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Abstract: Structural reliability analysis for rare failure events in the presence of hybrid uncertainties is 

a challenging task drawing increasing attentions in both academic and engineering fields. Based on the 

new imprecise stochastic simulation framework developed in the companion paper, this work aims at 

developing efficient methods to estimate the failure probability functions subjected to rare failure events 

with the hybrid uncertainties being characterized by imprecise probability models. The imprecise 

stochastic simulation methods are firstly improved by the active learning procedure so as to reduce the 

computational costs. For the more challenging rare failure events, two extended subset simulation based 

sampling methods are proposed to provide better performances in both local and global parameter spaces. 

The computational costs of both methods are the same with the classical subset simulation method. These 

two methods are also combined with the active learning procedure so as to further substantially reduce 

the computational costs. The estimation errors of all the methods are analyzed based on sensitivity indices 

and statistical properties of the developed estimators. All these new developments enrich the imprecise 

stochastic simulation framework. The feasibility and efficiency of the proposed methods are 

demonstrated with numerical and engineering test examples. 

Keywords: Aleatory uncertainty; Epistemic uncertainty; Imprecise probability; Subset simulation; High-

dimensional model representation; Imprecise stochastic simulation; Uncertainty quantification; Failure 

probability; Sensitivity analysis.    

 

1. Introduction 

In structural engineering, uncertainties are ubiquitous among the parameters of computational models 

due to their intrinsic random property, lack of information, etc. Characterizing these uncertainties and 

propagating them through the computational models so as to learn the risk and reliability have been two 

main tasks in the deign process of the structures. As it has been introduced in the companion paper [1], 
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uncertainty characterization models can be generally divided into three groups, i.e., the precise 

probability model, non-probabilistic models and imprecise probability models, where the last category 

can be seen as combination of the previous two, and has been demonstrated to be the most appealing 

approach for characterizing aleatory and epistemic uncertainties separately in a unified framework, 

especially in the design process of structures where the available information may be incomplete and/or 

imprecise [2]. Commonly used imprecise probability models include evidence theory [3], probability-box 

(p-box) [4], fuzzy probability model [5], second-order probability model [6], etc., where those 

parameterized ones such as parameterized p-box have attracted the most attentions due to the simplicity 

and ease of applications [7]. Thus, propagating the parameterized imprecise probability models through 

the expensive computational models has drawn more and more attentions in recent years. In the 

companion paper, we have comprehensively studied the estimation of the probabilistic response 

functions by developing two sampling techniques, and in this paper, we focus on the estimation of the 

failure probability functions with emphasis on rare failure events.  

For precise probability models, the purpose of uncertainty propagation is to estimate the failure 

probability, and in the past decades, tremendous methods have been developed for this purpose. These 

methods can generally be divided into three categories, i.e., the approximate analytical methods (e.g., the 

FORM and SORM methods) [8][9], the sampling methods (e.g., the importance sampling and the subset 

simulation (SS) methods) [10]-[12] and the adaptive surrogate model methods (e.g., the AK-MCS method) 
[13][14]. The adaptive surrogate model methods, combining the sampling techniques, active learning 

procedure, and surrogate models, have received the most attentions due to their wide applicability and 

high efficiency [15][16]. The reliability analysis problems in the context of precise probability models have 

been comprehensively studied, however, when it comes to imprecise probability models, the current 

research is relatively limited in the literatures. 

The non-probabilistic models, due to its simplicity, have also been widely utilized for uncertainty 

quantification. For example, in Ref. [17], the inverse uncertainty quantification problem was studied by 

using the multivariate interval models under scarce data, and compared with the one based on classical 

Bayesian updating; in Ref. [18], the correlation estimation has been considered for multivariate interval 

model; in Ref. [19], the structural reliability analysis subjected to multivariate interval inputs was treated 

based on an enhanced subinterval method. Commonly, in the propagation of non-probabilistic models, 

an optimization procedure directly performed on the model response function is inevitable.       

When the imprecise probability models are concerned, the estimations of failure probability bounds 
[20] or failure probability functions [21][22] are commonly of interest, and many classical methods developed 

for precise probability model have been extended to deal with this type of problems. The available 

methods can also be divided into three categories, i.e., the approximate analytical methods, the surrogate 

model methods and the sampling methods. In Ref. [23], the FORM and SORM methods have been 

extended for estimating the failure probability bounds in the context of evidence theory by introducing 

the concept of “most-probable focal element”. The moment methods have also been extended for 

estimating the failure probability bounds in the context of parameterized p-box model by estimating the 

response moment bounds and approximating the response probability density function (PDF) with a pre-

specified distribution type [24]. The estimation errors of this type of methods come from the approximation 
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errors of the response functions as well as the errors between the assumed and the true distribution types 

of the responses, both of which are difficult to assess and handle. 

The surrogate model methods for estimating the failure probability bounds are also implemented in 

an active learning manner. In Ref. [25], the classical AK-MCS method is extended for estimating the 

failure probability bounds in the context of evidence theory by approximating the signs of the maximum 

and minimum values of the response functions with the Kriging surrogate model and active learning 

procedure. In Ref. [26], a two-level Kriging surrogate model combined with the active learning procedure 

is proposed to cope with the estimation of the failure probability bounds with the input variables being 

characterized by either parametric or non-parametric p-box models. The estimation errors of these 

methods mainly come from the approximation errors of the surrogate models, which are easy to control 

due to the excellent statistical properties of the Kriging surrogate models.  

The sampling methods have also been developed for reliability analysis in the context of imprecise 

probability models, among which two proprietary methods, i.e., Extended Monte Carlo simulation 

(EMCS) [27] and Interval Monte Carlo simulation (IMCS) [20], have drawn special attentions. The EMCS 

method is a non-intrusive methods, thus can be applied to any black-box models. However, this method 

is not applicable for problems with high-dimensional uncertain distribution parameters due to the large 

estimation errors. The IMCS method is an intrusive method, which may require, e.g., interval finite 

element analysis, for each interval sample. Besides, the sampling techniques developed in the context of 

precise probability model have also been extended to the case of imprecise probability models. For 

example, the importance sampling and SS methods have been extended to estimate the failure probability 

function [22], which takes the similar idea with the EMCS method; the SS procedure has been extended 

to estimate the failure probability bounds [30], in which, a large number of response function calls are 

need for solving the corresponding optimization methods.  

Estimating the failure probability functions is more general than calculating the failure probability 

bounds since that, with it, the probability bounds can be easily computed without calling the response 

functions, and the failure probability functions also provide basis for further performing sensitivity 

analysis [31] and/or uncertainty-based design optimization [14][22]. In the companion paper [1], based on 

precise stochastic simulation and high-dimensional model representation (HDMR), a general 

methodology framework, denoted as imprecise stochastic simulation, has been devised for efficiently 

propagating the imprecise probability models. This framework consists of a set of new methods which 

have been proved to be effective for practical applications, and can provide a good balance between local 

and global performances with estimation errors being properly assessed. In this paper, this new 

framework will be extended to estimate the failure probability functions subjected to rare failure events. 

