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DYNAMIC ORTHOGONAL RANGE SEARCHING ON THE RAM,1

REVISITED ∗
2

Timothy M. Chan,†Konstantinos Tsakalidis‡3

Abstract. We study a longstanding problem in computational geometry: 2-d dynamic4

orthogonal range reporting. We present a new data structure achieving O
(

logn
log logn + k

)
5

optimal query time (amortized) and O
(
log2/3+o(1) n

)
update time (amortized) in the word6

RAM model, where n is the number of data points and k is the output size. This is the7

first improvement in over 10 years of Mortensen’s previous result [SIAM J. Comput., 2006],8

which has O
(
log7/8+ε n

)
update time for an arbitrarily small constant ε > 0.9

In the case of 3-sided queries, our update time reduces to O
(
log1/2+ε n

)
, improving10

Wilkinson’s previous bound [ESA 2014] of O
(
log2/3+ε n

)
. We also obtain an improved11

result in higher dimensions d ≥ 3.12

1 Introduction13

Orthogonal range searching is one of the most well-studied and fundamental problems in14

computational geometry: the goal is to design a data structure to store a set of n points so15

that we can quickly report all points inside a query axis-aligned rectangle. In the “empti-16

ness” version of the problem, we just want to decide if the rectangle contains any point.17

(We will not study the counting version of the problem here.)18

The static 2-d problem has been extensively investigated [18, 7, 28, 12, 25, 1, 24], with19

the current best results in the word RAM model given by Chan, Larsen, and Pătraşcu [9]20

for the general case (or Fries et al. [15] for the special case of 3-sided query rectangles).21

In this paper, we are interested in the dynamic 2-d problem, allowing insertions22

and deletions of points. A straightforward dynamization of the standard range tree [30]23

supports queries in O
(
log2 n+ k

)
time and updates in O

(
log2 n

)
time, where k denotes24

the number of reported points (for the emptiness problem, we can take k = 0). Mehlhorn25

and Näher [20] improved the query time to O (logn log logn+ k) and the update time to26

O (logn log logn) by dynamic fractional cascading.27
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The first data structure to achieve logarithmic query and update (amortized) time28

was presented by Mortensen [22]. In fact, he obtained sublogarithmic bounds in the29

word RAM model: the query time is O
(

logn
log logn + k

)
and the amortized update time is30

O
(
log7/8+ε n

)
where ε denotes an arbitrarily small positive constant.31

On the lower bound side, Alstrup et al. [2] showed that any data structure with tu32

update time for 2-d range emptiness requires Ω
(

logn
log(tu logn)

)
query time in the cell-probe33

model. Thus, Mortensen’s query bound is optimal for any data structure with polyloga-34

rithmic update time. However, it is conceivable that the update time could be improved35

further while keeping the same query time. Indeed, the O
(
log7/8+ε n

)
update bound looks36

too peculiar to be optimal, one would think.37

Let us remark how intriguing this type of “fractional-power-of-log” bound is, which38

showed up only on a few occasions in the literature. For example, Chan and Pătraşcu [10]39

gave a dynamic data structure for 1-d rank queries (counting number of elements less than40

a given value) with O
(

logn
log logn

)
query time and O

(
log1/2+ε n

)
update time. Chan and41

Pătraşcu also obtained more
√

logn-type results for various offline range counting prob-42

lems. Another example is Wilkinson’s recent paper [27]: he studied a special case of 2-d43

orthogonal range reporting for 2-sided and 3-sided rectangles and obtained a solution with44

O
(

logn
log logn + k

)
amortized query time, O

(
log1/2+ε n

)
update time for the 2-sided case, and45

O
(
log2/3+ε n

)
update time for 3-sided; the latter improves Mortensen’s O

(
log5/6+ε n

)
up-46

date bound for 3-sided [22]. He also showed that in the insertion-only and deletion-only47

settings, it is possible to get fractional-power-of-log bounds for both the update and the48

query time. However, he was unable to make progress for general 4-sided rectangles in the49

insertion-only and deletion-only settings, let alone the fully dynamic setting.50

New results. Our main new result is a fully dynamic data structure for 2-d orthogo-51

nal range reporting with O
(

logn
log logn + k

)
optimal query time and O

(
log2/3+o(1) n

)
update52

time, greatly improving Mortensen’s O
(
log7/8+ε n

)
bound. In the 3-sided case, we obtain53

O
(
log1/2+ε n

)
update time, improving Wilkinson’s O

(
log2/3+ε n

)
bound. (See Table 1 for54

comparison.) Our update bounds seem to reach a natural limit with this type of approach.55

In particular, it is not unreasonable to conjecture that the near-
√

logn update bound for56

the 3-sided case is close to optimal, considering prior “fractional-power-of-log” upper-bound57

results in the literature (though there have been no known lower bounds of this type so far).58

Like previous methods, our bounds are amortized (this includes query time). Our re-59

sults are in the word-RAM model, under the standard assumption that the word size w is at60

least logn bits (in fact, except for an initial predecessor search during each query/update, we61

only need operations on (logn)-bit words). Even to researchers uncomfortable with sublog-62

arithmic algorithms on the word RAM, such techniques are still relevant. For example,63

Mortensen extended his data structure to d ≥ 3 dimensions and obtainedO
((

logn
log logn

)d−1
+64

k) query time and O
(
logd−9/8+ε n

)
update time, even in the real-RAM model (where each65



Journal of Computational Geometry jocg.org

Table 1: Dynamic planar orthogonal range reporting: previous and new results.

