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Abstract 

Organelle formation and compartmentalisation within eukaryotic and prokaryotic cells provide the 

structural foundation for modulation of metabolic reactions in space and time. Bacterial 

microcompartments (BMCs) are self-assembling organelles widespread among bacterial phyla. By 

physically sequestering specific enzymes key for metabolic processes from the cytosol, these 

organelles play essential roles in carbon fixation, microbial ecology and pathogenesis. Carboxysomes 

serve as the key CO2-fixing machinery in all cyanobacteria and some chemoautotrophs. The β-

carboxysomes in the cyanobacterium Synechococcus elongatus PCC7942 (Syn7942) have been 

extensively characterised as the model carboxysomes. In Chapter 1, general research background 

centralised on carboxysomes was summarised.  In Chapter 2, material and methods adopted in this 

thesis were documented. From Chapter 3 to Chapter 5, I addressed specific topics on functional and 

structural modulation of carboxysomes in Syn7942. In Chapter 6, I concluded the findings in 

previous chapters and showed the perspectives following this project. 

In Chapter 3, we used fluorescence tagging and live-cell confocal fluorescence imaging to explore 

the biosynthesis and subcellular localisation of β-carboxysomes within Syn7942 cell in response to 

light variation. We demonstrated that β-carboxysome synthesis on cellular level is re-modulated in 

response to increasing light intensity, thereby enhancing the carbon fixation activity of the cell. 

Inhibition of photosynthetic electron flow impairs the accumulation of carboxysomes, indicating close 

coordination between β-carboxysome biogenesis and photosynthetic electron transport. Likewise, the 

spatial organisation of carboxysomes in the cell correlates with the redox state of photosynthetic 

electron transport chain. In Chapter 4, we used live-cell single-molecule fluorescence microscopy, 

coupled with confocal and electron microscopy, to decipher the absolute protein stoichiometry and 

organisational variability of single β-carboxysomes in Syn7942 cell. I find that the protein 

stoichiometry, diameter, cellular localisation and mobility pattern of carboxysomes in cells depend 

sensitively on the microenvironmental levels of CO2 and light intensity during cell growth, revealing 

cellular strategies of dynamic regulation. In Chapter 5, I documented the biosynthesis and 

organisation of carboxysomes under diurnal dark-light cycles compare to constant light in Syn7942. 

We found the reoccurring carboxysome distribution changes and rhythmic carbon fixation capacities 

in diurnal condition. Also, we documented the localisation, enzymatic activity as well as the quantity 

of carboxysomes in circadian null background to provide preliminary evidence of circadian control in 

carboxysome biogenesis. 

The findings in this thesis provide essential knowledge for us to modulate the β-carboxysome 

biosynthesis and function in cyanobacteria. Furthermore, improving our understanding of 

carboxysome assembly principles will aid rational design of functional metabolic factories in 

heterologous organisms for metabolic engineering using synthetic biology. 
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1.1 Bacterial Microcompartments 

1.1.1 The compartmentalisation of bacterial cells 

Organelle compartmentalisation within cells provides the structural foundation for physiological 

optimisation and modulation of metabolic reactions in space and time (Bobik et al., 2015; Kerfeld et 

al., 2010). In eukaryotic cells, the highly specialised subcellular organelles (such as chloroplasts, 

mitochondria and lysosomes) that encapsulate specific enzymes and metabolic pathways are well-

separated from the cytosolic environment by controlled influx and efflux system for metabolites 

(Satori et al., 2013). By compartmentalisation, eukaryotic cells are capable of housing numerous 

biological pathways in the crowded cytosolic environment without mutual interference (Gabaldón and 

Pittis, 2015). Likewise, similar compartmentalisation is achieved through the self-assembling 

analogous organelles called bacterial microcompartments (BMCs) widespread among bacterial phyla 

(Axen et al., 2014). The BMCs structurally consist of polyhedral protein shells and interior enzymes 

which catalyse sequential metabolic reactions within lumens separated from the cytoplasm (Bobik, 

2006; Kerfeld et al., 2010; Yeates et al., 2011). The BMC compartmentalisation enables diverse 

enzymatic reactions catalysing within the subcellular “micro-factories” at high efficiency, 

contributing to the metabolic diversities of bacteria accommodating specific habitats. Since the first 

BMC has been discovered back in 1956 (Drews and Niklowitz, 1956), tremendous research on BMC 

structure, assembly and function have been done in the past 60 years. Significant progress is achieved 

in the recent decades and reviewed systematically in the following review articles (Bobik, 2006; 

Bobik et al., 2015; Kerfeld et al., 2018; Kerfeld et al., 2010; Yeates et al., 2008). 

 

1.1.2 Common features of BMC shells 

Unlike organelles in eukaryotic cells that establish the border by lipid membrane systems in diverse 

forms, the boundaries of BMCs are formed by homologous icosahedral shells that self-assembled by 

thousands of proteins that belong to multiple protein paralogs (Yeates et al., 2010). The shells are 

single-layered (Kerfeld et al., 2005; Tanaka et al., 2008; Tsai et al., 2007), and structurally resembling 

the virus capsids when visualised under microscopy (Faulkner et al., 2017; Kerfeld and Erbilgin, 
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2015). The shells are consist of three conserved protein paralogs: the BMC-H domain family, the 

BMC-T domain family and BMC-P domain family proteins (Kerfeld and Erbilgin, 2015). The BMC-

H proteins self-assemble into functional hexameric units and form the majority of the shell facets 

(Dryden et al., 2009; Kerfeld et al., 2010). The BMC-T proteins contain a tandem BMC-H domain 

which form up  pseudo-hexamers (dimers of trimer)  that make up a smaller fraction of the shells are 

suggested to be the potential gateways for shell permeability control with the open/close central pore 

through conformation changes (Cai et al., 2013; Klein et al., 2009). The BMC-P proteins are 

suggested to form the vertices of the shells in pentameric assembly units (Iancu et al., 2007; Sutter et 

al., 2013; Tanaka et al., 2008; Wheatley et al., 2013). The diagram of BMC shell formation is 

illustrated in Figure 1-1.  

 

 

Figure 1-1. Schematic diagram of BMC shell assembly by pentameric and (pseudo)hexameric 

proteins. BMC-P proteins have been deduced to locate on the vertexes of the polyhedron shells, 

while BMC-H and BMC-T form the facets surfaces. Space fill model adopted from PDB entries 

(BMC-T PDB ID: 5LT5, BMC-H PDB ID: 2A1B; BMC-P PDB ID: 2QW7) reported in (Kerfeld et 

al., 2005; Sutter et al., 2017; Tanaka et al., 2008). Assembly was shown for illustration only; numbers 

and ratios of building blocks do not represent real stoichiometry. 

 

BMC-P, BMC-H and BMC-T proteins have pronounced orientations with concave and convex 

surfaces (Kerfeld et al., 2005; Sutter et al., 2017; Tanaka et al., 2008). Ordered orientations of shell 
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proteins were confirmed through an artificial 6.5-MDa BMC shell assembly detected by cryogenic 

electron microscopy (cryo-EM) (Sutter et al., 2017). The well-defined shell structures operate as a 

physical barrier that concentrates and protect enzymes within the lumens (Fan et al., 2012). The 

distinctive properties of concave/convex of shell protein grant carboxysome the selective permeability 

to of substrates and products entering/exiting the shell pores (Chowdhury et al., 2015; Crowley et al., 

2010; Park et al., 2017). 

 

1.1.3 Diversity of BMCs 

Although BMCs shells are structurally alike and phylogenetically related, a great variety of 

encapsulated enzymes has been found in bacteria survive in different environmental niches, fulfilling 

diverse biological functions (Kerfeld et al., 2018). Before the beginning of the genomic era, three 

types of BMCs were identified according to the biological processes housed inside the lumens: the 

carboxysome (commonly referred as CB) for CO2 fixation, the metabolosome Pdu for Vitamin B12 

dependent 1,2-propanediol utilisation, and the metabolosome Eut for ethanolamine utilisation. The 

anabolic carboxysomes are found in phototrophic cyanobacteria and some chemoautotrophic 

organisms (Price et al., 1998; Shively et al., 1973). The catabolic metabolosomes Pdu and Eut are 

discovered in bacteria with specialised heterotrophic metabolic system utilising organic carbons 

(Bobik et al., 1999; Kofoid et al., 1999). The distinctive biological processes within BMC lumens are 

fulfilled by the corresponding set of enzymes which are essential for CO2 fixation, pathogenesis, and 

microbial ecology (Bobik et al., 2015; Yeates et al., 2010; Yeates et al., 2008). In the lumen, core 

enzymes that catalyse sequential metabolic reactions are packed underneath the shells in close 

proximity. The metabolic efficiencies are enhanced through concentrating substrates or avoiding 

leakage or toxic intermediates that are to be consumed sequentially (Chowdhury et al., 2014; Huang 

et al., 2001). Through encapsulation of enzymes, the unpreferable flux of reversible reactions is 

negated, meanwhile preventing toxicity damages caused by intermediates (if any) in the cytoplasm 

(Havemann et al., 2002; Yeates et al., 2008).  
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Up to date, comprehensive bioinformatic studies have indicated uncharacterised BMCs with a variety 

of functions widely spread among bacteria phyla (Axen et al., 2014). The functional study of these 

newly discovered BMCs has just initiated. For instance, the Planctomycetes and Verrucomicorbia 

microcompartment (PVM BMC) that capable of processing L-fucose and L-rhamnose (Erbilgin et al., 

2014), the sub-type of Glycyl radical enzyme microcompartment (GRE BMC) with putative Vitamin 

B12 independent 1, 2-propanediol utilisation capacity (Zarzycki et al., 2017) have just been discovered. 

Meanwhile, with the progressively growing bacteria genomic database, more uncharacterised BMCs 

are entering our views that await further investigations (Axen et al., 2014; Kerfeld et al., 2018). The 

expanding range of functions of BMCs suggested the adaptive nature of BMCs to cope with specific 

environmental niches (Chowdhury et al., 2014).  

 

1.2 Carboxysome as a model for understanding BMC 

To elucidate the BMC adaption in a native organism, we started our research on carboxysomes that 

have relatively straightforward, yet irreplaceable biological function. Unlike Pdu and Eut which are 

only required when supplied with particular nutrients, carboxysomes are fundamentally essential for 

carboxysome containing species to survive in natural environment. Removing or impairing 

carboxysomes would render cells incapable of CO2 fixation in ambient air that leads to cell death 

(Price and Badger, 1989). Carboxysomes contain only two type of enzymes, the Ribulose-1,5-

bisphosphate carboxylase/oxygenase (Rubisco) (Shively et al., 1973) and the carbonic anhydrase (CA) 

(McGurn et al., 2016) that catalyse a linearised enzymatic conversion. While in Pdu and Eut, a 

broader set of enzymes, formed by PduC/D/E/P/Q/L and EutE/D/G, are sustaining a more 

complicated multi-step catalytic processes for their host organisms (Bobik et al., 2015). Based on the 

simple composition of enzymes and catalytic processes, the carboxysome is an ideal model to uncover 

the function and structural adaption within the host organism. 

 

1.2.1 CO2 fixation by carboxysomes 

Rubiscos have both carboxylase and oxidase activity depending on the substrates provided (Figure 1-

2). In carboxysomes, enzymatic properties of Rubisco are optimised to favour the carboxylase 
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activities. The CO2 molecules are initially stored in the form of bicarbonate (HCO3
-
) which is actively 

transported and concentrated in the cytoplasm by inorganic carbon (Ci) transporter system (Price et al., 

2008). The carboxysomal shells allow the entry of enriched HCO3
- 

into the lumen. Inside the 

carboxysome, HCO3
-
 is converted to CO2 by CA, which can be fixed by Rubisco. Simultaneously, the 

other substrate Ribulose-bisphosphate (RuBP), a key component in the Calvin-Benson-Bassham 

(CBB) cycle, can enter the carboxysome lumen through the pores of the shell proteins therefore 

enable the catalytic reaction by Rubisco (Rae et al., 2013). The diagram of CO2 fixation by 

carboxysomes is shown in Figure 1-3. The shell is suggested to form a CO2 barrier that stops the 

diffusion or leakage of CO2 from carboxysome lumens to the cytoplasm (Dou et al., 2008; Frey et al., 

2016; Rae et al., 2013). Hence, the CO2 molecules are retained in carboxysomes at high local 

concentrations, therefore enhance the carboxylation efficiency of Rubiscos. Without the enrichment 

of CO2 in the lumen, O2 can compete with CO2 to bind Rubisco reaction centre, significantly reducing 

the efficiency of Rubisco carboxylation efficiency (Griffiths, 2006). 

 

 

Figure 1-2. Carbon fixation and Photorespiration catalysed by Rubiscos (Kellogg, 2013). 

Hexadecameric Rubiscos could function as carboxylase and oxygenase depending on the substrate 

provided. CO2 and O2 are competing substrates to Rubiscos. CO2 leads to carbon fixation in the CBB 

cycle while O2 leads to the wasteful photorespiratory cycle. CH2O represent fixed organic sugar in 

different forms. PGA short for 3-phosphoglycerate, PG short for 2-phosphoglycolate. 

 

Carbon 

fixation 

Photo-

respiration 

https://chem.libretexts.org/Textbook_Maps/Biological_Chemistry/Metabolism/Catabolism/Calvin-Benson-Bassham_Cycle
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Figure 1-3. Diagrams of carboxysome functions (Bobik et al., 2015). Carboxysomes are capable of 

converting CO2 and RuBP into 3PGA, which is the critical stage in the Calvin-Benson-Bassham 

Cycle (CBB cycle). 

 

In higher plant, Rubiscos can utilise ambient levels of CO2 in chloroplast in free forms without being 

sequestered compared with cyanobacterial Rubiscos (Figure 1-4) (Whitney et al., 2011). As a trade-

off, plant Rubiscos are slower in CO2 fixation, at a rate between 2 to 6 CO2 molecules per Rubisco per 

second, while cyanobacterial Rubiscos could achieve a higher rate at 12 to 14. Even with higher 

specificity of CO2 over O2, most plants, typically C3 plants, still lose about 30 % of carbon fixation 

capacities to the undesired photorespiration in natural conditions globally (Zhu et al., 2010).  

 

https://chem.libretexts.org/Textbook_Maps/Biological_Chemistry/Metabolism/Catabolism/Calvin-Benson-Bassham_Cycle
https://chem.libretexts.org/Textbook_Maps/Biological_Chemistry/Metabolism/Catabolism/Calvin-Benson-Bassham_Cycle
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Figure 1-4. Comparative catalytic features of cyanobacterial and plant Rubiscos. The fixation 

rate as VCO2 (A), CO2 affinity as Km
CO2

 (B) and specificity of CO2 over O2 as SC/O calculated from 

(VCO2/Km
O2

)/(VO2/Km
CO2

) (C). Circles coloured in yellow correspond to values for green algae. Figure 

adapted from (Whitney et al., 2011). (A) indicate faster turn-over of substrate for cyanobacteria 

compared to plants, while (B) suggest lower CO2 affinity to enzyme and lesser competitive of CO2 

over O2 for reaction. 

 

The faster CO2 fixation of cyanobacterial Rubiscos is contributed by multiple attributions supported 

through compartmentation. Free forms of cyanobacterial Rubiscos when not encapsulated by the shell 

are incapable of sustaining carboxylation activities in ambient levels of CO2 (Galmes et al., 2014; 

McNevin et al., 2006). The high affinity for O2 against CO2 would eventually favour the wasteful 

photorespiration reaction through oxidation. The encapsulation of Rubisco and CA in carboxysomes 

elevate CO2 concentrations, therefore, compensating the low CO2 affinity. The carboxysome shells 

are also suggested to exclude O2 hence prevent photorespiration and reduce the leakage of CO2 out of 

the carboxysomes (Dou et al., 2008; Frey et al., 2016; Rae et al., 2013). Consequently, the local levels 

of CO2, as well as the ratio of CO2 against O2 could be effectively elevated, further contributing to a 

favourable carboxylation conversion by Rubiscos.  
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1.2.2 Two types of carboxysomes 

According to the types of Rubisco (form 1A and form 1B) encapsulated, two types of carboxysome, 

as α-carboxysomes and β-carboxysomes, have been categorised (Jakobson et al., 2017; Sommer et al., 

2017). The independently evolved α- and β-carboxysomes are found mostly in oceanic and freshwater 

strains respectively (Rae et al., 2013). Although separately evolved, both types of carboxysomes share 

high degrees of similarities in protein composition and overall structure assemblies.  

 

The protein components of α- and β–carboxysomes are listed in Table 1-1, where compositions for 

both types of carboxysome in model organism Halothiobacillus neapolitanus C2, a bacteria that fix 

CO2 by their energy derived through oxidation of reduced sulphur compounds, and Syn7942 were 

compared. Homolog proteins achieve same core functions across two types of carboxysomes. On the 

surface of carboxysomes, CcmK2-K4 (Kerfeld et al., 2005; Samborska and Kimber, 2012; Tanaka et 

al., 2008; Tanaka et al., 2009) and CsoS1ABC (Tsai et al., 2007) that all belong to the BMC-H family 

cover the majority of shell facets. CcmO/P (Cai et al., 2013; Larsson et al., 2017; Marco et al., 1994) 

and CsoS1D (Klein et al., 2009) that belong to the BMC-T family are minor components assemble 

into the shell facets. Meanwhile, CcmP is believed to forms the gateway system of the shell, therefore, 

modulate the shell permeability (Kerfeld and Melnicki, 2016). CcmL (Tanaka et al., 2008) and 

CsoS4A/B (Cai et al., 2009) from the BMC-P family assembly 5-fold symmetric pentamers are 

deduced to cap the vertices of the polyhedron shells.  

 

In carboxysome lumens, Rubisco and CA are the core proteins occupying the most spaces. For 

monomeric Rubisco, both form IA and IB types shared hexadecameric (L8S8) formation (Schneider et 

al., 1992). It is composed of eight large subunits (LSUs) coded by cbbL or rbcL and eight small 

subunits (SSUs) coded by cbbS or rbcS. The reaction core is formed through tetramerisation of four 

LSU dimmers and locates within the formed LSU L8 assembly. Eight SSU complement the L8 and 

form a L8S8 complex, further improve the overall catalytic efficiency of the reaction core (Spreitzer, 

2003).  
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Table 1-1. Protein information of typical α- and β-carboxysomes in model organisms 

Halothiobacillus neapolitanus C2 and Syn 7942.  

α-carboxysome β-carboxysome Coding gene 

localisation on 

genome 
Protein Description Protein Description 

CbbL 
Rubisco large 

subunit 
RbcL 

Rubisco large 

subunit 

Main operon 

 

CbbS 
Rubisco small 

subunit 
RbcS 

Rubisco small 

subunit 

CsoS1A 
Hexamers, major 

shell facet 
CcmK2 

Hexamers, major 

shell protein 
CsoS1B 

CsoS1C 

CsoS4A Pentamers, putative 

vertices of shell 
CcmL 

Pentamers, putative 

vertices of shell CsoS4B 

CsoS2 Structural protein 
CcmM 

Structural protein 
CcmN 

CsoS3 Carbonic anhydrase 
CcmO 

Pseudo- hexamers; 

Putative edge shell 

proteins  

CcaA  Carbonic anhydrase 

Satellite loci 

CsoS1D 
Pseudo- hexamers 

Minor shell protein 
CcmP 

Pseudo- hexamers; 

Putative minor 

shell proteins 

CbbQ/CbbO 
Potential Rubisco 

activase 

CcmK3  Hexamers; Minor 

shell proteins CcmK4 

RbcX 
Rubisco assembly 

chaperon 

 

The CAs coded by csoS3 and ccaA (Long et al., 2007) in α- and β-carboxysomes come from ɛ-Class 

and β-class CA respectively (McGurn et al., 2016; So et al., 2004). These CAs have no significant 

sequential similarity but share similar catalytic properties in bicarbonate/CO2 conversions (So et al., 

2004). Such convergent evolution of CAs further supports the independent evolution of the 

carboxysomes.  

 

Typical carboxysomes in different organisms share common features, but also retain several 

pronounced differences (Rae et al., 2013). Although shells and core enzymes proteins share high 

structural homology, the genetic contents are distinctive. The genetic composition of model α- and β-

carboxysomes in organisms Halothiobacillus neapolitanus C2 and Syn7942 are displayed in Figure 

1-5.  
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Figure 1-5. Distribution of carboxysomal genes for α- and β-carboxysomes on the genomic 

region from H. neapolitanus and Synechococcus elongatus PCC7942. Double-slash lines indicate 

gaps over distant genomic regions separated by other genetic contents.  

 

For α-carboxysomes, all genes required for carboxysome assembly and function (9 out of 11 genes) 

are located over a single cso operon (Bonacci et al., 2012). The additional satellite carboxysomal 

genes csoS1D (Klein et al., 2009) and cbbQ/cbbO (Sutter et al., 2015; Tsai et al., 2015) are capable of 

further enhancing the carbon fixation capabilities. The genetic content of β-carboxysomes has higher 

complexity than that of α-carboxysomes. Besides the major ccm and rbc operons that encode 

carboxysomal genes from ccmK2 to rbcS, four distant loci have been identified encoding BMC-T and 

BMC-H shell proteins, as well as the crucial CA enzyme (CcaA) and Rubisco chaperone RbcX 

(Figure 1-5).  

 

Unlike α-carboxysomes which functions can be primarily retained (less than 50% decrease in CO2 

fixation capacities) without proteins coded by satellite genes such as csoS1D and cbbQ (Bonacci et al., 

2012), function integrity of β-carboxysomes that lack satellite proteins is severely impaired: 

carboxysomes lacking both CcmK3 and CcmK4 are unable to fix CO2 in ambient air, rendering the 

mutant strain to have a High-CO2 Requirement (HCR) phenotype (Rae et al., 2012). The greater 

involvement of multiple operons in β–carboxysomes indicates higher degrees of structural and 

functional complexities. Meanwhile, it also suggests distinctive modulation of β-carboxysomes in 

freshwater habitats (Whitehead et al., 2014). However, current understandings of such potential 

adaption are mainly predictions inferred from indirect evidence (i.e. transcriptomic profile). Direct 

evidence over the in vivo carboxysome modulation adapting to environmental changes remains to be 

investigated. 
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Moreover, the aggregating strategy for Rubisco enzymes which form the interior matrix is drastically 

different in the two types of carboxysomes. In α-carboxysomes, a loose and irregular L8S8 

hexadecameric complexes aggregation (shown in Figure 1-6A and C), driven by structural protein 

CsoS2 through putative binding affinities are widely acknowledged (Cai et al., 2015a). In β-

carboxysomes, the interior assembly is mediated by structural proteins CcmM and CcmN, shown in 

Figure 1-6B. CcmN serves as a linker through the encapsulation peptide on C-terminus 

(Aussignargues et al., 2015) that associates CcmK shell proteins and an N-terminal domain that 

associates with CcmM (Kinney et al., 2012). CcmM exists in two forms (short isoform CcmM35 and 

long isoform CcmM58) by alternative translation from start codons locate at the beginning and middle 

of the gene coding sequence (Long et al., 2007). Both the long and short isoforms contain three RbcS-

like homolog domains which are believed to replace RbcS in the Rubisco hexadecameric L8S8 

assemblies, leading to the formation of a more regular array-like compact-packing paracrystalline 

resemble L8S5M3 stoichiometry (Long et al., 2011). While the long isoform CcmM58 processes an 

additional N-terminal domain that binds CcmN, therefore, enables the encapsulation of shells (Long 

et al., 2007; Long et al., 2011; Long et al., 2010).  

 

The natures of loose/irregular and compact/regular packing of core enzymes (Figure 1-6C) eventually 

lead to different assembly strategies between α- and β-carboxysomes. Recent studies documented that 

de novo assembly of β-carboxysomes exploits the core-based “inside out” model: Rubisco and CcmM 

forming the core first, followed by the encapsulation of shell proteins, mediated by CcmN and CcmK 

(Cameron et al., 2013; Chen et al., 2013). Such compact packing model could support more Rubiscos 

in each carboxysome, resulting in higher Rubisco packing density (Rae et al., 2013) and greater 

carboxysome diameters ranging from 200nm to 400nm (Cai et al., 2015a). Moreover, the dense core 

of β-carboxysomes is suggested to serve as the backbone of the overall structures that contribute to 

the integrity of carboxysome structures (Kerfeld and Melnicki, 2016; Rae et al., 2013). While in α-

carboxysomes, the overall structural integrity is not supported by the loose interior, but mainly 

through shell protein interactions (Kerfeld and Melnicki, 2016). Moreover, an overall smaller 
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diameter of α-carboxysomes, ranging from 100nm to 160nm (Heinhorst et al., 2014), further limited 

the enzyme loads per carboxysome compared with β-carboxysomes. 

 

 

Figure 1-6. Current understanding of the structural basis for α- and β-carboxysomes, adapted 

from (Dai et al., 2018; Faulkner et al., 2017; Kerfeld and Melnicki, 2016; Rae et al., 2013). A. 

diagrams of α- and β-carboxysome assemblies, legends shown below. B. Diagrams of β-

carboxysomes assemblies with RbcL8RbcS5CcmM3 formation and putative CcmN and CcaA location. 

C. EM images and fitted Rubiscos of α- and β-carboxysomes (bottom and top respectively) indicate 

differences of packing patterns in the lumens. The circles in different color indicate clusters of 

Rubiscos with less ordered/ordered formation for α- and β-carboxysomes. 

 

Last but not least, Rubisco chaperones RbcX (Emlyn-Jones et al., 2006; Occhialini et al., 2016) or 

Rubisco activase (Rca) CbbO/CbbQ (Sutter et al., 2015; Tsai et al., 2015) are only found in partial 

genomes of α- and β-carboxysomes containing organisms (Zarzycki et al., 2013). However, these 

chaperones and activases are not commonly shared by carboxysomes. Particularly for the two model 

strains showed in Table 1-1. The chaperone cbbX gene corresponding to rbcX is not found in 

Halothiobacillus. Instead,  a pair of genes called cbbO/cbbQ has been identified, which product are 

capable of enhancing Rubisco enzymatic performance through the formation of hetero-oligomers 

when co-expressed with Rubisco heterogeneously (Tsai et al., 2015). Meanwhile, Rca corresponding 

to CbbO/CbbQ is not present in Syn7942 genome. The existence or loss of Rubisco helper proteins 

complement diverse Rubiscos in different organisms to sustain desired level of CO2 fixation 
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properties and are not considered to affect structural integrity of carboxysomes (Emlyn-Jones et al., 

2006; Tanaka et al., 2007; Zarzycki et al., 2013), though further investigation on their roles are 

needed. 

 

Overall, α- and β-carboxysomes are both capable of overcoming the disadvantages of the 

cyanobacterial Rubiscos by intelligently designed assemblies, achieving faster fixation rate compared 

with their homologs in higher plants.  

 

1.2.3 Synthetic engineering of carboxysomes 

In plants, Rubiscos are exposed in chloroplasts stroma where O2 are generated continuously from the 

photosynthetic complexes locate on the thylakoid membranes in close proximity (Harris and Königer, 

1997). Particular plants have evolved different carbon concentrating strategies: C4 plants evolve 

specific bundle-sheath cells, which capable of housing the separated step of carboxylation from 

substrate pumped by initial carbon fixation catalysed by PEPCase (Furbank et al., 1989; Gowik and 

Westhoff, 2011). Such mechanism is also considered as a type of carbon concentrating mechanism 

(CCM); while plants grown in arid climate utilise Crassulacean Acid Metabolism (CAM) that 

separate major CO2 fixation activity into the night from photosynthesis activating during day times 

(Keeley et al., 2003). However, the majority of crop plants, especially the most cultivated crops such 

as wheat and rice possess C3 pathway without any form of CCM (Ducat and Silver, 2012). 

 

The advantageous CO2 fixation properties (Figure 1-4) through Rubisco encapsulation in 

carboxysomes provides an alternative strategy for improving CO2 fixation in higher plants. The 

hypothesis that significant improvement could be achieved by introducing carboxysomes into 

chloroplast has attracted tremendous interest in engineering the CO2-fixing organelle in higher plants. 

In this field, α-carboxysomes seems more suitable to be manipulated compared with β-carboxysomes 

that have higher degrees of complexity. For instance, partial carboxysome structures have been 

reproduced heterologously in forms of protein sheets, nanotubes or entire coreless polyhedron shells 
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(Fan and Bobik, 2011; Pang et al., 2014; Parsons et al., 2010; Sutter et al., 2017). Furthermore, 

without much modification to promoters and coding sequences, fully functional α-carboxysomes have 

been successfully generated in E. coli and a gram-positive bacterium Corynebacterium glutamicum 

(Baumgart et al., 2017; Bonacci et al., 2012). 

 

Even though α-carboxysomes seems to be a better choice for engineering based on the above findings, 

β-carboxysome synthesis still attracts great attention to researchers due to the close nature of Rubisco 

with higher plants as well as the greater encapsulation capacity compared with α-carboxysomes 

(described in section 1.2.1). As a proof of concept, researchers have genetically engineered partial 

components of β-carboxysomes (Rubisco and shell respectively) into tobacco chloroplast (Hanson et 

al., 2016; Lin et al., 2014a; Lin et al., 2014b). These pioneer works have shown the successful 

assembly of β-cyanobacterial Rubiscos and shells in plant chloroplasts, giving us more faith in 

reaching the final goal of introducing complete β-carboxysomes for enhanced carbon fixation in 

higher plants. 

 

More challenges were found when trying to reproduce entire β-carboxysomes heterologously (Cai et 

al., 2016; Gonzalez-Esquer et al., 2015; Hanson et al., 2016; Lin et al., 2014a). The fundamental 

difficulty is to design vectors to express carboxysomal genes over the multi operon at correct ratios. 

Up to date, it remains unknown what the exact expression profile is for carboxysomal genes under the 

native regulation, and a step further, the final stoichiometry of carboxysome assembly. Besides, it is 

suggested that β-carboxysomes assembly factor Raf1 might also be required to promote initial 

Rubisco assembly in E. coli cells heterologously (Kolesinski et al., 2014). Till now, no full β-

carboxysome structure has been successfully reproduced outside native host cells, where the latest 

attempt that was published recently showed carboxysome-like structures probably due to uncontrolled 

protein stoichiometry and organisation (Fang et al., 2018). 

 

An alternative strategy that simplifies the complicated β-carboxysomes to a reduced model has also 

been tested: carboxysomes with an artificial chimeric hybrid protein, named as CcmC, that replace 
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native CcmM, CcaA, and CcmN were successfully generated in native cyanobacteria host (Gonzalez-

Esquer et al., 2015). The chimeric carboxysome can replace native carboxysome to sustain CO2 

fixation in ambient air. However, reduced organelle diameter, as well as uneven Rubisco loads in 

carboxysomal lumens, are also observed. The reduced sizes and packing density of Rubiscos in this 

chimeric carboxysome suggest the importance of maintaining proper stoichiometry of structural 

protein CcmM, CcmN and CcaA to obtain optimised carboxysome assemblies when expressed 

heterologously.  

 

Overall, in the author’s view, the key to overcoming the difficulties in β-carboxysome engineering 

requires a better understanding of carboxysome stoichiometry, assembly as well as their regulations 

within the native host. 

 

 

1.3 The model organism Syn7942 for β-carboxysome study 

1.3.1 Advantages of Syn7942 as a model organism 

Cyanobacteria, once known as blue-green algae, are primitive aquatic prokaryotes among the oldest 

organisms on our planet. They are widely adapted species and fundamental members in almost every 

current ecosystem (Dvornyk et al., 2003). These ancient prokaryotes are the originators of 

photosynthesis, responsible for 25% of the global carbon fixation in the oceanic environment 

(Bullerjahn and Post, 2014; Flombaum et al., 2013). Synechococcus elongatus PCC7942, previously 

known as Anacystis nidulans R2, has been extensively selected as a model strain to study carbon 

assimilation (Tchernov et al., 2001), acclimation to environmental changes (Bustos and Golden, 1992; 

Schwarz and Grossman, 1998; Tsinoremas et al., 1994) as well as bacterial circadian clocks (Cohen 

and Golden, 2015; Golden, 2003; Swan et al., 2018). This rod-shaped organism is superior for 

microscopic studies over carboxysomes due to its distinctive carboxysome contents (three to four 

carboxysomes per cell) in clear and ordered cytosolic spaces and well-separated subcellular 

localisations (Savage et al., 2010; Yokoo et al., 2015). On the other hand, Syn7942 is reliably 

transformable by exogenous DNA naturally (Shestakov and Khyen, 1970), providing us with easy 
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access for carboxysome genes mutagenesis. Together with the most comprehensive and well-

documented gene and protein information in the database, Syn7942 serves as a perfect model 

organism for native carboxysome investigation in vivo.  