To achieve this target, we firstly combine the imprecise stochastic simulation with the active learning 

procedure so as to reduce the computational costs. Then, for rare failure events, two SS based sampling 

techniques, denoted as “LESS (local extended SS)-cut-HDMR” and “GESS (global extended SS)-RS-

HDMR” methods, are developed with estimation errors being assessed by sensitivity indices and 

statistical properties of the estimators. Both methods are also further improved by active learning 

procedure. These new developments substantially enrich the imprecise stochastic simulation framework. 

The rest of this paper is organized as follows. Section 2 reviews the imprecise stochastic simulation 
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framework for estimating the failure probability functions. Section 3 introduces the active learning 

method to reduce the computational cost of the imprecise stochastic simulation procedures. Section 4 

devises two new imprecise stochastic simulation procedures based on subset simulation. Section 5 

introduces the active learning procedure to improve the two methods proposed in section 4 so as to further 

reduce the computational costs. Three test examples are introduced in section 6 to demonstrate the 

performance of the proposed method, and section 7 presents some discussions and conclusions to this 

work.  

2. Imprecise stochastic simulation 

In the companion paper, we have introduced two imprecise stochastic simulation procedures, i.e., 

LEMCS-cut-HDMR and GEMCS-RS-HDMR, for efficiently estimating the probabilistic response 

functions [1]. Now we briefly review them for estimating the failure probability functions. 

Following the notations in the companion paper, denote by  y g x  the limit state function (also 

termed as g-function) with  1 2, , ,
T

nx x xx   being the n-dimensional random input variables and y  

indicating the response of interest. Let  fX x θ  denote the joint PDF of x  conditional on θ , where 

 1 2, , ,
T

d  θ   refers to the uncertain distribution parameters with assumed joint PDF 

   
1 i

d

ii
f f 

θΘ . Then the joint PDF of x  and θ  is derived as      ,f f fx θ x θ θX,Θ X Θ .   

 We assume that the failure happens when 0y  , and the failure domain is formulated as 

  : 0F g x x . The indicator function of F  is formulated by   1FI x  if Fx , and else 

  0FI x . Then the failure probability function is expressed as: 

      P | d
nf FI f  Xθ x x θ x

R
  (1) 

Based on the HDMR decomposition, the failure probability function can be decomposed as the sum of 

component functions of increasing orders, i.e., 

        ,0 , , ,12
1 1

P P P P P
d

f f f i i f ij ij f d
i i j d


   

     θ θ θ   (2) 

If the cut-HDMR decomposition is performed, the failure probability is expended at a fixed point *θ , 

and the components in the right side of Eq. (2) are given as [1]: 

 

 
   
       

*
,cut,0

*
,cut, ,cut,0

*
,cut, ,cut, ,cut, ,cut,0

P P

P P , P

P P , P P P

f f

f i i f i i f

f ij ij f ij ij f i i f j j f

 

 





 
  


   

θ

θ

θ θ θ

  (3) 

… 

where *θ  can be chosen as the mean values of θ  or other points around which one intend to estimate 

the failure probability function more accurately, ijθ  refers to the two-dimensional vector consists of i  

and j , *
iθ  indicates the vector containing all elements of *θ  but *

i .    

If the RS-HDMR decomposition is used, the components in Eq. (2) are formulated as [1]: 
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 
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 




         


      

θ

θ

θ θ θ

Θ

Θ

Θ

  (4) 

… 

where  ExpΘ   indicates the expectation operator w.r.t. θ ,  Exp |
i iΘ   and Exp |

ij ij
  θΘ   refer 

to the conditional expectation operators w.r.t. iθ  and ijθ  respectively. The mathematical properties 

of the component functions in Eqs. (3) and (4) can be found in the companion paper.  

   Then, given a set of samples  kx  ( 1,2, ,k N  ) following  *|fX x θ , the unbiased estimators 

of the cut-HDMR component functions in Eq. (3) are derived as: 

 

  

       

       

,cut,0
1

*
,cut, cut,

1

*
,cut, cut,

1

1
P̂

1
P̂ | ,

1
P̂ | ,

N
k

f F
k

N
k k

f i i F i i
k

N
k k

f ij ij F ij ij
k

I
N

I r
N

I r
N

 







 
















x

x x θ

θ x x θ θ

  (5) 

where cut,ir  and cut,ijr  are defined in the companion paper. Given a set of joint samples     ,k kx θ  

( 1, 2, ,k N  ) generated by  , ,fX x θΘ , the unbiased estimators for the RS-HDMR component 

functions in Eq. (4) are derived as: 

 

  

         
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  (6) 

where RS,ir  and RS,ijr  are defined in the companion paper. The variances of the estimators can be easily 

derived and one can refer to the companion paper for details.  

   For measuring the relative importance of each component function, two sensitivity indices have been 

introduced in the mate paper. The one for the cut-HDMR component function  
1 2 1 2,cut,P

s sf i i i i i iθ   is 

defined as: 

 
 

 
 

1 2 1 21 2

1 2

1 2 1 21 2

1 2

,cut,

Pf,cut, 1 2
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{ , , , } 1,2, ,
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{ , , , }
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s
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s

f i i i i i i
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

 
  

 
 

θ

θ

Θ

Θ





 



 
 

   (7) 

where  
1 2

var
i i is

Θ 
  indicates the variance operator w.r.t. 

1 2 si i iθ  , and M  refers to the highest order 

under consideration. If this sensitivity index is close to zero, then the corresponding component function 

must be non-influential, and thus can be eliminated.  

The sensitivity index for the RS-HDMR component function  
1 2 1 2,RS,P

s sf i i i i i iθ   is defined by: 
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 

 
1 2 1 21 2

1 2

,RS,

Pf,RS, ,

var P

var P

i i i s ss

s

f i i i i i i

i i i

f

S
 
 

  

θ

θ

Θ

Θ

  

   (8) 

Eq. (8) is exactly the well-known Sobol’ index [27]-[29]. Similarly, if it is close to zero, the corresponding 

component functions can be neglected. Due to the mutually orthogonal property of the RS-HDMR 

component functions, the Sobol’ index also quantifies the individual and interaction contributions of the 

epistemic uncertainty of each input variable to that of the failure probability. These information can also 

be valuable in practical applications since they inform the analysts the most economical way of reducing 

the epistemic uncertainty presented in the estimation of failure probability. Both sensitivity indices in 

Eqs. (7) and (8) can be computed by numerical integration procedures or sampling procedures without 

extra running of the model, and one can refer to the mate paper for detail.  

   The above procedure can be simply extended to structures with multiple failure modes and/or time-

variant excitations. However, these two methods are commonly computationally expensive especially 

for rare failure events. In the next section, the active learning procedure is introduced for reducing the 

computational cost.   