Update time Query time
4-sided Lueker and Willard [30] log2 n log2 n+ k

Mehlhorn and Näher [20] logn log logn logn log logn+ k

Mortensen [22] log7/8+ε n logn
log logn + k

New log2/3 n logO(1) logn logn
log logn + k

3-sided McCreight [19] logn logn+ k

Willard [29] logn
log logn

logn
log logn + k

Mortensen [22] log5/6+ε n logn
log logn + k

Wilkinson [27] (logn log logn)2/3 logn+ k

Wilkinson [27] log2/3+ε n logn
log logn + k

New log1/2+ε n logn
log logn + k

word can hold an input real number or a (logn)-bit number). We can also obtain further66

improvements, with the same query time and O
(
logd−2+O(1/d) n

)
update time.67

Overview of techniques: Micro- and macro-structures. Our solution builds on ideas68

from Mortensen’s paper [22]. His paper was long and not easy to follow, unfortunately; we69

strive for a clearer organization and a more accessible exposition (which in itself would be70

a valuable contribution).71

The general strategy towards obtaining fractional-power-of-log bounds, in our view,72

can be broken into two parts: the design of what we will call micro-structures and macro-73

structures.74

• Micro-structures refer to data structures for handling a small number s of points; by75

“small”, we mean s = 2logα n for some fraction α < 1 (rather than s being polyloga-76

rithmic, as is more usual in other contexts). When s is small, by rank space reduction77

we can make the universe size small, and as a consequence are able to pack multiple78

points (about w
log s) into a single word. As observed by Chan and Pătraşcu [10] and by79

Wilkinson [27], we can design micro-structures by thinking of each word as a block of80

multiple points, and borrowing known techniques from the world of external-memory81

algorithms (specifically, buffer trees [4]) to achieve (sub)constant amortized update82

time. Alternatively, Mortensen described his micro-structures from scratch, which83

required a more complicated solution to a certain “pebble game” [22, Section 6].84

One subtle issue is that to simulate rank space reduction dynamically, we need list85

labeling techniques, which, if not carefully implemented, can worsen the exponent in86

the update bound (as was the case in both Mortensen’s and Wilkinson’s solutions).87

• Macro-structures refer to data structures for large input size n, constructed using88

micro-structures as black boxes. This part does not involve bit packing, and relies89

on more traditional geometric divide-and-conquer techniques such as higher-degree90
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range trees, as in Mortensen’s and in Chan and Pătraşcu’s solutions, with degree91

2logβ n for some fraction β < 1. Van Emde Boas recursion is also a crucial ingredient92

in Mortensen’s macro-structures.93

Our solution will require a number of new ideas in both micro- and macro-structures.94

On the micro level, we bypass the “pebbling” problem by explicitly invoking external-95

memory techniques, as in Wilkinson’s work [27], but we handle the list labeling issue more96

carefully in order to avoid worsening the update time. On the macro level, we use higher-97

degree range trees but with a more intricate analysis (involving Harmonic series, inter-98

estingly), plus a few bootstrapping steps, in order to achieve the best update and query99

bounds.100

2 Preliminaries101

In all our algorithms, we assume that during each query or update operation, we are given102

a pointer to the predecessor/successor of the x- and y-values of the given point or rectangle.103

At the end, we can add the cost of predecessor search to the query and update time (which104

is no bigger than O
(√

logn
)
[3] in the word RAM model).105

We assume a word RAM model that allows for a constant number of “non-standard”106

operations on w-bit words. By setting w := δ logn for a sufficiently small constant δ, these107

operations can be simulated in constant time by table lookup, after preprocessing the tables108

in 2O(w) = nO(δ) time.109

For simplicity, we concentrate on emptiness queries; all our algorithms can be mod-110

ified for reporting queries, with an additional O (k) term to the query time bounds.111

A 3-sided query deals with a rectangle that is unbounded on the left or right side.112

In contrast, a flipped 3-sided query deals with a rectangle that is unbounded on the top113

or bottom side. (A flipped 4-sided query is the same as a 4-sided query.) A 2-sided (or114

dominance) query deals with a rectangle that is unbounded on two adjacent sides.115

Let [n] denote {0, 1, . . . , n− 1}.116

We now quickly review a few useful tools.117

List labeling. Monotone list labeling is the problem of assigning labels to a dynamic set of118

totally ordered elements, such that whenever x < y, the label of element x is less than the119

label of element y. As elements are inserted, we are allowed to change labels. The following120

result is well known:121

Lemma 1. [13] (see also [14, 6, 16]) A monotone labeling for n totally ordered elements122

with labels in
[
nO(1)

]
can be maintained under insertions by making O (n logn) label changes123

in total, in O (n logn) total time.124

Weight-balancing. Weight-balanced B-trees [5] are B-tree implementations with a rebal-125

ancing scheme that is based on the nodes’ weights, i.e., subtree sizes, in order to support126
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updates of secondary structures efficiently.127

Lemma 2. [5, Lemma 4] In a weight-balanced B-tree of degree s, nodes at height i have128

weight Θ
(
si
)
, and any sequence of n insertions requires at most O

(
n/si

)
splits of nodes at129

height i.130

Colored predecessors. Colored predecessor searching is the problem of maintaining a dy-131

namic set of multi-colored, totally ordered elements and searching for the predecessors with132

a given color.133

Lemma 3. [22, Theorem 14] Colored predecessor searches and updates on n colored, totally134

ordered elements can be supported in O
(
log2 logn

)
time deterministically.135

Van Emde Boas transformation. A crucial ingredient we will use is a general technique of136

Mortensen [21, 22] that transforms any given data structure for orthogonal range emptiness137

on small sets of sO(1) points, to one for point sets in a narrow grid [s]×R, at the expense of138

an increase in cost by log logn factors. We state the result in a slightly more general form,139

allowing the narrow grid to be X × R for an arbitrary set X of O(s) values:140

Lemma 4. [22, Theorem 1] Let X be a set of O (s) values. Given a dynamic data structure141

for j-sided orthogonal range emptiness (j ∈ {3, 4}) on s2 points in X ×R with (amortized)142

update time Uj(s, s2) and query time Qj(s, s2), there exists a dynamic data structure for143

j-sided orthogonal range emptiness on n points in X × R with update time Uj(s, n) =144

O
(
Uj(s, s2) log2 logn

)
and query time Qj(s, n) = O

(
Qj(s, s2) log logn

)
.145

If the given data structure supports updates to X (i.e., insertions/deletions of values146

in X) in UX(s) time and this update procedure depends solely on X (and not the point set),147

the new data structure can support updates to X in UX(s) time.148

Mortensen’s transformation is obtained via a van-Emde-Boas-like recursion [26].149

His paper stated the above lemma only for the case of a static y-universe (there, one of the150

log log-factors in the update time can be eliminated). It isn’t entirely clear to us how he151

dealt with the issue of dynamic y-universes. For the sake of completeness, we give a concise152

re-description of the proof in the Appendix, to show how the data structure can handle the153

dynamic y-universe setting.154

3 Part 1: Micro-Structures155

We first design micro-structures for 3- and 4-sided dynamic orthogonal range emptiness156

when the number of points s is small. This part heavily relies on bit-packing techniques.157

3.1 Static universe158

We begin with the case of a static universe
[
sO(1)

]2
.159
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Lemma 5. For s points in the static universe
[
sO(1)

