 30 %. Also, interesting to note is the decrease in the Au-Cu spacing of 

approximately 20% (from 2.43 Å to 1.93 Å). This result implies that while in the early stages 

of Cu UPD, the [Cu(C2H3N)4] + complex is interacting weakly via electrostatic forces with the 

underlying Au(111) electrode surface allowing for a much smaller distance between the 

[Cu(C2H3N)4] + ions and the electrode surface as suggested by Pekmez et al. [164]. This is 

further evidence by the negligible changes in the surface relaxations of the top Au layers. The 

model that yielded the best fit to the data measured at 0.3 V in the presence of AcN required 

two adlayers and an error function.  

Crystal truncation rod measurements taken at the I-07 beamline at potentials of 0.58 V and 

0.2 V in AcN free solution are displayed as the black points in Figure 6.12. The parameters for 

the best fits obtained for the AcN free data are displayed in Table 6.3. At 0.58 V the model 

shows some slight relaxation in the Au(111) surface layers compared to the data measured at 

0.9 V The model obtained for the data at 0.2 V finds the (√3 x √3)R30° honeycomb structure 

with an occupancy of  0.67  ± 0.20, a value within error of that found by Toney et al.[148] of 

0.85± 0.15. The value for the occupancy found in the model here correlates to a copper 

coverage of 0.45 ± 0.13 and a sulphate coverage of 0.22 ± 0.07. The model also shows an Au-

Cu plane spacing of 2.46 ± 0.36  Å and a Cu-S plane spacing of 0.88 ± 0.3  Å, values close to 

those reported by Nakamura et al. [161].  

 

 

 

 

 

 

 

 

 
Parameter 0.3V 0.9 V 

 
10 mM AcN 

 
10 mM AcN 

M
e
ta

l 
la

y
e
r
s ε23 (Å) -0.007 ± 0.002 0.009 ± 

0.004 

0 0 

ε12 (Å) 0.015 ±  0.006 0.015 ±  

0.007 

-0.011 ± 0.003 -0.01 ± 0.02 
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σ2 (Å) 0.100  ± 0.004 
0.11  ± 0.01 

0.100 ± 0.004 0.08 ± 0.01 

σ1 (Å) 0.130 ± 0.006 
0.22 ± 0.01 

0.154 ± 0.004 0.08 ± 0.03 

θ1(Au) 1 
1 

1 1 

C
o

p
p

e
r 

la
y
e
r θ 0.13 ± 0.01 0.40 ± 0.02 0 0 

d (Å) 2.43 ± 0.01 1.93 ± 0.05 0 0 

σ (Å) 0.05 0.2 0 0 

a
d

la
y
e
r 

1
 

Layer O C 
 

O O 

θ 0.21 ± 0.08 1.62 ± 0.34 0.63 ± 0.07 0.6 ± 0.2 

d (Å) 2.21 ± 0.12 3.34 ± 0.15 2.22 ± 0.04 0.94 ± 0.37 

σ (Å) 0.2 0.2 0.05 0.05 

a
d

la
y
e
r 

2
 

Layer n/a C n/a O 

θ 0 1.99 ± 0.41 0 0 

d (Å) 0 3.92 ± 0.12 0 0 

σ (Å) 0 0.15 0 0 

E
r
ro

r 

F
u

n
c
ti

o
n

 d (Å) 0 3.49 ± 0.09 0 5.39 ± 0.43 

σ (Å) 0 0.5 0 1.31 ± 0.31 

χ2 red 1.6 5.52 2.15 4.85 

Table 6.2: Parameters obtained for the best fit to the crystal truncation rod data for the Au(111) electrode 

in 0.1 M H2SO4 + 1mM CuSO4 AcN free and 10 mM AcN solution displayed in Figure 6.11. The 

parameters and their associated errors were obtained via a least-squares fit to the CTR data. Numbers 

without error represent parameters that were fixed during the fitting procedure. 

The CTR data measured in 10 mM AcN solution at 0.58 V and 0.2 V is displayed as the red 

points in Figure 6.12. The best fits to the models obtained here required two adlayers and an 

error function. At 0.58 V, the presence of AcN in solution appears to cause a reduction in the 

inward relaxation of the topmost Au surface layer compared to the model obtained in AcN 

free solution. As with the measurements taken at MS - X04SA, there is a significant increase 

in the amount of copper deposited on the Au(111) electrode surface at 0.2 V with the addition 

of 10 mM AcN to the electrolyte. First, the presence of 10 mM AcN in solution prevents the 

formation of the characteristic (√3 x √3)R30° honeycomb structure. Measurements on Pt(111) 

electrodes suggested that the AcN molecules compete with sulphate molecules for adsorption 

sites[166]. In the case of Cu UPD on Au(111), this would prevent the formation of the (√3 x 

√3)R30° honeycomb structure as this is a co-adsorption process between copper and 

(bi)sulphate ions[148]. However, copper and AcN ions forming a [Cu(C2H3N)4]+  complex 

could also explain this result. The presence of AcN in solution appears to enhance the 

deposition of Cu on the Au(111) surface. At 0.2 V, the best fit to the data finds an initial layer 

of copper deposited with an occupancy of 0.8 with an additional layer beginning to form of 

occupancy 0.13. In contrast to the data measured at 0.3 V where there were negligible changes 

in the Au surface relaxations, the presence on AcN induces a change in the surface relaxation 
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at 0.2 V from an inward relaxation of -0.021 ± 0.002 Å in AcN free solution to an outward 

relaxation of 0.014 ± 0.002 Å correlating with the increased coverages of copper observed. 

 

 

Figure 6.12: Fits to, from top to bottom, the specular and non-specular crystal truncation rods for the 

Au(111) electrode surface in 0.1 M H2SO4 + 1mM CuSO4 AcN free(black symbols) and 10 mM AcN 

(red symbols) solutions measured at (a) 0.58 V; (b) 0.2 V. Measured data is shown as squares with error 

bars and corresponds to the background subtracted intensity normalised to the monitor and corrected 
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for the diffraction geometry. A systematic error of 10% is assumed. The solid lines represent the best 

fits obtained to the data. 

 

 

 

 
Parameter 0.2 V 0.58 V 

M
e
ta

l 
la

y
e
r
s 

ε23 (Å) 0.017 ± 0.002 0.010 ± 0.006 

ε12 (Å) -0.021 ± 0.002 -0.047 ± 0.009 

σ2 (Å) 0.10  ± 0.01 0.07 ± 0.01 

σ1 (Å) 0.19 ± 0.01 0.21 ± 0.01 

θ1(Au) 1 1 

(√
3

 x
 √

3
)R

3
0
° 

θ 0.67 ± 0.20 0 

d (Å) 2.46 ± 0.32 0 

d (Å) 0.883 ± 0.2   

σ (Å) 0.05 0 

σ (Å) 0.05 0 

A
d

la
y

e
r 

1
 

Layer O O 

θ  0.54 ± 037 0.68 ± 0.35 

d (Å)   5.19 ± 0.37 5.67 ± 0.19 

σ (Å)  0.34 ± 0.07 0.1 

A
d

la
y

e
r 

2
 

Layer n/a n/a 

θ 0 0 

d (Å) 0 0 

σ (Å) 0 0 

E
r
ro

r 
F

u
n

c
ti

o
n

 

d (Å)  6.03 ± 1.50  6.68 ± 0.35 

σ (Å)  1.04 ± 2.07  0.47 ± 0.56 

χ2 red 3.98 3.49 

Table 6.3: Parameters obtained for the best fit to the crystal truncation rod data for the Au(111) electrode 

in 0.1 M H2SO4 + 1mM CuSO4 solution displayed in Figure 6.12. The parameters and their associated 

errors were obtained via a least-squares fit to the CTR data. Numbers without error represent parameters 

that were fixed during the fitting procedure. 
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Parameter 0.2 V 0.58 V 

+ 10 mM AcN 

M
e
ta

l 
la

y
e
r
s 

ε23 (Å) 0 0.02 ± 0.01 

ε12 (Å) 0.014 ± 0.002 -0.01 ± 0.01 

σ2 (Å) 0.1 0.07 ± 0.03 

σ1 (Å) 0.22 ± 0.02 0.25 ± 0.02 

θ1(Au) 1 1 

C
o

p
p

e
r 

L
a
y

er
 Θ 0.82 ± 0.02 0 

d (Å) 2.516 ± 0.07 0 

σ (Å) 0.21 ± 0.11 0 

C
o

p
p

e
r 

L
a
y

er
 2

 Θ 0.13 ± 0.07 0 

d (Å) 3.07 ± 0.27 0 

σ (Å) 0.1 0 

 A
d

la
y

er
 1

 Layer C C 

Θ 1.78 ± 2.33 1.05 ± 1.75 

d (Å) 2.99 ± 0.7 1.09 ± 0.42 

σ (Å) 0.15 0.15 

A
d

la
y

e
r 

2
 

Layer C C 

Θ 1.99 ± 2.17 1.99 ± 1.33 

d (Å) 3.59 ± 0.5 3.22 ± 4.98 

σ (Å) 0.15 0.15 

E
r
ro

r 

F
u

n
c
ti

o
n

 d (Å) 5.53 ± 0.35 0.07 ± 0.32 

σ (Å) 0.5 0.5 

χ2 red 5.11 3.73 

Table 6.4: Parameters obtained for the best fit to the crystal truncation rod data for the Au(111) 

electrode in 0.1 M H2SO4 + 1mM CuSO4 + 10 mM AcN solution displayed in Figure 6.12. The 

parameters and their associated errors were obtained via a least-squares fit to the CTR data. Numbers 

without error represent parameters that were fixed during the fitting procedure. 

