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Abstract 

Growth in the petrochemical industry has fuelled demand for 3rd party logistics services provided 

by tank container operators (TCOs), who strive to maximize profit through the integration of global 

tank container (TC) operations with the job ‘quotation-booking’ process. However, TCOs face 

challenges not faced by general shipping container operators, including process uncertainties 

arising from TC cleaning, the use of freight forwarders (FFs), and customers over-holding TCs due 

to the special storage needs of chemicals. These challenges have received little attention in the 

academic literature. This thesis addresses this gap by aiming to help TCOs with better decision-

making at different planning levels under various uncertainties. 

To provide an understanding of container asset management, this thesis presents a literature review 

for both general container operations research and TC operations specific research. The key issues 

and existing approaches are not only categorised, but also linked to the foundation of asset 

management to articulate the framework of this research and its objectives. Following this, two 

main research goals are addressed. 

First, a simulation-based two-stage optimisation model is developed to address the operational level 

challenges. The first stage focuses on tactical decisions in setting inventory levels and control 

policy for empty tank container repositioning. The second stage integrates the dynamic job 

acceptance/rejection decisions in the quotation-booking process with container operations 

decisions in the planning and execution processes, such as job fulfilment, container leasing terms, 

and choice of FFs considering cost and reliability, and empty tank container repositioning. The 

solution procedure uses the simulation model combined with heuristic algorithms including an 

adjusted Genetic Algorithm, mathematical programming and heuristic rules. Numerical examples 

based on a real case study demonstrate the effectiveness of the model. 

Second, a math-heuristic based two-stage optimisation model is developed to address the 

strategic/tactical level challenges. This upper level aims at optimising TC fleet size and customer 

holding polices to create a more effective TC flow at the lower level based on a time-space TC flow 

network. To solve the model, a GA-based solution and two Progressive Hedging Algorithm based 

math-heuristic solutions are introduced. Using numerical experiments, the merits of the different 

solutions are investigated and some significant findings obtained.  
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1. Introduction 

1.1 Background and research motivations  

The petrochemical industry has been growing steadily over recent decades, and up to 2014 

the size of the global petrochemical market reached 490.5 million tons and is forecasted to 

grow at a Compound Annual Growth Rate (CAGR) of 5.1% from 2015 to 2022 (Grand 

View Research, 2016). As the biggest consumer, China accounted for 26.7% of global 

consumption in 2014 and is expected to witness growth of 6.2% from 2015 to 2022 (ibid). 

In terms of market value, 419.4 billion US dollars were traded in 2015, and the high 

demands are majorly coming from the automotive, textile, construction, industrial, medical 

pharmaceuticals, electronics and consumer goods industries. With the growth in the 

petrochemical industry, associated transport demands are also growing. As one of the key 

transport modes in this industry, Tank Containers (TCs) play an important role due to their 

convenient handling, safety, and environmental friendly features. Similar to Dry 

Containers (DCs), they are designed for intermodal transport, so they can be moved easily 

by truck, train and ship. According to the International Tank Container Organisation (ITCO, 

2016), the global fleet size of TCs was estimated as 458,200 units in 2016, and it is 

maintaining a steady growth rate of 10% per year. Erera et al. (2005) concluded that the 

major advantages of TCs that have resulted in this growth are: 

i. they are safer and produce less leakage during transportation and handling;  

ii. they provide better space utilization compared to other modes, e.g. 43% more 

volume than drums stowed in DCs;  

iii. no additional specialized port-side infrastructure is required when handling both 

DCs and TCs;  

iv. they can be used to provide a reliable liquid storage device, particularly at the 

customer-end post-transport.  

 

Although the physical features of TCs are similar to DCs, so that they are compatible with 

standardized cargo handling equipment and intermodal transport, their operations are quite 

different due to the special features of this industry. Dry Container Operators (DCOs) are 

normally shipping companies, who manage their own containers or long-term leased 
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containers (can be regarded as self-ownership) with their own liner service. In contrast, 

Tank Container Operators (TCOs) offer a complete logistics service to customers in the 

petrochemical supply chain, but do not own ships, and their customer demands are satisfied 

by a so-called “quotation-booking” process (Erera et al. 2005). DCs are used in much 

higher volumes, creating large regular flows, through aggregation, that the large shipping 

companies can then match with regular routes and their own ships. It makes business sense 

for the shipping companies to own and manage DCs as it fits with their economies of scale 

business model. TCOs in contrast are used in much smaller volumes to provide far more 

specialist services, often with irregular flows. This is a low-volume high variety market 

less suited to the large shipping companies to own and manage TCs themselves. Instead, 

smaller specialist petrochemical logistics companies offer TC logistics and then piggyback 

on the container ships of the larger shipping companies. As a result, TCOs tend to 

emphasize profit (or revenue) maximization instead of cost minimization. As an asset 

compares to DC, TC is five times more expensive than DC (IICL, 2010) and TC is the core 

asset that differentiates TCOs from one another (i.e. the business design is thoroughly 

surrounding TCs), therefore, maintaining good performance of TCs’ profitability and 

utilisation is the key to TCOs’ business success. However, due to the characteristics of TCs 

and the industrial practice in TC market, conducting good TC asset management is never 

an easy task.  

First, the “quotation-booking” process in this industry is that customers book logistics 

services from TCOs with expected itinerary and execution time. TCOs need to respond 

quickly by developing a quotation through negotiation with external resource providers 

and analysis of their own resources. In this process, TCOs are challenged by how to deal 

with the uncertainties arising from the time gap between quotation development and 

service delivery. In particular, the time gap between demand receipt and execution has not 

been modelled appropriately. As the customer request for a price quotation is often 

received well in advance of the demand execution time, so TCOs have to decide whether 

to issue a price quotation without accurate information on TC availability at the demand 

execution time. In addition, the demand receipt is revealed gradually over time. Erera et al. 

(2005) emphasized the “quotation-booking” process in TC management, but assumed all 

demands are known and deterministic in the planning horizon. Hence, TCOs are lack of 
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support in determining precisely how to service individual demands, calculating expected 

costs and subsequently maximizing profits through the quotation process. This problem 

becomes even more complex with the option to lease containers, which can take the form 

of planned leasing or spot/emergent-leasing, in more real-time, with their different costs. 

Furthermore, the high reliance on external resources magnifies these uncertainties. Because, 

TCOs normally don’t own vessels, third parties are thereby needed for transporting TCs 

for the seaborne journeys. In turn, TC asset management for this part cannot be controlled 

by TCOs but relies on freight forwarders (FFs) and shipping companies with significant 

uncertainties. Also, it can place great difficulties for TCOs coping with unbalanced global 

flows of loaded containers, because empty tank container repositioning (ETCR) is more 

expensive to be carried with more uncertainties. The planned and forecast execution of 

booked customer demands in the future may influence the volume of ETCR at the present 

time, but something unforeseen in the future may make the current ETCR ineffective. 

Therefore, it is worth constructing a reliable tool that can support decision-makings to 

“quotation-booking” process and enhance the corresponding performance. 

Second, in this industry, TCs are known as safe and reliable equipment for cargo 

transporting and storage purposes. When customers book transportation service from 

TCOs, they also will be granted a free period of time to return TCs to the designated 

locations. However, since setting up dedicated storage facilities in petrochemical industry 

is expensive plus the market demand is quite fluctuated in short (e.g. the U.S. Benzene 

imports statistics in Figure 1.1), TCs are normally used by customers as temporary storage 

equipment for their production purpose. Consequently, the prevalent TC overholding issue 

causes difficulties for TCOs in controlling their over TC flows. On the one hand, due to 

the high cost of TC overholding, it generates great profits for TCOs, but on the other hand, 

such customer behaviour has significantly delayed TC flow efficiency and negatively 

influences TCOs’ performance in service new customer demands. Especially, when TCOs 

are lack of visibility from customers’ side, effective mechanisms repositioning their own 

TCs or not enough TC fleet sizes, they will face problems of losing jobs, higher operational 

costs and poor customer satisfaction. What’s worse is, due to the benefits brought by TC 

overholding (i.e. high profit at the current moment), this problem is commonly ignored by 

the industry and no effective solutions to evaluate, control and optimise this problem. From 
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an asset management viewpoint, it is questionable whether a maximised overall 

profitability of TCs is achieved with the consideration of all the pros and cons brought by 

TC overholding phenomenon. In turn, it is practically meaningful to obtain the evidences 

that can raise industry’s awareness toward TC overholding issue as well as to seek the 

solutions to leverage its pros and minimise its cons to enlarge TCs’ asset value.  

 

Figure 1.1. the U.S. Benzene imports from 2011 -2013 

Source from: Macquarie Capital (2013) 

Third, TC flows are also greatly distorted because of uncertain TC cleaning process. As 

the transport mean for liquids especially petrochemical products, the cleaning procedures 

for TCs vary largely and should fully recognise the chemical properties of the previous 

cargo such as the volatility, solubility in water, viscosity, colour, drying cargo, 

polimerisable cargo or strong absorber etc. (Panaitescu et al., 2018). Consequently, it is 

always hard to predict the exact cleaning duration for each job but can only roughly 

estimate each with a certain range (i.e. 3-7 days). In reality, this can place great 

uncertainties in operations such as inventory controlling, job planning or repositioning 

scheduling. As an asset, TCs’ profitability level can be driven down greatly as the 
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underlying uncertainties could increase operational cost or opportunity cost. And if taking 

the TC overholding and complex “quotation-booking” into account, the underlying 

uncertainties can further compound the negative effects of those challenges. Meanwhile, 

other features of TCs such as they are heavier, more diversified with container types and 

scarcer to the market can bring in new issues and new requirements for the management of 

TCs asset. Hence, the industrial and characteristics related uncertainties need to be 

comprehensively understood in terms of evaluation, controlling and mitigation.  

By appreciating all the mentioned aspects, the overall goal of this research is to build up 

a panoramic view of TC asset management that can support decision-making, 

comprehensive evaluation and effective planning with thorough consideration of TCs’ 

features and uncertainties.  

To achieve above research goal, the following research objectives are proposed to be 

achieved: 

1. To build the comprehensive understanding of the container asset management domain; 

2. To pin down the key issues for tank container asset management at the operational level 

and develop effective tools for tank container operators for better decision-makings under 

various uncertainties; 

3. To pin down the key issues for tank container asset management at the strategic/tactical 

level and develop effective tools for tank container operators for better decision-makings 

under various uncertainties; 

In addition, there are several potential contributions that wish to be achieved by the end of 

this research. First, this research would like to draw research attention and fill up gaps both 

academically and industrially. Due to lack of research about TC industry, more effective 

practices are necessitated to better address its special features and various dynamic traits 

from its market. This PhD will contributes to building the cornerstone of strategic TC asset 

management and inspiring future research into this domain. Second, this research wish to 

contribute to the improvements of some modelling and solution methodologies with 

addressing TC industrial features. Particularly, it wishes to incorporate features such as 

plan-leasing, choice of FFs and two-week look ahead etc. features into existing ECR or 
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container-based network flow simulations or models. Also, it wishes to find more effective 

way of obtaining optimality (or near-optimality) solutions under the TC stochastic 

environment. Finally, this PhD thesis would also like to provide the simulation tool, 

evaluation tool and optimisation tool for industrial practitioners from the underlying 

industry. With the help of the research outcomes, it is expected to allow the current TCOs 

applying the simulation and optimisation techniques out of this research into their 

operational and strategic use. It can also help TCOs further develop operational 

measurements, management insights and continuous improving solutions regarding TC 

asset management.  

1.2 Outline of Methodologies 

Guided by the proposed research aim and objectives, the whole research will systematically 

apply different methodologies for the corresponding sections. In order to build the 

knowledge base of the container asset management domain, literature review will be firstly 

conducted. In particular, existing studies from both general container and tank container 

industry will be reviewed and discussed. Through a systematic literature review process, it 

helps this research conceptualise research frameworks, construct knowledge hierarchy, 

identify research gaps and further clarify the research objectives. Followed, operations 

research-based modelling and optimisation techniques and mechanisms are applied to 

formulate the identified research problems, solve the problems and achieving the target for 

help tank container operators with better decision-makings at different operational 

planning levels. Specifically, both simulation-based and mathematical-based modelling 

techniques will be used for formulating different research problems. To solve and optimise 

the constructed models, mechanisms including linear optimisation, mixed-integer 

optimisation, sample average approximation and heuristics such as progressive hedging 

algorithm and genetic algorithm will be implemented. In the end, to maintain the credibility 

of this research from how it is conceptualised until how the research outcomes are obtained, 

methods for research validation and verification (V&V) are applied as well. This includes 

the V&V for data processing, V&V for model formulating and V&V for model solution 

and optimisation. By doing so, the intended research objectives are achieved with more 

credits and it is more confident to demonstrate the potential research findings as well.  
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1.3 Thesis structure  

Next, the rest of the research will be organised as follows. Chapter 2 will explain in detail 

of the relevant literature review and the research gaps will be identified. In Chapter 3, the 

methodologies for problem modelling and solution will be critically discussed and the 

selected mechanisms and techniques are clarified. Also, methodologies that will be used 

for the validation and verification will be introduced. Chapter 4 will firstly address TC 

asset management issues from operational and tactic levels. It includes the formulation of 

the underlying problems, design and execution of model solutions, and a series of 

experiments will be carried to demonstrate the research outcomes and insights. Likewise, 

Chapter 5 addresses TC asset management issues from tactic and strategic levels. The same 

steps taken in Chapter 4 will be go through again, so that the overall results can complete 

the full a picture to answer the research subjective raised by this PhD thesis. In the end, 

Chapter 5 is going to give a panoramic view of this PhD research, in particular, the main 

findings from different level of studies will be summarised, in the meanwhile, limitations 

and what is missing from this research will be also pointed out, so it can imply the further 

research opportunities and directions.   
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2. Literature Review 

This chapter will conduct a broad review of studies that are relevant to the target domain. 

Especially, with the guide of designed literature review method, the whole chapter will be 

comprised by background of DC and TC market, literature review frameworks, 

operational level research reviewing, tactical/strategic level research reviewing, research 

gaps discussion and research objecting proposing six main sections. Next, the 

implementation of literature review method is firstly introduced and then the rest of the 

contents will be following its guide accordingly. 

2.1 Methodology of this chapter 

In order to achieve the underlying research objectives, this chapter will firstly explore the 

industry backgrounds for both DC and TC markets to give the industry highlights as well 

as the difference between the two markets. Then surrounding container asset management, 

subtopics that are going to be reviewed are framed and studies about DCs are used as the 

reference point for identifying the research gaps for TCs with consideration of TCs’ 

features. Reasons of this arrangement are two folds. First, researches directly investigate 

issues in TC industry are scarce. To the best of the authors’ knowledge, searches have been 

carried for TCs management in several databases (e.g. Web of Science, Science Direct) 

with changing the terminologies of TCs (e.g. ISO tanks, tank containers etc.) from year 

1990 to now, there are only two papers found (see Erera et al., 2005; Karimi et al., 2005) 

in the relevant domain. The special features about TC and TC operation have been 

sufficiently discussed and summarised by these two studies, yet their proposed models and 

solutions have left some issues unaddressed. Two, similarities shared by DCs and TCs 

enable the studies about DCs to be used as the theoretical foundation for this research. 

Because, as an asset, both TC and DC share similar asset life cycle. They both start with 

similar processes of asset acquisition (i.e. container purchasing), asset operation (e.g. job 

assignment) and maintenance (e.g. cleaning and repairing) and asset disposal (e.g. used 

container market). Activities throughout above journey are similar to both containers. For 

example, they both can be handled and stored with the same facilities; they both can be 

transported through the same multimodal options; and they have similar supply chain 
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configurations (e.g. consignors, consignees, carriers, service providers etc.). Hence, studies 

about DCs management are reviewed the most to identify the research gaps. 

Next, how to select the candidate papers for this literature review is carried as follow. Web 

of Science is the major academic source used by this PhD thesis, and it allows the author 

to try different key words and key words combinations to search for the most relevant 

literatures. Followed, through the reviewing of searched papers, more key words can be 

inspired, and the searched results can be further modified and supplemented. Meanwhile, 

some important articles which contains none of the searched key words would be added in 

as well. At last, the same processes will be go through again with Science Direct and 

Google Scholar in case of the resource difference due to different databases. 

For each subtopic, the total reviewed papers are obtained through adjusting the keywords, 

searching multiple resources and defining the research scope. For example, in order to 

narrow down the relevant literatures for ETCR issue, we applied the keyword rule as: 

“empty container movement” and/or “container repositioning” not “terminal”, because our 

study do not focus on terminal operations. Followed by this rule, 1,250 papers are firstly 

obtained. To further process the results, patent papers are excluded, and the remaining 

document types are majorly articles, meeting proceedings, books or book chapters and etc. 

Then the results are further narrowed to 128. Moreover, through the abstract reviewing of 

all the 128 papers, only English papers and empty container repositioning relevant are kept 

for further in-depth reading, therefore the amount of left papers is 96 in total. Moreover, 

on top of the obtained 96 papers, some other techniques are incorporated to further expand 

the overall literature pool of this topic. First, with reviewing the obtained literatures, some 

other key words or key words combination are used. For example, “container network 

optimization”, “ocean container/marine container reposition/movement” are being used, 

and/or “empty container” is substituted by “empty equipment”, “container repositioning” 

is replaced by “container allocation”, “container assignment” or “container distribution” 

etc. More specifically, the different spellings between American English and British 

English are tried as well, such as “optimisation” and “optimization”. Second, different 

resources are being searched. As we mentioned before, apart from Web of Science, Science 

Direct and Google Scholar are also tried the same key word(s) to capture the missing 
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relevant articles. Third, with reviewing the relevant literatures, especially the literature 

reviews or literature survey papers regarding to container network designing or 

optimization (i.e. Tran and Haasis, 2015; Braekers et al., 2011; SteadieSeifi et al., 2014), 

some missing articles are being added as well. To illustrate the overall process of 

conducting the literature review, figure 2.1 below includes a flow chart to present it. As a 

result, 29 additional papers were included, which ultimately made the overall amount of 

reviewed papers as 125. 
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Figure 2.1 flow chart of literature review search method 
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2.2 Overview of the general container and TC container market 

2.2.1 The general container market 

With the international trade booming, the world seaborne trade embraces a stable growth 

for the past decades. As data in figure 2.2 revealed (UNCTAD, 2017), the global seaborne 

trade volume increased nearly 5 times since 1975, which plays the major contribution to 

the growth of global trade.  

 

Figure 2.2 the growth indices for world trade, seaborne shipments, and gross domestic 

product, 1975-2016 

Source from: UNCTAD (2017)  

As a result, containerised trade expanded heavily due to its important role in world 

seaborne trade, Considering the value of traded cargoes, global seaborne container trade is 

believed to be accounted for approximately 60 percent of all world seaborne trade, and was 

valued at around 5.6 trillion U.S. dollars in 2010 (Statista, 2015). While the quantity of 

goods carried by containers has risen from around 100 million metric tons in 1980 to about 

1.5 billion metric tons in 2013, the capacities of vessels are also increased (ibid). Between 
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1980 and 2015, the deadweight tonnage of container ships has grown from about 11 million 

metric tons to around 228 million metric tons. According to the data provided by UNCTAD 

(2015), the containerised trade is keeping on increase since 1996 up to 2015 (except a slight 

decrease in 2009 after the 2008 economic crisis) (fig. 2.3). See in the figure below, after 

the economic crisis, around 5% increase pace is kept in terms of containerised trade, which 

has also made the global containerised trade reached more than 140 million twenty-foot 

equivalent units (TEUs) in 2017. In the study of Song and Dong (2015), the continuous 

development of containerised trading market (even during the post-economic-crisis period) 

is driven by two major reasons. One, during the last two decades, goods are becoming more 

containerised, which are not only the majority of manufactured goods, but also 

commodities such as coffee and refrigerated cargos (e.g. meet and fruits). Second, for the 

consideration of energetic efficiency, economics of scales and green supply chain 

initiatives, containerships are built larger and larger over the past years, and relatively more 

containers are therefore being moved globally.  
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Figure 2.3 Global containerised trade, 1996-2017 (million TEUs and percentage annual 

change) 

Source from: UNCTAD (2017) 

In this industry, a containerised trade involves participation of several parties, and 

collaboratively, they formed the supply chain configurations of this market (Figure 2.4). In 

particular, containers are first needed to be prepared at the right place and right time with 

right volumes in order to ensure cargoes sent by shippers can be fully loaded; Followed, 

effective operations should be conducted to transport, charge/discharge and store 

containers to ensure cargoes can be delivered to consignees timely and cost effectively. In 

the end, containers should be emptied, cleaned or maintained (if necessary), and returned 

to appropriate locations in order to serve next transport tasks.  

 

Figure 2.4 container shipping supply chain 

Source from Song and Dong (2015) 

To complete above cycle, maritime containers are one of the key assets that forms the 

backbone of the overall supply chain. It is the general form of material flow throughout 

most of the supply chain, and it also determines what services can be designed alongside 

this supply chain. As a result, containers are essential to their owners and need to be taken 

good care of. According to Consultantsea (2016), the estimated world global container fleet 

size is about 43 million shipping containers or equivalent to 72 million TEUs. But 

unfortunately, since (a) the large amount of shipping container factories with various and 

dynamic production rates; (b) container fleet owners refuse to publish their fleet TEU sizes; 
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(c) the existing of some un-standardised containers (e.g. 30ft or 10ft etc.), there is no exact 

records about how many containers existed in the world. Data from IICL (2010) illustrated, 

the world container fleets are generally owned by shipping companies or container lessors, 

and as the biggest owner of this industry, 60% of the global container fleet is owned by 

shipping companies. Regarding the recent price for a 20ft container new purchase (Alibaba, 

2018), there are more than $108 billion container globally owned by shipping companies. 

For such a great investment, containers are essential assets that shipping companies need 

to maximise their profitability the lifecycle. Apart from the actual value of containers as an 

asset, they are important because (1) service about moving cargoes is the core business for 

shipping companies. Within the scope of this business, container is the only asset reaches 

almost everywhere of this business. Failing to conduct good container care and container 

exploitation may directly result in high business costs, poor customer satisfactory and 

failure in meeting market demands. Hence, performing better container management can 

lead to better performance of shipping companies’ core business; (2) Data from UNCTAD 

(2017) illustrated, it is highly fluctuated (from -46.5% to 68.2%) for container freight 

market from 2009 to 2016 across different lines (e.g. Trans-Pacific, Intra-Asian) for 

different type of container units. Maintaining a good cost control for container operation 

enables shipping companies a good level of flexibility in dealing with the freight market 

dynamics. In addition, a shipping container is normally only in service for 12-14 years 

(Consultantsea, 2016), therefore, it will further limit shipping companies maximising their 

return on investment from containers during the freight market ups and downs; (3) The 

current shipping market is extremely competitive and overcapacity (Lopez, 2017), and 

earnings for container industry are squeezed to be very tiny nowadays (see figure 2.5). As 

a result, cost control becomes the essence for shipping companies to be survival in the 

market, therefore, as one of the major assets, container management takes the priority of 

overall cost control. 
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Figure 2.5 the container industry market earnings 2002-2013 

Source from: BSIC (2016) 

Of course, for shipping companies, they normally own both containers and vessels to 

operate with. But for these two assets, their different features determine their management 

agendas are different from each other. First, container management is normally associated 

with large volume but in service different customers whereas vessel management is more 

likely to focus on only one or a few vessels but aggregates large demands. Two, containers 

have longer journey which involves more players along the supply chain and multimodal 

options while vessels are only operated on sea or river. Third, even though vessels have 

higher unit price, they also have longer life time (24-30 years vs. 12-14 years) and higher 

residual value when the life cycle ends (Dinu and Llie, 2015). Overall, for the management 

of shipping companies, vessels represent stable, levelled and big volume value streams 

while individual container is used to satisfy dynamic individual demands. Therefore, vessel 

management is more into satisfying a large sum of customer demands and minimising the 

total cost while management for containers throughout their journey is about choosing 

effective modes connections to satisfy individual customer’s needs with better profit 

opportunity.  
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However, even for containers themselves, different management agendas are required due 

to different types of containers. As we discussed in introduction chapter, the most common 

container type is dry containers (DCs) which could be different due to sizes (e.g. 20ft and 

40ft) and different features (e.g. open top, double doors, and flat rack etc.). Also, due to 

the special characteristics of the carrying products, container types include Refrigerated 

ISO containers (e.g. foods and medications etc.), thermal containers (e.g. products with 

long distance movement), tanks (e.g. petrochemical products) and so on. Figure 2.6 below 

gives a more detail information regarding different container types. 

 

Figure 2.6 container types 

Source from: Marine Insight (2017) 

They different types of containers have their unique characteristics designed for different 

purposes and as a result, they need special care and are associated with different 

management requirements. As one of the specialised containers, the background of TC and 

how it is different from DC are going to be reviewed in detail. 
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2.2.2 Overview of TC market 

As a specialized branch of the containerized shipping industry, the tank container market 

continues to grow steadily. According to ITCO (2015), the world’s tank container fleet 

grew by 12.6 per cent last year, with the figure now standing at some 440,220 units. In this 

industry, tank containers (TCs) are highly regulated and required to meet stringent 

standards of operation, including statutory periodic inspection and renewal of test 

certification. Due to different delivery cargoes, TCs have different types specialised for 

liquids, liquefied gases, powders, swap tanks and specials (ibid). Base on different 

customers’ requirements, various types of TCs can be provided from two main resources. 

The first one is TC operators. They are third party logistics companies that provide a door-

to-door service to shippers and others that require transport of bulk liquids, powders or 

gases. The fleet listing for each company includes all TCs operated by that company, 

regardless of whether the TCs are owned outright, managed, leased or any other financial 

structure used to acquire the asset. Another supply resource is coming from TC lessors. TC 

lessors provide TCs to operators, shippers and others, usually on a contractual term basis, 

where the lessee takes quiet possession and operates that TC as if it were owned.  Lessor 

fleet listings include all TCs within the leasing company fleet including owned outright, 

managed on behalf of investor owners and any other financial means of acquisition. 