 

1.3.2 Traits of Syn7942 carboxysomes and β-carboxysomes in other organisms 

Through evolution, The protein compositions of β-carboxysomes in different organisms have adapted 

to different habitats diversely (Badger et al., 2006). It is essential to consider how Syn7942 

carboxysomes differ from other β-carboxysomes: What are features commonly shared among all β-

carboxysomes? What features are Syn7942-specific? Overall, carboxysomes in Syn7942 contain all 

the representative proteins in each category, including CcmK2 to RbcS coded by genes located within 

the main ccm and rbc operons, together with the CcaA, CcmK3/K4 and RbcX encoded by genes 

located on the satellite loci.  

 

The most considerable difference against other β-carboxysomes is that an additional major shell 

protein CcmK1 was absent in Syn7942. CcmK1 and CcmK2 are highly conserved structurally, with 

CcmK1 containing a ten amino acids long C-terminal extenstion compared with CcmK2 (Sommer et 

al., 2017). However, truncation of the C-terminus in both CcmK1 and CcmK2 does not prevent 

regular shell assembly, suggesting non-essential roles of extended C-terminus on CcmK1 (Cai et al., 

2016). Instead, CcmK1 is theoretically considered to be a redundant duplicate of CcmK2 that plays a 

role in balancing the overall shell stoichiometry at translational level (Sommer et al., 2017). The 

validation of CcmK1/CcmK2 stoichiometry and their quantitative relevance is beyond the grasp of 

this thesis. 

 

Another difference with most β-carboxysomes is RbcX. The rbcX that typically found between rbcL 

and rbcS in the rbc operon (Onizuka et al., 2004; Tanaka et al., 2007) is alternatively located at a 

distant satellite loci in Syn7942. The chaperonic role which was essential in β-carboxysomes 

(Saschenbrecker et al., 2007) in other organisms are not required for carboxysome functions (Emlyn-
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Jones et al., 2006). The contradictive findings in RbcX functions suggested some specific functions of 

RbcX in Syn7942, which require further characterisation.  

 

Lastly, the CA coded by ccaA was missing in several β-carboxysomes containing species. Instead, the 

catalytic function was fulfilled by the N-terminal domain of CcmM which also process γ-CA activity 

(Pena et al., 2010). The deletion of CcaA allowed cells to exhibit an HCR phenotype, indicating that 

the catalytic function was still primarily sustained by the CcaA in Syn7942 (So et al., 2002).  

 

1.4 Subcellular positioning of carboxysomes 

The intracellular organisation is of great importance for smooth metabolic and biosynthetic activities 

in bacteria (Rudner and Losick, 2010; Shapiro et al., 2009). Association of carboxysomes with 

cytoskeletal networks has been elucidated (Bobik, 2006; Yeates et al., 2011). Mainly, Syn7942 has 

evolved a comprehensive subcellular positioning system to organise the crowded and dynamic viscera 

of the cells. Crucial subcellular components such as carboxysomes and chromosomes at low copy 

numbers are spatially distributed within cells, ensuring the equal heritance to daughter cells (Jain et al., 

2012; Savage et al., 2010). A ParA-like filament based model has been proposed, indicating that 

carboxysome positioning is controlled by the cytoskeletal system (Savage et al., 2010). Experimental 

evidence has been reported supporting the above theory. Cytoskeletal proteins such as ParA and 

MreB have been identified in the fraction of isolated carboxysomes (Faulkner et al., 2017).  

 

Meanwhile, a previous study by electron microscopy shows the peripheral arrangement of 

carboxysomes near the thylakoid membranes (McKay et al., 1993).  The author also suggested 

functional advantages in Ci utilisation when carboxysomes are closer to the Ci uptake system over 

membranes. The discrepancies found in carboxysome localisation require further investigation. 

 

Nevertheless, carboxysome mobility is an energy consuming process. The observed localisation 

dynamics is not limited to the time point during cell divisions. Therefore, such energy consuming 
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repositioning should have functions besides separation of carboxysomes to daughter cells during cell 

divisions (Jain et al., 2012). From Chapter 3 to Chapter 5, the localisations of carboxysomes were 

investigated under different environmental conditions, with the aims of finding clues for the suggested 

functions. Even though such subcellular positioning mechanism might be mostly unique to Syn7942, 

the organelle positioning mechanism in elongated cells might serve as an excellent reference to 

elucidate how cells manage organelles within the limited subcellular space. 

 

1.5 Ci uptake systems 

In cyanobacterial cells,  the Carbon Concentrating Mechanisms (CCMs) is consist of carboxysomes 

and  Ci uptake system that work together to sustain the carbon fixation activity (Badger and Price, 

2003). The Ci uptake system locates on plasma membrane is capable of transport the substrate HCO3
-
 

passively into the cytoplasm (Price et al., 2008). In general, multiple types of Ci transporter have been 

identified, including an ATP-dependent high-affinity transporter BCT1 (Omata et al., 1999), 

electrochemical Na
+
 coupled  medium affinity transporters SbtA and BicA (Price et al., 2004; Shibata 

et al., 2002), and  two isoforms of reduced β-nicotinamide adenine dinucleotide phosphate (NADPH) 

or Ferredoxin (Fd) dependent NADPH NDH-I complexes (Maeda et al., 2002; Shibata et al., 2001). 

BCT1, SbtA and BicA are capable of transport extracellular HCO3
- 

into cytoplasm while NDH-I 

converts cytosolic CO2 into HCO3
-
, further reduced the concentration of cytosolic CO2 which promote 

the inward diffusion of CO2 across the plasma membrane (Burnap et al., 2015), as shown in the upper 

panel of Figure 1-7. The Ci uptake system functionally enables the concentration of Ci pools in the 

cytoplasm to reach a strikingly thousand-fold higher than that of the environmental Ci level (Price et 

al., 1998; Woodger et al., 2005), therefore elevates CO2 fixation efficiency and reduces unwanted 

photorespiration for carboxysomes (Eisenhut et al., 2008; Hagemann et al., 2013; Schwarz et al., 

1995).  
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Figure 1-7. Modulation of carboxysomes interrelated with Ci transport system and CBB cycle. 

The Ci transporter, CBB cycle are interlinked in cyanobacterial cells. Adapted from (Montgomery et 

al., 2016). The crucial step of carbon fixation is contained within carboxysomes. 

 

1.6 Carbon fixation and photosynthetic electron flow 

The dominant oxygenic phototroph by cyanobacteria laid the foundation of atmosphere composition 

3.5 billion years ago (Schopf and Packer, 1987). Moreover, cyanobacterial photosynthesis is 

sustaining the CO2 fixation and O2 regeneration in the atmosphere, contributing to the sustainable 

ecological environment nowadays. In cyanobacteria, solar energy from the sunlight is effectively 

converted by photosynthetic machinery locates on thylakoid membranes (Liu, 2016). The harvested 

energy is then utilised to support metabolic activities fundamentally required for cell survival and 

reproduction (Asayama, 2006; Ohbayashi et al., 2013). The utilisation of solar energy is achieved 

through the generation and transport of electrons which provide essential driving force for the 

synthesis of energy carriers such as ATP and NADPH.  
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In the model organism Syn7942, extensive research over photosynthesis is available, providing us 

with the well-documented background to investigate carboxysomes within the cellular environment. 

The photosynthetic machinery in Syn7942 mainly consists of the light-harvesting phycobilisome, 

Photosystem I (PSI), Photosystem II (PSII), cytochrome (Cyt) b6f and ATP synthase (ATPase), 

illustrated in Figure 1-8. The solar energy is first absorbed by phycobilisomes through light 

harvesting processes. PSII catalyses the oxidation of H2O molecules, splitting them into H
+
 and O2, 

generating electrons which are donated to the Plastoquinone (PQ) pool. Electrons from the PQ pool 

are subsequently passed onto cytochrome (Cyt) b6f complexes to pump protons across the thylakoid 

membrane and create an electrochemical gradient. When protons move down the gradient, ATPase 

obtains a spinning motion which bond ADP and Pi into ATP.. Over PSI, electrons are also generated 

and transferred away by intermediate electron carrier called ferredoxin (Fd). On the other hand, 

electrons are transferred further down the linear electron transport chain to PSI. Ferredoxin then 

carries the electrons to ferredoxin NADP
+
 reductase (FNR) to reduce NADP

+ 
to NADPH, or returns 

the electrons to the PQ pool, forming the cyclic electron transfer chain.  

 

Figure 1-8. Components of cyanobacterial photosynthetic complexes and electron transporters. 

Adopted from (Montgomery et al., 2016).  

 

The photosynthesis converts solar energy into usable forms of ATP and NADPH, providing the 

driving force to the Calvin-Benson-Bassham Cycle (CBB Cycle) that fix CO2 by carboxysomes 

(Drews and Niklowitz, 1956). In general, the CBB cycle (Shown in Figure 1-7) could be divided into 
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three phases: the carboxylation, reduction and regeneration. In cyanobacteria, the initial carboxylation 

phase in the carboxysome is catalysed by Rubisco where the RuBP combines with CO2 at 1:1 ratio. 

The generated 3PGA is then catalysed into glyceraldehyde 3-phosphate (G3P) with the energy 

provided by adenosine triphosphate (ATP) and reduced β-nicotinamide adenine dinucleotide 

phosphate (NADPH) regenerates through ferredoxin-NADP
+
 reductase (FNR) from oxidised β-

nicotinamide adenine dinucleotide phosphate (NADP
+
) and proton (shown as H

+
 in Figure 1-7). The 

G3P could be utilised by cellular biosynthesis providing essential building blocks for of biomass 

accumulation, at the same time, regenerated into ribose-5-phosphate (R5P), converted to ribulose-5-

Phosphate (Ru5P) that is then coverted by ATP back into RuBP therefore regenerated through the 

CBB cycle.  

 

Overall, ATP and NADPH are generated through the electron flow in photosynthetic light-dependent 

reactions. For cyanobacteria, light availability, particularly the intensity, is fluctuated on the daily and 

seasonal basis (Allahverdiyeva et al., 2015). Indeed, the light intensity is considered as the rate-

limiting factor for PSII, PSI and cytochrome (Cyt) b6f (Vermaas, 2001). Therefore, the light 

intensities ultimately determined the rates of ATP and NADPH synthesis. 

 

1.7 Methods used in carboxysome studies 

1.7.1 Transcriptomic approaches 

The development of high-throughput RNA-sequencing enables us to have a better understanding of 

carboxysome biogenesis within cellular metabolism. Transcriptomic data assist the recognition of 

carboxysomal genes through clustering of co-expression profile, particularly useful when the gene 

contents are located distant over the genomes. For instance, in carboxysome studies, the distant 

csoS1D was found to co-express with known carboxysomal genes in cso operon (Klein et al., 2009). 

 

Meanwhile, transcriptomic data also provide complementary evidence suggesting variation of 

carboxysomal contents. However, transcriptomic data alone is insufficient to support content changes 
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on protein level with the involvement of post-transcriptional regulations. As we lack the evidence of 

variation on protein level, the post-transcriptional regulation in carboxysomes remains unclear. In this 

thesis, we documented the carboxysomal content variation on functional protein levels, which would 

be crucial to uncover the regulations of carboxysomal stoichiometry and structural assembly essential 

for future carboxysome engineering. 

 

1.7.2 Proteomic approaches 

The application of proteomics in the past two decades has impacted BMC studies significantly, 

providing essential methods for carboxysomal protein validations as well as quantifications. In 

general, researchers have been adopting two methods widely, immunoassay and mass spectrometry 

(MS). Classic immunoassay using specially raised antibody is widely considered as direct evidence 

validating the presence of the target protein. For β-carboxysomes, antibodies have successfully raised 

against carboxysomal proteins in separate works: CcmK (which recognise all variants of CcmK 

homologs including CcmK2/3/4) (Rae et al., 2012), CcmO (Cai et al., 2016), CcmM (recognise both 

isoforms CcmM35/58) (Long et al., 2007), CcaA (Long et al., 2007), RbcL (Long et al., 2007), RbcS 

(Rae et al., 2012), CcmL (Cai et al., 2016) and RbcX (Emlyn-Jones et al., 2006), while antibodies 

specific for CcmN, CcmP are not yet available. Researchers have adopted immunoblot quantification 

to investigate stoichiometries from isolated carboxysomes or cell lysates (Long et al., 2007; Long et 

al., 2011). 

 

However, the effectiveness of quantification is limited by sensitivities of antibodies. The sensitivities 

of anti-carboxysomal antibodies are relatively low compared with commercial antibodies raised 

against non-bacterial originated proteins such as GFPs/YFPs. Some minor carboxysomal proteins 

such as RbcX (Emlyn-Jones et al., 2006) and CcmL (Cai et al., 2016) are so less in abundances that 

cannot be detected in cell lysates. Enrichment of carboxysomes through purification and isolation can 

overcome the sensitivity issue, but for proteins such as CcmN, CcmP and RbcX, detection cannot be 

achieved even in isolated carboxysomes, raising the possibility of potential destruction of 

carboxysome structures during isolation that leads to the release of these proteins from enriched 
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fractions (Faulkner et al., 2017). An alternative strategy is to enhance the recognition of target BMC 

protein by fusing tags with better specificity and sensitivity of antigen-antibody. Researchers have 

chosen poly-histidine tag (His-tag) due to its small size and cleavage capability after purification for 

carboxysomal protein recognition and relative quantification (Cai et al., 2013; Rohnke et al., 2018; 

Tanaka et al., 2009).  

 

Besides, relative quantification by high-throughput MS has also been adopted, giving researchers 

more power of detection beyond the limitation of antibodies (Long et al., 2005; Mayer et al., 2016; 

Zarzycki et al., 2017). The stoichiometry of RbcL and RbcS detected in isolated carboxysomes 

suggest a likely L8S5 assembly (Long et al., 2011); While CcmM58 and CcaA content are correlated 

linearly between ambient air and 2% CO2 growth conditions, suggesting defined assembly 

symmetries between these two proteins. However, due to the multiple numbers of carboxysome in 

cells, the stoichiometry of individual carboxysome cannot be determined conclusively by both 

immunoblot, and MS approaches from cell lysates, while isolation of carboxysomes suffers from 

possible protein losses.  

 

In this thesis, we extend the usage of immunoblot for quantification purposes by swapping native 

protein with FP-tagged versions in the original genomic regions. In this way, the expression and 

translation of FP-tagged proteins are under native control, closely resemble the conditions for their 

wild-type counterparts. Moreover, the universal FP-tags serve as a standard, would enable 

quantitatively comparison of different tagged proteins which were unable to achieve through special-

raised antibodies, providing relative quantification that assists in stoichiometry studies shown in 

Chapter 4 and Chapter 5. 

 

1.7.3 Bioinformatic approaches 

Comparative genomics trigger the expanding of BMC studies across different organisms since the 

first complete sequencing of bacterial genome (Fleischmann et al., 1995; Fraser et al., 1995). The first 

BMC being discovered, the carboxysome was found primarily due to the constant existance in cells 



Chapter 1  

25 

 

with its iconic polyhedron shapes in cells when observed under microscopy back in 1956 (Drews and 

Niklowitz, 1956). With the advance in genomic sequencing, homologs of carboxysome shell proteins 

were identified in propanediol utilising Salmonella (Chen et al., 1994), eventually leads to the 

discovery of new types BMCs, the Pdu microcompartment (Crowley et al., 2008). Unlike 

carboxysomes that are required in cells under general cultivation conditions, Pdu microcompartments 

are only induced in the host cells when supplying with specific nutrient propanediol.  

 

Furthermore, the discovery of satellite carboxysomal genes such as ccmP, csoS1D ccmK5/K6 (Cai et 

al., 2013; Klein et al., 2009; Sommer et al., 2017) and complicated genomic content for same 

carboxysomal genes across different species through comparative genomic studies (Sommer et al., 

2017) leading to the newly developed concept called BMC superloci (Kerfeld et al., 2018). Beyond 

the field of carboxysomes, new class of BMC such as glycyl radical enzyme-associated 

microcompartment (GRM) (Zarzycki et al., 2015), the Planctomycetes and Verrucomicorbia 

microcompartment (PVM BMC) that capable of degradating the L-fucose and L-rhamnose (Erbilgin 

et al., 2014) have been identified through comparative genomics studies. To date, homologs of BMC 

shell proteins have been identified in 23 out of 29 bacteria phyla, suggesting the universal adoption of 

BMC encapsulation systems among different bacteria species (Axen et al., 2014).  

 

In conclusion, comparative genomic approaches are powerful in expanding known information across 

different species for BMC identifications independent of experimental characterisations and will 

continue to be crucial in the discovery of novel BMCs with increasing numbers of sequenced bacterial 

genomic entries in future. 

 

1.7.4 Visualisation of carboxysomes 

1.7.4.1 X-ray crystallography   

Thousands of proteins assemble into a functional BMC unit. Instead of trying to characterise the 

entire BMC structure, strategy aiming at solving the structure of individual building block was 

initiated a decade ago, starting with the most studied shell protein CcmK by X-ray crystallography 
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(Kerfeld et al., 2005). Through analysing the diffraction profile of X-rays hitting on the crystallised 

proteins, three-dimensional photographs of atoms and the length as well as the types of chemical 

bonds could be interpreted, which eventually lead to the reconstruction of a three-dimensional model 

of the protein at atomic levels, as shown in Figure 1-1. 

 

Considerable efforts have been taken to solve the structure of each BMC protein in the past decade, 

providing us with the fundamental structure models. In summary, the structures for all carboxysome 

shell proteins, at least one for each type in BMC-T, BMC-H and BMC-P have been successfully 

solved (Cai et al., 2015a; Larsson et al., 2017; Sutter et al., 2017). The functional assemblies of 

hexamer, pentamer are therefore confirmed. Besides, crystal structures for partial internal proteins 

have also obtained. For instance, Rubisco (Bracher et al., 2011), CcaA (McGurn et al., 2016), CcmM 

(Pena et al., 2010) and RbcX (Tanaka et al., 2007) structures are available in protein database solved 

by X-ray crystallography. Models obtained for different homologs across species indicate strong 

structural homology even when sequence similarities are far lesser conserved (Sommer et al., 2017). 

 

Moreover, these high-resolution structures could be further analysed by computational simulations to 

predict their functional relevance. For instance, the permeability of BMC shell proteins was illustrated 

with simulated small molecules such as HCO3
-
, CO2 and O2 which suggest preferable permeability to 

HCO3
-
 compared with CO2 and O2 inferred from the calculated free energy required to pass through 

the central pore of hexameric protein (Mahinthichaichan et al., 2018; Park et al., 2017). Following a 

reductionist approach, the dynamic assembly processes of BMC are also reproduced by simulations 

using simplified mimics with properties such as interaction strengths between shell subunit-subunit, 

shell subunit-cargo protein and cargo-cargo protein suggested from reported X-ray structures 

(Perlmutter et al., 2016; Rotskoff and Geissler, 2018).  

 

However, the crystallography of some BMC structural proteins remains problematic. Particularly in 

carboxysomes, the structures of CcmN and CcmO in β-carboxysomes, as well as CsoS2 in α-

carboxysomes remain unsolved. Sequence analysis of these proteins suggests flexible 3D formations, 



Chapter 1  

27 

 

therefore, lead to unsuccessful protein crystallisation. Another question raised is that whether 

individually crystallised structure represents the native biological assembly. A double-layered CcmK2 

formation is observed from crystallisation data (Samborska and Kimber, 2012). However, this double-

layered formation cannot be confirmed through Electron microscopy (EM) and Atomic force 

microscopy (AFM), where single layers of shell assembly are deduced (Faulkner et al., 2017; Sutter et 

al., 2016).  

 

1.7.4.2 Electron microscopy  

Electron microscopy (EM) has provided the first evidence of BMC existing in bacteria cells (Drews 

and Niklowitz, 1956). Furthermore, with the establishment of BMC isolation protocol, structural 

details regarding the arrangement of interior proteins and shells were uncovered (Faulkner et al., 2017; 

Iancu et al., 2007). For carboxysomes, the heterogeneity in BMC sizes and different interior assembly 

could be observed through EM (Faulkner et al., 2017; Iancu et al., 2007). Likewise, structural changes 

caused by knock-out of BMC protein of interest in vivo could be detected, providing functional 

references for the target protein (Cai et al., 2009; Cai et al., 2013; Parsons et al., 2010; Rae et al., 

2012).  

 

In recent years, a new technique called Cryogenic electron microscopy (cryo-EM) which could 

generate high-resolution structure that rivals the X-ray crystallography directly through native 

assemblies (Agirrezabala et al., 2015; Jiang and Tang, 2017; Lee and Gui, 2016; Sirohi et al., 2016) 

has been introduced from virus structure studies to BMC studies. Moreover, improvement in cryo-EM 

techniques over the past 10 years has reveal more paritial structures regarding individual rubisco and 

its assembly in carboxysome lumens (Dai et al., 2018; Schmid et al., 2006). The combination of X-ray 

crystallography together with cryo-EM generate high-resolution 3D structures of BMC shells 

assembly, revealing the basic principles such as the orientation of concave/convex as well as the 

assembly patterns of BMC-H, BMC-P and BMC-T proteins in an artificially expressed 6.5-MDa 

BMC (Sutter et al., 2017).  
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However, the disadvantages of EM methods are also significant. In the study of β-carboxysomes, 

researchers cannot depict more details such as the arrangement of homolog proteins from the minor 

structural differences through traditional EM. Meanwhile, the principle of adopting high-resolution 

imaging by cryo-EM requires BMCs to be enriched at high purity level, which require further 

optimising to exclude filamentous proteins such as ParA/MreB in the isolated fractions (Faulkner et 

al., 2017). Also, as an imaging technique based on fixed sample, EM cannot provide any aid to 

investigate the in vivo dynamics of structural changes that have been suggested to be a crucial feature 

of BMCs shells (Faulkner et al., 2017; Sutter et al., 2016). 

 

1.7.4.3 AFM microscopy  

Atomic force microscopy (AFM) enables the profiling of sample surface at atomic level by contacting 

by a probe which can magnify the profile of surface at scales of nanometres. AFM was initially 

designed to investigate flattened samples such as material surfaces in physics (Zhong and Yan, 2016) 

or biological membrane surfaces such as thylakoid membranes (Chuartzman et al., 2008; Liu and 

Scheuring, 2013). New application of AFM focusing on non-flattened material, particularly the virus 

(Kuznetsov and McPherson, 2011; Marchetti et al., 2016) stimulated the application of AFM on BMC 

studies (Rodriguez-Ramos et al., 2018). Up to date, several studies on sheet-like BMC shell proteins 

as well as intact BMCs have been done, providing insight into the uncharacterised properties of 

BMCs: the BMC shell hexamers can relocate over the assembled sheets dynamically, suggesting 

flexible protein-protein interactions (Garcia-Alles et al., 2017; Sutter et al., 2016), while intact BMCs 

are also flexible and have soft mechanical properties under indentation (Faulkner et al., 2017). 

 

The most significant advantage of AFM is that the BMC structure can be visualised at the atomic 

level in a near-native condition. With a high-speed imaging variant of AFM, fast formation changes 

could be detected in a matter of seconds, capturing the dynamics effectively. However, the AFM also 

depends strongly on the isolation and purification of BMC samples. Contaminants in the imaging 

samples would increase background noises, leading to reduced imaging resolution. Meanwhile, the 
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artificial in vitro environment that mimic the in vivo status such as pH and ion concentration require 

further characterisation. Unlike the simulated liquid environment of the imaging buffer, the cytoplasm 

in live cells undergoes transformation between glass to liquid forms depending on metabolic activity 

(Parry et al., 2014). Moreover, the cytosol environment is crowded with all types of proteins and 

chemicals at distinctive sizes (Spitzer and Poolman, 2013) and undocumented interactions between 

these proteins and chemicals to BMC might play important role determine the structure and function 

of BMCs in cells. The isolation of BMC from the cytoplasm in AFM studies enabled better 

characterisation of surface structures and mechanical properties but limited the detection of in cell 

modulation and potential cross-talking with cytosolic environment such as interactions with 

cytoskeletal mobilisation system (Savage et al., 2010).  

 

1.7.4.4 Fluorescent microscopy  

The introduction of fluorescent microscopy provides researchers with powerful tools to visualise 

subcellular activity and decipher the biological functions in living cells, which was unable to be 

delivered through any other methods described above. In general, through the visualisation of 

fluorescence emitted by fluorescent proteins (FPs) that introduced to target protein in the live cells, 

localisation, mobilisation, as well as quantification information of targeted protein (or complex) could 

be retrieved.  

 

Visualisation of BMCs by fluorescent microscopy has been widely practised in previous studies: For 

carboxysomes, new carboxysome components CcmP has been verified through the co-localisation 

with known carboxysomal proteins RbcL (Cai et al., 2013); The carboxysome spatial localisation in 

cells, as well as the assembly procedure, have been extensively elucidated by time-lapse imaging 

techniques (Cameron et al., 2013; Savage et al., 2010); Fluorescent microscopy also provides an easy 

way to validate the assembly of artificial carboxysomal components in native host (Cai et al., 2015b) 

as well as in non-native species (Fang et al., 2018; Lin et al., 2014a; Sargent et al., 2013). Meanwhile 

fluorescent microscopy-based techniques such as Fluorescence Recovery After Photobleaching 

(FRAP) has also been performed on an abnormal bar-like carboxysomes (limited by the FRAP 
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resolution to regular carboxysome diameter), suggesting the immobilised nature of Rubiscos 

complexes within formed carboxysomes (Chen et al., 2013); Researchers have also performed 

fluorescence resonance energy transfer (FRET) to characterise the proximity and formation of CcmK 

shell proteins within the sheet formation, revealing significant stronger interactions within CcmK2 

compared with any other paralog pair (Samborska and Kimber, 2012). 

 

Besides, the in vivo quantification is another advantage that has been exploited widely in studies over 

different cell and organisms (Chong et al., 2015; Hoffman, 2002; Kim et al., 2010; Muzzey and van 

Oudenaarden, 2009; Novak et al., 2015; Verveer et al., 2000; Zhang et al., 2018). The quantification 

in vivo serves as a good reference to conventional quantification such as immunoassay. Interestingly, 

the advantages of in vivo quantification have never been fully exploited in BMC studies. Signal 

quantification has only been adopted in few research indicating the event of BMC birth event (Chen et 

al., 2013; Niederhuber et al., 2017). In the author’s view, the differences in tagging strategy are the 

core reasons limiting the quantification application. In most fluorescent studies, another copy of FP 

tagged protein is usually inserted in the neutral insertion site (NS) or an inducible expression vector 

(Cai et al., 2013; Cameron et al., 2013; Savage et al., 2010). In such cases, the wild-type copy of the 

target protein is maintained. Quantificational fluorescent microscopy can only determine the content 

of tagged proteins, leaving wild-type proteins un-quantified. In this thesis, we adopted a strategy that 

replaces the wild-type gene with the FP-tagged version locate in the original genomic loci. In this way, 

we maintained the native control of wild-type gene and valid the detection of total protein as wild-

type gene has been eliminated through segregations through antibiotic selections (described in 

Chapter 2).  

 

As a classical technique that has been developed for decades, on-going development of new 

fluorescent microscopy variants aiming at better resolution, better precision of quantification is now 

available. Structured illumination microscopy (SIM) is a new technique with enhanced resolution 

through computational image reconstruction based on data collected in and outside the normal 

detection range (Kraus et al., 2017). In BMC studies, the localisations of shell protein CcmK4 and 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/forster-resonance-energy-transfer
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structural protein CcmM within β-carboxysome in vivo are illustrated, therefore further confirmed the 

shell localisation of CcmK4 (absence in the interior) and even distribution of CcmM within 

carboxysome lumen (Niederhuber et al., 2017). In addition, special-purposed techniques have also 

been developed to extend the application of fluorescent microscopy in BMC studies. For instance, a 

photon-active GFP has been introduced into carboxysomes, suggesting the permeability to protons by 

the shells, further indicated the absence of pH gradient across carboxysome shells (Menon et al., 

2010). 

 

1.8 Aims of this thesis 

My PhD research aims at the functional and structural modulation of carboxysomes in native host 

Synechococcus elongatus PCC7942. In Chapter 3, we investigate the formation and spatial position 

of β-carboxysomes through a combination of live-cell confocal fluorescence microscopy and 

biochemical and physiological approaches. In Chapter 4, we further characterise the exact 

stoichiometry of undocumented building components in individual carboxysome as well as their 

compositions coping with environmental changes at the single-organelle level using real-time single-

molecule fluorescence microscopy, confocal and electron microscopy, combined with a suite of 

biochemical and genetic assays. In Chapter 5, we further document the modulation of carboxysomes 

under the diurnal light condition and investigated the involvement of circadian clock regulation in the 

biogenesis and organisation of carboxysomes by live-cell confocal fluorescent microscopy centred 

techniques. 
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Chapter 2 Material and methods 

Material and methods 
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2.1 Bacterial strains and growth conditions 

2.1.1 Escherichia coli 

Escherichia coli (E. coli) strains used and generated in this work were from lab collections. Two E. 

coli strains were used for maintenance, reproduction and manipulation of DNA fragments that were 

later used in cyanobacteria transformation: DH5α (Thermo-Fisher Scientific) and BW251113 that 

contain a λ-red recombination system (Datsenko and Wanner, 2000). E. coli strains were either 

cultured in liquid using premade LB broth (Miller’s) powder at 25 g/L (Thermo-Fisher Scientific 

12795027 Miller’s LB broth base) with starting OD600 at 0.02-0.05 (Jenway 6300 Spectrophotometer, 

Jenway, UK) or on LB agar plates made by premixed powder at 37 g/L (Thermo-Fisher Scientific 

22700041 Lennox LB agar powder) at 37 °C. An exception for BW251113 that before recombination 

procedures the cells were grown at 30°C as the λ-red recombinant plasmid is heat sensitive and 

inactivation would occur if grown at higher temperature. Cultures were allowed to grow overnight for 

8-16 hours where dense cultures reaching OD600 at 1.2-1.5 were obtained for plasmid extractions. 

Antibiotics were supplied at the following concentrations: ampicillin at 100 μg/mL, apramycin at 50 

μg/mL and spectinomycin at 50 μg/mL, kanamycin at 50 μg/mL in ddH2O and chloramphenicol at 10 

μg/mL in ethanol. For storage of the strains, overnight cultures were transferred to 4 °C for short-term 

storage and were snap-frozen by liquid nitrogen after mixing with protectant (20% glycerol) and 

stored at -80°C for long-term storage. All plasmids were also extracted and stored separately at -80 °C. 

Strains generated for this work were listed below in Table 2-1. Maps for the vectors used in published 

works are attached in Appendix B. 
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Table 2-1. E. coli vectors in this work 

Vector names Description 
antibiotic 

resistance 

Related 

Chapter 

pGEM-T easy Cloning ampicillin 3,4,5 

BW251113 Lambda-red recombination chloramphenicol 3,4,5 

eGFP_pIJ786 
Amplification of eGFP: apramycin 

Cassette 
apramycin 3 

YFP_pIJ786 Amplification of YFP: apramycin Cassette apramycin 4,5 

GFP free Inducible Inducible eGFP expressed in Syn7942 apramycin 3 

mYpet_pIJ786 
Amplification of mYpet: apramycin 

Cassette 
apramycin 4 

KO_pIJ788 
Amplification of KO: spectinomycin 

cassette 
spectinomycin 5 

pLL06_CFP-His-

Km_pET26b 
Amplification of CFP: kanamycin cassette kanamycin 4,5 

pAM2195 Luciferase reporter with PsbAI promoter chloramphenicol 5 

 

2.1.2 Synechococcus elongatus PCC 7942 

Synechococcus elongatus PCC 7942 (hereafter shown as Syn7942) wild-type strain was from lab 

collections and used to generate mutants in this study. Cultures were grown in BG-11 medium 

(Rippka et al., 1979) or BG-11 agar plates with TES buffer pH 8.2 (22.9 % w/w of C6H15NO6S) and 

sodium thiosulphate (0.3 % w/w of Na2S2O3), solidified by 1.5-2 % Agar-agar (w/v). For liquid 

cultures, final culture volume at 5-10 mL or 30-50 mL were added in small filter capped culture flasks 

(Nunc
TM

 Cell Culture Treated EasYFlasks
TM

 156367 Thermo-Fisher Scientific) or large filter capped 

culture flasks (Nunc
TM

 Cell Culture Treated EasYFlasks
TM

 156499 Thermo-Fisher Scientific) and 

kept in 30 °C culture room with constant shaking at 100-120 rpm under warm growth light 

illumination (described in Figure 2-3) at 35 μE·m
−2

·s
−1

. Strains on plate and in liquid used for 

inoculation were refreshed every 2-4 and 1 week by dilution with fresh BG-11 medium together with 

antibiotics, while for mid-term storage cultures were kept at 30 °C under 20 μE·m
−2

·s
−1 

constant white 

light illumination. For long-term storage, cell suspensions were washed by fresh BG-11 and 

concentrated to OD750 above 10, then supplemented with 8 % DMSO and immediately snap-frozen by 
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liquid nitrogen and stored at -80 °C. The derivative strains produced in this work are listed in Table 2-

2.  