3. Improvements of imprecise stochastic simulation by active learning  

The active learning procedures based on, e.g., Kriging surrogate model, have long been used for 

improving the efficiency of reliability analysis [13]. These methods aim at adaptively approximating the 

g-function with one or multiple sets of samples (called sample pools) based on the principle that the signs 

of the g-function at these sample points can be correctly identified, and then estimating the failure 

probability based on those predicted signs. Based on this idea, as long as the signs of the g-function at 

the sample points used in the LEMCS-cut-HDMR and GEMCS-RS-HDMR procedures can be accurately 

identified by an active learning procedure, then the failure probability functions can also be effectively 

estimated without extra calls of g-function. We denote these two active learning procedures as “AK-

LEMCS-cut-HDMR” and “AK-GEMCS-RS-HDMR” respectively, where “AK” indicates “active 

learning Kriging”. 

Take the AK-LEMC-cut-HDMR procedure as an example, the algorithm steps are given as follows. 

Step A.1: Generate a sample pool    : 1, 2, ,k k N xS   following  *|fX x θ . Randomly select 

N0 (e.g., N0=12) samples from S , and estimate the corresponding g-function values. Attribute 

these N0 samples to the training sample set TS . 

Step A.2: Train the Kriging surrogate model with TS . 

Step A.3: Predict the g-function values   k
g x  and the corresponding mean square error   2 k

g x  

for all the non-training samples contained in S  based on the obtained Kriging model, and judge 

whether the sign of the g-function at each sample point is correctly identified with the principle 

that 1 0minN
k kU U  , where      k k

k g gU   x x  and 0U  is a threshold commonly set to 

be 2. If it is satisfied, go to Step A.4; Else, find the non-training sample with the smallest U value, 

compute the corresponding g-function value, add this sample into the training sample set TS , and 

go to Step A.2. 
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Step A.4: As the sign of the g-function for each input sample contained in S  is correctly identified by 

the Kriging model, these samples as well as the predicted signs are used for estimating the cut-

HDMR component functions as well as the corresponding estimators’ variances based on Eq. (5). 

  
As the Kriging surrogate model assumes that the g-function is a Gaussian random field in the space of 

the input variables, the value of  kU   in Step 3 is in fact the probability of making a wrong 

judgement on the sign of   kg x , where     indicates the cumulative distribution function of 

standard Gaussian distribution. If we let 0 2U  , then 1 0minN
k kU U   indicates that the probability of 

wrongly specifying the sign of each sample is less than  2 0.023    [13]. The U-function is called 

learning function. One can also use the other learning functions such as the expected feasibility function 

(EFF) [32]. The AK-GEMCS-RS-HDMR procedure employs the same active learning procedure, which 

is omitted for clarity.  

Depending on practical experience, the required population of the sample pool in the above procedure 

is approximately   ,cut,050~100 Pf , thus for problems with very small ,cut,0Pf  values (e.g., 1e-6), the 

sampling procedures introduced in section 2 and the active learning procedures introduced in this section 

are all inapplicable. For this type of problems, we introduce the extended subset simulation in the next 

section.   

4. Extended subset simulation 

For structures with rare failure events, the SS has been one of the most popular methods for failure 

probability estimation in the context of precise probability model. Here, we propose two new imprecise 

stochastic simulation procedures, denoted as LESS-cut-HDMR and GESS-RS-HDMR, for estimating 

the failure probability functions subjected to rare failure events.  

4.1 The LESS-cut-HDMR procedure  

The classical SS procedure estimates the small failure probability by introducing a set of intermediate 

shrinking failure domains 1 2 mF F F F     and expressing the small failure probability as the 

product of a set of large conditional probabilities, i.e.,    ,cut,0 1 12
P Pr Pr |

m

f q qq
F F F 

  , where 

  :q qF g b x x  and  1 2 0mb b b    . Suppose θ  is fixed at *θ , then given the sampling 

PDF  *|fX x θ , the sample size N and the intermediate probability p0 (commonly set to be 0.1~0.3), 

the SS procedure for estimating the constant cut-HDMR component ,cut,0Pf  is summarized as follows 

[11]. 

Step B.1: Generate a MC sample set   1 1 : 1, 2, ,k k N xS   following  *|fX x θ , and compute 

the corresponding values  
1

ky  of the g-function. Let 1q  . 

Step B.2: Sort the value of  k
qy with 1,2, ,k N   in ascending order, and set bq as the 0p N   th 

sorted g-function value. If bq <0, go to Step B.4; Else, define the q-th intermediate failure surface 

as   :q qF g b x x  and the corresponding failure sample set as  
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    :k k
Fq q q q qF x xS S  , go to Step B.3. 

Step B.3: Let q = q + 1. By setting each element of  1F qS  as a starting point, create a conditional 

sample set   : 1,2, ,k
q q k N xS   following conditional PDF  *

1| ,qf F X x θ  with any 

MCMC algorithm [11]. Go to Step B.2. 

Step B.4: Let m q , 0mb   and   :m mF F g b  x x . The constant cut-HDMR component 

,cut,0Pf  is estimated by: 

   1
,cut,0 0

1

1
P̂

m
km

f F m
k

p I
N





  x   (9) 

  
Based on the above MC and MCMC sample pools, all the cut-HDMR component functions in Eq. 

(3) can be estimated, and the LESS estimators for the first- and the second- order component functions 

are derived as: 

 

       

       

1 *
,cut, 0 cut,

1

1 *
,cut, 0 cut,

1

1
P̂ | ,

1
P̂ | ,

N
k km

f i i F m i m i
k

N
k km

f ij ij F m ij m ij
k

p I r
N

p I r
N

 







  
  

  


      





x x θ

θ x x θ θ

  (10) 

One can refer to Appendix A for the derivations of the above estimators. The statistical properties of the 

estimators in Eq. (10) are analogous to that of the classical SS estimator, i.e., the estimators are 

asymptotically unbiased and the bias is  1 N , which is caused by the correlations between the 

estimators of the intermediate probabilities [11]. Based on the assumption that the estimators of all the 

intermediate probabilities are mutually independent, the variance of, e.g., the estimator ,cut,P̂f i , can be 

approximated by [11]: 

 
 

 
2 21

,cut, ,cut,
,cut, 2 2

1

ˆ ˆP Pˆ ˆ ˆvar P var varˆ
ˆ ˆ

m
f i f i

f i q m i
qq m i

P P
P P








              (11) 

where   1
ˆ

q

N k
q F qk

P I N


  x  and        *
cut,1

ˆ | ,
N k k

m i F m i m i ik
P I r N  

  x x θ . Ref.[11] has shown 

that Eq. (11) commonly provides good approximation to ,cut,
ˆvar Pf i
   . In Eq. (11), ˆvar qP    and 

 ˆvar m iP     can be approximated by [11]: 

 
   

           
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1
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q q
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m i F m i m i m i m
k

P P
P

N

P I r P
N N



   


 
     


            
 x x θ


  (12) 

where q  ( 1,2, ,q m  ) is a factor related to the correlations of the samples contained in the same 

Markov chain. In the SS procedure, strong correlations among the MCMC samples generally lead to poor 

estimations. If the sample correlations are weak, then q  can be neglected. 

