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Abstract  

Calcium signalling in neurons as in other cell types can lead to varied changes in 

cellular function. Neuronal Ca2+ signalling processes have also become adapted to 

modulate the function of specific pathways over a wide variety of time domains and 

these can have effects on, for example, axon outgrowth, neuronal survival and 

changes in synaptic strength. Ca2+ also plays a key role in synapses as the trigger for 

fast neurotransmitter release. Given its physiological importance, abnormalities in 

neuronal Ca2+ signalling potentially underlie many different neurological and 

neurodegenerative diseases. The mechanisms by which changes in intracellular Ca2+ 

concentration in neurons can bring about diverse responses is underpinned by the 

roles of ubiquitous or specialised neuronal Ca2+ sensors. It has been established that 

synaptotagmins have key functions in neurotransmitter release, and in addition to 

calmodulin, other families of EF-hand-containing neuronal Ca2+ sensors including the 

NCS and the CaBP protein families play important physiological roles in neuronal 

Ca2+ signalling. It has become increasingly apparent that these various Ca2+ sensors 

may also be crucial for aspects of neuronal dysfunction and disease either indirectly or 

directly as a direct consequence of genetic variation or mutations. An understanding of 

the molecular basis for the regulation of the targets of the Ca2+ sensors and the 

physiological roles of each protein in identified neurons may contribute to future 

approaches to the development of treatments for a variety of human neuronal 

disorders. 
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Introduction 

Calcium signalling in many cell types can mediate a diverse range of changes in 

cellular function affecting gene expression, cell growth, development, survival and 

cell death. In addition, neuronal calcium signalling processes have become adapted to 

modulate the function of other important pathways in the brain, including neuronal 

survival, axon outgrowth (Spitzer 2006), and changes in synaptic strength (Catterall 

and Few 2008; Catterall et al. 2013). Changes in the concentration of intracellular free 

Ca2+ ([Ca2+]i) are essential for the transmission of information through the nervous 

system as the trigger for neurotransmitter release at synapses. In addition, alterations 

in [Ca2+]i can lead to a wide variety of different physiological changes that can modify 

neuronal functions over a range of time domains of milliseconds through 10s of 

minutes to days or longer (Berridge 1998). It has long been believed that the 

physiological outcome from a change in [Ca2+]i depends on its location, amplitude, 

and duration. The importance of location becomes even more pronounced in neurons 

due to their complex morphologies. Pathological changes in Ca2+ signalling pathways 

have been suggested to underlie various neuropathological disorders (Braunewell 

2005; Berridge 2010; Brini et al. 2014; Brini et al. 2017; Berridge 2018) including 

neurological abnormalities and neurodegenerative disorders (Popugaeva and 

Bezprozvanny 2013; Egorova and Bezprozvanny 2017; Pchitskaya et al. 2018; 

Secondo et al. 2018; Wegierski and Kuznicki 2018). Such changes have implicated 

Ca2+ entry pathways and release of Ca2+ from intracellular stores (Popugaeva and 

Bezprozvanny 2013; Egorova and Bezprozvanny 2017; Secondo et al. 2018; 

Wegierski and Kuznicki 2018) (Schampel and Kuerten 2017). 

The nature, magnitude and location of the Ca2+ signal is crucial for the particular 

effect of neuronal physiology (Burgoyne 2007). Highly localised Ca2+ elevations due 

to Ca2+ entry though voltage-gated Ca2+ channels (VGCCs) lead to synaptic vesicle 

fusion with the presynaptic membrane for neurotransmitter release within less than a 
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millisecond (Burgoyne and Morgan 1998; Barclay et al. 2005). Differently localised 

and timed Ca2+ signals can result in changes to the properties of the VGCCs 

themselves (Catterall and Few 2008), to alterations in synaptic plasticity (Catterall et 

al. 2013) or lead to changes in gene expression (Bito et al. 1997). Postsynaptic Ca2+ 

signals arising from activation of NMDA receptors give rise to two important 

processes in synaptic plasticity, long term potentiation (LTP) and long-term 

depression (LTD). Interestingly, the Ca2+ signals that bring about either LTP or LTD 

differ only in their amplitude and duration (Yang et al. 1999).  

Specific neuronal Ca2+ signals are likely to be decoded by various Ca2+ sensor 

proteins (McCue et al. 2010b). These are proteins that undergo a conformational 

change on Ca2+ binding allowing them to interact with and regulate various target 

proteins (Ikuro and Ames 2006; Burgoyne and Haynes 2015). Amongst the Ca2+ 

sensors that are important for neuronal function are the synaptotagmins that control 

neurotransmitter release (Fernandez-Chacon et al. 2001; Sudhof 2013), the ubiquitous 

EF-hand containing sensor calmodulin (Faas et al. 2011) that has many neuronal roles, 

and the more specific neuronal EF-hand containing proteins including the neuronal 

calcium sensor (NCS) proteins (Burgoyne and Weiss 2001; Burgoyne 2007; Burgoyne 

and Haynes 2012; Burgoyne and Haynes 2015) and the calcium-binding protein 

(CaBP)/calneuron families (Haeseleer et al. 2002; Mikhaylova et al. 2006; McCue et 

al. 2010a; Mikhaylova et al. 2011; Haynes et al. 2012). Potential involvement of 

members of these protein families in neuronal disorders studied in both experimental 

models and in human subjects has become apparent in recent years. In this review we 

assess the information available on the physiological roles of these various Ca2+ 

sensors and their modes of action, and also how they may contribute to neuronal 

dysfunction or be involved in disease-related processes in the nervous system. 
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SYNAPTOTAGMINS  

The physiology and function of synaptotagmins 

The synaptotagmins are transmembrane proteins predominantly associated with 

synaptic and secretory vesicles. There are multiple known isoforms of synaptotagmins 

(Craxton 2004) of which synaptotagmin I has been most widely studied. The role of 

synaptotagmins in neurotransmitter release has been the subject of intense 

investigations which have been extensively reviewed (Chapman 2008; Rizo and 

Rosenmund 2008; Sudhof and Rothman 2009). Synaptotagmins bind Ca2+ with 

relatively low affinity (Kd > 10 µM) through their two C2 domains (C2A and C2B) 

(Shao et al. 1998; Fernandez et al. 2001) which are functional in many but not all 

synaptotagmin isoforms. Ca2+ binding by C2 domains requires coordination of Ca2+ 

by both the protein and membrane lipids, and this lipid interaction is a key aspect for 

its function. In synaptotagmin 1 the C2A and C2B domains (Fig. 1) bind 3 and 2 Ca2+ 

ions respectively (Shao et al. 1998; Fernandez et al. 2001). It is now well established 

that synaptotagmin 1 is the key sensor for evoked, synchronous neurotransmitter 

release in many classes of neurons (Fernandez-Chacon et al. 2001). More recently, a 

key role for synaptotagmin 7 in neurotransmission has also been identified (Turecek 

and Regehr 2018) and synaptotagmin 2 has been shown to be a Ca2+ sensor in central 

inhibitory neurons (Chen et al. 2017). Structure-function studies of synaptotagmin 1 

based on expression of specific mutants have been carried out in mice, worms and 

flies. For example, disruption of Ca2+ binding to the C2B domain of synaptotagmin 1 

has been shown to have a more deleterious effect than disruption of Ca2+ binding to its 

C2A domain (Mackler et al. 2002; Robinson et al. 2002). The details of exactly how it 
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triggers exocytosis and the function of other synaptotagmin isoforms remain to be 

fully resolved. Membrane fusion requires the pairing and interaction of so-called 

SNARE proteins on vesicle and target membranes (Sollner et al. 1993). These can 

assemble into a SNARE complex that may form the minimal fusion machinery. For 

synaptic vesicle and neuroendocrine exocytosis, the SNARE proteins are SNAP-25, 

syntaxin 1 and synaptobrevin. In the case of neurotransmitter release, vesicle fusion is 

tightly regulated and requires a Ca2+ signal for activation. Ca2+ entry through VGCCs 

leading to Ca2+ elevation in local microdomains close to the mouth of the Ca2+ 

channels is able to trigger rapid (less than 1 ms) fusion of synaptic vesicles. 

Synaptotagmin can bind to both syntaxin and SNAP-25, and fast neurotransmitter 

release requires synaptotagmin (Geppert et al. 1994) probably pre-bound to assembled 

or partially assembled SNARE complexes (Schiavo et al. 1997; Rickman et al. 2006) 

so that Ca2+-induced interaction with phospholipids can occur rapidly (Xue et al. 

2008). It is still under debate how important synaptotagmin is in vesicle docking (de 

Wit et al. 2009; Chang et al. 2018) and how it acts at the plasma membrane in fusion 

itself (Tang et al. 2006; Hui et al. 2009) (Fig. 2). Synaptotagmin could act as a brake 

on fusion that is relieved by Ca2+ binding or have a positive role in membrane fusion 

(Chicka et al. 2008). A recent focus has been on the combined role of synaptotagmin 

and another SNARE-interacting protein, complexin, in timing synaptic vesicle fusion 

(Sudhof and Rothman 2009). The structure of a complex of synaptotagmin 1, 

complexin and the SNAREs has been characterised (Zhou et al. 2017). It was 

suggested that this tripartite complex could be a primed structure at the site of vesicle 

docking that would then need to be disrupted to allow fusion to occur. It has also been 

suggested that oligomerization of synaptotagmin is essential to control spontaneous 

fusion (Bello et al. 2018) but much still remains to be learnt about the molecular basis 

of its function (Kweon et al. 2018) (Bello et al. 2018) 

Synaptotagmins and disease 
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Association of certain synaptotagmin isoforms with disease has been made. For 

example, synaptotagmin 7 has been implicated as a regulator of cancer cell 

proliferation (Wang et al. 2018b). In addition, synaptotagmin 11 has been identified as 

a Parkinson’s disease risk gene and suggested to be involve in parkin-linked 

neurotoxicity in dopaminergic neurons (Wang et al. 2018a).  