 

Table 2-2. Cyanobacterial strains generated in this work. 

Strain names Method of generation 
antibiotic 

resistance 

Related 

Chapter 
Source/author 

RbcL:eGFP Homologous recombination apramycin 3 Luning Liu 

CcmK4:eGFP Homologous recombination apramycin 3 

Yaqi 

Sun/Matthew 

Faulkner 

free GFP Inducible vector on plasmid apramycin 3 Yi Fang 

CcmK2-YFP 

Homologous recombination 

 

apramycin 4 Yaqi Sun 

CcmK2-YFP partial apramycin 4 Yaqi Sun 

CcmK3-YFP apramycin 4 Yaqi Sun 

CcmK4-YFP apramycin 4 Yaqi Sun 

CcmL-YFP apramycin 4 Yaqi Sun 

CcmM-YFP apramycin 4 Yaqi Sun 

CcmN-YFP apramycin 4 Yaqi Sun 

RbcL-mYpet apramycin 4 Yaqi Sun 

RbcL-YFP apramycin 4 Yaqi Sun 

RbcS-YFP apramycin 4 Yaqi Sun 

RbcX-YFP apramycin 4 Yaqi Sun 

CcaA-YFP apramycin 4 Yaqi Sun 

CcmP-YFP apramycin 4 Yaqi Sun 

CcmP-YFP partial apramycin 4 Yaqi Sun 

CcmO-YFP apramycin 4 Yaqi Sun 

CcmO-YFP & RbcL-

CFP 

apramycin & 

kanamycin 
4 Fang Huang 

KaiA-YFP apramycin 5 Yaqi Sun 

ΔKaiA spectinomycin 5 Yaqi Sun 

ΔKaiA & RbcL-YFP 
apramycin & 

spectinomycin 
5 Yaqi Sun 

KaiA-YFP & RbcL-

CFP 

apramycin & 

kanamycin 
5 Yaqi Sun 

pAM2195 Neutral Site insertion chloramphenicol 5 
Plasmid gift 

from Golden lab 

 

2.2 Molecular biology 

2.2.1 DNA transformation of E. coli 

2.2.1.1 E. coli Component cell preparation 

Component cells used in this work were prepared freshly with DH5α and BW251113 cells (see 

section 2.1.1). For DH5α cells, 2 μL of overnight culture or  half a single colony from agar plate were 

inoculated with 10 mL liquid LB medium for overnight growth at 37 °C. On the day of the heat shock 
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transformation, 100 μL of the overnight culture were added into 40 mL fresh LB medium (separate in 

4 vials for sufficient mixing) and grown for 3 to 4 hours at 37 °C until density reaching OD700 

between 0.5-0.6. Cells were then washed with 5 mL of ice water pre-cooled MgCl2 solution (100 mM, 

autoclaved) for three times by centrifuging at 4500 g, 4 °C for 3 minutes. The final pellet was 

resuspended with 1 mL of ice-cold CaCl2 solution (100 mM, autoclaved) and kept on ice for at least 

10 minutes before use.  

 

For BW251113 cells, on the day of the electroporation, cultures were inoculated from 2 μL of 

overnight culture or  half a single colony from agar plate into 10 mL liquid LB medium for overnight 

growth at 30°C, re-inoculated from 100 μL into 30 mL of fresh LB medium with chloramphenicol for 

4 to 4.5 hours until density reach 0.5 to 0.6, measured by spectrophotometer at OD700. Then similar 

wash steps were involved but with ice-cold 10 % glycerol solution (autoclaved) for three times. The 

final pellet was resuspended in 100 μL of 10 % glycerol solution (autoclaved) and kept on ice for at 

least 10 minutes before use. 

 

2.2.1.2 Heat shock 

Heat shock was carried out to integrate the gene fragments together with its 1.5 kilobase pair (kbp) 

upstream/downstream flanking sequence onto a pGEM-T easy vector according to protocol described 

(Froger and Hall, 2007) with several modifications. 500 μg of extracted DNA fragments or 5 μg 

plasmid were added to 100 μL of chemically competent E. coli cells and incubated on ice for 20 

minutes. The cells were heated shocked for 45 s at 42 °C then placed back immediately on ice and 

kept on ice for 2 minutes. Then 1 mL of ice-cold LB medium was added to the mixture without 

vortexing, sealed with foil and place on the shaker in 37 °C growth room for at least 1 hour. After the 

growth, 200 μL of the mixture was spreaded onto plates supplemented with Isopropyl β-D-1-

thiogalactopyranoside (IPTG), 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal) and 

antibiotics. Negative control was done in parallel with just component cell. After overnight growth at 

37 °C, blue-white screening was carried out and positive colonies were transferred to new plates for 

storage and plasmid extractions. 
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2.2.1.3 Electroporation 

We performed two steps of electroporation to introduce the gene fragments including up/down-stream 

flanking sequences, and induce the recombination by λ-red recombination system (Datsenko and 

Wanner, 2000) respectively.  

 

During the 1
st
 electroporation, 50 μL of BW251113 competent cells (described in section 2.2.1.1) 

were mixed with 5 μL of p-GEM plasmid ligation product that contain target gene fragments at 

manufacturer suggested concentration, placed in pre-cooled 2 mm-gap electroporation cuvette for 5 

minutes. The electroporation was performed with 2500 V, 25 μF of capacitance, 200 Ω of resistance 

by Bio-Rad electroporation system (Bio-Rad Gene Pulser equipped with a pulser controller and a 

capacitance extender module). After the pulse, 1 mL of ice-cold LB medium was immediately added 

in and mixed well by pipetting, then transfer back to 1.5 mL EP tubes for 1-1.5 hours of growth in 

30 °C culture room for cell multiplication. Later the cell culture was pelleted down by centrifugation 

at 13,000 rpm for 1 minute. 950 μL of supernatant was removed, leaving the pellet resuspended with 

the remaining 100 μL LB medium later to be spreaded onto a plate with ampicillin and 

chloramphenicol and grown overnight at 30 °C. Colony screening PCR was performed (described in 

section 2.2.4) to confirm the successful transformation. 

 

The 2
nd

 electroporation was performed similarly to the 1
st
 one. The differences are: firstly, after the 

pulse, ice-cold liquid LB supplemented with 200 mM of arabinose was added instead of just LB to the 

cells to induce the production of λ-red recombinase. Secondly, the growth duration after 

electroporation was increased to 2-2.5 hours to allow sufficient recombination. Thirdly, the overnight 

growth was done with antibiotics on the successful recombinant at 37 °C instead of 30 °C.  Moreover, 

lastly, the colony screening PCR was performed using colonies from the 2
nd

 or 3
rd

 plates instead ones 

from the 1
st
 plate to allow duplications of recombinant plasmids with present of respective antibiotics 

and eliminations of previous non-recombinant plasmids through removal of antibiotic pressures. 
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Colony screening PCR was performed with segregation primers (listed in Appendix A) to confirm the 

successful recombination. 

 

2.2.2 DNA Transformation of Syn7942 

All fluorescent protein tagging and Knock-Out mutants were generated following the same redirect 

strategy (Liu et al., 2012). For fluorescent protein insertion, cassettes containing coding sequence of 

target protein plus fluorescent protein on its C-terminus, as well as an antibiotic-resistant protein 

operon could replace the Wild Type copies of the target gene on original genome through 

homologous recombination. For Knock-Out mutants, the Wild Type copies of the target gene were 

replaced by cassettes containing only antibiotic-resistant genes, therefore eliminate the target gene on 

genomes through recombination. The diagram of recombination is shown in Figure 2-1. 

                                     Fusion strategy                                             KO strategy 

 

Figure 2-1. The strategy of FP fusion and Knock-Out using REDIRECT protocol. A fragment 

contains 800 bp upstream and downstream of the gene with or without gene plus fluorescent protein 

together with an antibiotic-resistant cassette (encoded in reverse orientation) in order to replace the 

genomic DNA fragment by homologous recombination. FRT indicates flippase recognition target 

which can be used to excise inserted cassette. Acc3IV and aadA indicate apramycin and 

spectinomycin resistant genes respectively. OriT indicates short sequence as the origin of transfer 

during bacterial conjugation. 

 

2.2.2.1 Syn7942 Component cell preparation 

Syn7942 cells are naturally component for transformation and efficiency for acceptance of foreign 

DNA depends on the status of growth (Golden and Sherman, 1984). Therefore in this thesis 
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component cells were prepared freshly. 40 mL cultures in exponential growth phase were harvested 

by centrifugation (5,000 g, 30 °C for 10 minutes) and washed with BG-11 medium three times and 

then concentrated to 1 mL. The dense component cells were kept at 30 °C before use within 30 

minutes. 

 

2.2.2.2 Homologous recombination of Syn7942 

Syn7942 was transformed with the recombinant plasmid DNA extracted from E. coli cells after 2
nd

 

electroporation as described earlier (Liu et al., 2012). For each transformation, 30 μL of recombinant 

plasmid was added to 100 μL of cells and incubated for overnight at 30 °C or 3 hours at 34 °C in dark. 

The mixture was then spreaded onto BG-11 agar plates with corresponding antibiotics. Cells on plates 

were kept grown under maintenance condition (described in section 2.1.2) for 2-3 weeks. The 

surviving colonies were transferred to new plates for further growth and screening.   

 

2.2.2.3 Evaluation of homologous recombination in Syn7942 mutants 

Due to the existence of multiple copies of genome in Syn7942, the recombination status needs to be 

further checked by colony screening (described in section 2.2.4.1). The evaluation of segregation was 

performed with primers designed across the insertion/deletion site, where different sizes of band 

indicate non-insert or successful-insertion/deletion respectively, as shown in Figure 2-2. Primers used 

during screening were all listed in Appendix A. During screening, a negative control using Wild 

Type genomic DNA as template was also included. The sizes of amplified bands were estimated from 

DNA ladder that loaded together with the samples during gel electroporation. 
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Figure 2-2. Schematic diagram of segregation screening. Primers were designed over the up/ 

down-stream of gene for Knock-Out, where successful recombination would yield fragments at size 

equal to the size of Wild-Type band, minus the size of the coding sequence, then plus the size of the 

spectinomycin resistant fragments at 1412 bp. For fluorescent protein insertions, primers were 

designed before and after the stop codon of the target gene, leaving the fragment amplified with Wild-

Type template at averagely 200 bp while successful recombination results in fragment sizes that are 

2126 bp greater than their Wild Type counterpart. 

 

2.2.3 DNA purification and isolation 

2.2.3.1 Genomic DNA extraction from Syn7942 cells 

Genomic DNA from Syn7942 was extracted with PureLink Genomic DNA Mini Kit (Fisher 

Scientific UK Ltd) following the manufacturer protocol. The genomic DNA extracted from Wild-

Type Syn7942 was used as template for carboxysome gene and fragment amplification via PCR 

(described in section 2.2.4). Extracted DNA was then checked for concentration and quality 

(described in section 2.2.3) before storage. 

 

2.2.3.2 Plasmid purification from E. coli cells 

Plasmid extraction from E. coli was done using the GeneJET Plasmid Miniprep kit (Fisher Scientific 

UK Ltd) according to the manufacturer’s instructions. The extracted plasmids were then checked for 

concentration and quality before stored at -20 °C for short-term and -80 °C for long-term storage. 
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2.2.3.3 PCR product purification after gel electroporation 

Band of PCR product in agarose gel was cut out after electroporation for purifications by GeneJET 

Gel Extraction Kit (Fisher Scientific UK Ltd) following the manufacturer’s instruction. DNA 

products were stained by Midori green Nucleic staining solution. To minimise degradations to the 

DNA, visualisation of agarose gel was done with long wavelength UV at controlled durations. The 

extracted DNA fragments were then checked for concentration and quality (section 2.2.3) before 

stored at -20 °C for short-term storage and -80 °C for long-term storage. 

 

2.2.3.4 DNA quality and concentration measurement 

The concentration and quality of the DNA were checked by a Nanodrop (ND-100 Spectrophotometer) 

at Absorbance wavelength of 260 nm (A260) and 280nm (A280). The purity of DNA could be indicated 

by the A260/A280 ratio ranging between 1.85-1.95, where values outside that range would indicate the 

presence of contaminants such as protein and ethanol from the extraction process.  

 

2.2.4 DNA manipulation 

2.2.4.1 Polymerase Chain Reaction 

General PCR was done according to the following steps. For each primer set, an initial gradient PCR 

was performed with template from positive control to determine the optimised annealing temperature 

ranging from 45-65 °C with protocol as follows: Initialisation at 94 °C for 2 minutes > (denaturation at 

94 °C for 45 seconds > annealing at 45-65 °C for 45 seconds > elongation at 72 °C for 2 minutes) x 15 

cycles > (denaturation at 94 °C for 45 seconds > annealing at 55 °C for 45 seconds > elongation at 

72 °C for 2 minutes) x 15 cycles > final elongation at 72 °C for 4 minutes. The most effective 

annealing temperature could be determined corresponding to the strongest amplification during 

gradient PCR. Optimised annealing temperature was used to perform PCR for two purposes. One is to 

precisely amplify the fragments from genomic DNA, plasmid for manipulation; the other is for quick 

screening of colonies and fragments. The complete list of primers used in this thesis were list in 

Appendix A. 

 



Chapter 3 

42 

 

2.2.4.1.1 Non-high fidelity PCR for screening purposes 

The DreamTaq polymerase (Thermo Fisher Scientific) was generally used for non-high fidelity 

amplification of DNA during screening of colonies for E. coli and Syn7942 strains. Standard protocol 

was used according to manufacturer manual. An additional procedure was performed for template 

preparation from Syn7942 cells before used as template for PCR reactions, where cells were 

harvested and washed with ddH2O and denatured at 99 °C for 5 minutes. This step is to ensure the 

successful release of DNA from the cell and minimise the potential effect brought by the salt-enriched 

BG-11 medium during PCR reactions. 

 

2.2.4.1.2 High fidelity PCR 

High fidelity PCR was performed to amplify DNA precisely. In this work, Q5 Hot Start High-Fidelity 

DNA polymerase (New England Biolabs) and CloneAmp HiFi PCR Premix (Clontech) were used 

following the manufacturer protocols. An additional A-tailing procedure by DreamTaq polymerase 

was done over gene fragments for ligation purposes to generate blunt poly-A end region that was 

required by pGEM-T easy vector ligation. 

 

2.2.4.2 DNA sequencing 

To confirm the final constructs generated are correct in sequence, sequencing was performed using 

either extracted, genomic DNA or high fidelity amplified PCR product. The sequencing service was 

provided by Eurofins, with full sequencing coverage from both strands.  

 

2.3 Treatments on Syn7942 strains 

2.3.1 Light and CO2 treatment conditions 

For light treatments, the light treatments in chapter 3 for light modulate biogenesis study and chapter 

5 for stoichiometry study are slightly different. Synechococcus cultures were provided with light at 

intensities of 10 μE·m
−2

·s
−1

 as LL, 50 μE·m
−2

·s
−1

 as ML, and 100 μE·m
−2

·s
−1

 as HL respectively in 

Chapter 3.  In Chapter 4, light intensity of HL treatment was reduced to 80 μE·m
−2

·s
−1

 due to the 

https://www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-biology/thermo-scientific-molecular-biology-products/dreamtaq-dna-polymerase.html
http://www.plantphysiol.org/content/171/1/530#def-2
http://www.plantphysiol.org/content/171/1/530#def-3
http://www.plantphysiol.org/content/171/1/530#def-4
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difficulties of carboxysome signal quantification at 100 μE·m
−2

·s
−1

. With reduced light intensity but 

still higher than ML, the HL treatment in Chapter 4 was capable of representing the phenotype 

induced by increased light meanwhile maintained separated signal profiles for more effective 

quantification analysis. 

 

The CO2 treatments were done in a specially designed incubator (SciQuip Incu-430C) with light 

illumination at 50 μE·m
−2

·s
−1

, supported by a CO2 control module (built upon WEST P6100 controller) 

that monitor and maintain the CO2 level at 3% in the chamber. The spectrum of light treatments and 

CO2 treatments were shown in Figure 2-3.  

 

For all treatments, cultures were inoculated from seeding cultures during exponential growth phase 

under maintenance condition by dilution of fresh BG-11 medium, kept on same shakers under same 

rpm settings (100-120rpm). Culture volumes in flasks were controlled as well to ensure sufficient 

fixing. For large and small culture flasks (Thermo-fisher brand), 40mL and 5mL cultures at final 

volume were set for all treatments.  

 

 

Figure 2-3. Spectrum for light illumination during light treatments and CO2 treatment.  Light 

quality profiles are similar and comparable between light (left figure) and CO2 (right figure) 

treatments, were major peaks appear at 575nm and the 2
nd

 peak at 450nm, representing warm and cold 

wavelength of light. 
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2.3.2 Diurnal light treatments conditions 

Diurnal light treatments were done according to method described in (Cohen et al., 2014). 12 hours 

dark-12 hours light were provided on a platform with black curtains that block all surrounding lights. 

Light intensity was kept same with constant ML treatment at 50 μE·m
−2

·s
−1

. Seeding cultures were 

maintained in constant light condition as described in section 2.1.2.    

 

2.3.3 Electron transport inhibitor, general protein synthesis inhibitor and induction 

treatments. 

The electron transport inhibitors DCMU (Sigma-Aldrich) and DBMIB (Sigma-Aldrich), and the 

protein synthesis inhibitor lincomycin were added to 20 μM, 10 μM, and 400 μg·mL
−1

, respectively. 

Cells were adapted for 24 h in the presence of DCMU, DBMIB, or lincomycin before microscopy 

imaging. The free-eGFP-expressing Synechococcus cells were induced with 1 mM of isopropyl β-d-1-

thiogalactopyranoside (IPTG) for 24 h before confocal imaging.  

 

2.4 Syn7942 strain evaluations 

2.4.1 Optical measurement for liquid culture cell densities, absorption spectra and 

chlorophyll a concentration 

For cell density recording and doubling time calculation, the cell densities of culture were tracked 

through measuring of 750 nm absorption per 24 hours. For larger culture, samples were taken and 

loaded in 10 mm vials at volume of 1 mL and measured by spectrophotometer (Jenway 6300, UK).  

For small-scale cultures, samples were taken and loaded in 96-well microplate at volume of 100 μL 

and measured by microplate reader (Spectramax 340, Molecular Devices, US), read at wavelength 

750 nm. 

 

For absorption spectra measurement, samples were taken and loaded in 96-well microplate, then 

measured by microplate reader at wavelength from 500 nm to 750 nm. For chlorophyll a (Chla) 

content determination in oxygen uptake measurement of the strains, standard protocol was applied as 

http://www.plantphysiol.org/content/171/1/530#def-7
http://www.plantphysiol.org/content/171/1/530#def-8
http://www.plantphysiol.org/content/171/1/530#def-7
http://www.plantphysiol.org/content/171/1/530#def-8
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previously described (Komenda and Barber, 1995). Cell cultures were washed and concentrated 10 

times (final OD750 ranging from 5 to 20). Then 10 μL of concentrated cell cultures were mixed well 

with 990μL of methanol by pipetting and let settled for 10 minutes. The mixture was then centrifuged 

at 12,000 g for 2 minutes by bench-top centrifuge for pellet removal). The supernatant was collected 

and transferred in a 1 mL cuvette for absorption measurements at both 666 nm and 750 nm by 

Spectrophotometer. Chl a concentration (μg/mL) was calculated by the following equation: 

 

C (Chl a) = (OD666−OD750) ×12.6×10 

 

In the equation, 12.6 is the Chl a molar extinction coefficient and 10 is the dilution factor. 

Standardisation of the spectrophotometer was done using mixture made with 10 μL fresh BG-11 and 

990 μL methanol. 

 

2.4.2 Oxygen evolution measurement 

O2 uptake of cell cultures was measured in the dark at 30 °C in a Clarke type oxygen electrode 

(OxyLab 2; Hansatech) according to method described in (Liu et al., 2012). In general, 1 mL of cell 

suspension calibrated to Chl a concentration of 10 μM was added into the electrode chamber under 

constant temperature control at 30 °C, sealed from the atmosphere with sufficient mixing. The 

readings were taken after the culture has been adapted in chamber in darkness for 2 minutes. 

Meanwhile the oxygen consumption rate was recorded. Light module was then turned on at maximum 

capacity to record the oxygen evolution rate. For each biological sample, at least three technical 

repeats were done to ensure accurate measurement. For each strain, four biological repeats were 

measured. Preparation of oxygen electrode and membrane was performed following manufacturer’s 

manual. 
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2.4.3 Carbon fixation efficiency measurement 

For CO2 fixation capacity measurement that solely depending on the quantity and functionality of 

carboxysomes, cells were harvested at exponential phase under corresponding light treatments and 

then resuspended in Rubisco assay buffer (100 mM EPPS buffer, pH 8.0, and 20 mM MgCl2). Cell 

density was then calibrated by measuring OD750 (described in section 2.4.1). Radiometric assay was 

carried out according to a previously described protocol (Price and Badger, 1989) with additional cell 

permeabilisation treatment (Schwarz et al., 1995). The duration of permeabilisation was tuned as 

shown in Figure 2-4, where 1 minute of reaction time was selected as standard protocol. 

 

Figure 2-4. Relative count readings from whole cell under different durations of MTA 

treatment. Longer duration of treatment reduced the detected count readings, the reducing can be 

linearly fitted, as indicated in the figure. 

 

Cell cultures prepared in assay buffer with the same cell density were incubated with NaH
14

CO3 (final 

concentration at 25 mM) at 30 °C for 2 minutes and then permeabilised by mixed 

alkyltrimethylammonium bromide (MTA, final concentration at 0.03 % [w/v]; Sigma-

Aldrich). RuBP (Sigma-Aldrich) was then added with a range of concentrations (0–2.0 mM) to 

initialise the fixation. After 5 min, 10 % formic acid was added to terminate the reaction. Samples 

were then dried on heat blocks at 95 ° C to remove unfixed NaH
14

CO3, and the pellets were 

resuspended in distilled water in the presence of scintillation cocktail (Ultima Gold XR; Perkin-

http://www.plantphysiol.org/content/171/1/530.long#def-5
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Elmer). Radioactivity measurements were carried out using a scintillation counter (Tri-Carb; Perkin-

Elmer). Raw readings were processed to determine the amount of fixed 
14

C, calibrated by blank cell 

samples without providing RuBP, and then converted to the total carbon fixation rates. Carbon 

fixation rates of cell cultures were normalised depending on the AtpB quantity from immunoblot 

analysis or cell density measured at OD750 depending on the purposes of comparison. AtpB is for 

calibration of fixation rate to equal cellular metabolic levels (used in Chapter 3), while total protein 

concentration is to enable comparison with cell fractions (lysate or isolated carboxysome). The cell 

density is for quicker and easier comparison of strains (adopted in Chapter 4 and 5) based on the 

assumption that cellular metabolic levels are comparable within strains, indicated from the result 

obtained in Chapter 3. For each experiment, at least three biological repeats were prepared. 

Significance was assessed by a two-tailed t-test. 

 

For in vivo carbon fixation rate measurements that were determined not solely by carboxysome 

quantity and functionality, in vivo assays were carried out by providing 2 mM of radioactive sodium 

bicarbonate (NaH
14

CO3) into the BG-11 growth medium in small culture flasks (Nunc
TM

 Cell Culture 

Treated EasYFlasks
TM

 156367 Thermo-Fisher Scientific) with caps sealed to minimise gas exchange 

from atmosphere during assay. The cultures were then placed back into respective light treatments for 

30 minutes of growth. Later, culture was mixed well, then taken by pipetting at volume of 500 μL into 

EP tubes with pre-added 200 μL 10 % formic acid. The mixture was then mixed immediately and 

placed on heat blocks at 95 °C overnight to remove unfixed NaH
14

CO3. Follow on steps were carried 

out same to ones for the maximum carbon fixation capacity measurement described in previous 

paragraph. 

 

2.4.4 SDS-PAGE and Immunoblotting 

Syn7942 cell samples for immunoblot analysis by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) were washed by TE buffer with Protease Inhibitor Cocktail (PIC) at 1 % 

(v/v). Then homogenised by sonication (5 seconds sonication with 15 seconds cooling on ice) for 24 

cycles at 4 °C, followed by 2 % (w/v) Triton treatment in dark for 1 hour. Then the lysates were 

http://www.plantphysiol.org/content/171/1/530.long#def-5
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centrifuged at 4000g for 5 minutes to get rid of the cell debris and unbroken cells.  Supernatant 

collected was then measured for protein concentration by Pierce Coomassie (Bradford) Protein Assay 

Kit (Thermo Fisher Scientific), diluted to same concentration and then mixed with 4 x SDS-PAGE 

sample loading buffer (250 mM Tris–pH 6.8, 8% (w/v) SDS, 0.2% (w/v) bromophenol blue, 40% (v/v) 

glycerol, 20% (v/v) β-mercaptoethanol). Samples were then denatured at 99 °C for 10 minutes, vortex 

for 1 minute for homogenising, then centrifuged at 14,000 g for 2 minutes to get rid of the insoluble 

fractions.  Supernatants were kept at 4 °C before loading and store at -20 °C for storage. 

 

Supernatants at final loading amount of 75 µg/well (For visualisation of YFPs in Chapter 4, loading 

amount was increased to 150 µg/well for detection of the minor proteins) were loaded on 10% (v/v) 

denaturing SDS-PAGE gels with PageRuler
TM

 plus Prestained Protein Ladder. PVDF membrane was 

activated by 100 % methanol for 1 minute and then kept in transfer buffer (25 mM Tris base, 150 mM 

glycine, 10% methanol) for at least 5 minutes before use. Gels were then electroblotted onto a PVDF 

membrane (Bio-Rad, US) by wet transfer protocol at 90 V for 45 minutes in pre-cooled transfer buffer 

at 4 °C. The membrane was collected and soaked in TBS buffer (50 mM Tris pH 7.5, 150 mM NaCl) 

before blocking by 5 % (w/v) skim milk in TBS for 2 hours at room temperature or overnight at 4 °C. 

Membrane was then washed with TBST buffer (50 mM Tris pH 7.5, 150 mM NaCl, 0.1 % (v/v) 

Tween 20) for 10 minutes, then incubated with primary antibodies of mouse monoclonal anti-GFP 

(Life Technologies, UK) for both eGFP and YFP recognition, rabbit polyclonal anti-RbcL (Agrisera, 

Sweden) for RbcL recognition, anti-ATPaseB (Agrisera, Sweden) antibodies for AtpB for 4 hours in 

room temperature or 4 °C overnight on a swing shaker. Additional washes by TBST were done 

afterwards for 4 x 10 minutes before incubation with second antibodies of horseradish peroxidase-

conjugated goat anti-mouse immunoglobulin G secondary antibody (Promega, US) or anti-rabbit 

immunoglobulin G secondary antibody (GE Healthcare, US) for 2 hours at room temperature. After 

incubation, the membrane was further washed with TBST for 4 x 10 minutes and kept in TBS before 

visualisation. 
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Signals were visualised using the Clarity Western ECL Substrate Kits (Bio-Rad, US) and captured by 

ImageQuant LAS 4000 (GE Healthcare Life Sciences). AtpB protein was used as a loading control for 

cell population (Zhang et al., 2012) in Chapter 3. In Chapter 4 total protein concentration was used 

as loading control instead to enable comparison with previous immunoblot data (Long et al., 2010). 

Immunoblot protein quantification was carried out using ImageJ. For each experiment, at least three 

biological repeats were performed. 

 

2.4.5 Luciferase reporting system for circadian detection 

Cells containing luciferase reporter were pipetted on the BG-11 plate as a droplet and grown in 

diurnal light treatments for four days before imaging. Then the plate was placed in a light-tight 

imaging box for bioluminescence capturing for 10 minutes by ImageQuant LAS 4000 (GE Healthcare 

Life Sciences) using high-sensitive protocol. Then the plate was placed back to diurnal light 

treatments until next imaging in a 2-hour imaging interval. Single intensities for the entire cell patch 

was analysed by ImageJ for quantificational comparisons. The working method was adapted from 

protocol as described for strains that express pAM2195 which is autonomously bioluminescent 

(Mackey et al., 2007). 

2.4.6 TEM imaging and analysis 

Thin-section Electron Microscopy (TEM) for whole cell Syn7942 were done from cultures grown for 

light and gas treatments that were also used for confocal imaging. 20mL of cultures were provided 

and washed by EM buffer (0.05 M sodium cacodylate, pH = 7.2) for three times, then fixed in 2 % 

(v/v) glutaraldehyde and 2 % (v/v) paraformaldehyde in EM buffer for 1 hour. Then cells were post-

fixed by 1 % (v/v) osmium tetroxide for 1.5 hours and dehydrated with a series of increasing alcohol 

concentrations. After dehydration, stepwise embedment was done over transmit EM resin (TAAB 

Laboratories Equipment, UK) (acetone/Transmit (1:1) for 20 minutes, and acetone/Transmit (1:2) for 

4 hours. Samples were then incubated for additional 6h and left to polymerise for two days at 70 °C 

Thin sections of 70 nm were cut with a diamond knife (Diatome 45° ultra, Agar Scientific) and post-

stained with 4 % uranyl acetate and 3% lead citrate. Images were recorded by FEI Tecnai G2 Spirit 
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BioTWIN transmission electron microscope. The diameter of carboxysome was measured from TEM 

images manually according to the method described in (Faulkner et al., 2017). To reduce the deviation 

caused by sections close to the out rims of carboxysome, only carboxysomes with typical polyhedron 

shapes were kept in the sample pool. Diameter data was analysed by Origin software. 

 

2.5 Fluorescence microscopy imaging 

2.5.1 Confocal Imaging sample preparation 

Sample preparation was done as described earlier (Liu et al., 2012). In general, Syn7942 cells that 

were grown in liquid culture from the culture flasks were taken by pipetting at 10 μL and applied over 

1.5 % agar (w/v) BG-11 plate with corresponding antibiotics, leaving to dry in fume food for 10 

minutes. The agar with cell patches was then cut out and applied on a 0.17 mm glass coverslip, where 

cells were sandwiched between agar and glass cover therefore immobilised for imaging. The BG-11 

plates used were pre-incubated at 30 °C before using to minimise temperature alternation for the cells.  

 

2.5.2 DAPI staining 

DAPI (4’,6-diamidino-2-phenylindole)  staining was done as described (Smith and Williams, 2006). 

Cells were collected after four days of different light treatments by centrifugation at 6,000 g, 30 °C 

and were then washed by PBS (pH=7.2) for three times and stained by DAPI solution in dark for 20 

minutes, 30 °C. After staining, cells were washed by water twice before giving drops onto a BG-11 

plate for microscopy.  The DAPI-stained DNA contents were visualised by Zeiss LSM780 excited by 

303 nm laser. The emissions were recorded between wavelengths between 430 nm and 480 nm. 

 

2.5.3 Confocal imaging 

For non-quantificational imaging, laser-scanning confocal microscopy used a Zeiss LSM510 or 

LSM710 with 63 × or 100 × oil-immersion objectives and excitation at 488 nm by argon laser, under 

a pinhole setting at 1 μm. Images were captured using Zeiss Zen 2010 software. GFP and chlorophyll 

fluorescence were detected between 500-520 nm and 660-700 nm respectively. Transmission images 
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were also captured when possible. Live-cell images were recorded from at least five different cultures. 

All images were captured with all pixels below saturation.  

 

For quantificational imaging, confocal laser scanning confocal microscopy used a Zeiss LSM780 with 

alpha Plan-Fluar 100 x /1.45 Oil objective and excitation at 514 nm from Argon laser for relative 

signal quantification. YFP signals were captured within emission between 520-550 nm. Chlorophyll 

auto-fluorescence signals were captured within emission between 660-700 nm, recorded as 512 x 512 

pixels images at 16 bits. Pinhole was set to 1μm to ensure full capture of carboxysomal signals.  Live-

cell images were recorded from at least five different cultures. All images were captured with all 

pixels below saturation. The sample platform was pre-incubated and thermo-controlled at 30° C 

before and during imaging. Zoom settings were set to have each carboxysome visualised with a 

minimum of 8 x 8 pixels array to allow sufficient profiling of carboxysomal signals by peak intensity 

recognition and measurement. For CcmP-YFP with minimum signal intensity, visualisation was done 

by LSM880 with Airyscan mode (Huff, 2015). CcmO-YFP/RbcL-CFP dual fluorescence imaging was 

done with 458/514 dual lasers that excite both CFP and YFP. Emissions were then captured within 

wavelengths at 520-550 nm and 470-500 nm for YFP and CFP respectively. 

