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Abstract: This paper proposes a novel bio-inspired optimization method named memetic salp swarm algorithm 
(MSSA). It is developed by extending the original salp swarm algorithm (SSA) with multiple independent salp chains, 
thus it can implement a wider exploration and a deeper exploitation under the memetic computing framework. In order 
to enhance the convergence stability, a virtual population based regroup operation is used for the global coordination 
between different salp chains. Due to partial shading condition (PSC) and fast time-varying weather conditions, 
photovoltaic (PV) systems may not be able to generate the global maximum power. Hence, MSSA is applied for an 
effective and efficient maximum power point tracking (MPPT) of PV systems under PSC. To evaluate the MPPT 
performance of the proposed algorithm, four case studies are undertaken using Matlab/Simulink, e.g., start-up test, 
step change of solar irradiation, ramp change of solar irradiation and temperature, and field atmospheric data of Hong 
Kong. The obtained PV system responses are compared to that of eight existing MPPT algorithms, such as incremental 
conductance (INC), genetic algorithm (GA), particle swarm optimization (PSO), artificial bees colony (ABC), cuckoo 
search algorithm (CSA), grey wolf optimizer (GWO), SSA, and teaching-learning-based optimization (TLBO), 
respectively. Simulation results demonstrate that the output energy generated by MSSA in Spring in HongKong is 
118.57%, 100.73%, 100.96%, 100.87%, 101.35%, 100.36%, 100.81%, and 100.22% to that of INC, GA, PSO, ABC, 
CSA, GWO, SSA, and TLBO, respectively. Lastly, a hardware-in-the-loop (HIL) experiment using dSpace platform 
is undertaken to further validate the implementation feasibility of MSSA. 
Keywords: Solar energy harvesting; MPPT; partial shading condition; memetic salp swarm algorithm; virtual 
population 

Nomenclature 

Variables Abbreviations 
Vpv PV output voltage, V MPPT maximum power point tracking 
Ipv PV output current, A PV Photovoltaic 
Ig        cell’s photocurrent, A PSC partial shading condition 
ID        diode’s photocurrent, A INC incremental conductance 
IS cell’s reverse saturation current, A MSSA memetic salp swarm algorithm 
IRS d-q components of the grid current, A SSA salp swarm algorithm 
Tc cell’s absolute working temperature, °C GA genetic algorithm 
Tref cell’s reference temperature, °C PSO particle swarm optimization 
S total solar irradiation, W/m2 ABC artificial bees colony 
Eg bang-gap energy of the semiconductor used in the cell, J CSA Cuckoo search algorithm 
Np number of panels connected in parallel GWO grey wolf optimizer 
Ns number of panels connected in series TLBO teaching-learning-based optimization 
PV system parameters GMPP global maximum power point 
q electron charge, 1.60217733×10-19 Cb LMPP local maximum power point 
A p-n junction ideality factor, between 1 and 5 MSSA parameters 
k Boltzman’s constant, 1.380658×10-23 J/K c1, c2, c3 random numbers 
ki cell’s short-circuit current temperature coefficient n population size of each salp chain 
Rs, RSH cell’s series and shunt resistance, Ω M number of salp chains 
Rp cell’s parallel resistance, Ω kmax maximum iteration number 



                                                                              

 

1. Introduction 

In the past decade, the ever-increasing energy consumption and inevitable reduction of fossil fuel resources 
(coals, oil, natural gases) [1]-[4], as well as the fast deterioration of environment resulted from global warming, have 
led to a global approach to research on renewable energy sources, e.g., hydro, wind, solar, biomass, geothermal, 
which have different features and own merits [5]-[9]. Among the above alternatives, solar energy, in particular 
photovoltaic (PV) panels, has recently increased as a result of these devices being environmentally friendly, high 
safety, clean, noise-free, and little maintenance [10]-[12]. In work [13], an extreme learning machine (ELM) was 
developed for short-term output power forecasting of PV systems. Since PV modules usually have significant losses 
in the power generation potential due to heating of the cells by solar irradiation, an automatic water cooling system 
was developed to increase its efficiency in converting the solar irradiation into electricity and thermal energies [14]. 
Moreover, a phase change material (PCM) based cooling technique was proposed to reduce the PV panel operating 
temperature [15]. In literature [16], the performance and land footprint of a solar PV tree under different structure 
and topology was thoroughly analyzed. Meanwhile, reference [17] analyzed a hybrid solar tunnel dryer with PV 
system and solar collector for drying mint under different solar irradiation level. 

Generally speaking, a paramount task of PV system operation is to harvest the maximum available solar energy 
under different weather conditions, which is called maximum power point tracking (MPPT). The quality of an MPPT 
technique is usually evaluated by its complexity, cost, tracking speed, accuracy and number of sensors required for 
execution [18]. So far, almost all MPPT algorithms can perform well when the PV array is under uniform solar 
irradiance condition. Nevertheless, their performance may be degraded when the PV array is affected by partial 
shading condition (PSC), under which multiple local maximum power point (LMPP) emerge on PV curve while only 
one of them is the global maximum power point (GMPP) [19]. PSC usually occurs by several unavoidable scenarios, 
including shadow of buildings, trees, clouds, birds or the dust particles on the solar panels. Under such case, a 
satisfactory MPPT algorithm should be efficient and effective enough to detect the GMPP among many LMPPs [20].  

Thus far, an enormous variety of MPPT algorithms have been developed for PV systems. Conventional methods 
such as incremental conductance (INC) [21], hill-climbing [22], and perturb & observe (P&O) [23] are the most 
commonly used ones. They have the advantages of high reliability and structure simplicity, which can realize an 
efficient tracking under uniform solar irradiation case. However, an inherent drawback of them is that they may be 
easily stagnated at an LMPP in the presence of multiple MPPs, which often results in a low energy conversion 
efficiency [24].  