More significantly for central nervous system function and disease has been the 

discovery of de novo mutations in synaptotagmin 1 in patients associated with mental 

abnormalities. Synaptotagmin 1 has been shown to be essential for survival in model 

organisms but mutations that subtly change its function are not lethal (Chapman 

2008). A rare variant in the gene SYT1 was identified in a subject with movement and 

cognitive disorders (Baker et al. 2015). Expression of a rat SYT1 with this mutation in 

hippocampal neurons in culture was found to impair exocytosis and endocytosis 

suggesting that it is indeed responsible for the mental abnormalities. A second 

missense mutation in SYT1 was later discovered (Cafiero et al. 2015). More recently, a 

series of further de novo mutations in SYT1 has been found in 9 more patients with 

various neurodevelopmental and movement abnormalities (Baker et al. 2018). Five of 

the mutations were found in the C2B domain clustered around the Ca2+ binding 

pocket. The effect of these mutations was functionally characterised by expression of 

the mutated proteins in rat hippocampal cultures. While all the proteins were correctly 

targeted to synapses, one of these mutations impaired expression and the other four 

mutations resulted in differing defects in the rates of exocytosis and endocytosis that 

could in part be correlated with the disease phenotypes of the patients. These results 

support the idea that the SYT1 mutations were responsible for synaptic defects that 

resulted in the observed pathophysiology (Baker et al. 2018). 

Interestingly, similar mutations to those found in the C2B domain of SYT1 had been 

identified in the C2B domain of SYT2 associated with Lambert-Eaton syndrome 

(Herrmann et al. 2014) that is due to a defect at peripheral motor neurons. 

Electrophysiological analysis in patients indicated that the mutations resulted in a 
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presynaptic defect (Whittaker et al. 2015). Further support for the significance of 

these mutations in SYT2 has come from functional studies in Drosophila (Shields et al. 

2017). A potential linkage of SYT2 to defects of central nervous function comes from 

the observation that SYT2 protein levels were reduced in brains of patients who had 

dementias (Bereczki et al. 2018). 

CALMODULIN 

The physiology and functions of calmodulin    

Calmodulin  s a ubiquitously expressed 16.7 kDa Ca2+-binding protein playing a 

major role in regulating a wide variety of cellular events including motility, 

exocytosis, cytoskeletal assembly, muscle contraction and modulation of intracellular 

Ca2+ concentrations. This protein has been highly conserved throughout evolution, is 

found in all eukaryotes and is 100% identical across all vertebrates at the amino acid 

level. Calmodulin can bind four Ca2+ ions through its four EF-hand structural motifs 

(Chattopadhyaya et al. 1992). The N-terminal lobe of calmodulin is formed by the 

first two EF-hands, whereas the C-terminal lobe is formed by the third and fourth EF-

hands. The C-terminal pair of EF-hands has a higher affinity for Ca2+ and slower 

binding kinetics than the N-terminal pair, which allows the two domains to behave 

independently at varying Ca2+ concentrations (Tadross et al. 2008). The highly flexible 

linker between the two domains can alter confirmation dramatically upon binding to 

target proteins (Fig. 3) and is an essential property of calmodulin, which permits this 

protein to interact with a large and diverse array of partners. It has been recently 

demonstrated that calmodulin’s bilobal architecture is essential for VGCC regulation 

(Banerjee et al. 2018). The significant conformational changes on binding to its targets 

(Fallon et al. 2005) can increase its affinity for Ca2+.   

Calmodulin is present in brain at high concentrations (up to ~100 µM). In addition to 

its more general functions, calmodulin also has series of specific roles in transducing 

Ca2+ signals in neurons including the regulation of glutamate receptors (O'Connor 

1999), ion channels (Saimi and Kung 2002), proteins in signalling pathways such as 
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neuronal nitric oxide synthase, and it can affect synaptic plasticity (Lisman et al. 

2002; Xia and Storm 2005).  

One key direct function of calmodulin is in regulating the activity of VGCCs by 

interacting with channel subunits (Catterall and Few 2008). As an example, Ca2+-free 

(apo) calmodulin can bind to the IQ domain of the α1 pore-forming subunit of the L-

type Ca2+ channel Cav1.2 (Erickson et al. 2001; Pitt et al. 2001; Erickson et al. 2003) 

(Fig.4). Pre-bound apocalmodulin can then respond rapidly to Ca2+ elevation in local 

nanodomains and modulate the activity of the channel. Ca2+ binding to VGCC-

associated calmodulin can have a range of effects on channel function including 

mediating Ca2+-dependent facilitation (CDF) or Ca2+-dependent inactivation (CDI) 

(Peterson 1999; Zuhlke et al. 1999; Lee et al. 2000; DeMaria et al. 2001; Catterall and 

Few 2008; Liu et al. 2010). For CaV1.2 channels, CDI is mediated by the C-terminal 

lobe of calmodulin (Peterson 1999). Whereas, for CaV2.1 (DeMaria et al. 2001; Lee et 

al. 2003), CaV2.2 (Liang et al. 2003) and CaV2.3 (Liang et al. 2003), CDI is controlled 

by the N-terminal lobe. Interestingly, for P/Q-type CaV2.1 channels, calmodulin is 

required for both CDI and CDF, with the N-terminal lobe of calmodulin involved in 

CDI and the C- terminal lobe underlying CDF (DeMaria et al. 2001; Lee et al. 2003). 

It is important to note that Ca2+-dependent regulation of VGCCs is complex and 

involves several Ca2+ sensor proteins as modulators. As an example, CaBP1 can elicit 

CDI, but also reduces CDF by displacing calmodulin from the IQ domain in CaV2.1 

channels (Lee et al. 2002; Findeisen and Minor 2010; Christel and Lee 2012; 

Findeisen et al. 2013; Oz et al. 2013). In addition to calmodulin and CaBP1, it has 

been shown that VILIP-2 inhibits calmodulin-mediated CDI and enhances CDF 

(Lautermilch et al. 2005; Nanou et al. 2012) through interaction with both the IQ and 

the calmodulin-binding domains (CBD). Calmodulin is also constitutively associated 

with, and regulates opening of, Ca2+-activated potassium channels (Xia 1998; 

Schumacher et al. 2001), and other types of potassium channels (Wen and Levitan 

2002). SK and IK Ca2+-activated potassium channels lack Ca2+-binding sites but their 

intracellular C-terminal region contains calmodulin-binding domains where 
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calmodulin binds tightly and confers Ca2+-sensitivity to the channel. Two other major 

modes of action of calmodulin are exerted through Ca2+/calmodulin-dependent 

kinases (CaMKs) and calcineurin. CaMKs contribute to several regulatory pathways 

involving, for example, phosphorylation of AMPA receptors (Barria et al. 1997) and 

the nuclear transcription factor CREB (Deisseroth et al. 1998). Calmodulin also 

positively regulates presynaptic neurotransmitter vesicle release probability, which is 

mediated via activation of CaMKII (Pang et al. 2010). The Ca2+-activated phosphatase 

calcineurin can dephosphorylate a wide range of neuronal proteins leading to changes 

in gene transcription following activation of the transcription factor NFAT and its 

translocation into the nucleus. Calcineurin has also been implicated in synaptic 

plasticity (Malleret et al. 2001; Xia and Storm 2005).  

Calmodulin and disease 

The human genome contains three calmodulin genes (CALM1, CALM2, and CALM3) 

that encode for proteins with identical amino acid sequences. Despite the redundancy 

of calmodulin, single missense mutations, that change the way calmodulin functions, 

in any one of the six alleles are associated with disease phenotypes such as cardiac 

arrhythmia syndromes (Limpitikul et al. 2014; Makita et al. 2014; Yin et al. 2014; 

Boczek et al. 2016; Jimenez-Jaimez et al. 2016; Pipilas et al. 2016). In the brain, 

calmodulin dysfunction has also been suggested to be potentially linked to 

pathological conditions including epilepsy, memory loss and intellectual disability. 

CaMKIIγ , a serine/threonine-specific protein kinase involved in long-term plasticity, 

learning and memory, is a major target for calmodulin. A point mutation in γCaMKII 

(R292P) has been shown to interfere with calmodulin shuttling to the nucleus and 

therefore disrupted spatial learning, memory and caused intellectual disability (de Ligt 

et al. 2012; Cohen et al. 2018). In another study, it has been shown that mutations in 

Kv7 potassium channels can decrease calmodulin binding, and thereby disrupt 

channel trafficking to the plasma membrane. As a result, neuronal excitability and 

firing frequency can be affected, leading to pathological conditions from mild 
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epilepsy to early onset encephalopathy (Alaimo et al. 2018). Similarly, mutations in 

Nav1.2 sodium channels can reduce calmodulin binding and lead to epilepsy (Yan et 

al. 2017). In addition, it has been experimentally verified that calmodulin is involved 

in the formation of amyloid-β plaques in Alzheimer’s disease (O'Day et al. 2015). 

Altogether, these observations demonstrate the crucial role of calmodulin in regulating 

major signalling processes in neurons and show that mutations interfering with 

calmodulin binding or function can lead to serious neuropathological conditions. 

NCS PROTEIN FAMILY 

While many aspects of neuronal function are known to be regulated by calmodulin, 

proteins related to calmodulin have been discovered in recent years, which are 

exclusively expressed or enriched in neurons. Duplication and diversification of the 

calmodulin gene family may have given rise to these neuronal calcium sensing 

proteins, which are not all expressed in lower organisms, so that they can carry out  

neuronal functions specifically in higher organisms. 