 

Furthermore, the argon laser at 25% power was warmed up for more than 1 hour to achieve stable 

power output. The sample platform was pre-incubated and thermo-controlled at 30 °C before and 

during imaging. Laser power and gain settings (laser power, gain, offset, zoom, pixel size, depth) 

were determined and maintained same to have good SNR while minimising signal saturation for all 

strains and conditions in groups of comparison. Focus was found by scanning on adjunctive region 

beside ROI. Therefore bleaching by the laser during scanning was avoided. Imaging was done within 

30 minutes after harvesting the cell from treatment platform to minimise the adaptations to 

environmental changes. 
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2.5.4 Time-lapse imaging 

Sample preparation was modified based on protocol suggested in (Yokoo et al., 2015). 2 mm thin 

Agar mat with BG-11 was prepared in stacked sandwiches to contain drops of diluted cells. Cell was 

allowed to grow on agar mat for 1-2 hours before imaging under provided light over the microscope. 

A switch module that controls the light on/off was connected to disable light illumination during laser 

scanning. The laser power was set to minimum (1 %) to reduce the bleaching for signals during long-

term tracking. Cells were incubated on the BG-11 agar mat on the microscope for 1-2 hours before 

imaging The continuous light illumination was provided at intensity calibrated equally to HL/ML/LL 

for medium culture growth which maintain the respective carboxysome count per cell confirmed 

through on-scope pre-growth. The same illumination was applied to the cells during time-lapse 

imaging with a hand-made module that switched off the light during laser scanning (less than 5 s per 

minute intervals). The interval time was set to 60 s to guarantee sufficient light illumination between 

imaging. The laser power was set to the minimum (1%) to reduce the bleaching for signals during 

long-term tracking. 

 

2.5.5 Slimfield imaging 

Cells were applied at the small volume onto the BG-11 agarose pad at 0.25 mm thickness, air dried 

and then assembled with glass coverslips, plasma cleaned (Harrick-Plasma) for ~1 min. A dual-colour 

bespoke laser excitation single-molecule fluorescence microscope was used utilising narrow 

epifluorescence excitation of 10 mm full width at half maximum (FWHM) in the sample plane to 

generate Slimfield illumination (Wollman et al., 2017). This was incident on a sample mounted on a 

Mad City Labs nanostage built on an inverted Zeiss microscope body consisting of a 20 mW 514 nm 

laser. A Chroma GFP/mCherry dichroic was mounted under the Olympus 100x NA = 1.49 TIRF 

(total internal reflection fluorescence) objective, which delivers 10 mW excitation power. The image 

was split into YFP and chlorophyll channels using a bespoke colour splitter utilising a chroma 

dichroic split at 560 nm with 542 nm and 600 nm, 25 nm bandwidth filters. Imaging was done with an 

Andor iXon 128 EMCCD camera (iXon DV860-BI, Andor Technology, UK), at a pixel magnification 
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of 80 nm/pixel using 5 ms camera exposure time. Excitation intensity was initially reduced by 100x 

using and ND=2 or 1 filter for high copy number strains (all except CcmL and RbcX) to avoid pixel 

saturation on the EMCCD camera detector before a full-power photobleaching. 

 

2.6 Microscopy data analysis 

General image analysis was carried out using ImageJ software (NIH Image, Bethesda, US) and Fiji 

(Schindelin et al., 2012) for intensity profiling, carboxysome recognition. Image SXM 

(www.ImageSXM.org.uk) was used for statistical analysis of carboxysome numbers per cell,   

carboxysome distribution within cells, as well as dimensions of cell length/width measurements. 

 

2.6.1 Carboxysome recognition 

Image SXM was used for carboxysome recognition in Chapter 3 in RbcL-eGFP and CcmK4-eGFP 

strains. The recognition algorithm is optimised by the author of the software for these two strains. 

Besides, in Chapter 3 and 4, lower SNR (Signal to Noise Ratio) images for minor carboxysomal 

proteins with weaker signals, ImageJ and Fiji Plugin “Find maxima” plugin-based local maxima 

detection algorithm was adopted instead (https://imagej.nih.gov/ij/docs/guide/146-29.html#toc-

Subsection-29.4). Noise tolerance was determined by background intensities in empty regions. 

Imaging for different treatments in the same strain was performed under the same imaging settings. 

For strains with obvious cytosolic signals, peak intensities were further subtracted for cytosolic 

backgrounds, which were determined by the average peak intensities in non-carboxysome regions 

over the central line of the cell. Raw data was processed by Origin Lab and MATLAB (Mathworks) 

for profile extraction and statistical analysis and the goodness-of-fit parameter for Violin plot 

visualization. Violin plots were generated by R to illustrate the fluorescence intensity distribution of 

individual building proteins per carboxysome fitted by kernel smooth fitting. The representative 

values and deviations of signal intensities were represented by Peak value ± half width at half 

maximum (HWHM) measured from kernel density fitted profiles, respectively. The significance of 

differences between treatments were evaluated by Man-Whitney U-tests pair-wisely. Standard errors 

http://www.imagesxm.org.uk/
https://imagej.nih.gov/ij/docs/guide/146-29.html#toc-Subsection-29.4
https://imagej.nih.gov/ij/docs/guide/146-29.html#toc-Subsection-29.4
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of sampling was determined through randomized grouping of intensity entries, with each group 

containing a minimum of 70-100 entries. Errors were controlled below 5% to have accurate 

estimation from the distributions.. A typical recognition overlay is shown below as Figure 2-5.  

 

 
 

 

Figure 2-5. Typical carboxysomal signal recognition by ImageJ “Find maxima” method under 

different noise tolerance settings from 150, 200, 300, 500, 1000, 1500 for RbcL-YFP. Signal 

histogram and density plot overlays were shown on the left column while corresponding confocal 

images with channel for carboxysomal signals, brightened and contrast reduced for weaker signal 

illustration were shown on the right. The background intensities measured from no cell region is 489 

± 227, n = 5 as selected views. The final threshold was then set to 500. The representative intensity 

values from density plot, represented by the x-axis value during highest peak, shown in red lines, 

were unaffected when thresholds were set higher than the minimum background intensity at 250 until 

1500, where lower threshold results in appearing of false recognition from the background, indicated 

by the red arrows over the confocal images. The intensity for x-axis is the raw intensity obtained from 

images. 

 

2.6.2 Signal intensity analysis 

Signal quantifications were carried out in Chapter 4 and 5 to determine the respective protein 

abundances of individual carboxysome. Therefore, after recognition of the carboxysome signals, 

intensity profiling using both integrated intensity and peak intensity were done. The integrated 

intensity corresponds to the overall volume of the dome-shaped signal coloured in green, while Peak 

Threshold =150 

Threshold =200 

Threshold =300 

Threshold =500 

Threshold =1000 

Threshold =1500 

Intensity of signal Intensity of signal Recognition images Recognition images 
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intensity represents the height of the dome, represent by red dashed line. In Chapter 4 the 

stoichiometry of carboxysomal proteins was detected by Slimfield imaging (section 2.5.5). The signal 

intensity profiling was done using integrated intensity, while due to the advantages of peak intensity 

in confocal recognition from confocal imaging. Comparisons of the peak and integrated intensity 

profiling were done indicating well lineage correlation (R
2
=0.9847), suggesting no bias generated 

through these two profiling methods across Slimfield and confocal imaging (Figure 2-6B). Also, 

carboxysome signal overlays were found during imaging. Different cases of two carboxysomes 

nearby were shown in Figure 2-6C. The overlaying of carboxysome signals was take into 

consideration to avoid over-estimation of individual carboxysome caused by merging carboxysome 

signals being counted as one. The analysis indicates the superiority of peak intensity over integrated 

intensity by ImageJ and Fiji recognition process. Overall, the overlay of carboxysomes is only a 

minor event considering the general spatial distribution of carboxysome within cells (Savage et al., 

2010). Therefore in large populations, the over-estimation of overlay signals would not alternate the 

representing intensities as kernel peak values. The over-estimation could be observed in the histogram 

profiles in Chapter 4 as multi-peaks on the right tail of the major peaks. 
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Figure 2-6. Method comparison of carboxysome signal quantification by peak and integrated 

intensities. A. Confocal images for RbcL-YFP under ML condition (left) and diagram for 

carboxysome signals (right) in which peak intensity was illustrated as red dashed line while integrated 

intensity represented by the volume of the green dome. B. 2D scatter point plot for correlated peak 

intensities and integrated intensities indicate lineage correlation (R
2
=0.9847) of values, suggesting no 

bias created based the two signal types; C. Diagrams of recognised carboxysome through peak and 

integrated intensities. Top figure shows the YFP channels signals (green spot), bottom figure shows 

the maximum intensity (red dot) and integrated intensity border overlay (coloured as green). Four 

types of signal overlapping were shown as 1,2,3,4 respectively, representing Peak intensity unaffected 

by overlaps, no overlaps, peak intensity partially overlaps (one affected by the other) and peak 

intensity complete overlap (for both peaks); D. Profile of intensities (y-axis: relative intensities) 

across red line (x-axis: pixels) for 4 marked signals in A. Black line indicate the profile of signals, 

green coloured area are Gaussian fitted individual signal predicted from Origin; E. Estimate system 

error (percentage against theoretical values) in clustered carboxysomal signals recognised by 

maximum intensity (green bar) and Integrated intensity (grey bar).  
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Slimfield data analysis was carried out by Dr Adam Wollman. Analysis was performed using bespoke 

MatLab (Miller et al., 2015) with previously outlined methods (Wollman et al., 2016). In brief, 

candidate bright foci were identified in images using morphological transformation and thresholding. 

The sub-pixel centroids of these foci were determined using iterative Gaussian masking and their 

intensity quantified as the summed intensity inside a 5-pixel radius region of interest (ROI) corrected 

for the mean background intensity inside a surrounding 17x17 pixel square (ROI). Foci were accepted 

and tracked through time if they had a signal to noise ratio, defined as the mean intensity in the 

circular ROI divided by the standard deviation in the outer ROI, over 0.4. The characteristic intensity 

of single eYFP/mYpet was measured from the distribution of detected foci intensity towards the end 

of the photobleaching, confirmed by comparing the obtained value to individual photobleaching steps 

(Figure 4-3). The stoichiometry of a focus was then determined by dividing its initial intensity by the 

characteristic YFP intensity. 

 

For high copy number strains, intensity of carboxysomes was very high compared to the chlorophyll 

but for CcmL (typically ~2x, compare Figure 4-4 with Figure 4-5A) the fluorescence intensity per 

carboxysome was comparable (although generally brighter) to small regions of bright chlorophyll, 

detected as by our software, as confirmed by looking at the parental strain with no YFP present. To 

correct for this chlorophyll content, we tracked parental WT Syn7942 cells as YFP labelled cells to 

calculate the apparent chlorophyll stoichiometry distribution (Figure 4-5A). The CcmL distribution 

was then corrected by subtracting the apparent chlorophyll distribution. To investigate putative 

periodic features in the stoichiometry distribution, we used the raw uncorrected values to minimise 

dephasing artefacts (Figure 4-5C). Using a kernel width of 0.5 molecules (equivalent to the error in 

determining the characteristic intensity). The peak values in other strains were far from the 

chlorophyll peak and so unaffected by this correction. 

 



Chapter 3 

58 

 

2.6.3 Recognition and localisation analysis of carboxysome in Syn7942 cells 

Syn7942 cells were generally recognised by chlorophyll auto-fluorescence in fluorescence 

microscopy. For statistical analysis for cell dimensions such as cell width and length and 

carboxysome numbers per cell, Image SXM software with microcompartment analysis in MIASMA 

package was used. The output from the software includes .csv files containing position data for 

carboxysome within the cell (relative value from -0.5 to 0.5) as well as cell length and width in μm 

(Average ± SD).  Typical recognition displayed as overlay was included in the output data (Figure 2-

7).  

 

 

Figure 2-7. Computational programming of image analysis allows automatic identification of 

carboxysomes in cells in confocal images. Left, typical confocal and recognition of cell border and 

carboxysome (illustrated as blue lines and blue dots) by Image SXM, size bar = 2 μm; Right, the 

carboxysome localisation heat map within cell, where hot zone of carboxysome positions were 

marked out by spectra colour closer to red end while less frequent localisation was marked by spectra 

colour closer to blue.  

 

The analysis for longitudinal and width localisation was done from statistics data obtained from csv 

files that were also provided in the software output. To further evaluate and compare profiles of 

distribution along the short and long axis quantitatively, two scoring parameters called spatial 

distribution score and polarity score were established respectively.  

 

 



Chapter 3 

59 

 

The spatial distribution score = ∑ (Fn- Faverage)
2
 0.5

𝑛=−0.5 *100 

 

(n is the positioning over the short axis, Fn is the frequency of positioning over position n, Faverage is 

the average of Fn) for which a greater value indicates stronger spatial control along the long axis of 

the cell.  

 

Polarity Score = ∑ Fi*i 
0.5
𝑖=0  

 

(i is the positioning over long axis where 0 and 0.5 indicate polar and midpoint of the cells. Fi is the 

relative frequency of positioning over position i), where high values indicate a preference for closer to 

pole localisation. 

 

2.6.4 Tracking of carboxysome in time-lapse imaging 

Images were initially corrected for horizontal drifting by Descriptor-based series registration 

(2d/3d+T) plugin, and then were processed by the Trackmate plugin in FIJI for particle tracking. 

Retrieved track data was analyzed using bespoke MATLAB (Mathworks) scripts for MSD, diffusion 

coefficient calculations and data visualization. Diffusion coefficients were calculated by fitting to the 

first 6 points of the MSD vs. tau trace. As the MSD vs. tau traces indicated potentially non-Brownian 

diffusion over higher time interval values, we describe all diffusion coefficients as “apparent”. 
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Chapter 3 

3. Light modulates the biosynthesis and organisation 

of cyanobacterial carbon fixation machinery 

through photosynthetic electron flow 
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3.1 Introduction 

The efficiency of carboxysomes in enhancing carbon fixation has attracted tremendous interest in 

engineering the CO2-fixing organelle in other organisms (Chapter 1, section 1.2.3). However, 

engineering of functional carboxysomes requires extensive understanding of the principles underlying 

the formation of β-carboxysomes and the physiological integration of β-carboxysomes into the 

cellular metabolism. Indeed, the carboxysome is only a part of CO2 fixation apparatus in 

cyanobacterial cells. The integrated CO2 fixation system called CCM consists of Ci uptake system 

(Chapter 1, section 1.3.4) and carboxysomes (Chapter 1, section 1.2.1), where substrates HCO3
-
 and 

RuBP are continuously regenerated by Ci uptake system and CBB cycle (Chapter 1, section 1.3.3) in 

the cytoplasm.  

 

The carboxysome-containing cyanobacteria have developed regulatory mechanism to acclimate and 

survive under alternated environment in nature through evolution. Particularly, light availability as a 

key factor to determine how much solar energy that could be harvest by photosynthetic systems 

(Chapter 1, section 1.3.2), therefore control the electron flux that drives diverse cellular metabolisms 

including CO2 fixations (Masojídek et al., 2001). During a daily cycle, the light intensity varies 

drastically. The substrate for carboxysomes, RuBP is regenerated at different rate under different light 

intensities. Under irradiance at intensities below saturation, electron transport capacities are increased 

with higher light intensities (Tilzer, 1987), supporting faster rate of CBB cycle via the increased rate 

of ATP/NADPH generation (Nogales et al., 2012). Detailed regulatory mechanism of the CBB cycle 

is further elucidated. Key regulatory protein CP12 has been identified to regulate the CBB cycle via 

NADH/NADPH ratio under light/dark conditions (Tamoi et al., 2005). Therefore, enhanced RuBP 

regeneration could be supported by stronger electron flux under higher light intensities.  

 

The other substrate HCO3
-
 is provided by Ci transporter systems. Regarding the regulation of Ci 

transporters, through diversities of answering mechanism among different transporters are 

documented between cyanobacterial strains adapting to distinctive ecological habitats (Badger and 
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Price, 2003), the up-regulation of Ci transporter genes under low Ci stresses ensures the sufficient Ci 

intake, therefore making the CO2 availability not to be the rate limiting factor in the CBB cycle. As 

light increases, Ci transporters are also upregulated to provide more HCO3
-
 for carboxysomes (Gill et 

al., 2002; Hihara et al., 2001; Huang et al., 2002; McGinn. et al., 2004). However, when CO2 is 

abundant in the environment where adequate intake is already achieved, the up-regulation by 

increased light is gone (McGinn et al., 2003). Besides, the large Ci influxes driven by light energy 

serve as electron sinks assisting in dissipation of excessive electron flow and protect cells from 

oxidative damage when exposed under increased light intensities (Lea-Smith et al., 2016; Xu et al., 

2008). Unlike the Ci transporters, carboxysome modulation under light is poorly documented. Even 

though several findings have suggested the increase transcription of carboxysome genes under 

increased light (Gill et al., 2002; Hihara et al., 2001; Huang et al., 2002; McGinn. et al., 2004), 

information regarding the relationship between electron flux as direct output from light illumination 

and biogenesis of carboxysomes remains largely unclear.  

 

The functional relevance of subcellular positioning of carboxysomes is another question we want to 

address in this chapter. Such question remains unsettled as previous works by microscopy reported 

distinctive localisation profiles: On one hand, evenly spaced along the centerline of the longitudinal 

axis of cells away from the thylakoid membrane under moderate light illumination is believed to 

ensure equal segregation of the machinery between daughter cells (Savage et al., 2010); meanwhile 

peripheral arrangement of carboxysomes near the thylakoid membranes is suggested to provide 

functional advantages in Ci utilisation when carboxysomes are closer to the Ci uptake system over 

membranes (McKay et al., 1993). Furthermore, it remains unclear how the positioning of 

carboxysome is regulated when carboxysomal content (in the view of this chapter, the carboxysome 

numbers per cell) alter under different light illuminations. It remains unclear how carboxysomes are 

maintained in cytoplasm when more/ fewer carboxysomes are packed within limited spaces

 

In this chapter, using a combination of live-cell confocal fluorescence microscopy and biochemical 

and physiological approaches, we investigated the formation and spatial positioning of β-
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carboxysomes in Synechococcus elongatus PCC7942 (hereafter Syn7942) by varying light intensities. 

Our study provides new insights into the regulation of β-carboxysome biosynthesis by light and the 

roles of photosynthetic electron flow in the carboxysome assembly. Knowledge obtained from this 

work is fundamental to the bioengineering and modulation of functional carboxysomes to boost 

photosynthetic carbon fixation in dynamic and diverse environments. 

 

3.2 Results 

We chose Syn7942 as the model organism due to its superior genetic tractability and proven 

suitability for fluorescence imaging (Cameron et al., 2013; Cohen et al., 2014; Liu et al., 2012; 

Savage et al., 2010). RbcL, the large subunit of Rubisco that resides in the β-carboxysome lumen, was 

tagged at the C-terminus with enhanced GFP (eGFP) and was visualised by confocal fluorescence 

microscopy to characterise the formation and positioning of carboxysomes in vivo. Homologous 

recombination was used to tag the genes at their native chromosomal locus under the control of their 

native promoters (Figure 3-1). This ensures that the fluorescently tagged proteins were expressed in 

context and at physiological levels. 
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Figure 3-1. Construction and characterisation of RbcL:eGFP and CcmK4:eGFP Syn7942 

strains. A, Strategy of eGFP fusion using REDIRECT protocol (described in chapter 2). B, PCR 

evaluation of RbcL:eGFP and CcmK4:eGFP genome. Lane 1 shows the gfp cassette fragment is fused 

to the C-terminus of rbcL in the RbcL:eGFP genome (Primers: RbcL_insert_segF, GFP 856-875 

REV,). Lane 2 exhibits the gfp cassette fragment is partially segregated into the RbcL:eGFP genome 

(Primers: RbcL_insert_segF, RbcL_insert_segR). Lane 3 depicts the gfp cassette fragment is fused to 

the C-terminus of ccmK4 in the CcmK4:eGFP genome (Primers: FccmK4_insert_segF, GFP 856-875 

REV). Lane 4 illustrates the gfp cassette fragment is fully segregated into the CcmK4:eGFP genome 

(Primers: FccmK4_insert_segF, FccmK4_insert_segR). All primers were listed in Appendix A. C, 

Immunoblot analysis with anti-RbcL and anti-GFP antibodies of soluble fractions of the RbcL:eGFP 

strain and anti-GFP antibodies of soluble fractions of the CcmK4:eGFP strain, based on SDS-PAGE. 

Left, the band at around 83 kDa is consistent with the fusion of RbcL and eGFP, while 55 kDa refers 

to RbcL only. Protein quantification shows the RbcL:eGFP band is around 30% of the intensity of 

unfused RbcL band. Right, the 39 kDa band shows the fusion of CcmK4 and eGFP. D, Growth of 

wild-type, RbcL:eGFP and CcmK4:eGFP Syn7942 strains. The growth curves monitored at OD 

750nm demonstrated no significant change of the cell growth caused by GFP fusion. Results are a 

mean ± SD of three independent cultures. 
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Figure 3-2 represents the confocal images of RbcL:eGFP Syn7942 strain. The eGFP fluorescence 

(green) indicates the subcellular localisation of carboxysomes, and the endogenous chlorophyll 

fluorescence (red) shows the organisation of thylakoid membranes. In addition, the specific DNA-

staining dye 4’, 6-diaminophenylindole (DAPI) was used to image chromosomes, offering the 

possibility to determine the cytoplasmic environment in cyanobacteria (Figure 3-2A). The merged 

channel shows that most of the cytoplasmic volume of the Syn7942 cell is densely occupied by 

carboxysomes and chromosomes, and no significant fluorescence gaps were visible, implying that all 

carboxysomes in the RbcL:eGFP transformant are likely fluorescently visible using confocal 

microscopy. In the free-eGFP expressing Syn7942 construct, the eGFP fluorescence is evenly spread 

across the cytoplasm. The distinct distributions of GFP fluorescence in the RbcL:eGFP and free-

eGFP-expressing Syn7942 strains indicate the self-assembly of carboxysome proteins. PCR and 

immunoblot results indicate the RbcL:eGFP transformant could not be fully segregated; about 30% of 

total RbcL was fused with eGFP (Figure 3-1). The addition of GFP tag might limit the number of 

Rubisco proteins accommodated within the carboxysomal interior (Menon et al., 2010). Thus, there 

seems to be a regulation to avert full segregation and retain some unlabelled Rubisco in the 

carboxysome. Nevertheless, the fluorescence tagging did not affect the growth of cyanobacterial cells 

(Figure 3-1). Analysis of confocal images was programmed to examine statistically the number and 

spatial positioning of carboxysomes in the cell (Figure 3-2B and C, n = 300). On average, there are 

about four evenly positioned carboxysomes per cell, consistent with previous observations (Savage et 

al., 2010), confirming the physiological state of RbcL:eGFP cells. We also labelled the minor shell 

proteins in the carboxysome CcmK4 (Cai et al., 2015b; Kerfeld et al., 2005; Savage et al., 2010) using 

eGFP. PCR results demonstrate that the CcmK4:eGFP transformant was fully segregated, and the 

construct has similar growth rates compared to wild-type and RbcL: eGFP strains (Figure 3-1D).  
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Figure 3-2. Spatial organisation of β-carboxysomes in RbcL:eGFP Syn7942 cells. A, Confocal 

images of a RbcL:eGFP Syn7942 cell. Green, eGFP-labelled carboxysomes; blue, DAPI-stained DNA; 

red, auto-fluorescence of the thylakoid membrane. The merged channel revealed that most of the 

cytoplasmic volume of the Syn7942 cell is occupied by carboxysomes and chromosomes. This 

subcellular organisation indicated that all carboxysomes in the RbcL:eGFP cell could be visualised 

using confocal microscopy. The confocal image of the Syn7942 construct that expresses free eGFP 

illustrates that free eGFP is spread throughout the cytoplasm without specific aggregation. B, 

Computational programming of image analysis allows automatic identification of carboxysomes in 

cells in confocal images. Bar = 2 μm. C, Statistical determination of the spatial localisation of 

carboxysomes within the cell revealed the distribution profiles of carboxysomes along both the 

longitudinal and short axes of the cell (n = 300). The orange squares represent the relative frequency 

of carboxysome localisation in the cell. The developed automated analysis software routines were 

used in this work for analysing the carboxysome content and positioning.  
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To examine whether the GFP-labelled carboxysomes can be physiologically regulated within cells, 

we assayed the impact of CO2 concentration on the formation of carboxysomes. Previous studies have 

indicated that the carboxysomes content is affected by CO2 availability (Harano et al., 2003; McKay 

et al., 1993; Whitehead et al., 2014; Woodger et al., 2003). Our confocal images show a striking 

reduction in the numbers of carboxysomes in cells aerated with 3% CO2, compared to those in cells 

grown in ambient air (Figure 3-3). It reveals the feasibility of using live-cell confocal imaging to 

monitor the in vivo regulation of carboxysome biosynthesis in response to environmental change. 

 

Figure 3-3. Regulation of carboxysome biosynthesis in Syn7942 by CO2. A, Confocal images of 

RbcL:eGFP strain confirms that 3% CO2 suppresses the biosynthesis of carboxysomes relative to air. 

Scale bar: 2 μm. B, Average number of carboxysomes per cell in 3% CO2 is lower than that in air (P < 

0.05, n = 100). Error bars represent SD. 

 

3.2.1 Light triggers carboxysome biosynthesis 

We studied the spatial distribution of carboxysomes in Syn7942 under the variation of light intensity: 

low light (LL; 10 μE·m
−2

·s
−1

), moderate light (ML; 50 μE·m
−2

·s
−1

), and higher light (HL; 100 

μE·m
−2

·s
−1

). Confocal images of RbcL:eGFP cells show that the carboxysome abundance per cell has 

a strong correlation with the illumination intensity during cell growth (Figure 3-4A). The number of 

carboxysomes per cell is higher under HL, whereas LL leads to the reduction in carboxysome 

numbers. The light dependence of carboxysome content was further substantiated by transmission 

electron microscopy results of wild-type Syn7942 cells (Figure 3-4B; Figure 3-5). The numbers and 

positioning of carboxysomes in the cell were statistically analysed based on the confocal images.   
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Figure 3-4. Distinct distribution patterns of carboxysomes in Syn7942 under different light 

intensities. A, Confocal microscopy images of the spatial organisations of carboxysomes in the 

RbcL:eGFP strain grown under LL (10 μE·m
−2

·s
−1

), ML (50 μE·m
−2

·s
−1

), and HL (100 μE·m
−2

·s
−1

). 

Variations in the carboxysome content were observed under different light intensities. Bar = 2 μm. B, 

Thin-section transmission electron microscopy images of wild-type Syn7942 cells grown under LL, 

ML, and HL (Figure 3-5). The thylakoid membranes form regular multiple parallel layers 

surrounding the cytoplasm. The carboxysomes were observed as dark polyhedral particles (arrows) in 

the cytoplasm. Stronger light leads to the increase in carboxysome numbers in cells. Bar = 1 μm. C, 

Computational analysis of confocal images shows the average numbers of carboxysomes per cell 

under LL, ML, and HL (n = 500 for each condition). D, The positioning of carboxysomes along the 

normalised longitudinal axis of the Syn7942 cell under LL, ML, and HL. The relatively periodic and 

polar localisation of carboxysomes in cells are indicated (n = 500). E, The positioning of 

carboxysomes along the normalised short axis of the Syn7942 cell (n = 500). HL gives rise to a wider 

distribution of carboxysomes from the centerline of cells. F, Confocal microscopy images of 

CcmK4:eGFP cells show the spatial positioning of carboxysomes grown under LL, ML, and HL. 

Variations in the carboxysome content were observed under different light intensities, in good 

agreement with those of the RbcL:eGFP strain. Error bars represent SD (n = 500 for each condition). 

Bar = 2 μm. 



Chapter 3 

69 

 

On average, around two carboxysomes per cell (1.8 ± 1.2, n = 500) were observed under LL, whereas 

about four carboxysomes per cell (4.4 ± 1.9, n = 500) under ML and over ten (10.4 ± 3.8, n = 500) 

under HL were detected (Figure 3-4C). The data are in good agreement with the results from electron 

microscopy images (Figure 3-5): 1.6 ± 0.7 (LL, n = 30), 3.9 ± 0.8 (ML, n = 30), 10.2 ± 2.0 (HL, n = 

30). No significant changes in cell dimensions were detected under different light intensities (Figure 

3-6).  

 

Figure 3-5. Thin-section transmission electron microscopy images of wild-type Syn7942 cells 

grown under HL, ML and LL. The average numbers of carboxysomes per cell are 10.2 ± 2.0, 3.9 ± 

0.8 and 1.6 ± 0.7, respectively (± SD, n = 30 for each light condition). Scale bar: 1 μm. 
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Figure 3-6. The sizes of Syn7942 cells remain similar under the variation of light intensity. A, 

Averaged cell lengths are similar in LL, ML and HL (P > 0.05, n = 500). B, Difference in the 

averaged cell widths is not detectable in LL, ML and HL (P > 0.05, n = 500). Error bars represent SD. 

 

These results indicate that light intensity plays an important role in determining the biosynthesis of β-

carboxysomes in Syn7942. Varying light intensities could also result in different organisational 

patterns of carboxysomes in cells. Image analysis reveals even distribution of carboxysomes along the 

longitudinal axis of the cell (Figure 3-4D). Carboxysomes tend to locate at approximately one-fourth 

position along the cell length under LL, whereas under ML and HL a polar location of carboxysomes 

within the cell was observed apart from the even distribution (Figure 3-4D). Analysis of the 

positioning of carboxysomes along the cell width elucidates that increasing numbers of carboxysomes 

induced by stronger light present a wider distribution along the short axis of the cell, compared to the 

centre line positioning observed under LL (Figure 3-4E). This organisation likely provides a means 

to house more carboxysomes in a spatially crowded cytoplasm environment. Consistent with the 

results of the RbcL:eGFP construct, our confocal images of the CcmK4:eGFP construct also show the 

increase in carboxysome content triggered by stronger irradiance (Figure 3-4F). Similarly, light 

regulation of carboxysome content in Syn7942 was also seen in the RbcL:YFP strain (Savage et al., 

2010) in which rbcL:yfp was inserted into a neutral site rather than the native locus in the genome 

(Figure 3-7).  
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Figure 3-7. Light regulation of carboxysome content in RbcL:YFP cells. A, Confocal microscopy 

images of the RbcL:YFP Syn7942 construct (pDFS621, PapcA:rbcL:YFP, Savage et al., 2010) grown 

at HL, ML and LL. B, the carboxysome content within the Syn7942 cells is dependent on light 

intensity, in agreement with the observation of RbcL:eGFP and CcmK4:eGFP cells. Error bars 

represent SD (n = 250). Scale bar: 2 μm. 

 

Together, our observations reveal a general regulation of carboxysome content and organisation in 

Syn7942 in response to variations in light intensity. The light-regulated carboxysome biosynthesis 

was further characterised by time-lapse confocal imaging during cell growth (Figure 3-8). HL 

treatment on cells that were preadapted to LL resulted in a linear increase in carboxysome content 

over five days. Reversibly, LL treatment caused a reduction in carboxysome numbers, although the 

rate of reduction is lower than that of the increase in carboxysome numbers. These results indicate 

that the light-dependent carboxysome biogenesis might function as a long-term acclimation process in 

cyanobacteria. On the other hand, despite potential repairing mechanism led by protein dynamics 

(Sutter et al., 2016), there appears to be no specific degradation pathway for carboxysomes. The 

stability of mature carboxysomes in vivo may be of physiological importance for the cellular 

metabolism (Cameron et al., 2013). 
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Figure 3-8. Characterisation of the light-regulated 

biosynthesis process of β-carboxysomes. A, Time-

lapse confocal images of the LL-adapted RbcL:eGFP 

Syn7942 strain under HL treatment and the HL-adapted 

RbcL:eGFP strain under LL treatment. Cells from the 

same flasks were imaged under confocal microscopy 

once per day, for 5 days continuously. Changes in 

carboxysome content per cell were captured. B, 

Analysis of the average numbers of carboxysomes 

based on confocal images reveals an increase in 

carboxysome abundance induced by HL and a decline 

in carboxysome abundance caused by LL, compared to 

the numbers of carboxysomes under constant LL or HL 

treatments. Error bars represent SD (n = 250). 
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3.2.2 Light-induced carboxysome biosynthesis determines the carbon fixation activity 

of cells 

In addition to the confocal microscopy results that reveal the light-induced carboxysome content in 

the cell, immunoblot analysis show that the abundance of Rubisco proteins per cell, normalised using 

the AtpB content (Zhang et al., 2012), is also up-regulated by increasing irradiance (Figure 3-9A). 

The Rubisco abundance under HL is about 6 and two times as high as those under LL and ML, 

respectively (Figure 3-9B and C).  