Basically, the aforementioned approaches are inadequate to handle the PSC thus more advanced approaches are 
needed. Reference [25] presented a fuzzy-logic based MPPT controller, which used an adaptive hysteresis current 
control algorithm to tackle PSC with constant switching frequency and limited harmonic content. In work [26], an 
artificial neural network (ANN) based modified INC was developed, which can effectively track GMPP under PSC. 
Besides, literature [27] designed an adaptive neuro-fuzzy inference system (ANFIS) based intelligent MPPT 
algorithm for PV systems, which adopts a hybrid learning algorithm that combines the least squares estimator and 
the gradient method, such that the GMPP can be efficiently obtained. Moreover, a novel power-increment based 
global MPPT (GMPPT) algorithm was proposed by combining the voltage line, load line, and power line altogether 
to determine the tracking direction and the step size [28]. In addition, a novel beta parameter three-input one-output 
fuzzy-logic based MPPT strategy to tackle PSC was proposed, which can simplify the fuzzy rule membership 
functions, cover wider operating conditions, and reduce the dependence on the user's knowledge about the system 
[29]. 
       On the other hand, meta-heuristic algorithms have become surprisingly popular due to their prominent feature 
of flexibility, gradient-free mechanism, and local optima avoidance. As a consequence, meta-heuristic techniques 
have been applied to resolve this thorny obstacle [30]. In reference [31], genetic algorithm (GA) was employed to 
rapidly seek GMPP while particle swarm optimization (PSO) based MPPT algorithm was proposed to improve the 
accuracy of MPPT [32]. Furthermore, in literature [33], artificial bee colony (ABC) algorithm was reported to achieve 
MPPT under varying weather conditions and PSC, which requires few user-defined parameters with its convergence 
being independent of the initial conditions. Additionally, cuckoo search algorithm (CSA) via Levy flight was applied 
on PV system to guarantee an efficient GMPPT under PSC [34]. Besides, animal behaviour based whale optimization 
algorithm (WOA) [35] and grey wolf optimizer (GWO) [36] were developed to achieve an efficient and oscillation-
free GMPPT under PSC, together with few parameters and low computational burden. Meanwhile, motivated by the 
human behaviour, teaching-learning-based optimization (TLBO) was employed to accurately track the GMPP under 
PSC, which has a very simple structure and fast convergence rate [37]. In addition, bat algorithm (BA) was utilized 
to provide satisfactory dynamic performance and fast convergence by automatically switching between exploration 
and exploitation stages during the MPPT process [38]. Moreover, moth-flame optimization (MFO) was devised to 



                                                                              

 

rapidly find GMPP in the presence of PSC [39]. In reference [40], generalized pattern search (GPS) was utilized for 
PSC, which owns the merits of simple implementation, derivative free nature, fast convergence, high accuracy.  

Recently, a novel bio-inspired algorithm called salp swarm algorithm (SSA) has been developed [41], which 
has a simple search mechanism and a high optimization efficiency. It has been used to seek GMPP with a fast tracking 
speed and insignificant power oscillations [42]. Other applications can be referred to optimal subset searching of 
feature selection [43], parameter optimization of polymer exchange membrane fuel cell [44], Carbon dioxide 
emissions forecasting [45], as well as parameter estimation of soil water retention curve [46]. 

In fact, an optimization method not only need to rapidly search a high-quality optimum near GMPP, but also 
improve the convergence stability for reducing the power fluctuation of PV system. However, like the traditional 
meta-heuristic algorithms, SSA is also difficult to satisfy both of these two requirements since it only adopts a single 
swarm of individuals (i.e., a chain of salps) with a simple search mechanism. Therefore, this paper proposes a novel 
memetic salp swarm algorithm (MSSA) for MPPT of PV systems under PSC, which has the following two main 
improvements: 

 Compared with the original SSA, MSSA employs multiple independent slap chains to simultaneously 
implement the exploration and exploitation, which can rapidly search a high-quality optimum. Hence, the PV system 
can generate more power based on a high-quality control strategy near GMPP. 

 A virtual population based regroup operation is designed for the global coordination between different salp 
chains, which can effectively improve the convergence stability. Thus, it will result in a small power fluctuation 
under PSC. 

The remaining of this paper is organized as follows: Section 2 presents the PV systems modelling and PSC; In 
Section 3, MSSA is developed while its design on PV systems for MPPT under PSC is given in Section 4; Then, 
Section 5 and Section 6 show the case studies results and dSpace based HIL experiment results, respectively. Lastly, 
Section 7 concludes the whole paper. 

2. PV Systems Modelling under PSC 

2.1. PV cell modelling 
A PV cell is consisted of a light generated current source, a parallel diode, and a series resistance, respectively. 

Normally, PV cells are grouped together to form PV modules, which are combined in both series and parallel to 
provide a desired output power [30]. Denote the number of PV cells in series and in parallel to be 𝑁  and 𝑁 , 
respectively, the relationship between the output current and voltage can be described by [47] 

       𝐼 𝑁 𝐼 𝑁 𝐼 exp 1 𝑅 𝐼 /𝑅                            (1) 

where the meaning of each symbol is given in Nomenclature. 
The generated photocurrent 𝐼  is determined by the solar irradiation, as follows 

                    𝐼 𝐼 𝑘 𝑇 𝑇                                                                  (2) 

         Besides, the PV cell’s saturation current 𝐼  varies with the temperature according to the following relationship: 

                   𝐼 𝐼 exp                                                              (3) 

The above equations (1)-(3) indicate that the current generated by the PV array is simultaneously relied on the 
solar irradiation and temperature. 

An even more exact mathematical description of a PV cell, called the double exponential model [48], is derived 
from the physical behaviour of PV cell constructed from polycrystalline silicon. This model contains a light-
generated current source, two diodes, a series resistance and a parallel resistance. However, there are some limitations 
to develop expressions for the V-I curve parameters resulted from the implicit and nonlinear nature of the model. 
Therefore, this model is rarely used in the generalized PV model. 

Consider the ideal PV cell model, which has no series loss and no leakage to ground, i.e., cell’s series resistance 
𝑅 =0 and cell’s shunt resistance RSH=∞. The above equivalent circuit of PV solar cell can be simplified as follows 
[47]: 

  𝐼 𝑁 𝐼 𝑁 𝐼 exp 1                                                        (4) 

Based on Eq. (4), the output current becomes an explicit equation and can be obtained directly with all the parameters 
and voltage known. 

Note that this paper assumes that the PV cell’s working temperature can be accurately measured for the MPPT 
design and all PV system components work normally, which is a very common assumption that can be referred to 
numerous MPPT algorithms development [21]-[40]. Besides, automatic watering cooling system [14] is employed 
to prevent PV panels from over-heating issues, while other cooling systems can also be used for protection. 



                                                                              

 

2.2 MPPT under PSC effect 
The PV systems should always operate at the maximum output point due to their inherent feature of low 

efficiency characteristics [49]. Here, Figure 1 illustrates the relationship of current-voltage (I-V) and power-voltage 
(P-V) obtained under different solar irradiation and temperature. It is obvious that a higher temperature will result in 
a lower MPP while a higher solar irradiation will lead to a higher MPP.  
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Figure 1. Current-voltage and power-voltage characteristics of PV array obtained under different solar irradiation and temperature. 

Figure 2 demonstrates a PV array in a typical series-parallel configuration. Here, the PV modules are connected 
in strings, with four modules per string. When one of the modules in the string exposes less illumination resulted 
from shading, e.g., dirt, trees, birds, its voltage will drop and behave as a load rather than a generator. Then, a hot 
spot will be emerged while generally a bypass diode is connected in parallel with each PV module to protect the 
shaded module from further potential damages. Meanwhile, a blocking diode is also connected at the end of each 
string to provide the protection against reverse current caused by the voltage mismatch between the parallel-
connected strings [50]. 