ThepPhysiology and function of NCS proteins 

Whereas calmodulin is ubiquitously expressed, the expression of other calcium 

sensing proteins can be restricted to particular tissues and cell types. A good example 

of this is the neuronal calcium sensor (NCS) family of proteins, which are primarily 

expressed in neurons or retinal photoreceptors (Burgoyne 2007; Burgoyne and Haynes 

2010). The NCS family of proteins are related in their protein sequence to calmodulin 

but have distinct properties, which allow them to carry out non-redundant roles that do 

not overlap with the functions of calmodulin (Fitzgerald et al. 2008). Members of the 

NCS protein family have been implicated, for example, in the regulation of 

neurotransmitter release, regulation of cell-surface receptors and ion channels, control 

of gene transcription (Carrion et al. 1999; Mellstrom and Naranjo 2001), cell growth 

and survival (Burgoyne 2007; Burgoyne and Haynes 2012), and specific retinal 

photoreceptor functions (Lim et al. 2014).  
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The NCS proteins are encoded by 14 genes in mammals, and with greater diversity 

from alternative splicing of transcripts from a number of the genes. All NCS gene 

products harbour four EF-hand motifs and display limited similarity (< 20%) to 

calmodulin (Burgoyne 2004; Weiss et al. 2010). NCS-1 is the most widely expressed 

of the NCS proteins in and outside of the nervous system. The protein was first 

discovered as frequenin in Drosophila melanogaster (Pongs et al. 1993) where there 

are two very closely related genes known as frq1 and frq2  (Sanchez-Gracia et al. 

2010). Although initially thought to be neuronal specific (Nef et al. 1995), an NCS-1 

orthologue with 59% sequence identity and closely related structure has been 

identified in Saccharomyces cerevisiae (Hendricks et al. 1999), the lowest organism 

with an NCS-like sequence. After this first evolutionary appearance of NCS-1 there 

has been a steady increase in the diversity of the family throughout evolution, which 

roughly correlates with increasing organism complexity. Five classes of NCS proteins 

have now been identified in higher organisms (Braunewell and Gundelfinger 1999; 

Burgoyne 2007). Class A contains NCS-1, which is present in yeast and all higher 

organisms. Class B consists of the visinin-like proteins (VILIPs), which appear first in 

Caenorhabditis elegans. Classes C and D evolved with the appearance of fish, and 

comprise recoverin and the guanylyl-cyclase-activating proteins (GCAPs) 

respectively. Finally, class E contains the K+ channel-interacting proteins (KChIPs), 

which are found in insects and evolutionary subsequent species (Burgoyne 2004).  

Mammals have a single NCS-1, five VILIPs proteins (hippocalcin, neurocalcin δ, and 

VILIPs1-3), a single recoverin, three GCAPs and four KChIPs. Expression of the 

recoverins and GCAPs is restricted to the retina. Whereas, the rest of the NCS family 

are found in varied neuronal populations (Burgoyne 2007). It has been established that 

certain neurons express several, or all, of the NCS proteins, but in general the 

expression profile for each of the NCS proteins is unique (Paterlini et al. 2000; 

Rhodes et al. 2004). This suggests that despite the high sequence homology between 

the proteins (around 35-90% identity between each of the human family members for 
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example (Burgoyne and Weiss 2001)), each is likely to perform distinct functions in 

specific cell types (Burgoyne 2007).  

Unlike calmodulin, not all EF-hands are functional in the NCS proteins, and the most 

N-terminal EF-hand is unable to bind Ca2+ in any of the family members. In the case 

of recoverin and KChIP1, only two of its four EF-hand motifs are functional in Ca2+ 

binding (Burgoyne et al. 2004; Burgoyne 2007). Unlike the dumbbell structure of 

calmodulin, the NCS proteins are compact and globular when in their Ca2+-bound 

states, and they undergo limited conformational change following binding to their 

target proteins (Ames et al. 2006; Pioletti et al. 2006; Strahl et al. 2007; Wang et al. 

2007) (Fig. 3). NCS proteins also differ from calmodulin in that many have motifs 

that allow membrane association (McFerran et al. 1999; O'Callaghan and Burgoyne 

2003; O'Callaghan and Burgoyne 2004; Haynes and Burgoyne 2008). KChIP1 and all 

the members of classes A-D are N-myristoylated. Whereas, certain KChIP2, KChIP3 

and KChIP4 isoforms possess palmitoylation motifs. In some cases the membrane 

association conferred by these moieties is dynamically regulated by Ca2+ binding 

when a sequestered myristoyl chain becomes exposed following a Ca2+-driven shift in 

conformation. This is known as the reversible Ca2+/myristoyl switch as originally 

described for recoverin (Ames et al. 1997). The VILIPs/neurocalcin/hippocalcin are 

also cytosolic at resting [Ca2+]i but localise to the plasma membrane or Golgi complex 

upon Ca2+ elevation (O'Callaghan et al. 2002; Spilker et al. 2002; O'Callaghan et al. 

2003b). In contrast, NCS-1 does not show the Ca2+/myristoyl switch. Each of the NCS 

proteins displays distinct sub-cellular localisations, which are in part determined by 

additional interactions with specific phosphoinositides mediated by basic N-terminal 

residues immediately proximal to the site of acylation (O'Callaghan et al. 2003a; 

O'Callaghan et al. 2005). 

NCS-1 is a multifunctional regulator of various processes, and it has been intensively 

studied (Burgoyne 2004; Burgoyne and Haynes 2012). MammalianNCS-1 is highly 
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evolutionarily conserved, retaining 59% identity with its yeast orthologue. It displays 

a high Ca2+-binding affinity  (Kd for Ca2+ around 200-300nM) and is able to respond 

to any fluctuations in [Ca2+]I above resting levels. NCS-1 is N-terminally 

myristoylated and is constitutively associated with membranes including plasma and 

Golgi membranes (O'Callaghan et al. 2002), although it is able to rapidly exchange 

between membrane and cytosolic pools (Handley et al. 2010). In contrast to all other 

NCS family members, NCS-1 is not neuron specific and is expressed in 

neuroendocrine cells (McFerran et al. 1998), and at low levels in several non-neuronal 

cell types (Gierke et al. 2004). NCS-1 has three functional EF-hand motifs, which 

have differing cation specificities for Ca2+ versus Mg2+. In the presence of elevated 

[Ca2+]i EF2 and EF3 become Ca2+-occupied simultaneously followed by Ca2+ binding 

to EF4 (Aravind et al. 2008; Mikhaylova et al. 2009). Two variants of NCS-! (frq1 and 

frq2) are expressed in Drosophila (Sanchez-Gracia et al. 2010) and may have distinct 

roles.. A second human variant has been described but it is likely not to play any 

physiological role being expressed at only low levels (Wang et al. 2016). 

Much current understanding concerning the function of NCS-1 derives from over-

expression or knockout studies. Over-expression in Drosophila caused a frequency-

dependent facilitation of neurotransmitter release (Pongs et al. 1993), and its 

importance for neurotransmissions has been confirmed by knockout of the two 

Drosophila frequenin genes (Dason et al. 2009). In Xenopus, over-expression caused 

enhanced spontaneous and evoked transmission at neuromuscular junctions (Olafsson 

et al. 1995). Consistent with a role of NCS-1 in neurotransmitter release, over-

expression was found to increase Ca2+-dependent exocytosis of dense core granules in 

PC12 cells (McFerran et al. 1998), and to enhance associative learning and memory in 

C. elegans (Gomez et al. 2001). 

Knockout of NCS-1 (frequenin)  in the yeast S. cerevisiae is lethal due to its 

requirement for the activation of Pik1, one of the two yeast phosphatidylinositol-4 

kinases (PI4Ks) (Hendricks et al. 1999). NCS-1 can also interact with the equivalent 
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mammalian Golgi enzyme PI4KIIIβ and enhances its activity (Taverna et al. 2002; 

Haynes et al. 2005; de Barry et al. 2006). The interaction with Golgi-associated 

PI4KIIIβ suggests that it may regulate secretion through the modulation of 

phosphatidylinositol-dependent trafficking steps (Hendricks et al. 1999; Zhao et al. 

2001; Haynes et al. 2005). In support of this, NCS-1 has also been demonstrated to 

associate with another PI4KIIIβ regulator ARF1, a small GTPase critical to multiple 

trafficking steps in mammalian cells (Haynes et al. 2005; Haynes et al. 2007). The 

physiological significance of this interaction has been confirmed using genetic 

approaches in C. elegans. In this organism, knock out of NCS-1 impairs learning 

(Gomez et al. 2001) and affects temperature-dependent locomotion behaviour (Martin 

et al. 2013). The role of NCS-1 in the control of temperature-dependent locomotion 

was shown to require interaction with ARF1.1 and also potentially pifk1 the C. 

elegans orthologue of PI4KIIIβ (Todd et al. 2016). 

Knock-out of NCS-1 in organisms other than S. cerevisiae is not lethal but does 

generate specific developmental phenotypes. In Dictyostelium discoideum, loss of 

NCS-1 function alters developmental rate (Coukell et al. 2004), and in C. elegans 

results in impaired learning and memory (Gomez et al. 2001). Knockdown of one of 

the two NCS-1 genes in zebrafish, ncs-1, prevents formation of the semi-circular 

canals of the inner ear (Blasiole et al. 2005). The signalling pathway involving 

NCS-1, ARF1 and PI4KIIIβ (Haynes et al. 2005) modulates the secretion of 

components important for the development of the vestibular apparatus of the inner ear 

(Petko et al. 2009). Knock-down of NCS-1, or expression of a dominant negative 

inhibitor based on an EF-hand mutation (Weiss et al. 2000), disrupted the induction of 

long-term depression in rat cortical neurons (Jo et al. 2008). Over-expression of 

NCS-1 in adult mouse dentate gyrus enhanced learning (Saab et al. 2009). Knock out 

of NCS-1 in mice was not lethal but caused behavioural changes and learning deficits 

(de Rezende et al. 2014; Nakamura et al. 2017). 
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Many different specific binding partners (Fig. 5) have been identified for NCS-1, 

which interact with either the Ca2+-loaded or Ca2+-free (apo) forms of NCS-1 (Haynes 

et al. 2006; Haynes et al. 2007). NCS-1 has a higher affinity for Ca2+ than calmodulin, 

and therefore may preferentially interact with certain Ca2+-dependent binding partners 

when the amplitude of a Ca2+-signal falls below the threshold for activation of 

calmodulin. For example, both calmodulin and NCS-1 have been shown to interact 

with, and desensitize, dopamine D2 receptors, but are likely to mediate their effects at 

different [Ca2+]i (Kabbani et al. 2002) (Woods et al. 2008). Functional analyses have 

established that NCS-1 is a physiological regulator of D2 receptors (Saab et al. 2009; 

Dragicevic et al. 2014) (for clinical relevance of this regulation see below). Other 

NCS-1 target proteins appear to be specific for NCS-1 (Haynes et al. 2006).  