 

 

Figure 3-9. Light modulates the biosynthesis of β-carboxysomes and cellular carbon fixation. A, 

Immunoblot analysis using anti-RbcL and anti-GFP antibodies shows variations of the Rubisco 

content in RbcL:eGFP cells. HL triggers the accumulation of Rubisco. Using anti-RbcL antibody, 

RbcL:eGFP strains present two bands: the upper band for RbcL-eGFP and the lower band for RbcL 

only. AtpB was used as a loading control (Zhang et al., 2012). Gels are representative of six 

independent experiments. B, Immunoblot analysis implies that the GFP amount in RbcL:eGFP and 

CcmK4:eGFP cells varies under different light intensities (±SD, n = 6, P < 0.05). C, Densitometry of 

RbcL in wild-type, RbcL:eGFP, and CcmK4:eGFP cells is dependent on light intensity (±SD, n = 6, P 
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< 0.05). D, 14C carbon fixation rates of wild-type, RbcL:eGFP, and CcmK4:eGFP cells under LL, 

ML, and HL at 0.5 mM RuBP (±SD, n = 6). The cell density was normalised using the AtpB content 

(Figure 3-9A). The carbon fixation rates of cells as a function of RuBP are shown in Figure 3-11. E, 

The carbon fixation rate per cell is proportional to the numbers of carboxysomes within the cell (R
2
 = 

0.97). The numbers of carboxysomes per cell were determined from electron microscopy images for 

the wild-type strain and confocal microscopy images for RbcL:eGFP and CcmK4:eGFP strains. 

 

Interestingly, a slight increase in Rubisco content was observed in both RbcL:eGFP and 

CcmK4:eGFP strains compared to wild-type cells, probably as compensation for compromised CO2-

fixing activities of carboxysomes caused by fluorescence labelling. The light-induced changes in 

Rubisco content at the protein level was also confirmed by measuring the total fluorescence intensity 

of RbcL:eGFP per cell (Figure 3-10).  

 

Figure 3-10. Relative abundance of Rubisco in RbcL:eGFP Syn7942 strain under LL, ML and 

HL, based on confocal image analysis. Analysis of the relative fluorescence intensity of RbcL:eGFP 

per cell based on confocal images (Figure 3-4) exhibits the increase of GFP intensity in the Syn7942 

cell with the rise of illumination intensity, indicating that stronger illumination could stimulate the 

biosynthesis of Rubisco enzymes (n = 100). It is further confirmed by immunoblot analysis shown in 

Figure 3-9. Error bars represent SD.  

 



Chapter 3 

75 

 

Our results corroborate previous studies, which revealed that the transcription of carboxysome genes 

is stimulated in response to increasing light intensity (Gill et al., 2002; Hihara et al., 2001; Huang et 

al., 2002; McGinn. et al., 2004). To verify the physiological coordination between carboxysome 

content and carbon fixation in Syn7942, we surveyed the carbon fixation activities of cells (based on 

the AtpB content) under different light conditions. To examine the maximum carbon fixation rates, 

0.5 mM D-ribulose 1, 5-bisphosphate sodium salt hydrate (RuBP) was applied (Figure 3-11).  

 

Figure 3-11. 
14

C carbon fixation rates of wild-type Syn7942 cells grown under LL, ML and HL, 

as a function of RuBP concentration (± SD, n = 6). The carbon fixation rate of wild-type cells in 

HL (7.8 ± 1.1 nmol·min
−1

·ml
−1

) is higher compared with those in ML (4.0 ± 0.4 nmol·min
−1

·ml
−1

) and 

LL (1.3 ± 0.3 nmol·min
−1

·ml
−1

). The curves were fitted exponentially. The cell density was calibrated 

using the AtpB content of cells. 0.5 mM RuBP was used during Rubisco assay in this study to 

determine the maximum carbon fixation rates (see Figure 3-9). 

 

Figure 3-9 depicts a strong dependence of carbon fixation rates of Syn7942 cells on light intensity. 

The carbon fixation rate of wild-type cells in HL (7.8 ± 1.1 nmol·min
−1

·ml
−1

) is higher compared with 

those in ML (4.0 ± 0.4 nmol·min
−1

·ml
−1

) and LL (1.3 ± 0.3 nmol·min
−1

·ml
−1

) shown in Figure 3-9D). 

Similar tendency was also observed in RbcL:eGFP and CcmK4:eGFP cells, indicating that increasing 

irradiance enhances the carbon fixation of Syn7942 cells (Figure 3-9D). Furthermore, there is a close 
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correlation between the numbers of carboxysomes and carbon fixation rate of cells (Figure 3-9E). 

Together, our results indicate explicitly that the light-intensity-regulated carboxysome biosynthesis 

serves as a regulatory mechanism of modulating the capacity of CO2 fixation in the cell. 

3.2.3 Light regulation of carboxysome biosynthesis is mediated by photosynthetic 

electron flow 

Changes in light intensity could alter electron flow and redox states of intersystem electron carriers, 

especially the Plastoquinone (PQ) pool (Liu et al., 2012; Mullineaux, 2001). We conducted extensive 

studies on the carboxysome formation process in response to irradiance variations in the presence of 

two specific inhibitors of photosynthetic electron transport, namely, 3-(3,4-dichlorophenyl)-1,1-

dimethylurea (DCMU) and 2,5- dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB). DCMU and 

DBMIB inhibit photosynthetic electron transport from the photosystem II complex to the PQ pool and 

from the PQ pool to the cytochrome b6f complex, respectively (Trebst, 1980). We observed that when 

light is switched from LL to HL for 24 h, both DCMU and DBMIB treatments suppress the O2 

evolution from photosystem II of cells (Figure 3-12) and hampers the light-induced carboxysome 

biosynthesis (Figure 3-13).  

 

Figure 3-12. Oxygen consumption and evolution with inhibitor DBMIB and DCMU treatment 

at five mins and 24 hours of treatment during dark (A) and light (B) conditions with HL-

adapted cells. Error bars represent SD (n = 4). Oxygen evolution analysis of Syn7942 cells in the 

presence of DBMIB and DCMU for 24 hours. Error bars represent SD (n = 4). The oxygen evolution 
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was inhibited in the presence of DBMIB for 24 hours and was not detectable in the presence of 

DCMU. 

 

It demonstrates that the inhibition of photosynthetic electron flow impairs the biogenesis of 

carboxysomes in cyanobacteria. The increase in carboxysome content in the cell was also inhibited by 

lincomycin (Figure 3-13), a protein synthesis inhibitor that suppresses de novo protein synthesis 

(Dalla Chiesa et al., 1997). The similar effects of DCMU, DBMIB, and lincomycin on impeding the 

carboxysome biosynthesis suggest that the regulation of photosynthetic electron flow may affect the 

synthesis and assembly of carboxysome proteins to form carboxysomes. 

 

Figure 3-13. β-carboxysome biosynthesis is regulated by photosynthetic electron flow. A, 

Confocal microscopy images of LL-adapted RbcL:eGFP Syn7942 cells after 24-h HL treatment, 

in the presence of the photosynthetic electron transport inhibitors DCMU and DBMIB or the 

protein synthesis inhibitor lincomycin. The control images were captured in LL-adapted Syn7942 

cells grown at LL and after 24-h HL treatment without inhibitor treatments. Bar = 2 μm. B, Analysis 

of the average numbers of carboxysomes per cell (±SD, n = 300) based on the confocal images 

illustrates the suppression of carboxysome content with the treatments of DCMU and DBMIB, 



Chapter 3 

78 

 

indicating that light intensity regulates the biosynthesis and assembly of carboxysomes through 

photosynthetic electron flux. 

 

3.2.4 Carboxysome localisation is sensitive to the redox state of photosynthetic 

electron transport 

Closer inspection of the distribution of carboxysomes in HL-adapted cells illustrates that along with 

the dense packing of carboxysomes in the cytoplasm, a few carboxysomes aggregate preferentially 

and form a single large carboxysome “cluster”. Several clusters are then evenly positioned along the 

longitudinal axis of the cell (Figure 3-14). It was postulated that the local CO2 concentration near 

each carboxysome is higher (Mangan and Brenner, 2014). The carboxysome clusters may be 

functionally advantageous to minimising CO2 leakage and maximising the CO2 accumulation around 

all carboxysomes in the cytoplasm (Ting et al., 2007), thereby enhancing carbon fixation of cells. The 

equally spaced carboxysome clusters along the long axis of the cell may correlate with the positioning 

of chromosomes (Jain et al., 2012). It could favour the equal segregation of carboxysomes between 

daughter cells during cell division (Savage et al., 2010). We further surveyed the effects of DCMU 

and DBMIB on the spatial organisation of carboxysomes in cells. In HL-adapted RbcL:eGFP cells, 

carboxysomes possess a dense distribution, suitable for detecting the spatial redistribution of 

carboxysomes.  

 

Under DCMU treatment, carboxysomes present the typical “clustering” distribution in the cytoplasm 

(Figure 3-14B), similar to the observations in non-treated cells. By contrast, DBMIB treatment gave 

rise to a linear positioning of carboxysomes along the centerline of the cell (Figure 3-14C). Image 

analysis reveals that, relative to the marked repositioning of carboxysomes, no detectable differences 

in the thylakoid membrane structure and cytoplasmic volume (indicated by endogenous chlorophyll 

fluorescence) were observed (Figure 3-14D), and whereas the carboxysome numbers per cell under 

DCMU and DBMIB treatments were comparable (Figure 3-14E). The periodic distribution of 

carboxysomes along the long axis of DBMIB-treated cells is somewhat less significant than that of 

DCMU-treated cells, and the polar localisation of carboxysomes seems to disappear in DBMIB-
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treated cells (Figure 3-14F and G). More remarkable changes were observed in carboxysome 

distribution along the short axis of the cell (Figure 3-14F and H). DBMIB treatment led to the 

relocation of carboxysomes from a wider distribution along the cell width to a narrow positioning at 

the centerline of the short axis of the cell, compared to the wide distribution observed in DCMU-

treated and non-treated cells (Figure 3-14H). DCMU and DBMIB have opposite effects on the redox 

state of the PQ pool in photosynthetic electron transport chain: The PQ pool is oxidised by DCMU 

and reduced by DBMIB. The distinct effects of DCMU and DBMIB indicate that the spatial 

organisation of β-carboxysomes in Syn7942 correlates with the redox state of photosynthetic electron 

transport chain. Consistent with the finding of HL-adapted cells, the reorganisation of carboxysomes 

under DCMU and DBMIB treatments was also observed in LL- and ML-adapted RbcL:eGFP cells 

(Figure 3-15) and CcmK4:eGFP cells (Figure 3-16), corroborating that the redox regulation of 

photosynthetic electron flow could affect the spatial positioning of β-carboxysomes in Syn7942.  
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Figure 3-14. Correlation between the spatial organisation of β-carboxysomes and redox state of 

photosynthetic electron transport chain in Syn7942. A, Confocal image (left) and schematic model 

(right) of the HL-adapted RbcL:eGFP strain shows the evenly distributed carboxysome clusters 

(orange dotted circles), each of which contains several carboxysomes assembled together in the local 

cytoplasmic region. B, Confocal image of HL-adapted RbcL:eGFP cells under DCMU treatment 

shows the clustering distribution of carboxysomes along the centre line of the cell. Bar = 5 μm. C, 

Confocal image of HL-adapted Syn7942 cells under DBMIB treatment shows the linear distribution 

of carboxysomes along the centre line of the cell. Bar = 5 μm. D, No significant changes in the cell 

length and width of Syn7942 is detected during inhibitor treatments for 24 h (P > 0.05, n = 500). 

Error bars represent sd. E, Average numbers of carboxysomes per cell under the treatments of DCMU 

and DBMIB do not have remarkable changes (P > 0.05, n = 500). F, Normalised spatial distribution 

maps of carboxysomes in cells under the treatments of DCMU and DBMIB. The bar presents the 

relative frequency of carboxysome localisation. G, The distributions of carboxysomes along the cell 

length under DCMU and DBMIB treatments (n = 500). H, DBMIB treatment results in a linear 

positioning of carboxysomes at the centerline of HL-adapted Syn7942 cells, whereas the DCMU 

treatment leads to a wider distribution of carboxysomes along the cell width (n = 500). Similar results 

were also obtained in LL- and ML-adapted Syn7942 cells (Figure 3-15) and CcmK4:eGFP cells 

(Figure 3-16). 
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Figure 3-15. Organisation of carboxysomes in LL- and ML-adapted cells under the treatment of 

DCMU and DBMIB. A and B, The narrow distributions of carboxysomes along the short axis of LL- 

and ML-adapted cells under DBMIB treatment (n = 300), compared to the wider distribution induced 

by DCMU treatment, indicated the redox state of PQ pool plays an important role in regulating the 

carboxysome localisation in cells (Figure 3-14). C and D, Normalised spatial distribution maps of 

carboxysomes within LL- and ML-adapted cells under the treatment of DCMU and DBMIB. 

 

 

Figure 3-16. The effects of DBMIB and DCMU on β-carboxysome localisation in CcmK4:eGFP 

cells. A, Confocal images of HL-adapted CcmK4:eGFP cells under DBMIB and DCMU treatments 

for 24 hours. Scale bar: 1 μm. B, Analysis of carboxysome distribution along the short axis of cells (n 

= 200). It shows different effects of DBMIB and DCMU on the carboxysome positioning in Syn7942, 

consistent with the observations of RbcL:eGFP cells. 
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We further observed that changes in carboxysome localisation are not clearly visible within 4-h 

DBMIB treatment (Figure 3-17), implying that the reorganisation of carboxysomes seems to be a 

long-term adaptive process in response to redox regulation. 

 

Figure 3-17. Time-lapse confocal fluorescence imaging of RbcL:eGFP cells in the presence of 

DCMU and DBMIB. A, Confocal images of HL-adapted RbcL:eGFP cells with DBMIB and DCMU 

treatments for 4, 20 and 24 hours. Scale bar: 1 μm. B, Carboxysome localisation along the short axis 

of Syn7942 cells, demonstrating different effects of DCMU and DBMIB on the spatial positioning of 

carboxysomes. 24-hour inhibitor treatments were applied to characterise the changes in the 

carboxysome distribution (Figure 3-14). 
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3.3 Discussion 

In cyanobacteria, light is fundamental to energy production, DNA replication, and the regulation of 

gene expression (Asayama, 2006; Ohbayashi et al., 2013). Light-dependent reactions of 

photosynthesis generate chemical energy, in the forms of ATP and NADPH, which is utilised to drive 

the Calvin-Benson-Bassham Cycle responsible for CO2 fixation into metabolisable sugars. It was 

found that HL could induce an increase in the transcription of Rubisco and carboxysome ccm genes 

(Gill et al., 2002; Hihara et al., 2001; Huang et al., 2002; McGinn. et al., 2004). In this work, we 

evaluated the impact of light intensity on the regulation of β-carboxysome biosynthesis at the whole 

organelle and cellular levels. Our results show that increasing irradiance triggers the accumulation of 

carboxysome proteins (Figure 3-9A; Figure 3-10) and formation of functional carboxysomes (Figure 

3-9), thereby enhancing carbon fixation of cells (Figure 3-9). We further revealed the close 

correlation between light-regulated photosynthetic electron flow and β-carboxysome biosynthesis 

(Figure 3-13). Given that the expression of carboxysome genes and their encoded proteins are under 

light-dark regulation (Aryal et al., 2011; Ito et al., 2009; Watson and Tabita, 1996), further work 

needs to be directed to elucidate whether de novo assembly of carboxysomes is regulated and/or 

potentially gated by the cyanobacterial circadian rhythm, as shown in Chapter 5.  

 

The spatial distribution of β-carboxysomes along the longitudinal axis of Syn7942 cells is driven by 

interactions with the cytoskeleton, ensuring the equal segregation of carbon fixation organelles 

between daughter cells (Savage et al., 2010). Syn7942 cytoplasm densely accommodates 

carboxysomes and chromosomes, which are interspersed with each other (Figure 3-3A). It is 

conceivable that the organisation and dynamics of carboxysomes correlate with the partitioning of 

chromosomes. On the other hand, the disruption of parA resulted in unequal positioning of 

carboxysomes, but did not interfere with chromosome organisation, suggesting that the spatial 

partitioning of carboxysomes and chromosomes in Syn7942 is likely regulated separately (Jain et al., 

2012). The detailed underlying mechanism awaits further examination.  



Chapter 3 

84 

 

Given the spatial constraints in the cytoplasm and the large volume of carboxysomes, the broader 

distribution of carboxysomes within the cell may suggest the specific associations between 

carboxysomes and the thylakoid membrane. Indeed, such an interaction has been deduced due to the 

facts that Rubisco can be found not only in the cytosol, but also near the thylakoid membranes 

(Agarwal et al., 2009). The structural heterogeneity and dynamics of cyanobacterial thylakoid 

membranes are fundamental to the physiological regulation of photosynthetic electron transport for 

energy conversion (Liu, 2016). It is feasible that components in the cycle have specific subcellular 

positioning to take advantage of the supplied energy and functionally coordinate with each other. 

Moreover, systems analysis suggested there might be a gradient of CO2 concentration from the cell 

membrane to the centre of the cell cytoplasm (Mangan and Brenner, 2014). Thus, changes in the 

subcellular localisation of carboxysomes, in particular along the short axis of Syn7942 cells, probably 

render a means for modulating the assimilation of CO2 within the cell.  

 

Whether there are free Rubisco proteins that are not encapsulated within carboxysomes is an open 

question. Our confocal imaging did not demonstrate the existence of free Rubisco in the Syn7942 

cytoplasm. It was further confirmed by our finding that no visible band of free Rubisco was 

determined using native PAGE and immunoblot analysis of the soluble fraction. However, it cannot 

be excluded that the amount of free Rubisco is too low to detect, given the inherent resolution 

limitations of confocal microscopy and the sensitivity of immunoblot analysis.  

 

The redox state of photosynthetic electron transport chain functions as the key controller of the 

distribution of respiratory complexes (Liu et al., 2012), photosystem composition (Fujita et al., 1987), 

photosynthetic state transitions (Mullineaux and Allen, 1990) and the modulation of the circadian 

clock (Ivleva et al., 2006; Wood et al., 2010). In this study, we report that the redox state of the 

photosynthetic electron transport chain located in thylakoid membranes has an effect on the 

subcellular positioning of β-carboxysomes in Syn7942. The widespread and clumping distribution of 

carboxysomes is determined by the oxidised state of photosynthetic electron transport chain, whereas 

the linear positioning of carboxysomes along the cell length is ascribed to the reduced state of 
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photosynthetic electron transport chain (Figure 3-14). Nontreated cells present similar clustering 

organisation of carboxysomes as DCMU-treated cells, indicating that the PQ pool is oxidised upon 

the illumination condition, which possibly triggers the state transition to “State 1” (Mullineaux and 

Allen, 1990) or probably due to the high ratio of photosystem I and photosystem II in cyanobacteria 

(Howitt et al., 2001). Our results further reveal that the reorganisation of carboxysomes appears as a 

long-term regulation process. It is reminiscent of the previous finding showing that the constrained 

diffusive dynamics of β-carboxysomes in Syn7942 (Savage et al., 2010).  

 

It has been reported that de novo gene expression of DNA replication components in Syn7942 is 

dependent on the photosynthetic electron transport activity (Ohbayashi et al., 2013). Here, we show 

that both DCMU and DBMIB can inhibit the accumulation of carboxysome proteins and, thereby, the 

formation of carboxysomes (Figure 3-13). Whether there are indirect effects of protein synthesis on 

the spatial positioning of carboxysomes needs further characterisation. Our results demonstrate 

explicitly that DCMU and DBMIB treatments could result in distinct carboxysome positioning in the 

cell, whereas the carboxysome numbers, and hence probably the expression of carboxysome proteins, 

are comparable (Figure 3-14), suggesting that the effects of electron transport inhibitors on protein 

synthesis seem not to correlate with the changes in carboxysome positioning.  

 

In addition to the β-carboxysome positioning, redox regulation is also important for the β-

carboxysome biosynthesis and function. Carboxysomes may preferably retain an independent redox 

environment from that of the cytosol, by the semipermeable shell that can selectively exclude the 

entry of thioredoxin and other redox equivalents into the interior (Pena et al., 2010; Rae et al., 2013). 

The shell encapsulation allows the establishment of an oxidising micro-environment within the β-

carboxysome (Chen et al., 2013). The thioredoxins in the cytoplasm could reduce the redox damage to 

carboxysome components and enhance the carboxysome biogenesis and maturation (Rae et al., 2013). 

In addition, the independent redox modulation of the carboxysome lumen was deduced to be vital for 

the activities of carboxysome enzymes. The oxidising environment could favour the activation of 

CcaA (Price et al., 1992) and carbonic anhydrase function of CcmM (Pena et al., 2010).  
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Cyanobacterial CO2-concentrating mechanisms (CCMs) comprise carboxysomes, CO2 uptake 

complex NDH-1, and HCO3
-
 transporters (Price et al., 2008). To date, we have demonstrated that the 

in vivo distributions of carboxysomes (this work) and NDH-1 complexes (Liu et al., 2012) were both 

regulated by the redox state of photosynthetic electron transport chain, suggesting the potential 

interplay between the two components. In addition, given that the transcriptional levels of HCO3
-
 

transporters were also regulated by light through photosynthetic electron flux (Burnap et al., 2013; 

McGinn. et al., 2004), it is likely that the organisation of entire CCM pathway in cyanobacteria is 

modulated, in an integrated network context, by the light-mediated redox regulation of photosynthetic 

electron flow. Therefore, thylakoid membrane re-modelling during environmental adaption might 

play a role in the regulation of CCM pathway in the cell, which needs to be determined 

experimentally in future. 
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Single-organelle quantification reveals 

stoichiometric and structural variability of bacterial 

CO2-fixing organelles dependent on the environment 
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4.1 Introduction 

Stoichiometry, the relative quantities of each component in supramolecular complex is crucial for 

maintenance and regulation of complex functions. In cyanobacteria, the stoichiometry of photosystem 

and electron transfer proteins were demonstrated to be the key factor that sustained optimised 

photosynthesis (Ungerer et al., 2018). Regarding carboxysomes, several studies have indicated the 

strong relevance of assembly structures and functions to the stoichiometry of particular proteins over 

carboxysomes. Altering the stoichiometry of CcmM isoforms would yield carboxysomes at 

greater/smaller sizes and strong correlation was found over the relative content of CcaA and CcmM58 

in formed carboxysomes (Long et al., 2011). Manipulation of the native stoichiometry through 

synthetic biology by merging CcmM, CcmN and CcaA into a chimeric protein generated small 

carboxysomes with one-fold reduced Rubisco content, suggesting the necessity of proper CcmM-

CcmN-CcaA stoichiometry in controlling the carboxysome size and enzyme loadings (Gonzalez-

Esquer et al., 2015). Synthetic β-carboxysomes in E. coli were found to have obscure shapes unlike 

native counterparts, and incorrect stoichiometry of contents was believed to be one possible reason 

(Fang et al., 2018). Overall, understanding the physiological composition and assembly principles of 

carboxysome building blocks is of fundamental importance to gaining a complete picture of 

carboxysome formation and heterologously engineering and modulating functional CO2-fixing 

organelles to supercharge photosynthetic carbon fixation. 

 

Regarding the overall stoichiometry of carboxysomes, previous estimations on the relative 

carboxysome protein stoichiometry from either the whole cell lysates or the isolated forms, using 

immunoblot and mass spectrometry, were not completely accurate and relied strongly on sample 

preparation and treatment as well as the effectiveness and availability of antibodies (Faulkner et al., 

2017; Long et al., 2005; Long et al., 2011; Rae et al., 2012). For instance, stoichiometry is only 

partially available for CcmK2, rbcL, rbcS, CcmM35/58 and CcaA by immunoblotting (Long et al., 

2007).  Besides, CcmK3 and CcmK4 were never separated from CcmK2 in quantitative comparison 

due to the sequence homology and their relatively low abundance. For CcmL, no experimental 

quantification has been done due to its low abundance both in whole cell lysates or isolated 
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carboxysomes. The putative 12 pentameric CcmL per carboxysome in current model was based on 

predictions via the structural homology with virus capsid that contains both pentamers and hexamers. 

CcmN surprisingly was never detected in isolated carboxysome fraction (Faulkner et al., 2017; Long 

et al., 2005; Long et al., 2011) by mass spectrometry. CcmO predicted to be occupying the edge of 

facets which account for 10-30% of the shell surface, has never been detected in isolated 

carboxysome fraction too (Faulkner et al., 2017; Rae et al., 2012). For rbcX, quantification could not 

be performed due to the low content in purified carboxysome (Rae et al., 2013). Moreover, due to the 

multiple numbers of carboxysome in cells, the stoichiometry of individual carboxysome cannot be 

determined effectively through immunoblot, and mass spectrometry approaches.  

 

The adaption and regulatory mechanisms for stoichiometry in eukaryotic organelles are commonly 

acknowledged. For instance, organelles such as mitochondria and chloroplast can undertake structural 

reorganisation to optimise their functions under a variety of environmental stimuli (Bartolák-Suki et 

al., 2017; Dekker and Boekema, 2005; Pernas and Scorrano, 2016). Meanwhile, we lack evidence and 

comprehensive documentation of possible stoichiometric regulation in carboxysomes. Multiple 

transcriptomic data of β-carboxysomes in Synechocystis PCC6803 have indicated the proportional 

changes of different carboxysomal genes on expressional levels answering to changes in 

environmental conditions such as light intensity and CO2 availability (Eisenhut et al., 2007; Hihara et 

al., 2001; Wang et al., 2004), shown in Figure 4-1. Under increased levels of CO2 (Figure 4-1A and 

B), general reduction of expression was observed for carboxysomal genes, particularly for long-term 

adaptation after 24 hours (Figure 4-1B). Higher degrees of decrease were found in the shell and 

structural proteins compared with interior enzyme proteins. While under increased light illumination 

(Figure 4-1C), general increase of transcription for major shell protein CcmK1, CcmK2, structural 

protein CcmM and CcmN were observed. Meanwhile lesser increases were observed for enzyme 

protein RbcL/S and minor shell protein CcmK3/K4. Minimum increases were found among CcmO, 

CcmP, CcaA and CcmL. The alternations of relative expression might suggest distinctive 

stoichiometry over formed carboxysomes under different environmental conditions. 
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Overall, despite the previous findings, the exact stoichiometry of all building components in the 

functional carboxysome and how carboxysomes manipulate their compositions, organisations and 

functions to cope with environmental changes remained uncharacterised before this work. 

 

 

Figure 4-1. Transcriptional regulation of carboxysomal genes from published microarray data 

in Synechocystis PCC 6803 under CO2 and light regulations. A. 12 hours after switching cells 

from ambient air to 3 % CO2 (Wang et al., 2004). B. 24 h after switching cells from ambient air to 5 % 

CO2 (Eisenhut et al., 2007). C. 15 hours after switching cells from 20 to 300 μE·m
−2

·s
−1

 (HL indicate 

high light) (Hihara et al., 2001). Figure was modified from (Cai et al., 2012). 

 

Here, we construct a series of Syn7942 mutants with individual integral components of carboxysomes 

functionally tagged with enhanced yellow fluorescent protein (YFP) and report the in vivo 

characterisation of protein stoichiometry of carboxysomes at the single-organelle level using real-time 

single-molecule fluorescence microscopy, confocal and electron microscopy, combined with a suite 

of biochemical and genetic assays. Quantification of the protein stoichiometry of β-carboxysomes in 

Syn7942 grown under different conditions demonstrates the organisational flexibility of β-

carboxysomes, and their ability to modulate functions towards alternations of CO2 levels and light 

intensity during cell growth, as well as the regulation of the spatial localisation and mobility of β-

carboxysomes in the cell. This study provides fundamental insight into the formation and structural 

plasticity of carboxysomes and their dynamic organisation towards environmental changes, which 

could be extended to other BMCs and macromolecular systems. A deeper understanding of the 

protein composition and structure of carboxysomes will inform strategies for rational design and 

engineering of functional and adjustable metabolic modules towards biotechnological applications. 
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4.2  Results 

4.2.1 Protein stoichiometry of functional carboxysomes at the single-organelle level 

We constructed ten Synechococcus elongatus PCC7942 (Syn7942) strains expressing individual β-

carboxysome proteins (CcmK3, CcmK4, CcmK2, CcmL, CcmM, CcmN, RbcL, RbcS, CcaA, RbcX) 

fused with YFP at their C-termini, invividually (Figure 4-2). Fluorescence tagging at the native 

chromosomal locus under the control of their native promoters ensures expression of the 

fluorescently-tagged proteins in context and at physiological levels (Sun et al., 2016). These YFP-

fusion strains, except for RbcL-YFP and CcmK2-YFP, are fully segregated (Figure 4-2, Figure 4-3) 

and exhibit wild-type levels of cell size, growth and carbon fixation within experimental error (Table 

4-1), consistent with previous observations (Cameron et al., 2013; Faulkner et al., 2017; Savage et al., 

2010).  

 

Figure 4-2. Construction and verification of Syn7942 strains with YFP fusion to individual 

carboxysome proteins. A. Locations of the genes encoding carboxysome proteins in WT Syn7942. B. 

The strategy of YFP fusion using REDIRECT protocol. C. PCR verification of the full segregation of 

YFP-fusion strains, except for CcmK2-YFP and RbcL-YFP which are partially segregated.  



Chapter 4 

92 

 

 

Table 4-1. Cell growth, carbon fixation and cell dimension of Syn7942 WT and YFP-fusion 

mutants under Air/ML. Results were shown as mean ± SD. The sample sizes, as cell numbers, were 

shown as n. No significant differences in growth rate were observed, indicating that YFP tagging has 

no notable effects on cell growth and physiology.

 

 

 

 

Also, we also generated RbcL-YFP and CcmK2-YFP strains, which were only partially segregated. 

Through immunoblot analysis using anti-fluorescence protein, anti-RbcL and anti-CcmK2 antibodies 

(Figure 4-3), we estimate that 29.2 ± 7.1 % (n = 4) of total RbcL and 6.0 ± 0.7 % (n = 3) of total 

CcmK2 were tagged with YFP in RbcL-YFP and CcmK2-YFP strains. Nevertheless, we excluded the 

stoichiometric quantification of RbcL and CcmK2 in this study, given the partial segregation which 

could result in quantification inaccuracy. 

Strains 

Doubling time 

(hours) 

(n = 4) 

Carbon fixation 

(nmol·ml
-1

·min
-1

) 

(n = 3) 

Cell length 

(μm) 

Cell width 

(μm) 
n 

WT Syn7942 16.82 ± 1.31 3.91 ± 0.08 3.38 ± 1.65 0.88 ± 0.14 1360 

CcmK2-YFP 17.26 ± 0.83 3.45 ± 0.09 3.4 ± 1.28 0.82 ± 0.1 951 

CcmK3-YFP  18.03 ± 1.22 4.22 ± 1.06 3.66 ± 1.43 0.78 ± 0.08 1015 

CcmK4-YFP  17.68 ± 1.44 3.78 ± 0.86 3.6 ± 1.45 0.82 ± 0.08 904 

CcmL-YFP  18.59 ± 1.41 3.76 ± 0.47 3.16 ± 1.66 0.82 ± 0.17 668 

CcaA-YFP  16.79 ± 0.98 3.38 ± 0.36 3.45 ± 1.39 0.81 ± 0.09 622 

CcmN-YFP  17.27 ± 1.08 3.68 ± 0.68 3.34 ± 1.07 0.87 ± 0.07 751 

CcmM-YFP  17.74 ± 1.02 3.76 ± 0.47 3.3 ± 1.53 0.86 ± 0.14 705 

RbcL-YFP 17.78 ± 1.88 4.01 ± 0.62 3.22 ± 1.19 0.85 ± 0.1 556 

RbcS-YFP  18.33 ± 2.13 3.70 ± 1.01 3.03 ± 1.07 0.78 ± 0.09 236 

RbcX-YFP  18.14 ± 0.77 3.67 ± 0.87 3.67 ± 1.52 0.82 ± 0.12 799 
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Figure 4-3. Immunoblot analysis of the YFP-tagged Syn7942 strains using the anti-GFP, anti-

RbcL and anti-CcmK antibodies of soluble fractions in this study based on SDS-PAGE. A. 

Immunoblot of soluble fractions of YFP-tagged strains using an anti-fluorescent protein antibody 

shows tagging of YFP to each carboxysome protein (red arrows). Note that CcmM-YFP shows two 

bands at 85 and 62kDa, corresponding to CcmM58 and CcmM35, respectively. Samples with the 

same total protein concentration were loaded to relatively quantify the carboxysome protein content in 

the soluble fraction (Table 4-2). B. Immunoblot of soluble fractions of the partially-segregated 

CcmK2-YFP and RbcL-YFP strains, using anti-CcmK2 and anti-RbcL antibodies. It indicates that 

29.2 ± 7.1 % (n = 4) of total RbcL and 6.0 ± 0.7 % (n = 3) of total CcmK2 proteins were tagged with 

YFP. C. Immunoblot of soluble fractions of the CcmN-YFP strain using an anti-fluorescent protein 

antibody, showing the presence of large aggregates of CcmN that failed to run into the gel, marked by 

the red arrow. Minor fractions of CcmN that run into the gel are marked by the blue arrow. For all 

western results, at least 3 independent experiments were done for statistical analysis.  
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Table 4-2. Carboxysomal protein stoichiometry in cell lysate detected by immunoblotting. 