]2
, there exist data structures for160

dynamic orthogonal range emptiness that support161

(i) updates in O
(

log2 s
w + 1

)
amortized time and 3-sided queries in O (log s) amortized162

time;163

(ii) updates in O
(

log3 s
w + 1

)
amortized time and 4-sided queries in O

(
log2 s

)
amortized164

time.165

Proof. We mimick existing external-memory data structures with a block size of B :=
⌈
δw

log s

⌉
166

for a sufficiently small constant δ, observing that B points can be packed into a single word.167

(i) For the 3-sided case, Wilkinson [27, Lemma 1] has already adapted such an168

external-memory data structure, namely, a buffered version of a binary priority search tree169

due to Kumar and Schwabe [17] (see also Brodal’s more recent work [8]), which is similar to170

the buffer tree of Arge [4]. For 3-sided rectangles unbounded to the left/right, the priority171

search tree is ordered by y, where each node stores O (B) x-values. Wilkinson obtained172

O
(

1
B · log s+ 1

)
= O

(
log2 s
w + 1

)
amortized update time and O (log s) amortized query173

time.174

(ii) For the general 4-sided case, we use a buffered version of a binary range tree.175

Although we are not aware of prior work explicitly giving such a variant of the range tree,176

the modifications are straightforward, and we will provide only a rough outline. The range177

tree is ordered by y. Each node holds a buffer of up to B update requests that have not178

yet been processed. Each node is also augmented with a 1-d binary buffer tree (already179

described by Arge [4]) for the x-projection of the points. To insert or delete a point, we180

add the update request to the root’s buffer. Whenever a buffer’s size of a node exceeds181

B, we empty the buffer by applying the following procedure: we divide the list of Θ (B)182

update requests into two sublists for the two children in O(1) time using a non-standard183

word operation (since B update requests fit in a word); we then pass these sublists to the184

buffers at the two children, and also pass another copy of the list to the node’s 1-d buffer185

tree. These 1-d updates cost O
(

1
B · log s

)
each [4], when amortized over Ω (B) updates.186

Since each update eventually travels to O (log s) nodes of the range tree, the amortized187

update time of the 4-sided structure is O
(

1
B log2 s+ 1

)
= O

(
log3 s
w + 1

)
.188

A 4-sided query is answered by following two paths in the range tree in a top-down189

manner, performing O (log s) 1-d queries; since each 1-d query takes O (log s) time, the190

overall query time is O
(
log2 s

)
. However, before we can answer the query, we need to first191

empty the buffers along the two paths of the range tree. This can be done by applying the192

procedure in the preceding paragraph at the O (log s) nodes top-down; this takes O (log s)193

time, plus the time needed for O (B log s) 1-d updates, costing O
(

1
B · log s

)
each [4]. The194

final amortized query time is thus O
(
log2 s

)
.195

The above methods can be modified for range reporting with an extra query cost of196

O (k) for reporting k output points.197
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Notice that the above update time is constant when the number of points s is as198

large as 2
√
w for 3-sided queries or 2w1/3 for 4-sided.199

(It is possible to eliminate one of the logarithmic factors in the query time for the200

above 4-sided result, by augmenting nodes of the range tree with 3-sided structures. How-201

ever, this alternative causes difficulty later in the extension to dynamic universes. Besides,202

the larger query time turns out not to matter for our macro-structures at the end.)203

3.2 Dynamic universe204

To make the preceding data structures support a dynamic universe, the simplest way is to205

apply monotone list labeling (Lemma 1), which maps coordinates to
[
sO(1)

]2
. Whenever206

a label of a point changes, we just delete the point and reinsert a copy with the new207

coordinates into the data structure. However, since the total number of label changes is208

O (s log s) over s insertions, this slows down the amortized update time by a log s factor209

and will hurt the final update bound.210

Our approach is as follows. We first observe that the list labeling approach works fine211

for changes to the y-universe. For changes to the x-universe, we switch to a “brute-force”212

method with large running time. This turns out to be adequate for our macro-structures213

at the end, since the number of x-universe changes will be relatively small, as we will see214

later in Section 4.1. (The brute-force idea can also be found in Mortensen’s paper [22], but215

his macro-structures were less efficient.)216

Lemma 6. Both data structures in Lemma 5 can be modified to work for s points in a217

universe X×Y with |X|, |Y | = O (s). The update and query time bounds are the same, and218

we can support219

(a) updates to Y in O
(
log2 log s

)
amortized time (given a pointer to the predecessor/220

successor in Y ), and221

(b) updates to X in 2O(w) time, where the update procedure for X depends solely on X222

(and not the point set).223

Proof. (a) To start, let us assume that X =
[
sO(1)

]
but Y is arbitrary. We divide the224

sorted list Y into O (s/A) blocks of size Θ (A) for a parameter A to be set later. It is easy225

to maintain such a blocking using O (s/A) number of block merges and splits over s updates.226

(Such a blocking was also used by Wilkinson [27].) We maintain a monotone labeling of227

the blocks by Lemma 1. In the proof of Lemma 5(i) or (ii), we construct the y-ordered228

priority search tree or range tree using the block labels as the y-values. Each leaf then229

corresponds to a block. We build a small range tree for each leaf block to support updates230

and queries for the O (A) points in, say, O
(
log2A

)
time. We can encode a y-value η ∈ Y231

by a pair consisting of the label of the block containing η (from [O (s/A)]), and the rank of232

η with respect to the block (from [O (A)]). We will use these encoded values, which still are233

O (log s)-bit long, in all the buffers. The block labels provide sufficient information to pass234

the update requests to the leaves and the x-ordered 1-d buffer trees. For a particular leaf,235
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the ranks with respect to its corresponding block provide sufficient information to handle a236

query or update at this leaf.237

During each block split/merge and each block label change, we need to first empty238

the buffers along the path to the block before applying the change. This can be done by239

applying the procedure from the proof of Lemma 5 at O (log s) nodes top-down, requiring240

O (log s) amortized time. Since the total number of block label changes is O
(
s
A log s

A

)
, the241

total time for these steps is O
(
s
A log s

A · log s
)

= O (s) by setting A := log2 s. The amortized242

cost for these steps is thus O (1). The final amortized cost is O
(
log2A

)
= O

(
log2 log s

)
.243

(b) Now, we remove the X =
[
sO(1)