Various studies have implicated NCS-1 in the regulation of VGCCs (Weiss et al. 2000; 

Weiss and Burgoyne 2001; Tsujimoto et al. 2002; Weiss and Burgoyne 2002; Dason et 

al. 2009). In Drosophila, the effects of Frq1 on both neurotransmission and nerve-

terminal growth can be explained by a functional interaction with the VGCC 

cacophony, which is related the mammalian P/Q-type VGCCs, but despite the 

physiological evidence a direct interaction of the proteins was not demonstrated 

(Dason et al. 2009). In contrast, a direct interaction of mammalian NCS-1 with the 

Cav2.1 of VGCCs was subsequently shown to occur (Lian et al. 2014), and this may 

be of physiological significance for the Ca2+-dependent regulation of these channels 

by NCS-1 underlying synaptic facilitation (Yan et al. 2014). 

The structural basis of the interaction of NCS-1 with its target proteins has been well 

characterised. Key conserved residues within the hydrophobic groove that is exposed 

in the Ca2+-bound state have been shown to interact with target peptides in structural 

studies  (Huttner et al. 2003; Ames and Lim 2012; Burgoyne and Haynes 2015). 

Moreover, functional mutagenesis studies in worms have confirmed the importance of 

these hydrophobic residues (Martin et al. 2013). Direct analysis has been made of 

NCS-1interactions with two different target peptides based on structures solved in 
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parallel by X-ray crystallography (Pandalaneni et al. 2015)  Comparison to complexes 

involving other NCS proteins has shown structural differences in how these 

interactions occur. Figure 6 illustrates the structure of Ca2+-bound NCS-1 in complex 

with two peptides from the dopamine D2 receptor (Fig. 6A) or a single peptide from 

GRK1 (Fig. 6C) (Pandalaneni et al. 2015).  In this figure NCS-1-target complexes are 

compared to earlier structures of S. cerevisiae frequenin in complex with two parts of 

a peptide from Pik1 (Strahl et al. 2007) (Fig.64B), of KCHIP1 with a fragment of 

Kv4.3 (Pioletti et al. 2006) (Fig. 6D) and of recoverin with one peptide from GRK1 

(Ames et al. 2006) (Fig. 6F). The two examined interactions for mammalian NCS-1, 

as in the other reported structures, involve residues within the exposed hydrophobic 

groove, although these differ for each target peptide. There are also differences in 

interaction with a mobile C-terminal region of NCS-1, which can change its position 

in the complexes (Pandalaneni et al. 2015). The C-terminal tail of NCS-1 appears to 

be crucial for the nature and regulation of target protein interactions being able to 

potentially occlude the hydrophobic groove for certain substrates (Handley et al. 

2010; Lian et al. 2011; Heidarsson et al. 2012). There are also differences in how two 

NCS proteins (NCS-1 and recoverin) interact with the same target peptide from GRK1 

(Ames et al. 2006; Pandalaneni et al. 2015). 

Much less is known about the VILIP/neurocalcin/hippocalcin proteins, although the 

VILIPs themselves appear to modulate various signal transduction pathways such as 

cyclic nucleotide and MAPK signalling (Braunewell and Klein-Szanto 2009). 

VILIP-1 has been found to regulate a class of purinergic receptors (Chaumont et al. 

2008). They have been shown to have effects on gene expression and are also 

involved in trafficking of proteins to the plasma membrane (Lin et al. 2002; 

Brackmann et al. 2005).  VILIP-3 (HPCAL1) was found to control the differentiation 

of neuroblastoma cells through its interaction with the transcriptional regulator 

PHOX2B (Wang et al. 2014). 
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Hippocalcin has been suggested to be involved as a Ca2+ sensor in long-term 

depression in (Palmer et al. 2005; Jo et al. 2010) . Consistent with this suggestion, it 

was observed that hippocalcin in cultured hippocampal neurons shows a rapid and 

reversible Ca2+/myristoyl switch for translocation in response to acute stimuli 

(Markova et al. 2008; Dovgan et al. 2010). Hippocalcin has also been implicated in 

protection from neuronal apoptosis (Mercer et al. 2000; Korhonen et al. 2004), and in 

promoting neuronal differentiation (Park et al. 2017). 

Recoverin is expressed exclusively in the retina and is believed to have a role in light 

adaptation and can enhance visual sensitivity (Polans et al. 1996; Sampath et al. 2005; 

Morshedian et al. 2018). Recoverin is found primarily in rod and cone cells of the 

retina (Yamagata et al. 1990; Dizhoor et al. 1991). Recoverin was predicted to prolong 

the lifetime of photolyzed rhodopsin by inhibiting its phosphorylation by rhodopsin 

kinase to extend the light response (Chen et al. 1995; Klenshin et al. 1995). The 

function of recoverin has been controversial and this hypothesis may be 

oversimplified. Discrepancies have been noted regarding the [Ca2+]i required for 

rhodopsin kinase interaction which may lie outside normal physiological limits but 

analysis of recoverin knockout mice have shown changes in photoresponses consistent 

with a physiological role in inhibition of rhodopsin kinase (Makino et al. 2004). 

The structure of recoverin has been extensively studied in its Ca2+-bound and Ca2+-

free forms (Flaherty et al. 1993; Ames et al. 1995; Tanaka et al. 1995; Ames et al. 

1997; Ames et al. 2002; Weiergraber et al. 2003). Recoverin is composed of two 

distinct domains connected through a linker and forms a compact structure in the 

absence of Ca2+. Unlike other NCS proteins, recoverin has just two functional EF-

hand motifs. Upon binding of Ca2+, the N-terminal domain comprising EF1 and EF2 

rotates through 45o relative to the C-terminal domain driving extrusion of its buried 

myristoyl group. This permits recoverins to associate with membranes and reveals a 

hydrophobic surface, which can mediate interaction with the target protein  rhodopsin 

kinase (Ames et al. 2006). The residues involved in the interaction of the myristoyl 
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group with the hydrophobic pocket are also conserved in the other members of the 

NCS family. However, not all of the other family members display the Ca2+/myristoyl 

switch (O'Callaghan et al. 2002; Stephen et al. 2007). NCS-1 and KChIP1 expose a 

similar hydrophobic surface upon Ca2+-binding which could be similarly important for 

target interactions (Bourne et al. 2001; Scannevin et al. 2004; Zhou et al. 2004b; 

Pioletti et al. 2006; Pandalaneni et al. 2015). In contrast, other NCS proteins are able 

to interact with certain binding proteins in their Ca2+-free state therefore Ca2+-driven 

exposure of a hydrophobic surface cannot be the sole mechanism by which these 

proteins bind to effectors.  

GCAPs are activators of retinal guanylyl cyclases (GCs) (Palczewski et al. 2004) and 

are known to be physiological regulators of light adaptation (Mendez et al. 2001; 

Burns et al. 2002; Howes et al. 2002; Pennesi et al. 2003; Vinberg et al. 2018). They 

show the unusual property of activating GCs when in their Ca2+-free form but become 

inhibitors of GCs at higher Ca2+ concentrations (Dizhoor and Hurley 1996). GCAP3 is 

expressed in cone cells whereas GCAP1 and GCAP2 are expressed in rod cells. While 

GCAP1 and GCAP2 having the same function in the same cell type the two proteins 

have different Ca2+ binding affinities for GC activation. This means that both proteins 

are required for GC activation over the full physiological Ca2+ concentration range 

maximising the dynamic range of GC activity (Koch 2006). The GCAPs are an 

example of how Ca2+ sensors have become adapted to increase dynamic Ca2+ 

sensitivity of regulatory mechanisms (Palczewski et al. 2004; Lim et al. 2014; Koch 

and Dell'Orco 2015). 

Four KChIP genes and a large number of splice variants are expressed in mammals 

(Pruunsild and Timmusk 2005). KChIPs (K channel-interacting proteins) were so 

named as they were found to associate with transient voltage-gated potassium 

channels of the Kv4 family (An et al. 2000; Bahring 2018). The majority of the 

KChIPs can stimulate the trafficking of Kv4 channels to the plasma membrane 

(O'Callaghan et al. 2003a; Shibata et al. 2003; Hasdemir et al. 2005; Prechtel et al. 
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2018). Certain KChIP isoforms, in contrast, inhibit the trafficking of Kv4 channels 

(Jerng and Pfaffinger 2008). In addition, expression of KChIPs regulates the gating 

kinetics of Kv4 channels while acting as channel subunits (An et al. 2000; Bahring 

2018) and can do so in response to Ca2+ (Groen and Bahring 2017; Bahring 2018). 

Knockout of KChIP1 has revealed a potential role in the GABAergic inhibitory 

system (Xiong et al. 2009). The KChIPs are expressed predominantly in the brain but 

KChIP2 is also expressed in the heart and knockout of KChIP2 causes a complete loss 

of calcium-dependent transient outward potassium currents and susceptibility to 

ventricular tachycardia (Kuo et al. 2001). KChIP3, is also known as DREAM or 

calsenilin, and has documented roles in transcriptional regulation (Carrion et al. 1999; 

Mellstrom and Naranjo 2001) and in the processing of presenilins and amyloid 

precursor protein which are important in the pathogenesis of Alzheimer’s disease 

(Buxbaum et al. 1998a; Buxbaum et al. 1998b; Jo et al. 2004). While many of the 

KChIPs and their isoforms may have overlapping functions some differences between 

them have emerged (Holmqvist et al. 2002; Venn et al. 2008).  