It is now worth discussing the model obtained for the data measured in 10 mM solution in 

terms of vertical electron density profiles. The profiles for the data measured at 0.2 V (black), 

0.3 V (red) and 0.58 V (blue) are displayed in Figure 6.13. 0.9 V is a potential where AcN has 

desorbed from the surface and as such the data measured at this potential is not significant to 

this discussion.  At 0.58 V, there is evidence of adsorbed AcN at the Au(111) electrode 

surface. At 0.3V there is a marked increase in the amount of AcN close to the Au surface. This 

increase coincides with the early stages of Cu deposition. The large coverages of AcN at this 
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potential can be attributed to the presence of a [Cu(C2H3N)4]+  complex. As the potential 

decreases, the quantity of AcN remains fairly constant, however as can be seen from Figure 

6.13, there is a shift in the distance from the electrode. This implies a possible change in 

orientation of the AcN molecule. However, this shift closer to the electrode coincides with the 

large increase in deposited copper on the surface. The model used here follows the same 

process as that used for Au(111) in Cu-free sulphuric acid, where 0 in Figure 6.13 is the height 

at which commensurately deposited layers lie with respect to the Au(111) electrode surface. 

Thus, this change in height of the adlayers is likely due to the increase in coverage and stability 

of the deposited Cu layers. 

From the coverages of shown Cu for the data measured at 0.2 V in 10 mM AcN containing 

solution shown in Table 6.4, it is suggested that the growth mode of the Cu deposited layers 

is not layer by layer. If the growth mode were layer by layer it would be expected the coverage 

of copper to reach 1 before the second layer begins to grow.  From the results found the 

following process is suggested: in the potential region positive of the onset of Cu deposition 

but negative of AcN desorption, AcN molecules are weakly adsorbed on the surface. Then as 

the potential is swept negatively, copper in the form of [Cu(C2H3N)4]+ begins to weakly 

interact with the Au(111) electrode surface and replace the adsorbed AcN molecules, hence 

the large reduction in the Au-Cu spacing. As the coverage of copper approaches monolayer 

coverage, it becomes more energetically favourable for Cu to lose its solvation shell and form 

a stable overlayer and thus allow for the formation of a second monolayer of copper prior to 

completion of the first monolayer. Therefore, the copper adatoms in the first monolayer would 

begin to dissociate with the AcN ions to allow the second layer of copper adatoms to begin to 

deposit albeit still in the form of the [Cu(C2H3N)4]+ complex. In this way the suggested process 

could explain the large coverages in the adsorbate layers that have been obtained for the best 

fits to the model. Nevertheless, it cannot be ruled out that an alternative model would yield a 

better fit to the data. Indeed, to truly understand the nature of the [Cu(C2H3N)4] + complex and 

its interactions with the Au(111) electrode surface, the simplified approach to modelling AcN 

is likely not sufficient, as evidenced by the high coverages in the adlayers of the model 

required for the best fits to the data.  
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Figure 6.13: Vertical electron density profiles, normalised to the bulk density of water, of the best fit to 

the CTR data obtained at 0.2 V (black), 0.3 V (red) and 0.58 V (blue) in the presence of 10 mM AcN. 

The metal  layers and deposited copper atoms have been neglected to highlight features above the 

electrode surface. 

 

Figure 6.14:Simplified illustration of the interaction of copper and Acetonitrile on the Au(111) 

electrode surface with the change of potential based on the model for the current best fits to the data. 

6.5 Conclusions and summary 

In this chapter the effect of Acetonitrile adsorption on Au(111) surfaces in sulphuric acid 

media has been explored via CTR and x-ray voltammetry measurements. In accordance with 

previous measurements on the system, AcN is shown to weakly interact with the Au(111) 

electrode surface. An interesting correlation is observed between the coverage of the 

approximated AcN adlayers and the coverage of sulphate in the (√3 x √7)R19.1° structure. 

The effect of AcN on the Cu UPD process in sulphuric acid media was also explored. The 

results show that AcN greatly enhances the Cu deposition, inducing greater amounts of Cu 
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deposited on the Au(111) than that found at similar potentials in AcN free sulphuric acid 

solution. The substantial coverages for the approximated AcN layers can be explained by the 

copper forming a [Cu(C2H3N)4] +  complex with AcN. Based on models of the best fits to the 

data the process of Cu deposition on the Au(111) electrode surface is suggested. It is expected 

that investigations into the Cu UPD processes using solutions where Cu and AcN  are known 

to be in the form of [Cu(C2H3N)4]+ 
,for example using tetrakisacetonitrile copper(i) triflate as 

part of the electrolyte solution, would provide a good comparison to the measurements 

detailed here. 
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7 Conclusion and Future Outlook 

 

For this work, in-situ surface x-ray diffraction has been used to probe the atomic structure at 

the Au single crystal electrode/electrolyte interface. This technique has the advantage of 

allowing simultaneous characterisation of electrode/adlayer structures at the atomic scale as 

well as directly monitoring changes to the surface under reaction conditions. Gold was 

selected as the primary metal surface as it represents the key model system for investigating 

general surface processes. It was observed that the hexagonal reconstructions of Au(111) and 

Au(100) in alkaline solutions undergo a charge driven potential dependent in plane surface 

compressibility. Adsorption of carbon monoxide on gold electrodes was shown to ‘lock’ the 

surface reconstructions at highly compressed phases observed in CO-free solution. CO acts as 

a tuneable dipole, accommodating excess surface charge brought about by the applied 

potential. It can therefore be inferred that this mechanism underpins the enhancement of both 

the electrocatalytic reactivity and the increased stability of the reconstructed surfaces over a 

larger potential range than has been previously observed[7]. 

Thereafter a study to answer the debate [10] on the presence of alloy formation during the 

UPD process was carried out. This work has revealed that Pb forms a substitutional Au/Pb 

surface alloy during the stripping of the deposited incommensurate Pb adlayer from the 

Au(111) electrode surface and that the surface de-alloys prior to the complete removal of Pb 

adatoms from the Au(111) surface. This has been attributed to the surface alloying/de-alloying 

process that occurs in order to reduce the total surface energy of the system.  

An in-situ investigation into the structure of the electrochemical double layer of Au(111) in 

various concentrations of Acetonitrile (AcN) was performed to explore the adsorption of AcN 

on Au(111) in H2SO4. It was shown that the adsorption of AcN weakly interacts with the 

Au(111) surface evidenced by marginal changes in the surface relaxations of the Au substrate. 