]
assumption. We assign elements in X to labels244

in [O (s)], but this time we do not use monotone labeling. This way, the label of an x-value245

does not need to change once it is assigned. Buffers store the labels rather than the actual246

x-values. However, the non-standard word operations on the x-values in the buffers have247

to be done differently. For example, consider the operation of finding the minimum of B248

x-values packed in a word (needed to implement the buffered priority search tree); in the249

modified operation, we are given B labels packed in a word and want to output the minimum250

of the B x-values corresponding to these labels. Such an operation can still be simulated by251

table lookup, where the answers to all 2O(w) possible inputs can be precomputed in 2O(w)252

time. Inserting a new x-value to X requires more work now: during an insertion of X, after253

we assign the new x-value a new label in [O(s)], we need to compute 2O(w) table entries254

from scratch by brute force, taking 2O(w) time.255

4 Part 2: Macro-Structures256

We now present macro-structures for 3- and 4-sided dynamic orthogonal range emptiness257

when the number of points n is large, by using micro-structures as black boxes. This part258

does not involve bit packing (and hence is more friendly to computational geometers). The259

transformation from micro- to macro-structures is based on variants of range trees.260

4.1 Range tree transformation I261

We present our first transformation. As warm up, we start by stating a shorter version of262

the transformation, which is easier to understand (this simpler version is sufficient in the263

special case when there are no updates to the X universe). We then state and prove the264

long version that we will actually use.265

Lemma 7. (Abridged version) Given a data structure Dj for dynamic j-sided orthogonal266

range emptiness (j ∈ {3, 4}) on n points in X × R (|X| = O (s)) with (amortized) update267

time Uj(s, n) and query time Qj(s, n), where updates to X are allowed with no extra cost,268

there exist data structures for dynamic orthogonal range emptiness on n points in the plane269

with the following amortized update and query time:270
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(i) for the 3-sided case,271

U3(n) = O
(
U3(s, n) logs n + logs n log2 logn

)
272

Q3(n) = O
(
Q3(s, n) logs n + logs n log2 logn

)
;273

(ii) for the 4-sided case,274

U4(n) = O
((
U4(s, n) + U3(s, n)

)
logs n + logs n log2 logn

)
275

Q4(n) = O
(
Q4(s, n) + Q3(s, n) logs n + logs n log2 logn

)
.276

Lemma 7. (Long version) Given a family of data structures D(i)
j (i ∈ {1, . . . , logs n}) for277

dynamic j-sided orthogonal range emptiness (j ∈ {3, 4}) on n points in X×R (|X| = O (s))278

with (amortized) update time U (i)
j (s, n) and query time Q(i)

j (s, n), where updates to X take279

U
(i)
X (s) time, there exist data structures for dynamic orthogonal range emptiness on n points280

in the plane with the following amortized update and query time:281

(i) for the 3-sided case,282

U3(n) = O

logs n∑
i=1

U
(i)
3 (s, n) +

logs n∑
i=1

U
(i)
X (s)
si−1 + logs n log2 logn

283

Q3(n) = O

(
max
i
Q

(i)
3 (s, n) logs n + logs n log2 logn

)
;284

(ii) for the 4-sided case,285

U4(n) = O

logs n∑
i=1

(U (i)
4 (s, n) + U

(i)
3 (s, n)) +

logs n∑
i=1

U
(i)
X (s)
si−1 + logs n log2 logn

286

Q4(n) = O

(
max
i
Q

(i)
4 (s, n) + max

i
Q

(i)
3 (s, n) logs n + logs n log2 logn

)
.287

Proof. We store a range tree ordered by x, implemented as a degree-s weight-balanced B-288

tree. (Deletions can be handled lazily without changing the weight-balanced tree; we can289

rebuild periodically when n decreases or increases by a constant factor.) At every internal290

node v at height i, we let Xv be the set of x-coordinates of the O (s) vertical lines dividing291

the children nodes of v, and store the points in its subtree in the given data structure D(i)
j292

for j-sided orthogonal range emptiness on a narrow grid Xv ×R, where the x-coordinate of293

every point is replaced with its predecessor in Xv. We also store the y-coordinates of these294

points in a colored predecessor searching structure of Lemma 3, where points in the same295

child’s vertical slab are assigned the same color. And we store the x-coordinates in another296

colored predecessor searching structure, where Xv is colored black and the rest is colored297

white.298
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To insert or delete a point, we update the narrow-grid structures at the nodes along299

the path in the tree. This takes O
(∑logs n

i=1 U
(i)
j (s, n)

)
total time. Note that given the y-300

predecessor/successor of the point at a node, we can obtain the y-predecessor/successor at301

the child by using the colored predecessor searching structure. We can also determine the302

x-predecessor in Xv by another colored predecessor search. The extra cost for descending303

along the path is thus O
(
logs n log2 logn

)
.304

To keep the tree balanced, we need to handle node splits. For nodes at height i,305

there are O
(
n/si

)
splits by Lemma 2. Each such split requires rebuilding two narrow-306

grid structures on O
(
si
)
points, which can be done naively by O

(
si
)
insertions to empty307

structures. This has O
(∑logs n

i=1
(
n/si

)
· siU (i)

j (s, n)
)
total cost, i.e., an amortized cost of308

O
(∑logs n

i=1 U
(i)
j (s, n)

)
. A split of a child of v also requires updating (deleting and reinserting)309

the points at the child’s slab. This has O
(∑logs n

i=1
(
n/si−1) · si−1U

(i)
j (s, n)

)
total cost, i.e.,310

an amortized cost of O
(∑logs n

i=1 U
(i)
j (s, n)

)
. Moreover, a split of a child of v requires an311

update to Xv. This has O
(∑logs n

i=1
(
n/si−1) · U (i)

X (s)
)
total cost, i.e., an amortized cost of312

O
(∑logs n

i=1
(
1/si−1) · U (i)

X (s)
)
. Furthermore, the split requires O (1) updates to the colored313

predecessor structures for Xv and O (s) updates to the colored predecessor structures at314

the two new nodes. This has O
(∑logs n

i=1
(
n/si−1) · log2 logn+

∑logs n
i=1

(
n/si

)
· s log2 logn

)
=315

O
(
n log2 logn

)
total cost, i.e., an amortized cost of O

(
log2 logn

)
.316

To answer a 3-sided query, we proceed down a path of the tree and perform queries317

in the narrow-grid structures at nodes along the path. These queries take total time318

O
(
logs n ·maxiQ(i)

3 (s, n)
)
. As before, given the y-predecessor/successor of the coordinates319

of the rectangle at a node, we can obtain the y-predecessor/successor at the child by using320

the colored predecessor searching structure. We can also determine the x-predecessor in Xv321

by another colored predecessor search. The extra cost for descending along the path is thus322