The diodes can save the shaded PV cells from the above issue, but they inevitably change the PV characteristics 
and produce a two-peak curve. Such phenomenon becomes quite complicated when several strings are connected in 
parallel for a higher current supply. Normally, various PV curves are generated by each string depending on the 
number of shaded PV cells [51]. These multi-peak PV curves are then combined due to the parallel connection, which 
then forms a multi-peak curve shown in Fig. 2. As a consequence, the PV systems should always operate at GMPP, 
such that the maximum available solar energy could be extracted from the solar energy. Otherwise, considerable 
amount of power might be lost when operating at an LMPP [52]. 
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Figure 2. The schematic illustration of PSC effect. 

3 Memetic Salp Swarm Algorithm 

3.1 Inspiration 
Salps belong to the family of Salpidae which own a transparent barrel-shaped body. They move by contracting, 

thus pumping water through its gelatinous body, while strain the pumped water through their internal feeding filters, 
feeding on phytoplankton. the water is pumped through body as propulsion to move forward [53]. The shape of a 
single salp is shown in Fig. 3(a). One of their most interesting behaviour is the swarming behaviour. In deep oceans, 
salps often form a swarm called a salp chain, as shown by Fig. 3(b) and Fig. 3(c), these aggregated individuals are 
also known as blastozooids. They remain attached together while swimming and feeding, and each individual grows 
in size. The main reason of this peculiar behaviour is not very clear yet, but some researchers believe that this attempts 
to achieve better locomotion using rapid coordinated changes and foraging [54]. 

 
                                 (a)                                                                        (b)                                                                             (c) 

Figure 3. Shape and structure of salp swarm in deep ocean. (a) single salp, (b) single salp chain, and (c) double salp chains. 

3.2 Optimization framework 
Memetic algorithm was firstly proposed by Moscato [55], which has developed into a broad class of algorithms 

and can properly hybrid a population-based global search and the heuristic local search [56]. Since it can significantly 
improve the ability of global exploration and local exploitation, it has been successfully applied to an enormous 
variety of real-world optimization problems. In this paper, MSSA also adopts the memetic computing framework to 
enhance the searching ability of SSA, which mainly contains two operations (See Fig. 4), as follows: 

 Local search in each chain: MSSA consists of multiple parallel salp chains, where a salp chain represents a 
swarm of salps. Each salp chain will independently implement a local search according to the searching mechanism 
of SSA in each iteration. 

 Global coordination in virtual population: the population of MSSA is only regarded as hosts of memes where 
a meme is a unit of cultural evolution [57]. Particularly, meme will be positively selected for increased 
communicability among the hosts (e.g., the salps in MSSA). Moreover, the physical characteristics of each individual 
will not be changed during the global coordination. Hence, all the salps are taken as a virtual population. Besides, 
the virtual population will be regrouped into multiple new salp chains, such that a global coordination between 
different salp chains can be achieved. 



                                                                              

 

    Salp

Slap chain #1 Slap chain #m Slap chain #M

Leader Follower 

Local search Local search Local search

Global coordination  
Figure 4. Optimization framework of MSSA. 

3.3 Local search in each chain 
The local search of MSSA is the same as the exploitation and exploration of SSA. In each chain, the salps can 

be divided into two roles, including the leader and the follower. As shown in Fig. 4, the leader is the salp at the front 
of the salp chain, and the rest salps are regarded as the followers. In the searching process, the leader is responsible 
for guiding the swarm to seek the food source, while the followers follow each other. For the mth salp chain, the 
position of the leader can be updated as follows [31]: 

   𝑥
𝐹 𝑐 𝑐 𝑢𝑏 𝑙𝑏 𝑙𝑏 , if 𝑐 0

𝐹 𝑐 𝑐 𝑢𝑏 𝑙𝑏 𝑙𝑏 , if 𝑐 0
                                                (5) 

where the superscript j represents the jth dimension of the searching space;  𝑥  is the position of the leader (first 

salp) in the mth salp chain; 𝐹  denotes the position of the food source, i.e., the current best solution obtained by the 
mth salp chain; 𝑢𝑏  and 𝑙𝑏  are the upper and lower bounds of the jth dimension, respectively; 𝑐 , 𝑐  , and 𝑐  are the 
random numbers, in which the last two parameters are the uniform random numbers from 0 to 1, respectively. 

Note that 𝑐  is the most important parameter in (5) since it can directly influence the trade-off between 
exploration and exploitation. In order to achieve a proper balance, it is designed according to the iteration number, 
as follows [41]: 

   𝑐 2𝑒                                                                           (6) 
where k is the current iteration number and kmax is the maximum iteration number, respectively. 

On the other hand, the position of the followers can be updated as follows [41]: 

𝑥  𝑥 𝑥 , ,     𝑖 2,3, … , 𝑛;  𝑚 1,2, … , 𝑀                                     (7) 

where 𝑥  is the position of the ith salp in the mth salp chain; n is the population size of each salp chain; and M is 
the number of salp chains, respectively. 

3.4 Global coordination in virtual population 
In order to improve the convergence stability, the virtual population will be regrouped into different salp chains 

according to all the salps’ fitness values. In this paper, the population partition rule of shuffled frog leaping algorithm 
(SFLA) [58] is employed for regroup operation in MSSA since SFLA is a classical memetic algorithm. Hence, the 
regroup operation can be achieved according to the descending order of fitness value for a maximum optimization. 
As illustrated in Fig. 5, the best solution will be assigned to the salp chain #1, then the second best solution will be 
assigned to the salp chain #2, and so on. Therefore, the updated swarm of the mth salp chain can be described as 
follows [58]: 

𝒀 𝒙 , 𝑓 |𝒙 𝑿 𝑚 𝑀 𝑖 1 , : ,𝑓 𝑭 𝑚 𝑀 𝑖 1 , 𝑖 1,2, ⋯ , 𝑛 ,   𝑚 1,2, ⋯ , 𝑀   (8) 
where 𝒙  is the position vector of the ith salp in the mth chain; 𝑓  is the fitness value of the ith salp in the mth 
chain; F is the fitness value set of all the salps following the descending order; and X is the corresponding position 
vector set of all the salps, i.e., a position matrix, as follows: 
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where d is the number of dimensions; and each row vector represents the position vector of each salp. 

Descending order 
of fitness value

M=3

Leader

Slap chain #1

Slap chain #2

Slap chain #3

Follower 
Virtual population

 
Figure 5. Regroup operation of virtual population for global coordination. 