Additionally, an investigation was carried out to determine the effect of AcN on the 

Au(111)/CuSO4 UPD process. Considering that this phenomenon is not widely understood, 

the interactions of copper and AcN on the Au(111) surface interestingly showed that AcN 

enhances the deposition of copper onto the Au surface. From modelling of the vertical electron 

density profiles, it can be inferred that copper and AcN form a [Cu(C2H3N)4] + complex thus 

hindering the formation of the characteristic honeycomb (√3 x √3)R30° structure observed in 

AcN free sulphuric acid solution. 
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The analysis of the Au(100)/Pb interface as discussed in chapter 5 could yield some interesting 

insights into the behaviour of the interactions between Pb and Au surfaces.  It is currently 

unclear as to the driving mechanism behind the apparent spontaneous formation of the as yet 

unknown Pb structure in alkaline solution. Further x-ray measurements could reveal the 

structure. Conventional SXRD studies can be very time consuming (of the order of 10 hours 

for a quantitative data set) and with the use of point or small 2D detectors, unexpected 

structures can be easily missed. New techniques such as high energy surface x-ray diffraction 

could allow for the rapid acquisition of CTR’s, providing greater temporal resolution as has 

been demonstrated by Gustafson et al. [168]. By using this technique, a large volume of 

reciprocal space can be mapped over a comparably shorter period of time, thereby overcoming 

limitations of conventional SXRD. Measurements exploring this technique were conducted at 

the ID-15 beamline at the ESRF, Grenoble on the well understood Au(100)/Cu/Br 

system[169] at energies of 70 keV. Analysis of this data is ongoing.  
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Appendices 

Linear least squares code for the analysis of CTR data 

#!/usr/bin/python 

#SPECULAR CTR FIT 

 

#The least-sqaures algothrim has been replaced by 

#the more versatile lmfit-py library to allow easy paramerisation of  

#varibles and the calculation of confidence intervals 

 

#2016-04(YG) The programme has been modified: 

# single functions in files to avoid copy+Paste errors 

# plotting counts rod automatically 

 

# ! when using programme please make sure you load: 

# *the right model (111), (001) or (110) 

# * the right f_atoms for the wavelength used 

# *the right corrections for the setup used (xmascorr, diamondcorr, 

slscorr) 

# * the right residual (either 'residual' for single dataset or 

'residualdouble' for the ratio fit) 

#Please check this for all sub-functions.... 

# and 

# modify the parameter file 

# give the right path to the parameter file 

# the folder 'fit' for output files exists in the folder specified  

 

import lmfit as lf 

import numpy as np 

import sys 

import scipy 

import os 

import time 

from scipy.integrate import quad 

from scipy.special import erf 

from scipy.special import erfc 

from TF import TF 

from read_data import read_data 

from f_atom_1127A import f_atom 

from read_parameters import read_parameters 

from residual import residual 

from  xmascorr import corr_factors 

from  model001 import model 

from time import gmtime, strftime 

global expEy, expAy, amcorr1, fthick,  specular, constants 

 

import datetime 

print datetime.datetime.now()  

params,fmethod,tol, specularrod, atoms, constants, file1, syserror = 

read_parameters('para.py') 

 

#file1=filea 

data = read_data(file1) 

data = np.asarray(data) 

data = data.astype(np.float64) 

 

#put cols in seperate numpy lists 
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h = abs(data[:,0])#,decimals=2) 

k = abs(data[:,1])#,decimals=2) 

l =data[:,2]#,decimals=2) 

expA = data[:,3] 

expE = 

data[:,4]#np.sqrt(data[:,4])#,decimals=2)**2)#+1*(abs((np.around(dat

a[:,3],decimals=2)-np.around(data[:,5],decimals=2))))**2+ 

(syserror*expA)**2) 

expAa = data[:,3]#,decimals=2) 

expEa = 

data[:,4]#np.sqrt(data[:,4])#,decimals=2)**2)#+1*(abs((np.around(dat

a[:,9],decimals=2)-np.around(data[:,7],decimals=2))))**2+ 

(syserror*expA)**2) 

#print expA, expE 

for i in range(len(expE)): 

        if h[i]==0 and k[i]==0: 

                expA[i] = expAa[i] 

                expE[i] = np.sqrt(expEa[i]**2)+(syserror*expA[i]) 

 else: 

                expA[i] = expAa[i] 

                expE[i] = np.sqrt(expEa[i]**2)+(syserror*expA[i])

   

#perform the fit 

result = lf.Minimizer(residual, params,  

fcn_args=(h,k,l,expA,expE,specularrod,atoms,constants)) 

 

result.prepare_fit() 

 

if fmethod == "leastsq": 

 result.leastsq(xtol = tol[0], ftol = tol[1], maxfev = 

tol[2]) 

if fmethod == "lbfgsb": 

 result.lbfgsb(maxfun = tol[2]) 

if fmethod == "nelder": 

 result.fmin(xtol = tol[0], ftol = tol[1], maxfun = tol[2]) 

#calculate chi squared 

final = np.zeros(len(l)) 

final1 = np.zeros(len(l)) 

expAx = np.zeros(len(l)) 

expEx= np.zeros(len(l)) 

chisq = 0 

for i in range(len(l)): 

        final1[i] = model(h[i],k[i],l[i],expA[i],expE[i],params, 

atoms,constants) 

        

expAx[i]=expA[i]/corr_factors(h[i],k[i],l[i],params,constants) 

        

expEx[i]=expE[i]/corr_factors(h[i],k[i],l[i],params,constants) 

 #print expA[i],expE[i],final1[i],h[i],k[i],l[i] 

        if specularrod == 0: 

           if h[i] == 1 or k[i] ==1: 

                chisq = chisq + ((expA[i] - final1[i])/expE[i])**2 

        else: 

          chisq = chisq + ((expA[i] - final1[i])/expE[i])**2 

#print chisq 

# write error report 

lf.report_fit(params) 

 

# plot results! 

#convert y to log scale and seperate the different rods 

kcount=1 
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ichange=0 

hnew=np.array([]) 

knew=np.array([]) 

hnew=abs(h[0]) 

knew=abs(k[0]) 

if isinstance(hnew, float) : 

        hnew=np.asarray([hnew]) 

        hnew=hnew.astype(np.float64) 

        knew=np.asarray([knew]) 

        knew=knew.astype(np.float64) 

         

for i in range(len(l)): 

       

        if i>0: 

              if (h[i]!=h[i-1]) or (k[i]!=k[i-1]): 

                      hnew=np.append(hnew,abs(h[i])) 

                      knew=np.append(knew,abs(k[i])) 

                       

              

for i in range(len(hnew)): 

        local_namespace=locals() 

        name='ytheory'+str(hnew[i])[0]+str(knew[i])[0] 

        

local_namespace['ytheory'+str(hnew[i])[0]+str(knew[i])[0]]=[] 

        local_namespace['yexp'+str(hnew[i])[0]+str(knew[i])[0]]=[] 

        local_namespace['yerr'+str(hnew[i])[0]+str(knew[i])[0]]=[] 

        local_namespace['l'+str(hnew[i])[0]+str(knew[i])[0]]=[] 

        

local_namespace['l'+str(hnew[i])[0]+str(knew[i])[0]+'theo']=[] 

#ytheory00 = [] 

#ytheory01 = [] 

#ytheory10 = [] 

 

ltheo = [] 

h1 = [] 

h2 = [] 

h3 = [] 

k1 = [] 

k2 = [] 

k3 = [] 

l1 = [] 

l2 = [] 

l3 = [] 

steps=(max(l))*100 

#for i in range(len(hnew)) 

h1=np.ones(steps)*hnew[0] 

k1=np.ones(steps)*knew[0] 

l1=np.arange(0.2,max(l)+0.1,.01) 

#print len(hnew) 

if len(hnew)>1: 

        h2=np.ones(steps)*hnew[1] 

        k2=np.ones(steps)*knew[1] 

        l2=np.arange(0.2,max(l)+0.2,.01) 

         

if len(hnew)>2: 

        h3=np.ones(steps)*hnew[2] 

        k3=np.ones(steps)*knew[2] 

        l3=np.arange(0.2,max(l)+0.2,.01) 

 

if len(hnew)>3: 

        h4=np.ones(steps)*hnew[3] 
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        k4=np.ones(steps)*knew[3] 

        l4=np.arange(0.2,max(l)+0.2,.01) 

llayer=np.arange(0.05,7,.01) 

 

ltheo=np.concatenate([l1, l2,l3])#,l4]) 

htheo=np.concatenate([h1, h2,h3])#,h4]) 

ktheo=np.concatenate([k1, k2,k3])#,k4]) 

finaltheo = np.zeros(len(ltheo)) 

#print ltheo 

for i in range(len(ltheo)): 

        finaltheo[i] = 

model(htheo[i],ktheo[i],ltheo[i],ltheo[i],ltheo[i],params, 

atoms,constants)/corr_factors(htheo[i],ktheo[i],ltheo[i],params,cons

tants) 

        #finaltheo[i]=amcorr1 

ftot1=0 

temp=0 

 

 #oxygen layers 

shift = 0  

 

for i in range(1,4): 

 #if (params 

                        cov = params['Ocoverage'+str(i)].value 

                        shift = params['Oeps'+str(i)].value 

                        flayer = (6)*np.exp(-

(llayer**2*params['Odwf'+str(i)].value**2)/2) 

*cov#*np.exp(1j*llayer) 

                        ftot1 += 

flayer*np.exp(2*np.pi/7.063*1j*params['Oeps'+str(i)].value*llayer) 

        #layered water structure 

 

if(params['Lcoverage'].value > 0): 

                        #print "LAYERED MODEL INCLUDED!" 