   Similar to the classical SS procedure, for generating the MCMC samples, the variables should be 
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better transformed into the independent standard normal space, which can be achieved by Nataf 

transformation [34] or Rosenblatt transformation [35]. Take the independent input variables as an example. 

Denote the distribution of xi as   |
iX i iF x θ  with  iθ  being the vector of the distribution parameters 

of xi. Then both transformations are formulated as     1 *|
ii X i ix F u  θ  with  iθ  being fixed at  

*
iθ , 

where iu  refers to the standard normal variable related to xi. Then the above procedure can be 

implemented in the independent standard normal space. The difference between the two transformation 

methods in the dependent case is that, the joint distribution function is required for Rosenblatt 

transformation, while for Nataf transformation, only the correlation matrix is required. One can refer to 

Refs. [34] and [35] for details. One should note that, although the subset simulation is implemented in 

the standard normal space, the values of the ratio functions cut,ir  and cut,ijr  in Eq. (10) should be 

calculated by transforming the sample back to the x-space.  

The most widely used MCMC algorithm is the so-called Metropolis–Hastings (M-H) algorithm, 

which commonly results in low acceptance rate and strong correlations among samples especially in high 

dimension [33]. Thus, many efforts have been made by researchers to improve the acceptance rate of the 

M-H algorithm in the context of SS. One of the most well-known improvements is the modified M-H 

algorithm, which rejects or accepts the candidate state component by component [11]. Other improvements 

include the M-H algorithm with repeated generation of candidate states [36], the modified M-H algorithm 

with delayed rejection [37], and so on. Recently, a new MCMC algorithm based on imposing a joint normal 

distribution between the current state and the candidate state has also been developed, and it has been 

shown to be effective especially in high dimension [38][39]. In this work, the modified M-H algorithm is 

applied. 

It is easy to prove that all the estimators of the cut-HDMR component functions in Eqs. (9) and (10) 

possess the vanishing and mutually orthogonal properties, thus they have good local performance. In the 

next subsection, we propose the GESS-RS-HDMR procedure.       

4.2 The GESS-RS-HDMR procedure 

In this subsection, the GESS procedure is proposed for efficiently estimating the RS-HDMR 

component functions defined in Eq. (4). Different with the LESS method which generates the 

intermediate failure surface in the n-dimensional input space of x, the GESS method produces the 

intermediate surfaces in the (n+d)-dimensional joint input space of  ,x θ , and one does not need to 

specify a fixed value for θ . We firstly present the GESS procedure for estimating the constant RS-

HDMR component ,RS,0Pf  as follows [11]. 

Step C.1: Generate a MC sample pool      1 1 1, : 1, 2, ,k k k N xS   following the joint PDF 

 ,f x θX,Θ , and compute the g-function value     1 1
k ky g x  for 1, 2, ,k N  . Let 1q  . 

Step C.2: Sort the values of  k
qy  for 1, 2, ,k N   in ascending order, and make bq equal to the 

0 -thp N    sorted g-function value. If bq<0, go to Step C.4; Else, denote the q-th joint failure 

domain as     , :q qF g b x θ x  and the corresponding failure sample set as 
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       : andk k k
Fq q q q q qS g b  x x xS , go to Step C.3. 

Step C.3: Let 1q q  . By setting the sample points contained in FqS  as the starting states, generate 

a new MCMC sample set   : 1,2, ,k
q q k N xS   following  , 1, | qf F X x θΘ  with any 

MCMC algorithms [11]. Go to Step C.2. 

Step C.4: Let m q , 0mb   and     , :m mF g b x θ x . The RS-HDMR constant term ,RS,0P̂f  

can then be estimated by 

   1
,RS,0 0

1

1
P̂

m
km

f F m
k

p I
N





   
 
 x   (13) 

  
Based on the above MC and MCMC sample pools, the GESS estimators of the first- and second-

order RS-HDMR component functions are derived as: 

 

         

         
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1

1
,RS, 0 RS,

1

1
P̂ | ,

1
P̂ | ,

N
k k km

f i i F m i m i m
k

N
k k km

f ij ij F m ij m ij m
k

p I r
N

p I r
N

 







    
  


      





x x θ

θ x x θ θ

  (14) 

The derivations of the above estimators are presented in Appendix B. One can similarly generate the 

GESS estimators for higher order RS-HDMR component functions, and the details are omitted for clarity.  

The statistical properties of the above GESS estimators for all the RS-HDMR component functions 

are similar to those of the LESS estimators of the cut-HDMR component functions, thus we won’t repeat 

them. Both the LESS-cut-HDMR and GESS-RS-HDMR procedures can estimate the failure probability 

functions efficiently for rare failure events with the same computational cost as the classical SS procedure. 

However, in practical applications involving complex engineering structures, the computational costs of 

these two procedures are still unacceptable [16]. In the next section, we use the active learning procedure 

to substantially reduce the number of required g-function calls without loss of accuracy.     

5. Improvements of extended subset simulation by active learning 

In the classical SS procedure, N g-function evaluations are required for generating each intermediate 

failure surface, thus the total number of required g-function calls is mN. Further, since p0 is commonly 

set to be 0.1~ 0.3, for rare failure event, m is commonly large for rare failure events. Both factors lead to 

the high computational cost of the classical SS procedure, and the same holds for the newly developed 

LESS-cut-HDMR and GESS-RS-HDMR procedures. In our previous work [40], an active learning 

Kriging procedure called AK-MCMC has been developed in the framework of precise probability model 

for estimating the extremely small failure probability. In this section, we extend this idea to reduce the 

computational costs of both LESS-cut-HDMR and GESS-RS-HDMR procedures, and the developed 

methods are denoted as “AK-LESS-cut-HDMR” and “AK-GESS-RS-HDMR” respectively. 

Take the AK-LESS-cut-HDMR procedure as an example, the main steps are summarized as follows. 

Step D.1: Generate a sample pool   1 1 : 1, 2, ,k k N xS   following  *|fX x θ . Randomly select 

N0 samples points from 1S  and compute the corresponding g-function values. Attribute these 

N0 samples of x and y to the training data set TS . Let 1q  . 
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Step D.2: Train the Kriging surrogate model with TS .  

Step D.3: Predict the g-function values for each sample contained in q TS S , and compute or update 

the value of bq such that 0p N    samples is contained in the failure domain 

  ˆ:q qF g b x x . If bq<0, let bq=0. Compute the U-function values 

     k k
k g q gU b  x x  for each sample contained in q TS S . If 0min kU U , go to 

Step D.4; else, find the sample in q TS S  with the minimum U value, compute the 

corresponding g-function values by calling the true computational model, add this sample 

point to TS , and go to Step D.2.  

Step D.4: If bq=0, go to Step D.5; Else, let q = q + 1, generate a conditional sample pool 

  : 1,2, ,k
q q k N xS   following conditional PDF  *

1| ,qf F X x θ  with any MCMC 

algorithm by calling the well-trained Kriging surrogate model instead of the true model, and 

turn to Step D.3. 