Despite KChIP3 being implicating in three quite distinct functions it is likely that they 

are all physiologically relevant. KChIP3 knockout mice show reduced responses in 

acute pain models due to changes in prodynorphin synthesis (Cheng et al. 2002), 

decreased β-amyloid production and physiological defects consistent with changes to 

the Kv4 channels (Lilliehook et al. 2003). DREAM/KChIP3/calsenilin has been found 

to interact with a wide range of target proteins (Rivas et al. 2011). Recently, functional 

effects for DREAM/KChIP3/calsenilin have been reported for the regulation of 

ryanodine receptors (Grillo et al. 2018) and via an interaction with RhoA on neurite 

growth (Kim et al. 2018). 

The NCS protein family has evolved to carry out specialized neuronal functions 

separate to those of calmodulin. Of relevance is their approximately 10-fold higher 

affinity for Ca2+ when compared to calmodulin. The higher affinity allows the NCS 

proteins to be activated at lower Ca2+ concentrations and, in combination with 
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calmodulin, extends the dynamic range over which Ca2+ can regulate neuronal 

processes. In this way, the response of a cell to changes in [Ca2+]i of different 

amplitude or kinetics would depend on which populations of Ca2+-binding proteins 

are activated under particular conditions. The individual expression patterns and sub-

cellular localisation of each of the NCS proteins will also determine their specific 

roles in neuronal cell signalling. The characteristic N-terminal myristoylation or 

palmitoylation modifications which allow these proteins to associate with membranes 

may spatially partition them to distinct sub-cellular sites within the cell leading to a 

faster and more efficient response to particular Ca2+ signals. Specific physiological 

outcomes will also be determined by their distinct target proteins (Burgoyne and 

Haynes 2015). The various members of the NCS family arose at points in evolution 

corresponding to increasing neuronal sophistication in higher animals. As such, these 

proteins represent an example of how the properties of calcium binding proteins have 

been fine-tuned to act in specific neuronal signalling pathways.  

NCS proteins and disease 

In support of key roles for the NCS family in higher organisms, a number of studies 

have implicated these proteins in the pathological progression of human neurological 

diseases. Some evidence suggests indirect links such as with Alzheimer’s disease, but 

evidence has emerged for more direct involvement based key physiological 

interactions and also on identification human genetic variants. 

NCS-1 has been suggested to interact directly with and enhance the activity of inositol 

1,4,5-trisphosphate receptors (IP3Rs)  (Schlecker et al. 2006; Nakamura et al. 2011) 

although this has not been seen in all studies (Haynes et al. 2004a). It has been 

suggested that the regulation of inositol 1,4,5-trisphosphate receptors IP3Rs by NCS-1 

and changes in Ca2+ signalling (Boehmerle et al. 2006) may underlie a potential role 
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of NCS-1 peripheral neuropathy (Mo et al. 2012)  and also in tumour progression 

where it could be a therapeutic target (Moore et al. 2017; Boeckel and Ehrlich 2018).  

Two other documented NCS-1 interactions are of possible significance for neuronal 

dysfunction. The importance of the regulation of dopamine D2 receptors by NCS-1, 

whereby NCS-1 inhibits receptor internalisation (Kabbani et al. 2002), comes from the 

fact that dopamine is of key importance for signalling within the CNS and in addictive 

behaviour (Koob 2006; Dagher and Robbins 2009). Regulation of D2 receptors by 

NCS-1underlies the effect of over-expression of NCS-1 on spatial memory acquisition 

(Saab et al. 2009). Dopamine D2 receptors are the targets for all known effective 

antipsychotic drugs (Seeman 1992), and NCS-1 is up-regulated in patients with 

bipolar disorder or schizophrenia (Koh et al. 2003) and in response to anti-psychotic 

drugs (Kabbani and Levenson 2006). NCS-1 is genetically associated with cocaine 

addiction (Multani et al. 2012), which is believed to be linked to effects of cocaine on 

dopamine transporters (Ritz et al. 1987). It has also been suggested that NCS-1 may 

be linked to the effects of lithium on bipolar disorders (D'Onofrio et al. 2015; 

D'Onofrio et al. 2017a; D'Onofrio et al. 2017b).   

NCS-1 has been shown to be required for an adaptive response to dopaminergic 

agonists in substantia nigra neurons. Coupled with its up-regulation in the substantia 

nigra from Parkinson’s disease patients, this suggested that it could be a target for 

modifying the vulnerability of neurons in the substantia nigra to neurodegeneration 

(Dragicevic et al. 2014; Poetschke et al. 2015; Duda et al. 2016). The binding of 

NCS-1 to the D2 receptor involves the short cytoplasmic C-terminal domain of the 

receptor (Kabbani et al. 2002). This interaction has been partially characterised using 

structural approaches (Lian et al. 2011; Pandalaneni et al. 2015) and this may allow 

exploration of the interaction as a therapeutic drug target (Kabbani et al. 2012). 

Another clinically important interaction is with the interleukin 1 receptor accessory 

protein-like 1 protein (IL1RAPL1), which appears to be specific for NCS-1 (Bahi et 

al. 2003). Mutations in ILIRAPL1 have been shown to result in X-linked mental 
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retardation (Zhang et al. 2004; Tabolacci et al. 2006), and also have been linked to 

autistic spectrum disorder (ASD, (Piton et al. 2008)). Knock-out of IL1RAPL1 in 

mice leads to neurodevelopmental and learning abnormalities (Montani et al. 2017). 

Effects of Il1RAPL1 on exocytosis (Bahi et al. 2003), channel regulation and neurite  

growth (Gambino et al. 2007) appear to be mediated via NCS-1.  

Interestingly, the study on Il1RAPL1 in ASD also identified a mutation (R120Q) 

within NCS-1 in an individual with ASD (Piton et al. 2008). This mutation was found 

to cause a functional deficit in NCS-1 (Handley et al. 2010) that appeared to be related 

to a change in the structural dynamics of the C-terminus of the protein (Handley et al. 

2010) and overall structural flexibility (Zhu et al. 2014). However, the physiological 

relevance of this mutation and its exact relationship to the disease phenotype remains 

to be established. 

A second almost identical homologue of frequenin expressed in Drosophila (Frq2) 

and human NCS-1 are able to interact with the guanine nucleotide exchange factor 

Ric8a and this interaction was shown to be physiologically relevant for development 

and neurotransmission in flies (Romero-Pozuelo et al. 2014). Characterisation of the 

structural basis for this interaction identified an interface that was used to examine 

potential therapeutic compounds that could prevent complex formation (Mansilla et al. 

2017). As proof of principle, the authors showed that a potential therapeutic 

compound could alleviate the symptoms of fragile X syndrome in a fly model. These 

studies demonstrate the potential for such structural approaches to generate leads for 

new therapeutics that could be used in NCS-1-related pathologies (Roca et al. 2018). 

The neurodegenerative disease known as Wolfram syndrome is caused by loss of 

function of the endoplasmic reticulum (ER) protein WF1. The molecular basis of the 

disorder appears to be due to a loss of coupling between mitochondria and the ER that 

is required for transfer of Ca2+ to the mitochondria (Angebault et al. 2018). This in 

turn leads to mitochondrial dysfunction and potential cell death. In exploring this 

mechanism further it was discovered that WF1 intersects directly with NCS-1. 
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Moreover, over-expression of NCS-1was able to compensate for the loss of WF1 

function in fibroblasts from Wolfram syndrome patients (Angebault et al. 2018) 

suggesting that NCS-1 may be a useful target for development of new therapeutic 

approaches. 

VILIP1 has been suggested to have a role  in Alzheimer’s disease due to an 

association with amyloid plaques in diseased brains (Schnurra et al. 2001). It is not 

clear, however, if there is any causal relationship, but VILIP1 in cerebrospinal fluid as 

been widely studied as an early stage biomarker Alzheimer’s disease (Braunewell 

2012; Groblewska et al. 2015; Babic Leko et al. 2016; Kirkwood et al. 2016). 

A more direct involvement of neurocalcin delta in neuronal disease has come from a 

study(Riessland et al. 2017)  showing that knock-down of this protein results in 

protective effects in various models of spinal muscular atrophy across a number of 

species. Neurocalcin delta had previously been found to interact with clathrin (Ivings 

et al. 2002), and the protective effects of neurocalcin delta were attributed to a 

consequence of the loss of neurocalcin delta as a negative regulator of endocytosis. 

Neurocalcin delta could therefore as a potential therapeutic target by inhibitors of its 

activity (Riessland et al. 2017). 

Dystonia is an early onset movement disorder, which can be inherited in an 

autosomal-dominant manner linked to a defined set of genes or alternatively in an 

autosomal-recessive manner (the latter is classified as DYT2 dystonia). Missense 

mutations in hippocalcin were found in subjects with (DYT2-like dystonia 

(Charlesworth et al. 2015). It was suggested that the mutations could have disrupted 

hippocalcin’s role in neuronal calcium signalling. Direct examination of the effect of 

dystonia mutations on the physiological function of hippocalcin showed that the 

mutations did not affect the protein structure but resulted in an oligomerization defect 

(Helassa et al. 2017). It is noteworthy that for another NCS protein, namely GCAP1, 

dimerization has been suggested to be functionally important (Ames 2018; Lim et al. 
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2018). In addition, an increase in Ca2+ influx through VGCCs of the Cav2 type  in 

cells expressing the mutants was observed compared to wild type hippocalcin, thus 

suggesting a key role for perturbed Ca2+ homeostasis in DYT2 dystonia due to the 

mis-sense mutations (Fig. 7). The existence of other mutations that would produce 

truncated proteins have subsequently been discovered in two dystonia families (Atasu 

et al. 2018) further substantiating the link between hippocalcin and DYT2 dystonia. 

The retinally-expressed NCS proteins, GCAPs, have known mutations that have been 

shown to result in retinal dystrophies and retinal degeneration (Behnen et al. 2010; 

Dell'Orco et al. 2010), consistent with their key functions in photoreceptors. For 

GCAP1, which is encoded by the human gene GUCA1A, nearly 20 point mutations 

have been identified in patients with autosomal dominant retinal dystrophy, leading to 

the suggestion that photoreceptor death is linked to an abnormality in calcium 

signalling. A recently identified mutation in GCAP1 (E111V) have been characterised 

biochemically and shown to decrease GCAP1’s affinity for calcium, and thereby shift 

its regulation of GCs out of the physiological range of calcium concentration (Marino 

et al. 2018).  In addition many mutations are known in the photoreceptor guanylate 

cyclase GUCY2D, the target for GCAPs, which result in retinal dystrophies. 