Similar to shipping companies in the DC market, TCs are critical assets to both TC 

operators (TCOs) and TC lessors. According to ITCO (2015), there are 194 TCOs and 33 

TC lessors, and the world tank container fleet sizing is more than 500,700 (305,700 from 

operators and 195,000 from lessors). An average price for 20-feet new-build TCs listed by 

Alibaba is $8,500 (price for 2016), therefore value of $18,751,000 assets is being 

fully/partly owned by each TCOs/ TC lessors, and being operated. If we take a look of the 

largest TC operator in terms of fleet size registered on ITCO 2015, Stolt Tank Containers 

operates 32,000 TCs which are worth $272,000,000. More detail of the overall tank 

container market can be seen as below (table 2.1): 

Company Names Country Container fleet size 

Stolt Tank Containers United Kingdom 32000 

Hoyer Group Germany 29110 
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Bulkhaul Ltd United Kingdom 20500 

Newport (Sinochem) Netherlands 15000 

Bertschi Group Switzerland 13000 

Interbulk Group Netherlands 11200 

China Railway Tielong 

Logistics 
China 10640 

VOTG Tanktainer Germany 7580 

Suttons International United Kingdom 7500 

Den Hartogh Logistics Netherlands 7250 

Interflow Tank Systems United Kingdom 6000 

Intermodal Tank Transport 

(ITT) 

United States of 

America 
5500 

Nichicon Tank Japan 5500 

Eagletainer Logistics Singapore 5400 

M&S Logistics United Kingdom 4700 

R.M.I Global Logistics Netherlands 4600 

Fourcee Infrastructure 

Equipment 
India 4500 

Spectransgarant 

(Railgarant) 
Russia 4010 

GCA Trans France 4000 

Table 2.1 Top 20 tank container operators around the world 

Source from ITCO (2015) 

In the UK, there are 13 tank container operators in total, and their container fleet size 

information is as below (table 2.2): 

Company Names Country Container fleet size 

Stolt Tank Containers United Kingdom 32000 

Bulkhaul Ltd United Kingdom 20500 

Suttons International United Kingdom 7500 

Interflow Tank Systems United Kingdom 6000 

M&S Logistics United Kingdom 4700 

Braid Logistics United Kingdom 1760 

Paltank Ltd United Kingdom 1350 

Argon Isotank United Kingdom 610 

Bulkglobal Logistics Ltd. United Kingdom 500 

Cassilon Liquid Logistics United Kingdom 450 

Huktra UK United Kingdom 450 

Tankspeed Fraikin United Kingdom 150 
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Seabrook Tank Services United Kingdom 130 

   

Table 2.2 the UK tank container operators 

Source from ITCO (2015) 

As above figures indicated, the overall market shows a great net worth for the total TC fleet 

size, and similar to what we discussed for DCs and shipping companies, TCs are intrinsic 

assets to TCOs which need take good care of. However, due to some significant differences 

between TCs and DCs, their operations are different. In next, the major differences of their 

operations are going to be discussed in detail. 

 

2.2.3 The difference between TCs and DCs 

Although TCs and DCs share some physical similarities, the special features associated 

with TC operation made it is never the same the operations in DC industry. 

First, since TCOs don’t own vessels, a special “quotation-booking” process is carried to 

satisfy customer demands in TC market. This process is comprehensively introduced by 

Erera et al. (2005) that TCOs maintain contracts with both inland and sea leg transportation 

service providers (e.g. shipping companies, trucking companies, railroads etc.) and 

combine these legs into itineraries to develop price quote to customers for any origin-

destination pair request. Depending on how fast the delivery is expected to be completed, 

the charges are varied accordingly. Once a quote is agreed between a customer and a TCO, 

the logistics service should be executed as how it is planned on its executing date. However, 

since there’s time delay involved between this “quotation-booking” process and demand 

execution, several challenges are involved. 

a. Once the quotation is agreed between customers and tank container operators, it 

shall not be changed, but if the situation is not as expected on the demand execution 

date, any associated upsurge costs or operation risks are covered by TCOs only. For 

example, a quotation is accepted and planned to be served with self-owned TCs. 

But there might be not enough self-owned TCs in stock on the execution day, so 

leasing containers will be required which are normally more expensive than using 

self-owned TCs; 
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b. Tank container operators are serving a niche market, and consequently, they can 

more often reject some customer demands if they can help for seizing more 

profitable opportunities, and they will have less influence on their future business 

because of TCOs’ selling power. However, since the market is small, the reject 

decisions should be taken very careful as it will hamper tank container operators’ 

reputation. Considering the dynamic process of “quotation-booking”, deliberate job 

rejection provides tank container operators more profit improvement opportunities, 

but the difficulties are increased as well;  

c. Different uncertainties need to be focused on in TC “quotation-booking”. 

Mentioned by introduction chapter, significant uncertainties existed during the 

container return journey. Since TC can be used for different type of liquidified 

commodities, it requires thoroughly cleaned process each time before it becomes 

available for next time use. Regarding to the commodities it moved, the cleaning 

procedures are varied, and tank container operators always hard to predict the actual 

cleaning duration. Moreover, since TC provides a safety, reliable and economic 

effective way for storage, it is very common that customers over-held TCs as their 

temporary storage equipment and used for satisfying their production purposes.     

Two, similar to DC market, the global trade pattern is highly imbalanced for TC market as 

well. Empty container repositioning (ECR) seems an effective way of mitigating the 

imbalanced trade caused container flow inefficiency, but for TCOs, empty tank container 

repositioning (ETCR) is not all the same.  

a. As we mentioned before, tank container operators don’t own any transportation 

resources for executing seaborne transport. When cross-ocean ETCR needs 

occurred, they cannot exploit their own available capacities, and it is thereby a more 

costly decision-making. Therefore, ETCR is normally taken intra-regionally, and 

the effects of ETCR in countering the global imbalanced flow is constrained; 

b. Followed, when TCOs search for external transportation resources, FFs are 

normally involved. With different cost level of FFs, the reliability level of them are 

different. Particularly, a more reliable FF charges higher service cost. For meeting 

customer demands, TCOs will always pick the most reliable FF to combine the 

itineraries, but for ETCR movements, relaxation on the FFs’ reliability may reduce 
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TCs’ cost without compromising the operational effectiveness. Especially, thanks 

to TC inventory, a certain proportion of unsuccessful ETCR shipments will not be 

influenced in a short-term. Therefore, ETCR plan is different from ECR in DC 

market because it includes the selection of FFs as well;  

c. As the industrial practitioners revealed, a two-week time prediction is commonly 

used as the practice for guiding their daily operations. They can be very confident 

with the two-week time look ahead but they are lack of mechanisms or solutions to 

better integrate the two-week time prediction with “quotation-booking” process and 

ETCR decision-making.    

Three, similar to demurrage and detention (D&D) behaviour in DC market, TC 

overholding refers to the delay of container return during the container flow journey at 

seaport and onward inland, but difference from three aspects distinguished TC overholding 

from the former ones: 

a. D&D are two distinctive periods coupled by the time point when container left sea 

terminals, while TC customer overholding could occur from any point since TC 

arrived at sea terminal until it returns to TCOs. As Fazi and Roodbergen (2018) 

defined, a container is to be in demurrage when it is positioned at a seaport and is 

to be in detention when it has left the seaport to hinterland until it returns to shipping 

companies (normally the dry container operators) or to an agreed seaport terminal. 

Throughout the two periods, two different bodies that shippers will dealt with. 

When containers are in demurrage, shippers will be penalised with a daily 

demurrage fee by port operators if their containers exceeded the pre-granted free 

demurrage period. While if the same situation occurred during detention, such cost 

is paid to the owner of the containers (i.e. shipping companies). Likewise, shippers 

will be granted a period of free days of holding TCs and they have to pay extra fees 

if the free days are exceeded, namely when TC overholding occurs. But differently, 

TC overholding could happen when TC still at seaport, during the hinterland 

transport, at shipper’s site or on the way back to TCOs. And the associated cost 

only flows to TCO’s account. Therefore, on the one hand, TC overholding is more 

likely to be planned and controlled than delays associated with D&D, because the 
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later ones involve multi-channel scheduling, but on the other hand, TC overholding 

has more chance to create higher profits for TCOs, which drives TCOs become 

reluctant to make changes. Particularly, TCs are scarcer than DCs so that the 

overholding cost rate is normally more expensive; TC overholding is more common 

and the delay time is normally longer; and since TC overholding covers the whole 

journey of D&D, delays happened at seaport can also benefit TCOs while D&D 

cannot. Hence, it traps TCOs with dilemma and they are less motivated to make 

any changes for this issue.  

b. as Veenstra (2015) and Ypsilantis et al. (2014) assert, shippers would always like 

to run out the free days during demurrage, so more flexibility can be obtained 

during the detention period, and in turn, exceeding the detention period is 

comparatively low with shorter days. While differently, since there is no clear 

boundary for customer holding period in TC market, the overholding could start 

from any time point or spread out through different stages after TC arrives at a sea 

terminal. Therefore, it is more difficult for TCOs predicting the container return 

date, and hard to plan the overall TC flows. 

c. when the containers return to operators, both DC and TC need to go through a 

thorough container cleaning process, but the difference of the cleaning for the two 

types of containers makes great difference over the planning for D&D and TC 

customer holding. As the industrial practice indicated, the cleaning process 

associated with DC is much more standard with more stable duration and simpler 

steps, but cleaning for TCs is associated with complex procedures and special 

facilities which are largely varied with respect to the types of commodities that have 

been delivered. As a result, the TC cleaning is more dynamic, and it can further 

worsen the result caused by TC overholding and makes TCOs hard to control and 

improve the asset management performance associated with TC return. 

To sum up, TC operation is unique to the DC sector due to above aspects. Specifically, 

compare to DC sector, TC operation has a complex “quotation-booking” process with 

different uncertain attributes, and it is also significantly influenced by a special customer 

behaviour. Therefore, to manage TCs with better profitability and asset utilisation, different 

issues need to be addressed. On day-to-day basis, the “quotation-booking” process in TC 
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operation requires better decisions-making support which can mitigate influences of the 

time delay and the underlying uncertainties and contributing to better self-owned TC 

profitability. In a long-run, they need better strategies and policies that can manipulate 

unwanted market behaviour and improving the overall network efficiency. With 

appreciating the differences of the operations between TCs and DCs, how existing 

literature (especially about DC operations) can be used for conceptualising research 

frameworks, identifying research gaps and achieve underlying research objectives is going 

to discussed in next section.   

 

2.3 Framework of TC asset management 

Regarding all the discussions above, asset is one of the key words mentioned frequently. It 

is a form of value that costs company’s resource to own and keep for business purposes 

(BSI, 2008). Since the core of commercial business is about exploiting limited resources 

to create maximal values, as a type of companies’ resources, assets need to be properly 

managed and exploit for more profitable opportunities. This brought in the concept of asset 

management, according to BSI PAS 55 (BSI, 2008), asset management is ‘the systematic 

and coordinated activities and practices through which an organization optimally and 

sustainably manages its assets and asset systems, their associated performance, risks and 

expenditures over their life cycles for the purpose of achieving its organizational strategic 

plan’. A good asset management requires well integration of effective process across all 

aspects of a business to ensure business objectives are aligned over both short term and 

long term with the needs of all stakeholders (Lloyd, 2010). According to different level of 

objectives, implementation of asset management includes various activities that support 

both short-term and long-term level goals (ibid). In short term, the major activities 

comprising asset management include asset operating, maintaining, repairing, and 

replacing. Those activities normally need to be deployed quickly with respect to day-to-

day dynamic information and they aim at maintaining good asset performance on a daily 

basis. In long term, the major tasks for asset management are asset acquisition, designing, 

procedure & policy making, and disposal. They normally associate with consuming large 

resources, generating long-term and wide influences, and executing constantly for long 
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while. Regarding such methodology, asset management about TCs can be comprehensively 

mapped out and conceptualised hierarchically. Particularly, in line with the features of TC 

planning (from TCOs’ perspective) discussed in section 2.2.2, different activities in TC 

domain can be grouped by different levels of asset management.  

In short, activities associated with TC planning are mainly focusing on fulfilling the daily 

operational duties (operational level planning). TCOs need to decide how to effectively 

utilise available TCs to meet market demands, maintaining good condition of TCs and 

scheduling TC flows. To meet customer demands, activities such as TC assignment 

planning, demand forecasting, and quotation developing etc. They aim at exploiting TCs 

to yield the maximal return in terms of profit and customer satisfaction. To maintain good 

TC conditions, TCOs need to carry effective maintenance planning, executing, monitoring 

and improving. For contaminated TCs, they need to be properly cleaned in a timely manner 

and for broken ones, they need to be promptly repaired or replaced. By doing so, 

uncertainties can be mitigated to minimise the negative influence over asset profitability. 

Also, TCs are ensured the maximal service lifetime for better return on assets. To maintain 

more effective and efficient TC flows, TCOs need to carry activities including inventory 

planning and controlling, ETCR, transport optimisation and intermodal planning. 

Activities in this category hold the goal of integrating both internal and external resources 

to enable TCs more profitable opportunities.  

In long run, TCs are managed to align different strategic objectives with the needs of 

stakeholders in this market. From TCOs’ perspective, planning activities for TCs in this 

group need to ensure tactics of TCOs are executed effectively and strategic goals of TCOs 

are served well, so that TCOs’ competitive positions are maintained. In particular, those 

activities are ranging from TC fleet sizing, design for location networks or commodity flow 

networks, contracting & pricing, and supply chain reconfiguration etc. Some of those 

activities are implemented for serving self-interests in a long-term while some of those 

activities are deployed to cope with external environment or parties. Regardless the 

purposes, all these activities can influence daily operations but are rather at a higher level 

that aim at creating platforms, improving relationships and providing wider and longer time 



37 | P a g e  
 

effects. To summarise all above discussed TC asset management activities, figure 2.7 

below present them with a hierarchical view. 
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Figure 2.7 the hierarchical structure of tank container management 



39 | P a g e  
 

Next, with above framework, the rest of the chapter will go through existing literature to 

form the fundamental knowledge base of this study and identify research gaps. Due to 

time limit, the proposed research goal(s) and available information, only the topics in red 

are going to focused by this research. 

 

2.4 Studies about operational level TC asset management 

At the operational level, ECR is the key word that is highly connected to most of the 

decisions and activities in maritime container industry. As some published literature 

surveys indicated (e.g. SteadieSeifi et al., 2014; Song and Dong, 2015), ECR is one of the most 

extensively studied topics in container operation management researches, while other 

issues we framed above (e.g. demand fulfilment, container inventory control etc.) are 

jointly discussed in the context of ECR studies. This is because ECR has significant 

meaning in controlling and managing container flows by container operators. Therefore, it 

can be related to many other container operational management topics. For example, 

container flow is the dynamic input and output of container inventory, so influence caused 

by different ECR planning activities will be passed onto container inventory dynamics and 

affects inventory management. Hence, to investigate the highlighted issues about 

operational TC asset management, ECR planning and optimisation will be the core to carry 

the literature review of this section. According to whether the system is focusing on ECR 

only or it has combined ECR with other optimisation issues, maritime container researches 

for this planning level can be split into ECR-oriented and ECR-joint optimisation with 

other topics (with network design, with sustainability and with inventory control-based 

policies). 

In addition, even though ECR problem an operational issue, it can be interactively 

investigated with approaches that are accommodated in a mid-term or even longer or 

researched jointly with other issues which belong to tactical or strategic planning level. 

From this viewpoint, some ECR related studies may be beyond the realm of operational 

planning. Nevertheless, the main purpose of this section is to identify the research vacuum 

of the underlying problem, especially to critique the application of existing literature in TC 
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context. Therefore, the following reviewed papers are not filtered by the planning level of 

them but by the relativeness of their nature to ECR problems.  

 

2.4.1 ECR-oriented studies 

With the development of ECR related studies, different initiatives are carried to make ECR 

planning activities can be more practical and effective. In order to move the emphasis of 

ECR research from technical aspects to business aspects, Shen and Khoong (1995) 

construct a decision support system to solve a large-scale planning problem concerning 

multiperiod distribution of empty containers with the consideration of container leasing 

decisions. Also, unmet demands are considered by tweaking the model with constraint 

relaxation and solved heuristically, however the detail of the model formulation is only 

briefly introduced. Likewise, Long et al. (2013) developed a decision support tool to help 

the liner operator in managing their maritime container with deterministic setting. An 

elaborated mathematical model is presented with the consideration of multi-depots, multi-

services and multi-commodities. Instead of focusing on increasing scale of ECR problems, 

some studies consider the idea of “street turns” or “container reuse” to reduce hinterland 

transportation, mitigate environmental influence and increase profits (Song and Dong, 

2015). Jula et al. (2006) modelled the empty container reuse in the Los Angeles and Long 

Beach port area. They have specifically designed the empty container reuse methodologies 

with “street turn” and “depot-direct”, with the help of current and projected future data, 

various realistic case studies highlight the significance of empty container reuse on both 

local economy and environment. In order to better implement the street turn methodology, 

Lei and Church (2011) built three strategic-level models to explore the effectiveness of 

locating away-from-port storage yards for empty shipping containers. Furio et al. (2013) 

built two mathematical models to optimise land empty container movements among 

shippers, consignees, terminals, and depots.  

Also, there are some other new components are introduced by different studies. The 

application of foldable and standard containers is discussed (e.g. Shintani et al. 2010; 

Myung and Moon, 2014). As a substitution of the standard containers, foldable containers 

have lower unit cost when transported in empty. Hence it provides the potential cost saving 
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opportunities for manage ECR activities. As the results of the case studies (Shintani et al., 

2010; Myung and Moon, 2014) illustrated, the use of foldable containers does provide cost 

saving opportunities. However, its cost saving effects are limited by strict conditions such 

as the distance of the reposition transport, the distribution pattern of the deficit and surplus 

depots. Since TCs are normally repositioned intra-regionally, and hard to produce such 

analogous foldable equipment, such practice is not to be applied. Belayachi et al. (2017) 

studied the cost minimisation for empty container return at some ports of maritime 

transport network to satisfy the demands of clients. In the study of Sun et al. (2009), a 

deterministic mathematical model is constructed to represent the use of sea-rail transport 

to alleviate ECR problem and increase the ECR efficiency. Model proposed by Olivo et al. 

(2013) evaluated the effectiveness of involving the flexible leased containers into their 

time-extended optimisation model to support the decision-making process on ECR 

arrangements and substitution options between different container types. The leasing 

account clauses imposed by container lessors are taken into account as well. As a result, 

the model presented is able to determine the flows of empty containers and set demand and 

supply values at each depot for different container types. However, since this model is 

constructed under a deterministic environment, it may find difficulties in applying to a 

stochastic environment, or at least, require efficient solutions to solve the model. 

Further, container coordinating and sharing initiatives are incorporate to improve ECR 

planning. In the study of Kopfer and Sterzik (2012), a mathematical programming model 

is construct to demonstrate the advantages coming from multi-depot container truck 

transportation problem with container sharing over no sharing scenarios. Further on, 

Sterzik et al. (2015) elaborated the two scenarios of container sharing for the seaport 

hinterland transportation. With the help of realistic-sized examples, benefits obtained from 

container sharing and truck routing optimisation is proven to be remarkable. In addition, 

they have also pointed out the main barriers that prevent container carriers from sharing 

their assets are concerns of losing asset control and revealing business secrets. With 

different transport mode, Zheng et al. (2015) studied the possibility of exchanging empty 

containers among liner carriers to mitigate the influence of the unbalanced trade pattern to 

all the carriers. They proposed a two-stage optimisation model and the inverse optimisation 

technique is used to determine a centralized empty container sharing and allocation to solve 



42 | P a g e  
 

ECR problems. Furthermore, they have also investigated the perceived value of empty 

containers at each port, which can be used later on to compare with the leasing price at 

each port to support the pricing strategy for container lessors. In general, container 

coordination and sharing among the industry aims at creating a container fleet pool where 

a more centralized planning can be deployed. Apart from pooling the container fleet among 

carriers, researches such as Vojdani et al. (2013) formulated a space-time network model 

to explore the economic benefits from pooling container fleet from container carriers and 

leasing companies. Song and Carter (2009) evaluated four strategies for ECR on three 

major routes mathematically. They pointed out that even though container sharing and 

coordination solution can alleviate the ECR problems, it cannot eliminate the needs of ECR.  

To enhance the practical meaning of ECR studies, there is another group of literature has 

accommodated ECR research with uncertainties. Cheung and Chen (1998) applied a rolling 

horizon fashion to construct a two-stage stochastic programming model that address empty 

container allocation problem with uncertain environment at the operational level. Li and 

Han (2009) applied chance constrained programming to transform the constraints that 

contain stochastic parameters. Specifically, they gave a confidence level which is supposed 

as the target level that the random parameter is ranged by it. 

Different to finding the optimal plans to all scenarios under stochastic setting, some 

researches are looking at the recourse to worst case scenarios.  Erera et al. (2009) used the 

adjusted robust optimisation framework for dynamic empty repositioning when demands 

and future supply of empty containers are uncertain. Specifically, decisions and plans in 

this model are recoverable when feasibility can be reestablished for any outcome in a 

defined uncertainty set. Gavranovic and Buljubasic (2011) construct a time-space networks 

to formulate a robust optimisation ECR problem and solved with linear programming 

methods. With the help of a so-called constraint generation linear programming approach, 

the computation ability of the model is demonstrated by solving real-time cases with 

hundreds of millions of additional linear constraints. 

The robust optimisation demonstrated the ability in coping with uncertain environment, 

however, as above researches illustrated, the viability of robust optimisation model is 

limited by predefined uncertain set, also the robust optimisation result doesn’t guarantee a 
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better result for parameters with known probabilities. Also, it is still associated with heavy 

computation workloads, especially when it comes down to adjusted robust optimisation 

problems. 

To have a clearer view of studies in this group, table 2.3 is created by showing some key 

features of those papers. In particular, they are compared by different research objectives 

(functions), different way of formulating researched questions, and different research 

context settings to demonstrate the significant contributions of each paper, what are 

commonly used when study the underlying research problem and where are less studied 

after reviewing those papers (research vacuums).  
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Author Year Optimisatio

n type 

Methodology Multi-commodity Multi-

port 

Leasing 

option 

Trans. 

Mode 

Multi-

service 

Penalty Uncertainties 

Long et al. 2015 Cost Min. SAA based DCs with 

different sizes 

√  Sea √  Demand, 

supply, ship 

capacity 

Di Francesco 

et al. 

2013a Cost Min. Rolling horizon for 

scenario based 

 √  Sea   Supply and 

handling 

capacity 

Di Francesco 

et al. 

2013b Cost Min. Rolling horizon for 

scenario based 

 √  Sea   Demand 

Gavranovic 

and Buljubasic 

2011 Cost Min. Robust 

optimisation 

 √  Sea   Supply 

Di Francesco 

et al. 

2009 Cost Min. Rolling horizon for 

scenario based 

Different types of 

containers 

√  Sea   Demand and 

supply 

Li and Han 2009 Cost Min. Stochastic 

programming 

Different types of 

containers 

 √ Sea   Demand and 

supply 

Cheung and 

Chen 

1998 Profit Max. Stochastic 

programming 

 √ √ Sea   Demand and 

supply, ship 

capacity 

Erera et al. 2009 Cost Min. Robust 

optimisation 

 √  Sea   Demand and 

supply 
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Zeng et al. 2010 Profit Max. Robust 

optimisation 

 √  Sea   Demand 

Belayachi, et 

al. 

2017 Cost Min. Tabu search  √  Sea    

Zheng et al.  2015 Profit Max. Two-stage linear 

programming 

 √  Sea √   

Sterzik et al. 2015 Cost Min. Mixed-integer 

linear 

programming 

 √  Hinterlan

d 

   

Myung and 

Moon 

2014 Cost Min. Mixed-integer 

linear 

programming 

Standard and 

foldable DCs 

√  Sea    

Olivo et al. 2013 Cost Min. Time-space 

mathematical 

programming 

DCs with 

different sizes 

√ √ Inland    

Long et al. 2013 Cost Min. Mixed-integer 

linear 

programming 

DCs with 

different sizes 

√  Sea √ Demand 

unmet 

 

Kopfer and 

Sterzik 

2012 Cost Min. Integer 

programming 

 √  Inland    
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Lei and 

Church 

2011 Distance 

Min. 

Mixed-integer 

linear 

programming 

   Inland    

Shintani et al. 2010 Cost Min. Mixed-integer 

linear 

programming 

Standard and 

foldable DCs 

√  Intermod

al 

   

Cai and Ting 2010 Cost Min. Mixed-integer 

linear 

programming with 

GA 

 √ √ Intermod

al 

   

Sun et al. 2009 Cost Min. Linear optimisation  √  Intermod

al 

   

Song and 

Carter 

2009 Cost Min. Linear optimisation  √  Sea √   

Jula et al. 2006 Cost Min. Integer 

programming 

 Two 

depots 

 Inland    

Karimi et al. 2005 Cost Min. Linear optimisation  √ √ Intermod

al 

   

Bell et al. 2013 Cost Min. Linear optimisation  √  Sea √   

Al-Rikabi et 

al. 