O
(
logs n log2 logn

)
.323

To answer a 4-sided query, we find the highest node v whose dividing vertical lines324

cut the query rectangle, by descending along a path from the root in O
(
logs n log2 logn

)
325

time. We obtain two 3-sided queries at two children of v, which can be answered as326

above, plus a remaining query that can be answered via the narrow-grid structure at v327

in O
(
maxiQ(i)

4 (s, n)
)
time.328

Combining with our preceding micro-structures and the van Emde Boas transfor-329

mation, we obtain the following results, achieving the desired update time but slightly330

suboptimal query time (which we will fix later):331

Theorem 1. Given n points in the plane, there exist data structures for dynamic orthogonal332

range emptiness that support333

(i) updates in amortized O
(
log1/2 n logO(1) logn

)
time and 3-sided queries in amortized334

O (logn log logn) time;335
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(ii) updates in amortized O
(
log2/3 n logO(1) logn

)
time and 4-sided queries in amortized336

O (logn log logn) time.337

Proof. (i) For the 3-sided case, Lemmata 5(i) and 6 give micro-structures with update time338

O
(

log2 s
w + log2 log s

)
and query time O (log s), while supporting updates to X in 2O(w)339

time. Observe that we can choose to work with a smaller word size w ≤ w, so long as340

w = Ω (log s). We choose w := δi log s for a sufficiently small absolute constant δ and for341

any given i ∈ [2, logs n]. To summarize, we have micro-structures with the following update342

time, query time, cost for updating X:343

U
(i)
3 (s, s2) = O

( log s
i

+ log2 log s
)

344

Q
(i)
3 (s, s2) = O (log s)345

U
(i)
X (s) = sO(δi)

346

For the special case i = 1, we use a standard priority search tree, with U (1)
3 (s, s2), Q(1)

3 (s, s2)347

= O (log s) and U
(1)
X (s) = 0. By Lemma 4 (van Emde Boas transformation), we obtain348

narrow-grid structures with update time U (i)
3 (s, n) = O(U (i)

3 (s, s2) log2 logn) and query349

time Q(i)
3 (s, n) = O(Q(i)

3 (s, s2) log logn). Substituting into Lemma 7, we obtain350

U3(n) = O

logs n∑
i=1

log s log2 logn
i

+ logs n log4 logn +
logs n∑
i=2

sO(δi)

si−1

351

= O
(
log s log3 logn + logs n log4 logn

)
,352

since the first sum is a Harmonic series and the second sum is a geometric series. (This353

assumes a sufficiently small constant for δ, as the hidden constant in the exponent O (δi)354

does not depend on δ.) Furthermore,355

Q3(n) = O
(
log s logs n log logn + logs n log2 logn

)
356

= O
(
logn log logn + logs n log2 logn

)
.357

We set s := 2
√

logn to get U3(n) = O
(
log1/2 n logO(1) logn

)
and Q3(n) = O (logn log logn).358

(ii) Similarly, for the 4-sided case, Lemmata 5(ii) and 6 with a smaller word size359

w := δi log s give micro-structures with360

U
(i)
4 (s, s2) = O

(
log2 s

i
+ log2 log s

)
361

Q
(i)
4 (s, s2) = O

(
log2 s

)
362

U
(i)
X (s) = sO(δi).363
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For the special case i = 1, we use a standard range tree, achieving U (1)
4 (s, s2), Q(1)

4 (s, s2) =364

O
(
log2 s

)
and U (1)

X (s) = 0. Applying Lemmata 4 and 7, we obtain365

U4(n) = O

logs n∑
i=1

log2 s log2 logn
i

+ logs n log4 logn +
logs n∑
i=2

sO(δi)

si−1

366

= O
(
log2 s log3 logn + logs n log4 logn

)
367

and368

Q4(n) = O
(
log2 s log logn + log s logs n log logn + logs n log2 logn

)
369

= O
(
log2 s log logn + logn log logn + logs n log2 logn

)
.370

We set s := 2log1/3 n to obtain U4(n) = O
(
log2/3 n logO(1) logn

)
and Q4(n) = O(logn371

log logn).372

4.2 Range tree transformation II373

We now reduce the query time to optimal by another transformation:374

Lemma 8. Given a data structure Dj for dynamic j-sided orthogonal range emptiness375

(j ∈ {2, 3, 4}) on n points in X × R (|X| = O (s)) with (amortized) update time Uj(s, n)376

and query time Qj(s, n), where updates to X are allowed with no extra cost, and given a377

data structure for dynamic (j−1)-sided orthogonal range emptiness on n points with update378

time Uj−1(n) and query time Qj−1(n), there exist data structures for dynamic flipped j-379

sided orthogonal range emptiness (j ∈ {3, 4}) on n points in the plane with the following380

amortized update and query time:381

Uj(n) = O
((
Uj(s, n) + Uj−1(n)

)
logs n + logs n log2 logn

)
382

Qj(n) = O
(
Qj(s, n) + Qj−1(n) + logs n log2 logn

)
.383

Proof. We modify the range tree in the proof of Lemma 7, where every internal node is384

augmented with a (j − 1)-sided structure on the set of points in its subtree.385

During an insertion or deletion of a point, we update the narrow-grid structures386

along a path as before, in O (logs n · Uj(s, n)) time. We now also need to update the (j−1)-387

sided structures at nodes along the path. This adds O (Uj−1(n) logs n) to the update time.388

During rebalancing, each split of a node at height i now requires rebuilding the389

(j − 1)-sided structures, which can be done naively by O
(
si
)
insertions to an empty390

structure. This has O
(∑logs n

i=1
(
n/si

)
· siUj−1(n)

)
total cost, i.e., an amortized cost of391

O (Uj−1(n) logs n).392

To answer a flipped j-sided query, we find the highest node v whose dividing ver-393

tical lines cut the query rectangle, by descending along a path from the root as before in394



Journal of Computational Geometry jocg.org

O
(
logs n log2 logn

)
time. We obtain two (j − 1)-sided queries at two children of v, plus a395

query in the narrow-grid structure at v. (In the case j = 3, it is important here that we396

are given a flipped 3-sided query.) The two (j − 1)-sided queries can be answered directly397

using the augmented structures. These queries take O (Qj(s, n) +Qj−1(n)) time.398