Characterisation of the effects of some of these mutations has indicated that their 

defects are in the Ca2+-dependent regulation of their catalytic activity by GCAPs 

(Wimberg et al. 2018). 

The idea that KChIPs may contribute to neuronal disease first arose when calsenilin 

(KChIP3) was discovered as an interactor with presenilins, and to regulate the 

processing of presenilins, which suggested a link to the pathogenesis of Alzheimer’s 

disease  (Buxbaum et al. 1998a; Jo et al. 2004). KChIP1 has been implicated in 

changes in behavioural anxiety in knock-out  mice (Xia et al. 2010) and a human 

genetic variant  associated with attention deficit disorder (Yuan et al. 2017). KChIPs 

have also been shown to be involved in pain control (Jin et al. 2012; Kuo et al. 2017; 

  25



Tian et al. 2018). More recently, DREAM has been shown to regulate the onset of 

cognitive decline in a mouse model of Huntington’s disease (Lopez-Hurtado et al. 

2018). The KChIPs may become targets for therapeutics that could be used for several 

types of neurological disorders. A major challenge will to be develop drugs that target 

specific KChIP isoforms. 

CaBP protein family 

The physiology and function of CaBPs 

The CaBPs are a family of EF-hand containing Ca2+-binding proteins, which are only 

found in vertebrates (Haeseleer et al. 2000), and appear to have arisen together in 

evolution as a family of genes (McCue et al. 2010a) (Fig. 8). They represent another 

example of a diverse family of Ca2+-sensors capable of regulating discrete processes 

in the nervous systems of higher organisms. The CaBPs share sequence homology 

with calmodulin, and also display a similar structural arrangement of EF-hand motifs. 

Each of the CaBPs has four EF-hands although, like the NCS proteins, they display 

different patterns of EF-hand inactivation (Fig. 8). In CaBP1-5 the second EF-hand is 

inactive, with the exception of CaBP3, which also has an inactive EF-1 (although 

CaBP3 is believed to represent a pseudogene; (Haeseleer et al. 2000)). Two proteins 

were named CaBP7 and CaBP8 (Haeseleer et al. 2002), but bioinformatic analysis is 

more consistent with them being a conserved and distinct sub-family of CaBPs 

(McCue et al. 2010a). We will, therefore, refer to them by their alternative names 

calneuron 2 and calneuron 1, respectively (Wu et al. 2001; Mikhaylova et al. 2006). 

The calneurons, by contrast to the CaBPs, have a different pattern of EF-hand 

inactivation with active EF-hands 1 and 2 and inactive EF-hands 3 and 4 (Mikhaylova 

et al. 2006). The CaBPs also differ from calmodulin in that their central alpha helical 

linker domain connecting the C- and N-terminal EF-hand pairs is extended by 4 amino 

acid residues. This has been suggested to allow these proteins to interact with unique 
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targets (Haeseleer et al. 2000). Calneuron 1 has been shown to be expressed in 

essentially all rat and human brain regions (Hradsky et al. 2015). 

A major difference compared with calmodulin is the ability of CaBP 1 CaBP2, 

calneurons 1 and calneuron 2 to target to specific cellular membranes (McCue et al. 

2009). CaBP1 and CaBP2 are N-terminally myristoylated, which allows localisation 

to the plasma membrane and Golgi apparatus (Haeseleer et al. 2000; Haynes et al. 

2004b). The precise N-terminal sequence to which the myristoyl group is attached is 

also important in the targeting of these two proteins, as exemplified by the long and 

short splice isoforms, which show subtle differences in their localisation. CaBP1-

Long localises predominantly to the Golgi and also displays some cytosolic 

localisation. Whereas, CaBP1-Short localises most prominently to the plasma 

membrane and to Golgi structures (Haeseleer et al. 2000; McCue et al. 2009). 

Alternative splicing of the CaBP1 gene generates a third protein product, caldendrin 

(Seidenbecher et al. 1998). This splice isoform is significantly larger than either 

CaBP1-Long or CaBP1-Short due to an N-terminal extension, but caldendrin mRNA 

lacks the exon required for N-myristoylation and as a result the protein displays a 

markedly different sub-cellular localisation to its shorter relatives.  

N-terminal acylation is important in the localisation of some CaBPs, but the 

calneurons appear to be targeted via a different mechanism. Like CaBP1 and CaBP2, 

calneuron 1 and calneuron 2 localise to internal membranes that co-label with Golgi 

specific markers and to vesicular structures (McCue et al. 2009; Mikhaylova et al. 

2009). Calneuron 1 and calneuron 2 do not possess an N-terminal myristoylation 

motif and differ from the rest of the CaBP family due to a 38 amino acid extension at 

their C-terminus. Analysis of this sequence revealed a predicted C-terminal 

transmembrane domain with a cytosolic N-terminus (McCue et al. 2011). The C-

terminal domain resembles tail-anchor motifs and directly localises calneuron 1 and 

calneuron 2 to membranes particularly of the trans-Golgi network (McCue et al. 2009; 

Hradsky et al. 2011). 
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To date, only a limited number of CaBP structures have been solved. These include 

CaBP1-Short (Wingard et al. 2005; Li et al. 2009; Findeisen and Minor 2010), CaBP4 

((Park et al. 2013; Park et al. 2014); PDB codes: 2M28 (Ca2+ bound C-lobe) and 

2M29 (Ca2+ bound N-lobe)) and calneuron 2 (McCue et al. 2012). This information 

may provide insight into the structures of the rest of the CaBPs. Analogy to 

calmodulin would suggest that the CaBPs should adopt a dumbbell-like tertiary 

conformation consisting of an N-terminal domain containing EF-hand 1 and EF-hand 

2, and a C-terminal domain containing EF-hand 3 and EF-hand 4 connected by a 

central linker. NMR analysis revealed that CaBP1 does indeed have two independent, 

non-interacting domains joined by a flexible linker (Wingard et al. 2005). The NMR 

structures of CaBP4 and calneuron 2 are of isolated N- or C-terminal domains, 

although in every instance these structures resemble compact, independently folded, 

helix-loop-helix arrangements very much like those observed in CaBP1 and 

calmodulin. Investigation into the effects of Mg2+ and Ca2+ binding has shown that, as 

predicted, the second EF-hand of CaBP1 is incapable of binding divalent cations. EF-

hand 3 and EF-hand 4 bind to both Mg2+ and to Ca2+. Whereas, EF-hand 1 is thought 

to be constitutively occupied by Mg2+ (Wingard et al. 2005; Li et al. 2009). The Mg2+-

bound form of CaBP1 is similar to that of apo-calmodulin but the Ca2+-bound form 

appears markedly different. This is perhaps unsurprising as neither of the N-terminal 

EF-hands of CaBP1 bind to Ca2+ under saturating conditions and only EF-hand 1 

binds to Mg2+. This results in a constitutively closed conformation of the N-terminal 

domain while the C-terminal domain can switch to an open conformation upon Ca2+ 

binding to EF-hand 3 and EF-hand 4. Comparison of the C-terminal domain with that 

of calmodulin reveals differences in exposed hydrophobic residues thought to mediate 

target interactions (Wingard et al. 2005).  

The structural differences between calmodulin and CaBP1 may go some way to 

explaining how they mediate differing effects on the same target molecules. For 
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instance, both CaBP1 and calmodulin bind to Cav1 VGCCs with calmodulin causing 

Ca2+-induced channel closure, but CaBP1 promoting channel opening (Zhou et al. 

2004a; Zhou et al. 2005a). 

Both calmodulin and CaBP1 also regulate inositol 1,4,5-trisphosphate receptors 

(IP3Rs) (Yang et al. 2002; Haynes et al. 2004b; Kasri et al. 2004) with CaBP1 binding 

the type I IP3R with 100-fold higher affinity than calmodulin. This high affinity 

binding may result from the exposure of a distinct hydrophobic patch revealed in the 

C-terminus of CaBP1 upon Ca2+-binding (Haynes et al. 2004b; Li et al. 2009). This 

unique surface hydrophobicity profile is likely to be important for the specialisation of 

CaBP1 function in the brain and retina and the existence of splice isoforms is also 

likely to further fine-tune the actions of this Ca2+ sensor. The higher affinity of CaBPs 

compared to calmodulin for the same target has led to the notion that the mechanism 

by which CaBPs differentially regulate such targets is through competition for binding 

to the same regulatory sites. It has been suggested that calmodulin, in spite of being 

present in a large molar excess over the various CaBPs, can be displaced from a target 

due to its lower affinity. Much of the experimental data leading to these conclusions 

has been derived from in vitro studies examining short binding motifs from a given 

effector protein (Kim et al. 2004; Zhou et al. 2005a; Oz et al. 2011; Findeisen et al. 

2013). In order to assess the situation in an intact system, an elegant study by Yang 

and coworkers (Yang et al. 2014) tested Ca2+ channel regulation by calmodulin and 

CaBP4 in live cells. It was determined that in addition to a degree of competition for 

binding to the same target sites in Cav1.3 channels by calmodulin and CaBP4, an 

allosteric mechanism was also likely to exist whereby both proteins could 

simultaneously associate with the channel. This dual binding mode could potentially 

be favoured in resting conditions where apo-calmodulin has high affinity for the 

channel IQ motif. CaBP4 would simultaneously be associated with a distinct binding 

motif on the channel. Upon an increase in [Ca2+]I, a competitive interaction is 

unmasked by the higher affinity of CaBP4 for the calmodulin binding site on the 
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channel. This model accurately predicts the observed experimental data and loss of 

Ca2+-dependent inactivation of Cav1.3 in the presence of CaBP4 and Ca2+ even when 

physiological levels of calmodulin are present (at least a 10-fold excess of calmodulin 

over CaBP4). It seems certain that for other effector proteins, including various 

VGCCs and ligand-gated Ca2+ channels, dual regulation by calmodulin and the CaBPs 

will represent a combination of allostery and direct competition. 