2014 Cost Min. Linear optimisation  √ √ Sea √   
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Choong et al. 2002 Cost Min. Linear optimisation  √ √ Inland    

Shen and 

Khoong 

1995 Cost Min. Mixed-integer 

linear 

programming with 

Heuristic 

 √ √ Intermod

al 

 Demand 

unmet 

 

Change et al. 2008 Cost Min. Mixed-integer 

linear 

programming with 

Heuristic 

DCs and reefers 

with different 

sizes 

√  Intermod

al 

   

Furio et al. 2013 Cost Min. Integer 

programming 

DCs with 

different type 

√  Inland    

Table 2.3 papers for ECR-oriented studies 
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As above table shown, most of the models are built for seeking cost reduction. Whereas 

profit maximisation is not commonly tried to achieve in above papers. Then leasing option 

is another potential gap here. According to Dong and Song (2012), lease options can be 

classified as spot-leasing or long-term leasing depending on the contract length. Yet there 

is only spot-leasing or flexible leasing (e.g. Olivo et al. 2013) incorporated, while long-

term leasing (e.g. Karimi et al. 2005; Choong et al. 2002) is normally regarded as 

company’s own containers and the associated decision-making is equivalent to new 

purchasing. At last, since the common practice in DC market is meeting customers’ 

demands by all means, job rejects are barely considered. For the studies considered job 

rejects, they either treat them as backlog orders or just linked with penalty cost, whereas 

no independent decision-making process involved. Also, the current random parameters 

are majorly surrounding demand and supply, but insufficient in discussing other aspects. 

The maritime industry is highly volatile which is associated with uncertainties coming from 

all kinds. As Seatrade Maritime News (2013) reported, different uncertainties could cause 

unpredicted market demand, container supply, ship and terminal capacity, voyage time, 

container demurrage and detention, repair and cleaning, and clearance and inspection etc. 

Therefore, exploring more different uncertainties could be beneficial both academically 

and practically. Moreover, markets such as TCs are unique with their own operation 

process and asset features, the uncertainties existed in DCs might less severe comparing to 

the others, hence the associated studies should be designed specifically, and different 

uncertain elements need to be considered. 

Next, papers that jointly investigated ECR with other management issues are going to be 

discussed.    

  

2.4.2 ECR with network designing problems 

As we discussed, ECR will directly influence container flow condition, therefore ECR can 

be jointly discussed with other topics that are highly affected by how containers are flowed.  

The maritime network design studies include subjects such as selecting calling ports and 

calling sequences, optimising shipping routes (and route structure), service frequency and 
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ship deployments etc. The rationale of jointly optimising container network design with 

ECR issue is because, from a long-term perspective, decisions about the network design 

will become constraints for container flow later on, so as to the ECR arrangements. For 

example, the determined the ports calling and the sequence will influence where, when and 

how much of the ECR activities taken place on an operational basis. Also issues such as 

ship fleet size and capacities would determine the flexible capacity for conducting ECR 

daily and so influence the effectiveness and efficiency of ECR activities. Therefore, it 

worth including the investigation of ECR issue when making decisions about network 

design problems at the higher level. 

From the seabourne side, some studies look at building the container network design with 

more effective and efficient container flow (e.g. Meng and Wang, 2011; Wang et al., 2013; 

SteadieSeifi et al., 2017 etc.). The ultimate goal of them is designing the liner shipping 

service network with proper typologies and operations that allows the most efficient and 

effective container flows. Then some research developed network design problem to be 

more complicated with the consideration of other elements. 

Shitani et al. (2007) proposed a two-stage model that addresses the shipping service 

network problem, ship deployment and ECR simultaneously. With the help of a GA based 

heuristic algorithm, the model is able to find a set of calling ports with optimized calling 

sequence, the number of ships by size category with determined cruising speed and the 

optimal empty container allocation that jointly yield the maximized profits. However, as 

Chen (2009) pointed out, due to a lack of cargo traffic demand fluctuations and cargo flow 

distributions among ports in their experiments, the obtained ship-slot allocations show the 

flaws. Therefore, in a similar approach of his research, a periodic fluctuations of cargo 

traffic demand with freight rates are considered for the experimental tests. In the study of 

Mittal et al. (2013), scenario-based analysis is used for solving an inland-empty-container 

depot locations problem with stochastic demand. A two-stage stochastic model is proposed 

to achieve cost reduction. Likewise, Perez-Rodriguez and Holguin-Veras (2014) addressed 

the empty container issue in urban planning and policy making with the consideration of 

stochastic empty container demand and supply. Wang (2013) provided a holistic network 

design, fleet deployment and ECR solution with the consideration of ship availability, 
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service frequency, ship capacity, transshipment, slot purchasing and ship repositioning. 

Further, Huang et al. (2015) have added the cargo routing consideration simultaneously 

with network design, ship deployment and ECR optimisation. Zheng et al. (2016) have 

added the exploration of perceived leasing price at each port by a so-called inverse 

optimisation technique. As a result, it helps operators with better freight price strategy and 

make better decisions when have the options for leasing and ECR.   

Also, there are some researches only address one specific network-design based issue with 

the consideration of ECR. Lu et al. (2010) addressed a slot allocation planning problem 

with ECR for multi-commodity containers and in a short sea liner service. Lu and Mu (2016) 

studied ship slot capacity management with ECR optimisation. It considers the adjustment 

of shipping schedules caused ship slot reallocation. Song and Dong (2012) consider the 

problem of joint cargo routing and ECR at the operational level for a shipping network 

with multiple service routes, multiple deployed vessels and multiple regular voyages. Some 

other cargo allocation with ECR researches can be found in Wang et al. (2014) and Brouer 

et al. (2011). And some research investigated the ship deployment with ECR 

simultaneously (e.g. Zhang and Wang, 2017; Shitani et al., 2007). 

From the inland side, the research focus is moved to vehicle deployment related, or barge 

vessel deployment and depot location problem with ECR consideration. Different from the 

underlying problems addressed in the sea leg, this context has its special features due to 

the difference in between vessel and vehicle (e.g. single unit vs. bulk delivery, see Cheung 

and Chen, 1998), flexibility of services (e.g. fixed schedule vs. flexible schedule, see 

Cheung and Chen, 1998; Erera et al., 2005) and geographic difference (e.g. longer distance 

and less route options vs. shorter and more route options, see Song and Dong, 2015). 

Crainic et al. (1989) construct a model discussing vehicle depots location with interdepot 

balancing requirements. It provides multimode transportations and aims at minimising 

various operational costs.  

More complicatedly, some studies address the network-design based problem with ECR 

consideration in an intermodal context. In this sense, the proposed models need to achieve 

an overall optimisation by considering the characteristics of the logistics network from both 

sides of shore. In addressing the significance of TC operation process, Erera et al. (2005) 
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proposed a time-space network flow model to arrange TC allocation with given shipping 

network and inland transportation network. Bandeira et al. (2009) integrated the 

distribution of both empty and full containers in an intermodal network and optimised the 

distribution strategy with a proposed heuristic. Braekers et al. (2013) presented a decision 

support model for service network design in intermodal barge transportation. In a dynamic 

setting, Crainic et al. (1993) proposed a two-stage network flow model with the 

consideration of uncertainties in demand and supply uncertainties. In the deterministic part, 

both single and multi-commodity cases are considered while for the stochastic part, only 

the single commodity is presented. Although the study didn’t discuss in detail of solutions 

to the proposed model, stochastic quasigradient methods are suggested to obtain the 

optimality as it can exploit the network structure of the problem. Song and Dong (2011) 

studied the ECR problem for a general shipping service routes. With the application of 

different inventory control policies, this research is evaluated under different deterministic 

and stochastic environments. Dong et al. (2015) built a two-stage stochastic model that 

jointly optimising service capacity planning, dynamic container routing in liner shipping 

with uncertain demand. Table 2.4 below summarise the major papers that fall into this 

category. 
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Author Year Optimisation type Methodology Multi-commodity Multi-port Leasing 

option 

Trans. 

mode 

Multi-

service 

Penalty 

Jeong et al. 2018 Cost Min. Linear programming  √ √ Sea   

Lu and Mu 2016 Profit Max. Integer programming DCs and Reefers √  Sea   

Huang et al. 2015 Cost Min. Mixed-integer linear 

programming 

 √  Sea √  

Xu et al. 2015 Profit Max. Game Theory  Two ports  Road   

Wang et al. 2014 Profit Max. Mixed-integer linear 

programming 

 √  Sea √  

Song and 

Dong 

2013 Cost Min. Three-stage optimisation  √  Sea √  

Wang 2013 Cost Min. Mixed-integer linear 

programming 

DCs and Reefers 

with different sizes 

√  Sea  Reposition 

rejection 

Braekers et al. 2013a Distance and number 

of trucks Min. 

Mixed-integer non-linear 

programming with 

annealing solution 

 Two ports  Road   

Braekers et al. 2013b Profit Max. Integer programming  √  Water   

Wang et al. 2013 Cost Min. Mixed-integer linear 

programming with 

heuristic 

DCs and Reefers 

with different sizes 

√  Sea √ Unmoved 

container 
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Moon et al. 2013 Cost Min. Integer programming 

with heuristic 

Standard and 

foldable DCs 

√  Sea   

Song and 

Dong 

2012 Cost Min. Two-stage short-path 

based and two-stage 

heuristic-rules 

 √  Sea √  

Dong and 

Song 

2012 Cost Min. Event-evolution based 

with GA solution 

 √ √ Sea   

Bell et al. 2011 Sailing time and 

dwelling time Min. 

Frequency-based method  √  Sea √  

Meng and 

Wang 

2011 Cost Min. Mixed-integer linear 

programming 

 √  Sea   

Brouer et al. 2011 Profit Max. Integer programming 

with linear relaxation and 

column generation 

DCs with different 

types 

√ √ Sea √ Unmet 

demand 

Liu et al. 2011 Profit Max. Mixed-integer linear 

programming 

 √  Sea √  

Wong et al. 2010 Cost Min. Immunity-based 

evolutionary algorithm 

 √  Sea  Unmet 

demand 

Braekers et al. 2010 Profit Max. Mixed-integer linear 

programming 

 √ √ Hinter

-land 
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Zhou and Lee 2009 Profit Max. Game theory  Two ports  N/A   

Chandoul et al. 2009 Cost Min. Mixed-integer linear 

programming 

   Road   

Chen 2009 Profit Max. and Cost 

Min. 

Mixed-integer non-linear 

programming 

 √ √ Sea   

Tuljak-Suban 

and Twrdy 

2008 Cost Min. Vehicle Routing Problem 

with Pickup and Delivery 

 √  Water   

Shintani et al. 2007 Profit Max. Mixed-integer linear 

programming and GA 

solution 

 √ √ Sea  Penalty is 

used to 

represent 

ECR and 

leasing 

Erera et al. 2005 Cost Min. Mixed-integer linear 

programming 

 √ √ Inter-

modal 

√  

Jansen et al. 2004 N/A Decision support system  Two hubs  N/A   

Lu et al. 2010 Profit Max. Integer programming DCs and Reefers 

with different types 

√  Sea   

Crainic et al. 1989 Cost Min. Integer programming Vehicle commodity 

with different types 

√  Inter-

modal 
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Imai and 

Rivera 

2001 Cost Min. Simulation DCs and Reefers √ √ Sea   

Imai et al. 2009 N/A Mixed-integer linear 

programming 

No √ √ Sea √  

Moon et al. 2010 Cost Min. Mixed-integer linear 

programming with GA 

DCs with different 

size 

√ √ Sea   

Takano and 

Makoto 

2010 Profit Max. Linear programming 

with GA 

No √  Sea  Reposition 

rejection 

Hjortnaes et al. 2017 Cost Min. Mixed-integer linear 

programming 

DCs with different 

size and with 

damages or not 

√  Sea   

Zheng et al. 2016 Cost Min. Mixed-integer non-linear 

programming 

Standard and 

foldable containers 

√ √ Sea   

Chen et al. 2016 Profit Max. Game Theory  √  Sea   

Monemi and 

Gelareh 

2017 Profit Max. Mixed-integer linear 

programming with 

branch-and-cut, bender 

decomposition 

 √  Sea √  

SteadieSeifi et 

al. 

2017 Cost Min. Mixed-integer linear 

programming with 

 √  Multi-

modal 
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adaptive large 

neighborhood search 

Zhang et al. 2017 Profit Max. Dynamic programming  √ √ Sea   

Bandeira et al. 2009 Cost Min. Mixed-integer linear 

programming 

 √ √ Inter-

modal 

  

Table 2.4 Papers for ECR with network design related studies
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2.4.3 ECR with sustainability problems 

Apart from network design related ECR planning, some researches have also incorporated 

sustainable consideration. Topics such as slow steaming, technologically advanced hull 

coatings, ECR management shows the essence in contributing to both sea and inland 

environments. Song and Xu (2012) develops an operational activity-based method to 

include the carbon emission as one indicator for evaluating ECR performances. The 

activity-based method is a simulation-based model that integrate the operations from port 

and shipping company with proper interfaces to various data. Through two case studies, 

how ECR management and port handling capacity jointly influence carbon emission is well 

presented. Lam and Gu (2016) proposed a market-oriented approach for achieving a bi-

objective goal including cost and transit time minimization with constrained carbon 

emission. Specifically, such approach stands from customers’ viewpoint and develops 

transport planning by integrating customer needs and infrastructure settings. As the two 

papers show, the green initiatives are directly addressed from carbon emission aspect, 

whereas other environmental issues such as noise, land use or product spillage are either 

briefly mentioned (e.g. Shintaini et al., 2010) or not addressed, at least, not properly 

formulated mathematically. In the study of Li et al. (2015), the sustainable efforts that can 

be achieved from ECR or empty container reuse is indirectly illustrated. Since the model 

and case studies have included considerations such as revenue, size of commodities, transit 

time, and delivery delay etc., the green contributions can be indirectly summarised from 

how much profit improvement can be achieved by reusing empty containers, how much 

space could be saved from ECR and container reusing, and how much congestions could 

be reduced etc. But again, it didn’t explicitly and directly include more green 

considerations as one component from the model formulation process. Hence, there is an 

absence of modelling green impacts (apart from emissions) on ECR planning. Moreover, 

operational process perspective, the green consideration adds more constraints to planning 

but it doesn’t change the nature of process itself. Therefore, the application of the existing 

researches to industry (e.g. TC industry) with different process focus may not be viable. 

In addition, ECR issues are also often discussed with other topics such as container fleet 

sizing problem or pricing strategies. Since those topics will be reviewed comprehensively 
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in later of this chapter, to avoid repetition, they will only be listed in the following table 

but not discussed. Similar to the pervious category, table 2.5 details the papers of this group. 
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Author Year Optimisation type Methodology Multi-commodity Multi-port Leasing 

option 

Trans. 

mode 

Multi-

service 

Penalty 

Li et al. 2015 Profit Max. Linear programming  √ √ Sea √  

Wang et al. 2014 Profit Max. Mixed-integer linear 

programming 

 √  Sea √  

Wang et al. 2013 Cost Min. Mixed-integer linear 

programming with 

heuristic 

DCs and Reefers 

with different sizes 

√  Sea √ Unmoved 

container 

Moon et al. 2013 Cost Min. Integer programming 

with heuristic 

Standard and 

foldable DCs 

√  Sea   

Song and Xu 2012 N/A Operational activity-

based 

 √  Sea   

Shintani et al. 2007 Profit Max. Mixed-integer linear 

programming and GA 

solution 

 √ √ Sea  Penalty is 

used to 

represent 

ECR and 

leasing 

Shintani et al. 2012 Cost Min. Integer programming Standard and 

foldable containers 

√ √ Sea   

Lam and Gu 2016 Cost Min. Mixed-integer linear 

programming 

 √  Road   
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Table 2.5 Papers for ECR with suitability
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2.4.4 ECR with inventory based-policies  

Different from above studies, some researches set up inventory control policies to address 

ECR problems. As Song and Zhang (2010) claimed, such policy has the advantages of 

being easy to operate and easy to understand, as well as being near optimal or even optimal 

sometimes. Specifically, despite the highly volatile environment, approaches of this kind 

tend to direct the ECR decisions with a series of decision-making rules associated with 

system dynamic states such as inventory levels of empty containers. To compare with 

mathematical-based ECR models, the practical ability of the mathematical ones is highly 

constrained by computational complexity as they are attempt to find a series of values that 

describe how many empty containers should be moved from which ports to another across 

whole network structure and time; while the inventory control-based mechanism only finds 

the optimised inventory control policy in advance, not all the value-based decisions. For 

example, Li et al. (2004) has incorporated (U, D) policy to manage empty container 

repositioning. Its rule is repositioning in empty containers up to U when the number of 

empty containers in a port is less than U, or repositioning out empty containers down to D 

when the number of empty containers is larger than D, doing nothing otherwise. Therefore, 

once the parameters and the rules of the policy are set up, such policy can be applied to 

make the ECR decisions involving whether to reposition empty containers, to or from 

which ports, and in what quantity. 

Lai et al. (1995) considered the ECR problem from mid-east port to far-east ports. They 

used a simulation model to evaluate different container allocation policies, which were 

characterized by a safety stock level, critical allocation point and port priority. Their study 

is a major milestone in the development of simulation model for container fleet sizing 

problem with inventory policies. Du and Hall (1997) utilized inventory and queuing theory 

and proposed a single threshold policy to redistribute empty containers in a hub-and-spoke 

system with random demands and deterministic travel times.  

Several researchers tend to explore the inventory-based mechanism in addressing ECR 

problem in the stochastic systems. Li et al. (2004) formulated the one port containerization 

problem as a non-standard inventory problem with positive and negative demands. They 

showed that the two-level threshold policy was optimal for the single port system and a 
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value iterative algorithm was proposed to calculate the optimal threshold values. Song and 

Zhang (2010) also considered ECR problem for a single port. Song (2005) and Song and 

Earl (2008) considered the empty vehicle redistribution problem in a two-depot system 

with continuous-reviewed. As they had mentioned, a vehicle may be defined as a reusable 

resource for realization of a given kind of transportation, such as ECR in shipping business. 

Song (2007) considered the similar problem with Song (2005) with periodical-reviewed. 

Song (2007) proved that optimal empty repositioning policy was also of threshold control 

structure in such system and a value iterative algorithm was applied to find the optimal 

threshold values. These studies demonstrate that the optimal repositioning policies are of 

threshold-type, which are characterized by a set of parameters and a set of rules, in some 

situations such as one-port and two-port systems. Once the parameters and rules are 

designed in advance, such threshold control type policies are easy to operate. Dong and 

Song (2012) proposed an event-driven simulation model which formulated the container 

fleet sizing problem and container allocation problem under uncertain customer demands 

and stochastic inland transport times. Rule-based policies are designed, optimised with 

respect to states of inventory and every individual container.  

Further works are extended to focus on the implementation of the threshold-type control 

policies for ECR problem in more general systems. Li et al. (2007) extended the study by 

Li et al. (2004) to a multi-port system. Song and Carter (2008) further extended works by 

Song (2005) and Song and Earl (2008) to a hub-and-spoke system, in which only the 

demands between the hub and spokes were considered. Song and Dong (2008) applied the 

threshold policy for empty container management in a cyclic shipping route problem and 

demonstrated that the threshold policy significantly outperformed the heuristic policies 

with simulation results. Moreover, Yun et al. (2011) applied the (s, S) policy-based 

inventory control for driving empty container repositioning activities. It was implemented 

in an inland area between customers and terminals with random demands for empties. The 

near optimal (s, S) value is acquired through a simulation-based optimization. Further, 

Dang et al. (2013) extended the above work to a port area with multiple depots considering 

three types of decisions: repositioning empties from overseas ports, inland repositioning 

between depots and leasing from lessors. 
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In addition, threshold-based control policies are not the only application in inventory-based 

model for ECR problems. Lai et al. (1995) incorporated an optimized safety stock to 

conduct the ECR decisions. Feng and Chang (2008) formulated the ECR problem for intra-

Asia liner shipping as a two-stage problem. The value of safety stock in each port was 

estimated as an average of difference in known inbound containers and outbound 

containers for two weeks. Epstein et al. (2012) introduced a decision support tools for 

company CSAV make ECR decision and safety stock holding optimization in a stochastic 

environment. Chou et al. (2010) proposed a fuzzy backorder quantity inventory model for 

solving the decision-making of optimal quantity of empty containers at one port. 

Followed, table 2.6 below is created to elaborate the reviewed papers of this group. 
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Author Year Optimisation 

type 

Threshold 

type 

Multi-commodity Multi-

port 

Leasing 

option 

Trans. 

mode 

Multi-

service 

Penalty Uncertainties 

Wong et al. 2015 Profit Max.   √ √ Sea    

Wang et al. 2015 Profit Max.   √  Sea    

Dang et al. 2013 Cost Min. Double  √ √ Road   Demand 

Ng et al. 2012 Cost Min.   Two 

ports 

 Road   Demand and 

supply, ECR 

lead-time 

Dang et al. 2012 Cost Min. Double  √ √ Road   Demand and 

supply 

Epstein et al. 2012 Cost Min. Safety stock DCs with different 

types 

√  Sea   ECR lead-

time 

Dong and 

Song 

2012 Cost Min. N/A  √  intermodal √ Loss of 

sales 

Demand and 

travel time 

Song and 

Dong 

2011 Cost Min. N/A  √  Sea  Loss of 

sales 

 

Song and 

Zhang 

2011 Cost Min. N/A    Sea   Demand 

Chou et al. 2010 Cost Min. N/A DCs with different 

sizes 

√ √ Sea   Demand and 

cost 
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Song and 

Zhang 

2010 Cost Min. Four   √ Sea   Demand 

Dong and 

Song 

2009 Cost Min. Double  √ √ Sea   Demand 

Song and 

Zhang 

2009 Cost Min. N/A   √ Sea   Demand and 

supply  

Song 2007 Cost Min. Double  Two 

terminals 

√ Sea   Demand 

Lai et al. 1995 Cost Min. Safety stock DCs with different 

sizes 

√ √ Sea   Demand 

Yun et al. 2011 Cost Min. Double DCs with two sizes  √ Road   Demand 

Du and Hall 1997 Cost Min. Double     Road   Travel time 

Li et al. 2007 Cost Min. Double  √ √ Intermodal   Demand 

Li et al. 2004 Cost Min. Double   √ N/A   Demand 

Lee et al. 2011 Cost Min. Single  √ √ Sea   Demand 

Lee et al. 2012 Cost Min. Single  √ √ Sea   Demand 

Song and 

Dong 

2008 Cost Min. Double  √  Sea  Loss of 

sales 

Demand 

Song and Earl 2008 Cost Min. Double  Two 

depots 

√ Road   ECR time 

and loaded 
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vehicle 

arrival 

Song 2005 Cost Min. Threshold 

policy with 

Markov 

Process 

 Two 

depots 

√ Road   Demand and 

travel time 

Table 2.6 Papers for ECR with inventory control-based policies 
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For papers above discussed about ECR with other operational issues, two distinct gaps are 

identified. One, multi-commodity issue is narrowly studied. Even though, some papers are 

carried under multi-commodity context, they majorly focused on DCs with different sizes 

or types. Yet, multi-commodity issue can be different type of containers and it will bring 

in more questions that are not addressed so far (e.g. thermal containers, TCs or reefers). 

Two, there are lack of studies examining wider range of uncertain issues when it comes to 

more realistic research background. In particular, if the features of TCs are taken into 

account, the reviewed studies are hard to be directly applied. 

First, due to the complex operation for TCs and its uncertain environment, the associated 

inventory control level should consider not only the overall net import or net export 

situation of each depot on each demand coming period, it also should take the demand 

coming and demand actual execution into account. Specifically, the existing inventory 

control-based models are designed to keep the optimised amount of inventory level that 

can meet the customer demands generated and satisfied at the same period of time. While 

for TC operation, the common practice is that demands are always generated prior to their 

execution date, in this sense, the designed inventory level of TC depot should consider the 

ability and flexibility in satisfying current demand execution as well as preparing for 

demands received on the same day but to-be-executed in the near future. It is the time delay 

in between demand receiving and demand execution makes the process much more 

complex, so same complexity should be applied to its inventory control logics.   

Two, the most studied uncertainties for all reviewed papers are no more than uncertain 

demand, supply, ECR lead-time or travel time. However, within the TC context, some other 

uncertainties can be significant due to two features from the industry itself. Similar to non-

vessel operating common carriers (NVOCCs), who organise shipments for customers’ 

goods delivery through contracting with different logistics modes (Guo and Li, 2015). 

Hence, without actually owning transport resources (no vessels for TCOs), NVOCCs and 

TCOs are facing uncertain reliabilities from using external resources. But differently, when 

managing cross-ocean transport, NVOCCs normally keep direct communication with 

shipping carriers while TCOs need FFs to be the intermediation. Therefore, the different 

choice of FFs is associated with different reliability levels, which will further compound 
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uncertainties and difficulties of the associated operation. Even though some existing 

studies have considered uncertain container supply, it is more caused by uncontrollable 

reasons such as uncertain customer return or uncertain travel time, but not FF related 

uncertainties. Hence, different model formulation and solution techniques are required. 

Next, the commodity that TC carries is different from DCs’, and the high standard 

requirements and various processes for TC cleaning leaves significant uncertainties. Since 

TC cleaning can be highly varied to different types of products that the TC moved as well 

as different types of TCs are used, it then requires new investigation of its influence on 

overall operation and associated solutions. Meanwhile, it can further complicate the 

problem by linking it with multi-commodity research context which is seldom studied as 

above table illustrated.     

 

2.5 Tactical and strategic level TC asset management 

Tactical and strategic planning activities are designed for long-term objectives. In container 

asset management domain, tactical and strategic planning activities aim at maximising the 

overall values that can be contributed from containers throughout a long period of time. 

Some researchers tried to achieve the tactical and strategic goals with container asset 

management by optimising network designs. For example, Jeong et al. (2018) presents an 

investigation in a two-way four-echelon container supply chain to design direct shipping 

service routes so that container operational cost can be significantly reduced in a long run. 

Vilhelmsen et al. (2014) investigated the tramp ship routing and scheduling network 

analysis to maximise the total profit for tramp ship operators.  Also, some studies about 

tactical and strategic asset planning are focusing on optimising assets value through 

collaboration and competition with players along their supply chains. For example, Heaver 

(2002) indicated the different cooperative agreements in shipping companies and 

illustrated the potential benefits for maximising asset return. Maloni et al. (2016) 

investigated the share of vessel strategy among shipping lines to gain better market position 

for shipping companies with their assets.  Moreover, there are studies investigating asset 

maintenance and security related policies and procedures (e.g. Ramirez-Mar-quez, 2008; 

Boros et al. 2009; Kantor and Boros, 2010) which look at maintaining good condition of 
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assets with cost effective strategies; service design issues (e.g. Balci et al., 2018; Lim, 1998) 

which look at how shipping companies differentiate their core services with available 

assets. Nevertheless, due to the reasons mentioned in seiction 2.4.1.2, this research will 

only focus on fleet sizing and pricing issues. Therefore, the following subsections are 

developed surrounding these two directions only. 