3.5 General procedure of MSSA 
To summarize, the general procedure of MSSA is given in Table 1. For a specific optimization problem, the 

most critical link is the design of fitness function according to the corresponding objective function and constraints.  
Table 1. The general procedure of MSSA  

1. Initialize the optimization parameters; 
2. Determine the fitness function according to the specific optimization problem; 
3. Set k :=1; 
4. WHILE (the termination condition is not met) 
5.     FOR1 m :=1 to M 
6.        FOR2 i :=1 to n 
7.           Calculate the fitness value of the ith salp in the mth salp chain; 
8.        END FOR2 
9.     END FOR1 
10.    Implement the regroup operation based global coordination in virtual population by (8); 
11.     FOR3 m :=1 to M 
12.        Determine the food source of the mth salp chain; 
13.        Update the position of the leader in the mth salp chain by (5) and (6); 
14.        FOR4 i :=2 to n 
15.           Update the position of the ith salp (i.e., the follower) in the mth salp chain by (7); 
16.        END FOR4 
17.     END FOR3 
18.     Set k :=k+1; 
19. END WHILE 

4 MSSA based MPPT Design for PV systems  

4.1 Optimization model for MPPT under PSC 
As clearly illustrated in Fig. 1, the output power of PV system was mainly determined by its output voltage 𝑉  

under the given weather condition. Hence, the output voltage 𝑉  can be regarded as the optimization variable. If an 
output voltage is determined, then the duty cycle will be obtained and enter the insulated gate bipolar transistor (IGBT) 
for the voltage regulation of the next iteration until algorithm convergence, as shown by Fig. 6. Consider the lower 
and upper bounds limit of output voltage 𝑉 , the optimization model for MPPT under PSC can be described as 
follows: 

max 𝑓 𝑉 𝑃 𝑉 𝑉 ∗ 𝐼 𝑉                                                  (9) 
s. t.  𝑉 𝑉 𝑉                                                                 (10) 

where 𝑃  is the output active power of PV systems; 𝑉  and 𝑉  are the lower and upper bounds of the output 
voltage, respectively. 

4.2 Initial population of each salp chain 
In order to increase the diversity of salp chains, the initial population of each salp chain is randomly generated 



                                                                              

 

within the lower and upper bounds. For the mth salp chain, the initial position of the ith salp can be obtained as  
𝑥 𝑉 𝑟 𝑉 𝑉                                                         (11) 

where 𝑥  is the initial position of the ith salp in the mth chain and r is a uniform random number from 0 to 1, 
respectively. 

4.3 Overall execution procedure 
To this end, the overall execution procedure of MSSA based MPPT of PV systems under PSC is depicted in Fig. 

7. 

PV#1 PV#2 PV#3

MSSA based MPPT Eqs.(5)-(11)

PV system under PSC Eqs.(2)-(4)
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Duty cycle 
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PV#4
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Figure 6. Overall structure of MSSA based MPPT of PV system under PSC. 
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Figure 7. Overall execution procedure of MSSA based MPPT of PV systems under PSC. 

5 Case Studies 

In order to evaluate the MPPT performance of MSSA under PSC, this section carries out four cases, e.g., start-
up test; step change in solar irradiation; ramp change in both solar irradiation and temperature; and field atmospheric 
data of Hong Kong. The MPPT performance is compared to that of INC [21], GA [31], PSO [32], ABC [33], CSA 
[34], GWO [36], SSA [42], and TLBO [37], respectively. Since the last seven heuristic algorithms can be 
implemented for optimization with just the fitness values of all the individuals, their optimization procedure for 
MPPT of PV systems under PSC can be listed in Table 2. Note that the population size and the maximum iteration 
number are the most two important parameters for these heuristic algorithms. To achieve a fair comparison for MPPT, 
they are set to be 30 and 10, respectively. Moreover, the specific parameters (e.g., the crossover probability of GA) 
of each algorithm and the detailed exploration and exploitation can be referred in [31]-[34], [36], [37], and [42].In 



                                                                              

 

addition, Table 3 provides the PV system parameters while the MSSA parameters are tabulated in Table 4. Here, the 
optimization cycle of each meta-heuristic algorithm is set to be 0.01 s. The simulation is executed on Matlab/Simulink 
2016a via a personal computer with an IntelR CoreTMi7 CPU at 2.2 GHz and 16 GB of RAM.  Moreover, the solver 
is ode 45 (Dormand-Prince) with an auto variable-step size. Lastly, the rated solar irradiation and temperature are set 
to be 1000 W/m2 and 25℃, respectively. Under such standard conditions, the PV array’s output power P=51.716 W, 
DC link voltage Vdc=18.47 V, and PV system output current Ipv=2.8 A, respectively. 

Table 2. The optimization procedure of the comparative heuristic algorithms for MPPT of PV systems under PSC  
1. Initialize the parameters and the population; 
2. Input the current solar irradiation and temperature; 
3. Set k :=1; 
4. WHILE (the termination condition is not met) 
5.     FOR1 i :=1 to n 
6.           Calculate the fitness value of the ith individual by (2)-(4), and (9); 
7.     END FOR1 
8.    Determine the roles for all the individuals according to their fitness values; 
9.     FOR2 i :=1 to n 
10.        Update the solution of the ith individual according to its specific exploration and exploitation; 
11.     END FOR2 
12.     Set k :=k+1; 
13. END WHILE 
14. Output the optimal output voltage; 
15. Implement the optimal duty cycle to the PWM of PV systems. 

Table 3. The PV array parameters 
Typical peak power 51.716W Nominal operation cell temperature (Tref) 25℃ 

Voltage at peak power 18.47V p-n junction ideality factor (A) 1.5 
Current at peak power 2.8A Switching frequency (f) 100 kHz 

Short-circuit current (Isc) 1.5A Inductor (L) 500 mH 
Open-circuit voltage (Voc) 23.36V Resistive load (R) 200 Ω 

Temperature coefficient of Isc (k1) 3mA/℃ Capacitor(C1,C2) 1 μF 

Table 4. The MSSA parameters 

Parameter Range Value
n n>1 10
M M>1 3

kmax kmax>1 10

5.1 Performance comparison on benchmark function 
Based on the No Free Lunch theorem, “for any algorithm, any elevated performance over one class of problems 

is exactly paid for in performance over another class” [7]. In order to compare the performance of MSSA with other 
methods, thirteen general benchmark functions are used to evaluate their searching ability and convergence stability. 
The detailed parameters of each benchmark function [42] including the objective function, searching range, and the 
global minimum, are provided in Table 5, where the number of dimensions is set to be 5. For a fair performance 
comparison, the population size and the maximum iteration number of each algorithm are set to be 30 and 100, 
respectively. 

Figure 8 gives the convergence curves obtained by different algorithms for six selected benchmark functions. It 
can be found that the searching ability of MSSA is at a medium level among all the algorithms, which is better than 
that of SSA for all the six benchmark functions except F7. 

To further test the optimization performance, Table 6 shows the optimization results obtained by different 
algorithms on thirteen benchmark functions in independent 30 runs, where Avg., Std., and Rel. Std. represent the 
average value, the standard deviation, and the relative standard deviation of the obtained objective values, 
respectively. It is obvious that the searching ability of TLBO is quite strong since it obtains the minimum average 
values for five of thirteen benchmark functions. Moreover, the relative standard deviations obtained by MSSA are 
the smallest for six benchmark functions among all the algorithms, which verifies its high convergence stability. 
Besides, the performance of MSSA is superior than that of SSA on the whole, in which the average values obtained 
by MSSA are smaller than that of SSA for ten benchmark functions; and the relative standard deviations of MSSA 
are smaller than that of SSA for nine benchmark functions. This also demonstrates that the memetic computing 
framework can effectively enhance the optimization performance of MSSA. 