Step D.5: Let m=q, and estimate the cut-HDMR components by: 
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x

x x x θ

θ x x x θ θ

  (15) 

where the hat symbol ‘^’ above the indicator function indicates that the signs of the g-function 

are predicted by the Kriging surrogate models well-trained for approximating the corresponding 

failure surfaces.  

  
In the above procedure, the intermediate probability may not definitely equal to p0 since that the 

convergence condition only promises that the sign of   qg bx  is accurately predicted, but does not 

guarantee that each intermediate probability completely converges to p0. However, the estimated 

intermediate probability is usually very close to p0. Thus, the former (m-1) intermediate probabilities 

should be estimated based on the corresponding sample pools and the well-trained Kriging model instead 

of making them equal to p0. In this algorithm, p0 is suggested to be 1e-3~1e-2, and N is suggested to be 

(50~100)/p0. Thus, compared with the LESS-cut-HDMR procedure, the number of required intermediate 

failure surfaces has been largely reduced. If the real value of Pf,cut,0 is larger than p0, then the above 

algorithm degrades to the one introduced in section 3.  

The AK-GESS-RS-HDMR method can be similarly carried out except that the sample pools qS  

should be generated in the (n+d)-dimensional joint space of  ,x θ  instead of the n-dimensional space 

of x. For simplicity, we don’t repeat the process. In the next section, we introduce several test examples 

to illustrate and compare the proposed methods.    

6. Test examples and engineering applications 
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6.1 A toy test example 

We still consider the toy test example introduced in the mate paper [1]. Here, we consider two cases. 

For case 1, a and b are set to be 3 and 4 respectively, while for case 2, a and b are assumed to be 5 and 6 

respectively. The ranges of the distribution parameters are set to be the same with the mate paper.  

   We firstly implement the LEMCS-cut-HDMR and AK-LEMCS-cut-HDMR procedures for case 1. 

The expansion point *θ  is assumed to be the mean values, i.e.,  * 0,0,1,1
Tθ . A same set of 5e4 

samples are used for both methods, and the total number of training samples used in the active learning 

procedure turns out to be 28, indicating that the total number of function calls of these two methods are 

5e4 and 28 respectively. We compute the sensitivity indices based on the estimated component functions 

as well as their SDs, and the results of the first- and second- order sensitivity indices are reported in the 

Table 1 and Table 2 respectively. It is seen that the sensitivity indices computed by these two methods 

match well, and their variations as indicated by the superscripts are all small. It is shown in Table 1 and 

Table 2 that, among the first-order cut-HDMR component functions, only those of 1  and 1  are 

influential, and among the second-order cut-HDMR component functions, only the one of  1 1,   is 

influential. Thus, we display the results of the two influential first-order component functions in Fig. 1, 

together with the reference results generated by the crude MCS procedure for comparison, and the results 

of the influential second-order component function are shown in Fig. 2.  

 

Table 1 Results of the sensitivity indices of the first-order cut-HDMR and RS-HDMR component 
functions for case 1 of the toy test example, where the superscripts indicate the results computed by 
integrating the corresponding SDs of the estimates of the component functions 

Indices Pf ,cut,iS  Pf ,RS,iS  

Methods LEMCS-cut-HDMR AK-LEMCS-cut-HDMR GEMCS-RS-HDMR AK-GEMCS-RS-HDMR

Settings N=5e4 N=5e4 N = 5e4 N=5e4 

1  .1870(.0002) .1870(.0002) .1811(.0005) .1811(.0005) 

2  .0130(.0001) .0130(.0001) .0148(.0001) .0148(.0001) 

1  .7648(.0013) .7648(.0013) .7736(.0048) .7736(.0048) 

2  .0084(.0005) .0084(.0005) .0042(.0009) .0042(.0009) 

Pf,0 .0163(.0006) .0163(.0006) .0182(.0006) .0182(.0006) 

Ncall 5e4 28 5e4 31 

     

Table 2 Results of the sensitivity indices of the second-order cut-HDMR and RS-HDMR component 
functions for case 1 of the toy test example 

Indices Pf ,cut,ijS  Pf ,RS,ijS  

Methods LEMCS-cut-HDMR AK-LEMCS-cut-HDMR GEMCS-RS-HDMR AK-GEMCS-RS-HDMR 

 1 2,   .0006(.0000) .0006(.0000) .0005(.0000) .0005(.0000) 

 1 1,   .0233(.0001) .0233(.0001) .0233(.0007) .0233(.0007) 

 1 2,   .0000(.0000) .0000(.0000) .0000(.0001) .0000(.0001) 

 2 1,   .0018(.0001) .0018(.0001) .0015(.0001) .0015(.0001) 
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 2 2,   .0008(.0000) .0008(.0000) .0005(.0002) .0005(.0002) 

 2 2,   .0003(.0000) .0003(.0000) .0004(.0002) .0004(.0002) 

 

   The constant cut-HDMR components computed by the LEMCS-cut-HDMR and AK-LEMCS-cut-

HDMR methods are both 0.0163, with SDs being both 5.69e-4, and the reference solution computed by 

the crude MCS procedure with 1e7 samples is 0.0161, with SD being 3.98e-5, indicating that the constant 

component are accurately estimated by both methods. Fig. 1 shows that the two influential cut-HDMR 

first-order component functions are accurately estimated by both methods when compared with the 

reference solutions, and the results are also robust due to the very small SDs. It is seen that, both 

component functions equal to zero at the expansion points *θ , indicating that the corresponding 

estimators possess the vanishing property. It is seen from Fig. 2 that the influential second-order cut-

HDMR component function computed by these two methods coincide exactly. As the estimators are 

unbiased and the SDs are small enough, we conclude that this component function is accurately and 

robustly estimated by both methods. One should note that all the first- and second- order cut-HDMR 

component functions are estimated with one set of samples, and higher order component functions can 

also be computed with this set of samples.    

 

 

Fig. 1 Results of the two influential first-order cut-HDMR component functions for case 1 of the toy 
test example, where (a) and (c) indicates the estimated results, (b) and (d) refer to the SDs.  

 



14 
 

 

Fig. 2 Results of the influential second-order cut-HDMR component function, where the mesh surfaces 
indicate the results obtained by the LEMCS-cut-HDMR method, and the smooth surfaces without mesh 
indicate the results computed by the AK-LEMCS-cut-HDMR method. In this figure, these two surfaces 

coincide exactly. 
 