Quantification of CcmO and CcmN was not included, as they could form large aggregations in SDS-

PAGE  and their contents could not be accurately estimated. Data are represented as mean ± SD from 

at least 3 biological repeats. 

 

Category Protein Relative content (%) 

Shell proteins 

CcmK2 70.4 ± 7.1 

CcmK3 1.3 ± 0.1 

CcmK4 2.0 ± 0.2 

CcmL 0.2 ± 0.01 

Structural proteins CcmM 2.5 ± 0.5 

CA enzymes CcaA 1.7 ± 0.4 

Rubisco enzymes 
RbcL 12.6 ± 3.5 

RbcS 9.1 ± 0.8 

Rubisco chaperone RbcX 0.1 ± 0.01 

 

We used single-molecule Slimfield microscopy (Plank et al., 2009) to visualise individual 

carboxysomes that were fused with YFP (Figure 4-4, Figure 4-5). This technique allows detection of 

fluorescently-labelled proteins with millisecond sampling, enabling real-time tracking of rapid protein 

dynamics inside living cells, exploited previously to study functional proteins involved in bacterial 

DNA replication and remodelling (Badrinarayanan et al., 2012; Reyes-Lamothe et al., 2010), gene 

regulation in budding yeast cells (Leake, 2018; Wollman et al., 2017), bacterial cell division (Lund et 

al., 2018), and chemokine signalling in lymph nodes (Miller et al., 2018). Our prior measurements 

using relatively fast maturing fluorescent proteins such as YFP suggest that less than 15% of 

fluorescent protein is likely to be in a non-fluorescent immature state (Leake et al., 2008; Shashkova 

et al., 2018).  

 

Figure 4-4A shows the Slimfield images of three representative Syn7942 strains RbcS-YFP, CcmK4-

YFP and CcmM-YFP that grow under ambient air and moderate light (hereafter denoted Air/ML), to 

determine the protein stoichiometry from different carboxysome structural domains. Single 

carboxysomes are detected as distinct fluorescent foci in cells of the YFP-fused strains (Figure 4-4A, 

Figure 4-5), whose sigma width is approximately 250 nm (n = 100), comparable to the diffraction-
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limited point spread function width of our imaging system. We use the number of YFP molecules per 

fluorescent foci as an indicator of the stoichiometry of the fluorescently-labelled protein subunits in 

each carboxysome, which we determined by quantifying step-wise photobleaching of the fluorescent 

tag (Leake et al., 2006) during the Slimfield laser excitation process (Figure 4-4B to C) using a 

combination of Fourier spectral analysis and edge-preserving filtration of the raw data (Leake et al., 

2003; Leake et al., 2004). The resulting broad distributions, rendered as a kernel density estimates of 

protein stoichiometry suggest a variable content of individual components per carboxysome (Figure 

4-4D), indicative of the structural heterogeneity of β-carboxysomes. The modal average stoichiometry 

of each protein subunit per carboxysome was defined by the measured peak from each distribution of 

the raw stoichiometric data (Figure 4-4D, Figure 4-5), after subtracting the background fluorescence 

distribution, primarily from chlorophylls, which was determined from the WT cells (Figure 4-6).  

 

Figure 4-4. Slimfield quantification of cells grown under ambient air/moderate light Air/ML 

condition. A. Averaged Slimfield images of YFP fluorescence (green) over five frames of strains 

expressing shell component CcmK4-YFP, the interior enzyme RbcS-YFP and the shell-interior linker 

protein CcmM-YFP, cell body outlines indicated (white dash line). Scale bar indicates 2 μm. B. 

Distribution of automatically detected foci intensity from the end of the photobleaching, 
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corresponding to the characteristic intensity of in vivo YFP. Inset shows the Fourier spectrum of 

‘overtracked’ foci, tracked beyond photobleaching, showing a peak at the characteristic intensity. C. 

Representative fluorescence photobleaching tracked at ultra-fast speed. The CcmK4 plot shows an 

inset ‘zoomed in’ on lower intensity range with step-preserving Chung-Kennedy filtered data in red, 

with individual photobleaching steps visible at the characteristic intensity. Brightness (kcounts), 

counts measured per camera pixel multiplied by 1,000. D. Distribution of YFP copy number detected 

for individual carboxysomes in corresponding mutant strains, rendered as kernel density estimates 

using standard kernel width. Heterogeneity of contents was observed. Also, a “preferable” copy 

number, represented by kernel density peak values could be determined. Statistics of copy numbers 

(Peak value ± HWHM) are listed in Table 4-3 for ML conditions. The corresponding Slimfield 

images and histogram for complete strain sets were shown in Figure 4-5. 

 

 

Figure 4-5. Slimfield images of YFP-fusion cells under Air/ML and stoichiometric histogram of 

copies of YFP per carboxysome. Fluorescence foci (green) indicate individual carboxysomes. Cell 

borders are outlined by white dash lines. In the histograms, the major peaks were acquired by kernel 

density fitting, representing the copy numbers of each protein per carboxysome. Sample sizes for 

individual strains are 60 (RbcS), 219 (CcmK3), 77 (CcmK4), 316 (CcmL), 71 (CcmM), 86 (CcmN), 

95 (CcaA) and 211 (RbcX) respectively. 

  



Chapter 4 

97 

 

 

Figure 4-6. Normalisation of chlorophyll during Slimfield imaging for Syn7942 strains. A. The 

apparent YFP-equivalent stoichiometry of Chlorophyll estimated from Wild-type Syn7942 at Air/ML 

condition. B. Relative brightness of chlorophyll detected by Slimfield imaging in the YFP (green) 

channel and chlorophyll (red) channel, showing expected trends between growth conditions in the red 

channel but no clear trend in the green channel, such that the Air/ML distribution in A was used to 

correct all growth condition. C. Uncorrected kernel density estimates for CcmL stoichiometry in 

Air/ML and CO2/ML growth conditions and apparent stoichiometry of chlorophyll, generated with a 

kernel width of 0.5 YFPs. This low kernel width allows periodic features to be seen, in this case 

showing 5mer periodicity in CcmL stoichiometries.  

 

We estimated the stoichiometry of building proteins in single carboxysomes grown under Air/ML 

through a cell-by-cell based Slimfield imaging using numerical integration of pixel intensities 

(Wollman and Leake, 2015) (Table 4-3) in each carboxysome divided by the intensity of a single 

eYFP (Figure 4-4B) – full details in Chapter 2. Rubisco appears to be the predominant components of 

the β-carboxysome, as indicated by the RbcS content. CcmM is the second abundant elements; there 

are over 700 copies of CcmM per β-carboxysome. In addition, CcmK4 content is greater than that of 

CcmK3 by a factor of 3.8. CcmL, CcmN, CcaA and RbcX are the minor components in the β-

carboxysome. Our results reveal that there are 37 CcmL subunits per carboxysome, with the raw 

stoichiometry distribution showing some indications of peaks at multiples of ~ five molecules 

indicative of multiples of CcmL pentamers (Figure 4-6C), consistent with the atomic structure of 

CcmL (Tanaka et al., 2008). A modal average of 37 CcmL molecules, therefore, suggests that a single 
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carboxysome contains an average of 7.4 CcmL pentamers, less than 12 CcmL pentamers that are 

postulated to occupy all the vertices of the icosahedral shell (Bobik et al., 2015; Kerfeld et al., 2018). 

It is feasible that not all vertices of the carboxysome structure are capped by CcmL pentamers, as 

BMC shells deficient in pentamers could still be formed without notable structural variations (Cai et 

al., 2009; Hagen et al., 2018; Lassila et al., 2014). To our knowledge, this is the first characterisation 

of protein stoichiometry at the level of single functional carboxysomes in their native cellular 

environment. 
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Table 4-3. Protein stoichiometry of the carboxysome and its variability in Syn7942 grown under Air/ML, CO2/ML, LL and HL conditions determined 

from Slimfield and confocal microscopy imaging. Stoichiometry is presented as Peak value ± HWHM, and the sample sizes are indicated as n. Peak values were 

determined from the Slimfield stoichiometry profiles of each carboxysome proteins (Figure 4-4, Figure 4-5). Quantification of the CcmL under the four conditions 

was acquired from Slimfield imaging for accurate measurement of the copies of shell pentamers for capping the carboxysome structure. Copies of other 

carboxysome proteins were calculated using Slimfield results (grey) with definitive counts of protein copies under Air/ML (Figure 4-5) in combination with 

relative quantification of each protein under the four conditions from confocal imaging (Figure 4-9 and Figure 4-10).  The structures of protein were documented 

in (Kerfeld et al., 2005; Long et al., 2007; Tanaka et al., 2007; Tanaka et al., 2008; Long et al., 2011; Kinney et al., 2012; McGurn et al., 2016). *CcmM58 have 

trimer formation, the Monomer was designated to the majority of CcmM35.  

Category Structure Protein 

Air/ML CO2/ML LL HL 

Peak 

value ± 

HWHM 

Number of 

functional 

units 

Peak value ± 

HWHM 

Number of 

functional 

units 

Peak 

value ± 

HWHM 

Number of 

functional 

units 

Peak 

value ± 

HWHM 

Number of 

functional units 

Shell 

proteins 

Hexamer 

CcmK3 
92 ± 148  

(n = 219) 
15 ± 25 

172 ± 83  

(n = 2048) 
29 ± 14 

83 ± 31 

(n = 1516)  
14 ± 5 

87 ± 52  

(n = 2155) 
14 ± 9 

CcmK4 
314 ± 194  

(n = 77) 
52 ± 32 

562 ± 263 

(n = 1918)  
94 ± 44 

313 ± 121  

(n = 1766) 
52 ± 20 

304 ± 95 

(n = 3215)  
51 ± 16 

Pentamer CcmL 
37 ± 17  

(n = 316) 
7.4 ± 3.4 

66 ± 24 

(n = 311) 
 13.2 ± 4.8 

34 ± 15 

(n = 394) 
6.8 ± 3.0 

69 ± 24 

(n = 220) 
13.8 ± 4.8 

Structural 

proteins 

Monomer* CcmM 
719 ± 1433  

(n = 71) 
719 ± 1433 

468 ± 425 

(n = 2313) 
468 ± 425 

483 ± 366 

(n = 3655)  
483 ± 366 

1176 ± 691 

(n = 2318)  
1176 ± 691 

Monomer CcmN 
74 ± 51  

(n = 86) 
74 ± 51 

52 ± 28  

(n = 3143) 
52 ± 28  

51 ± 20 

(n = 4022)  
51 ± 20 

82 ± 34  

(n = 5074) 
82 ± 34  

CA 

enzyme 
Hexamer CcaA 

86 ± 81  

(n = 95) 
14 ± 14 

129 ± 86  

(n = 1354) 
21 ± 14 

65 ± 21  

(n = 217) 
11 ± 4 

122 ± 59 

(n = 2837)  
20 ± 10 

Rubisco 

enzyme 
L8S8 RbcS 

6822 ± 

9200  

(n = 60) 

853 ± 1150 
4401 ± 6655 

(n = 894) 
 550 ± 832 

2934 ± 

5492 

(n = 752) 

 367 ± 687 
12057 ± 

5186 

(n = 1974) 

1507 ± 648 

Rubisco 

chaperone 
Dimer RbcX 

39 ± 32  

(n = 211) 
20 ± 16 

38 ± 10  

(n = 1370) 
19 ± 5 

40 ± 9 

(n = 1402) 
20 ± 5 

40 ± 9 

(n = 1861) 
20 ± 5 
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As a control, we fused RbcL with mYPet, a monomeric-optimised variant of YFP. The RbcL-YFP 

and RbcL-mYPet cells show no significant difference in the subcellular distribution of carboxysomes 

as well as cell doubling times and carbon fixation (Figure 4-7), demonstrating that there are no 

measurable artefacts due to putative effects of dimerisation of the YFP tag. 

 

Figure 4-7. Comparison of YFP and mYPet tagging to RbcL in Syn7942. A. Confocal and 

Slimfield microscopy images for RbcL-mYPet and RbcL-YFP. No significant effects were detected 

on the doubling time B (p = 0.82, n = 4, student t-test) and carbon fixation capacity C (p = 0.50, n = 3) 

of RbcL-mYPet and RbcL-YFP strains. No significant differences in RbcL stoichiometry, cell growth 

and carbon fixation, suggesting that there are no measurable artefacts due to putative effects of 

dimerisation of the YFP tag. 

 

We also examined the relative abundance of individual carboxysome proteins in the YFP-fusion 

Syn7942 strains in cell lysates, using immunoblot probing with an anti-fluorescent protein antibody 

(Figure 4-3A, Table 4-2). To compare with the stoichiometry obtained from Slimfield imaging, we 

normalised the abundance of carboxysome proteins estimated from immunoblot analysis, using the 
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RbcS content per carboxysome determined by Slimfield imaging. It appears that the content of β-

carboxysome proteins determined by immunoblot is generally greater than that within the 

carboxysome characterised by Slimfield. Despite the potential effects caused by YFP fusion, it could 

suggest the presence of a “storage pool” of carboxysome proteins located in the cytoplasm, which are 

involved in the biogenesis, maturation and turnover of carboxysomes. The ratio of RbcL/S is 8:5.8 (n 

= 4) (Table 4-2), in line with the previously proposed RbcL8S5CcmM35 assembly of Rubisco 

complexes in Syn7942 (Long et al., 2011). 

                         

4.2.2 Stoichiometry of carboxysome proteins exhibit a dependence on the 

microenvironment conditions of live cells 

Our previous study showed that the content and spatial positioning of β-carboxysomes in Syn7942 are 

dependent upon light intensity during cell growth, revealing the physiological regulation of 

carboxysome biosynthesis (Sun et al., 2016). Whether the stoichiometry of different components in 

the carboxysome structure changes in response to fluctuations in environmental conditions is 

unknown. Here we addressed this question by taking advantage of the far greater throughput of 

confocal microscopy compared to Slimfield, while still using the single-molecule precise Slimfield 

data as a calibration to convert the intensity of detected foci from confocal images into estimates for 

absolute numbers of stoichiometry. We achieved this by identifying the peak value of the foci 

intensity distribution from each given cell strain obtained from confocal imaging with the peak value 

of the measured Slimfield foci stoichiometry distribution for the equivalent cell strain under Air/ML 

condition. This approach allows us to generate a conversion factor which we then applied to 

subsequent confocal data acquired under lower light (LL), higher light (HL) and ML with air 

supplemented by 3% CO2, and to estimate relative changes in the stoichiometry of carboxysome 

building components using relatively large numbers of cells, without the need to obtain separate 

Slimfield data sets for each condition (Figure 4-8 to Figure 4-10). 
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Figure 4-8. Relative protein quantification of CcmK4, RbcS and CcmM in the carboxysome 

under different CO2 levels and light intensities using confocal microscopy. A. Confocal images of 

CcmK4-YFP, RbcS-YFP and CcmM-YFP strains under Air/ML, CO2/ML, LL and HL. Fluorescence 

foci (green) indicate carboxysomes and cell borders were outlined by white dashed lines. B. Violin 

plot of carboxysome intensities under Air/ML, CO2/ML, LL and HL, normalised to kernel density ML 

peak values (peaks marked by white dash lines). C. Kernel density estimates of CcmL carboxysome 

copy number grown under Air/ML, CO2, LL and HL detected by Slimfield and corrected for 

chlorophyll. Triple Gaussian fits are indicated as coloured dashed lines with summed fit in red. The 

percentage of each Gaussian is indicated aside. 
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Figure 4-8A shows confocal fluorescence images of CcmK4-YFP, RbcS-YFP, and CcmM-YFP 

strains grown under Air/ML, 3% CO2 (CO2/ML), LL and HL. The confocal images reveal patterns of 

cellular localisation of carboxysomes similar to those observed with Slimfield microscopy (Figure 4-

5). 

 

 

Figure 4-9. Confocal images of YFP-tagged cells. YFP signals are shown in green, indicative of 

YFP-labeled carboxysomes. White dash lines indicate cell borders. (scare bar = 2 μm). 
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Figure 4-10. Confocal images of RbcS-YFP, CcmM-YFP, CcmK4-YFP and CcmK3-YFP cells 

under Air/ML, CO2, LL, and HL and distribution profiles of carboxysome protein signal 

intensity. Imaging on the same strain under the four treatments was performed with the same 

parameters, allowing direct comparison of fluorescence intensities. Carboxysome and cell borders 

(shown as green and white dash lines, respectively) were optimised for presentation. The peak values 

obtained from kernel density fitting of the intensity distribution, as shown by white dashed lines, were 

used for examining changes in the abundance of the same carboxysome proteins under different 

conditions. Scale bar = 4 μm. 
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Figure 4-11. Confocal images of CcmL-YFP, CcmN-YFP, CcaA-YFP and RbcX-YFP cells 

under Air/ML, CO2, LL, and HL and distribution profiles of carboxysome protein signal 

intensity (continuing Figure 4-10). 

 

We analysed the confocal images to detect carboxysome fluorescent foci within the cells and quantify 

their fluorescence intensities (Figure 4-8B, Figure 4-10 and Figure 4-11). We find that the number 

of carboxysomes per cell is dependent on the growth condition: it was reduced under CO2/ML in 

contrast to Air/ML, whereas HL increases the abundance of β-carboxysomes, consistent with previous 

findings (Sun et al., 2016; Whitehead et al., 2014). As a common feature, the abundance of all the 

proteins in the β-carboxysome is modulated under distinct growth conditions. For instance, both RbcS 

and CcmM have a higher content per carboxysome under HL compared with that under other 

conditions, whereas the CcmK4 content per β-carboxysome increase under 3% CO2 (Figure 4-8B). 

The dependence of carboxysome protein stoichiometry inferred from the peak values of the 
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stoichiometry distributions under different cellular microenvironmental conditions is summarised in 

Table 4-2. 

 

Interestingly, we find that the variation of CcmL abundance per carboxysome rises with increasing 

light illumination and CO2 availability (Figure 4-8C). The measured stoichiometry distribution of 

CcmL pentamers suggests the presence of three populations: (I) carboxysomes with < 60 CcmL 

subunits (in the range of 32-37); (II) carboxysomes with 60 CcmL subunits, consistent with the 

expectation that 12 vertices of the icosahedral carboxysome are fully occupied by CcmL pentamers 

(Kerfeld et al., 2018; Rae et al., 2013; Tanaka et al., 2008); (III) carboxysomes with > 60 CcmL 

subunits (in the range of 91-102). Using a nearest-neighbour model to estimate the probability for the 

diffraction-limited optical images of individual carboxysomes in a cell, we find that the Population III 

carboxysomes represent random overlap of two or more carboxysomes from the Population I and II 

(Figure 4-8C). Population I represent a “non-complete capped” state in which not all vertices in the 

icosahedron are occupied by CcmL pentamers. We find the characteristic stoichiometry of the 

Population I carboxysomes increases with the enhancement of light intensity during cell growth, from 

32 CcmL molecules (LL) to 35 (ML) and 37 (HL), with HL have a significantly smaller proportion 

(23 %) of “non-complete capped” carboxysomes compared to ~80% under LL and ML conditions. 

Supplementing the air with 3% CO2 under ML similarly resulted in a substantial decrease in the 

proportion of “non-complete capped” carboxysomes in the population (18 %) comparable to the HL 

condition in the absence of any supplemental CO2. These findings suggest a dependence of 

carboxysome assembly which may allow adaptation towards microenvironmental changes, i.e. the 

increase in the population of capped carboxysomes in situations which are favourable towards 

photosynthesis (HL conditions and locally-raised levels of CO2). 

 

This finding is also validated by the changes in protein abundance of other carboxysome components 

under environmental regulation (Table 4-2, Figure 4-10 and Figure 4-11). Variations of protein 

content in carboxysomes under CO2/ML vs Air/ML, and HL vs LL conditions, likely dependent on the 

locations of corresponding genes in the genome, indicate distinct fashions of stoichiometric regulation 
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of carboxysome building blocks (Figure 4-12). The abundance of CcmK3 and CcmK4, whose 

encoding genes are distant from the ccmKLMNO operon (Sommer et al., 2017), increases under 3 % 

CO2 and remain relatively constant under HL/LL, contrary to the changes in the abundance of CcmN, 

and CcmM located in the ccm operon. In addition, the ratio of CcmK4: CcmK3 per carboxysome 

appear to be relatively constant, in the range of 3.6−4.1 (Table 4-4), indicating the organisational 

correlation between CcmK3 and CcmK4 within the β-carboxysome structure. The content of the 

putative Rubisco chaperone RbcX in each carboxysome remains unaltered under different conditions, 

probably ascribed to the fact that its encoding gene is distant from the Rubisco and ccm operons in 

Syn7942. 

 

Figure 4-12. Changes in carboxysome protein stoichiometry by increase in CO2 levels and light 

intensity. A. Comparison of carboxysome protein stoichiometry under CO2 treatment. Increase in the 

CO2 concentration resulted in the rise of CcmK3, CcmK4, CcaA and CcmL contents and the decline 

of RbcS, CcmN and CcmM contents. B. Comparison of carboxysome protein stoichiometry under 

light intensity treatment. Increased light intensity led to the elevation of RbcS, CcmM, CcmL, CcaA 

and CcmN contents, whereas the abundance of RbcX, CcmK3 and CcmK4 contents per carboxysome 

do not change dramatically. The Peak value ratios of each protein under paired conditions were 

displayed as fold changes. Man-Whitney U-tests were performed comparing numbers of functional 

units of target proteins from CO2/ML to Air/ML and HL to LL separately, P-values < 0.05, 

<0.005  >0.05 were marked with *, *** and ns respectively. 
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4.2.3 Variation of carboxysome diameter represents a strategy for manipulating 

carboxysome activity to adapt to environmental conditions 

The change in the protein content per carboxysome signifies the variation of β-carboxysome size and 

organisation among different cell growth conditions. Indeed, electron microscopy of WT Syn7942 

cells substantiated the variable structures of β-carboxysomes in response to changing environment 

(Figure 4-13A and B). The average diameter of β-carboxysomes is 192 ± 41 nm (mean ± SD, n = 33) 

in Air/ML, 144 ± 24 nm (n = 25) in 3% CO2, 151 ± 22 nm (n = 27) in LL, and 208 ± 28 nm (n = 51) 

in HL (Figure 4-13B, Table 4-4, Figure 4-14). These results reveal that both the CO2 level and light 

intensity can result in changes in carboxysome size (Figure 4-13B). Larger β-carboxysomes can 

accommodate more Rubisco enzymes (estimated by RbcS content) (Figure 4-13C). An exception is 

the carboxysomes under LL, which are around 5% larger than the carboxysomes under 3% CO2 but 

comprises only 67 % of Rubisco per carboxysome under CO2 (Figure 4-13C, Table 4-4). EM images 

reveal that the lumen of β-carboxysomes synthesised under LL often contain regions with low protein 

density (Figure 4-13A, arrows; Figure 4-14), likely resulting in the reduced and uneven Rubisco 

loading within the β-carboxysome. 

 

We also find that CO2-fixing activity per carboxysome increases as the β-carboxysome structure 

enlarges correlated to strong light intensity during cell growth (Figure 4-13D), demonstrating the 

correlation between β-carboxysome structure and function in vivo. Moreover, CO2-fixation activity 

per Rubisco of the β-carboxysome declines under HL as the carboxysome size (Figure 4-13E) and 

Rubisco density in the carboxysome lumen increase (Table 4-4). This may suggest that Rubisco 

density and local Rubisco interactions are important for determining CO2-fixation activity of 

individual Rubisco (Table 4-4). Interestingly, the relatively small β-carboxysomes under 3% CO2 

exhibit high CO2-fixing activities per Rubisco and per carboxysome, compared with β-carboxysomes 

under other conditions. The enhanced carbon fixation capacity under 3% CO2 might be correlated 

with the increase in CcmK3 and CcmK4 content (Figure 4-12), as it has been shown that depletion of 

CcmK3/CcmK4 impedes carbon fixation of carboxysomes (Rae et al., 2012).  
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Figure 4-13. Variations of the carboxysome size and carbon fixation under Air/ML, CO2, LL 

and HL. A. Thin-section electron microscopy images showing individual carboxysomes in the 

Syn7942 WT cells under Air/ML, CO2, LL and HL treatments (Scale bar = 1 μm). See more images 

in Figure 4-14. Yellow arrows indicate the carboxysomes with spaces of low protein density under 

LL. B. Changes in the carboxysome diameter under Air/ML, CO2, LL and HL measured from EM (n 

= 33, 25, 27 and 51, respectively), with representative carboxysome images above. Differences in the 

carboxysome diameter are significant between CO2 and air (p = 1.92 x 10
-14

) and between LL and HL 

(p = 8.29 x 10
-7

), indicated as ***. Correlation between the carboxysome size and the Rubisco content 

per carboxysome (as C), CO2 fixation per carboxysome (as D) and CO2 fixation per Rubisco (as E) 

generated under Air/ML, CO2, LL and HL. Carboxysome diameters and CO2 fixation were present as 

average ± SD, whereas the carboxysome total protein content and Rubisco content were shown as 

Peak value ± HWHM. 
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Table 4-4. Properties of an average carboxysome in Syn7942 under Air/ML, CO2/ML, LL and 

HL conditions. Data estimated from previous model (Long et al., 2011) are highlighted in grey.  

 

Average CB properties  Air/ML CO2/ML LL HL 

Carbon fixation rate per Rubisco (a.u.) 1.00 7.15 1.80 0.83 

Coverage of CcmK3-K4 +CcmL on surface (%) 19.2 34.1 31.0 16.3 

Ratio of CcmM: Rubisco 0.843 0.851 1.316 0.780 

Ratio of CcaA: Rubisco 0.101 0.235 0.177 0.081 

Copies of Rubiscos 853 550 367 1507 

CB diameter (nm) 192 144 151 208 

CB surface area (10
4
 nm

2
) 8.82 4.96 5.46 10.36 

Internal CB volume (10
6
 nm

3
) 1.88 0.75 0.87 2.42 

Surface area/volume ratio 0.039 0.052 0.050 0.036 

Rubisco density in lumen (10
-4

 copy/nm
3
) 9.08 11.80 6.75 9.95 

Ratio of CcmK4:CcmK3 3.8 3.6 4.1 3.9 
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Figure 4-14. Thin-section electron microscopic images of Wild-Type Syn7942 cells under 

Air/ML, CO2/ML, LL and HL. The size of carboxysomes in cells grown under different 

environmental conditions varies. Low density regions were often found in the lumen of carboxysomes 

synthesized under LL (59%, 16 out of 27 β-carboxysomes), compared with 9% for Air/ML (3 out of 

33), 12% for CO2/ML (3 out of 25) and 8% for HL (4 out of 51). Scale Bar = 200 nm. 
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4.2.4 The patterns of spatial localisation and diffusion of β-carboxysomes in live cells 

change dynamically depending upon light intensity during growth 

The patterns of localisation of β-carboxysomes within the cyanobacterial cells appear to be crucial for 

carboxysome biogenesis and metabolic function (Savage et al., 2010; Sun et al., 2016). We measured 

the organisational dynamics of β-carboxysomes with distinct diameters in Syn7942 under different 

light intensities, using time-lapse confocal fluorescence imaging on the RbcL-YFP Syn7942 strain. 

Previous studies have shown that tagging of RbcL with fluorescent proteins does not obstruct β-

carboxysome assembly and function in Syn7942 (Cameron et al., 2013; Chen et al., 2013; Savage et 

al., 2010; Sun et al., 2016). During time-lapse confocal imaging, we applied illumination with the 

same light intensity on the cell samples as that for cell growth to maintain cell physiology. We find 

that the diffusion of individual β-carboxysomes within cyanobacterial cells is non-Brownian (Figure 

4-15A), indicative of intracellular restrictions that mediate carboxysome positioning. Carboxysomes 

under HL display larger diffusive regions than those under LL. The mean square displacement (MSD) 

of tracked carboxysomes increased with the rise of light intensity (Figure 4-15B), as did the mean 

microscopic diffusion coefficient of individual carboxysomes (Figure 4-15C): an average diffusion 

coefficient of 2.76 ± 2.83 x 10
-5

 µm
2･sec

-1 
for HL (mean ± SD, n = 105), 1.48 ± 1.03 x 10

-5
 µm

2･sec
-1 

for ML (n = 84), and 0.28 ± 0.19 x 10
-5

 µm
2･sec

-1
 for LL (n = 336). Notably, carboxysomes with a 

larger diameter (Figure 4-13) generated under HL present a higher diffusion coefficient compares 

with carboxysomes with relatively smaller size under ML and LL. However, there is no apparent 

correlation between the diffusion coefficient of carboxysomes and their size in the same light 

conditions (Figure 4-16). These results indicate the mechanisms that dominate the spatial 

organisation and diffusion of carboxysomes in Syn7942, for example, the previously proposed 

interactions with cytoskeletal proteins (Savage et al., 2010) and ParA-mediated chromosome 

segregation (Jain et al., 2012), are also dependent sensitively on light intensity during cell growth. 
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Figure 4-15. Spatial localisation and diffusion dynamics of carboxysomes in Syn7942 cells are 

dependent on light intensity. A. Tracking of carboxysome diffusion in cells grown under HL, ML 

and LL. Coloured lines indicate the diffusion trajectories of each carboxysomes and circles represent 

the diffusion areas of each carboxysomes over 60 mins. B. Non-linear MSD (Mean Square 

Displacement) profiles suggest the constrained diffusion of carboxysomes in Syn7942 cells grown 

under HL, ML and LL. Inset, zoom-in view of the MSD profile under LL. C. Diffusion coefficient of 

carboxysomes in vivo decreases significantly when the light intensity reduces: 2.76 ± 2.83 x 10
-5

 

µm
2･sec

-1 
for HL (mean ± SD, n = 105), 1.48 ± 1.03 x 10

-5
 µm

2･sec
-1 

for ML (n = 84), and 0.28 ± 

0.19 x 10
-5

 µm
2･sec

-1
 for LL (n = 336). (p = 3.05 x 10

-5
 for comparison between HL and ML, p = 2.77 

x 10
-5

 for comparison between ML and LL, two-tailed student t-test). 

 

 

Figure 4-16. Changes in the diffusion coefficient of carboxysomes in Syn7942 cells under HL, 

ML and LL are not dependent on the carboxysome size. The correlation between diffusion 

coefficient and RbcL-YFP fluorescence intensities per carboxysome (representing the carboxysome 

size) under HL, ML and LL could not be well linearly fitted (R
2
 < 0.005 for HL, ML and LL). 
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4.3 Discussion 

Precise quantification of the protein stoichiometry and organisational regulation of carboxysomes 

provides insight into their assembly principles, structure and function. In this work, we functionally 

fused fluorescent protein tags to the building blocks in β-carboxysomes and exploited single-molecule 

fluorescence microscopy to count the actual protein stoichiometry of β-carboxysomes in Syn7942 

cells, at the single-organelle level. We characterised the stoichiometric flexibility of carboxysome 

proteins within the polyhedral structure towards environmental variations. Variability of the protein 

stoichiometry and size of carboxysomes likely provide the structural foundation for the physiological 

regulation of carboxysome biogenesis and carbon fixation activity. Given the shared structural 

features of carboxysomes and other BMCs, we believe that this work opens up new opportunities to 

quantitatively evaluate protein abundance and decipher the formation of all BMC organelles, in both 

native forms and synthetic variants. 

 

Despite a great deal of prior efforts on understanding carboxysome structure and function, the relative 

stoichiometry of functional carboxysome components in their native cell environment − key 

information required for reconstituting active carboxysome structures in synthetic biology (Fang et al., 

2018), was still unclear. The major challenges have been the unspecificity of immunoblot and mass 

spectrometry given the homology of carboxysome proteins and the lack of effective purification of 

entire carboxysomes from host cells as well as the heterogeneity of carboxysome structures (Long et 

al., 2005). Recent work in our lab reported the isolation of β-carboxysomes from Syn7942 and the 

structural and mechanical exploration of the organelles (Faulkner et al., 2017). Interestingly, some 

components, i.e. CcmO, CcmN, CcmP and RbcX, were not detected by mass spectrometry in the 

isolated carboxysomes, likely due to their low content and potential destruction of the carboxysome 

structure during isolation. Here, as demonstrated, fluorescence tagging and Slimfield and confocal 

imaging enable single-organelle analysis of the protein stoichiometry of 7 β-carboxysomal proteins 

and their regulation in their native context and extends analyses of the assembly and action of 

carboxysomes. Microscopic imaging on fluorescently-tagged β-carboxysomes has been used to reveal 
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their patterns of cellular localisation, biogenesis pathways and light-dependent regulation in Syn7942 

(Cameron et al., 2013; Chen et al., 2013; Savage et al., 2010; Sun et al., 2016). We validate that YFP 

tagging to most of the structural components does not impede the formation of functional 

carboxysome structures, suggesting the functional relevance of the determined protein stoichiometry 

in the carboxysome. Exceptionally, fluorescence tagging on BMC-T proteins CcmP and CcmO does 

not show normal carboxysome assembly and localisation compared to other YFP-tagged strains 

(Figure 4-17). In this work, therefore, we did not include estimation of the protein abundance of 

CcmP and CcmO, as well as RbcL and CcmK2 that cannot be fully tagged with YFP, using Slimfield 

and confocal imaging. 