                        temp = np.exp(-

(llayer**2*params['Lsigmabar'].value**2)/2)*np.exp(1j*llayer*params[

'Lcw'].value) 

                        flayer1 = params['Lcoverage'].value*np.exp(-

(llayer**2*params['Lsigma0'].value**2)/2)*np.exp(2*np.pi/7.063*1j*(p

arams['Ldist'].value-params['Lcw'].value)*llayer) 

 

                        ftot1 += flayer1/(1-temp) 

if(params['Lcoverage1'].value > 0): 

                        #print "LAYERED MODEL INCLUDED!" 

                        temp = np.exp(-

(llayer**2*params['Lsigmabar1'].value**2)/2)*np.exp(1j*llayer*params

['Lcw1'].value) 

                        flayer1 = 

params['Lcoverage1'].value*np.exp(-

(llayer**2*params['Lsigma01'].value**2)/2)*np.exp(2*np.pi/7.063*1j*(

params['Ldist'].value-params['Lcw'].value)*llayer) 

 

                        ftot1 += flayer1/(1-temp)                        

        #error function 

if(params['Ecoverage'].value > 0): 

                       # print "ERROR FUNCTION INCLUDED!" 

                        flayer1 = 

1j*(params['Ecoverage'].value)*np.exp(-

((llayer*params['Esigma'].value)**2/2))/llayer*np.exp(2*np.pi/7.063*

1j*params['Edist'].value*llayer) 

                        ftot1 = ftot1 +flayer1         
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        #calculate complex conjugate 

 

amp1 = np.log10(abs(ftot1*np.conjugate(ftot1))) 

 

 

 

for i in range(len(ltheo)): 

  for j in range(len(hnew)): 

        if htheo[i] == hnew[j] and ktheo[i] == knew[j]: 

                

local_namespace['l'+str(hnew[j])[0]+str(knew[j])[0]+'theo'].append(l

theo[i]) 

                

local_namespace['ytheory'+str(hnew[j])[0]+str(knew[j])[0]].append(np

.log10(finaltheo[i])) 

 

                 

for i in range(len(l)): 

  for j in range(len(hnew)): 

        if h[i] == hnew[j] and k[i] == knew[j]: 

                

local_namespace['l'+str(hnew[j])[0]+str(knew[j])[0]].append(l[i]) 

                

local_namespace['yexp'+str(hnew[j])[0]+str(knew[j])[0]].append(np.lo

g10(expAx[i])) 

                

local_namespace['yerr'+str(hnew[j])[0]+str(knew[j])[0]].append(0.434

*(expEx[i]/expAx[i])) 

                              

         

xlayer=[] 

ylayer=[] 

xlayer=np.arange(-3,50,.01) 

yerrlayer=(1+erf((xlayer-

params['Edist'].value)/params['Esigma'].value))/2*params['Ecoverage'

].value 

ylayerlayer1=0 

ylayerlayer2=0 

ylayerlayer=0 

 

for i in range(1,30): 

     ylayerlayer1 +=    np.exp(-(xlayer-(i)*params['Lcw'].value-

(params['Ldist'].value-

params['Lcw'].value))**2/(2*(params['Lsigma0'].value+(i)*params['Lsi

gmabar'].value)**2))/(2*(params['Lsigma0'].value+(i)*params['Lsigmab

ar'].value)/np.sqrt(2*np.pi))*params['Lcoverage'].value 

     ylayerlayer += np.exp(-(xlayer-(i)*params['Lcw'].value-

(params['Ldist'].value-

params['Lcw'].value))**2/(2*(params['Lsigma0'].value+(i)*params['Lsi

gmabar'].value)**2))/(2*(params['Lsigma0'].value+(i)*params['Lsigmab

ar'].value)/np.sqrt(2*np.pi))*params['Lcoverage'].value 

     ylayerlayer2 += np.exp(-(xlayer-(i)*params['Lcw1'].value-

(params['Ldist1'].value-

params['Lcw1'].value))**2/(2*(params['Lsigma01'].value+(i)*params['L

sigmabar1'].value)**2))/(2*(params['Lsigma01'].value+(i)*params['Lsi

gmabar1'].value)/np.sqrt(2*np.pi))*params['Lcoverage1'].value 

 

     ylayerlayer += np.exp(-(xlayer-(i)*params['Lcw1'].value-

(params['Ldist1'].value-

params['Lcw1'].value))**2/(2*(params['Lsigma01'].value+(i)*params['L
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sigmabar1'].value)**2))/(2*(params['Lsigma01'].value+(i)*params['Lsi

gmabar1'].value)/np.sqrt(2*np.pi))*params['Lcoverage1'].value 

oxlayer=0 

for i in range(1,3): 

     oxlayer += np.exp(-(xlayer-

params['Oeps'+str(i)].value)**2/(2*(params['Odwf'+str(i)].value)**2)

)/(2*(params['Odwf'+str(i)].value)/np.sqrt(2*np.pi))*params['Ocovera

ge'+str(i)].value 

 

 

ylayer=yerrlayer+ylayerlayer+oxlayer 

print 

print "Fit Succeeded" 

print file1 

print "-------------------" 

print   "Chi Squared:", chisq 

if fmethod == "leastsq": 

                print   "Degrees of Freedom:", result.nfree 

                print   "Reduced Chi Squared:", chisq/result.nfree 

 

import pylab 

from matplotlib.ticker import NullFormatter,MultipleLocator, 

FormatStrFormatter 

 

myxlim= [min(l00)-0.1,max(l00)+0.2] 

 

for j in range(len(hnew)): 

       local_namespace['myylim'+str(hnew[j])[0]+str(knew[j])[0]]= 

[min(local_namespace['yexp'+str(hnew[j])[0]+str(knew[j])[0]])-

0.2,max(local_namespace['yexp'+str(hnew[j])[0]+str(knew[j])[0]])+0.2

] 

myylimwater=[min(ylayer)-0.2,max(ylayer)+0.2] 

myxlimwater=[min(xlayer)-0.2,max(xlayer)+0.2] 

pylab.figure(num=None, figsize=(10, 8),facecolor='white') 

#subplots_adjust(hspace=0.000) 

number_of_subplots=len(hnew)+2 

 

for i,v in enumerate(xrange(len(hnew))): 

    v = v+1 

    ax1 = pylab.subplot(number_of_subplots,1,v) 

     

    pylab.plot(local_namespace['l'+str(hnew[i])[0]+str(knew[i])[0]], 

local_namespace['yexp'+str(hnew[i])[0]+str(knew[i])[0]], "ro", 

label='Experiment', markersize=2) 

    

pylab.errorbar(local_namespace['l'+str(hnew[i])[0]+str(knew[i])[0]], 

local_namespace['yexp'+str(hnew[i])[0]+str(knew[i])[0]],  

local_namespace['yerr'+str(hnew[i])[0]+str(knew[i])[0]],fmt="none",) 

    

pylab.plot(local_namespace['l'+str(hnew[i])[0]+str(knew[i])[0]+'theo

'], local_namespace['ytheory'+str(hnew[i])[0]+str(knew[i])[0]], "r-

", label='Theory') 

    pylab.xlim(myxlim) 

    

pylab.ylim(local_namespace['myylim'+str(hnew[i])[0]+str(knew[i])[0]]

) 

    pylab.ylabel(str(hnew[i])[0]+str(knew[i])[0]+"L") 

    ax1.yaxis.set_label_position("right") 

    pylab.minorticks_off() 

     

    ax1.xaxis.set_major_formatter( NullFormatter() ) 
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pylab.title(file1  + '\n Reduced-Chi^2: 

'+str(chisq/result.nfree),fontdict={'fontsize':12}) 

ax4 = pylab.subplot(len(hnew)+2,1,len(hnew)+1) 

pylab.plot(llayer, amp1, "b-", label='Theory') 

myyliml= [min(amp1)-0.2,max(amp1)+0.2] 

pylab.xlim(myxlim) 

#pylab.xlim(3) 

pylab.ylim(myylimwater) 

ax4.xaxis.set_major_formatter( NullFormatter() ) 

 

 

ax5 = pylab.subplot(len(hnew)+2,1,len(hnew)+2) 

pylab.plot(xlayer, ylayer, "r-", label='Error', markersize=2) 

pylab.plot(xlayer, ylayerlayer1, "y-", label='Error', markersize=2) 

pylab.plot(xlayer, ylayerlayer2, "g-", label='Error', markersize=2) 

pylab.plot(xlayer, oxlayer, "b-", label='Error', markersize=2) 

pylab.xlim(myxlimwater) 

pylab.ylim(myylimwater) 