We now compute the RS-HDMR component functions for case 1 by the GEMCS-RS-HDMR and 

AK-GEMCS-RS-HDMR methods with the same set of 1e5 samples. It is found that 30 g-function calls 

are consumed in the AK-GEMCS-RS-HDMR method, indicating that the total number of function calls 

of these two methods are 5e4 and 30 respectively. The constant RS-HDMR components computed by 

both methods are 0.0189 with SDs being 6.10e-4, and the reference result computed by the crude MCS 

with 1e7 samples is 0.0183 with SD being 4.24e-5. Thus, the constant component are accurately 

computed by both methods. The corresponding sensitivity indices are computed based on the estimated 

component functions, and the standard errors are computed by integrating the SDs of the estimates. The 

results are displayed in the right half of Table 1 and Table 2. As can be seen, all the sensitivity indices 

are accurately computed. From the sensitivity indices, we can draw the conclusions that, only the first-

order RS-HDMR component functions of 1  and 1 , and the second-order RS-HDMR component 

function of  1 1,   are influential, and their results are displayed in Fig. 3 and Fig. 4. As can be seen, 

all the three RS-HDMR component functions are effectively estimated. Thus, the failure probability 

functions must be accurately computed.  
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Fig. 3 Results of the two influential first-order RS-HDMR component functions for case 1 of the toy 
test example, where (a) and (c) indicate the estimations, and (b) and (d) refer to the corresponding SDs. 
 

 

Fig. 4 Results of the influential second-order RS-HDMR component function for case 1 of the toy test 
example. The results computed by the two methods coincide exactly. 

 

Next we consider case 2. We firstly estimate the cut-HDMR component functions by the LESS-cut-

HDMR and AK-LESS-cut-HDMR methods. For LESS-cut-HDMR method, the sample size N in each 

level is set to be 1e4, p0 is set to be 0.1, while for AK-LESS-cut-HDMR method, N is set to be 1e5 and 

p0 is set to be 1e-3. The LESS-cut-HDMR method produces five intermediate failure surfaces with failure 

thresholds being 0.8285, 0.5895, 0.3573, 0.1175 and 0, while the AK-LESS-cut-HDMR procedure 

adaptively produces two intermediate failure surfaces with the failure thresholds being 0.3488 and 0. For 

adaptively approximating the two intermediate failure surfaces by Kriging surrogate model, 34 g-

function calls have been consumed, thus the total number of function calls of these two methods are 5e4 
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and 34 respectively.  

The constant cut-HDMR component estimated by the two methods are 3.59e-5 and 3.97e-5 with SDs 

being 4.41e-6 and 7.76e-6 respectively, while the reference solution estimated by the crude MCS is 3.55e-

5 with SD being 1.88e-6. Thus, the constant component is accurately estimated by both methods. With 

the same sets of MC and MCMC sample pools, the sensitivity indices are computed by the two methods, 

and the results are displayed in Table 3 and Table 4. As can be seen, among the first-order cut-HDMR 

component functions, only those of 1  and 2  are influential, and among the six second order 

component functions, only those of  1 1,   and  2 2,   are important, thus we only display the 

results of these four cut-HDMR component functions in Fig. 5 and Fig. 6. As can be seen, all the 

components are accurately and robustly estimated by both the LESS-cut-HDMR and AK-LESS-cut-

HDMR methods. 

Next, we estimate the RS-HDMR components by the GESS-RS-HDMR and AK-GESS-RS-HDMR 

methods with sensitivity indices results shown in the last two columns of Table 3 and Table 4. As can be 

seen, the GESS-RS-HDMR procedure adaptively produces four intermediate failure surfaces with failure 

thresholds being 0.8310, 0.5623, 0.2834 and 0 respectively, while the AK-GESS-RS-HDMR procedure 

adaptively generates two intermediate failure surfaces with the failure thresholds being 0.5673 and 0 

respectively. The constant RS-HDMR components estimated by the two methods are 1.2030e-4 and 

1.3187e-4 with SDs being 1.1022e-5 and 5.4984e-6, and the reference solution computed by the crude 

MCS procedure with 1e7 samples is 1.2020e-4 with SD being 3.4668e-6. Thus the constant RS-HDMR 

component is accurately and robustly estimated by both methods. From the sensitivity indices, it is seen 

that, all the four first-order component functions are influential, and among the six second-order 

component functions, only those of  1 1,   and  2 2,   are influential. Thus, the six influential 

component functions are sufficient for approximating the failure probability function, and their results 

are shown in Fig. 7 and Fig. 8. As can be seen, all the components are effectively estimated.   

   

Table 3 Results of the sensitivity indices of the first-order cut-HDMR and RS-HDMR component 
functions for case 2 of the toy test example, where “bi values” refers to the intermediate failure thresholds, 
Pf,0 indicates the constant HDMR components, and Ncall is the total number of function calls of the 
corresponding method.  

Indices Pf ,cut,iS  Pf ,RS,iS  

Methods LESS-cut-HDMR AK-LESS-cut-HDMR GESS-RS-HDMR AK-GESS-RS-HDMR

Settings p0=0.1, N=1e4 p0=1e-3, N=1e5 p0=0.1, N=1e4 p0=1e-3, N=1e5 

1  .0136(.0001) .0133(.0001) .0669(.0003) .0852(.0003) 

2  .0059(.0000) .0056(.0001) .0380(.0002) .0672(.0003) 

1  .6122(.0024) .6339(.0066) .4554(.0056) .4155(.0026). 

2  .2403(.0010) .2210(.0024) .2568(.0156) .2828(.0037) 

bi values 
.8365> .5846> .3356> .098

3> 0 
.3502> 0 

.8310> .5623> .283

4> 0 
.5673> 0 

Pf,0 3.9280e-5(2.407e-6) 4.0293e-5(4.0946e-6) 1.2030e-4(1.1022e-5) 1.3187e-4(5.4984e-6) 

Ncall 5e4 22+11 = 33 4e4 31+11=42 
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Table 4 Results of the sensitivity indices of the second-order cut-HDMR and RS-HDMR component 
functions for case 2 of the toy test example 

Indices Pf ,cut,ijS  Pf ,RS,ijS  

Methods LESS-cut-HDMR AK-LESS-cut-HDMR GESS-RS-HDMR AK-GESS-RS-HDMR 

 1 2,   .0002(.0000) .0002(.0000) .0007(.0000) .0008(.0000) 

 1 1,   .0832(.0003) .0868(.0009) .1115(.0041) .0720(.0010) 

 1 2,   .0023(.0000) .0015(.0000) .0024(.0005) .0013(.0003) 

 2 1,   .0043(.0000) .0031(.0000) .0024(.0001) .0028(.0001) 

 2 2,   .0346(.0002) .0310(.0003) .0588(.0053) .0698(.0036) 

 2 2,   .0034(.0000) .0037(.0001) .0070(.0062) .0027(.0007) 

 

 

 

Fig. 5 Results of the first-order influential cut-HDMR component functions for case 2 of the toy test 
example 
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Fig. 6 Results of the second-order influential cut-HDMR component functions for case 2 of the toy test 
example 

 

 

Fig. 7 Results of the first-order RS-HDMR components for case 2 of the toy test example. 



19 
 

 

 

Fig. 8 Results of the second-order influential RS-HDMR component functions estimated for case 2 of 
the toy test example 

 

6.2 A planar ten-bar structure 

We still consider the planar ten-bar structure introduced in the companion paper [1]. All the settings 

for the input variables are the same as that in the mate paper, but the failure threshold is changed to be 

0.004 here instead of 0.0035 so as to demonstrate the performances of the methods proposed in this work 

for rare failure events. 