 

Figure 4-17. CcmP-YFP and CcmO-YFP Syn7942 cells. A. Fully-segregated CcmP-YFP cells 

show abnormal carboxysome distribution and assembly, whereas partially-segregated cells present 

typical carboxysome distribution. B. Only 1-2 fluorescence foci are seen in the fully-segregated 

CcmO-YFP cells fusion. Confocal imaging of the double-labelled CcmO-YFP::RbcL-CFP strain 

reveals that CcmO-YFP and RbcL-CFP are not co-localised in the cell. C. Immunoblot of soluble 

fractions of the CcmO-YFP strain using an anti-fluorescent protein antibody, showing the presence of 

large aggregates of CcmO that failed to run into the gel, marked by red arrow. Minor fractions of 

CcmO that run into the gel are marked by blue arrow. For all western results, at least 3 independent 

experiments were done for statistical analysis. 

 

Numerous studies have described the regulation of carboxysome protein expression at the 

transcriptional level (McGinn et al., 2003; Schwarz et al., 2011; Woodger et al., 2003). Counting 

protein abundance of β-carboxysomes at different cell growth conditions enables direct 

characterisation of the stoichiometric plasticity of carboxysome building components in the cells 
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grown under not only the same environmental condition but also various conditions (Figure 4-18). It 

appears that the regulation of protein abundance within the carboxysome correlate with the genetic 

locations and organisation of carboxysome genes, indicative of stoichiometric adjustment of 

carboxysome building components. Our observations further elucidate the size variation of β-

carboxysomes in Syn7942 cells grown under distinct environmental conditions (Figure 4-18) and 

adjustable carbon fixation capacities of carboxysomes that may be closely linked to the protein 

organisation and size of carboxysomes. Variations in the diameter of intact carboxysomes, ranging 

from 90 to 600 nm, have been also shown in previous studies not only in single species but also 

among distinct species, suggesting the adaptation strategies exploited by cyanobacteria for regulating 

their CO2-fixing machines to survive in diverse niches (Iancu et al., 2007; Liberton et al., 2011; Price 

and Badger, 1991; Shively et al., 1973). Moreover, the spatial positioning and mobility of β-

carboxysomes in live cells appear to be independent of carboxysome diameter but show a strong 

dependence to light intensity, suggesting the potential light-dependent mechanisms that mediate 

carboxysome location and diffusion. Previous studies have illustrated that the cytoskeletal proteins 

ParA and MreB are mediators of carboxysome positioning in Syn7942 and equal segregation between 

daughter cells (Savage et al., 2010). In addition, carboxysome spacing and partitioning were 

suggested to be driven by different possible mechanisms, including ParA-mediated chromosome 

segregation (Jain et al., 2012) via filament-pull model (Ringgaard et al., 2009) or a diffusion-ratchet 

model (Vecchiarelli et al., 2013). Altogether, the organisational flexibility of β-carboxysomes, 

including modulable protein stoichiometry, diameter and mobility, may represent strategies for 

modulating shell permeability and enzyme encapsulation and ensuring structural and functional 

adaptations dependent on the local cellular environment. 
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Figure 4-18. Model of the β-carboxysome structure and protein stoichiometry. A. Diagram of an 

icosahedral carboxysome structure and organisation of building components. The stoichiometry of 

each building component within the carboxysome and its variations in response to changes in CO2 and 

light intensity are shown on the right. CcmO and ccmP are not included in the model as they were not 

addressed in this work. Majority of the shell in light blue colour represent the major shell protein 

CcmK2. B. The carboxysome diameter is variable in response to changes in CO2 and light intensity. 

*Rubisco contents are estimated from RbcS quantify and based on a L8S8 formation. 

 

The estimated number of CcmL pentamers per carboxysome could be less than 12, demonstrating 

explicitly that it is not a prerequisite for CcmL pentamers to occupy all 12 vertices of the shell to 

ensure complete formation of functional carboxysomes. This hypothesis has been validated by 

previous observations that BMC shells in the absence of pentamers have no significant morphological 

changes (Cai et al., 2009; Hagen et al., 2018; Lassila et al., 2014). These “non-complete capped” 

forms appear to be prevalent among the resultant carboxysomes under Air/ML and LL (Figure 4-8C), 

unlike the procarboxysomes (Cameron et al., 2013) or “immature” carboxysomes which are incapable 
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of establishing an oxidative microenvironment for cargo enzymes (Chen et al., 2013). It suggests that 

carboxysomes could possess a flexible molecular architecture, which resonates with the observation 

of structural “breathing” of virus capsids which has been reported to be key to cope with temperature 

change (Li et al., 1994; Roivainen et al., 1993). Carboxysomes, though structurally resembling virus 

capsids, have been shown to be mechanically softer than the P22 virus capsid by a factor of ~10, 

suggesting greater flexibility of protein-protein interactions within the carboxysome structure 

(Faulkner et al., 2017). The capping flexibility of pentamers may represent the dynamic nature of 

shell assembly probably in the second scale and tunable protein-protein interactions in the shell, as 

characterised recently (Sutter et al., 2016).  

 

Based on the RbcS abundance per carboxysome, we estimated that there are approximately 853, 550, 

367, and 1507 copies of Rubisco per β-carboxysome under Air/ML, CO2/ML, LL, and HL, 

respectively (Figure 4-18, Table 4-2). Even the lowest Rubisco abundance per β-carboxysome 

(average diameter of 151 nm) under LL is still greater than the Rubisco abundance per α-

carboxysome (average diameter of 123 nm) (Iancu et al., 2007) by a factor of 1.6. This finding 

confirms the different interior organisation of the two classes of carboxysomes; densely packed of 

Rubisco that forms paracrystalline arrays inside the β-carboxysome (Faulkner et al., 2017) and 

random packing of Rubisco in the α-carboxysome (Iancu et al., 2007; Iancu et al., 2010). The 

different interior structures of α- and β-carboxysomes may be ascribed to their distinct biogenesis 

pathways: biogenesis of β-carboxysomes is initiated from the nucleation of Rubisco and CcmM35 and 

then the shell encapsulation (Cameron et al., 2013); whereas α-carboxysome assembly appears to start 

from shell formation (Menon et al., 2008) or a simultaneous shell-interior assembly (Iancu et al., 

2010).  

 

While the abundance of most of the structural components varies in the manners that are likely related 

to the locations of corresponding genes in the genome, the ratio of CcmK4 and CcmK3 is relatively 

unaffected (ranging from 3.6 to 4.1, Table 4-4) under the tested growth conditions, implying their 

spatial colocalisation within the carboxysome shell. The ccmK3 and ccmK4 genes are located in the 
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same operon that is distant from the ccm operon and they may have different expression regulation 

compared with other carboxysome components (Rae et al., 2012; Sommer et al., 2017). The balanced 

expression and structural cooperation of CcmK3 and CcmK4 may be crucial for the fine-tuning of 

carboxysome activity and permeability towards environmental stress.  

 

Rational design, construction and modulation of bioinspired functional materials are the major 

challenges in synthetic biology and protein engineering. Given their self-assembly, modularity and 

high efficiency in enhancing carbon fixation, carboxysomes have attracted tremendous interest to 

engineering this CO2-fixing organelle into other organisms, for example C3 plants, with the intent of 

increasing photosynthetic efficiency and crop production (Lin et al., 2014a; Lin et al., 2014b; Long et 

al., 2018; Occhialini et al., 2016). Recently, we have reported the engineering of functional β-

carboxysome structures in E. coli – a step towards constructing functional β-carboxysomes in 

eukaryotic organisms (Fang et al., 2018). Our present study, by evaluating the actual protein 

stoichiometry and structural variability of native β-carboxysomes, sheds light on the molecular basis 

underlying the assembly, formation and regulation of functional carboxysomes. It will empower 

bioengineering to construct BMC-based nano-bioreactors and scaffolds, with functional and tunable 

compositions and architectures, for metabolic reprogramming and targeted synthetic molecular 

delivery. A deeper understanding of carboxysome structure and the developed imaging techniques 

will be broadly extended to other BMCs and macromolecular systems. 
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5.1 Introduction 

5.1.1 The circadian clock in cyanobacteria 

Like many other organisms that experienced day-night shifting in nature, cyanobacteria have evolved 

internal acclimation mechanisms to aid in the orchestration of activities specific to light-dark period. 

For a large proportion of Syn7942 genes, rhythmic changes at transcriptional level have been detected 

during light-dark daily cycles (Golden, 2003). The different expression profiles among genes over the 

whole genome can be categorised into three groups: the Class I genes which have the highest level of 

expression during dusk before entering darkness, the Class II genes which have the highest expression 

during dawn before light illumination, and the arrhythmic genes with non-rhythmic expression 

profiles (Ito et al., 2009). The rhythmic expression profiles of Class I and II genes can be sustained 

even after removal of cyclic input, for instance, after switching the cells to constant light condition 

(hereafter CL) (Ditty et al., 2005). The internal biological clock system which was believed to be 

eukaryote-specific previously has been identified in Syn7942, extending the understanding of 

circadian control in bacterial phyla (Ishiura et al., 1998). The cyanobacterial circadian clock consists 

of three genes named kaiA/B/C (the word “Kai” in Japanese means “cycle”). Homologs of Kai were 

then discovered in diverse prokaryotic organisms (Loza-Correa et al., 2010). The self-maintained core 

clock complex is composed of three proteins, the KaiA/B/C, as illustrated in Figure 5-1. In general, 

the KaiC hexamers go through periodically phosphorylation and dephosphorylation in a 24-hour 

period fashion continuously through interaction with KaiA and KaiB (Nishiwaki et al., 2004). KaiA 

binds to the A-loop of KaiC and stimulates KaiC autophosphorylation during the daytime, whereas 

during the night time, KaiB competitively binds to KaiC and releases KaiA into inactive forms, 

leading to phosphorylation of KaiC (Goda et al., 2014). Together, such post-translational oscillator 

(PTO) forms the master clock that regulates gene expressions (Swan et al., 2018).  
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Figure 5-1. Mechanism of the Kai circadian clock oscillator. Cyanobacterial circadian clock core 

oscillator is consist of three protein, KaiA/B/C. During daytime, the KaiC hexamers are 

phosphorylated by binding with KaiA through A-loop. During night time, KaiC hexamers are 

dephosphorylated by binding with KaiB and releasing of KaiA from A-loop, associated with KaiB. 

The periodical phosphorylation/ dephosphorylation can be self-maintained in a 24-hour fashion.  

 

Strikingly, such biological clock through the rhythmic phosphorylation of KaiC could be reproduced 

in vitro solely with the core components KaiA/B/C and ATP. Such fact indicates the standalone and 

robust persistency for pace keeping (Nakajima et al., 2005). In cells, the circadian clock system 

function through three components, the core oscillator kai, the input mechanism that transmits 

environmental stimuli to the core oscillator which synchronise and reset of the clock, and the output 

mechanism that signals diverse cellular activities (Taniguchi et al., 2010). The structural basis and 

input/output systems of the circadian clock in Syn7942 are well reviewed (Cohen et al., 2015; 

Johnson et al., 2017). A variety of environmental signals could feedback to the core clock through 

redox-sensitive components such as CikA and LdpA (Ivleva et al., 2005; Ivleva et al., 2006). Besides, 

KaiA and KaiC proteins in the core clock are also capable of sensing the cofactors in the 

photosynthetic activity directly without the previously described redox-sensing input pathways (Rust 

et al., 2011; Wood et al., 2010). Through such combined sensing mechanisms, the core clock can be 

effectively synchronised to the environment. 
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Interestingly, CikA was later found to be involved in the circadian output system (Gutu and O’Shea, 

2013). The output histidine kinase proteins SasA/RpaA and CikA sense the phosphorylation status of 

the core oscillator directly through protein-protein interactions during the day and night periods 

respectively. In day period, SasA binding to KaiC promotes the phosphorylation of RpaA and leads to 

the accumulation of phosphorylated RpaA throughout the day. The phosphorylated RpaA then 

promotes the translation of Class I genes to reach maximal transcription during dusk and inhibits the 

translation of Class II genes to reach peak transcription during dawn (Iwasaki et al., 2000; Takai et al., 

2006). During the night period, oxidative redox state leads to the aggregation of KaiA/C to the 

membrane where CikA and KaiA interact with the quinones, preventing the SasA/RpaA transmission 

pathway, while a RpaA co-modulator RpaB takes charge for inhibition of Class I gene (Espinosa et al., 

2015). Periodically aggregation of core complexes are found forming at the cell pole to interact with 

quinones during dark period (Cohen et al., 2014). Figure 5-2 shows the diagram of regulatory 

mechanism described above.  

 

Under diurnal condition, cells benefit from the circadian regulation and show improved overall fitness, 

directly represented by faster growth (Woelfle et al., 2004). It is commonly acknowledged that such 

benefits come from the forecasted anticipation of incoming darkness or light and prepare the cell 

beforehand (i.e., protein synthesis, reorganisation of complexes and pathways), therefore grant cells 

advantages than those who merely answer to the environmental stimuli (Cohen and Golden, 2015).  
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Figure 5-2. Model of circadian control mechanism during light-dark cycles within the cell. 

(Cohen and Golden, 2015). Diagrams shown on the left and right of the dashed line indicate the 

respective model during day/night conditions. In the day period, cytosolic KaiA promotes KaiC 

phosphorylation (illustrated in red sphere over the CII domain). SasA interacts with KaiC, promoting 

phosphorous transfer to RpaA. Accumulation of phosphorylated RpaA reach peaking quantity at the 

end of light period, progressively suppressing the expression of class II genes (dawn-peaking) and 

activates class I genes (dusk-peaking). In the night period, KaiA/C interact with CikA and oxidative 

quinones over the cell poles. KaiB binds to KaiC and releases KaiA, promoting KaiC 

dephosphorylation, illustrated as the reducing content of red sphere over KaiC. The formed KaiB/C 

complex promotes RpaA phosphorylation through CikA. RpaB inhibits the expression of class I gene 

in dark period, and crosstalk with RpaA further inhibits the phosphorylation of RpaA during the night. 

Redox state of quinones in the thylakoid membranes are shown in red/blue colours indicating reduced 

and oxidised states respectively. 

 

5.1.2 Role of Rubisco coupling with the rhythmic diurnal cycles 

The fitness improvement provided by circadian control has also been investigated in the 

photosynthetic systems. In the model plant Arabidopsis thaliana, circadian regulation results in the 

increased chlorophyll concentration in leaves, enhanced photosynthesis and biomass production, as 
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well as the increase in CO2 assimilation under a well-synchronised clock that matches to the 

corresponding timing of the dark-light conditions (Dodd et al., 2005). Among all photosynthetic 

organisms, Photosynthesis cope with the diurnal cycle through a class II-type regulation, following a 

similar strategy that ready the photosynthetic system before sun rises. On the contrary, distinctive 

strategies have been found in carbon fixation processes among different species. For example, In 

some plants, a circadian regulated mechanism called Crassulacean acid metabolism (CAM) is adopted 

to diminish the competition of O2 generated through photosynthesis during the daytime and to 

enhance CO2 fixation efficiency via the production and storage of four-carbon malic acid at night 

(Ting, 1985). CO2 fixation is divided in two steps: the primary fixation fulfilled by 

phosphoenolpyruvate carboxylase (PEPC) that stores inorganic carbon in the form of malic acid 

during the night with stomata opened for Ci uptake, and the secondary fixation by Rubisco using CO2  

pre-collected in malate acid and allows stomata remain closed during the day (Michelet et al., 2013). 

Such night-based Ci uptake and the primary fixation reduce the water losses, thus enhancing the 

survivability of plants in arid environment (Eller and Ferrari, 1997). Functional circadian clock in 

CAM plant can enhance and prolong the primary fixation towards malate in dark through the 

circadian clock-controlled protein Phosphoenolpyruvate Carboxylase kinase (PPCK).  Silencing of 

PPCK halves the carbon fixation by PPC and lead to arrhythmia of the central circadian clock, 

suggesting strong cross-talk between PPC carbon fixation and the circadian clock in CAM plants 

(Boxall et al., 2017). Moreover, the CO2 fixation activity by Rubisco has shown to be under the 

circadian control inferred from the rhythmic CO2 uptake patterns in continuous light in CAM plant 

(Wyka and Luttge, 2003). Beside CAM plants, the activity of carbon fixation can be orchestrated by 

circadian over the daily cycle through re-distribution of Rubisco inside the chloroplasts while 

maintaining a relatively unaltered Rubisco content in a chloroplast-containing marine algae (Nassoury 

et al., 2001).  

 

However, regarding the carbon fixation activity of cyanobacteria under diurnal regulation, far lesser 

reports could be found, particularly ones further discuss the circadian involvement. In Syn7942, even 

though several studies using transcriptomic analysis (Ito et al., 2009; Vijayan et al., 2011; Vijayan et 
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al., 2009) categorised carboxysomal genes as circadian-regulated Class II genes, no further evidence 

have been provided regarding the variations of abundance for major carboxysomal protein such as 

RbcL, RbcS and CcmK during the diurnal cycles. Interestingly the content of CcaA seems remains 

unaltered indicated from high throughput Mass Spectrometry in Syn7942 (Guerreiro et al., 2014) and 

the cyanobacterium Cyanothece ATCC511 (Aryal et al., 2011). Meanwhile transcriptomic data has 

suggest rhythmic ccaA transcriptions. The discrepancies found between transcriptional and protein 

levels suggest unknown post-transcriptional regulation for carboxysomal gene under diurnal 

conditions. The difference of CO2 fixation activity of cells between the diurnal condition and CL 

condition, as well as the involvement of circadian-originated transcriptional regulation over motabolic 

processes by  carboxysomes remain largely undocumented.  

 

In this chapter, we documented the in vivo localisation, CO2 fixation activity of carboxysomes. We 

further quantified the content of Rubisco under both diurnal dark and light conditions to know how 

carboxysomes are generated in cyclic changed environment. Moreover, through characterisation of a 

circadian nullified strain, we gathered useful information regarding the involvement of circadian 

control in carboxysome biogenesis in Syn7942. 

 

5.2 Results 

To ensure the proper diurnal light and dark treatments could be achieved on the platform we designed, 

pAM2195 (Mackey et al., 2007) that express both luxAB and luxCDE with promoter promoted by 

PpsbAI which enable host strain  produce bioluminescent autonomously was transformed into WT 

Syn7942. Rhythmic changes of luciferase bioluminescence were observed within the 22 h period 

(Figure 5-3A). The profiles of signal intensity exhibit the intensity peak at 12 h (Figure 5-3B), 

consistent with previous results (Mackey et al., 2007). Furthermore, the growth curves of cells in 

liquid culture under CL were recorded (Figure 5-3C). The pAM2195 mutant exhibited WT levels of 

cell doubling time, with an acceptable 10% increase caused by the expression of luciferase under 
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strong promoter psbAI. Nevertheless, the rhythmic changes of luciferase indicate active circadian 

clock control on our established platform. 

 

Figure 5-3. Confirmation of circadian control in pAM2195 luciferase reporter strains. A. Time-

lapse imaging for patches of Syn7942 cells with luciferase reporter vector pAM2195 under CL after 

dark end after switched from circadian light treatment (12L12D). Two-hour interval time was used to 

capture the luciferase illumination. Analysis of the rhythmic brightness shows that the strongest signal 

intensity appears at the subjective light 12h and reduces throughout the subjective dark (remained in 

light), indicating the proper circadian control; B. Quantification of luciferase illumination brightness 

on images taken during time-lapse imaging; C. Growth curve of WT and pAM2195 strains indicate 

acceptable inhibition on cell growth caused by luciferase expression. The doubling times are 17.9 ± 

0.7 and 20.0 ± 0.7 hours respectively (n = 4). 

 

To determine the involvement of circadian in carboxysome biogenesis in Syn7942 cells, a circadian 

null strain was generated through deletion of the core oscillator gene KaiA (Paddock et al., 2013). 

Also, KaiA was also fluorescently tagged at the C-terminal.  Subcellular localisation relative to 

carboxysomal proteins can be retrieved.  Moreover, correlations of carboxysome localisation to 

particular states of circadian could be established inferred from localisation of Kai complexes as 

reported previously (Cohen et al., 2014). In this chapter, we chose RbcL to visualise carboxysomes 

due to the high levels of signal intensities as well as the well documented localisation profiles in 
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previous work (Niederhuber et al., 2017; Savage et al., 2010; Sun et al., 2016). The mutant strains 

were validated through PCR segregation screening (Figure 5-4). 

 

 

Figure 5-4. Segregation screening of KaiA mutants.  For KaiA KO, the WT band size=1045 bp 

while KO band size= 1602 bp; For KaiA-eYFP, the WT band size=282 bp while YFP segregated 

band size=2408 bp. Only fully segregated strains were used for further examination. Knock-out 

indicated as KO. 

 

5.2.1 The carboxysome localisation answering to the redox state of photosynthetic 

electron transport during diurnal  conditions 

It has been speculated that the positioning of carboxysomes within cells have crucial roles 

guaranteeing the even distribution of carboxysomes in daughter cells during cell division (Savage et 

al., 2010). In Chapter 3, we show drastic changing of carboxysome localisation along the short axis 

of the cell, preferring a more centralised positioning closer to cell axis in response to the reduced state 

of the PQ pool stimulated by DBMIB inhibitor. In nature, the PQ pool is periodically shifted from an 

oxidised state to reduced state during light and dark in a daily cycles (Schuurmans et al., 2014). We 
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wonder whether such stimulated rearrangement could occur naturally answering to altered state of PQ 

pool. Therefore, we recorded the localisation of carboxysomes across the diurnal cycles (12D12L) by 

confocal microscopy (Figure 5-5A). Eight-time points (D1H, D4H, D8H, D11H, L1H, L4H, L8H and 

L11H) were taken in total during a daily cycle. A more linear positioning along the short axis of the 

cell was observed during later hours in the dark (D8H and D11H) directly from the distribution curve 

in Figure 5-5B. The relative area further quantified the preferences of central line localisation under 

the distribution curve (Figure 5-5D). We observed slightly centralised profiles from L11H to D4H 

and a significant and gradual increase in centralised distribution throughout the dark period from D8H 

to D11H. A swift recovery of less centralised distribution appears at L1H. The distribution profile 

remains at a similar level throughout the light period from L1H to L11H. The delayed repositioning 

phenomenon after 4 hours in dark corroborates the delayed repositioning after 4 hours of DBMIB 

treatment captured during the time-series imaging (Chapter 3, Figure 3-17). The re-organisation of 

carboxysome away from the cytosol peripheral to the centre of cells naturally occurs in the dark 

period with a minimum of 4 hours delay and returns near to the cytosol peripheral distribution status 

for respective light period within 1 hour. 

 

Moreover, two-score system was established to analyse the distribution profile of carboxysomes along 

the long axis of the cell (Figure 5-5C) (described in Chapter 2, Section 2.6.3). The spatial 

distribution score evaluates the homogeneity of carboxysome distribution, where a higher score 

suggests specific localisation of carboxysomes along the long axis of the cell, shown as more 

distinguishable peaks with higher frequencies in the distribution curve, whereas random distribution 

results in a lower score, visualised as a more flattened distribution curve. The homogeneity of 

carboxysome distribution indicates the degree of control of carboxysome positioning within the cell. 

To evaluate the significance of score differences, we divided the cells imaged during each time point 

into three sub-group randomly, the scores were analysed for sub-group, and the systematic errors were 

calculated. For each time point, a minimum of 300 cells was analysed. The average system errors for 

different time points regarding the scores in Figure 5-5E and F are 0.011 and 0.014 respectively. 

Less spatial-like distribution was inferred from the lowing scores at the end of the light period at 0.16, 
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corresponding to L11H and the beginning of the incoming dark period at 0.10, corresponding to D1H 

(Figure 5-5E). At the same time, the longitudinal positioning control enhanced throughout the dark 

period, from D1H to D11H (0.10, 0.17, 0.20, 0.24). A sudden loosen of such control could be inferred 

when entering light period at L1H after D11H (0.24 to 0.19). Subsequentially, the control resumed 

gradually until L8H (0.19, 0.23 and 0.24), followed by a sudden loosening of the control again during 

L11H at 0.16. 

 

The cell poles are suggested to be the birthplace of new carboxysomes (Cameron et al., 2013; Chen et 

al., 2013; Savage et al., 2010). Some essential cellular processes such as protein binding and 

recognition also mediated over pole regions (Laloux and Jacobs-Wagner, 2014). Likewise, the 

circadian core oscillator Kai was reported to be periodically aggregated to the cell poles during the 

dark period (Cohen et al., 2014). Therefore, we wonder whether there is any preference of 

carboxysome localisation along the long axis of cells in an assumption that newly generated 

carboxysomes are more likely to locate near the cell pole. However, we did not detect any significant 

changes (differences greater than 15% from the score) in the pole/central positioning (Polarity score = 

0.21 to 0.27), but still during D11H an increased score at 0.27 that beyond systematic errors 

unmatched the trend line might suggest a slightly more “closer-to-pole” preference (Figure 5-5F).  
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Figure 5-5. Carboxysome localisation in RbcL-eYFP cells under diurnal dark light conditions. A. 

representative confocal images taken at respective time points. B. Relative distribution frequencies on 

the short axis of the cell, a centralised to mid-axis could be observed during diurnal dark at D11H. C. 

Relative distribution frequencies on the long axis of the cell. D. Relative area under the curve for B 

for quantitative comparison and visualisation of positioning differences. E. Lower random distribution 

score over long axis indicating more random-like distribution (less spatial control) during dawn and 

initial hours in the dark (L11H to D1H). F. Polarity Score over long axis indicating no significant 

polar or midpoint positioning preference during diurnal light and dark condition. Equations for 

calculating random distribution score and polarity score are described in Chapter 2 under section 

2.6.3. For each time point, a minimum of 300 cells was analysed. The system errors for D, E, and F 

are 0.013, 0.011 and 0.014 respectively. Differences lesser than system errors were not considered as 

significant. 
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5.2.2 Rhythmic profile of carbon fixation capacity under diurnal condition  

As demonstrated in Chapter 3, CO2 fixation capacity of carboxysome is strongly correlated with the 

abundance of Rubisco in cells. To evaluate CO2 fixation capacity of carboxysomes during the diurnal 

conditions, we monitor the Rubisco abundance (Figure 5-5A, represented by fluorescent-tagged RbcL) 

and carbon fixation capacity through quantitative fluorescence microscopy and 
14

C fixation assay 

(Figure 5-6A). Repetitive tendencies in carbon fixation capacities were observed: the CO2 fixation 

capacity continuously dropped during the dark period from D1H to D11H. The CO2 fixation capacity 

was rescued after entering the light period (L1H) and reaches the highest in the day period at L4H and 

then decreases again from the 2
nd

 half of light period at L8H and L11H. Overall, the averaging carbon 

fixation capacities during light period (5.0 ± 0.5 nmol·ml
-1

·min
-1

, n=15) were significantly higher 

(two-sided t-test P = 0.02) than those of the dark period (4.1 ± 0.6 nmol·ml
-1

·min
-1

, n=15). The 

carboxysome number per cell and RbcL-eYFP fluorescence intensities (representing the Rubisco 

content in the carboxysome) were also extracted from confocal images taken during the diurnal cycles. 

The carboxysome number per cell during L1H, L4H and L8H are significantly higher during at 4.1 ± 

1.9 (n=4), 4.1 ± 2.2 (n=4) and 3.9 ± 2.0 (n=4) carboxysome per cell respectively comparing to the 

average of remaining time points (D1H, D4H, D8H, D11H, and L11H) at 3.4 ± 1.4 (n=4) 

carboxysome per cell (P<0.05), shown in Figure 5-4B. Interestingly, The Rubisco contents on each 

carboxysome were found in opposite fashion with the carboxysome number per cell: the lowest 

contents were observed in L1H, L4H and L8H at 0.81 ± 0.55 (n>500), 0.84 ± 0.58 (n>500), 0.85 ± 

0.53 (n>500) (Figure 5-4C), compared with the rest time points (0.93 ± 0.61 (n>500), 1.00 ± 0.74 

(n>500), 0.94 ± 0.59 (n>500), 0.98 ± 0.68 (n>500), and 0.94 ± 0.59 (n>500) as peak value ± HWHM 

(following method applied in Chapter 4) for D1H, D4H, D8H, D11H and L11H respectively). On the 

other hand, no significant differences (Figure 5-4D) of the overall Rubisco content, represented by 

the RbcL-eYFP signal, in the whole cell were detected (P >0.05, n=12 for the dark and light period).  
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Figure 5-6. CO2 fixation 

capacities, the carboxysome 

number and Rubisco loading 

per carboxysome and total 

Rubisco content within cell 

under diurnal dark light cycle. 

A. 
14

C fixation assay for cells 

grown under diurnal 12D12L 

cycles. OD750 cell density was 

used for normalisation. The 

black-white bar above and grey-

white background indicate the 

dark and light cycles respectively. 

The dotted lines with red colour 

indicate the average of fixation 

rate for cells in dark and light 

respectively. Error bar indicate 

SD from 3 biological repeats. B-

D. Corresponding carboxysome 

number per cell, Rubisco content 

per carboxysome and total 

Rubisco content per cell 

(estimated by RbcL-eYFP 

content from fluorescence 

microscopy) during 2

nd

 dark-light 

cycle in A. Error bars represent 

the SD from a minimum pool of 

300 carboxysomes in B, and SD 

within three 3 different batch of 

biological repeats with a 

minimum of 40 cells in each 

repeat in D. Violin plots were 

generated by R illustrate the 

fluorescence intensity distribution 

of RbcL-eYFP during selected 

time points. The representative 

values and deviations were 

represented by Peak value from 

kernel density fitting and half 

width at half maximum (HWHM) 

Significances with p-value < 0.05 

were marked by *. 
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Figure 5-7. Cell dimensions of Syn7942 cells during diurnal condition. A. Averaging cell lengths 

are similar except during L4H and L8H (P > 0.05, n > 300 for each time points), while the cell widths 

during L4H and L8H are still within 10 % of the difference from the average widths. B. Difference in 

the averaged cell widths is not detectable (P > 0.05, n = 300). Error bars represent SD. Significance 

was marked as *. 

 

Cell length and width were recorded during selected time points (Figure 5-7). No significant 

differences in the cell width were detected over the entire time course. We found less than 10 % 

increase in cell length at L4H (2.7 ± 0.8, n>300) and L8H (2.7 ± 0.9, n>300) compared to the rest 

time points (from D1H to D11H, L1H and L11H at 2.3 ± 0.5, 2.4 ± 0.7, 2.4 ± 0.6, 2.4 ± 0.6, 2.5 ± 0.6 

and 2.4 ± 0.6 respectively, Mean ± SD, n > 300 for each time points). The increase in the cell length 

during L4H and L8H might be a combinatory outcome of cell elongation during the light period and 

preferable division close to dawn (Yang et al., 2010). Still, less than 10% increase in cell length was 

correlated with the 16-23% increase of carboxysome number per cell during corresponding L4H and 

L8H but unmatched to L1H in Figure 5-6B. At L1H, the increase of carboxysome number per cell 

from 3.3 ± 1.4 to 4.1 ± 1.9 appeared before elongation of cells observed at L4H.  
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While the transcriptomic data that categorise carboxysomal genes as class II gene with expression 

reach peak levels at dawn (Vijayan et al., 2009, Ito et al., 2009) corresponding to the D10H to D12H 

in our sampling time frame, no detectable increase in carbon fixation capacity, the carboxysome 

number as well as total Rubisco content per cell at D11H were found in our data, shown in Figure 5-

6A to C. Instead, the highest Rubisco fixation capacity as well as the carboxysome number per cell 

were observed in light period during L1H, after 1-3 hours of the peak expression at the end of dark 

period. The unmatched profile further suggested the involvement of post-transcriptional regulation in 

carboxysome biogenesis, inconsistent with previous work (Guerreiro et al., 2014). 