 

2.5.1 Container fleet sizing 

In maritime industry fleet sizing problem is often associated with vessels or containers. 

Since our main focus is to link this topic with TC industry, yet TC operators have no vessel 

fleet to worry about, only the container fleet sizing problem is thereby discussed. As an 

essential decision for maritime decision makers, container fleet sizing influences how 

customer demands are satisfied (job fulfilment) and determines what service level can be 

achieved, but on the other hand, the associated investment and operating costs will create 

a dilemma for its decision-making (Dong and Song, 2012). Since the direct link and 

influence of container fleet sizing decisions is on operational-level planning, the underlying 

problem is normally jointly studied with various operational maritime issues. 

For normal DCs, Turnquist and Jordan (1986) have firstly develop a model to decide the 

optimal container fleet size when container travel times are stochastic with inland transport 

and deterministic production cycle. The proposed model and tests have presented the 

dynamic relationship of production cycles, travel time uncertainty and number of plants 

with total container equipment requirements. As the results illustrated, optimising the 

container fleet size can effectively reduce freight equipment requirements as well as empty 

equipment redistribution costs. However, how specific container travelling deployments, 

job fulfilments and ECR decisions etc. are not explicitly optimised after the decision of 

container fleet sizing. In studying the influence of network structure design over container 

flow, Imai et al. (2009) have taken the container fleet sizing optimisation into account. Two 

typical service networks with different ship sizes are tested and the overall model is 

comprised by the network design and container distribution two stages. With the 

consideration of ECR, different scenario analyses are given to present the insights of 

container fleet sizing and ECR strategies when different network structures are applied.  



70 | P a g e  
 

In order to align container fleet sizing problem with everyday operation. Some researchers 

investigated the impacts of container fleet sizing problems over operational container 

distribution and job fulfilment strategies within different environments or systems. Du and 

Hall (1997) have pointed out the high interrelationship between container fleet sizing and 

empty equipment reposition. However, the model is not considered with uncertainties in 

transportation nor demand. In order to obtain the optimal inventory policy for driving ECR 

activities with uncertainties, Song (2007) considered the container fleet sizing decision in 

a Markov decision process model and the container distribution operation is carried in a 

periodic-review shuttle service system. Dong and Song (2009) have jointly studied the 

container fleet sizing and ECR problem in multi-vessel, multi-port and multi-voyage 

systems with dynamic and imbalanced customer demands. Similar research is conducted 

by Lee et al. (2012) while the optimisation process is completed by a non-linear 

programming and a gradient search approach.  

To expand the scope of the container fleet sizing problem in the maritime operational 

research area, some studies have specifically looked into fleet sizing problem with different 

types of containers. Imai and Rivera (2001) carried the research to design strategic fleet 

size planning for maritime refrigerated containers. First an analytical model is discussed to 

determine the optimal size of self-owned DC fleet and then it is extended to reefers. Next, 

a simulation model is developed to provide decision support for practitioners when they 

are in the presence of new container investment options and leasing in conjunction with 

container allocation. Since the reefer industry is featured by extremely imbalanced trade, 

the proposed model is proven to provide effective decisions support. And with scenario 

analyses, the different scale of self-owned reefer fleet sizes is recommended when cargo 

trend varies. List et al. (2006) have explicitly studied container fleet sizing problem with 

radioactive wastes travelling problem. A complicated realistic problem is addressed by this 

study, which optimising the container fleet size with purchasing decisions and the 

transportation of wastes with defined rate and uncertainties are taken into account. A robust 

optimisation model is constructed to explore the effects of uncertainty on the purchasing 

strategy, meanwhile, the container movements over the networks are optimised as well. 

Shintani et al. (2012) have studied the container fleet management for standard and 

foldable containers in liner shipping networks. The model is formulated analytically by 
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integer programming and it aims to find the proper combination of both standard and 

foldable container fleet sizes with given cost structure and trade patterns. As the case study 

results illustrated, only with strong imbalanced trade pattern environment, the mix of 

foldable containers with standard ones is able to generate substantial savings, while the 

high exploitation costs are the main issue that constrained the use of foldable containers. 

Further, to summarise all the reviewed papers within the area, table 2.7 below incorporated 

some common metrics for benchmarking. 
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Author Year Optimisation 

type 

Formulation and Solution 

highlights 

Multi-

commodity 

Multi-

port 

Leasing 

option 

Penalty Uncertainties Highlights 

Dong and 

Song 

2012 Cost Min. Event-driven modelling, 

GA, GS and SA 

 √  Unmet 

demand 

Demand and 

travel time 

Fleet sizing with 

travel time 

impacts 

Dong and 

Song 

2009 Cost Min. Simulation-based 

modelling, GA 

 √ √  Demand Fleet sizing and 

inventory policy 

Song 2007 Cost Min. Markov Decision Process  Two 

terminals 

√  Demand Fleet sizing with 

different ECR 

policies 

Du and Hall 1997 Cost Min. Queueing model, Monte-

Carlo simulation and 

decomposition approach 

    Travel time Fleet sizing and 

container 

redistribution 

Imai and 

Rivera 

2001 Cost Min. Analytical modelling and 

Simulation 

DCs and 

reefers 

√ √   Multi-

commodity fleet 

sizing 

Imai et al. 2009 Cost Min. Time-space network and 

multi-dimensional 

comparison 

 √ √   Fleet sizing and 

network design 

Lee et al. 2012 Cost Min. Non-linear programming 

and gradient search 

 √ √  Demand Fleet sizing and 

inventory control 
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Song and 

Earl 

2008 Cost Min. Queueing model and 

analytical solution 

 Two 

depots 

√  Reposition 

time and 

loaded vehicle 

arrival 

Fleet sizing and 

inventory control 

Shintani et 

al. 

2012 Cost Min. Time-space network and 

linear optimisation 

Standard 

and foldable 

containers 

√ √   Multi-

commodity fleet 

sizing 

Turnquist 

and Jordan 

1986 N/A Mathematical 

programming 

 Multi-

plants 

   Fleet sizing and 

travel time 

List et al. 2006 Cost Min. Two-stage stochastic 

optimisation 

√ √    Product amount, 

production rate 

and container 

supply 

Table 2.7 overview of studies with container fleet sizing problem 
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To sum up for this group of studies, the core of container fleet sizing is the decision that 

how can operators meet customer demands under various constraints and uncertainties with 

limited financial resources in a long run. The existing studies we reviewed have 

incorporated this issue along with other different operational planning. Apart from the 

specific research absence or limitations we covered above, table 2.5 also illustrated that, as 

tactical/strategic planning activities, container fleet sizing problem only jointly optimised 

with network flow designing and inventory policies. And the majority of all the studies are 

still focusing on evaluating the impacts of them on different operational decision-making. 

However, as a tactical/strategic decision-making, there are other issues (e.g. pricing and 

contracting) that lie on the same level could interrelate to it. This is important to TC 

industry, as they contain more opportunities to jointly influence asset profitability as whole. 

Therefore, incorporating those absences could largely fill up the academic gap as well as 

provide more insights in supporting better container asset management in a long-run.   

 

2.5.2 Pricing strategy 

Due to the competitive nature of the freight transportation industry, pricing strategy plays 

a critical role in maintaining effective revenue management. Since price can directly 

determine companies’ competitive positions, influence demand patterns and alter operation 

procedures (Xu et al., 2015), pricing strategy is well studied in the maritime industry for 

the past decades. According to whether the pricing strategy is used for coping with external 

environment or enhancing internal operations, the reviewed papers in this section are 

categorised into two groups. 

 

i. Freight price and competition among carriers and logistics providers 

Maritime industry is known for its complex and intensive competition due to the large 

number of different participants and their dynamic relationship network (Oliveira, 2014). 

Alongside this supply chain, competition is not only occurred at the end-market where 

different shipping companies struggle to expand their shares, but between carriers and 

customers, carriers and freight forwarders, competition is also severe in different way. 
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Since pricing strategy is the key component of revenue management, and the later one is 

essential to keep company financially stable and competitive, the impacts of pricing 

strategy on achieving better competence are well studied from various angles. 

To study the pricing strategy and competition in freight transportation and logistics, Wan 

and Levary (1995) studied the procedure for shippers to obtaining the lowest adjusted price 

for a given shipping route with least period of time. They proposed a linear programming 

model to work on behalf of shippers. Zhou and Lee (2009) studied the pricing strategy of 

two competing firms between two locations with the consideration of ECR costs. With the 

realised demands, the price decision of both firms is reflected, and a mathematical model 

is built to look the insights of the interrelation between pricing and competition. As the 

results indicated, the optimal pricing strategy is either to seek the balanced realised 

demands or to treat two transportation directions as two separate markets. In addition, how 

carriers’ profit is influenced by the competitive market environment is analytically 

represented. Similar to this study, Chen et al. (2016) explored pricing strategy and 

competition among carriers between two locations but with the consideration of waste 

shipments. Both a monopoly and duopoly model are built to find the optimal pricing 

strategy for carriers while the ECR cost is taken into account. As the cast study illustrated, 

the competitive environment can be significantly magnifying with the transportation of 

waste and scrap, profit of carriers may be reduced under some circumstances. But with the 

proposed optimisation approach, even for the most imbalanced shipping routes, profits can 

still be improved under competition through strategic pricing. Same to the pricing and 

competition research for carriers, Wang et al. (2014) discussed the topic when the context 

is defined in a new emerging liner container shipping market. Three game-theoretical 

models are developed to analyse the competition and then to maximise the total payoff 

through optimal freight rate and a combination of service frequency setting and ship 

capacity setting. This research jointly optimised several strategic/tactical level decision-

making, and with the help of case study analysis, advices for these strategic/tactical level 

planning are pointed out with respect to different circumstances. Also, some studies have 

included the competition between other participants within this supply chain. Chen and Yu 

(2017) created a Stackelberg game model to explore the contract design for carrier and the 

pricing strategy of freight forwarders. Through the analyses on both symmetric and 
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asymmetric demand information cases, how to design the optimal contract for carriers and 

how to tweak the price for freight forwarders are discussed in detail.  Some studies (e.g. 

Tezuka et al., 2012; Yin et al., 2017) considered the competition among several participants 

and the corresponding pricing strategy are developed as well. 

Different from the direct application of pricing strategy to enhance the competitive position 

for shipping companies, some studies incorporated different financial concepts jointly with 

pricing strategy to help with company’s competence as well as address maritime 

management issues. Yin et al. (2010) proposed an option-based dynamic pricing model 

with American call/put options for shipping company under the existing legal regime. With 

respect to different types of options, different mechanism including option premium, strike 

price, expected instantaneous rate of return of underlying assets, the instantaneous standard 

deviation of return of underlying assets and non-risk rate of discount are derived to address 

the research objectives. Bu et al. (2012) stood on freight forwarders’ interests to conduct a 

theoretical analysis which investigated freight forwarders’ option ordering, pricing policies 

and with the consideration of ECR and option trade. It also illustrated the effectiveness of 

the model in improving freight forwarders’ total revenue with optimising the option trade 

decisions and the unit cost of freight. Zheng et al. (2017) incorporated the idea of risk-

aversion effects on carriers’ pricing strategy and a game model is proposed to evaluate the 

optimal pricing decision for two carriers with different attitude of reducing the negative 

impact of uncertainty. Under uncertain demand and different conditions, the impact of 

price sensitivity and competition intensity parameters are analysed and the different 

optimal prices and the dynamic behaviours for the two competing carriers are well 

presented. 

Link above addressed problems and approaches to the research problems of this thesis, the 

focus of deciding appropriate price policy for more effective container flow and better asset 

profitability are hard to be fully responded. Even though some of those researches have 

considered the ECR problem and demand uncertainties, their focus is on achieving optimal 

equilibrium with varying different parameters, while this research is interested in 

optimising the pricing strategy to obtain detailed container allocation and distribution plans. 

In another word, the exploration should not only stand at the tactical/strategic level, the 

followed operational planning need to be elaborated as well. 
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ii. Pricing and enhanced operational level planning 

To develop the optimal pricing strategy for operational level planning, some research chose 

the port terminal operation as the focus. Laih et al. (2007) studied the queueing pricing 

strategy for container ship arrival decisions. They designed an optimal step toll scheme by 

cost equilibrium approach, which is aiming at finding the cost equilibrium for queueing 

cost and operating cost under such scheme. By doing this, container arrival schedule can 

be planned with less waiting at the queueing port. Likewise, Yu et al. (2015) designed an 

inbound container storage pricing schemes for terminal operators. Considering both free-

time contract system and free-space contract system, a two-stage pricing game model is 

developed to derive the optimal decisions for both terminal operators and ocean carriers. 

Later Xiao and Ha (2018) have included unloading pricing together with storage pricing 

for inbound containers at terminals. With a novel model formulation, the two strategies are 

jointly determined to conduct the corresponding port operations and then maximise the 

total profit for terminal operators. The results shed light on how these price strategies can 

be determined jointly to balance the trade-off between profit extraction and storage cost 

efficiency, in addition, how the followed container unloading, transporting and storing 

planning at the port is presented. Rather than the inbound containers oriented, Woo et al. 

(2016) studied the pricing storage for outbound containers in container terminals. A price 

scheme is developed which includes both the free-time limit and storage charge per day for 

storing a container beyond the free-time limit. In order to achieve profit maximisation, a 

mathematical model is proposed based on the parameters with container operations in 

terminals. The results indicated that different practices of finding the optimal price policy 

is highly related to the distribution behaviour of the dwell time at port.  

Rather than focusing on port-based policing strategy, some researches evaluated the pricing 

impacts over container allocation and distribution operations from shipping companies’ 

viewpoint. 

Gorman (2002) proposed a Monte Carlo simulation to capture uncertain market conditions 

and to optimise freight price with the consideration of ECR costs. A heuristic is developed 

to improve the profitability of price policies. In the study of Xu et al. (2015), a sea-cargo 
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service chain with one carrier and two forwarders system is explored. By optimising the 

pricing policy, the cargo demands can be deliberately balanced which can further increase 

the efficiency of container flow and reduce the needs of ECR. Also, since the research 

found the benefits of ECR sharing between carriers and freight forwarders, a ECR sharing 

model is further studied to help with contracting problem between both forwarders and 

carriers. Liu and Yang (2015) examined the slot allocation problem with dynamic pricing 

strategy under sea-rail multimodal transportation. A two-stage model is developed where 

the first stage contracting the slot allocation and ECR availability with market, and the 

second stage takes dynamic pricing strategy and inventory control mechanisms to achieve 

overall revenue maximisation. To cope with the stochasticity of demand for the multimodal 

network, the model is convert to a deterministic one with chance constrained programming 

and robust optimisation. As the results revealed, optimising price strategy dynamically with 

respect to the fluctuation of container flows can significantly contribute to overall revenue 

management. Yin and Kim (2012) suggested quantity discounted pricing for freight 

forwarders, so that shipping companies can maximise their expected profit with increased 

sales. An analytical model is proposed, and the freight model is depicted by features such 

as price-break points, discounted freight rates, and penalties for unsold space. 

Moreover, some researches have incorporated the leasing consideration with the pricing 

problem. Wang et al. (2015) construct a profit-based container assignment (P-CA) model 

while the customer demand is dependent on freight rate and both laden and empty container 

leasing cost is considered. With a tactical level P-CA design, the overall liner shipping 

network can be evaluated and improved, and then the operational level P-CA is addressed 

by adjusting freight rates to achieve maximised profit. The model is solved by both 

theoretical convergent trail-and-error approach and practical trail-and-error approach. Jiao 

et al. (2016) have explicitly studied pricing problem for stochastic container leasing system. 

Due to the difference comparing to consumer product pricing problem, the study examined 

the pricing problems in static and dynamic environments. Zheng et al. (2016) stood from 

the shipping companies’ interests and evaluated the perceived container leasing prices to 

develop better container network design and reduce ECR. Specifically, the perceived 

leasing cost is defined by calculating the costs of using shipping companies’ self-shipping 

network for ECR activities. Hence, this information can be used to take decisions on 
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container leasing strategies at different places for shipping companies. Followed a two-

stage network-based model is proposed. The first stage is aiming at completing the overall 

network design with ECR, and the second stage is used for finding the perceived leasing 

price. Foldable containers and mutual substitution between empty containers are 

considered. 

Also, the context of reverse logistics is incorporated for pricing strategy in some papers. 

Huang et al. (2008) discussed the integration of inventory and pricing model to deal with 

inventory control, production scheduling and pricing decisions for the management of 

refillable containers. The objective of this study is finding the optimal policy at profit 

optimisation way that defines the procurement frequency, cycle time and pricing decisions 

simultaneously. Atamer et al. (2013) carried the study to focus on pricing and production 

decisions with reusable containers in a manufacturing system with stochastic customer 

demand. Two supply options in parallel are provided to customers with different price 

settings and the goal of the study is deciding the optimal price and production decisions to 

maximise the manufacture’s profit with the combination of the two supplies. In addressing 

container return issue, Fazi and Roodbergen (2018) studied different price regimes for 

D&D issue with the goal of minimising costs incurred during the underlying period. 

Particularly, both separate and combined D&D regimes are evaluated, and their different 

applications are discussed respectively. The research is conducted under a deterministic 

setting and it is designed to fully fit DCs operation. Standing from Seaport terminals’ 

perspective, Yu et al. (2018) utilise a two-stage game model that optimises free detention 

time with consideration of empty containers in the hinterland transportation system. 

Ndikom et al. (2017) investigated different demurrage policies and charges with selected 

shipping companies and their implications in Nigeria. The research conducted a survey 

model that tries to reveal the insights with a statistic manner. With the proposed literature 

review methods, only these three papers are found that discuss about pricing policies 

regarding D&D issue. 

Since the variations for all the papers in this section are great in terms of the addressed 

issues, model context and methodologies, the table benchmarking is not going to be used 

here but only a qualitative conclusion is given. For above reviewed pricing strategy related 

studies, the following absence is spotted in considering our proposed research questions. 
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First, none of the papers reviewed for the tactical/strategic level planning (including fleet 

sizing problem) have jointly considered container fleet sizing and pricing strategy. Only 

network design as the high-level planning is frequently incorporated with these two, but 

the joint optimisation of these two decision-making seems scarce.  

Two, as all the pricing strategy studies illustrated, demand is term that most researches 

wish to control when they manipulate price mechanisms. In the maritime logistics field, 

demand is always interpreted as how many containers or commodities will be purchased 

and this is the main content when it comes to logistics service. However, there are some 

other demands they are not necessary to the overall logistics service, but their existence 

can largely influence the overall efficiency. For example, customer pay premium for fast 

delivery or the charges for detention and demurrage etc. 

 

2.6 Research gaps 

To finish up the literature review chapter, all the research gaps after reviewing above 

studies are summarised as below. 

2.6.1 Research gaps at the operational level 

First, compared to inventory control-based ECR models, Although mathematical models 

can precisely plan container flow related activities, the complexity and high requirements 

on information visibility reduce their robustness in coping with uncertainties. Also, the 

computation complexity problem limits its application for operational level planning 

within a more realistic setting. However, for the existing inventory control-based models, 

gaps still exist when they are put into TC market context. For example, the types of 

operational uncertainties are still not broad enough in existing literature. It is widely 

appreciated that, apart from uncertain demand and supply, uncertain travel time, uncertain 

container charging and discharging, uncertain berthing, cleaning and return, and freight 

changing etc. can largely influence daily operation as well. Especially, in TC industry, 

special features from the moving commodity, market characteristic and “quotation-

booking” process can bring more uncertain elements for TC travelling and return. 
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Therefore, to be more adaptable in addressing TC asset management, the current existing 

practices need to be changed and improved. 

Second, the time gap between demand receipt and execution has not been modelled 

appropriately. As the customer request for a price quotation is often received well in 

advance of the demand execution time, so TCOs have to decide whether to issue a price 

quotation without accurate information on tank container availability at the demand 

execution time. In addition, the demand receipt is revealed gradually over time. Erera et al. 

(2005) emphasized the “quotation-booking” process in tank container management, but 

assumed all demands are known and deterministic in the planning horizon.  

Third, there is a lack of decision support methods for developing quotations to meet 

individual customer demands. Support is required in determining precisely how to service 

individual demands, calculating expected costs and subsequently maximising profits 

through the quotation process. This problem becomes even more complex with the option 

to lease containers, which can take the form of planned leasing or spot/emergent-leasing, 

in more real-time, with their different costs.  

Forth, process uncertainties need to be included. For example, tank containers are 

transported by third parties, so tank container operators face significant uncertainties from 

FFs and shipping companies. This is because, different freight forwarders provide different 

level of services per costs and low-service-level freight forwarders are less reliable and 

may not be able to finish tank container operators’ tasks effectively. Also, as practitioners 

from the TC industry pointed out, it is difficult to finish cleaning on time between different 

commodities, so deterministic, standardized cleaning times are not realistic.  

Fifth, ETCR is more expensive as TC operators have no ships and there are the third-party 

sources of uncertainty mentioned above. The planned and forecast execution of booked 

customer demands in the future may influence the volume of ETCR at the present time, 

but something unforeseen in the future may make the current ETCR ineffective. 
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2.6.2 Research gaps at strategic/tactical level 

First, since TCOs normally operate a global business, it is essential to design the TC depot 

network with the balance of their global market distribution and the easy access to 

intermodal supply chain. Namely, the TC depot network structure should match the global 

market pattern and bridge the external logistics networks to provide efficient and effective 

support to TC flows. However, the industrial specialities made TC container flow planning 

is never the same as DCs. Especially, it is very expensive for TCOs repositioning self-

owned TCs through the sea, long-term decisions such where and how many depots should 

be placed in a region are more critical to TCOs, as the overall TC depot network used as a 

whole to serve its customers but quite isolated internally and regionally when it comes to 

cooperation. Consequently, it is more difficult for TCOs matching the market 

characteristics and requirements with a long time static network design. The limitations 

embedded in TC network reduces the flexibility in coping with dynamics, and any changes 

in the market (e.g. trade patterns or change of shipping line routes) may cause greatly 

distortion of the TC flows and the expected TC profitability and utilization can be 

significantly influenced as well. In addition, issues such as the high reliance on special 

cleaning facilities and customer over-holding TCs can overburden the problem further. In 

turn, the industrial speciality made the existing studies and practices are hard to be applied 

to TCOs’ use. The need of investigating and developing the TC based planning for the 

underlying issues are important. 

Two, there is lack of studies that can effectively address TC customer holding issue. The 

great reliability and high standards on safety made TC popularly used as a temporary 

storage equipment, but it left delays TC return journey and undermined uncertainties in 

managing overall TC flow. Due to the similarities between TC customer-holding and DC  

D&D, pricing mechanism shows the ability to address TC overholding issues (e.g. Fazi 

and Roodbergen, 2018). However, differences between them can limit the direct 

application of studies about D&D into TC overholding. Those differences include (1) 

longer duration is more likely for TC overholding; (2) no clear boundary from port terminal 

to hinterland transport throughout the whole period; (3) TC overholding will be linked with 

uncertain TC cleaning. Therefore, in a long run, TCOs need make decisions on TC over-
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holding price and free days policies to maintain good TC information visibility and 

efficient TC flow but without compromising TC hire revenue.  

Three, there is no such research that have target TC from asset management perspective 

and carried an integrating and panoramic analysis regarding it. As we appreciated, the 

ultimate objective of asset management is achieving the optimal asset utilisation and 

profitability. All activates throughout its lifecycle from every aspect need to be 

dynamically and interrelatedly analysed. Hence, researches from single viewpoint without 

interrelations with other dimensions (e.g. the interrelation between operational and tactical 

level decisions) may cause the limitations of their realistic application.  

 

2.6.3 Research objectives 

Before the proposing of the research objectives, above discussed research gaps are firstly 

classified (table 2.8) with respect to different issues, so it helps to build up the research 

objectives respectively. 

Planning 

level 

Operational level Strategic/tactical level 

Topics Job 

fulfilment 

ETCR Container 

flow 

network 

design 

Fleet sizing Pricing 

mechanism 

to enhance 

container 

return 

Research 

gaps 

Lack of 

model 

designed to 

capture the 

delays, 

complex and 

uncertainties 

embedded in 

The 

consideration 

of FF 

reliability 

uncertain 

container 

return with 

respect to 

cleaning 

and 

the joint 

optimisation 

with pricing 

strategies 

TC 

customer 

overholding 
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TC 

“quotation-

booking”  

customer 

overholding 

Difference 

between pre-

leasing and 

spot-leasing 

Only intra-

regional 

ETCR is 

allowed 

Explicit 

leasing and 

rejecting 

decisions 

uncertainties 

caused by 

container 

cleaning and 

overholding 

 

Uncertain 

container 

cleaning 

    

Table 2.8 Highlights of research gaps 

Regarding the identified research gaps, we wish to break down the TC asset management 

problem to different planning levels, and re-integrated them through simulating, evaluating 

and optimising the associated subproblems with consideration of the key industrial features, 

dynamic interrelationship, and uncertainties. Specifically, four explicit research objectives 

can be identified. 

1. To build a model that can simulate, evaluate and optimise the TC “quotation-

booking” process under various uncertainties, as well as giving decision support to 

job-fulfilment, ETCR arrangements and selection of freight forwarders; 

2. To form the systematic way of setting up inventory control policies that can help 

TC operators cope with uncertainties and manage more efficient TC flow; 

3. To design TC flow network that meets both customer delivery and holding demand 

with optimised TC profitability at strategic viewpoint; 

4. To jointly optimise TC container fleet size and TC over-holding pricing strategy 

which can control and lead the overall TC network flow with increased efficiency 

and profitability.  