 

pylab.ylabel("Water") 

ax5.yaxis.set_label_position("right")   

#pylab.subplots_adjust(wspace=0,hspace=0) 

pylab.tight_layout() 

if not os.path.exists("output/images"): os.makedirs("output/images") 

pylab.savefig('output/images/'+file1+'fits'+strftime(" 

%d_%b_%Y_%H_%M", gmtime())+'.png') 

#pylab.ion() 

 

#Save to fit to a log 

def writelog(filename, paramw, chisq,rchi): 

        localtime = time.asctime( time.localtime(time.time())) 

        FILE = open(filename,"a") #Open the file in write mode 

        FILE.write(file1+'\n') 

        FILE.write("------------------------------------------------

-------------\n") 

        FILE.write("FIT LOG:"+localtime+"\nCHISQ: 

"+str(chisq)+"\nRed-CHISQ: "+str(rchi)+"\n") 

        FILE.write("------------------------------------------------

-------------\n") 

        FILE.write(lf.fit_report(params)+'\n') 

        FILE.close 

 

print "Saving image files.." 

if not os.path.exists("output"): os.makedirs("output") 

writelog('output/'+file1+strftime(" %d_%b_%Y_%H_%M", 

gmtime())+'.log', params, chisq, chisq/result.nfree)  

 

#output the results 

def writecal(h,k,l, y,e): 

  for i in range(len(hnew)): 

        

     

        if h == hnew[i] and k == knew[i]: 

                FILE = 

open('output/'+file1+str(hnew[i])[0]+str(knew[i])[0] +strftime(" 

%d_%b_%Y_%H_%M", gmtime())+'.exp',"a")  

                

FILE.write(str(h)+"\t"+str(k)+"\t"+str(l)+"\t"+str(y)+"\t"+str(e)+"\

n") 

                FILE.close 
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def writetheo(h,k,l, y): 

  for i in range(len(hnew)):         

        if h == hnew[i] and k == knew[i]: 

                FILE = 

open('output/'+file1+str(hnew[i])[0]+str(knew[i])[0] +strftime(" 

%d_%b_%Y_%H_%M", gmtime())+'.cal',"a")          

               # print hnew[i],knew[i] 

                

FILE.write(str(h)+"\t"+str(k)+"\t"+str(l)+"\t"+str(y)+"\n") 

                FILE.close 

 

def writewater(x,y1,y2,y,o): 

   for i in range(len(hnew)):        

        FILE = open('output/'+file1+'watermodel'+strftime(" 

%d_%b_%Y_%H_%M", gmtime())+'.dat',"a")               

 

        

FILE.write(str(x)+"\t"+str(y1)+"\t"+str(y2)+"\t"+str(y)+"\t"+str(o)+

"\n") 

        FILE.close 

 

for i in range(len(l)): 

        writecal(h[i], k[i], l[i], expAx[i], expEx[i]) 

         

for i in range(len(ltheo)): 

        writetheo(htheo[i], ktheo[i], ltheo[i], finaltheo[i]) 

 

for i in range(len(xlayer)): 

        writewater(xlayer[i], oxlayer[i], 

ylayerlayer1[i],ylayerlayer2[i],ylayer[i]) 

 

import datetime 

print datetime.datetime.now()  

 

pylab.show() 

 

def model(h,k,l,expA,expE,params, atoms,constants): 

        #Different scale factor for specular rod 

        import lmfit as lf 

        import numpy as np 

        import sys 

        import scipy 

        import os 

        import time 

        from scipy.integrate import quad 

        from scipy.special import erf 

        from scipy.special import erfc 

        from TF import TF 

        from read_data import read_data 

        from f_atom_1127A import f_atom 

        from read_parameters import read_parameters 

        from residual import residual 

        global expEy, expAy, amcorr1, fthick, qz,  specular, q, qinp 

        from  xmascorr import corr_factors       

        #constants 

        a = constants[0]; 

         

        wavelength=constants[1]; 

        abslen=3.734e7/(wavelength**3) 

        pi = np.pi 
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        dwfbulk=constants[2] 

        #dwfbulk = params['dwfbulk'].value 

        if h == 0 and k ==0: 

                l=l*params['shiftl'].value 

        if h == 1 and k ==0: 

                l=l*params['shiftl1'].value 

        if h == 0 and k ==1: 

                l=l*params['shiftl2'].value 

        #transform recp. unit cell 

        #k=0 

        h = (h+k)/2 

        k = (h-k)/2 

        h_cub = (h+k) 

        k_cub = (h-k) 

        l_cub = l 

 

        hinp=h 

        kinp=k 

        linp=0 

 

        q = 2*pi*np.sqrt(h_cub**2 + k_cub**2 + l_cub**2)/a 

        qinp=2*pi*np.sqrt(hinp**2+kinp**2+linp**2)/a 

        qz=2*pi*l/a#/np.sqrt(2) 

        #qz = 2*pi*l/(a*1.73205) 

         

        #caluclate scattering factors 

        zau = f_atom(q, "Au") 

        zcu = f_atom(q, "Cu") 

        zcup = f_atom(q, "Cu+") 

        zo = f_atom(q, "O") 

        zc = f_atom(q, "C") 

        zag = f_atom(q, "Ag") 

        zna= f_atom(q, "Na") 

        #Debye Waller factors 

        dwbulk = np.exp(-(q**2 * dwfbulk**2)/2) 

        dwl = [0] 

       

      

        for i in range(1,4): 

           if h == 0 and k == 0: 

                if i == 3: 

                   dwl.append(dwbulk*np.exp(-

(qz**2*params['dwf'+str(i)].value**2)/2)) 

                  # if h == 0 and k == 0: 

                   #     dwl.append(dwbulk*np.exp(-

(qz**2*params['dwfz'+str(i)].value**2)/2))        

                else: 

                   dwl.append(dwbulk*np.exp(-

(qz**2*params['dwf'+str(i)].value**2)/2)) 

           else: 

                   dwl.append(dwbulk*np.exp(-

(qz**2*params['dwf'+str(i)].value**2)/2)) 

            

 

        #Bulk contribution 

        ftot = (f_atom(q,constants[3]))*dwbulk/(1-np.exp(-

pi*1j*(h+k+l))) 

 

 

        #Commensurate metal layers 

        shift = 0  
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        fptlayer=0 

        beta=params['beta'].value 

        betafactor=(1-beta)/np.sqrt(1-beta**2-2*beta*np.cos(2*pi*(-

h/2 + k/2 +l/2))) 

       # for i in range(1): 

       #         cov = params['coverage'+str(i)].value 

       #         shift += params['eps'+str(i)].value 

       #         flayer = zcu*dwl[i]*cov*np.exp(2*pi*1j*i*(-h/3 + 

k/3 +l/3)) 

       #         ftot += flayer*np.exp(2*pi*1j*shift*l) 

        for i in range(1,4): 

                cov = params['coverage'+str(i)].value 

                shift += params['eps'+str(i)].value 

                if i == 3: 

                        flayer = (f_atom(q, 

(atoms[2])))*dwl[i]*cov*np.exp(2*pi*1j*i*(h/2+k/2+l/2)) 

                        #flayer = ((f_atom(q, 

(atoms[2])))*dwl[i]*cov*np.exp(2*pi*1j*(h/2)))*(np.exp(2*pi*1j*i*(h/

2+k/2+l/2))) 

                if i == 2: 

                        #flayer = (f_atom(q, 

(atoms[1])))*dwl[i]*cov*np.exp(2*pi*1j*i*(h/2+k/2+l/2)) 

                        flayer = ((f_atom(q, 

(atoms[1])))*dwl[i]*cov*np.exp(2*pi*1j*(h/2)))*(np.exp(2*pi*1j*i*(h/

2+k/2+l/2))) 

                if i == 1: 

                        flayer = (f_atom(q, 

(atoms[0])))*dwl[i]*cov*np.exp(2*pi*1j*i*(h/2+k/2+l/2))        

                ftot += flayer*np.exp(2*pi*1j*shift*l) 

                 

                #possible water models only for specular fits 

        if h == 0 and k == 0: 

                #oxygen layers 

                shift = 0  

                for i in range(1,4): 

                        cov = params['Ocoverage'+str(i)].value 

                        shift = 

params['Oeps'+str(i)].value+(np.sqrt(3)*a) 

                        if i == 1: 

                                flayer = f_atom(q, 

(atoms[4]))*np.exp(-(q**2*params['Odwf'+str(i)].value**2)/2) 

*cov#*np.exp(1j*q) 

                        else: 

                                flayer = f_atom(q, 

(atoms[5]))*np.exp(-(q**2*params['Odwf'+str(i)].value**2)/2) 

*cov#*np.exp(1j*q) 

                        ftot += flayer*np.exp(1j*shift*q) 

 

        ftot=betafactor*ftot 

        if h == 0 and k == 0: 

                #layered water structure 

                if(params['Lcoverage'].value > 0.): 

                        #print "LAYERED MODEL INCLUDED!" 