In addition to novel modes of target interaction as discussed above, differing 

expression patterns, sub-cellular targeting mechanisms and Ca2+-binding properties of 

the various members of the CaBP protein family likely bestow further specialisation in 

the regulation of important Ca2+-channels in the central nervous system. 

The majority of studies to date on CaBP1 have examined the functions of the longest 

splice isoform, caldendrin, and it is not yet clear whether the other splice isoforms of 

CaBP1 can carry out the same functions. Indeed, detection of CaBP1-Long and 

CaBP1-Short protein in rodent brain has proven elusive (Kim et al. 2014; Reddy et al. 

2014), and it would appear that caldendrin is expressed at significantly higher levels. 

In spite of this, in simplified experimental systems CaBP1-Long and CaBP1-Short 

have been found to have roles in the regulation of various Ca2+-channels including P/

Q-type (CaV2.1) channels (Lee et al. 2002), L-type (CaV1.2) channels (Zhou et al. 

2005b; Cui et al. 2007), TRPC5 channels (Kinoshita-Kawada et al. 2005) and IP3Rs 

(Yang et al. 2002), which they inhibit (Haynes et al. 2004b; Kasri et al. 2004). A 

structural basis for the inhibition of IP3Rs has been determined, whereby CaBP1 

binding locks the receptor and prevents the inter-subunit motion required for initiation 

of channel opening (Li et al. 2013). The interaction of CaV2.1 with CaBP1 appears to 

rely acutely upon N-terminal myristoylation. Wild type, myristoylated, CaBP1-Long 

enhances channel inactivation and shifts the activation range to more depolarising 

voltages (Lee et al. 2002). An N-myristoylation mutant, however, was unable to 

mediate these effects, and instead modulated channels in a similar fashion to 
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calmodulin (Few et al. 2005). Differential modulation of L-type channels depending 

on the splice isoform of CaBP1 has also been observed. CaBP1-Short has been shown 

to completely inhibit inactivation of CaV1.2 channels (Zhou et al. 2005b), but 

caldendrin causes a more modest suppression and signals through a different set of 

molecular determinants (Tippens and Lee 2007). This suggests that the sub-cellular 

localisation of CaBP1 splice variants is important for their differing functions. In the 

auditory system, CaBP1 is expressed in spiral ganglion neurons (Yang et al. 2016), 

and CaBP1 knock-out mice exhibit progressive hearing loss albeit less severely than 

that observed in CaBP2 knock-out animals (Yang et al. 2016). In the visual system, 

CaBP1 appears to exert similar functions to CaBP2 (Sinha et al. 2016), and loss of the 

CaBP1 proteins induces defects in transmission of light responses by the retina. It 

should be noted that a number of these studies have used knockout animals that do not 

express any of the CaBP1 isoforms and therefore assigning a function to a specific 

splice variant is not possible.  

Interactions of caldendrin with other types of proteins have also been reported, such as 

its interaction with light chain 3 of MAP1A/B, a microtubule cytoskeletal protein 

(Seidenbecher et al. 2004), and with myo1c a member of the myosin-1 family of 

motor proteins (Tang et al. 2007). A role for caldendrin in NMDA receptor (NMDAR) 

signalling has been reported involving an interaction with a novel neuronal protein, 

Jacob. Upon extra-synaptic NMDAR activation Jacob translocates to the nucleus to 

influence CREB activity resulting in the stripping of synaptic contacts and an 

associated simplification of dendritic architecture. Synaptic NMDAR-mediated 

synaptodendritic [Ca2+]i elevation induces caldendrin binding to Jacob, thereby 

inhibiting nuclear trafficking and maintaining dendritic organisation. This interaction 

represents a novel mechanism of synapse to nucleus communication and highlights 

the important roles of CaBP family members in the mammalian central nervous 

system (Dieterich et al. 2008). Finally, caldendrin has recently been shown to control 

actin remodelling in dendritic spines in response to synaptic activity (Mikhaylova et 

al. 2018). Animals in which the caldendrin gene has been deleted exhibited impaired 
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dendritic spine plasticity, defective LTP and impaired hippocampus dependent 

learning (Mikhaylova et al. 2018). These findings are consistent with related studies 

highlighting a function for caldendrin in the hippocampus. It is required for efficient 

encoding of hippocampal-dependent spatial and fear-based memory (Yang et al. 

2018a), and mice in which all CaBP1 isoforms are deleted, including caldendrin, 

exhibit defects in excitation/inhibition in hippocampal circuits (Nanou et al. 2018; 

Yang et al. 2018b).   

Little information is available concerning the function of CaBP2. While it was 

initially detected exclusively in the retina it was also identified in auditory inner hair 

cells (Cui et al. 2007). CaBP5 was also detected in inner hair cells as well as in the 

retina, but in contrast to CaBP2 was found to have a modest inhibitory effect on the 

inactivation of CaV1.3 channels in transfected cells (Cui et al. 2007). Newer research 

points to an important role for CaBP2 in both the visual and auditory systems. Mice 

lacking CaBP2 have no gross morphological defects of the retina or retinal neuronal 

wiring, however, they do exhibit impaired transmission of retinal light responses 

(Sinha et al. 2016). CaBP2 is now known to be expressed in the cochlea in both inner 

and outer hair cells, and gene deletion of all CaBP2 splice variants leads to early onset 

hearing loss (Yang et al. 2016; Yang et al. 2018c). Some of the functions of CaBP2 

may stem from its ability to stimulate CaMK activity, although this has only been 

reported in vitro (Cui et al. 2007). Little is known about the functions of CaBP5 but 

knockout mice displayed reduced sensitivity of retinal ganglion cells to light 

responses implicating CaBP5 in phototransduction pathways. CaBP5 was also found 

to interact with, and suppress, calcium-dependent inactivation of CaV1.2 channels 

(Rieke et al. 2008). One report has detailed an interaction of CaBP5 with components 

of the exocytotic machinery, and showed that expression of CaBP5 in a 

neuroendocrine cell line enhanced secretory granule exocytosis (Sokal and Haeseleer 

2011). These data implicate CaBP5 as a potential regulator of visual and auditory 

processing, perhaps through modulation of neurotransmitter release in special sensory 

neurons. 
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CaBP4 is the most extensively characterised of the CaBP family. It is expressed in the 

retina where it localises to synaptic terminals and has also been detected in auditory 

inner hair cells. CaBP4 modulates VGCCs, and directly associates with the C-

terminus of the CaV1.4 α1 pore-forming subunit, shifting the activation range of the 

channel to more hyperpolarised voltages in transfected cells (Haeseleer et al. 2004; 

Shaltiel et al. 2012). A plausible structural basis for this regulation has now been 

presented, whereby CaBP4 is speculated (through molecular docking predictions) to 

relieve an inhibitory self-interaction of the channel through binding to the IQ motif 

(Park et al. 2014). CaBP4 has also been shown to eliminate Ca2+-dependent 

inactivation of CaV1.3 channels, which is likely to be important in the modulation of 

these channels in inner hair cells where Ca2+-dependent inactivation is weak or absent 

probably allowing the audition of sustained sounds (Yang et al. 2006). A stronger 

inhibitory effect has been noted for CaBP1, however, suggesting that CaBP4 may not 

be the key Ca2+ sensor involved in this process (Cui et al. 2007). The function of 

CaBP4 is modulated by protein kinase Cζ in the retina, with increased CaBP4 

phosphorylation in light-adapted tissue. Phosphorylation prolongs Ca2+ currents 

through CaV1.3 channels, which suggests that light-stimulated phosphorylation of 

CaBP4 might help to regulate presynaptic Ca2+ signals in photoreceptors (Lee et al. 

2007). Conversely, dephosphorylation of CaBP4, studied in transfected HEK293T 

cells, by protein phosphatase 2A inhibited its ability to modulate Cav1.3 activity 

(Haeseleer et al. 2013). CaBP4 has also been implicated in neurotransmitter release at 

synaptic terminals due to its interaction with unc119, a synaptic photoreceptor protein 

important for neurotransmitter release and maintenance of the nervous system 

(Haeseleer 2008). Knockout of CaBP4 results in mice with abnormalities in retinal 

function where rod bipolar responses are approximately 100 times lower than those 

observed in wild-type animals (Haeseleer et al. 2004). 
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The functions of calneuron 1 and calneuron 2 have only recently begun to be 

investigated in detail. Both have been found to and inhibit the activity of PI4KIIIβ at 

low, or resting, [Ca2+]i. Over-expression of the proteins was also found to inhibit 

Golgi-to-plasma membrane trafficking, caused enlargement of the trans-Golgi 

network (TGN) and reduced the number of Piccolo-Bassoon positive transport 

vesicles. A molecular switch for the production of phosphoinositides at the TGN is 

thought to be created by the opposing roles of NCS-1 and calneuron 1 or calneuron 2. 

At elevated Ca2+ levels, NCS-1 preferentially binds to PI4KIIIβ displacing the 

calneurons thereby activating the enzyme to drive enhanced TGN-to-plasma 

membrane trafficking (Mikhaylova et al. 2009). Calneuron 2 was discovered in a 

genome-wide search for regulators of mitosis (Neumann et al. 2010). Analysis of the 

role of calneuron 2 during cell division has suggested that it plays a key role in 

cytokinesis through its inhibitory control of  PI4KIIIβ (Rajamanoharan et al. 2015). 

Patch clamping experiments have shown that over-expressed calneuron 1 can inhibit 

N-type Ca2+-channel currents in 293T cells, and this inhibition was not observed with 

a truncated calneuron lacking its hydrophobic C-terminus suggesting normal 

localisation is important in carrying out this function (Shih et al. 2009). Calneuron 1 

and NCS-1 differentially regulate adenosine receptor activity, an important molecular 

target for the treatment of numerous human neurological diseases (Navarro et al. 