We firstly approximate the failure probability function with the cut-HDMR decomposition. The 

LESS-cut-HDMR and AK-LESS-cut-HDMR methods are performed with parameter settings shown in 

the third row of Table 5. The results for the sensitivity indices are reported in the second and third 

columns of Table 5 and Table 6, together with the failure thresholds bi, the constant components Pf,cut,0 

and the total number of function calls Ncall. The LESS-cut-HDMR method produces 6 intermediate failure 

surfaces, while the AK-LESS-HDMR method produce two intermediate failure surfaces, and the total 

computational costs of these two methods are 3e4 and 54 respectively. The constant cut-HDMR 

components computed by both methods match well. It can be seen from the sensitivity indices that only 

three first-order cut-HDMR components and two second-order component functions are influential, and 

their results are plotted in Fig. 9 and Fig. 10. It is shown that, all these five component functions are 

accurately and robustly estimated. Further, the failure probability function is accurately estimated by 

both methods.  

Next we approximate the failure probability function with the RS-HDMR decomposition. The GESS-

RS-HDMR and AK-GESS-RS-HDMR methods are implemented with the parameters shown in the third 

row of Table 5, and the sensitivity indices results are displayed in the last two columns of Table 5 and 

Table 6, from which we can see that only three first-order components and two second-order components 

are influential, and their results are displayed in Fig. 11 and Fig. 12 respectively. It is shown that all the 
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component functions estimated by these two methods match well and their SDs are small, thus the failure 

probability function is accurately estimated by both methods.   

 

Table 5 Results of first-order sensitivity indices of the ten-bar structure, where the superscripts indicate 
the results computed with the SDs of the estimates of the corresponding component functions.  

Indices 
Pf,cut,iS  Pf,RS,iS  

Methods LESS-cut-HDMR AK-LESS-cut-

HDMR 

GESS-RS-HDMR AK-GESS-RS-

HDMR 

Settings p0=0.1, N=5e3 p0=1e-3, N=1e5 p0=0.1, N=5e3 p0=1e-3, N=1e5 

q  .2066(.0019) .1789(.0022) .2092(.0028) .2159(.0035) 

E  .6143(.0057) .6549(.0080) .6041(.0071) .6215(.0094) 

1P  .0922(.0009) .0885(.0012) .1067(.0015) .0749(.0011) 

2P  .0007(.0000) .0006(.0000) .0007(.0001) .0011(.0001) 

3P  .0000(.0000) .0000(.0000) .0001(.0000) .0001(.0000) 

bi values 8.025e-4, 5.490e-4, 

3.472e-4, 1.777e-4, 

1.622e-5, 0 

3.570e-4, 0 8.035e-4, 5.224e-4, 

3.079e-4, 1.347e-4, 0 

3.393e-4, 0 

Pf,0 7.956e-6(7.570e-7) 7.438e-6(7.644e-7) 1.338e-05(1.2333e-06) 1.165e-05(1.213e-06)

Ncall 3e4 36+18=54 2.5e4 34+13=47 

 

Table 6 Results of the second-order sensitivity indices of the ten-bar structure. 
Indices 

Pf,cut,ijS  Pf ,RS,ijS  

Methods LESS-cut-

HDMR 

AK-LESS-cut-

HDMR 

GESS-RS-

HDMR 

AK-GESS-RS-

HDMR 

 ,q E  .0579(.0005) .0457(.0006) .0536(.0012) .0625(.0017) 

 1,q P  .0088(.0001) .0087(.0001) .0066(.0002) .0064(.0001) 

 2,q P  .0000(.0000) .0000(.0000) .0001(.0000) .0000(.0000) 

 3,q P  .0000(.0000) .0000(.0000) .0000(.0000) .0000(.0000) 

 1,E P  .0191(.0002) .0215(.0003) .0181(.0005) .0170(.0005) 

 2,E P  .0001(.0000) .0001(.0000) .0003(.0001) .0001(.0000) 

 3,E P  .0000(.0000) .0000(.0000) .0004(.0001) .0002(.0000) 

 1 2,P P  .0000(.0000) .0000(.0000) .0000(.0000) .0001(.0000) 

 1 3,P P  .0000(.0000) .0000(.0000) .0001(.0000) .0000(.0000) 

 2 3,P P  .0000(.0000) .0000(.0000) .0000(.0000) .0000(.0000) 
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Fig. 9 Results of the first-order influential cut-HDMR components computed for the ten-bar structure 
 

 

Fig. 10 Results of the second-order influential cut-HDMR component functions estimated for the ten-
bar structure, where the meshed surfaces are estimated by the LESS-cut-HDMR procedure, and those 

without mesh are computed by the AK-LESS-cut-HDMR procedure.  
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Fig. 11 Results of the first-order influential RS-HDMR component functions of the ten-bar structure 
 

 

Fig. 12 Results of the second-order influential RS-HDMR component functions of the ten-bar structure. 
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6.3 Application to a two-dimensional wing flutter model 

Consider a two-dimensional wing flutter model adapted from Ref. [41] and shown in Fig. 13, where 

G refers to the center-of-mass of the wing, E denotes the rigid center, hK  and K  are the stiffness of 

the vertical spring and the torsional spring at the rigid center. Denote the mass of the wing as m, and the 

chord length is 2b. The variable a  refers to the dimensionless distance between the rigid center and the 

midpoint of the chord. Let 2m b   indicate the mass ratio, x  denote the dimensionless distance 

between the points E and G. The phugoid mode frequency of the wing is formulated as /h hK m  , 

and the pitching mode frequency is expressed as K m   . The radius of notation of the wing 

toward G is denoted as r . Let h and   denote the vertical and rotational displacements respectively. 

Let  / ,
T

h b q indicate the general displacement, and let d dt   denotes the dimensionless 

time. Then, the vibration governing equation of the wing is derived as: 

 
2 2

2 2

d d

d d 
   

q q
M Kq FM Kq F   () 

where 2

1 x

x r
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0
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r

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  
 

 is the stiffness matrix, and F  is the 

generalized aerodynamic force which is expressed as: 
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   

F   

LC  and 
EMC  are the aerodynamic force and moment coefficients respectively, and  *

fV V b   

is the dimensionless flutter critical speed. The above flutter model can be solved by the V-g method, and 

one can refer to subsection 3.7 of Ref. [41] for details. The model output of interest is *
fV , and commonly, 

we expect *
fV  to be large so that the flutter will not happen at normal speed. Based on this fact, we 

assume that the risk is defined as the probability that *
fV  does not exceed a threshold (assumed to be 

0.4414 in this work), thus the limit state function is defined as * 0.4414fg V  . The distribution 

parameters of six input variables are reported in Table 7. As can be seen, the mean parameter of each 

input variable is assumed to be constant, but the C.O.V. i  of each variable is characterized by interval 

due to epistemic uncertainty.  
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Fig. 13 A two-dimensional wing flutter model 
 

Table 7 Distribution parameters of the input variables of the wing flutter model  
Input variables   r  h (rad/s) a