Table 5. Detailed parameters of thirteen benchmark functions 
Benchmark functions Range 𝒇𝐦𝐢𝐧 

𝒇𝟏 𝒙 ∑ 𝒙𝒊
𝟐𝒏

𝒊 𝟏   100,100  0 

𝒇𝟐 𝒙 ∑ |𝒙𝒊| ∏ |𝒙𝒊|
𝒏
𝒊 𝟏

𝒏
𝒊 𝟏   10,10  0 

𝒇𝟑 𝒙 ∑ ∑ 𝒙𝒋
𝒏
𝒋 𝟏

𝟐𝒏
𝒊 𝟏   100,100  0 



                                                                              

 

𝒇𝟒 𝒙 𝐦𝐚𝐱𝒊 |𝒙𝒊|, 𝟏 𝒊 𝒏   100,100  0 

𝒇𝟓 𝒙 ∑ 𝟏𝟎𝟎 𝒙𝒊 𝟏 𝒙𝒊
𝟐 𝟐 𝒙𝒊 𝟏 𝟐𝒏 𝟏

𝒊 𝟏   30,30  0 

𝒇𝟔 𝒙 ∑ ⌊𝒙𝒊 𝟎. 𝟓⌋ 𝟐𝒏
𝒊 𝟏   100,100  0 

𝒇𝟕 𝒙 ∑ 𝒊𝒙𝒊
𝟒𝒏

𝒊 𝟏 𝐫𝐚𝐧𝐝𝐨𝐦 𝟎, 𝟏   1.28,1.28  0 

𝒇𝟖 𝒙 ∑ 𝒙𝒊 𝐬𝐢𝐧 |𝒙𝒊|
𝒏
𝒊 𝟏   500,500  418.9829 5 

𝒇𝟗 𝒙 𝒙𝒊
𝟐 𝟏𝟎 𝐜𝐨𝐬 𝟐𝝅𝒙𝒊 𝟏𝟎

𝒏

𝒊 𝟏
 5.12,5.12  0 

𝒇𝟏𝟎 𝒙 𝟐𝟎𝐞𝐱𝐩 𝟎. 𝟐 𝟏

𝒏
∑ 𝒙𝒊

𝟐𝒏
𝒊 𝟏 𝐞𝐱𝐩 𝟏

𝒏
∑ 𝐜𝐨𝐬𝟐𝝅𝒙𝒊

𝒏
𝒊 𝟏 𝟐𝟎 𝒆  

32,32  0 

𝒇𝟏𝟏 𝒙 𝟏

𝟒𝟎𝟎𝟎
∑ 𝒙𝒊

𝟐 ∏ 𝐜𝐨𝐬 𝒙𝒊

√𝒊
𝟏𝒏

𝒊 𝟏
𝒏
𝒊 𝟏   600,600  0 

𝒇𝟏𝟐 𝒙 𝝅

𝒏
𝟏𝟎 𝐬𝐢𝐧 𝝅𝒚𝟏 ∑ 𝒚𝒊 𝟏 𝟐 𝟏 𝟏𝟎𝐬𝐢𝐧𝟐 𝝅𝒚𝒊 𝟏 𝒚𝒏 𝟏 𝟐𝒏 𝟏

𝒊 𝟏 ∑ 𝒖 𝒙𝒊, 𝟏𝟎, 𝟏𝟎𝟎, 𝟒𝒏
𝒊 𝟏   

𝒚𝒊 𝟏 𝟏

𝟒
𝒙𝒊 𝟏   

𝒖 𝒙𝒊, 𝒂, 𝒌, 𝒎
𝒌 𝒙𝒊 𝒂 𝒎,    𝒙𝒊 𝒂
𝟎,             𝒂 𝒙𝒊 𝒂
𝒌 𝒙𝒊 𝒂 𝒎,   𝒙𝒊 𝒂

  

50,50  0 

𝒇𝟏𝟑 𝒙 𝟎. 𝟏 𝐬𝐢𝐧𝟐 𝟑𝝅𝒙𝟏 ∑ 𝒙𝒊 𝟏 𝟐 𝟏 𝐬𝐢𝐧𝟐 𝟑𝝅𝒙𝒊 𝟏 𝒙𝒏 𝟏 𝟐 𝟏 𝐬𝐢𝐧𝟐 𝟐𝝅𝒙𝒏
𝒏
𝒊 𝟏

∑ 𝒖 𝒙𝒊, 𝟓𝟏𝟎𝟎, 𝟒𝒏
𝒊 𝟏   

50,50  0 

 
(a)                                                                                 (b)                                                                                 (c)                             

 
(d)                                                                                 (e)                                                                                 (f)                             

Figure 8. Convergence process of eight heuristic algorithms for different benchmark functions. (a) F1, (b) F3, (c) F5, (d) F7, (e) F9, and (f) F11. 

 
Table 6. Optimization results obtained by different algorithms on thirteen benchmark functions in 30 runs 

Benchmark 
functions 

GA PSO ABC CSA 

Avg. Std. Rel. Std. Avg. Std. Rel. Std. Avg. Std. Rel. Std. Avg. Std. Rel. Std. 
F1 8.18E-06 2.37E-05 2.894510 7.05E-17 2.17E-16 3.076278 0.001026 0.000831 0.809360 0.676076 0.583592 0.863205 
F2 0.000986 1.89E-03 1.918923 1.75E-05 9.61E-05 5.476500 0.001540 0.000669 0.434809 0.239397 0.095607 0.399366 
F3 0.001117 2.17E-03 1.945347 0.005148 2.66E-02 5.169024 2.461006 1.39461 0.566684 2.348525 1.375695 0.585770 
F4 0.522057 4.67E-01 0.895075 0.000260 8.59E-04 3.306047 0.487028 0.201858 0.414469 1.352451 0.432394 0.319711 
F5 1.288426 1.270365 0.985982 67.62754 1.54E+02 2.277518 7.887337 7.179312 0.910233 24.47044 18.78930 0.767837 
F6 6.17E-06 2.41E-05 3.905399 1.26E-15 4.90E-15 3.891292 0.001297 0.001194 0.920732 0.638875 0.396175 0.620114 
F7 0.062813 5.54E-02 0.88240 0.600607 2.90E-01 0.483578 0.007584 0.004229 0.557599 0.012333 0.007399 0.599977 
F8 -423.615 3.66E+01 0.086322 -1762.230 2.24E+02 0.127143 -1763.166 101.2177 0.057407 -1822.908 90.82229 0.049823 
F9 2.354818 3.15E+00 1.338355 2.717969 2.23E+00 0.818804 5.929524 1.818617 0.306705 5.269312 1.555260 0.295154 
F10 0.414081 8.64E-01 2.086277 0.054875 3.01E-01 5.477121 0.056673 0.030864 0.544591 3.306318 0.874763 0.264573 
F11 0.009609 1.30E-02 1.354181 0.133188 9.46E-02 0.710125 0.229010 0.062851 0.27444 0.318169 0.089609 0.281639 
F12 0.124409 3.01E-01 2.420900 0.041570 1.58E-01 3.795581 0.000653 0.000640 0.980033 0.254544 0.194272 0.763213 
F13 0.009423 1.30E-02 1.382745 8.99E-11 2.88E-10 3.210151 0.003188 0.003165 0.992919 0.098218 0.057731 0.587789 