                        temp = np.exp(-

(q**2*params['Lsigmabar'].value**2)/2) 

                        temp = temp*np.exp(1j*q*params['Lcw'].value) 

                        flayer = f_atom(q, 

(atoms[4]))*params['Lcoverage'].value*np.exp(-

(q**2*params['Lsigma0'].value**2)/2)*np.exp(1j*(params['Ldist'].valu

e-params['Lcw'].value+(np.sqrt(3)*a))*q) 
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                        ftot += flayer/(1-temp) 

                if(params['Lcoverage1'].value > 0): 

                        #print "LAYERED MODEL INCLUDED!" 

                        temp = np.exp(-

(q**2*params['Lsigmabar1'].value**2)/2) 

                        temp = 

temp*np.exp(1j*q*params['Lcw1'].value) 

                        flayer = f_atom(q, 

(atoms[5]))*params['Lcoverage1'].value*np.exp(-

(q**2*params['Lsigma01'].value**2)/2)*np.exp(1j*(params['Ldist1'].va

lue-params['Lcw1'].value+(np.sqrt(3)*a))*q) 

 

                        ftot += flayer/(1-temp) 

                #error function 

                if(params['Ecoverage'].value > 0): 

                       # print "ERROR FUNCTION INCLUDED!" 

                        flayer = 

1j*((zo)*params['Ecoverage'].value)*np.exp(-

((q*params['Esigma'].value)**2/2))/q*np.exp(1j*(params['Edist'].valu

e+(np.sqrt(3)*a))*q) 

                        ftot = ftot +flayer 

         

        #calculate complex conjugate 

        amp = abs(ftot*np.conjugate(ftot)) 

         

        expAy=expA/corr_factors(h,k,l,params,constants) 

        expEy=expE/ corr_factors(h,k,l,params,constants) 

        return amp* corr_factors(h,k,l,params,constants) 

 

 

def Qcalc(h,k,l,constants): 

        import lmfit as lf 

        import numpy as np 

        import sys 

        import scipy 

        import os 

        import time 

        from scipy.integrate import quad 

        from scipy.special import erf 

        from scipy.special import erfc 

        global expEy, expAy, amcorr1, fthick,   specular 

        a = constants[0]; 

        wavelength=constants[1] 

        #abslen=3.734e7/(wavelength**3) 

        pi = np.pi 

        dwfbulk=constants[2] 

 

        k=0 

        h_cub = h#k 

        k_cub = k 

        l_cub = l 

 

        hinp=h 

        kinp=k 

        linp=l 

        q = 2*np.pi*np.sqrt(h_cub**2 + k_cub**2 + l_cub**2)/a 

        qinp=2*np.pi*np.sqrt(hinp**2+kinp**2+linp**2)/a 

        qz=2*np.pi/np.sqrt(2)*l/a 

        return q,qinp,qz 
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def model(h,k,l,expA,expE,params, atoms,constants): 

        #Different scale factor for specular rod 

        import lmfit as lf 

        import numpy as np 

        import sys 

        import scipy 

        import os 

        import time 

        from scipy.integrate import quad 

        from scipy.special import erf 

        from scipy.special import erfc 

        from TF import TF 

        from read_data import read_data 

        from f_atom_0619A import f_atom 

        from read_parameters import read_parameters 

        from residual import residual 

        global expEy, expAy, amcorr1, fthick, qz,  specular, q, qinp 

        from  slscorr import corr_factors       

        #constants 

        a = constants[0]; 

         

        wavelength=constants[1]; 

        abslen=3.734e7/(wavelength**3) 

        pi = np.pi 

        dwfbulk=constants[2] 

        #dwfbulk = params['dwfbulk'].value 

        if h == 0 and k ==0: 

                l=l*params['shiftl'].value 

        if h == 1 and k ==0: 

                l=l*params['shiftl1'].value 

        if h == 0 and k ==1: 

                l=l*params['shiftl2'].value 

        #transform recp. unit cell 

        h_cub = h*2/3 - k *2/3 + l/3 

        k_cub = h*2/3 + k*4/3 + l/3 

        l_cub = -h*4/3 - k*2/3 + l/3 

 

        hinp=h*2/3-k*2/3 

        kinp=h*2/3+k*4/3 

        linp=-h*4/3-k*2/3 

 

        q = 2*pi*np.sqrt(h_cub**2 + k_cub**2 + l_cub**2)/a 

        qinp=2*pi*np.sqrt(hinp**2+kinp**2+linp**2)/a 

        qz=2*pi/np.sqrt(2)*l/a 

        #qz = 2*pi*l/(a*1.73205) 

         

        #caluclate scattering factors 

       # zau = f_atom(q, "Au") 

       # zcu = f_atom(q, "Cu") 

       # zo = f_atom(q, "O") 

       # zc = f_atom(q, "C") 

        zag = f_atom(q, "Ag") 

        #zna= f_atom(q, "Na") 

         

        #Debye Waller factors 

        dwbulk = np.exp(-(q**2 * dwfbulk**2)/2) 

        dwl = [0] 

       

      

        for i in range(1,5): 

           if h == 0 and k == 0: 
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                if i == 3: 

                   dwl.append(dwbulk*np.exp(-

(qz**2*params['dwf'+str(i)].value**2)/2)) 

                  # if h == 0 and k == 0: 

                   #     dwl.append(dwbulk*np.exp(-

(qz**2*params['dwfz'+str(i)].value**2)/2))        

                else: 

                   dwl.append(dwbulk*np.exp(-

(qz**2*params['dwf'+str(i)].value**2)/2)) 

           else: 

                   dwl.append(dwbulk*np.exp(-

(qz**2*params['dwf'+str(i)].value**2)/2)) 

            

 

        #Bulk contribution 

        ftot = (f_atom(q,constants[3]))*dwbulk/(1-

np.exp(2*pi*1j*((h/3)-(k/3)-(l/3)))) 

 

 

        #Commensurate metal layers 

        shift = 0  

        fptlayer=0 

        beta=params['beta'].value 

        betafactor=(1-beta)/np.sqrt(1-beta**2-2*beta*np.cos(2*pi*(-

h/3 + k/3 +l/3))) 

       # for i in range(1): 

       #         cov = params['coverage'+str(i)].value 

       #         shift += params['eps'+str(i)].value 

       #         flayer = zcu*dwl[i]*cov*np.exp(2*pi*1j*i*(-h/3 + 

k/3 +l/3)) 

       #         ftot += flayer*np.exp(2*pi*1j*shift*l) 

        for i in range(1,4): 

                #print i 

                cov = params['coverage'+str(i)].value 

                shift += params['eps'+str(i)].value 

                if i == 4: 

                        flayer = (f_atom(q, 

(atoms[4])))*dwl[i]*cov*np.exp(2*pi*1j*i*(-h/3 + k/3 +l/3)) 

                        ftot += flayer*np.exp(2*pi*1j*shift*l) 

                if i == 3: 

                        flayer = (f_atom(q, 

(atoms[2])))*dwl[i]*cov*np.exp(2*pi*1j*i*(-h/3 + k/3 +l/3)) 

                        ftot += flayer*np.exp(2*pi*1j*shift*l) 

                if i == 2: 

                        flayer = (f_atom(q, 

(atoms[1])))*dwl[i]*cov*np.exp(2*pi*1j*i*(-h/3 + k/3 +l/3)) 

                        ftot += flayer*np.exp(2*pi*1j*shift*l) 

                if i == 1: 

                        flayer = (f_atom(q, 

(atoms[0])))*dwl[i]*cov*np.exp(2*pi*1j*i*(-h/3 + k/3 +l/3))        

                        ftot += flayer*np.exp(2*pi*1j*shift*l) 

                 

                #possible water models only for specular fits 

        if h == 0 and k == 0: 

                #oxygen layers 

                shift = 0  

                for i in range(1,4): 

                        cov = params['Ocoverage'+str(i)].value 

                        shift = 

params['Oeps'+str(i)].value+(np.sqrt(3)*a) 

                        if(cov != 0): 
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                         if i == 1: 

                                 flayer = f_atom(q, 

(atoms[5]))*np.exp(-(q**2*params['Odwf'+str(i)].value**2)/2) 

*cov#*np.exp(1j*q) 

                         else: 

                                 flayer = f_atom(q, 

(atoms[6]))*np.exp(-(q**2*params['Odwf'+str(i)].value**2)/2) 

*cov#*np.exp(1j*q) 

                         ftot += flayer*np.exp(1j*shift*q) 

 

        ftot=betafactor*ftot 

        if h == 0 and k == 0: 

                #layered water structure 

                if(params['Lcoverage'].value > 0.): 

                        #print "LAYERED MODEL INCLUDED!" 