We obtain our final results by bootstrapping:399

Theorem 2. Given n points in the plane, there exist data structures for dynamic orthogonal400

range emptiness that support401

(i) updates in amortized O
(
log1/2+O(ε)n

)
time and 3-sided queries in amortized O

(
logn

log logn

)
402

time for an arbitrarily small constant ε > 0;403

(ii) updates in amortized O
(
log2/3 n logO(1) logn

)
time and 4-sided queries in amortized404

O
(

logn
log logn

)
time.405

Proof. (i) Theorem 1(i) achieves406

U3(s, s2) = O
(
log1/2 s logO(1) log s

)
407

Q3(s, s2) = O (log s log log s) .408

Wilkinson [27] has given a data structure for 2-sided (dominance) queries with409

U2(n) = O
(
log1/2+ε n

)
410

Q2(n) = O

( logn
log logn

)
.411

Applying Lemmata 4 and 8, we obtain412

U3(n) = O
(
log1/2 s logs n logO(1) logn + log1/2+ε n logs n+ logs n log2 logn

)
413

Q3(n) = O

(
log s log log s log logn + logn

log logn + logs n log2 logn
)
.414

We set s := 2
logn

log3 logn to get U3(n) = O
(
log1/2+O(ε) n

)
and Q3(n) = O

(
logn

log logn

)
.415

These time bounds for flipped 3-sided queries apply to (non-flipped) 3-sided queries416

as well, by a symmetric data structure.417

(ii) Similarly, Theorem 1(ii) achieves418

U4(s) = O
(
log2/3 s logO(1) log s

)
419

Q4(s) = O (log s log log s) .420

Part (i) above gives421

U3(n) = O
(
log1/2+O(ε) n

)
422

Q3(n) = O

( logn
log logn

)
.423
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Substituting into Lemma 8, we obtain424

U ′4(n) = O
(
log2/3 s logs n logO(1) logn + log1/2+O(ε) n logs n+ logs n log2 logn

)
425

Q′4(n) = O

(
log s log log s log logn + logn

log logn + logs n log2 logn
)
.426

We set s := 2
logn

log3 logn to get U ′4(n) = O
(
log2/3 n logO(1) logn

)
and Q′4(n) = O

(
logn

log logn

)
.427

As we have noted, the micro-structures in Section 3 can handle reporting queries; so428

are the structures obtained via the van Emde transformation (see the end of the Appendix).429

It can be easily checked that the entire data structure can support reporting queries with430

extra cost O(k) for k output points.431

5 Higher Dimensions432

We can automatically extend our result to higher constant dimensions d ≥ 3 by using433

a standard degree-b range tree, which adds a b logb n factor per dimension to the up-434

date time and a logb n factor per dimension to the query time. With b = logε n, this435

gives O
(
(logn/ log logn)d−1

)
query time and O

(
logd−5/3+O(ε) n

)
update time, improving436

Mortensen’s result.437

Alternatively, we can directly modify our micro- and macro-structures, and obtain438

a better update time of the form O
(
logd−2+O(1/d) n

)
, as we now show.439

In this section, all input points and query boxes lie in d dimensions. A j-sided query440

(d ≤ j ≤ 2d) is for a box that projects to bounded intervals along j−d coordinate axes and441

to half-intervals along the remaining 2d − j coordinate axes—the formal set of j − d axes442

are called double-sided.443

Definition 1. Define a Pj,`(s, n) structure to be a dynamic data structure for j-sided444

orthogonal range emptiness on a set of n points in d dimensions, where the all j-sided445

queries have the same set of double-sided axes, and there are at most s distinct coordinate446

values along d − ` of the d coordinate axes—these d − ` axes are called short, and the447

remaining ` axes are called long.448

Define a Pj,`(s, n) structure to be a Pj,`(s, n) structure under the further restriction449

that all long axes are double-sided.450

5.1 Preliminaries: Van Emde Boas transformation451

Lemma 4 can be immediately generalized to higher dimensions, to handle the case of one452

long axis.453

Lemma 9. Given a dynamic data structure for j-sided orthogonal range emptiness on454

s2(d−1) points with (amortized) update time Uj(s2(d−1)) and query time Qj(s2(d−1)), there ex-455

ists a Pj,1(s, n) structure with amortized update time Uj,1(s, n) = O
(
Uj(s2(d−1)) log2 logn

)
456

and query time Qj,1(s, n) = O
(
Qj(s2(d−1)) log logn

)
.457
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The log logn factors disappear for the j = d case.458

The last part for j = d does not require van Emde Boas recursion: for dominance459

queries, it suffices to maintain the minimum/maximum point at each of the O(sd−1) lines460

parallel to long axis.461

5.2 Micro-structures: Static universe462

Lemma 5 can be generalized to the following:463

Lemma 10. For s points in the static universe
[
sO(1)

]d
and a given b ≥ 2, there exist data464

structures for dynamic orthogonal range emptiness that support465

(i) updates in O
(
b logd s
w + 1

)
amortized time and (d + 1)-sided queries in O

(
logd−1

b s
)

466

amortized time;467

(ii) updates in O
(

logd+1 s
w + 1

)
amortized time and (2d)-sided queries in O

(
logd s

)
amor-468

tized time.469

Lemma 10(i) is established using a buffered version of a higher-dimensional range470

tree, with the 2-d 3-sided structure from Lemma 5(i) for base case. The bounds for (i)471

above are stated with a tradeoff parameter b, which follow by increasing the fan-out of the472

tree (e.g., see Wilkinson’s paper [27] in 2-d).473

5.3 Micro-structures: Dynamic universe474

To make the preceding micro-structures support a dynamic universe, the simplest way is to475

apply monotone list labeling (Lemma 1). Since each insertion causes an amortized O(log s)476

number of label changes and thus deletions and reinsertions to the data structure, the477

amortized update time increases by a log s factor:478

Lemma 11. For s points in d dimensions and a given b ≥ 2, there exist data structures479

for dynamic orthogonal range emptiness that support480

(i) updates in O
(
b logd+1 s

w + 1
)
amortized time and (d+ 1)-sided queries in O

(
logd−1

b s
)

481

amortized time;482

(ii) updates in O
(

logd+2 s
w + 1

)
amortized time and (2d)-sided queries in O

(
logd s

)
amor-483

tized time.484

For simplicity, we will not attempt to remove the extra log s factor this time. This485

bypasses the complications we faced in our 2-d solution for dealing with UX cost functions.486
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5.4 Macro-structures: Range tree transformation I487