 
Benchmark 

functions 
GWO SSA TLBO MSSA 

Avg. Std. Rel. Std. Avg. Std. Rel. Std. Avg. Std. Rel. Std. Avg. Std. Rel. Std. 
F1 4.00E-16 1.91E-15 4.767578 8.76E-10 1.93E-09 2.207652 2.91E-26 6.88E-26 2.366495 4.20E-10 1.16E-10 0.275474 
F2 8.18E-11 1.16E-10 1.418512 0.006605 0.032579 4.932612 3.73E-14 3.04E-14 0.815538 3.79E-06 6.26E-07 0.164891 
F3 6.91E-08 3.01E-07 4.363473 0.004672 0.017936 3.839141 5.72E-15 1.49E-14 2.595332 2.10E-08 1.11E-07 5.274449 
F4 1.36E-06 2.04E-06 1.504797 0.000361 0.001787 4.956301 7.52E-12 8.17E-12 1.086612 1.53E-05 2.75E-06 0.179846 
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F5 7.632694 25.72992 3.371014 76.84774 142.5731 1.855267 2.224801 7.58E-01 0.340525 1.51E+01 4.31E+01 2.849658 
F6 1.29E-05 6.91E-06 0.535388 4.25E-10 2.26E-10 0.532745 5.31E-06 1.57E-05 2.947736 4.39E-10 1.30E-10 0.296368 
F7 0.00179 0.001575 0.879766 0.013004 0.009854 0.757799 0.003561 3.10E-03 0.871273 3.01E-02 1.19E-02 0.394789 
F8 -1587.80 240.5568 0.151504 -1497.35 199.8961 0.133500 -1770.201 1.48E+02 0.083456 -1488.441 2.07E+02 0.139189 
F9 2.398688 2.211432 0.921934 6.235069 4.494869 0.720901 3.033688 1.86E+00 0.613469 2.26E+00 1.61E+00 0.713573 
F10 3.19E-09 5.19E-09 1.628735 0.538585 0.851039 1.580139 2.26E-13 5.71E-13 2.528661 1.15E-05 1.97E-06 0.170725 
F11 0.061206 0.035545 0.580755 0.289072 0.176440 0.610365 0.113036 6.89E-02 0.609260 1.55E-01 9.06E-02 0.583148 
F12 0.005427 0.014049 2.588823 0.757754 1.008047 1.330310 4.52E-04 2.43E-03 5.374002 5.94E-09 1.18E-08 1.984495 
F13 2.53E-05 1.76E-05 0.695163 0.004004 0.006357 1.587819 6.22E-03 1.84E-02 2.951622 1.13E-07 4.88E-07 4.313678 

5.2 Start-up test 
This test attempts to investigate the MPPT performance at start-up (from zero point) under PSC, in which the 

solar irradiation of four PV arrays are set to be 1000 W/m2, 800 W/m2, 600 W/m2, and 400 W/m2, respectively. Figure 
9 illustrates the MPPT performance of different methods. It is clearly that the INC based MPPT generates a much 
smaller energy than that of other methods, which cannot distinguish the difference between GMPP and LMPP. In 
contrast, other meta-heuristic algorithms can make the PV system generate more energy thanks to their enhanced 
global searching ability. Moreover, the energy output obtained by MSSA is the highest among all the methods, which 
demonstrates its superior searching ability via an efficient local search and a global coordination. Note that the energy 
can be obtained directly from the power curve, thus only the power curve is provided in the next subsection for a 
concise illustration. 

 
(a)                                                                                                        (b) 

 
(c)                                                                                          (d)                                                             

Figure 9. PV system responses of seven methods obtained on the start-up test. (a) Current, (b) Voltage, (c) Power, and (d) Energy. 



                                                                              

 

 
Figure 10. Step change of solar irradiation with PSC. 

5.3 Step change in solar irradiation 
To mimic the effect when a cloud rapidly passes over a PV array, a set of solar irradiation steps are applied on 

the PV array. As shown in Fig. 10, the step change occurs at every second interval. Throughout the test, the 
temperature keeps at 25℃. 

Figure 11 provides the online optimization results of different methods for MPPT under step change irradiations. 
Similarly, all the meta-heuristic algorithms outperform INC as they could generate much higher energy under the 
same weather conditions. Similarly, the MSSA based MPPT can make the PV system generate the highest energy, 
which can increase 46.97% of output energy compared with that of INC. Moreover, as the solar irradiation suddenly 
changes, all of the output current, voltage, and power obtained by the meta-heuristic algorithms excluding MSSA 
present some oscillations. It reveals that the memetic computing framework with multiple parallel salp chains can 
significantly improve the ability of global and local exploration, which can lead to a high-quality optimum with a 
higher probability.  

 
 (a)                                                                                                               (b)                                                              

 
 (c)                                                                                                                                       

Figure 11. PV system responses of seven methods obtained on the step change in solar irradiation with constant temperature. (a) Current, (b) Voltage, and 
Power. 

5.3 Ramp change in both solar irradiation and temperature 
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In a typical sunny day, both the solar irradiation and temperature increase when approaching the midday and 
thereafter decrease towards the evening. To study the MSSA based MPPT performance under such scenario, a ramp 
change in both solar irradiation and temperature is emulated over a period of 5 s, as depicted in Fig. 12.  

Figure 13 demonstrates the obtained performance of all algorithms under ramp change in both solar irradiation 
and temperature. It shows that the meta-heuristic algorithms except MSSA still easily produce severer power 
fluctuations even in the presence of the relatively slow ramp gradual change of weather condition. By implementing 
the regroup operation based global coordination, MSSA owning high convergence stability can effectively reduce 
the power fluctuations of PV system. Besides, MSSA can obtain the highest energy of the PV system among all the 
algorithms, which is in excess of 5.70% of that obtained by INC. This also verifies that MSSA can efficiently and 
effectively obtain a high quality optimum for real-time MPPT through an independent local search and a global 
coordination in virtual population. 

          
(a)                                                                                                                         (b)                                               

Figure 12. Gradual change in both solar irradiation and temperature. (a) Irradiation and (b) Temperature. 

 
(a)                                                                                       (b) 

     
(c)                                                                                                       

Figure 13. PV system responses of seven methods obtained on the gradual change in both solar irradiation and temperature. (a) Current, (b) Voltage, and 
Power. 

5.4 Field atmospheric data in Hong Kong 
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To further study the MSSA based MPPT performance, it is tested by the field atmospheric data in Hong Kong 
(See Figure 14) from four typical days of four seasons in 2012, where the data interval is 10 min. Hong Kong is 
located at the subtropical region on the eastern side of the Pearl River estuary in south China. In Hong Kong, springs 
are rapidly changeable; Summers are hot and humid with occasional showers and thunderstorms; Autumns are 
generally sunny and dry; Winters are mild and usually start sunny then become cloudier towards February [59]. The 
detailed geographical position of the measurement device is illustrated in Fig. 15, which locates at 22.3 degrees north 
latitude and 114.2 degrees east longitude.  