2014). Similar differential regulation by calneuron 1 and NCS-1 has recently been 

reported for the CB1 cannabinoid receptor, an important potential target in nociceptive 

signalling (Angelats et al. 2018).  

CaBP proteins and disease 

CaBPs have been directly or indirectly implicated in multiple neuronal diseases. Post-

mortem brains of chronic schizophrenics have lower numbers of caldendrin-

immunoreactive neurons, which express the protein at a much higher level. This loss 

of caldendrin in some neurons (or loss of the neurons themselves)  and up-regulation 
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in others is likely to profoundly change synaptodendritic signalling in schizophrenic 

patients (Bernstein et al. 2007). Changes in the distribution of caldendrin have also 

been observed in kainate-induced epileptic seizures in rats. Caldendrin translocates to 

the post synaptic density only in rats that suffered epileptic seizures, which may 

implicate the protein in the pathophysiology of the disease (Smalla et al. 2003). 

Mutations in CaBP2 have now been identified and linked with hearing impairments in 

humans (Schrauwen et al. 2012; Markova et al. 2016). One of these studies identified 

a splice-site mutation in three consanguineous Iranian families, which likely generates 

a truncated CaBP2 protein with lower affinity for Cav1.3, leading to moderate-severe 

hearing loss (Schrauwen et al. 2012). Calneuron 1 has recently been shown to be over-

expressed in aldosterone producing adenoma (Kobuke et al. 2018). The protein is 

required for stimulated aldosterone production and may therefore represent a 

therapeutic target for the control of excess hormone production in such tumours 

(Kobuke et al. 2018). CaBP4 function has been linked to disease, and mutations in this 

gene generate defects predominantly in retinal function. Knockout of CaBP4 was 

shown to cause a phenotype similar to that of incomplete congenital stationary night 

blindness in patients (Haeseleer et al. 2004), and mutations in CaBP4 can cause 

autosomal recessive night blindness (Zeitz et al. 2006). Patients with mutations in the 

CaBP4 gene have been identified that display congenital stationary night blindness. 

However, some patients with mutations display different phenotypes (Zeitz et al. 

2006). In particular, a novel homozygous nonsense mutation has been reported in two 

siblings that resulted in severely reduced cone function but only negligible effects on 

rod function (Littink et al. 2009). CaBP4 null mutations have been observed in a 

consanguineous family with four members affected by Leber’s congenital amaurosis 

(Aldahmesh et al. 2010). This condition is relatively rare, affecting about 1:80,000 of 

the general population, but is the most common cause of inherited loss of vision in 

children. Numerous studies now point to genetic mutations in CaBP4 as causative 

factors in a set of related cone-rod retinopathies (Littink et al. 2009; Aldahmesh et al. 

2010; Bijveld et al. 2013; Hendriks et al. 2017; Smirnov et al. 2018). Multimodal 

  35



imaging of five genetically characterised patients affected by CaBP4 related 

retinopathy showed a variable amount of photoreceptor dysfunction but that this 

remained stable and did not deteriorate over a period of years (Schatz et al. 2017). 

This has led to the hope that CaBP4-based retinopathies might be tractable to gene 

therapy-mediated correction. More recently, a CaBP4 missense mutation (G155D) has 

been implicated in a rare inherited form of frontal lobe epilepsy. This would suggest a 

wider central function for CaBP4 outside of the visual system which requires further 

investigation in future studies.  

CONCLUDING REMARKS 

It has become increasing clear that a full understanding of how specific aspects of 

physiological neuronal function are regulated in response to spatially and temporally 

distinct Ca2+ signals will require a detailed knowledge of the Ca2+ sensors involved. In 

addition, many of these the Ca2+ sensors may be implicated indirectly due to 

abnormalities in Ca2+ signalling pathways in neurological or neurodegenerative 

disorders. In some cases, the Ca2+ sensors may be more directly implicated either due 

to their specific regulatory roles that impinge on key dysfunctional pathways. 

Alternatively, genetic mutations or variations of Ca2+ sensor activity may have a more 

direct effect on brain dysfunction. No matter how the Ca2+ sensors are involved they 

are likely to be potential therapeutic targets for new drugs that can be used to treat 

human disorders. For further understanding of the normal roles of each of the Ca2+ 

sensors further insight into the molecular basis for the regulation of their targets, and 

more detailed dissection of the physiological roles of each protein in identified 

neurons, is required. This knowledge will form the basis for future approaches to the 

development of treatments that could alleviate a variety of human neuronal disorders 

underpinned by defects in Ca2+ signalling. 
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Figure 1. Structures of the C2A and C2B domains of synaptotagmin I. The structures 

show the isolated C2 domains in their Ca2+-loaded state with the bound Ca2+ ions 

shown in green. The coordinates for the structures for the C2A and C2B domains 

come from the PDB files 1BYN and 1K5W, respectively. 
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Figure 2. Potential role of synaptotagmin 1 in synaptic vesicle exocytosis. Key 

components of the minimal fusion machinery are associated with the synaptic vesicle 

and the plasma membrane (1). Neurotransmitter release is triggered by Ca entry 

though voltage gated calcium channels. Ca2+ binds to synaptotagmin 1 which may 

then lead to vesicle docking via interaction with phospholipids or with SNAP-25 on 

the plasma membrane (2). The SNARE complex assembles from the key components 

of VAMP, SNAP-25 and syntax and synaptotagmin associates with the complex (3). 

Through as yet undefined steps synaptotagmin become dissociated from the SNARE 

complex and fusion of the vesicle with the plasma membrane occurs to allow release 

of neurotransmitter from the vesicle (4). 
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Figure 3. Comparison of the structures of Ca2+-loaded calmodulin and yeast frequenin 

with and without bound target peptides. The structures at the top are of Ca2+-bound 

calmodulin alone (PDB 1CLL) or in a complex with the IQ-like domain of the Cav1.2 

Ca2+-channel α-subunit (PDB 2F3Z). The structures at the bottom are of the Ca2+-

bound yeast frequenin (Frq1) alone (PDB 1FPW) or in a complex with the binding 

domain from Pik1 (PDB 2JU0). In each of the complexes the target peptide is shown 

in yellow. 
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Figure 4.Schematic illustration of the pore-forming a1 subunit of a CaV1.2 channel. 

The a1 subunit is composed of 4 domains (I – IV), each consisting of six putative 

transmembrane segments (orange). Several potential binding sites for Ca2+ sensors 

(yellow) have been identified in the N-terminal (NT) and the C-terminal region (A, C 

and IQ) of CaV1.2 channels. Calmodulin (green), one of the major Ca2+ sensors, has 

been shown to be pre-associated to the channel through its interaction with the IQ 

motif. Once calmodulin becomes Ca2+-loaded it exerts its effects on channel function 

through either its N- or its C-lobe. 
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Figure 5. Major known target proteins for NCS-1 indicating interactions that require 

either the Ca2+-bound or the apo form of NCS-1. The interactions shown include ones 

that are based on in vitro binding assays as well as interactions that have been 

substantiated and shown to have physiological relevance in functional studies. 
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Figure 6. Comparison of the mode of binding of target peptides to NCS-1. 

Cartoon representation of the structures of (A) NCS-1 in complex with two molecules 

of D2R peptide (magenta and cyan) (PDB 5AER), (B) ScNcs1in complex with 

fragment of Pik1 (yellow) (2JU0) (45), (C) NCS-1 in complex with one molecule of 

GRK1 peptide (pink) (PDB 5AFP), (D) KChIP1 with a fragment of bound Kv4.3 

(blue) (PDB 2I2R) (50). (E) Recoverin bound to the N- terminus of GRK1 residues 

1-25 with GRK1 peptide (red; PDB 2I94) (52). (F) Overlay of structures 5AER and 

5AFP showing the locations of the D2R bound in the N-site and GRK1 peptides. The 

peptide orientations are indicated as N, C in bold italics and the orientations of the 

NCS protein are identical in all the structures. The EF3/EF4 linker is coloured brown 

and the C-terminal region green; for clarity these regions are indicated only for 

NCS-1-D2R peptide complex. In all the structures, Ca

 

ions are shown as brown 

spheres. Taken from (Pandalaneni et al. 2015).  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Figure 7. Effect of dystonia mutations of the structure of hippocalcin and its effect on 

calcium entry. Top. Alignment of hippocalcin crystal structure (magenta) with 

hippocalcin (T71N) (marine) and hippocalcin (A190T) (salmon) did not show any 

significant difference. Crystal structures were obtained for wild-type human 

hippocalcin (PDB 5G4P), hippocalcin (T71N) (PDB 5M6C) and hippocalcin (A190T) 

(PDB 5G58) at a resolution of the 2.42, 3.00 and 2.54 Å, respectively (Helassa et al. 

2017). Bottom. Dystonia-causing hippocalcin mutants increase depolarisation-induced 

calcium influx. Differentiated SH-SY5Y cells transfected with hippocalcin-mCherry 

constructs were loaded with Fluo-4 to monitor calcium concentration changes. After 

KCl depolarisation, live cells were imaged on a spinning-disk confocal microscope. 

Maximum intracellular calcium increase and time course after KCl stimulation, 

showing that both hippocalcin(T71N) and hippocalcin(A190T) increased calcium 

entry in response to depolarisation. [Modified from (Helassa et al. 2017).] 
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Figure 8. Schematic diagram showing the domain structure of calmodulin and 

members of the CaBP/calneuron protein family. Active EF-hand motifs are shown in 

red and inactive EF-hand motifs are shown in pink. Compared to calmodulin the 

CaBPs have an extended linker region between their first EF-hand pair and their 

second EF-hand pair (shown in black). CaBP1 and CaBP2 have an N-myristoylation 

site (shown in blue). CaBP1 and CaBP2 have alternative splice sites at their N-

terminus which give rise to long and short isoforms (shown in orange). Calneurons 1 

and 2 possess a 38 amino acid extension at their C-terminus (shown in purple).  

  62