                        temp = np.exp(-

(q**2*params['Lsigmabar'].value**2)/2) 

                        temp = temp*np.exp(1j*q*params['Lcw'].value) 

                        flayer = f_atom(q, 

(atoms[4]))*params['Lcoverage'].value*np.exp(-

(q**2*params['Lsigma0'].value**2)/2)*np.exp(1j*(params['Ldist'].valu

e-params['Lcw'].value+(np.sqrt(3)*a))*q) 

 

                        ftot += flayer/(1-temp) 

                if(params['Lcoverage1'].value > 0): 

                        #print "LAYERED MODEL INCLUDED!" 

                        temp = np.exp(-

(q**2*params['Lsigmabar1'].value**2)/2) 

                        temp = 

temp*np.exp(1j*q*params['Lcw1'].value) 

                        flayer = f_atom(q, 

(atoms[5]))*params['Lcoverage1'].value*np.exp(-

(q**2*params['Lsigma01'].value**2)/2)*np.exp(1j*(params['Ldist1'].va

lue-params['Lcw1'].value+(np.sqrt(3)*a))*q) 

 

                        ftot += flayer/(1-temp) 

                #error function 

                if(params['Ecoverage'].value > 0): 

                       # print "ERROR FUNCTION INCLUDED!" 

                        flayer = 1j*(f_atom(q, 

(atoms[4]))*params['Ecoverage'].value)*np.exp(-

((q*params['Esigma'].value)**2/2))/q*np.exp(1j*(params['Edist'].valu

e+(np.sqrt(3)*a))*q) 

                        ftot = ftot +flayer 

         

        #calculate complex conjugate 

        amp = abs(ftot*np.conjugate(ftot)) 

         

        expAy=expA/corr_factors(h,k,l,params,constants) 

        expEy=expE/ corr_factors(h,k,l,params,constants) 

        return amp* corr_factors(h,k,l,params,constants) 

 

 

def Qcalc(h,k,l,constants): 

        import lmfit as lf 

        import numpy as np 

        import sys 

        import scipy 

        import os 

        import time 

        from scipy.integrate import quad 
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        from scipy.special import erf 

        from scipy.special import erfc 

        global expEy, expAy, amcorr1, fthick,   specular 

        a = constants[0]; 

        wavelength=constants[1] 

        #abslen=3.734e7/(wavelength**3) 

        pi = np.pi 

        dwfbulk=constants[2] 

 

        h_cub = h*2/3 - k *2/3 + l/3 

        k_cub = h*2/3 + k*4/3 + l/3 

        l_cub = -h*4/3 - k*2/3 + l/3 

 

        hinp=h*2/3-k*2/3 

        kinp=h*2/3+k*4/3 

        linp=-h*4/3-k*2/3 

        q = 2*np.pi*np.sqrt(h_cub**2 + k_cub**2 + l_cub**2)/a 

        qinp=2*np.pi*np.sqrt(hinp**2+kinp**2+linp**2)/a 

        qz=2*np.pi/np.sqrt(2)*l/a 

        return q,qinp,qz 

def read_parameters(filename): 

        global params 

        global constants 

        global firstatom 

        global tol 

        import lmfit as lf 

        from TF import TF 

        params = lf.Parameters() 

        line = [] 

        raw = 1 

         

        f = open(filename, 'r') 

 

        #skip first two lines 

        [f.readline() for i in xrange(2)] 

 

        #read parameters from file 

        while raw: 

                raw = f.readline() 

                line = raw.split() 

                if len(line) >1 and line[0] == "P": 

                        params.add(line[1],   value= float(line[2]),  

min=float(line[3]), max=float(line[4]),vary=TF(line[5])) 

                if len(line) >1 and line[0] == "M": 

                        method = line[1] 

      if len(line) >1 and line[0] == "T": #Tolerences 

   tol = [float(line[1]), float(line[2]), 

int(line[3])] 

                if len(line) >1 and line[0] == "B": 

                        specularrod = float(line[1]) 

                if len(line) >1 and line[0] == "A": 

                        firstatom = line[1] 

  if len(line) >1 and line[0] == "K": #CONSTANTS 

   constants = 

[float(line[1]),float(line[2]),float(line[3]),line[4],line[5]] 

  if len(line) >1 and line[0] == "E": #Systematic 

Errors 

   syserror = float(line[1]) 

  if len(line) >1 and line[0] == "F": #Files 

   filea = line[1] 
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  if len(line) >1 and line[0] == "A": #Atom Types                         

   atoms = 

[line[1],line[2],line[3],line[4],line[5],line[6]]  

  

        return params, method, tol, specularrod, atoms, 

constants,filea,syserror 

 

 

#Function to calculate the scattering factor using the Crommer Mann 

equation 

 

 

 

def corr_factors(h,k,l,params,constants): 

        import lmfit as lf 

        import numpy as np 

        import sys 

        import scipy 

        import os 

        import time 

        from scipy.integrate import quad 

        from scipy.special import erf 

        from scipy.special import erfc 

        from TF import TF 

        from read_data import read_data 

        from f_atom_1127A import f_atom 

        from read_parameters import read_parameters 

        from model001 import Qcalc 

        global expEy, expAy, amcorr1, fthick, qz,  specular, q, qinp 

 

        global expEy, expAy,  fthick, qz,  specular, q, qinp 

        a = constants[0]; 

        wavelength=constants[1] 

        abslen=3.734e7/(wavelength**3) 

        pi = np.pi 

        dwfbulk=constants[2] 

 brat=0 

 fthick=0 

 scale=0 

 sca=0 

         

        if round(h,2) == 0 and round(k,2) == 0: 

                specular = True 

                fthick = params['fthick'].value 

                scale =2* params['scale'].value 

                sca = params['sca'].value 

                brat = params['brat'].value 

        elif round(h,2) == 1 and round(k,2) == 0: 

                specular = False 

                fthick = params['fthick1'].value 

                scale = params['scale1'].value 

                sca = params['sca1'].value 

                brat = params['brat1'].value 

        elif round(h,2) == 0 and round(k,2) == 1: 

                specular = False 

                fthick = params['fthick1'].value 

                scale = params['scale2'].value 

                sca = params['sca2'].value 

                brat = params['brat2'].value 

        elif round(h,2) == 1 and round(k,2) == 1: 
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                specular = False 

                fthick = params['fthick1'].value 

                scale = params['scale1'].value 

                sca = params['sca1'].value 

                brat = params['brat1'].value 

        elif round(h,2) == 1 and round(k,2) == -1: 

                specular = False 

                fthick = params['fthick1'].value 

                scale = params['scale1'].value 

                sca = params['sca1'].value 

                brat = params['brat1'].value 

     

#Liquid adsorption 

        q,qinp,qz=Qcalc(h,k,l,constants) 

        qabs = 8*pi*fthick/(wavelength*abslen) 

        absfac=np.exp(-qabs/qz) 

        theta=np.arcsin(q*wavelength/(4*pi)) 

        chi=np.arctan(l/(2*np.sqrt(2)*np.sqrt(h**2+k**2))) 

        #acorr1=np.sin(theta)*np.sin(chi) 

        angi=np.arcsin((np.sin(theta))*(np.sin(chi))) 

         

        if specular: 

                angi=np.arcsin(wavelength*qz/(4*pi)) 

                 

 

        #Low angle area correction 

        acorr=brat*np.sin(angi) 

        if(acorr > 1): acorr = 1            

         

        correction = 

abs(absfac)*(acorr/np.sin(angi)**2)*(scale+sca*l) 

        return correction 

def f_atom(q, atom): 

 

         

        import lmfit as lf 

        import numpy as np 

        #coefficents taken from International Tables for 

Crystallography Vol C. Ch 6.1 

        if atom == "Au": 

                #         a1      a2    a3      a4      b1      b2      

b3      b4      c 

                coeff = 

[16.8819,0.4611,18.5913,8.6216,25.5582,1.4826,5.86,36.3956,12.0658] 

  f1=-11.370  

  f2=3.960 

 

        if atom == "Pb": 

                coeff 

=[31.0617,0.690200,13.0637,2.35760,18.4420,8.61800,5.96960,47.2579,1

3.4118] 

  f1=-11.370  

  f2=3.960 

 

        if atom == "Pt": 

                coeff = 

[27.0059,1.51293,17.7639,8.81174,15.7131,0.424593,5.7837,38.6103,11.