By achieving above objectives, significant contributions can be made both academically 

and practically. From the academic perspective, this research can help to raise more 
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academic attention to this particular field. It has comprehensively explored the existing 

researches, summarised the main achievements and identified several research gaps within 

this fields. Moreover, it pumps new blood to the knowledge body of TC area, and some of 

the issues (e.g. freight forwarders, TC over-holding, container cleaning etc.) that addressed 

by this research can also provide reference to the operations of other type of containers. As 

a result, the realistic applicability of some existing studies can be improved as well. At last, 

throughout the overall research process of this research, multiple future research 

opportunities can be inspired within this field or beyond. From the practical viewpoint, the 

potential research outcomes can help practitioners with better decision-making when they 

are facing the complexity of TC operational process and various uncertainties. It provides 

practitioners the “top-down” (from strategic level to operational level) strategies to manage 

their assets for better utilisation and profitability. By addressing some ignored issues (e.g. 

TC over-holding and selection of freight forwarders), it can raise the awareness of the 

industry and provide the tools for practitioners to re-evaluate their performance and take 

actions. Moreover, it can make significant contribution to the suitability of this industry 

through the reduction of ETCR movements (environmentally & economically), effective 

inventory control (environmentally and socially), and improved TC over-holding 

(economically & environmentally) etc. 

Followed, the next Chapter will discuss in detail of the methodologies that will be used by 

this thesis regarding our identified research objectives. 
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3. Methodology 

As Novikov (2013) defined in his book, research methodology refers to “the process that 

is the specific used for identifying, collecting, and analysing information of a topic, and 

also includes various techniques for evaluating a study’s overall validity and reliability”. 

To achieve the research objectives that we proposed in previous section, strategies for the 

research methodology of this thesis is built upon three pillars (illustrated by figure 3.1).  

 

Figure 3.1 Three pillars of methodologies 

According to how the research problems are described, the first pillar of the research 

methodology is about finding the appropriate process of formulating the research questions. 

Particularly, this includes the processes of transforming real-time operations, rules, 

networks and key events etc. into an integrated system, and meanwhile, various techniques 

are involved for simplifying, generalising and constraining the underlying problems, to 

ensure the research is properly framed with effective boundaries, so the research questions 

are correctly addressed, and the research objectives are solvable (Creswell, 2014). 

Followed the formulation of the research problems, the second pillar of the research 

methodology is about using the effective and efficient processes and techniques to solve 

the problems (problem solutions). This pillar normally details how information is collected, 

processed and delivered, so that the targeted research objectives can be achieved by 
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obtaining specific results. In addition, methodology for solutions will also determine what 

research resources (i.e. time, tools, external support etc.) are going to be required and how 

they will be utilised. At last, the final pillar of the research methodology is a series of 

methods that are related to the verification and validation of the development process of 

this research and its corresponding results (ibid). Specifically, the verification and 

validation include processes of checking, confirming, making sure, and being certain of the 

reliability and validity of the research results as well as how the associated research 

problems are proposed and formulated. In another word, it is the core of the rigor of the 

underlying research. Accordingly, three main sub-sections in the following are going to be 

presented regarding the three pillars respectively.       

 

3.1 Modelling methods 

As Bouyssou et al. (2006) summarised, the methods used for problem formulation includes 

four approaches: The Normative Approach, the Descriptive Approach, the Prescriptive 

Approach, and the Constructive Approach. Differences of those four approaches lie in the 

characteristics of every approach and the process of obtaining the model. According to the 

questions and purposes of this research, the constructive approach is the appropriate one 

that can be used for modelling the underlying problems. Specifically, the process of 

obtaining the model for constructive approach considers no preferences pre-exist but lets 

the to-be-researched object construct its system of values while the model is being 

constructed, recognise that one construction cannot be isolated from the other (ibid). Also, 

the final model is expected to be validated through a consensus reached between the people 

involved in the system and the researchers. In this research, the problems come out from 

the system of TC asset management itself and the system forms its own construction, the 

way of formulating the research problems will not alter the TC operation itself but wish to 

achieve better decision-making and obtain insights from modelling and simulating the 

system itself. Therefore, the constructive approach is adopted by this research. In addition, 

since we wish to look at numerical relationships, dynamic correlations and decision-

makings among different factors through the system simulation and modelling, quantitative 

modelling techniques will be the major components of the constructive approach.  
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According to the existing literatures, the quantitative methods and techniques that used for 

formulating problems in maritime container operation management include two major 

categories (Song and Dong, 2015). The first category of the modelling techniques adopted 

the network flow models and often applies mathematical programming to produce a set of 

arc-based matrices. In particular, the element in each matrix is a numerical value 

representing the quantity of maritime containers to be moved by an arc for various purposes 

(i.e. job fulfilling, ECR, leasing etc.). For example, Shen and Khoong (1995) construct a 

network model to optimise the flow of empty containers over a multiperiod planning 

horizon. Choong et al. (2002) built a time-space network model which contains four 

decision variables over various arcs that form the linkages between customer location 

nodes and container supply pool nodes. Song and Carter (2009) applied a linear 

programming to evaluate ECR strategies with network flow models. In the model, regions 

are modelled similar to the nodes in previously discussed models, and the region nodes are 

linked by shipping route which is also similar to the arcs as we mentioned before. Erera et 

al. (2009) introduced the arc-based network model for an adjusted robust optimisation 

problem so decisions for container values over each arc include both fixed variables and 

dynamic recovery action variables in addressing uncertainty. Brouer et al. (2010) 

developed a path-flow formulation based on its arc-flow formulation for a cargo allocation 

problem with empty repositioning. Long et al. (2012) incorporated a two-stage arc-flow 

based model to decomposition known and unknown information, and then running the 

model in a rolling-horizon manner with multi-scenario mixed-integer programming to 

make all the decisions for the whole planning horizon. Di Francesco et al. (2013) construct 

a similar network flow model with uncertainties, but they make decisions for whole 

planning horizon with known information and only the here-and-now decisions will be 

executed. When the model rolls forward, new information will be updated, new series of 

decisions for the rest of the horizon will be made, and again, only the decisions made at 

that period will be executed. 

As all above papers demonstrated, network flow models have large diversity with different 

mathematical programming techniques (e.g. linear programming, stochastic programming, 

or multi-scenario mixed-integer programming etc.) or different application methods (e.g. 

two-stage network model or rolling-horizon network model etc.). Nevertheless, the core of 
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the arc-based network flow model is represented alike (i.e. time expanded nodes connected 

by arc, and the corresponding optimisation is done for the values carried by each arc), so 

the advantages of taking this model formulation methodology can be summarised as: 

1. As Song and Dong (2015) described, to formulate research problems with arc-based 

network flow model is simple and easy to understand. Especially, different realistic 

container flows (i.e. ECR flow, leased container flow etc.) can be developed and 

distinguished from laden container flows over the arc structure, in turn, various operation 

activities associated with container flows can be included and presented in the way as how 

they existed in real-time operation.  

2. With the help of time expanded planning horizon, the model has the flexibility of 

handling demands and planning decisions across a long period of time or modelling more 

details and more complicated system configurations with a shorter time periods. Once the 

model is properly constructed, how container flow is arranged (with predefined objectives) 

to satisfy customer demands over the given planning horizon can be presented in a 

panoramic view. 

3. Since various geographic locations involved in maritime operation are considered by 

arc-based network model and linked by the virtual arcs, it opens up the opportunity that the 

realistic shipping service routes or cargo movement paths can be associated with and 

identified on the network structure. By doing so, more specific planning can be considered 

such as the better use of service routes for certain customer demands or transhipment 

designing. 

However, due to the complicated structure of the model and the associated large sets of 

constraints, drawbacks of using arc-based network flow model are also significant. 

1. Arc-based network flow model requires finding all the optimal values for different 

container flows on arcs across the whole planning horizon, as a result, large computation 

is likely to happen, and it will be very difficult to be solved. It is extensively discussed in 

different studies (e.g. Epstein et al, 2012; Long et al., 2015; Song and Dong, 2015), and 

especially, when uncertainties or large number of decision variables are involved, arc-

based network flow models will not be suitable for finding the solution space. 
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2. Arc-based network flow model is less suitable for short-term operational planning. The 

reasons are two-fold. First, researches about short-term operation focus more on detailed 

plans of meeting external opportunities and coping with dynamics. Issues such as processes, 

various events in a short period of time or dynamic decision-makings are hard to be 

modelled as network flow model is rather static. Second, when network flow model is used 

for research questions, it is normal to simplify or neglect some details or less relevant 

elements. In this case, network flow model is hard to be directly applied into real-time 

practice. Because the less considered elements could result in great discrepancies between 

the model results and reality, yet the network model only outputs the overall optimality at 

the same time with given settings, so when one plan cannot be executed as expected, all 

the plans afterwards are distorted and hard to be implemented as well. Such problem can 

be further escalated with the consideration of uncertainties. 

Alternatively, the second group of methodology used for problem formulation aims to 

develop effective state-feedback control policies with respect to underlying research 

questions, and normally, those policies are associated with inventory control mechanisms, 

dynamic programming and simulation-based optimisation techniques. Generally speaking, 

the way of implementing this type of methodology consists of a number of decision-making 

rules associated with system dynamic states such as inventory levels of containers. For 

example, Lam et al. (2007) used a simulation-based approximate policy iteration algorithm 

to obtain an optimal average cost for ECR over an infinite planning horizon. Dong and 

Song (2009) used a control policy to find the optimal container fleet size and ECR 

deployment with stochastic demands. Yun et al. (2011) built a (s, S) inventory policy for 

an inland transportation system in dealing with uncertain demand. Dang et al. (2013) took 

both ECR and leasing options into account with the optimisation of a double threshold 

policy in an inland-depot system with uncertain order-arrival time. Dynamic inventory 

replenishment processes are simulated by the proposed model. These papers presented how 

decision-making rules are associated with system dynamic states, such as inventory levels 

of empty containers, and how decisions can be implemented in the same time period once 

they are made. 
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As above papers illustrated, no matter what state-feedback control policies are applied, this 

method is always about planning decisions dynamically regarding certain rules with respect 

to specific state-feedbacks. In particular, the model normally runs forward epoch-wise, and 

at each epoch, a series of plans will be made according to the new updated information and 

under what rules the information will be processed. Then, running the model till the end of 

planning horizon and the objective of such model is to find the optimal rules that can lead 

to the best overall performance. According to how such model is formulated and the 

characteristics of this method, several merits below can be concluded. 

1. Since the methodology of using state-feedback control policies is normally associated 

with simulation-based optimisation techniques, it can be easier applied to real-time practice. 

When simulation model is constructed, operation processes or at least, the key operational 

steps are emulated by the system. Therefore, it makes more sense to practitioners that when 

and how decisions are made with the help of the model. Also, the simulation-based model 

provide better platform for expanding operational details. Because, simulation model 

contains process chain, and when more considerations are added to the simulation model, 

it could only incur several more processes or state transitions. But for network flow model, 

it could mean a huge number of new adding nodes and arcs. Therefore, the computation 

difficulties (for simulation model) will be smaller when comprehensive operational 

planning needs to be achieved.   

2. Rather than finding precise optimal values required by arc-based network flow models, 

the state-feedback control policy-based models are looking at obtaining the rules (policies) 

that can lead to the overall optimal (or -near optimal) results. In this sense, the system will 

try to maintain and recover to a certain state despite the external environment changes (e.g. 

a certain level of inventory). Normally, when the state of the system jumped out of the 

controlled-range, it takes time to get it recovered, but meanwhile, the external demands are 

being satisfied simultaneously. Therefore, the design of the state-feedback control policies 

will always consider a certain degree of capacity that allows to buffer uncertainties while 

the system recovers to the expected state. Compare to network flow-based models, the 

state-feedback controlled one can perform better in accommodating uncertainties. 
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However, due to the features of the state-feedback control policy-based models and its 

potential solutions, several drawbacks may limit its use under certain circumstances. 

1. The state-feedback control policy-based models are focusing on modelling the details of 

individual decision-making epoch and linking them with certain process, therefore, what 

the state is going to be in later epochs cannot be presented until the process runs to that 

point. Comparatively, the arc-based network flow model presents a static and panoramic 

view of all the operational activities within the planning horizon, so it is better for upper 

level planning that decision makers can appreciate the influence of the upper level planning 

over the whole picture better.     

2. Compare to network flow models, the state-feedback control policy-based models are 

less likely to achieve the best performance. As we mentioned before, the state-feedback 

control policy-based models aim at reaching an average optimality, while the arc-based 

network model tries to fill up the arc matrices with optimal values. Therefore, the results 

that can be obtained from arc-based network model will be the upper bound of the 

simulated one, however, it is questionable that whether the upper bound results can be 

reached by the simulated one.   

3. The state-feedback policy control-based model is efficient for carrying scenario analysis, 

finding various patterns of research problems, or evaluating sensitivities of different 

parameters (Severance, 2001). But if the research aims to obtain analytical solutions to the 

underlying problems or get mathematical induction for some interrelated factors, it is less 

effective compare to mathematical based models (e.g. the network flow model). This is 

because, for the state-feedback policy control-based model, it focuses on the dynamics of 

individual state of the model. If we wish to investigate how one factor influences the overall 

performance of the model, it requires the model to run many times, then a certain 

relationship/behaviour could emerge regarding the simulating results. But if the 

relationship/behaviour is required to be quantified by mathematical function(s), it will be 

more challenging to get a precise one. For arc-based network flow models, they are 

mathematical programming related and are rather static, which in turn, provide better 

foundation for developing further mathematical inductions or finding analytical solutions. 
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Considering the underlying research objectives, the first two objectives can be jointly 

addressed by an inventory control-based simulation model. This is because the “quotation-

booking” process is dynamic and complicated. Different planning tasks are involved by 

this process even at the same period of time (e.g. develop quotation, plan job fulfilment or 

ETCR etc.), plus, they are very likely to be adjusted in next or further period due to the 

unpredictable environment. Hence, rather than setting up a static panoramic model, focus 

on the dynamic changes of the process is more appropriate and effective. In the meantime, 

incorporating inventory control as the backbone of the model enables flexibility for 

unpredictable uncertainties, and also, can provide a simple mechanism for practitioners to 

control TC flow without managing the flow itself. 

For the rest of the research objectives, they are more concentrating on designing the upper 

level policies so that the specific customer behaviour (TC over-holding) can be 

manipulated and evaluated, and also, the overall TC flow can be improved. Therefore, an 

arc-based network flow model is ideal for addressing the other two objectives together. In 

this way, it is more straightforward to see how the influences of the underlying polices 

would be placed on the overall operation as whole, and meanwhile, the mathematical 

programming-based model is easier for us to seek the mathematical inductions for the 

relationship between customer over-holding policies and the corresponding over-holding 

days. Then the analytical solutions can be obtained for making more precise long-term 

decision-making. 

In addition, regardless the simulation-based or mathematical programming-based models, 

decompose model into several stages deliberately has its significant meanings. Some 

papers used multi-stage models for decomposing different planning levels (e.g. Dong and 

Song, 2012; Dong et al., 2015). This is because, some models address problems with multi-

planning levels and sometimes, they final solutions can only be obtained if the upper level 

planning is decided first. Hence, split the model into different stages and linked them with 

proper interfaces enables the feasibility of the model to reach an overall optimality, as well 

as presents a clear structure that matches the addressed problems themselves. Also, some 

models contain several stages are due to the different information visibility conditions in 

different stages (e.g. Cheung and Chen, 1998). By doing so, plans for stages that contain 



94 | P a g e  
 

the perfect information can be made first, and the results will be incorporated as the inputs 

for stages that are happened afterwards. In our research context, both of the two proposed 

models need to be decomposed into two stages. Because, they both require determining the 

upper level decisions first (i.e. inventory policies for the first one and customer over-

holding policies for the later one), and then the rest of the model can be finalised 

accordingly. Therefore, a two-stage inventory control-based simulation model and a two-

stage time-space network flow model will be built respectively.  

 

3.2 Solution methods 

In operational research spectrum, methods for problem solution is a systematic process to 

solve formulated and constructed models and try to obtain the optimal solutions for them 

(White, 1985). These methods sometimes could be optimal solutions to the underlying 

problems or evaluating techniques for exploring the performance of candidates (ibid). In 

some occasions, researchers or analysts are required to develop new techniques for 

addressing specific problems. Followed by the chosen research formulation methods, the 

methods that can be applied for solving each formulation will be discussed and clarified 

respectively. 

(a) Solution for the simulation-based model 

First, in addressing simulation-based models, different methods are applied in operational 

research-based papers. For example, Dang et al. (2012) and Dang et al. (2013) proposed 

different heuristic rules for arranging ECR flow and used genetic-based optimisation 

procedure to find the optimal inventory control policies. SONG and Zhang (2010) applied 

a dynamic programming approach for inventory-based model with a two-state Markov 

demand process. Dong and Song (2009) proposed a simulation-based optimisation tool to 

decide container fleet sizing and ECR policy. Due to the large scale of the problem (several 

service routes with more than two ports and multiple deployed vessels), the solution is built 

upon rule-based and solved by Genetic Algorithms (GA) and Evolution Strategy combined 

with an adjustment mechanism. In order to find the optimal inventory control policy for 

multi-port operation, Li et al. (2007) built heuristic methods based on the average cost of 
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using different inventory control policies. With the help of numerical experiments, the 

effectiveness of the solution is evaluated and verified. Yun et al. (2011) designed an 

optimisation procedure for deciding the optimal empty container inventory control policy 

and the results are obtained by commercial software.  

As those researches demonstrated, the formulated problems are majorly addressed by 

specifically designed rules, and equipped with heuristic or meta-heuristic techniques. This 

is because, simulation-based models are normally associated with complicated processes, 

sufficient details and various uncertainties, therefore, they are hard to be solved analytically 

and very time-consuming. Take the potential context of our research into account, there are 

three aspects will significantly increase the complexity of the formulated model, and in 

turn, computational intractability is very likely to happen. One, the complex “quotation-

booking” process is associated with various constraints, many state changes and multiple 

decision-makings. Two, TCs are globally operated which are normally associated with 

large network structure including different regions, depots, and customer locations as well. 

Three, different uncertainties need to be addressed throughout the whole study. For 

example, uncertain container cleaning, uncertain customer demands, and uncertain freight 

forwarder reliability etc. Therefore, to obtain the results in an effective and efficient manner, 

Genetic Algorithm is chosen as the solution for the first model of this research. 

As various researches illustrated (e.g. Sivanandam and Deepa, 2008; Goldberg, 1989), GA 

has the advantages in addressing problems with large parameters, stochasticity and un-

smoothed objective functions. Unlike gradient-like methods, genetic algorithm requires no 

mathematical model for the objective function and more likely to obtain a global optimum. 

Therefore, it is more efficient for realistic problems especially those have discrete variables 

and implicit form of constraints. The basic steps for completing a GA-based solution is 

depict by figure 3.2. 
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Figure 3.2 Flow chart of GA solution 

Source from: Dang et al. (2012) 

As the first step, chromosome representation will recode the potential results as a 

chromosome fashion (normally a binary string) and ensure them satisfying all the known 

constraints as well. Followed, the solution will kick off with generating a series of initial 

populations randomly or heuristically. Particularly, random generation gives the initial 

population great diversity, while heuristics generation gives better quality but may lead to 

a local optimal solution due to the limited diversity among the initial population. 

Meanwhile, it is also important to check all the generated chromosomes satisfy the 

constraints of the problem before moving to next step. If any initial population doesn’t 

meet the constraints, the genes of that chromosome need to be repaired to be fit. Followed, 

the fitness evaluation step is about triggering the simulation process with those population 

and evaluate their results with fitness functions. Depending on the nature of the problem 
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(i.e. maximisation or minimisation), the fitness function will be defined and fitness value 

for each population will be calculated. With the help of different selecting strategies, the 

parent selection step will use the fitness value of every individual chromosome (
iF  ) to 

randomly pick two individuals for producing the next generation population. Here we use 

the roulette wheel selection sampling strategy (Goldberg, 1989) as an example for parent 

selection strategy. In particular, each of two parents is selected from a binary tournament, 

which randomly picks two individuals from the entire population and retains the one with 

the best fitness value. The details are as follow: 

Step 1: Calculate the sum of all fitness values of the population (TF), i.e. 
1

P

ii
TF F


 , 

where P is the population size, and i  is the index of chromosome. 

Step 2: Calculate the selection probability (
iSP  ) of each chromosome, i.e. 

/ , 1,2,......,i iSP F TF i P  . 

Step 3: Calculate the cumulative probability (
iCSP  ) of each chromosome, i.e. 

1
, 1,2,......,

i

i jj
CSP SP i P


  . 

Step 4: Generate a random number r in the range (0,1]r . If 1i iCSP r CSP   , 

Chromosome i is selected. 

Followed, from the selected parent chromosomes, the next generation offspring can be 

obtained by conducting the crossover operation. Specifically, the selected parent 

chromosomes need to swap their genes for producing the new generation. However, in 

order to maintain a certain degree of diversity, the crossover operation is normally 

deployed alongside the mutation operation simultaneously with the given probabilities. 

That is to say, part of the genes for the new chromosome are coming from swapping and 

recombining their parent genes and part of the genes are coming from mutating existing 

genes to new ones. After the generation of the new populations, their corresponding fitness 

value will be calculated again for determining the acceptance of the offspring. In the end, 

the overall process needs to be terminated when certain conditions are met, for example, 
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after a certain number of generations, or after a certain period of time, or after a certain 

number of generation the best fitness value makes no significant changes etc. 

However, since the GA solution is a non-deterministic method, the results it obtained may 

vary largely each time it is ran on the same instance. It has also been pointed out by Beg 

and Islam (2016) that, the quality of solutions obtained by GA is highly relied on the initial 

populations, the way how the genetic operations are implemented (e.g. crossover strategies 

or selection strategies) and the probabilities of crossover and mutation. Therefore, GA can 

provide an optimal solution, but it can never guarantee optimality. To avoid or mitigate the 

limitations of using GA, it is recommended that the efficiency and effectiveness of GA can 

be enhanced by conducting some pilot testing for better configuration and developing some 

adaptive techniques to ensure the GA is more suitable for the underlying research problems. 

 

(b) Solution for the arc-based network flow model 

Next, in addressing the second model, the solution methods should belong to the 

mathematical programming-based researches with stochastic considerations. For example, 

Cheung and Chen (1998) formulated the dynamic empty container allocation problem with 

a two-stage stochastic network and solved it with a stochastic quasi-gradient method and a 

stochastic hybrid approximation procedure. Li and Han (2009) formulated a mixed integer 

programming model for ECR problem under demand and supply uncertainties, and they 

used chance constrained programming technique to cope with random parameters and 

solved the model with Branch and Bound method. Also, scenario-based techniques are 

commonly applied to address uncertain maritime network problems as it can effectively 

capture a high level of details and allow the application of deterministic optimisation 

techniques. Di Francesco et al. (2009) formulated an ECR problem with uncertainties by 

multi-scenario model and solved with linear optimisation techniques. In dealing with 

problem with a large number of scenarios, Topaloglu and Powell (2006) applied 

Approximate Dynamic Programming (ADP) for multi-commodity problem in a dynamic 

resource allocation research. Simao et al. (2009) used ADP to solve a dynamic fleet 

management problem with large-scale case. However, for most of the multi-scenario 

methods, one of the main challenges is the pre-requisition of a good cost-to-go function to 
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represent the ultimate total cost (Long et al., 2012). Therefore, in order to avoid the needs 

of the approximation of the value function, Sample Average Approximation (SAA) method 

is normally applied to solve stochastic problems with multiple scenarios (e.g. Long et al., 

2012; Long et al., 2015). This method is normally associated with a decomposition method, 

so that the main decisions can be made without the considering the influence of individual 

sample and the subproblems will deal with the large scale of scenarios. 

Considering the research context of our study, the SAA method is selected to solve the 

underlying model due to three reasons. First, considering the large scale of the overall 

network (e.g. customer sites, TC depots, regions and different arcs), it is hard to address it 

with uncertain elements directly with gradient-based techniques. Two, without determining 

the upper level decisions, the lower network cannot be structured, so the approximation of 

the overall value function cannot be presented. Third, by decomposing the model to two-

stages, the subproblem of the model can be covert to a large-scale SAA problem and it can 

be solved efficiently by commercial software. Regarding the research carried by Long et 

al. (2012), the proper form and steps of carrying SAA with decomposition are as follow. 

First, according to the nature of the research problem (e.g. different planning level 

decision-making), it needs to be decomposed into different stages. Then identify the key 

decision variables for each stage and construct the mathematical model respectively. Next, 

generate a series of samples for the lower level problem (samples could be independent or 

not depending on the nature of the study) within the given probability distribution of the 

random parameters. Finally, use deterministic optimisation techniques to obtain the 

optimal solutions to the whole model in regard to all the realised samples. 

Nevertheless, even though SAA method shows the strength of dealing with large-scale 

stochastic problems, the efficiency and effectiveness of this method will be constrained by 

the sampling method and the hardness of the problems (e.g. NP-hard). Different studies 

have developed further mechanisms based on SAA to increase the efficiency or 

computation ability of their solution (e.g. Long et al., 2012; Long et al., 2015; Dong et al., 

2015). Therefore, in our research, SAA will only provide the fundamental solution for the 

research problem, but the actual implementation will be more tailored regarding the 

features and requirements of the problem itself. 
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(c) Progressive Hedging Algorithm (PHA) 

Followed by SAA mechanism, PHA algorithm is one type of SAA derivatives which is 

developed to address more difficult problems. This is firstly proposed by Rockafellar and 

Wets (1991). The idea of this algorithm is to add the only constraints that tie together the 

different scenarios to the objective function through Lagrangian multipliers. 