 (rad/s) x  

Means 20 0.5 30 -0.4 50 0.2 

C.O.V.s [0.035, 0.05] [0.035, 0.05] [0.021, 0.03] [0.021, 0.03] [0.021, 0.03] [0.021, 0.03]

 

   We firstly estimate the cut-HDMR component functions and their sensitivity indices for the failure 

probability function with the AK-LESS-cut-HDMR procedure. The intermediate probability p0 is set to 

be 1e-2, and the sample size N is set to be 3e4. The method adaptively produces two intermediate failure 

surfaces with failure thresholds specified as 0.0090 and 0 respectively. The number of function calls for 

learning the two failure surfaces are 91 and 255 respectively, which are much larger than those of the 

previous test examples due to the high nonlinearity of the wing flutter model. The constant cut-HDMR 

component is estimated to be 9.409e-4 with SD being calculated as 5.669e-5. The results for the 

sensitivity indices of the first-order cut-HDMR component functions are reported in the second row of 

Table 8, and the second-order sensitivity indices are all close to zero with very small variations, thus they 

are not reported due to limited space. As can be seen from Table 8, among the six first-order cut-HDMR 

component functions, four components (i.e., those of r , h , a  and  ) are influential as the 

summation of the sensitivity indices of these four components are approximately 0.9812. Thus the results 

of these four component functions are displayed in Fig. 14. As can be seen, the results are accurate and 

robust.  

   We then estimate the RS-HDMR component functions by the AK-GESS-RS-HDMR procedure. The 

p0 and N are set to be the same as the AK-LESS-cut-HDMR procedure. Similarly, this procedure 

adaptively produces two intermediate failure surfaces with failure thresholds being calculated as 0.0081 

and 0 respectively. The total number of function calls for training these two intermediate failure surfaces 

are 74 and 305 respectively. The constant RS-HDMR component is estimated to be 1.307e-3 with SD 

being calculated as 7.766e-5. The sensitivity indices of the first-order component functions are reported 

in the third row of Table 8. As can be seen, the sensitivity indices of r , h , a  and   add up to 

0.9832, thus all the other component functions can be neglected. The results of the four influential 

component functions are reported in Fig. 15, and are accurate and robust. Thus both the AK-LESS-cut-
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HDMR and AK-GESS-RS-HDMR procedures accurately estimate the failure probability function.  

 

Table 8 The sensitivity indices for the first-order HDMR component functions of the wing flutter models 
Indices   r  h  a

  x  

Pf,cut,iS  .0007(.0000) .8544(.0033) .0418(.0002) .0310(.0002) .0540(.0003) .0000(.0000)

Pf,RS,iS  .0024(.0001) .8403(.0042) .0483(.0005) .0349(.0004) .0597(.0004) .0001(.0000)

 

 

Fig. 14 Results of the influential cut-HDMR component functions of the wing flutter model 
 

 

Fig. 15 Results of the influential RS-HDMR component functions of the wing flutter model 
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7. Discussions and Conclusions 

This set of companion paper presents a general methodology framework, called imprecise stochastic 

simulation, for efficiently propagating the parameterized imprecise probability models. In the companion 

paper, the framework is developed for response moment function and failure probability function, while 

in this paper, the estimation of failure probability functions subject to rare failure events is focused, and 

four algorithms have been developed. Firstly, the LESS-cut-HDMR method for effectively estimating 

the cut-HDMR components of the failure probability function is developed, and it is further improved to 

achieve higher efficiency by combining with active learning procedure. These two methods are shown 

to have desirable local performance. Then, the GESS-RS-HDMR method is developed for estimating the 

RS-HDMR component functions, and its efficiency is also substantially improved by combining with 

active learning procedure. These two methods have better global performance. The sensitivity indices 

are derived for identifying the influential component functions, and measuring the truncation errors of 

the cut-HDMR and RS-HDMR decompositions. The SDs are derived for quantifying the estimation 

errors of each component function. The results of the three test examples have shown that the proposed 

methods are especially effective for structures with rare failure events. Furthermore, the local and global 

methods can also be combined to improve the estimation accuracy. 

The proposed methodology framework can also be extended to be combined with other advanced 

sampling techniques, such as importance sampling [10][12], line sampling [42] and directional sampling [43], 

so as to deal with different types of problems, and it can also be used for solving the uncertainty-based 

design optimization problems [14][27]. However, to keep the paper reasonably concise, these extension 

works are not addressed in this current work. The proposed methodology framework makes the 

estimation of failure probability bounds and the reliability-based design optimization problem fairly easy 

to fix. To make the proposed methodology framework more generic, it should also be extended to 

incorporate any non-parameterized probability models and dependent cases, and this extension will be 

treated in the future work.   

  

Appendix A: Derivations for LESS-cut-HDMR procedure 

Based on the MC and MCMC sample sets   : 1,2, ,k
q q k N xS  , where 1, 2, ,q m  , the 

LESS estimators of all the cut-HDMR component functions in Eq. (3) are derived as follows. As the 

intermediate failure surface satisfy 1 2 mF F F F    , the failure probability function can be 

expressed as: 

      1 1
1

P Pr | Pr | ,
m

f q q
q

F F F 


 θ θ θX X   (A1) 

where  1Pr |F θX  indicates the probability measure of the domain 1F  computed w.r.t.  |fX x θ , 

and  1Pr | ,q qF F  θX  refers to the conditional probability measure of the domain qF  computed w.r.t. 

the conditional joint PDF  1| ,qf F x θ . These two probability measures can be further derived as [22]: 
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and 
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where  Exp *θ
  and  *

1 ,
Exp

qF 
  refer the expectation operators w.r.t. joint unconditional PDF 

 *|fX x θ  and joint conditional PDF  *
1| ,qf F X x θ  respectively. Further, in Eq. (A3), letting 

q m  yields,   
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Based on the above derivation, the cut-HDMR component functions of  Pf θ  can be derived as 
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, and further their LESS estimators can be derived as: 
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  

Appendix B: Derivations for GESS-RS-HDMR procedure 

Based on the joint MC and MCMC sample sets      , : 1,2, ,k k
q q q k N x θS  ( 1, 2, ,q m  ), the 

GESS estimators for all the RS-HDMR component functions are as follows. Let  ' ' ' '
1 2, , ,

T

m  θ   

indicate the random replication of θ , which means that 'θ  and θ  are independent, and have the same 

distribution. Then, the conditional probability  , 1Pr |q qF F X Θ  computed with respect to x  and 'θ  

can be derived as: 
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Based on Eq. (A7), the constant component term ,RS,0Pf  can be derived as: 
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For the first-order RS-HDMR component function, the conditional probability  , 1Pr | ,
i q q iF F 

 X Θ  

computed w.r.t. x  and '
iθ  can be derived as:  
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Then, letting q m  in Eq. (A9) yields, 
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Similarly, the GESS estimators for the second-order RS-HDMR component functions can be derived as: 
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The GESS estimators for higher order RS-HDMR component functions can be similarly derived, and 
don’t repeat them.  
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