Figure 16 provides the power production of different algorithms for MPPT under four seasons in HongKong. It 
is obvious that all the meta-heuristic algorithms can generate much more energy than that of INC, in which the output 
energy obtained by MSSA is up to 118.57%, 108.08%, 112.16%, and 119.73% of that of INC in the spring, summer, 
autumn, and winter, respectively. From the whole simulation period, although the difference of each meta-heuristic 
algorithm is relatively tiny, MSSA still achieves the most satisfactory performance over that of other algorithms with 
the highest output energy in all seasons. 

        
(a)                                                                                                                      (b)                                                             

Figure 14. Daily field atmospheric data in Hong Kong. (a) Solar irradiation and (b) Temperature. 

Measurement device

 

Figure 15. The geographical position of the measurement device for solar irradiation and temperature in HongKong. 
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(c)                                                                                             (d) 

Figure 16. Power production of seven methods obtained on the typical day of HongKong. (a) Spring, (b) Summer, (c) Autumn, and (d) Winter. 

5.5 Statistical studies 
In order to quantitatively evaluate the power fluctuations of PV system, two indices [60,61] are introduced as 

follows: 

∆𝑣 ∑ | |
                                                            (11) 

∆𝑣 max
, ,…,

| |
                                                             (12) 

where ∆𝑣  and ∆𝑣  denote the average variability and the maximum variability of power output of PV system, 
respectively; t is the time period; Toper is the total operation period; and 𝑃  is the average power output of PV 
system over the total operation period, respectively.  

Table 7 gives the statistical results obtained by nine methods under four cases. One can readily find that MSSA 
owns the highest output energy and the smallest power variations (in bold) in all cases among all algorithms. In 
particular, the average variability of MSSA under step change in solar irradiation is only 33.56%, 80.17%, 84.35%, 
88.99%, 71.85%, 82.91%, 66.04%, 84.35% to that of INC, GA, PSO, ABC, CSA, GWO, SSA, and TLBO, 
respectively. Besides, the output energy generated by MSSA in spring is 118.57%, 100.73%, 100.96%, 100.87%, 
101.35%, 100.36%, 100.81%, and 100.22% to that of INC, GA, PSO, ABC, CSA, GWO, SSA, and TLBO, 
respectively. To sum up, MSSA can achieve the most satisfactory MPPT performance with the smallest power 
fluctuation. 

Table 7 Statistical results obtained by nine algorithms under four cases 
Test Index INC GA PSO ABC CSA GWO SSA TLBO MSSA 

 
Start-up 

Energy(10-6 kWꞏh) 6.9219 8.2740 8.4132 8.4007 8.4060 8.3887 8.3701 8.3320 8.4171 
∆𝒗𝐦𝐚𝐱(%) 0.6173 1.9572 0.0742 0.1047 0.0573 1.9154 1.6401 1.3484 0.0261
∆𝒗𝐚𝐯𝐠(%) 0.0403 0.0148 0.0066 0.0074 0.0080 0.0086 0.0094 0.0123 0.0064

Step change 
in solar 

irradiation 

Energy(10-6 kWꞏh) 89.1534 130.5378 131.1098 131.033 130.719 130.843 130.8526 130.9785 131.0256
∆𝒗𝐦𝐚𝐱(%) 56.5161 38.5988 38.4304 38.4529 38.5453 38.5087 38.5059 38.4689 38.4551
∆𝒗𝐚𝐯𝐠(%) 0.0289 0.0121 0.0115 0.0109 0.0135 0.0117 0.0101 0.0115 0.0097

Ramp change 
in both solar 
irradiation 

and 
temperature 

Energy(10-6 kWꞏh) 153.7881 162.0980 162.5478 161.7704 162.5377 162.355 162.5070 162.3459 162.5495
∆𝒗𝐦𝐚𝐱(%) 32.7632 31.0837 30.9976 31.1466 30.9996 31.0345 31.0054 31.0362 30.9973

∆𝒗𝐚𝐯𝐠(%) 0.0267 0.0102 0.0089 0.0118 0.0085 0.0098 0.0084 0.0092 0.0082 

Field atmospheric data in Hong Kong

 
Spring 

Energy (kWꞏh) 0.3037 0.3575 0.3567 0.3570 0.3553 0.3588 0.3572 0.3593 0.3601
∆𝒗𝐦𝐚𝐱(%) 245.09 124.20 142.43 139.17 159.57 138.28 139.80 139.23 137.58
∆𝒗𝐚𝐯𝐠(%) 14.0297 14.0203 13.7675 13.9927 15.0213 13.9135 14.3554 14.0876 13.9923

 
Summer 

Energy (kWꞏh) 0.4538 0.4880 0.4854 0.4883 0.4902 0.4893 0.4886 0.4902 0.4905
∆𝒗𝐦𝐚𝐱(%) 161.84 87.93 80.91 87.18 79.68 88.87 88.52 87.19 88.30
∆𝒗𝐚𝐯𝐠(%) 9.9617 9.9847 11.0842 10.5370 10.2591 10.3998 10.1415 10.0304 9.6981 

 
Autumn 

Energy (kWꞏh) 0.3843 0.4277 0.4310 0.4265 0.4305 0.4295 0.4295 0.4303 0.4325
∆𝒗𝐦𝐚𝐱(%) 209.19 82.43 78.22 86.91 78.46 80.41 89.04 79.28 75.37
∆𝒗𝐚𝐯𝐠(%) 13.6754 11.3672 10.6816 11.3706 10.5944 10.5189 10.8421 10.5390 10.47

 
Winter 

Energy (kWꞏh) 0.2708 0.3214 0.3238 0.3203 0.3221 0.3227 0.3221 0.3232 0.3262 
∆𝒗𝐦𝐚𝐱(%) 87.69 86.04 80.85 89.53 87.55 86.80 80.69 82.75 19.23 
∆𝒗𝐚𝐯𝐠(%) 9.46 9.08 8.73 8.98 8.82 8.54 8.58 8.42 8.40
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Figure 17. The configuration of HIL experiment. 

6. HIL Experiment 

HIL experiment offers a crucial and reliable tool to evaluate and validate the complex/complicated real-time 
systems through embedding the complexity of the controlled system into the test platform [62], which has been 
adopted to justify the implementation feasibility of various MPPT strategies of PV systems [50,51]. 