Different from SAA problem, PHA solution uses Lagrangian relaxation techniques to 

decompose master problem into a number of scenario-based sub-problems with given 

samples of random parameters. It incorporates penalties to relax constraints that require 

solutions to be equal across all samples. Therefore, instead of finding optimality to all 

samples simultaneously, PHA solution can solve each scenario-based sub-problems 

independently. Then, evaluating (with an assigned small positive value p ) the sum of 

difference between each scenario-based solution and its average solution, incrementing 

penalties positively proportional to the absolute value of the different between scenario-

based solution and its average solution, each scenario-based solution will be forced to be 

as close as possible. As a result, it helps to find the global optimality. Generally, PHA 

algorithm includes the following processes: 

1. Initialization and set the penalty values as zeros for all relaxed constraints. Define 

value for p , and set iteration number as zero; 

2. Solve each scenario-based problems and obtain the corresponding optimal value; 

3. Compute the average solution value as the reference point; 

4.  Evaluating the difference of each scenario-based solution to its reference point, 

and check the sum of those differences against the predefined p (terminate the 

process if the sum of those differences is smaller than p ). 

5. Increment Lagrangian multipliers; 

6. Increment iteration number.   
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3.3 Verification and validation of computer simulation model 

Throughout the overall research journey of this study, verification and validation (V&V) 

activities are carried out. They are crucial to safeguard the credibility of the proposed 

simulation models, and make sure they 1) are implemented properly at technical level (e.g. 

with codes, equations and calculations etc.); and meanwhile, 2) reasonably represent the 

systems with respect to the real systems’ characteristics. As quoted by Sargent (2011), for 

computerised model, verification refers to “ensuring that the computer programme of the 

computerised model and its implementation are correct”, while model validation refers to 

“substantiation that a computerised model within its domain of applicability processes a 

satisfactory range of accuracy consistent with the intended application of the model” 

(Schlesinger et al., 1979). Regarding the nature of a simulation model, it is rather an 

abstract of the system it represents. Therefore, some unnecessary details of the represented 

system need to be eliminated and some assumptions are inevitability required. To judge 

the goodness of the model with respect to the system, whether the model has implemented 

the assumptions correctly and whether it has answered the system’s purpose(s) need to be 

ascertained. In particular, verification process for simulation-based models are similar to 

the debugging process. It aims at ensuring the whole model behaves as what it is intended 

to be.  Comparatively, validation is the task of demonstrating the model is a proper 

representation of the actual system. Which means, it needs to produce system behaviour 

with enough fidelity to satisfy analysis objectives. Hence, neither can model verification 

imply model validation, nor can validation imply verification. To present a clear 

implementation of V&V for models of this PhD thesis, study carried by Sargent (2011) is 

thereby applied as the guidelines and the details are as below (figure 3.3): 
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Figure. 3.3 verification and validation for modelling process 

Source from: Sargent (2011) 

From the identified research problems to the formulation of the conceptual model, 

conceptual model validation is required. It is used for determining that the theories and 

assumptions underlying the conceptual model are effectively made and the model 

representation of the problem entity (the system) is “reasonable” for its intended purpose 

of the model. As suggested by Sargent (2011) and Kleijnen (1995), several techniques can 

be used for completing the conceptual model validation. In order to ensure assumptions 

and ground theories used by the research are appropriate, mathematical analysis and 

statistic methods are applied in processing the initial data. For example, we can use statistic 

methods to find the patterns and probabilities of the uncertain parameters addressed by our 

model, and then compare it to industrial reports and ask for practitioners’ advices. 

Assumptions such as linearity of price and demand and independence of certain variables 

can be validated through mathematical analysis. Let an “expert” from the underlying 

industry to examine the conceptualised model with respect to the system. Industry report 

can be used for validating the existence of difference between planned-leasing and 
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emergent-leasing. Evidence can be found on industrial news for different reliability levels 

for freight forwarders. 

Next, the conceptual model needs to be converted to a computerised one, and it requires a 

series of computerised model verifications. First, it is vital to ensure the model is correctly 

programmed. It requires the verification of intermediate simulation output. For example, 

when finish some sub-functions of the programming, we can manually calculate the results 

to check whether it matches the results from the function output. Also, since most of the 

commercial software provides ‘debuggers’, it can be used for verifying the intermediate 

output during the programming process (Kleijinen, 1995). Also, as asserted by Davis 

(1992), the whole computer code will be designed modularly, so the intermediate outputs 

of the model can be verified module by module. It also provides the convenience for testing 

pseudo random number generator separately, so that the randomness component of the 

model is more trustworthy and reliable as its intended use.  

Second, the final results of the model need to be verified as well. To completing this step, 

we can use simplified version of the simulation programme with a known analytical 

solution to verify it. It can be simplified by inputting less data, using deterministic 

parameters instead of stochastic ones and neglecting some minor functions. In addition, 

since most of the commercial software provide the animation function, therefore, the 

verification process can also be assisted by dynamic displays of simulating results and any 

programming errors or conceptual errors are easier to be detected. By executing above 

steps, the computerised model can be assured to be properly converted from the conceptual 

model and programmed as its intended purposes. 

Finally, after finishing the computerised model, the operational validation is necessitated 

for ensuring the behaviour of the simulation model’s output matches the model’s intended 

purpose over the domain of the model’s intended applicability. This is important as the 

research will eventually be applied in real-time operation, and this step will help to decrease 

potential deficiencies that undermined during the development of the model with respect 

to assumptions or the use of invalid data. According to the validation techniques discussed 

by Sargent (2011), the following activities are later implemented into the underlying 

research. 
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a) Event Validity  

This method refers to the match of the “events” occurrences of the simulation model and 

of the realistic system. A detailed flow chart of the real system event needs to be created 

and better accredited by professionals (if possible) for this research, and then a walkthrough 

comparison need to be done with the events in the model, so the event validity can be 

confirmed. 

b) Extreme Condition Test 

This method implies that, in order to assure the validity of the model behaviour, the overall 

model structure and outputs should be plausible for any types of extreme and unlikely 

combination of levels of factors in the system. For example, if the plan-leasing jobs is 

extremely expensive, the plans for job fulfilments will only be using self-owned containers 

or reject jobs. 

c) Historical Data Validation 

Also, since historical data is available to us, it can be break-down into two parts. Then part 

of the data can be used for model construction purpose, while another part of the data can 

be used for validation purpose, so that we can compare the behaviour of the output data 

and the historically archived data to make sure the model behaves as how the real system 

does. 

d) Internal Validity 

This method is used for addressing problems caused by large amount of variability from 

stochastic parameters, and the model’s results might be questionable and dependent on the 

realisation of the stochastic parameters. Hence, it is important to carry several replicants of 

the stochastic model, and use statistical analysis techniques to mitigate the uniqueness of 

individual samples. Also, to fix the random number generator seed, so the random stream 

can be replicated and the influence of randomness will not be passed onto the analysis of 

other deterministic parameters. 

e) Sensitivity Analysis  
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By changing the values of input data or internal parameters of the model, the associated 

effects upon the model behaviour can be evaluated and benchmarked. Therefore, it can be 

used for validating the appropriateness of the model behaviour. Because, when we design 

the sensitivity analysis, the way how the parameter varies, the output behaviour (or we can 

say, the changes of the output) should in line with the behaviour in real system. If any 

counter-intuitive behaviour occurs, it could be either a mistake of the model itself, or 

something valuable hidden in real system that is not accounted when conceptualising the 

model. 

Apart from all above verification and validation methods used for different modelling 

processes, data validity issue is also important which could cause the failure of the whole 

model (Sargent, 2011). Ideally, from the construction of the conceptual model to the finish 

of the computerised model, it is required to have appropriate, accurate, and sufficient data 

to support the validity of the model (ibid). However, since it is the secondary data that used 

by this research, there are very little can be done to ensure the data is correct. Some internal 

procedures can be conducted to enhance the quality of the data used by this research such 

as internal consistency checks of the data or screening the data for outliers and check if the 

correctness of the outliers. 

Next, the following chapters will sequentially formulate models and devise solutions to 

address our identified research objectives with appropriate methodologies. 
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4. TC tactical/operational planning: inventory policy optimisation 

and quotation-booking planning 

Due to the uncertain and complex TC quotation-booking planning, TCOs face a set of 

unique challenges not faced by general shipping container operators, especially from the 

process uncertainties arising from TC cleaning and the use of FFs. Yet, it is essential to 

conduct effective TC quotation-booking planning and evaluation for TCOs due to their 

great influence over the performance of TC asset management. In short, operational 

planning activities surrounding TC asset management is integrated by TC quotation-

booking process. TCOs need to find an optimal combination of both internal and external 

resources in seizing market opportunities and mitigating uncertainties. For example, TCOs 

need to decide how each individual customer demand is fulfilled by effective intermodal 

connections and the right type of TCs with reasonable costs through the quotation-booking 

process. Hence, TCs’ profitability level is greatly influenced by how TC quotation-booking 

process is deployed. In a long run, TC quotation-booking process is the core business 

channel that TCOs link with their market and contribute to capital increase. For example, 

how flexible the quotation-booking process can be provided to customers (e.g. different 

intermodal connections, different service levels etc.) can differentiate TCOs from one to 

another and TCOs with more profitable quotation-booking performance indicates stronger 

financial capability. Thus, maintaining good performance of quotation-booking process 

has the strategic meaning to enhance TCOs’ market position. In this chapter, the major 

challenges surrounding quotation-booking process is re-addressed after the literature 

review chapter. It will also point out some of the issues that are not mentioned when 

reviewing existing studies. Followed, a detailed problem description is given to picture the 

whole process and summarise the to-be-researched issues. Then, a simulation-based two-

stage optimization model is developed to address these challenges. The solution procedure 

is based on the simulation model combined with heuristic algorithms including an adjusted 

Genetic Algorithm, mathematical programming, and heuristic rules. Numerical examples 

based on a real case study are provided to demonstrate the effectiveness of the model.    
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4.1 The main challenges with respect to “quotation-booking” 

In the literature review chapter, the main challenges that coming from TC quotation-

booking process are extensively discussed, especially the challenges caused by industrial 

characteristics of TC. For example, uncertainties associated with time delay in between 

demand receipt and execution; reliance on external resources for quotation development; 

constrained ETCR planning and stochastic equipment cleaning etc. In addition, when 

TCOs build quotations for customers’ demands, the time delay in between demand receipt 

and demand execution allowed TCOs the chance for planned leasing activities. Different 

from spot leasing (or emergent leasing), planned leasing is defined as leasing that the TCO 

requests from lessors at least one day before the actual required time, whereas emergent 

leasing is requested on the same day as the actual use of the TC. In practice, planned leasing 

(pre-booked leasing) is cheaper than emergent leasing. This concept is analogous to the 

‘advanced purchase discount model’, which is widely applied in the airline industry or 

other asset leasing activities (Gale and Holmes, 1992; Dana, 1998). From a supply chain 

coordination perspective, planned leasing contributes to information sharing under an 

uncertain environment (Tang and Girotra, 2017). TC lessors provide incentives to 

encourage their customers to do so. Taking the planned leasing and emergent leasing into 

consideration in the quotation-booking process enables TCOs to make strategic choices 

between these two options. In particular, when TCOs expect there will not be enough 

inventory to execute the demands received, they can arrange planned leasing to avoid 

higher emergent leasing costs. Furthermore, a cheaper leasing option could provide the 

opportunity for TCOs to plan to serve some demands with leasing containers to maintain 

more balanced container flows overall. 

In addressing above issues, this research will formulate the overall problem and design the 

corresponding solutions from two stages. At the first stage, it will help TCOs adopt 

appropriate inventory control policies to maintain effective empty container repositioning 

and to cope with mid-term uncertainties. At the second stage, it will give decision-making 

support to deal with everyday customer demands with the emulated quotation-booking 

process, particularly decisions about how to satisfy customer demands and how to manage 

the container fleet on a daily basis in the presence of uncertainties. Reasons to set up the 
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two-stage structure are two-fold which are mainly caused by the research objectives and 

the nature of the problems. First, as discussed in the methodology chapter, complexity and 

the uncertain features of TC operation can easily lead to computational intractability. 

Hence, inventory control-based simulation model is more feasible for the underlying 

context. This also matches our first two researches objectives (set up inventory policy + 

improved operational decision-making within quotation-booking process) that will jointly 

addressed by this chapter. However, an inventory control policy is normally an average 

optimal setting based on a long-term horizon (Song and Dong, 2015) while everyday 

operational decision-makings (e.g. job fulfilment and ETCR) focus on the best choices up-

to-now, thus the use of different length of information requires these two objectives to be 

decoupled by different stages. Second, these two objectives should be achieved 

sequentially. Inventory control policy is the rule that aims at improving TC flow 

effectiveness and needs to be set up firstly so that decisions related to TC flow (i.e. ETCR 

or job fulfilment types) can be made accordingly. Without the inventory control policy, the 

simulation model is hard to be executed due to lack of controlling rules and responses.     

 

4.2 Problem Description 

TCOs have no ownership of maritime transportation services, instead serving customer 

demands through contracts with third-party transport providers. In the daily operation, 

customer demands are received including job start date, origin and destination. TCOs need 

to plan on these, developing corresponding quotations. TCOs exploit known information 

about costs and profits to decide how much they need to charge customers and how the 

demands should be served using three types of jobs; self-container jobs using TCOs’ self-

owned containers, planned leasing jobs and emergent leasing jobs.  

As depict by Figure 4.1, TCOs’ operation has the following features. Demands from 

customers are not executed on their receiving date. Instead, they have a demand execution 

date set by the planning process, and the gap between the two dates varies from one demand 

to another. Once an execution date is set it is fixed, i.e. plans made each day have no 

influence over previously made plans as these have been returned already to the customer. 

The only change allowed to a planned job is if there is not enough inventory when the 
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execution date arrives for a self-container job, which is then replaced by an emergent-

leasing job. If at the planning stage it is forecast that there will not be enough self-

containers on the execution date, then planned-leasing containers are scheduled for use, or 

the job can be rejected on profitability grounds. To simplify the narrative and formulation, 

it is assumed that quotation request, quotation return or rejection, and booking confirmation 

occur on the same day. For all the demands received on a given day, the latest of their 

execution dates forms the limit of the planning horizon on that day, so the planning horizon 

is dynamic and varying between days. Once move to the next day, a new set of customer 

demands will arrive, and then, they will determine the new planning horizon and repeat the 

same steps from the last day without interfering previous plans.  

Considering the quotation-booking process, it is challenging to make effective decisions 

for the following three reasons in particular:   

(1) Uncertain events occur along the supply chain, especially during the container return 

leg. However, once a quotation is returned to the customer it cannot be changed, so if there 

are not enough self-containers available for self-container jobs on a given execution day, 

TCOs will have to emergent-lease TCs. This increases the cost greatly.  

(2) Leasing is in practice essential to provide flexibility without having excess capacity of 

self-containers and excessive just-in-case ETCR. However, pre-booked planned-leasing is 

much cheaper than emergent leasing. Therefore, TCOs need to consider not only how to 

avoid emergent leasing but also whether to use planned-leasing to achieve lower leasing 

and ETCR costs.  

(3) In their niche market, TCOs have the bargaining power to reject some customer 

demands without losing future business. A job might be advantageously rejected if it would 

have knock-on effects or interactions with other jobs causing higher costs and lower profits. 

However, the time gap between returning a quotation and actual execution makes it 

difficult for TCOs to evaluate whether or not to reject.  
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Figure 4.1 the Quotation-Booking Process 

 

TCOs need effective strategies for the complex decision-making involved in dealing with 

these challenges. Unlike the dry container industry, TCOs need FFs to book external 

transport services for their TCs. Since maritime transport companies have limited capacity 

on specified routes, they will prioritize bookings for FFs with whom they have closer 

relationships. FFs with low priority will be less able to guarantee booking requests, so some 

of their TCOs’ container transportation may not be completed as planned. The model 

developed here translates this into higher costs for FFs to maintain close relationships with 

transport companies, and these costs are passed on to TCOs, i.e. the higher the cost of an 

FF the higher its booking success rate. FFs providing 100% successful booking rates are 

defined as ‘best FFs’. When TCOs choose FFs that are cheaper than best FFs, they will 

have the possibility of unsuccessful bookings. Regarding industrial practice and the 

communication with practitioners from TCOs. The successful booking rate is modelled as 

a discrete random variable that takes the value 50% or 100%, and the probability of a 100% 

successful rate is given by the cost of the chosen FF divided by that of the best FF. For 

example, if the cost of the best FF is £100, while the cost of the chosen FF is £60, the 

successful booking rate has a 60% chance of being 100% and 40% chance of being 50%. 

In the model, the choice of FF is made only for ETCR because only best FFs are used when 

meeting customer demands to avoid unsuccessful bookings for confirmed jobs. For ETCR, 

TCOs may choose appropriate inventory control policies with less than 100% successful 
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booking rates to reduce costs. The safety stocks of TCs at each depot provide a buffer to 

guard against uncertainties caused by cheaper FFs (and other uncertainties explained later). 

According to the TC industry, inter-regional ETCR is far more expensive and seldom 

adopted, so the model categorizes depots into different regions geographically and only 

intra-regional ETCR is allowed.  

In observed practise, TCOs can estimate accurately the container outflows from every 

depot to their destinations two weeks ahead. Hence, the data from the two-week customer-

demand forecast is considered here in the decision-making. Figure 4.2 summarizes the key 

aspects of TC assets management. 

  

 

 

Figure 4.2 Tank container assets management overview 

 

As Figure 4.2 illustrates, the whole tasks of TC asset management at the operational and 

tactical level include making daily decisions for job fulfilments based on designed 

inventory control polices and choices of FFs. Moreover, information of known customer 

demands, planned customer bookings, TC leasing terms and prices, and on-the-way 

container flows will be further exploit to help job fulfilment decision-makings as well. 

TCOs’ operations can be different in many aspects. The following simplifying assumptions 

are made here to make the problem tractable: 

1. Only the 20-foot equivalent unit (TEU) TC is used. 

2. TC lessors have infinite fleets and leasing demands are met immediately. 
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3. Once a container-cleaning process has started, the cleaning time for that container 

becomes known.  

4. FF cost is positively correlated with the shipping-slot booking success rate. 

5. Selected FF will not vary from depot/region to depot/region, so only one FF will be 

used for global ETCR planning each day.  

6. ETCR is only intra-regional, on routes available between any two depots. 

7. Unloaded containers must be cleaned before reuse, with random duration in range 3 

to 7 days. 

8. Execution dates of customers’ demands are later than their received dates. 

9. Emergent leasing is more expensive than planned leasing, and leased containers are 

returned to lessees immediately after jobs.  

10. The customer demand pattern remains similar for any two consecutive years. TCOs 

can forecast customer demands accurately two weeks ahead. 

11. Self-owned TCs are always used first to meet customer demands during the 

demand-planning phase. 

The justifications for above assumptions are as follow. Assumption 1 refers to the most 

common type of containers. In practice, 40-foot TCs are also used often but they can be 

treated as two TEUs (e.g. Dong and Song, 2009; Li et al., 2007; Choong et al., 2002). As 

for assumption 2, TC lessors focus on providing equipment leasing business and it is 

essential for them to keep TC availability at all time (e.g. Perez-Rodriguez and Holguin-

Veras, 2014; Dang et al, 2013). In addition, as figures from ITCO (2017) indicated, the 

large TC fleet size owned by TC lessors shows the ability to maintain their TC availability.  

As for assumption 3, it is reasonable to assume the cleaning time certain if this cleaning 

job is fully ready. This is because reasons that caused uncertain cleaning duration are the 

different cleaning requirements of different liquified cargoes and the availability of 

dedicated cleaning facility. But when the cleaning process is started, those uncertainties 

are determined, and the cleaning duration can be confirmed. Assumption 4 is made to 

match the industrial practice which indicates higher cost FF will guarantee better service 

level, and equivalently, it refers to better slot booking reliability. Due to the complex and 

dynamic nature of the underlying model, assumption 5 is made to simplify the model 

computation. As for assumption 6, due to the high cost of ETCR activities, it is common 
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in this industry that TCOs only carry short-distance ETCR. Assumption 7 is a common 

industrial practice that the average cleaning duration is assumed to be 3-7 days prior to the 

beginning of cleaning. As for assumption 8, TCOs need to go through the quotation-

booking process to fulfil customers’ demands (Erera et al., 2005), the time gap is widely 

existed in this industry between demand receipt and demand execution. Section 4.1 has 

extensively discussed the possibility of incorporating planned leasing, which in turn, 

formed the theoretical foundation of assumption 9. For assumption 10, according to ICIS 

Global Petrochemical trade index (2017), despite the total trade volume is on a stable 

increase, but the changes for any two adjacent years are very small and keeps similar ups 

and downs pattern monthly. The final assumption indicates that it makes business sense for 

TCOs use self-owned TCs first due to high cost of using leased TCs.  

 

4.2.1 Notations 

To formulate the system, the following notation sets are introduced: 

Indices 

  Indices of TC depots. 

   Indices of date. 

 Index of regions.  

 Index of customer demands. 

𝑦 Index of predicted customer demands that is used in Stage 2 model. 

 

Sets 

T Set of time periods for Stage 1 model; each element in T represents a day. 

R Set of regions.  

P Set of depots. 
Ds Set of customer demands received on day s. A customer demand is a tuple 𝑑, 

which contains the information of journey origin, destination, job received 

date, job start date, and number of containers. It is denoted as 

(𝑂𝑑, 𝐷𝑑 , 𝑆𝑑, 𝑇𝑑, 𝑀𝑑), where . Note that 

in TC operations, one demand is usually one unit. It is therefore assumed Md = 

1. However, the model can be modified easily to handle the case Md >1. 

D Set of customer demands received on the days in T, which will be used in Stage 

1 model. 
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𝑌𝑡 Set of customer demands for the next two weeks forecasted on day t. Each 

predicted demand 𝑦  is denoted as ( 𝑂𝑦, 𝐷𝑦, 𝑆𝑦, 𝑇𝑦, 𝑀𝑦 ) and it represents a 

demand from depot 𝑂𝑦  to 𝐷𝑦  to be received on date 𝑆𝑦 , where

𝑆𝑦 ∈  [t +1 , 𝑡 +14]; . Consistent with the above 

tuple, 𝑇𝑦 represents the execution date of the forecasted demand, but its actual 

value cannot be forecasted and it is unknown at time t.  

 

Input parameters 

N TC fleet size. 

C𝑖
ℎ Inventory holding cost per TEU per day at depot 𝑖, where . 

𝐶𝑖𝑗
𝑝

 Penalty cost for unmet demands per TEU from depot i to depot 𝑗 , where 

.  

𝐶𝑖
𝑜 Lifting-on cost per TEU at depot 𝑖, where . 

𝐶𝑖
𝑓  Lifting-off cost per TEU at depot 𝑖, where . 

C𝑏
𝑡  Cost per TEU for choosing the best FF to move empty TCs on day t.   

𝐶𝑖𝑗 Transportation cost per TEU (for both laden and empty) from depot 𝑖 to depot j, 

where . 

𝐶𝑖
𝑐  TC cleaning cost per TEU at depot 𝑖, where . 

𝐶𝑖
𝑙  Planned (pre-booked) leasing cost per TEU per day at depot 𝑖, where .  

𝐶𝑖
𝑙𝑒  Emergent leasing cost per TEU per day at depot 𝑖, where . 

𝐸𝑑
 Revenue of demand d.  

𝑎𝑖𝑗 Transportation time in days from depot 𝑖 to 𝑗, where . 

 

Inventory state and intermediate variables 

𝑆𝑖(𝑡) Inventory level of depot i at the beginning of day t, where . 

𝑆𝑖
𝑚(t) Adjusted inventory level of depot i on day t after confirmed container flow is 

completed, where . 

 

Derived variables 

𝑏𝑖 Cleaning time in days at depot 𝑖, where . It is a random variable. 

βt Shipping slot booking success rate on day t. A discrete random variable that takes 

two values: βt = 100% with probability 𝑓𝑡/C𝑏
𝑡 ;  βt = 50% with probability (1 −

𝑓𝑡/C𝑏
𝑡 ). 

𝑀𝑖
𝑡 Length of each dynamic planning horizon, which equals the number of days from 

day t to the latest execution date in the demands received on day t at depot 𝑖, 
where . 

 

Decision variables  

𝑊𝑑 Equals 1 if demand 𝑑 is rejected, otherwise equals zero. d D  in Stage 1 

and 
sd D in Stage 2 

, , ;y y y yO D P O D  1yM 

i P

, ,i j P i j 

i P

i P

, ,i j P i j 

i P

i P

i P

, ,i j P i j 

i P

i P

i P

i P



115 | P a g e  
 

𝑋𝑑
𝑝
 Equals 1 if demand 𝑑 is planned to be delivered by self-container, otherwise 

equals zero. d D  in Stage 1 and 
sd D in Stage 2. 

𝑋𝑑
𝑎 Equals 1 if demand d is actually delivered by self-container on day 𝑇𝑑 , 

otherwise equals zero. d D  in Stage 1 and 
sd D in Stage 2. 

𝑔𝑖𝑗
𝑡  Amount of ETCR containers from depot 𝑖  to depot 𝑗  on day t, where 

, t T , d D  in Stage 1 and 
sd D in Stage 2 

𝑍𝑑
𝑝
 Equals 1 if demand 𝑑  is planned to be delivered by leased container, 

otherwise equals zero. d D  in Stage 1 and 
sd D in Stage 2. 

𝑍𝑑
𝑒 Equals 1 if demand 𝑑 is actually delivered by emergent-leasing container on 

day 𝑇𝑑, otherwise equals zero. d D  in Stage 1 and 
sd D in Stage 2. 

𝑓𝑡 FF cost per TEU at day t ( t T ) subject to 𝑓𝑡 ∈ [2/5𝐶𝑏
𝑡, 𝐶𝑏

𝑡]. It determines 

the reliability of FF to complete the ETCR activity.  

[L𝑖, U𝑖] Upper and lower bounds of container inventory control policy at depot 𝑖, 

used for determining whether depot 𝑖 is a surplus or deficit depot, where 

. 