Lemma 7 can be generalized to the following:488

Lemma 12. Let ` > 0.489

(i) Given a Pj,`−1(s, n) structure with (amortized) update time Uj,`−1(s, n) and query time490

Qj,`−1(s, n), there exists a Pj,`(s, n) structure with amortized update and query time491

Uj,`(s, n) = O
(
Uj,`−1(s, n) logs n+ logs n log2 logn

)
492

Qj,`(s, n) = O
(
Qj,`−1(s, n) logs n+ logs n log2 logn

)
.493

(ii) Given a Pj′,`−1(s, n) structure with (amortized) update time U j′,`−1(s, n) and query494

time Qj′,`−1(s, n) for j′ ∈ {j − 1, j}, there exists a Pj,`(s, n) structure with amortized495

update and query time496

U j,`(s, n) = O
((
U j,`−1(s, n) + U j−1,`−1(s, n)

)
logs n+ logs n log2 logn

)
497

Qj,`(s, n) = O
(
Qj,`−1(s, n) +Qj−1,`−1(s, n) logs n+ logs n log2 logn

)
.498

The proof is as in the proof of Lemma 7, where we divide along some long axis499

(which, in (ii), must also be double-sided by definition of Pj,`).500

Combining with our preceding micro-structures and the van Emde Boas transfor-501

mation, we obtain the desired update time but slightly suboptimal query time in (ii) (which502

we will fix later):503

Theorem 3. Given n points in a constant dimension d ≥ 3, there exist data structures for504

dynamic orthogonal range emptiness that support505

(i) updates in amortized O
(

logd−1 n
w1−2/(d+1)−ε

)
time and d-sided (dominance) queries in amor-506

tized O
(
logd−1

w n
)
time for an arbitrarily small constant ε > 0;507

(ii) updates in amortized O
(

logd−1 n
w1−3/(d+2) logO(1) logn

)
time and (2d)-sided queries in amor-508

tized O
(
logd−1 n log logn

)
time.509

Proof. For (i), applying Lemma 12(i) d − 1 times yield a structure for dominance queries510

with update and query time511

Ud(n) = Ud,d(s, n) = O
(
Ud,1(s, n) logd−1

s n+ logd−1
s n log2 logn

)
512

Qd(n) = Qd,d(s, n) = O
(
Qd,1(s, n) logd−1

s n+ logd−1
s n log2 logn

)
.513
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By Lemmata 11(i) and 9, we have Ud,1(s, n) = O(Ud(sO(1))) = O
(
b logd+1 s

w + 1
)

and514

Qd,1(s, n) = O(Qd(sO(1))) = O
(
logd−1

b s
)
. Setting b = wε and s = 2w1/(d+1) yields515

Ud(n) = O
(
b logd−1

s n
)

= O

(
logd−1 n

w(d−1)/(d+1)−ε

)
516

Qd(n) = O
(
logd−1

b s logd−1
s n

)
= O

(
logd−1

w n
)
.517

For (ii), applying Lemma 12(ii) repeatedly yields a structure for (2d)-sided queries518

with update and query time519

U2d(n) = U2d,d(s, n) = O

 2d∑
j=d+1

U j,1(s, n) logd−1
s n+ logd−1

s n log2 logn

520

Q2d(n) = Q2d,d(s, n) = O

 2d∑
j=d+1

Qj,1(s, n) log2d−j
s n+ logd−1

s n log2 logn

 .521

By Lemmata 11 and 9, we have U j,1(s, n) = O(Uj(sO(1)) log2 logn), Qj,1(s, n) =O(Qj(sO(1))522

log logn), Uj(sO(1)) = O
(

logd+2 s
w + 1

)
, Qj(sO(1)) = O

(
logd s

)
for j ≥ d+2, andQj(sO(1)) =523

O
(
logd−1 s

)
for j = d+ 1. Setting s = 2w1/(d+2) yields524

U2d(n) = O
(
logd−1

s n log2 logn
)

= O

(
logd−1 n

w(d−1)/(d+2) log2 logn
)

525

Q2d(n) = O
((

logd−1 s logd−1
s n+ logd s logd−2

s n
)

log logn
)

= O
(
logd−1 n log logn

)
.526

527

5.5 Macro-structures: Range tree transformation II528

Lemma 8 can be generalized to the following:529

Lemma 13. Given a Pj′,`′(s, n) structure with (amortized) update time Uj′,`′(s, n) and530

query time Qj′,`′(s, n) for (j′, `′) ∈ {(j − 1, `), (j, ` − 1)} with j > 2d − `, there exists a531

Pj,`(s, n) structure with amortized update and query time532

Uj,`(s, n) = O
((
Uj−1,`(s, n) + Uj,`−1(s, n)

)
logs n+ logs n log2 logn

)
533

Qj,`(s, n) = O
(
Qj−1,`(s, n) +Qj,`−1(s, n) logs n+ logs n log2 logn

)
.534

The proof is as in the proof of Lemma 8, where we divide along some long, double-535

sided axis (which exists since there are ` long axes and j−d double-sided axes and `+j−d >536

d).537

We obtain our final result by bootstrapping:538
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Theorem 4. Given n points in a constant dimension d ≥ 3, there exist data structures539

for dynamic orthogonal range emptiness that support updates in amortized O
(

logd−1 n
w1−3/(d+2)540

logO(1)w
)

= O
(
logd−2+3/(d+2) n logO(1) logn

)
time and (2d)-sided queries in amortized541

O
(
logd−1

w n
)

= O

((
logn

log logn

)d−1
)

time.542

Proof. Applying Lemma 13 repeatedly yields a structure for (2d)-sided queries with update543

and query time544

U2d(n) = U2d,d(s, n) = O

Ud,d(s, n) logds n+
2d∑

j=d+1
Uj,2d−j(s, n) logds n+ logds n log2 logn

545

Q2d(n) = Q2d,d(s, n) = O

Qd,d(s, n) +
2d∑

j=d+1
Qj,2d−j(s, n)