 

5.2.3 Diurnal profile for carbon fixation capacity could not be sustained under 

constant light 

Circadian rhythms-controlled processes should keep persistence of rhythmic profile without external 

cues. We examined whether the rhythmic profile in carbon fixation capacity observed under diurnal 

conditions would remain under constant light (CL) conditions (Figure 5-8A). Remarkably, the iconic 

increase of carbon fixation capacity during L1H and L4H were not observed in both subjective light 

period at 13 h/15 h and 37 h/40 h corresponding to diurnal L1H/L4H. Instead, similar levels of CO2 

fixation compared with the previous subjective dark period from 0 h -12 h and 24 h -36 h were 

recorded. Meanwhile, we could still observe a similar reduction for CO2 fixation capacity during 

diurnal light-dark transition across -36 h and -12 h during the subjective dark period from 0 h -12 h 

and 24 h -36 h, corresponding to diurnal D11H to L1H. To summarise, we observed similar 

decreasing tendencies of Rubisco fixation capacities in the subjective dark period between 0 h -12 h 

and 24 h -36 h while the increasing and peaking of fixation when entering the light period were 

dampened in the subjective light period during 12 h - 24 h and 36-48 h under CL condition. The 

persistent down-regulation of CO2 fixation capacities during subjective dark period indicate possible 

negative regulation from circadian clock regardless the absence of darkness, while the positive up-

regulation might mainly answering to the stimuli from dark-light shifting, therefore missing such 

stimulation under constant light lead a dampened up-regulation during subjective light period.  



Chapter 5 

136 

 

 

Figure 5-8. Comparison of carbon fixation capacities and in vivo carbon fixation efficiencies 

under diurnal/CL conditions in WT Syn7942. A.

 
14

C fixation capacity (shown as mean ± SD, n=3) 

for permeabilised cells grown under two continuous diurnal 12D12L cycles (-48h to 0h) and 

additional two days (0h to 48h) in CL. B. In vivo 
14

C fixation efficiency (shown as mean ± SD, n=2) 

detected during growth in BG-11 medium with supplied low dosage of NaH
14

CO3 under diurnal and 

CL. Cell contents are normalised by cell density inferred through OD750 readings. Relative fixation 

rates were displayed in arbitrary unit (a.u.). The black-white-grey bar above indicate the dark, light, 

and subjective dark in light respectively. The red dotted lines indicate the average of sampled time 

points in corresponding 12-hour period respectively.  

 

We also performed CO2 fixation assays of living cells grown in BG-11 under both the diurnal 

condition and the subjective CL condition (described in section 2.4.3) to detect the real-time carbon 

fixation rates at corresponding time points that were measured for fixation capacities. Unlike the CO2 
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fixation capacities showed in Figure 5-8A which was done with externally provided RuBP and 

bicarbonate at saturated concentration, in vivo CO2 fixation assay was performed with endogenous 

RuBP and bicarbonate. Therefore, differences in the RuBP and bicarbonate contents between selected 

time points would also affect overall CO2 fixation rate besides the impacts solely from the CO2 

fixation capacity of carboxysomes. We detected a 100-fold decrease in CO2 fixation rate during both 

diurnal dark periods from -48 h to -36 h and -24 h to -12 h (Figure 5-8B). The dramatic decreases 

were not detected during the subjective dark period from 0 h to 12 h and 24 h to 36 h. Instead, the 

same levels of fixation rate were observed. Combining the above data, we suggest that less than one-

fold decrease in the carbon fixation capacity of carboxysome in diurnal dark period should not 

account for the drastic reduction of CO2 fixation activity. Instead, the availability of substrate RuBP 

and bicarbonate might be the main rate-limiting factors.  

 

5.2.4 Investigating circadian regulation in carboxysome biogenesis through ΔKaiA  

We further investigate the circadian regulation by the circadian nulled Syn7942 strains (ΔKaiA and 

ΔKaiA::RbcL-eYFP) under constant moderate light (ML) at 50 μE·m
−2

·s
−1

 and circadian activated 

strains (WT and RbcL-eYFP) cells through knock out strategy. Due to the persistence of Syn7942 

circadian clock (Cohen and Golden, 2015), we reset the clock of seeding cultures for the reference 

strains through two complete diurnal treatments, adapted in CL for an additional four days, and then 

used for inoculation in constant ML treatments. Confocal images taken for circadian null mutants and 

reference cells with an internal clock corresponding to the D1H time point were shown in Figure 5-

9A. At a glance, the carboxysomes were visualised as typical multiple spot-like signals in both 

ΔKaiA::RbcL-eYFP and RbcL-eYFP strains, indicating no major disruption of carboxysome 

formation caused by KaiA nullification. We further compared the distribution of carboxysome in 

ΔKaiA::RbcL-eYFP against RbcL-eYFP illustrated as heat maps (Figure 5-9B) and distribution 

profiles along the short and long axis of the cells (Figure 5-9C). The carboxysome distribution along 

the short axis of cell quantified as the area under the distribution curve indicate no pronounced cell-

central preference in both ΔKaiA and control Syn7942 strains (Figure 5-9C) (Area under peak = 1.18 
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and 0.99 for RbcL-eYFP and ΔKaiA::RbcL-eYFP respectively). The value for the area under peak for 

RbcL-eYFP matched well with the corresponding value at D1H in diurnal treatments (Also at 1.18, 

Figure 5-5D). Meanwhile, we observed noticeable differences in the distribution profiles along the 

long axis of the cell. In RbcL-eYFP, two hot zones at the cell poles and two additional hot zones at 

quarter locations were found (illustrated as the grey shading area in Figure 5-9C) similar to the case 

for RbcL-eGFP in Chapter 3, while the two hot zones at cell quarter were less pronounced in the 

ΔKaiA::RbcL-eYFP strain. The spatial distribution scores for RbcL-eYFP is 0.08, closely resemble 

the score under diurnal condition at corresponding D1H at 0.10 (Figure 5-5E). While in 

ΔKaiA::RbcL-eYFP a higher score at 0.13 might suggest a stronger positioning control during D1H, 

which was loosened with the presence of circadian control (Figure 5-5E). The Polarity scores are 

0.24 and 0.23 for RbcL-eYFP and ΔKaiA::RbcL-eYFP respectively, both identical to the value at 0.24 

calculated for RbcL-eYFP during D1H under diurnal condition (Figure 5-5F). Meanwhile, higher 

carboxysome number per cell was observed at 4.64 ± 1.09 in ΔKaiA::RbcL-eYFP mutant compared to 

the RbcL-eYFP control at 3.07 ± 0.76. (Figure 5-9D). A strikingly near 1-fold decrease in YFP 

fluorescence content per carboxysome was observed in ΔKaiA::RbcL-eYFP (Figure 5-9E). The 

reduced Rubisco content on each carboxysome and increased carboxysome number per cell in ΔKaiA 

background suggested important roles played by circadian in cellular regulation of carboxysome 

biogenesis. 
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Figure 5-9. Biogenesis of carboxysome in cells is alternated in ΔKaiA background under 

constant light condition. A. Confocal images for RbcL-eYFP and ΔKaiA::RbcL-eYFP under 

constant light (50 μE·m
−2

·s
−1

 ), images are enhanced for visualisation purposes; all signals capture in 

the analysis were below saturation. Scale bar=2 μm. B and C. Heat map and carboxysome distribution 

profiles ( red for ΔKaiA ) indicating unaltered carboxysome localisation along the short cell axis and 

altered distribution over the long axis of the cell (cell number>300 for each strain). The hot spots for 

carboxysome localisation in RbcL-eYFP were illustrated as grey background. D. carboxysome 

number per cell measured from confocal images indicate increased carboxysome number in ΔKaiA 

compared with control (carboxysome number >300 for each strain). E. Signal quantification for each 

carboxysome of RbcL-eYFP in WT and KaiA null background indicating reduced Rubisco loads per 

carboxysome result from ΔKaiA (carboxysome number >300 for each strain). F. Quantification of 

RbcL by immunoblotting with an anti-RbcL antibody in WT and ΔKaiA indicates same levels of 

Rubisco contents at the cellular level caused by KaiA depletion. Representative Immunoblot 

visualisation images and quantification from 3 biological repeats were shown as average ± SD. 
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To confirm the cellular level of Rubisco in the cells, we quantify the Rubisco content per cell by 

immunoblotting with anti-RbcL antibody in Syn7942 ΔkaiA and WT strains that grown under same 

constant light condition, sampled at the same time with the YFP mutants (Figure 5-9F). The 

quantification indicates equal levels of overall Rubisco contents per cell with or without KaiA under 

constant light (Figure 5-9F).  The fixation capacities were also unaltered inferred from carbon 

fixation assay data (Figure 5-10). 

 

Figure 5-10. 
14

C fixation assay for WT Syn7942 and ΔKaiA during diurnal light, dark and 

constant light (CL) conditions. Reduced fixation capacity was found in ΔKaiA cells compared with 

WT during diurnal light period (p<0.05). Error bar represents SD from 3 biological samples. 
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Figure 5-11. The carboxysome localisation in ΔKaiA::RbcL-eYFP cells under diurnal dark light 

conditions. Typical confocal images taken at respective time points. Due to the irregularity of 

chlorophyll signals, cell recognition cannot be done by Image SXM to evaluate carboxysome 

localisation within cells. 

 

We then applied the similar diurnal treatment on the ΔKaiA::RbcL-eYFP mutant to address the 

diurnal light effect without the functional circadian core oscillator, shown in Figure 5-11. However, 

unlike CL condition, significant disruption to chlorophyll was observed under the diurnal condition, 

suggesting irregular photosynthesis caused by missing of KaiA. As a result, we could not perform 

further quantification by pipelined software through Image SXM due to the false cell recognition. We 

then performed carbon fixation assay to determine the functionality of carboxysomes in the ΔKaiA 

compared with WT that were both grown under constant light and diurnal condition. The averaging 

fixation capacities shown in Figure 5-10 indicate significantly decreased of fixation capacity in 

ΔKaiA during the light period of diurnal condition (p<0.05), suggesting severe impact caused by 

KaiA knockout in carbon fixation capacities. Meanwhile, no significant difference was detected 

during the dark period of the diurnal condition (Figure 5-10). 

 

5.3 Discussion 

In this chapter, we monitored the carboxysome localisation in Syn7942 during diurnal condition. The 

delayed linear-like centralised repositioning of carboxysomes on the short axis of cell stimulated by 

the electron transport inhibitor DBMIB was initially reported in Chapter 3, believed to be correlated 

with a reduced redox state of PQ pool (Sun et al., 2016). The redox state of photosynthetic electron 
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transport chain play essential roles in the distribution of respiratory complexes (Liu et al., 2012), 

photosystem composition (Fujita et al., 1987), photosynthetic state transitions (Mullineaux and Allen, 

1990) and the modulation of the circadian clock (Ivleva et al., 2006; Wood et al., 2010). In nature, the 

PQ pool is periodically shifted from an oxidised state to reduced state during light and dark 

respectively (Schuurmans et al., 2014). The fact that such centralising rearrangement, can be 

stimulated not only by externally provided PQ pool manipulator, but also through exposure in natural 

day-night condition further confirms the natural linkage between redox state of PQ pool with 

carboxysome repositioning. The delayed pattern of localisation changes does not resemble typical 

circadian controlled phenotypes as no changes were made before shifting of light and dark. We 

assume the carboxysome distribution over the short axis of the cell should be a result of answering to 

the redox state instead of regulation by circadian. 

 

Meanwhile, correlation of circadian control in the arrangement of carboxysomes along the long axis 

of the cell could be established, inferred from the reposition before light-dark shifting. We assumed 

the decrease of spatial distribution score before entering dark period at L11H might not be an outcome 

merely stimulate through the sensing of light. Instead, such “prepare-ahead” strategy might suggest 

the involvement of circadian regulation. The reducing control of carboxysome localisation along the 

cell long axis during dusk was coped with a lower CO2 fixation capacity and in vivo fixation rate 

(Figure 5-8A and B), together with other circadian controlled activities such as cell division (Mori et 

al., 1996; Yang et al., 2010) and chromosome compactions (Smith and Williams, 2006). The 

positioning of chromosomes and carboxysomes was reported to be mutual exclusively localised even 

when carboxysome localisation was disrupted through the deletion of parA (Jain et al., 2012). The 

suggested independencies of positioning mechanisms between chromosomes and carboxysomes might 

indicate some direct and active regulation in carboxysomes partitioning along the cell rather than 

passively altered through reorganisation of chromosomes. The recently discovered vital component, 

McdA, and McdB that crucial for carboxysome localisation (MacCready et al., 2018) might be worthy 

to be examined under diurnal conditions in future to investigate further the purposes and functions of 

carboxysome repositioning in cells.   
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Moreover, we could fuse fluorescent protein to Kai protein to monitor the aggregation and 

disassociation of complexes that was reported (Cohen et al., 2014) while visualising the carboxysome, 

achieved in Figure 5-12A. However, we observed multiple KaiA aggregates during D8H in one cell 

instead of one that was located at the cell pole. Nevertheless, to better illustrate the dynamic changes 

in carboxysome positioning, more time points instead of 1, 4, 8, 11H in a 12-hour cycle should be 

taken. Therefore, time-lapse imaging might be superior to provide more details in such dynamic 

changes across the diurnal cycles. The feasibility of the time-lapse experiment was demonstrated in 

Figure 5-12B with a 10-minute interval.   

 

Figure 5-12. Fluorescence microscopy images of KaiA-eYFP::RbcL-CFP double mutant enable 

visualisation of carboxysomes and KaiA complex aggregation in the same view. A. Typical 

confocal images were taken at D8H shown both carboxysomes (marked by white arrows) and 

aggregated Kai complexes (marked by red arrows). Scale bar = 1 μm. B. time-lapse images are 

showing the formation of Kai complex during the dark period, marked by red arrows. Scale bar = 2 

μm. 

 

On the other hand, the rhythmic profile of carbon fixation capacity (Figure 5-8A) and relatively 

constant Rubisco content (Figure 5-6D) might suggest alternated CO2 fixation efficiency per Rubisco 

throughout the diurnal cycles, though estimation for such unaltered Rubisco abundancies in cells 

though a more precise method, ideally quantification through immunoblotting by anti-RbcL antibody 

is necessary. The CO2 fixation efficiency per Rubisco can be regulated through the circadian oscillated 
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expression of Rubisco activase in higher plants (Liu et al., 1996; To et al., 1999), or through the 

repositioning of Rubisco in a chloroplast-containing marine algae Dinoflagellate (Nassoury et al., 

2001). In the CO2 fixation capacity measurement (Figure 5-6A and Figure 5-8A), the cell samples 

went through a permeabilisation process that puncture holes on cell membranes, allowing provided 

RuBP and bicarbonate in assay buffer to enter the cell cytosol. Therefore, the differences in 

carboxysome localisation within the cells would not be factored into the fixation capacity measured. 

Instead, structural and functional modification through dynamical relocation of shell proteins over 

formed proteins sheets (Sutter et al., 2016) that allows permeability tuning or stoichiometry tuning 

that answer to different levels of external stimuli such as light and CO2 (discussed in chapter 4) might 

play crucial roles. Quantification and localisation for other carboxysomal proteins such as CcmK2-K4, 

CcmL and CcaA combining RbcL that indicate the stoichiometry alternation on carboxysome might 

provide further evidence for the purposed assumption. 

 

The pore of shell proteins was capable of changing permeability (open and close) through alternative 

side-chain conformations, reported in BMC-T protein CcmP  (Cai et al., 2013). Even though it 

remains unclear whether the conformation changes could happen in vivo, and which particular stimuli 

that trigger such conformation changes, we could not rule out the possibility for the differentially 

open/close gateway mechanism coping with the dark and light conditions. Particularly when CcmP 

nullification mutant process near WT phenotype when evaluated under constant light conditions (data 

not included in this thesis). Combining CcmP knockout strains in future works might provide a more 

definite answer to whether gateway system exists under diurnal conditions.  

 

Initially, ΔKaiA was constructed with a purpose to evaluate solely the circadian null phenotype, 

which was commonly adopted (Clerico et al., 2009). A significant decreased in CO2 fixation 

efficiency per Rubisco was found in ΔKaiA during the light period of the cyclic light (Figure 5-10). 

However, recent work has shown severe damage to diurnal growth caused by KaiA knockout 

compared to entirely KaiABC knockout. Suggesting additional roles was suggested for KaiA (Welkie 

et al., 2018). Therefore, the difference we observed in ΔKaiA::RbcL-eYFP might not solely come 

https://www.google.co.uk/search?hl=en&q=permeabilization&spell=1&sa=X&ved=0ahUKEwjPrODV1eDcAhUKExoKHa4QAaEQkeECCCYoAA
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from the nullification of the circadian clock. Future work with KaiABC knockout was required to 

confirm the exact source of observed phenotype.  

 

In Chapter 3 and 4, we investigate the modulation of carboxysome in correspondence with the light 

intensities. In this chapter, we documented the carboxysome biogenesis under cyclic light, further 

revealing the comprehensive regulation that was embedded into the entire metabolic systems in host 

cells. In the author’s view, a better understanding of how carboxysome biogenesis in integrated into 

the native metabolic pathway is crucial for carboxysome-based bioengineering. For instance, 

introducing of carboxysomes into plants, where circadian and diurnal regulation is strong and 

dominant.  
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6.1 Conclusions 

This thesis has provided new information to improve our understanding on the fine-tuning of 

carboxysome biogenesis (content quantity, stoichiometry and assembly, as well as subcellular 

localisations) under native regulatory system in responding to changing environmental conditions 

such as light intensities (Chapter 3 and 4), light patterns (Chapter 5) as well as CO2 availability 

(Chapter 5).  

 

Before this work, little was known about how carboxysome biosynthesis and spatial positioning are 

physiologically regulated to adjust to dynamic changes in the environment. We demonstrated that β-

carboxysome biosynthesis is enhanced through increased unit counts per cell responding to increasing 

light intensity, thereby enhancing the carbon fixation activity of the cell. Inhibition of photosynthetic 

electron flow impairs the accumulation of carboxysomes, indicating close coordination between β-

carboxysome biogenesis and photosynthetic electron transport. Likewise, the spatial organisation of 

carboxysomes in the cell correlates with the redox state of photosynthetic electron transport chain. 

This study provides essential knowledge for us to modulate the β-carboxysome biosynthesis and 

function in cyanobacteria. In translational terms, the knowledge is instrumental for design and 

synthetic engineering of functional carboxysomes into higher plants to improve photosynthesis 

performance and CO2 fixation. 

 

Carboxysomes are complex, proteinaceous organelles that play essential roles in carbon assimilation 

in cyanobacteria and chemoautotrophs, comprising hundreds of self-assembled protein homologs. 

Despite their significance in enhancing CO2 fixation and great potential in bioengineering applications, 

their structural composition and adaptation to cope with environmental stress remain unclear. In this 

work, we find that the protein stoichiometry, diameter, cellular localisation and mobility pattern of 

carboxysomes in cells depend sensitively on the microenvironmental levels of CO2 and light intensity 

during cell growth, revealing cellular strategies of dynamic regulation. To our knowledge, this is the 

first evidence describing the absolute numbers of proteins accurately on individual carboxysome, at 
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the single-organelle level. A deeper understanding of the molecular composition and regulation of 

carboxysomes is fundamental to rational design and construction of functional carboxysomes in 

heterologous organisms using synthetic biology, with the intent of enhancing cellular metabolism and 

biomass production.  

 

In nature, light accessible to cyanobacteria in a diurnal fashion, unlike the constant light commonly 

used in laboratories. Before this work, it is unclear whether and how diurnal light and the circadian 

clock mediate carboxysome biogenesis in natural habitats. In this work, we inspect carboxysome 

biogenesis under near-nature conditions with a day-night cycle and strengthen the possible correlation 

of carboxysome localisation regulation naturally occurred with the redox state of the plastoquinone 

pool (PQ pool) under diurnal condition. The rhythmic carbon fixation capacities during the light 

period of diurnal cycles were quickly dampened after switching to constant light suggest dominant 

influence of light illuminations on carbon fixation activities. Lastly, we inspected the carboxysome 

numbers, localisation and enzymatic properties in a circadian nullified mutant ΔKaiA. The results 

suggested changed carboxysome numbers per cell and Rubisco content per carboxysome, whereas 

relatively constant cellular level fixation capacity and Rubisco content. This study provides un-

documented localisation, enzymatic activity profile of carboxysomes in the circadian-nullified 

background for future works undertaking circadian regulation in carboxysome biogenesis. The 

findings suggesting rhythmic tunings of carboxysome biogenesis coupling with diurnal day-night 

cycles in native cells and emphasise the importance of considering diurnal regulation in future works 

aiming at integrating and utilising carboxysomes heterologously.  

 

6.2 Perspectives 

In Chapter 3, we reported the modulation of carboxysomes in response to light intensities changes 

and elucidated the electron flow as driven force to modified biogenesis of carboxysomes. Recently, a 

step has been taken forward to further dissecting the light sensing to specific signalling pathway 

through photoreceptor RcaE (Rohnke et al., 2018). The RcaE controls the tuning of photosynthetic 
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efficiency during long-termed acclimation. The RcaE mediated light modulation therefore affects 

carboxysome biogenesis through a progressive process in long terms, which matched our findings 

suggesting adaptions of carboxysome contents that adapted in a duration of several days (Figure 3-8). 

Moreover, light quality as spectrum (red and green light) are further divided and changed 

stoichiometry of structural protein CcmL, CcmM, CcmN and CcmO are reported under different light 

spectrums. The findings further confirmed the tuning of structure and functions of carboxysomes in 

response to dynamic light illuminations. Future investigation for the triggering mechanism would be 

crucial to interlink light harvesting/sensing to carboxysome modulations. 

 

Moreover, tuning of carboxysome structure and functions under environmental stresses other than 

light and CO2 also worth future attention. Beyond the scope of this thesis, evidence of transcriptomic 

levels has suggest expressional variation of carboxysomal genes under nitrogen (Osanai et al., 2006) 

and oxidative (Kobayashi et al., 2004) stresses. Nitrogen metabolism is important for protein 

synthesis and a carbon/nitrogen balancing is purposed to have carboxysome biogenesis in pace with 

nitrogen assimilations. Future works investigating cells under these stresses might reveal missing 

regulation that link multiple biological processes cross-talking to carboxysome biogenesis. 

 

Photosynthetic activity is a strong input to the cellular redox and carbon fixations by carboxysomes 

might be in the core position rebalancing the redox homeostasis. In Chapter 3 and 5, we’ve found the 

localisation of carboxysomes in cells in strong correlation with redox states (Figure 3-14, Figure 5-5). 

Future works investigating carboxysome biogenesis under oxidative stress such as exposure to methyl 

viologen besides HL might yield more informative findings regarding the possible hidden roles of 

redox balancing by carboxysomes. 

 

With the strains generated and time-lapse imaging for long-term carboxysomal signal tracking as well 

as carboxysome subcellular localisation analysis toolbox developed in this project (described in 



Chapter 6 

150 

 

Chapter 2), we could further investigate carboxysome modulations in dynamical fashions to aid in 

the interpretation of circadian and diurnal light regulation documented in Chapter 5. Calvin cycle is 

regulated by CP12 protein via the formation of PRK/GADPH/CP12 complex (Tamoi et al., 2005), 

future work looking into the role of CP12 in context of carboxysome biogenesis would be crucial to 

understand the details of hidden regulatory under diurnal light condition. Moreover, the available 

tools enable us to investigate carboxysome behaviour during cell divisions. To date, very limited 

information is available regarding the mobilisation of carboxysomes particularly during cell divisions 

(Chen et al., 2013). Combining dual labelling fluorescent microscopy together with a series of 

knockout strains generated over individual carboxysomal proteins (data not included in this thesis), 

we could further investigate stoichiometry and localisation in real time to determine the pace 

alternation during alternated environmental conditions. 
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Appendix A 

List of PCR primers used in this study. Gene primers are for amplification of gene fragments. F/R 

primers are for gene amplification, FP/KO primers are for redirections, SEG primers are for 

segregation screening.  

Primers Primer sequence （5’-3’） 
Relative 

chapters 

GFP 856-875 REV TGGTGCAGATGAACTTCAGG 3 

CcmK3_F TCAAGCTGTTGGGCGAAGTC 4 

CcmK3_R AAGCATTGGCTTCGGCATCC 4 

CcmK4_F AGCGGTGATTGCAAGACACG 3,4 

CcmK4_R AACGCCAAAGCCACCATGAG 3,4 

CcmK2_F GCGGGAAGCTCAAGTTTGGG 4 

CcmK2_R ACTCGCTGGCCTATCCAGAC 4 

CcmL_F GAGCGAAGCTGTTACCTCAC 4 

CcmL_R GTTCCGTCCCAATCCGATAG 4 

CcmM_F ACGTGGACTCATGCCTATTG 4 

CcmM_R GGCAGAATAGTGCTGGAAAC 4 

CcmN_F CGAACACGAAGGTGAATACG 4 

CcmN_R AGTTCCGGTAGCTCCAACAG 4 

CcmO_F CGATGTCGCTGGACAGGTTC 4 

CcmO_R GTCGCGCTCGACTTGGATAC 4 

CcmP_F CTGTTTGCCACCGATGACAG 4 

CcmP_R CGCTCATGTTCAGCCAACTC 4 

RbcL_F CAACCTCGAAGCCGTGTTGC 3,4,5 

RbcL_R GGCTGTTAGCTCCGACTCTG 3,4,5 

RbcS_F ACGGGATTCACTTCCGTGTC 4 

RbcS_R GTGTTCCCTTGCCGTCGTAG 4 

CcaA_F AAACAGAGCTCGCCGTTATC 4 

CcaA_R GCATGAACGGGCATTCATTG 4 

RbcX_F AAGCAGGTTGGCAGCCTATC 4 

RbcX_R TCGCTGTCATCAAGGCATCG 4 

CcmK3_FP_F 
CCGATCGACTTCACGGCTGAATCCGAGCCCTTT

CGGTCTCTGCCGGGCCCGGAGCTGCC 
4 
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Primers Primer sequence （5’-3’） 
Relative 

chapters 

CcmK3_FP_R 
ACTCCTTCGCGTCGCAGTGTCGATTGTAAAGTC

CGTGGCATTCCGGGGATCCGTCGACC 
4 

CcmK4_FP_F 
TATCGACTCTCTGCCGAAGGAACTGGTAGTGGC

CGCCGTCTGCCGGGCCCGGAGCTGCC 
3,4 

CcmK4_FP_R 
CCCTCAGCCCAAATCAACCCTTTTAATCAGTCG

CTACCCATTCCGGGGATCCGTCGACC 
3,4 

CcmK2_FP_F 
CCGATTCGCTACACCGAAGCTGTTGAACAATTC

CGCATGCTGCCGGGCCCGGAGCTGCC 
4 

CcmK2_FP_R 
GATGAAAGGGCTATTGAAACGACTCAACAGCCC

TCAACCATTCCGGGGATCCGTCGACC 
4 

CcmL_FP_F 
GTGGAAAACCGCTCCGTCTACGACAAACGCGAG

CACAGCCTGCCGGGCCCGGAGCTGCC 
4 

CcmL_FP_R 
ATCCAGATCAATGACCAGCAGGGATTCAATCCC

TGCCCAATTCCGGGGATCCGTCGACC 
4 

CcmM_FP_F 
GCTCGTCGTCGCGTGGCTGAACTGTTGATTCAA

AAGCCGCTGCCGGGCCCGGAGCTGCC 
4 

CcmM_FP_R 
TGCATGAAGACAAGGGCGATCGCCGGATTCCCG

GCACAGATTCCGGGGATCCGTCGACC 
4 

CcmN_FP_F 
CAGTTTTTGCGGATGCGCCAGAGCATGTTCCCC

GATCGCCTGCCGGGCCCGGAGCTGCC 
4 

CcmN_FP_R 
ACAAAGTACCCTGCAGCTCCTAGAGCTGCTGTG

CACATCATTCCGGGGATCCGTCGACC 
4 

CcmO_FP_F 
GCCGAGCCCTTAGAGCTCCCCAATCCTCGTGAT

GATCAGCTGCCGGGCCCGGAGCTGCC 
4 

CcmO_FP_R 
TTTCAGCCAAAAACCAAGGGAATTACAGTGCTT

TTTCCAATTCCGGGGATCCGTCGACC 
4 

CcmP_FP_F 
CTGTCGGGACGTGAGCATCCCGGCGATCGCTCG

CGGGAGCTGCCGGGCCCGGAGCTGCC 
4 

CcmP_FP_R 
GCCGCAGAAATGCCAGATGTTCTGCATTCGCCA

TGACCGATTCCGGGGATCCGTCGACC 
4 

RbcL_FP_F 
AAAGAGATCAAGTTCGAATTCGAAACGATGGA

CAAGCTCCTGCCGGGCCCGGAGCTGCC 
3,4 

RbcL_FP_R 
GCAGCAACGCTCACTCCCCCAGCGATAGTCAGA

GGCTCCATTCCGGGGATCCGTCGACC 
3,4 

GFP_internal_rev TGGTGCAGATGAACTTCAGG 3 

RbcS_FP_F 
CAAACCGTGAGCTTCATCGTTCATCGTCCCGGC

CGCTACCTGCCGGGCCCGGAGCTGCC 
4 

RbcS_FP_R TGCCCAAAGGCAGGAGCAGCTATCAAGACAAA 4 
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Primers Primer sequence （5’-3’） 
Relative 

chapters 

TCAGGCTATTCCGGGGATCCGTCGACC 

CcaA_FP_F 
CCTGAACAACAACAGCGGATTTATCGCGGCAAT

GCTAGCCTGCCGGGCCCGGAGCTGCC 
4 

CcaA_FP_R 
ACACAGGCAGATCTCAGCAGGGTCGAAGATGCT

TCGATCATTCCGGGGATCCGTCGACC 
4 

RbcX_FP_F 
GCCACTCCTGATGATGCTTCTAATGCCTCCCATG

CGGATCTGCCGGGCCCGGAGCTGCC 
4 

RbcX_FP_R 
ATCGCGGCAGGCCCTTCAAAATCAACGTGTTGA

ACAATTATTCCGGGGATCCGTCGACC 
4 

CcmK3_insert_segF ATCCCGAATCCACAAGAA 4 

CcmK3_insert_segR GCCCGCATGTAGCTCACAAT 4 

CcmK4_insert_segF GCCGAAGGAACTGGTAGTGG 3,4 

CcmK4_insert_segR GGGCTTCATCCCAGACATAG 3,4 

CcmK2_insert_segF GTTCTCCCGATTCGCTACA 4 

CcmK2_insert_segR AACAAATCTGCCAAGGTGC 4 

CcmL_insert_segF AAACCGCTCCGTCTACGAC 4 

CcmL_insert_segR TTGTTGGGCTCGGCATTCT 4 

CcmM_insert_segF GGATCGAGTTCGAGCGATGT 4 

CcmM_insert_segR TCACCACTGGCAAAGTAGCG 4 

CcmN_insert_segF CTAAGGTCTACGGCAAGGAA 4 

CcmN_insert_segR GCTGAGAATAGGCGGGAAG 4 

CcmO_insert_segF TGAGCCGCAGTCGGATAG 4 

CcmO_insert_segR GAAGGCGTTGACATCACTCT 4 

CcmP_insert_segF TCAGTGCGATTGGCAGTTT 4 

CcmP_insert_segR TCATTCCCGATCTTCGCCA 4 

RbcL_insert_segF CGTGAAGCTGGCAAGTGG 3,4 

RbcL_insert_segR GGAGGCAGGTACGAGAAAGT 3,4 

RbcS_insert_segF CAACATCAAGCAGTGCCAAAC 4 

RbcS_insert_segR CACCACCAATCACTCCAACG 4 

CcaA_insert_segF CCCTGACCGAAGAAGTGGC 4 

CcaA_insert_segR CAGGTAAGTCGGCAGGAAG 4 

RbcX_insert_segF GCCACTCCTGATGATGCTTC 4 

RbcX_insert_segR CACTTTGGGCGAGGGAGATT 4 

KaiA_F GATCGCAGACAAAGTGAAGG 5 
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Primers Primer sequence （5’-3’） 
Relative 

chapters 

KaiA_R AAGAGGGTGAAGTCAGGTAG 5 

KaiA_FP_F 
CTTTGTGAGATGTATCGACGGTCTATCCCACGA

GAAACCCTGCCGGGCCCGGAGCTGCC 
5 

KaiA_FP_R 
GAGAGAAATTGAGCCGAGCTTAAGACCTCCTTT

ACCTTTATTCCGGGGATCCGTCGACC 
5 

KaiA_KO_F 
TCTGTCTGCAGACTCAGTCCTGACAGGAGCGAC

TGCGTGATTCCGGGGATCCGTCGACC 
5 

KaiA_KO_R 
AGAAATTGAGCCGAGCTTAAGACCTCCTTTACC

TTTTCATGTAGGCTGGAGCTGCTTC 
5 

FKaiA KO SEG ATGAGCTGCAGTGCTAGG 5 

FKaiA FP SEG CCGATGTTCCAGTCACCA 5 

RKaiA FP/KO SEG TTACGAGGGCTCATACGC 5 
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Appendix B 

Plasmid map for pAM2195 
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Plasmid map for pIJ786_eGFP_apra 
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Plasmid map for pIJ786_eYFP_apra

 

 