 

4.2.2 Outline of the formulation approach 

A two-stage simulation-based optimization approach is proposed to achieve two goals. The 

first goal is an optimized inventory control policy that leads to more effective ETCR at the 

tactical level by assuming all demands are accepted. The second is a decision-making 

support tool at the operational level for determining how new customer demands will be 

served every day to maximize profit by integrating with container operations planning. 

Figure 4.3 below illustrates the structure of the underlying approach. 

 

Figure 4.3 the basic idea of the two-stage formulation 

The different goals and their different preliminary settings require separate optimization 

processes. They are different in their planning levels. The inventory control policies are 

normally obtained through analysis of long-term statistics, which in turn, enables their 

adaptation to the associated environment. According to Braekers et al. (2011), inventory-

, ,i j P i j 

i P
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control based optimization is tactical planning as it aims at ensuring the efficiency and 

rationale of existing resources over a medium horizon. Practically, once the inventory 

control policies are established, they will direct a series of operations, i.e. transportation, 

replenishment planning and production etc. Therefore, they are often maintained for a 

certain period of time to ensure the continuity of operations. In contrast, the second goal is 

at the operational level dealing with day-to-day operations. Customer demands are received 

on a daily basis, and associated decisions are made using current information. Therefore, 

only ‘best-decisions-for-now’ can be made when new demands are received, while 

demands received later can be planned using any subsequently available information, e.g. 

previously uncertain information may become certain.   

Another critical reason why the two processes should be decoupled is that the two goals 

have different focuses. The inventory-control optimization seeks a long-term solution to 

TC management facing imbalanced trade flows and uncertain cleaning times by 

maximizing profit for the entire planning horizon. Whereas, the decision-making support 

tool is maximizing profit in serving customer orders (job quotation, planning and execution) 

on a daily basis within a dynamic planning horizon. The outputs of Stage 1 are used as 

inputs to Stage 2. On the other hand, the evaluation and optimization of the inventory-

control policies rely on the simulation of simplified daily operations over the entire 

planning horizon.   

The inventory-control based optimization is Stage 1 of the proposed simulation model. 

Specifically, a double-threshold inventory control policy is optimized through simulation 

of the entire planning horizon. To reflect industrial practice of daily operations, a special 

rolling-horizon approach is introduced that is different from the traditional rolling-horizon. 

As defined by Di Francesco et al. (2013), a ‘rolling-horizon’ refers to how a time-extended 

optimization model plans all the decisions for all periods of the planning horizon, but it 

will only implement the decisions for the first period and the model will be run again to 

plan and implement new decisions in the next period, when new information becomes 

available. Therefore, as the model runs forward, the total length of the planning horizon 

decreases by one period each period, so that the planning horizon at period t is (t, |T|). In 

contrast, the length of the rolling planning horizon in our model is determined dynamically. 
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Planning happens every day that new demands are received, and the planning horizon is 

defined by the latest execution date (𝑀𝑖
𝑡) of the newly received demands. At every decision-

making point, plans are made for the horizon (𝑡, t+𝑀𝑖
𝑡). After this point TCOs can only 

adjust ‘how’ these scheduled demands will be served (self-owned containers or emergent-

leased containers). They cannot alter execution times or reject jobs later on. This dynamic 

rolling-horizon is tailored to reflect the TC quotation-booking practice and, as it has not 

been seen in the literature, we believe it is novel. 

Since historical data is used for the simulation at Stage 1, all the customer demands are 

accepted using either self-owned containers or planned-leasing containers. After all the 

known container flows are completed on this day, ETCR performed by following the 

inventory control policies. According to the initial inventory level of empty containers, 

every depot is classified as being either in surplus, in deficit or ‘normal’. The deficit depots 

call for ETCR from surplus depots in their own region until either all the deficit depots are 

filled up to their lower bound threshold or all the surplus depots have repositioned out their 

TCs down to their upper bound. In Stage 1, it is assumed ETCR is 100% reliable as the 

‘best FF’ is selected. By applying an Adapted Genetic Algorithm (AGA), a series of near 

optimal threshold-pairs can be generated through simulation using the historical data. With 

the completion of the Stage 1 simulation, the optimized inventory control policies are 

obtained.    

In Stage 2, the optimized inventory control policies are implemented for ETCR. Whenever 

new demands arrive, all the demands received in the same period will be planned together. 

Similar to Stage 1, the demands are planned with the new dynamic rolling-horizon. 

However, Stage 2 seeks the most profitable way to serve the newly received customer 

demands, with demand rejection considered within the context of a two-week demand 

prediction. Experience has given industrial practitioners confidence in two-week time 

predictions, therefore they are used here when making decisions on customer demands. 

TCOs also need to decide which FFs are hired for ETCR on a given day, which incurs an 

additional process uncertainty in the reliability of ETCR. A more ‘standard’ GA is applied 

to select FFs on a daily basis within a dynamic planning horizon along the overall planning 

horizon.  
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4.3 Model formulation 

4.3.1 Model at Stage 1: The Threshold Policy Optimization 

Events in Stage 1 

Stage 1 aims to find the optimal inventory control policies for all depots based on historical 

data. One year’s daily operational data is used. It consists of the following four events and 

its mathematical model is formulated below.  

1. Inflows. Inventory at each depot is updated with inflows of self-owned TCs from 

finished jobs and ETCR. Leased TCs are not counted because they are returned 

directly to the lessors. Since containers need to be cleaned after jobs only ETCR 

containers go directly into inventory.  

2. Outflows. Container outflow occurs for demands planned already for execution on 

that day. Although the ‘to-be-executed’ self-container and leased container jobs are 

planned, uncertainties may cause container unavailability. Once actual inventory 

cannot cover self-container jobs, emergent leasing is required.  

3. ETCR. The remaining inventory in every depot is gauged with the specified 

inventory control policies, and ETCR determined accordingly. The real inventory 

levels in every depot must be modified by including the expected overall future 

container inflows and outflows within the planning horizon before comparison with 

associated threshold values. This avoids lead-time-caused repetitive ETCR and 

yields better inventory availability for upcoming demands.  

4. New Demands. The dynamic rolling horizon for executing new demands is from 

the next day to the latest execution date of the new demands. Following a 

chronological sequence within the rolling horizon, the model simulates the 

expected container inflows and outflows on every demand execution date. 

Inventory on the demand execution dates is checked to see if there is enough to 

satisfy the ‘to-be-executed’ demands. If yes then demands are served by self-

containers, otherwise planned leasing is required.  
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Mathematical model of Stage 1 

 

Event 1: Inbound flow to receive self-owned containers on day t 

At the beginning of day t, the inventory level for depot 𝑖 is updated by adding the ETCR 

containers that have arrived and those that have returned from cleaning. Once the container 

cleaning process is started, the cleaning time becomes known. Let d represent the cleaning 

time for job d, which is a realized sample of random variable 𝑏𝑖, then: 

𝑆𝑖(𝑡)′ = 𝑆𝑖(𝑡) + ∑ 𝑔
𝑗𝑖

𝑡−𝑎𝑗𝑖
𝑗∈𝑃 + ∑ ∑ ∑ ∑ 𝑋𝑑

a
𝑇𝑑=t−𝑑−𝑎𝑗𝑖𝑂𝑑=𝑗,𝑗∈𝑃𝐷𝑑=𝑖𝑑∈𝐷 ; (4.1)                                

 

Equation (4.1) indicates the expected inventory level for depot 𝑖  after adding in TCs 

returning from ETCR or cleaning. 

Event 2: Outbound flow to execute jobs on day t 

The inventory level is updated with the planned container outflows for day t. Due to 

uncertain cleaning times, the actual inventory level may not satisfy all planned outflows. 

Therefore, emergent leasing may be required, so the most cost-effective way to assign the 

jobs among self-containers and emergent-leased containers must be determined. Let:  

𝑆𝑖(𝑡)′′ = Max {0, 𝑆𝑖(𝑡)′ − ∑ ∑ ∑ 𝑋𝑑
p

𝑇𝑑=t𝑂𝑑=𝑖𝑑∈𝐷 }; (4.2) 

 

If 𝑆𝑖(𝑡)′′ > 0, then 𝑋𝑑
𝑎 = 𝑋𝑑

𝑝
, 𝑍𝑑

𝑒= 0; (4.3)  

 

If 𝑆𝑖(𝑡)′′ = 0, then the assignment of jobs among self-containers and emergent-leasing 

containers is determined by solving the following mathematical programming problem: 

 

Min ∑ ∑ ∑ ∑ 𝑍𝑑
𝑒

𝑇𝑑=𝑡𝐷𝑑=𝑗,𝑗∈𝑃,𝑂𝑑=𝑖𝑑∈𝐷 ∗ 𝐶𝑖
𝑙𝑒 ∗ 𝑎𝑖𝑗 (4.4) 

 

Subject to: 

  

∑ ∑ ∑ X𝑑
a

𝑇𝑑=t𝑂𝑑=𝑖𝑑∈𝐷 ≤ 𝑆𝑖(𝑡)′,  
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X𝑑
a + Z𝑑

e = X𝑑
p
; for dD with Td = t. (4.5) 

 

Equation (4.2) gives the potential inventory level for depot i after the job associated TC 

outbound flow. Equation (4.3) determines whether or not the current inventory is still able 

to cover the planned self-container jobs. Equation (4.4) determines how to assign self-

container jobs and emergent-leasing jobs when the current inventory is unable to cover the 

planned self-container jobs.  

 

Event 3: ETCR  

ETCR is driven by inventory control policies every day, but intrinsic problems may emerge. 

Before in-transit ETCR containers arrive at a deficit depot, the ‘to-be-replenished’ depots 

will still be in deficit and will keep asking for ETCR from surplus depots. If no intervention 

is made, repetitive ETCR assignments will occur. Also, since part of the future container 

flow information is already known, it makes no sense to reposition TCs out of a depot that 

is surplus today but will soon be a non-surplus depot because of planned jobs. Likewise, 

there is less need of ETCR for a deficit depot if TCs will be available soon from finished 

jobs or previously arranged ETCR. Consequently, the need for inventory adjustment arises. 

First, the horizon length of adjusted inventory needs to be decided, i.e. how far into the 

future does information on planned operations need to be taken into account? Since the 

main target of the adjusted inventory process is to enable effective ETCR, while the target 

of ETCR is to ensure better container availability to meet the received demands, the latest 

execution day of the received demands will be used to define the adjusted inventory 

horizon length. Then, the imminent inventory adjustments described above need to be 

calculated. Within the determined horizon, the future container arrivals and confirmed 

container outflow are the main adjustments. The future container arrivals come from 

finished jobs and previous ETCR. For any depot i, the future container arrival of previous 

ETCR planning is the sum of all ETCR from other depots to depot i that departed before 

the decision-making day and will arrive at depot i within the horizon. Another adjusted 

component is the containers returned from finished jobs. Since self-owned containers need 

to be cleaned before their next job, they face two scenarios. One, cleaning has already 
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started and the container will return to the depot within the planning horizon. Two, cleaning 

has not started, but it is expected to be finished and the container returned to the depot 

within the planning horizon period. For the first scenario, the return day is certain. For the 

second, since cleaning has not started, the cleaning duration is a random number that needs 

to be estimated (Figure 4.4). To simplify the computation, the mean value of the cleaning 

duration is used. Finally, since no customer demands will be rejected at Stage 1, the overall 

container outflows are estimated by the demands that arrived on or before the decision-

making day, while their execution dates are within the planning horizon. 

 

Figure 4.4 Two scenarios of container return after cleaning 

Following the above discussion, let: 

Ω𝑗𝑖,0
𝑡  ={  𝑠 ∈ 𝑇|𝑡 + 1 − 𝑎𝑗𝑖 ≤ 𝑠 ≤ 𝑚𝑖𝑛 {t + 𝑀𝑖

𝑡 − 𝑎𝑗𝑖 , 𝑡 − 1}} represent the time periods 

before time t and the deployed ETCR containers from depot j to depot i will be available 

in time period t + 1 to t + 𝑀𝑖
𝑡; 

Ω𝑖,1
𝑡 = {𝑑 ∈ 𝐷|𝐷𝑑 = 𝑖, 𝑂𝑑 = 𝑗, 𝑗 ∈ 𝑃, 𝑇𝑑 + 𝑎𝑗𝑖 ≤ 𝑡, 𝑡 < 𝑇𝑑 + 𝑎𝑗𝑖 + d ≤ 𝑡 + 𝑀𝑖

𝑡} represent 

the containers that have finished jobs and started cleaning, and will be available in time 

period t + 1 to t + 𝑀𝑖
𝑡; 

Ω𝑖,2
𝑡 = {𝑑 ∈ 𝐷|𝐷𝑑 = 𝑖, 𝑂𝑑 = 𝑗, 𝑗 ∈ 𝑃, 𝑆𝑑 < 𝑡, 𝑇𝑑 + 𝑎𝑗𝑖 > 𝑡, 𝑇𝑑 + 𝑎𝑗𝑖 + b̅𝑖 ≤ 𝑡 + 𝑀𝑖

𝑡 

represents the containers that are still fulfilling jobs but expected to be available in the time 

period t+1 to t+𝑀𝑖
𝑡. b̅𝑖 represents the expected TC cleaning time;  
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Ω𝑖,3
𝑡 = {𝑑 ∈ 𝐷|𝐷𝑑 = 𝑖, 𝑂𝑑 = 𝑗, 𝑗 ∈ 𝑃, 𝑆𝑑 < 𝑡, 𝑇𝑑 > 𝑡, 𝑇𝑑 + 𝑎𝑗𝑖 + b̅𝑖 ≤ 𝑡 + 𝑀𝑖

𝑡  represents 

the containers that are planned to use self-containers but not yet shipped out, and are 

expected to be available in the time period t + 1 to t + 𝑀𝑖
𝑡, then the adjusted inventory level 

is: 

 

𝑆𝑖
𝑚(𝑡)  = 𝑆𝑖(𝑡)′′  + ∑ ∑ 𝑔𝑗𝑖

𝑠
𝑠∈Ω𝑗𝑖,0

𝑡𝑗∈𝑃 + ∑ X𝑑
a

𝑑∈Ω𝑖,1
𝑡 + ∑ X𝑑

a
𝑑∈Ω𝑖,2

𝑡 + ∑ X𝑑
p

𝑑∈Ω𝑖,3
𝑡 −

∑ ∑ ∑ 𝑀𝑑
𝑇𝑑=t+𝑀𝑖

𝑡

𝑇𝑑=t+1𝑂𝑑=𝑖,𝑆𝑑≤𝑡𝑑𝐷 . (4.6) 

 

On the right-hand-side of Equation (4.6), the second to fifth terms are the container inflows 

specified above. The last term is the overall self-owned container outflows received on and 

before time t, and to-be-executed from t + 1 to 𝑡 + 𝑀𝑖
𝑡.  

After the inventory levels are adjusted for all depots, ETCR assignments need to be 

determined. As inter-regional repositioning is not used, all ETCR is within the same region 

as follows. Let Ps
r,t denote the set of surplus depots in the selected region r at time t, namely, 

Ps
r,t  := { i  Pr | 𝑆𝑖

𝑚(t)-U𝑖 > 0}, where Pr is the set of depots in region r. Similarly, let Pd
r,t 

denote the set of deficit depots in the same region r at time t, i.e. Pd
r,t  := { i  Pr |L𝑖 −

 𝑆𝑖
𝑚(𝑡) > 0}. The ETCR assignments {𝑌𝑖𝑗

𝑡 } are determined by solving the following 

mathematical programming problem: 

 

Min ∑ ∑ 𝑔𝑖𝑗
𝑡

𝑗∈𝑃𝑟,𝑡
𝑑𝑖∈𝑃𝑟,𝑡

𝑠 ∗ 𝐶𝑖𝑗; (4.7) 

s.t. 

 

∑ ∑ 𝑔𝑖𝑗
𝑡

𝑗∈𝑃𝑟,𝑡
𝑑𝑖∈𝑃𝑟,𝑡

𝑠 = 𝑀𝑖𝑛 [∑  (𝑆𝑖
𝑚(t) − U𝑖) 𝑖∈𝑃𝑟,𝑡

𝑠 , ∑ (L𝑗 −  𝑆𝑗
𝑚(t))𝑗∈𝑃𝑟,𝑡

𝑑 ]. (4.8)  

 

After this event, the inventory levels at surplus depots are updated, which determines the 

inventory levels at the beginning of the next period: 

 

𝑆𝑖(𝑡)′′′ = 𝑆𝑖(𝑡 + 1) = 𝑆𝑖(𝑡)′′ − ∑ 𝑔𝑖𝑗
𝑡

𝑗∈𝑃𝑟,𝑡
𝑑 ; for 𝑖 ∈ 𝑃𝑟,𝑡

𝑠 . (4.9) 
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Event 4: Planning execution of new demands received on day t 

This event plans the most profitable way to fulfil the new demands arriving on day t. 

Although execution of these jobs will be in the future, how this will be done must be 

decided on the receiving day. At the current stage, there are self-container jobs and 

planned-leasing jobs. When a job’s execution date arrives, it will be executed as planned 

unless there are not enough self-containers, in which case an emergent-leasing job will 

arise. When time moves to the next day (t+1), the process is repeated and the new decisions 

are built on top of all the old plans without affecting them (Figure 4.5), i.e. plans once made 

are set firm and cannot be modified in the light of new demands or other data on subsequent 

days.  

 

 

Figure 4.5 Overview of new demands receiving and planning 

 

For a series of new demands, the rules for their planning are as follows. First, the latest 

execution date among these demands defines the current length of the planning horizon. 

Then, demands from the earliest execution date until the latest execution date will be 

planned. Second, within the planning horizon, if depot i has demands to be executed on 

day t + q, the inventory level of depot i is first updated with all the known information. 

This process is similar to the inventory adjustment in the previous event. Ω𝑗𝑖,0
𝑡  is used to 

represent the time that ETCR activities have been arranged and those containers from depot 

j to depot i are expected to be available in time period t + 1 to t + q; Ω𝑖,1
𝑡 , Ω𝑖,2

𝑡 , Ω𝑖,3
𝑡  represent 

the sets of jobs with respect to different status. Ω𝑖,1
𝑡  comprises containers that have finished 

jobs and started cleaning, and will be available in time period t + 1 to t + q; Ω𝑖,2
𝑡  comprises 

containers that are still fulfilling their jobs and are expected to be available in the time 

periods from t + 1 to t + q; Ω𝑖,3
𝑡  represents the demands that have been planned to use self-
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containers but have not been shipped out yet, but are expected to be available in the time 

period from t + 1 to t + q. Their mathematical definitions are: 

 

 Ω𝑗𝑖,0
𝑡  = { 𝑠 ∈ 𝑇|𝑡 + 1 − 𝑎j𝑖 ≤ 𝑠 ≤ min (t + 𝑞 − 𝑎𝑗𝑖 , 𝑡 − 1)}; (4.10) 

 Ω𝑖,1
𝑡 = {𝑑 ∈ 𝐷|𝐷𝑑 = 𝑖, 𝑂𝑑 = 𝑗, 𝑗 ∈ 𝑃, 𝑇𝑑 + 𝑎𝑗𝑖 ≤ 𝑡, 𝑡 < 𝑇𝑑 + 𝑎𝑗𝑖 + d ≤ 𝑡 + 𝑞}; (4.11) 

 Ω𝑖,2
𝑡 = {𝑑 ∈ 𝐷|𝐷𝑑 = 𝑖, 𝑂𝑑 = 𝑗, 𝑗 ∈ 𝑃, 𝑆𝑑 < 𝑡, 𝑇𝑑 + 𝑎j𝑖 > 𝑡, 𝑇𝑑 + 𝑎𝑗𝑖 + b̅𝑖 ≤ 𝑡 + 𝑞}; (4.12) 

 Ω𝑖,3
𝑡 = {𝑑 ∈ 𝐷|𝐷𝑑 = 𝑖, 𝑂𝑑 = 𝑗, 𝑗 ∈ 𝑃, 𝑆𝑑 < 𝑡, 𝑇𝑑 > 𝑡, 𝑇𝑑 + 𝑎𝑗𝑖 + b̅𝑖 ≤ 𝑡 + 𝑞}.  (4.13) 

 

If the updated self-containers are enough to cover all the ‘to-be-executed’ demands at that 

depot, those demands are planned as self-container jobs. If not, planned-leasing containers 

are needed. Mathematically, the assignments are described as follows: 

 

𝑆𝑖(t + q)′  =   𝑆𝑖(𝑡)′′′  + ∑ ∑ 𝑔𝑗𝑖
𝑠

𝑠∈Ω𝑗𝑖,0
𝑡𝑗∈𝑃 + ∑ X𝑑

a
𝑑∈Ω𝑖,1

𝑡 + ∑ X𝑑
a

𝑑∈Ω𝑖,2
𝑡 +  ∑ X𝑑

𝑝
𝑑∈Ω𝑖,3

𝑡 −

∑ ∑ ∑ ∑ X𝑑
𝑝𝑇𝑑=𝑡+𝑞

𝑇𝑑=𝑡+1𝑆𝑑≤𝑡𝑂𝑑=𝑖𝑑∈𝐷 . (4.14) 

 

On the right-hand side of Equation (4.14), the second term represents the accumulated 

ETCR jobs that have been scheduled and will arrive between time t + 1 to t + q. From the 

third to the fifth term are the accumulative container inflows related to self-container jobs 

between time t + 1 to t + q. The last term is all the scheduled container outflows between 

time t + 1 to t + q.   

 

If 𝑆𝑖(𝑡 + 𝑞)′  ≥ ∑ ∑ ∑ ∑ 𝑀𝑑𝑇𝑑=𝑡+𝑞𝑆𝑑=𝑡𝑂𝑑=𝑖𝑑∈𝐷 , then X𝑑
𝑝 = 1  for any d {𝑑 ∈ 𝐷|𝑂𝑑 =

𝑖, 𝑆𝑑 = 𝑡, 𝑇𝑑 = 𝑡 + 𝑞}; (4.15) 

If 𝑆𝑖(𝑡 + 𝑞)′ < ∑ ∑ ∑ ∑ 𝑀𝑑𝑇𝑑=𝑡+𝑞𝑆𝑑=𝑡𝑂𝑑=𝑖𝑑∈𝐷 , then the self-container jobs and planned-

leasing jobs are determined by solving the following mathematical programming problem: 

 

Min ∑ ∑ ∑ ∑ ∑ 𝑍𝑑
𝑝

𝑇𝑑=𝑡+𝑞𝑆𝑑=𝑡𝐷𝑑=𝑗,𝑗∈𝑃𝑂𝑑=𝑖𝑑∈𝐷 ∗ 𝐶𝑖
𝑙 ∗ 𝑎𝑖𝑗; (4.16) 

s.t.  

∑ ∑ ∑ ∑ ∑ X𝑑
𝑝

𝑇𝑑=𝑡+q𝑆𝑑=𝑡𝐷𝑑=𝑗,𝑗∈𝑃𝑂𝑑=𝑖𝑑∈𝐷 ≤  𝑆𝑖(𝑡 + 𝑞)′; (4.17) 
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𝑋𝑑
𝑝

+ 𝑍𝑑
𝑝

= 𝑀𝑑 and {𝑑 ∈ 𝐷|𝑂𝑑 = 𝑖, 𝑆𝑑 = 𝑡, 𝑇𝑑 = 𝑡 + 𝑞}; (4.18) 

 

Equations (4.15) and (4.16) define the two scenarios of demand assignments by comparing 

the inventory level and customer demands. Specifically, if there are not enough self-

containers, planned-leasing containers are used. Equation (4.16) assigns the different types 

of jobs. Equation (4.17) and (4.18) define the constraints for the optimization equation.  

Inventory control policy optimization 

The objective of this model at Stage 1 is to find the optimal inventory control policy that 

leads to the most profitable TC operations, with profit defined as total revenue minus total 

cost. Here, the cost components include container-holding cost, laden and empty container 

moving cost, leasing cost, container-handling cost and container-cleaning cost. The 

optimal threshold values {[Li, Ui] | iP} are found by maximizing the following expected 

profit: 

 

Max EXP {∑ 𝑀𝑑 ∗𝑑∈𝐷 𝐸𝑑 − ∑ ∑ 𝑆𝑖(𝑡)𝑖∈𝑃𝑡∈𝑇 ∗ 𝐶𝑖
ℎ − ∑ ∑ ∑ 𝑀𝑑𝐷𝑑=𝑗,𝑗∈𝑃𝑂𝑑=𝑖,𝑖∈𝑃𝑑∈𝐷 ∗ (𝐶𝑖𝑗 +

𝐶𝑖
𝑜 + 𝐶𝑗

𝑓
) − ∑ ∑ ∑ 𝑔𝑖𝑗

𝑡
𝑗𝑖𝑡∈𝑇 ∗ (𝐶𝑖𝑗 + 𝐶𝑖

𝑜 + 𝐶𝑗
𝑓

) − ∑ ∑ 𝑋𝑑
𝑎

𝐷𝑑=𝑗,𝑗∈𝑃𝑑∈𝐷 ∗ 𝐶𝑗
𝑐 −

∑ ∑ ∑ 𝑍𝑑
𝑝

𝐷𝑑=𝑗,𝑗∈𝑃𝑂𝑑=𝑖,𝑖∈𝑃𝑑∈𝐷 ∗ 𝐶𝑖
𝑙 ∗ 𝑎𝑖𝑗 − ∑ ∑ ∑ 𝑍𝑑

𝑎
𝐷𝑑=𝑗,𝑗∈𝑃𝑂𝑑=𝑖,𝑖∈𝑃𝑑∈𝐷 ∗ 𝐶𝑖

𝑙𝑒 ∗ 𝑎𝑖𝑗)}.(4.19) 

 

4.3.2 Model at Stage 2: customer demands fulfilment 

Stage 2 assists decision-making in terms of how the new customer demands will be served 

every day to make better profits, whilst facing the additional uncertainties caused by FFs’ 

abilities to fulfil ETCR. The focus is on operational decisions, and the ETCR inventory-

control policies from Stage 1 are inputs. 