6883] 

 

        if atom == "O": 
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                coeff = 

[3.0485,13.2771,2.2868,5.7011,1.5463,0.3239,0.867,32.9089,0.2508] 

                f1=0.028 

                f2=0.017 

        if atom == "C": 

                coeff = 

[2.31,20.8439,1.02,10.2075,1.5886,0.5687,0.865,51.6512,0.2156] 

  f1=0.010 

  f2=0.005 

        if atom == "Cu": 

                coeff = 

[13.338,3.58280,7.16760,0.247000,5.6158,11.3966,1.6735,64.6126,1.19] 

                f1=-0.609 

                f2=2.791 

        if atom == "Cu+": 

                coeff = 

[11.94575,3.36690,7.35730,0.227400,6.2455,8.66250,1.55780,25.6126,0.

89] 

                f1=0.575 

                f2=2.737 

        if atom == "Ag": 

                coeff = 

[19.2908,0.644600,16.6885,7.4726,4.8045,24.6605,1.04630,99.8156,5.17

9] 

                f1=-1.143 

                f2=1.047 

        if atom == "Na": 

                coeff = 

[3.256,2.66,3.93,6.11,1.39,0.2,1.0032,14.039,0.404] 

                f1=-1.143 

                f2=1.047 

        if atom == "N": 

                coeff = 

[.2126,0.005700,3.13220,9.89330,2.01250,28.9975,1.16630,0.582600,11.

52] 

                f1=0.014 

                f2=0.009 

        if atom == "H": 

                coeff = 

[.493002,10.5109,0.322912,26.1257,0.140191,3.14236,0.040810,57.7997,

0.00303] 

                f1=-1.143 

                f2=1.047 

        x=(q/(4*np.pi))**2 # sin(theta)^2/lambda^2 

        if x > 1.5: 

                print "WARNING: Scattering factor approximation not 

vaild at this Q!!" 

                quit() 

 

        f = coeff[8] 

        for i in range(4): 

                f += coeff[i*2]*np.exp(-coeff[i*2+1]*x) 

         

        f +=f1+1j*f2 

        return f 

def residual(params, h,k,l, expA,expE,specularrod,atoms,constants): 

        import lmfit as lf 

        import numpy as np 

        import sys 

        import scipy 

        import os 



Appendices 

147 
 

        import time 

        from scipy.integrate import quad 

        from scipy.special import erf 

        from scipy.special import erfc 

        from TF import TF 

        from read_data import read_data 

        from f_atom_1127A import f_atom 

        from read_parameters import read_parameters 

        from model001 import model 

        points = len(l) 

        mod = np.zeros(points) 

 

        for i in range(points): 

 

 

           if specularrod == 0: 

                if h[i] == 1 or k[i] == 1:  

                    mod[i] = 

model(h[i],k[i],l[i],expA[i],expE[i],params, atoms,constants) 

           else: 

                mod[i] = 

model(h[i],k[i],l[i],expA[i],expE[i],params, atoms,constants)     

        return ((expA - mod)/expE)**2 

def read_data(filename): 

 

        f = open(filename, 'r') 

        line = [] 

        data = [] 

        raw = 1 

 

        #skip first line 

        f.readline() 

 

        #read parameters from file 

        while raw: 

                raw = f.readline() 

                if len(raw.split()) > 1:         

                        data.append(raw.split()) 

                         

        return data 

 

def TF(tocheck): 

        if tocheck == "T": 

                return True 

        if tocheck == "t": 

                return True 

        if tocheck == "F": 

                return False 

        if tocheck == "f": 

                return False 

        else:  

               print "Unrecognised Vary Flag, should be T/F" 

        quit() 

 

Example parameter file 

C PARAMETER FILE 

C ----------------------- 

C SYSTEM:    
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C 

C Systematic Error on Data Points 

C --------------------------------------------------- 

E 0.1 

C 

C ATOMS 

C --------------------------------------------------- 

C METAL1 METAL2 METAL3 ADL1 ADL2 ADL3 

A Au Au Au O O O 

C 

C 

C PARAMETER VALUE  MIN MAX VARY(T/F) 

C --------------------------------------------------- 

P scale  0.00063505      1e-10 1e10 f 

P scale1  0.0006389  1e-10 1e10 t 

P scale2  0.00131228      1e-10 1e10 f 

P fthick  0         0 2e7    f 

P fthick1  0        0 2e7   f 

P fthick2  0         0 2e7 f 

P brat  8.95527367         0.0 100     f 

P brat1  3.45660240         0.0 100     f 

P brat2  10              0.0 100     f 

P       fitfactor       0.             0.0     300     f 

P       sca             0               -0.1    0.1    f 

P       sca1            0.00            -0.1    0.1    f 

P       sca2            0.000           -.1     .1   f 

P       shiftl          1               -2      2       f 

P       shiftl1          1              -2      2        f 

P       shiftl2         1               -2      2        f 

P       beta            0.09       0       .5       f 

C 

C CONSTANTS     (NO EFFECT) 

C --------------------------------------------------- 

C a wavelength bulkdwf substrate Face(111/100)

  

K 4.078 1.05070         0.124 Au  100 

C 

C 

C SURFACE METAL LAYERS 

C --------------------------------------------------- 

P coverage1 1        0 1.5 f 

P eps1  0.0001     -.2       .2   t 

P dwf1  0.0 0.00 .2 f 

C 

P coverage2 0.45246941 0 2 t 

P eps2  0.15627067 -.5 2 t 

P dwf2  0.01     .00 0.2  f 

C 

P coverage3 0.42008725      0.0 1.5     t 

P eps3  0.07084495     -.5 2 t 

P dwf3  0.01         0.00 .8 f 

P       dwfz3           0.0            0       0.7    f 

C    

C OXYGEN LAYERS 

C --------------------------------------------------- 

P Ocoverage1 0.0  0 6 f 

P Oeps1  1.9             0 12 f 

P Odwf1  1.32  0.0 3 f 

C 

P Ocoverage2 0.0  0.0 2 f 

P Oeps2  11.13  10.5 20 f 
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P Odwf2  0.8  0.0 3 f 

C 

P Ocoverage3 .0  0.0 2 f 

P Oeps3  14.06  -.2 20 f 

P Odwf3  1.2  0.0 20 f 

C 

C LIQUID MODEL 

C --------------------------------------------------- 

P Lcoverage 0.              0 10 f 

P Lsigma0  0.28     0.01 3 f 

P Lsigmabar       1.13         0.01 7 f 

P Lcw  3.5             0 10 f 

P       Ldist           2.11            0       18   f 

C 

P Lcoverage1 .0              0 10 f 

P Lsigma01 0.33         0.01 3 f 

P Lsigmabar1      1              0.01 7 f 

P Lcw1  4.35            0 10 f 

P       Ldist1          3.1             -5      18      f 

C 

C Error Function 

C --------------------------------------------------- 

P Ecoverage 0  0 2 f 

P Esigma  0.9         0 5       f 

P       Edist           15.09          -12      20      f 

C Fitting Settings 

C ------------------------------------------------------------

--- 

C Data File 

C --------------------------------------------------- 

F n50mV.dat 

C ------------------------------------------------------------

--- 

C 

C Minimisation method [leastsq/nelder] (least squares or 

downhill simplex) 

C [lbfgsb/anneal] (L-BFGS-B algorithm or simulated annealing) 

are possible also 

C but not reliable in the current implentation of lmfit-py. 

M leastsq 

C  Fitting Tolerences 

C --------------------------------------------------- 

C FTOL    XTOL  MAXFEV 

T 1.e-17    1.e-17 999999999    

C 

C Help: 

C arg  Default Value  Description 

C --------------------------------------------------- 

C xtol  1.e-7   Relative error in the approximate 

solution 

C ftol  1.e-7   Relative error in the desired sum of 

squares 

C maxfev  2000*(nvar+1)  maximum number of function calls 

(nvar= # of variables) 

 

 

C       Please indicate if you want to include the specular rod in 

the modelling (Yes: 1, No:0) 

B       1 

 