 .546

By Theorem 3(i), we have Ud,d(s, n) = Ud(n) = O
(

logd−1 n
w1−2/(d+1)−ε

)
and Qd,d(s, n) =547

Qd(n) = O
(
logd−1

w n
)
.548

Applying Lemma 12(i) repeatedly yields549

Uj,2d−j(s, n) = O
(
Uj,1(s, n) log2d−j−1

s n+ log2d−j−1
s n log2 logn

)
550

Qj,2d−j(s, n) = O
(
Qj,1(s, n) log2d−j−1

s n+ log2d−j−1
s n log2 logn

)
.551

By Lemma 9, we have Uj,1(s, n) = O(Uj(sO(1)) log2 logn) and Qj,1(s, n) = O(552

Qj(sO(1)) log logn).553

By Theorem 3(ii), we have Uj(sO(1)) = O
(

logd−1 s
w1−3/(d+2) logO(1) log s

)
and Qj(sO(1)) =554

O
(
logd−1 s log log s

)
.555

Putting everything together, we obtain556

U2d(n) = O

((
logd−1 n

w1−2/(d+1)−ε + logd−1 s

w1−3/(d+2) logO(1) log s
)

logO(d)
s n

)
557

Q2d(n) = O
(
logd−1

w n+ logd−1 s logd−2
s n log2 logn

)
.558

Setting s = 2logn/ logd+1 w yields the result.559

6 Final Remarks560

We have not yet mentioned space complexity. We can trivially upper-bound the space of our561

data structure by n times the update time, i.e., O
(
n log2/3+o(1) n

)
for the 2-d 4-sided case,562

which is already an improvement over Mortensen’s O
(
n log7/8+ε n

)
space bound. Similarly,563
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we obtain O
(
n log1/2+ε n

)
space for our 3-sided structures, matching the space complexity564

of Wilkinson’s structures. It might be possible to improve space further by using more565

bit-packing tricks, but it is not clear at all how to reduce space all the way to near linear,566

especially for the 4-sided case. See also the work by Nekrich [23, 24], which can achieve567

near linear space but require larger, super-logarithmic update time.568

We hope that our ideas on micro- and macro-structures will find more applications569

in dynamic geometric data structures. In fact, we have recently obtained new results [11]570

on dynamic 2-d orthogonal point location based on a similar approach.571
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Appendix: Proof of Lemma 4 (van Emde Boas transformation)648

Mortensen proved the version of Lemma 4 for a static y-universe. We give a brief re-649

description of the method (which is similar to van Emde Boas trees), which can deal with650

dynamic y-universes.651

The data structure. Let S be the input point set of size at most n. Divide the plane into652

O(
√
n) horizontal slabs each with at most 2

√
n points of S.653

1. For each slab σ, let Mσ contain the topmost and bottommost point of S ∩ σ at each654

x-coordinate of X. Store this setMσ of at most 2s points in a structure with Uj(s, 2s)655

update time and Qj(s, 2s) query time.656

2. For each slab σ, recursively build a data structure for the remaining points in (S ∩657

σ) \Mσ.658

3. Let R denote the set of points in S after “rounding” down y-coordinates to align with659

the slab boundary lines. Recursively build a data structure for R.660

In addition, for each slab σ, store the points of S ∩ σ with the same x-coordinate in a661

common linked list, ordered by y. Store a pointer from each y-coordinate in S to the slab662

containing it. The base case is when n ≤ s2, where we directly use the structure with663

Uj(s, s2) update time and Qj(s, s2) query time.664

Let Uj.prep(s, n) denote the amortized preprocessing time of the above data structure,665

i.e., the preprocessing time divided by the number of input points. Each point contributes666

to a recursive data structure for (S ∩ σ) \ Mσ or for R, but not both. It follows that667

Uj.prep(s, n) ≤ Uj.prep(s,O(
√
n))+O(Uj(s, 2s)), implying Uj.prep(s, n) ≤ O(Uj(s, 2s) log logn668

+Uj(s, s2)).669
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Updates. To insert a point q in S:670

1. find the horizontal slab σ containing q (by following pointers in O(1) time);671

2. if q replaces another point q′ as the lowest or bottommost point of S ∩ σ at q’s672

x-coordinate, then delete q′ from Mσ, insert q to Mσ, and recursively insert q′ to673

(S ∩ σ) \Mσ;674

3. else if there is no point of S ∩ σ with q’s x-coordinate, then recursively insert q to R675

after rounding.676

4. if σ contains more than 2
√
n points of S, split σ into two subslabs σ1 and σ2 with

√
n677

points, build Mσ1 and Mσ2 with O(
√
n) insertions, and update R with O(s) deletions678

and re-insertions.679

Deletions are similar (except that splitting is not necessary).680

Line 4 deals with rebalancing when y-universe is dynamic. Note that it is done only681

after Ω(
√
n) updates. Thus, the amortized update time satisfies the recurrence682

Uj(s, n) ≤ Uj(s,O(
√
n)) +O(Uj(s, 2s)) +683

O

( 1√
n
· (
√
nUj.prep(s,O(

√
n)) + sUj(s,O(

√
n)))

)
684

≤
(

1 +O

(
s√
n

))
Uj(s,O(

√
n)) +O(Uj(s, 2s) log logn+ Uj(s, s2)).685

This implies Uj(s, n) = O(Uj(s, 2s) log2 logn+ Uj(s, s2)).686

Updates in X. An update in X takes UX(s) time, since all the Mσ structures and base687

cases share the same set X of x-coordinates.688

Queries. To answer a query in the point set S for rectangle q:689

1. find the (at most) two horizontal slabs σ and σ′ containing the top and bottom edges690

of q (by following pointers in O(1) time);691

2. if σ = σ′, then answer the query inMσ, and recursively answer the query in (S∩σ)\Mσ;692

3. else answer the query in Mσ and Mσ′ , and recursively answer the query in R.693

The query time satisfies the recurrence Qj(s, n) ≤ Qj(s,O(
√
n)) + O(Qj(s, 2s)), implying694

Qj(s, n) = O(Qj(s, 2s) log logn+Qj(s, s2)). This concludes the proof of the lemma.695
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Remarks on reporting. The query algorithm above can be modified to handle range re-696

porting queries. Each point is reported once, but if we are not careful, the query time for k697

reported points could increase by an O (k log logn) term, because at each of the O (log logn)698

levels of recursion, we may need to “decode” each reported point in R (i.e., we need to find699

which points in S are rounded to that point in R).700

We can fix the issue by maintaining pointers to global lists (as was proposed in701

Mortensen’s paper). For each x-coordinate in X, we store all input points with that x-value702

in a global linked list, ordered by y. In each set S encountered during recursion, a point703

p in S corresponds to a contiguous subsequence of points in the global linked list at p’s704

x-coordinate; we store pointers from p to the first and last point in the subsequence. Each705

reported point can then be decoded in O (1) time, and total extra cost for reporting k points706

is just O (k).707