A dSpace based HIL experiment is undertaken, which configuration and experiment platform are depicted in 
Fig. 17 and Fig. 18, respectively. In particular, MSSA based MPPT algorithm (5)-(11) is embedded on DS1104 board 
with a sampling frequency fc=10 kHz. Meanwhile, the PV system (1)-(4), as well as the solar irradiation and 
temperature simulator are implemented on DS1006 board with a sampling frequency fs=100 kHz to emulate the PSC 
and different atmospheric scenarios. Note that the solar irradiation and temperature are measured from the real-time 
simulation of the PV system on DS1006 board, which are then transmitted online to MSSA based MPPT algorithm 
on DS1104 board for the real-time calculation of output voltage Vpv. Lastly, the guaranteed measurement error of 
DS1104 controller board is provided in Table 8. 

Table 8. The error specification of DS 1104 controller [63]  
                           Component 

 
Parameters 

 
A/D converter 

 
D/A converter 

Offset error ±5 mV ±1 mV 
 

Gain error 
Multiplexed channels: ±0.25%  

±0.1% 
Parallel channels: ±0.5% 

Offset drift 40 μV/K 130 μV/K 
Gain drift 25 ppm/K 25 ppm/K 

 
Signal-to-noise ratio 

Multiplexed channels: >80 dB  
>80 dB 

Parallel channels: >65 dB 
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Figure 18. The hardware platform of HIL experiment.   

6.1 HIL experiment results of start-up test 
The simulation results and HIL experiment results obtained by start-up test are compared in Fig. 19, one can 

find that their curves are quite similar. 

  
        (a)                                                                                                                                       (b) 

 
           (c)                                                                                                                                 

Figure 19. The simulation results and HIL test results obtained under the start-up test. (a) Current, (b) Voltage, (c) Power, and (d) Energy. 

6.2 HIL experiment results of step change in solar irradiation 
The simulation results and HIL experiment results obtained by step change in solar irradiation is illustrated in 

Fig. 20. It is clear that their responses are very close. 
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(a)                                                                                                                   (b) 

 
                (c)                                                                                                                                

Figure 20. The simulation results and HIL test results obtained under the step change in solar irradiation with constant temperature. (a) Current, (b) Voltage, 
and (c) Power. 

 
(a)                                                                                                                 (b) 

 
          (c)                                                                                                                    

Figure 21. The simulation results and HIL test results obtained under the gradual change in both solar irradiation and temperature. (a) Current, (b) Voltage, 
and (c) Power. 
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6.3 HIL experiment results of ramp change in both solar irradiation and temperature 
In Fig. 21, the MPPT performance of simulation and HIL experiment under the ramp change in both solar 

irradiation and temperature is compared. Again, they have very similar responses and performance. 

Lastly, the differences between the simulation results and HIL experiment results are mainly due to the following 
four reasons: 
• Measurement disturbances: which might cause consistent oscillations in the HIL experiment. A filter can be 
employed to suppress such undesirable disturbances for MPPT performance enhancement; 
• Discretization of HIL experiment and sampling holding: which may introduce additional amount of errors in 
comparison to that of the continuous control utilized in the simulation; 
• Transmission delay: which usually leads to a degradation of MPPT performance during the signal transmission; 

• Unknown harmonics: which is resulted from the numerous small capacitors or inductors distributed between the 
transmission cables and dSpace device. 

7. Discussions of Optimization Features for MPPT 

7.1 Optimization efficiency improvement by combining SFLA for MPPT 
Optimization efficiency: For a swarm-based optimization algorithm, its optimization efficiency for MPPT is 

determined by its balance between local search and global search [64]. A proper balance between these two processes 
can effectively result in an accurate approximation of the GMPP for a PV system. More specifically, if it pays more 
attentions to the local search, it will rapidly converge to an optimum but easily trapped at a low-quality local optimum 
for MPPT. In contrast, a larger searching coefficient on the global search can effectively avoid the local optimum 
stagnation, but it will consume much more computation time to achieve an accurate approximation of the global 
optimum. 

Improvement by combining SFLA: The original SSA only employs a leader (the first salp) to balance local 
search and global search, in which the global search coefficient will gradually decrease as the iteration number 
increases. Hence, the original SSA is difficult to achieve a proper balance between local search and global search. In 
this paper, the population partition rule of SFLA is introduced in the global coordination in virtual population of 
MSSA. This operation by combing SFLA can effectively improve the solution’s diversity in each chain and maintain 
a proper balance between local search and global search during the optimization process. This can be also combined 
with other swarm-based optimization algorithms.  

Therefore, if SLFA in combination with a swarm-based optimization algorithm can make a more proper balance 
between global search and local search compared with the original one, then its optimization efficiency will be 
improved in MPPT problem. Particularly, SLFA combined with PSO [65],[66] has verified  that its optimization 
efficiency in MPPT of PV system can be effectively improved compared with the original PSO, like the efficiency 
improvement between the proposed MSSA and the original SSA. 
7.2 Comparison between MSSA and other heuristic approaches for MPPT 

Optimization framework: All the comparative heuristic approaches, including GA [31], PSO [32], ABC [33], 
CSA [34], GWO [36], SSA [42], and TLBO [37], only employs a group of individuals for searching GMPP of the 
PV system. Compared with them, MSSA employs multiple parallel salp chains (multiple groups of individuals) for 
MPPT under the memetic computing framework, in which each group can independently implement a deep local 
search; and a regroup operation is designed to coordinate different groups. Hence, MSSA can rapidly obtain a high-
quality optimum for MPPT with a higher convergence stability compared with other heuristic approaches. 

Optimization performance: Based on the testing results given in Sections 5 and 6, MSSA can make the PV 
system generate the largest energy than other approaches under different weather conditions and different seasons, 
as well as can result in the smallest power fluctuations of PV system.  

8. Conclusions 

Solar energy is a clean and inexhaustible energy resource which can effectively reduce the greenhouse gas 
emission caused by the use of fossil fuels, such that a cleaner electricity production could be achieved for the 
development of a greener society. This paper proposes a novel MSSA based MPPT technique for PV system under 
PSC, which contributions/novelties are summarized as follows: 

(1) Compared with the original SSA, the proposed MSSA employs parallel salp chains for global exploration 
and local exploitation under the memetic computing framework, while a virtual population is used for the 
global coordination with regroup operation. Hence, MSSA can search a higher quality optimum with a faster 
speed and a more stable convergence. 



                                                                              

 

(2) Comprehensive case studies and a dSpace based HIL experiment are undertaken to verify the effectiveness 
and advantages of MSSA for MPPT compared with other methods. Test results demonstrate that MSSA can 
outperform the other MPPT algorithms, which can not only make the PV system generate more energy under 
different weather conditions in different seasons, but also result in a smaller power fluctuation. In particular, 
the average variability of MSSA under step change in solar irradiation is only 33.56%, 80.17%, 84.35%, 
88.99%, 71.85%, 82.91%, 66.04%, 84.35% to that of INC, GA, PSO, ABC, CSA, GWO, SSA, and TLBO, 
respectively. 

Future studies will be focused on the following two aspects: 
(a) Apply MSSA on a real PV panel to further validate its implementation feasibility; 
(b) Incorporate MSSA based MPPT algorithm with PV inverter to construct an integrated grid-connected PV 

systems for solar energy supply. 
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