Events in Stage 2 

There are four events with Events 1 and 2 being similar to those in Stage 1, whereas Events 

3 and 4 are more complicated due to choosing FFs, job rejections and future demand 

forecasting.  

Event 3 plans ETCR. Since this happens before demand planning (Event 4), all received 

customer demands and future demand prediction are considered in adjusting the inventory 
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levels. Event 3 plans the ETCR deployment but not the amount, which will be influenced 

by the choice of FF in Event 4 (see Equation (4.28)). 

Event 4 makes decisions on satisfying demands in terms of choice of FFs, self-container 

jobs, planned-leasing jobs and demand rejections. FFs are chosen by an iterative procedure, 

with the other decisions being made following this selection, within each iteration. Figure 

4.6 illustrates this iterative procedure and its mathematical formulation is given below.  

 

 

Figure 4.6 Decisions on new demands and choice of FFs 

 

Mathematical model of Stage 2 
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With the determined inventory policies (threshold values for each depot), decisions in 

Stage 2 are made as follow. 

Event 1: Inbound flow to receive self-owned containers on day t. 

This event is the same as Event 1 in Stage 1 except the amount of ETCR is influenced by 

the choice of FFs. Also, since the FFs for the inflow ETCR are decided already, the 

associated booking success rate is known. Likewise, the cleaning duration for newly 

available containers is known. Let 𝑑  denote the known cleaning duration sampled from 

random variable 𝑏𝑖 , and β𝑠 (𝑠 < 𝑡) be the known booking success rate on day s. The 

inventory level on day t is updated after Event 1 using Equation (4.20): 

 

𝑆𝑖(𝑡)′ = 𝑆𝑖(𝑡) + ∑ 𝑔
𝑗𝑖

𝑡−𝑎𝑗𝑖
𝑗∈𝑃 ∗ 𝛽𝑡−𝑎𝑗𝑖

+ ∑ ∑ ∑ ∑ ∑ 𝑋𝑑
𝑎

𝑇𝑑=𝑡−𝑑−𝑎𝑗𝑖𝑂𝑑=𝑗,𝑗∈𝑃𝐷𝑑=𝑖𝑑∈𝐷𝑠

𝑠=𝑡−1
𝑠=0 ;   

 (4.20) 

 

Event 2: outbound flow to execute jobs on day t. 

 

𝑆𝑖(𝑡)′′ = max {0, 𝑆𝑖(𝑡)′ -∑ ∑ ∑ ∑ ∑ 𝑋𝑑
𝑝

𝑇𝑑=𝑡𝐷𝑑=𝑗,𝑗∈𝑃𝑂𝑑=𝑖𝑑∈𝐷𝑠

𝑠=𝑡
𝑠=0 }; (4.21) 

 

If 𝑆𝑖(𝑡)′′ > 0, then 𝑋𝑑
𝑎 = 𝑋𝑑

𝑝
, 𝑍𝑑

𝑒= 0, where 𝑑 ∈ 𝐷𝑠; (4.22)  

 

If 𝑆𝑖(𝑡)′′ = 0, then the assignments of the actual self-container jobs and emergent-leasing 

jobs are determined by solving the following sub-optimization problem: 

 

Min  ∑ ∑ ∑ ∑ ∑ 𝑍𝑑
𝑒

𝑇𝑑=𝑡𝐷𝑑=𝑗,𝑗∈𝑃,𝑂𝑑=𝑖𝑑∈𝐷𝑠

𝑠=𝑡−1
𝑠=0 ∗ 𝐶𝑖

𝑙𝑒 ∗ 𝑎𝑖𝑗; (4.23) 

s.t.  

 

∑ ∑ ∑ ∑ 𝑋𝑑
𝑎

𝑇𝑑=𝑡𝑂𝑑=𝑖𝑑∈𝐷𝑠

𝑠=𝑡−1
𝑠=0 ≤ 𝑆𝑖(𝑡)′,  

𝑋𝑑
𝑎 + 𝑍𝑑

𝑒 = 𝑋𝑑
𝑝
; for d𝐷𝑠, s<t, and 𝑇𝑑= t (4.24) 

 

Equations (4.21)-(4.24) jointly determine the laden TC outflows at depot i on day t. 
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Event 3: ETCR deployments. 

ETCR is guided by the optimized inventory control policies obtained from Stage 1, while 

the actual process is the same as Event 3 in Stage 1.  

Ω𝑗𝑖,0
𝑡  ={ 𝑠 ∈ 𝑇|𝑡 + 1 − 𝑎𝑗𝑖 ≤ 𝑠 ≤ min( 𝑡 + 𝑀𝑖

𝑡 − 𝑎𝑗𝑖, 𝑡 − 1)} is used to represent the time 

periods before time t and the deployed ETCR containers from depot j to depot i will be 

available in time period t + 1 to t +𝑀𝑖
𝑡;  

Ω𝑖,1
𝑡 = {𝑑 ∈ 𝐷𝑠|𝐷𝑑 = 𝑖, 𝑂𝑑 = 𝑗, 𝑗 ∈ 𝑃, 𝑇𝑑 + 𝑎j𝑖 ≤ 𝑡, 𝑡 < 𝑇𝑑 + 𝑎𝑗𝑖 + d ≤ 𝑡 + 𝑀𝑖

𝑡} 

represents the containers that have finished jobs and started cleaning, and will be available 

in time period t + 1 to t + 𝑀𝑖
𝑡; 

Ω𝑖,2
𝑡 = {𝑑 ∈ 𝐷𝑠|𝐷𝑑 = 𝑖, 𝑂𝑑 = 𝑗, 𝑗 ∈ 𝑃, 𝑠 < 𝑡, 𝑇𝑑 + 𝑎𝑗𝑖 > 𝑡, 𝑇𝑑 + 𝑎𝑗𝑖 + b̅𝑖 ≤ 𝑡 + 𝑀𝑖

𝑡} 

represents the containers that are still fulfilling jobs but expected to be available in time 

period t + 1 to t + 𝑀𝑖
𝑡; 

 Ω𝑖,3
𝑡 = {𝑑 ∈ 𝐷𝑠|𝐷𝑑 = 𝑖, 𝑂𝑑 = 𝑗, 𝑗 ∈ 𝑃, 𝑠 < 𝑡, 𝑇𝑑 > 𝑡, 𝑇𝑑 + 𝑎𝑗𝑖 + b̅𝑖 ≤ 𝑡 + 𝑀𝑖

𝑡}   represents 

the containers that are planned for use in self-container jobs but have not shipped out yet 

and are expected to be available in time period t + 1 to t + 𝑀𝑖
𝑡. Equation (4.25) gives the 

adjusted inventory level. 

 

 𝑆𝑖
𝑚(𝑡)  = 𝑆𝑖(𝑡)′′  + ∑ ∑ 𝑔𝑗𝑖

𝑠
𝑠∈Ω𝑗𝑖,0

𝑡𝑗∈𝑃 ∗ β𝑠 + ∑ X𝑑
a

𝑑∈Ω𝑖,1
𝑡 + ∑ X𝑑

a
𝑑∈Ω𝑖,2

𝑡 + ∑ X𝑑
p

𝑑∈Ω𝑖,3
𝑡 −

∑ ∑ ∑ 𝑀𝑑
𝑇𝑑=t+𝑀𝑖

𝑡

𝑇𝑑=t+1𝑑𝐷𝑠,𝑂𝑑=𝑖
𝑠=𝑡−1
𝑠=0 − ∑ ∑ ∑ 𝑀𝑦

𝑆𝑦=t+14

𝑆𝑦=t+1𝑂𝑦=𝑖𝑦∈𝑌𝑡
 (4.25) 

 

Equation (4.25) is the adjusted inventory process, and it is similar to Stage 1 except the 

booking successful rate, rejected jobs and predicted demands are included. 𝛽𝑠  is the 

realized value for the successful booking rate of ETCR on day s. The last term is the total 

predicted container outflow for the following 14 days, i.e. the two-week forecast used in 

industry. 

After every inventory level is adjusted, ETCR assignments are determined. If 𝑃𝑟,𝑡
𝑠  is taken 

as a set of surplus depots in region r at time t, any depot i of 𝑃𝑟,𝑡
𝑠  needs to be {𝑖 ∈ 𝑃𝑟,𝑡

𝑠 |𝑆𝑖
𝑚(t)-

U𝑖 > 0}. Likewise, if 𝑃𝑟,𝑡
𝑑  is the set of deficit depots in the same region, any depot i of 𝑃𝑟,𝑡

𝑑  
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should be {i∈ 𝑃𝑟,𝑡
𝑑 |L𝑖 − 𝑆𝑖

𝑚(t)>0}. Equation (26) determines the ETCR assignments at time 

t. 

 

Min ∑ ∑ 𝑔𝑖𝑗
𝑡

𝑗∈𝑃𝑟,𝑡
𝑑𝑖∈𝑃𝑟,𝑡

𝑠 ∗ 𝐶𝑖𝑗; (4.26) 

s.t. 

 

∑ ∑ 𝑔𝑖𝑗
𝑡

𝑗∈𝑃𝑟,𝑡
𝑑𝑖∈𝑃𝑟,𝑡

𝑠 = 𝑀𝑖𝑛 {∑  (𝑆𝑖
𝑚(t) − U𝑖  )𝑖∈𝑃𝑟,𝑡

𝑠 , ∑ (L𝑗 −  𝑆𝑗
𝑚(t))𝑗∈𝑃𝑟,𝑡

𝑑 }. (4.27) 

 

Event 4: Decisions towards new demands. 

Since the consideration of FFs has been introduced at Stage 2, the determined ETCR 

amount from Event 3 may not be the actual repositioned amount due to the unreliability of 

the selected FF. To achieve greater profits, the choice of FFs will be optimized together 

with the decisions on meeting customer demands. However, without knowing the choice 

of FFs, this event cannot proceed. Hence, an FF is randomly selected with a cost of  𝑓𝑡 ∈

[
2C𝑏

𝑡

5
, C𝑏

𝑡 ]. Based on the chosen FF, the associated booking success rate β𝑡 can be realized, 

and the inventory level can be further updated to: 

 

𝑆𝑖(𝑡)′′′ = 𝑆𝑖(𝑡)′′ − ∑ 𝑔𝑖𝑗
𝑡

𝑗∈𝑃𝑟,𝑡
𝑑 ∗ β𝑡 (4.28) 

 

Then, taking the newly received demands 𝐷𝑡 with execution date of t + q as an example 

for the job assignments process, and using Ω𝑗𝑖,0
𝑡  to represent the time periods before time t 

and the deployed ETCR containers from depot j to depot i will be available in the time 

periods from t + 1 to t + q, then Ω𝑗𝑖,0
𝑡  ={ 𝑠 ∈ (0, 𝑡)|𝑡 + 1 − 𝑎j𝑖 ≤ 𝑠 ≤ min (t + 𝑞 − 𝑎𝑗𝑖 , 𝑡 −

1) }; Ω𝑖,1
𝑡 = {𝑑 ∈ 𝐷𝑠|𝐷𝑑 = 𝑖, 𝑂𝑑 = 𝑗, 𝑗 ∈ 𝑃, 0 ≤ 𝑠 < 𝑡, 𝑇𝑑 + 𝑎j𝑖 ≤ 𝑡, 𝑡 < 𝑇𝑑 + 𝑎𝑗𝑖 + 𝑑 ≤

𝑡 + 𝑞} represents the containers that have finished jobs and started the cleaning process, 

and will be available in time period t + 1 to t + q; Ω𝑖,2
𝑡 = {𝑑 ∈ 𝐷𝑠|𝐷𝑑 = 𝑖, 𝑂𝑑 = 𝑗, 𝑗 ∈ 𝑃, 0 ≤

𝑠 < 𝑡, 𝑇𝑑 + 𝑎𝑗𝑖 > 𝑡, 𝑇𝑑 + 𝑎𝑗𝑖 + b̅𝑖 ≤ 𝑡 + 𝑞} represents the containers that are still fulfilling 

jobs but are expected to be available in time period t + 1 to t + q; Ω𝑖,3
𝑡 = {𝑑 ∈ 𝐷𝑠|𝐷𝑑 =
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𝑖, 𝑂𝑑 = 𝑗, 𝑗 ∈ 𝑃, 0 ≤ 𝑠 < 𝑡, 𝑇𝑑 > 𝑡, 𝑇𝑑 + 𝑎𝑗𝑖 + b̅𝑖 ≤ 𝑡 + 𝑞}  represents the containers that 

are planned for use in self-container jobs but have not shipped out yet, and are expected to 

be available in time period t + 1 to t + q: 

 

𝑆𝑖(t + q)′  =   𝑆𝑖(𝑡)′′′  + ∑ ∑ 𝑔𝑗𝑖
𝑠

𝑠∈Ω𝑗𝑖,0
𝑡 ∗ β𝑠𝑗 + ∑ X𝑑

a
𝑑∈Ω𝑖,1

𝑡 +  ∑ X𝑑
a

𝑑∈Ω𝑖,2
𝑡 +  ∑ X𝑑

𝑃
𝑑∈Ω𝑖,3

𝑡 −

∑ ∑ ∑ ∑ X𝑑
𝑃𝑇𝑑=t+q

𝑇𝑑=t+1𝑂𝑑=𝑖𝑑∈𝐷𝑠

𝑠=𝑡
𝑠=0 ; (4.29) 

 

Equation (4.29) is used to calculate the expected inventory level for depot i on day t + q 

after the planned container inflows and outflows are finished. The second term is used to 

obtain the amount of ETCR arrivals in time period t + 1 to t + q, and parameter β𝑠 is the 

known value of the booking success rate for every ETCR arrangement on its associated 

day. 

If 𝑆𝑖(t + q)′  ≥ ∑ ∑ ∑ 𝑀𝑑𝑇𝑑=t+q𝑂𝑑=𝑖𝑑∈𝐷𝑠,𝑠=𝑡 , ∀ X𝑑
p

= 1 , Z𝑑
p

= W𝑑 = 0 , for ∀d {𝑑 ∈

𝐷𝑠|𝑂𝑑 = 𝑖, 𝑠 = 𝑡, 𝑇𝑑 = t + q}. (4.30) 

 

If 𝑆𝑖(t + q)′  < ∑ ∑ ∑ 𝑀𝑑𝑇𝑑=t+q𝑂𝑑=𝑖𝑑∈𝐷𝑠,𝑠=𝑡 , the assignment of self-container jobs, 

planned-leasing jobs and job rejections are determined by solving the following 

mathematical programming problem: 

 

Min ∑ ∑ ∑ ∑ (X𝑑
p

+𝑇𝑑=t+q𝐷𝑑=𝑗,𝑗∈𝑃𝑂𝑑=𝑖𝑑∈𝐷𝑠,𝑠=𝑡 Z𝑑
p

) ∗ C𝑖j +

∑ ∑ ∑ ∑ Z𝑑
p

𝑇𝑑=t+q𝐷𝑑=𝑗,𝑗∈𝑃𝑂𝑑=𝑖𝑑∈𝐷𝑠,𝑠=𝑡 ∗ C𝑖
l ∗ 𝑎ij +

∑ ∑ ∑ ∑ W𝑑𝑇𝑑=t+q𝐷𝑑=𝑗,𝑗∈𝑃𝑂𝑑=𝑖𝑑∈𝐷𝑠,𝑠=𝑡 ∗ C𝑖𝑗
𝑝

; (4.31) 

s.t. 

 

X𝑑
p

+ Z𝑑
p

+ W𝑑 = 1 for ∀d {𝑑 ∈ 𝐷𝑠|𝑂𝑑 = 𝑖, 𝑠 = 𝑡, 𝑇𝑑 = 𝑡 + 𝑞} ; (4.32) 

∑ ∑ ∑ X𝑑
p

𝑇𝑑=t+q𝑂𝑑=𝑖𝑑∈𝐷𝑠,𝑠=𝑡 = 𝑆𝑖(𝑡 + 𝑞)′; (4.33) 

 𝑆𝑖(𝑡 + 𝑞)′′ = 𝑆𝑖(𝑡 + 𝑞)′ − ∑ ∑ ∑ X𝑑
p

𝑇𝑑=𝑡+𝑞𝑂𝑑=𝑖𝑑∈𝐷𝑠,𝑠=𝑡 . (4.34) 
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Equations (4.30) and (4.31) are the rules for assigning self-container jobs, planned-leasing 

jobs and rejections, and if there are not enough self-containers, the specific assignments 

are obtained by solving Equation (4.31). Equations (4.32)-(4.34) are the constraints for 

planning container outflows, if there are self-container jobs, planned-leasing jobs or 

rejections. The above steps, Equations (4.28)-(4.34), are repeated to finish the job 

assignments for all the demands received on day t.   

According to the event description at the beginning of this stage, the optimized choice of 

FFs can be searched for within the range of 𝑓𝑡 by running the loop from Equations (4.28)-

(4.34) to maximize profit in Equation (4.35). β𝑡 is the realized booking success rate for 

each loop:  

 

 EXP {∑ ∑ (𝑀𝑑
𝑇𝑑=𝑡+𝑀𝑖

𝑡

𝑇𝑑=t+1 − 𝑊𝑑) ∗𝑑∈𝐷𝑡
𝐸𝑑 − ∑ ∑ ∑ 𝑆𝑖

𝑇𝑑𝑇𝑑=𝑡+𝑀𝑖
𝑡

𝑇𝑑=t+1𝑖∈𝑃𝑑∈𝐷𝑡
∗ 𝐶𝑖

ℎ −

∑ ∑ ∑ ∑ (𝑀𝑑 − 𝑊𝑑) ∗ (𝐶𝑖𝑗 + 𝐶𝑖
𝑜𝑇𝑑=𝑡+𝑀𝑖

𝑡

𝑇𝑑=t+1𝐷𝑑=𝑗,𝑗∈𝑃𝑂𝑑=𝑖,𝑖∈𝑃𝑑∈𝐷𝑡
+ 𝐶𝑗

𝑓
+ C𝑏

𝑡 ) −

∑ ∑ 𝑔𝑖𝑗
𝑡 ∗𝑗∈𝑃𝑖∈𝑃 β𝑡 ∗ (C𝑖j + 𝐶𝑖

𝑜 + 𝐶𝑗
𝑓

+ 𝑓𝑡) − ∑ ∑ ∑ 𝑋𝑑
𝑎𝑇𝑑=𝑡+𝑀𝑖

𝑡

𝑇𝑑=t+1𝐷𝑑=𝑗,𝑗∈𝑃𝑑∈𝐷𝑡
∗ 𝐶𝑗

𝑐 −

∑ ∑ ∑ 𝑍𝑑
𝑝𝑇𝑑=𝑡+𝑀𝑖

𝑡

𝑇𝑑=t+1𝑂𝑑=𝑖,𝑖∈𝑃𝑑∈𝐷𝑡
∗ 𝐶𝑖

𝑙 ∗ 𝑎𝑖𝑗 − ∑ ∑ ∑ ∑ W𝑑
𝑇𝑑=𝑡+𝑀𝑖

𝑡

𝑇𝑑=t+1𝐷𝑑=𝑗,𝑗∈𝑃𝑂𝑑=𝑖,𝑖∈𝑃𝑑∈𝐷𝑡
∗ 𝐶𝑖𝑗

𝑝
}.  

 (4.35) 

      

4.4 Solution methods 

4.4.1 The needs 

The Stage 1 and Stage 2 models are difficult to solve analytically. First, they involve 

random variables and a large number of operational decisions (taking integer values). 

Second, to reflect the practices of real TCOs, these operational decisions need to be 

determined on an event-driven basis, which is difficult to formulate in a single 

mathematical programming model. Hence, the solution method proposed is a simulation-

based heuristic, which allows the handling of workflow and constraints as well as the 

searching of the solution space and the execution of associated evaluations. However, some 

of its required input data comes from local mathematical programming optimizations, e.g. 

tf
max
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the everyday ETCR assignments are determined by linear programming. Therefore, hybrid 

elements are introduced to make the heuristic method a mixed optimization solution. For 

example, during Events 2, 3 and 4 in both simulation stages, linear programming is used 

jointly with certain rules to optimize ETCR amounts and job assignments. This allows: 

i)  an increase in computational tractability by using a heuristic method;  

ii)  an increase in effectiveness and efficiency by using a mathematical optimization 

method to find the local optimum. 

Similarly, a math-heuristic is another hybridized optimization algorithm that uses 

interoperation of heuristics and mathematical programming. For example, Rath and 

Gutjahr (2014) propose a math-heuristic to optimize warehouse location routing. They use 

a mixed-integer linear programming formulation as the backbone and a constraint pool 

heuristic to reduce the expensive computational part for dealing with large problem spaces. 

Chen and Lau (2011) use a math-heuristic for resource scheduling in maritime logistics. 

They decompose their problem into two sub-problems, using heuristics for their machine-

scheduling sub-problem, while using linear integer programming for their equipment 

allocation sub-problem. Comparing math-heuristics to the solution method applied in this 

paper, no matter how the mathematical and heuristic parts are structured, they are not built 

upon event-driven simulation. They are just an extension to either heuristic or mathematical 

programming methods to combine both of their advantages. In this paper, a math-heuristic 

can hardly be applied. This is because without the simulation process, it is hard to formulate 

the dynamic traits of the changing planning horizon and variable container cleaning times 

causing different container returns, and it is hard to handle some subtle issues such as the 

2-week demand forecast and different groups of job-finished containers etc. Instead, a 

novel mixed optimization method is designed here to address the problem formulated in 

Section 3.  

The simulation-based optimization method developed here consists of a GA search module 

and a simulation-based decision-making module. The latter uses a discrete event model of 

the operational level process of TC management and flows. This allows tracing of the TC 

holding cost, laden and empty container transportation costs, planned and emergent leasing 

costs, FF cost (Stage 2), container lifting-on/off cost, container cleaning cost and job 
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rejection penalty of each order at each region and depot. It outputs the profit of a given 

solution, whereas the GA searches for better solutions. 

 

4.4.2 Simulation module 

The structure of the simulator is described in Appendix 1 and Appendix 2. In Stage 1 and 

Stage 2, it simulates the same daily process of each depot simultaneously (receive 

containers returned from cleaning and repositioning; arrange outflow containers to execute 

customer demands, determine ETCR and leasing; cope with new customer demands and 

planning etc.). It takes a set of input data including customer demands, inventory thresholds 

and initial net stock, and the shipping network with distances between regions and depots. 

It interacts with the decision-making module to receive its outputs for use in executing the 

four events. It records and allows tracing of the storage, loading, transhipment and 

unloading processes of each job and the inventory level of each depot. It outputs an 

operational level performance measure; the total profits. 

In Stage 1, the decision-making module is limited to the assignment of self-container jobs 

and planned-leasing jobs and linear optimization of the order in which to take the jobs. In 

Stage 2, decisions are made with consideration of the 2-week demand forecast, and job 

rejections and choice of FFs are considered jointly. The job assignments are again made 

by linear optimization, and the output performance measure is used to determine the best 

choice of FFs. ETCR is the same for both stages. It first determines a depot’s status as 

deficit or surplus, by comparing the current inventory, ‘on the way’ containers and 

deterministic future demands against the thresholds. Then, the ETCR activities (the 

quantities, origins and destinations of reposition containers) are deployed by solving a 

classic assignment problem. This decision-making process is performed dynamically in an 

event-driven module based on the input threshold values, customer demands and dynamic 

information obtained from the simulator. 

To evaluate the performance of the system, in Stage 1 the relevant costs including handling 

costs, transport costs, leasing costs and inventory costs are calculated. The Stage 1 

simulation terminates when the defined total simulation days are reached, in this case 180 
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days. In Stage 2, the FF costs and job rejection penalties are also calculated. Whenever 

ETCR is required on a given day, the FF optimization is run, and the overall simulation 

terminates when the defined total simulation days are reached, as for Stage 1. 

 

4.4.3 The Heuristic Search Method (HSM) 

To emulate observed industrial practice a heuristic is introduced to determine the threshold 

values in the inventory control policy. This utilizes the statistics of customer demands and 

inventory dynamics across the whole planning horizon. First, all the depots are grouped 

into surplus and deficit depots according to their overall TC net flow (e.g. a net import 

depot is a surplus depot). Next, the following key statistical indicators are estimated:  

i. Average jobs per day in depot i ( );  

ii. Standard deviation of demands in depot i ( );  

iii. Least Inventory Level (LILi) for every depot i based on given container flow 

information;  

iv. Largest Backlog Order (LBOi) for depot i; 

v. Largest Consecutive Container Net Outflow (LCCNOi) for depot i. 

 

Specifically, , , LBOi and LILi can be obtained simply from demand information, 

while LCCNOi is determined as follows. Each depot’s container net flow is monitored daily 

and, when its first net outflow occurs, the amount is recorded as the first Continuous 

Container Net Outflow (CCNOi); this is a negative number. CCNOi is updated according 

to the net flow in the following days. Once CCNOi is updated as a positive number, it is 

returned to zero and this round of CCNOi updating is finished. The next round of CCNOi 

updating starts with the next net outflow. This is repeated until the end of the planning 

horizon, and for each depot. During the first iteration LCCNOi is set as the largest 

negative CCNOi. At each further iteration, if there is a larger negative CCNOi then 

LCCNOi is updated, so it is the largest across all iterations. Appendix 3 summarises this 

process. 

i

i

i i
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LCCNOi is the inventory a depot requires to meet all its customer demands. If it has less, 

leasing is required. If it has more, these can be fed to other depots. Therefore, the LCCNOi 

values are used as the upper threshold values for surplus depots, encouraging them to 

transfer TCs. The lower threshold values for surplus depots are decided from LILi, LBOi 

and + . If LILi > 0, the lower threshold value for the depot is set as 1, which means, 

with the safeguard of the upper threshold, it needs no external help to meet its demand. If 

LILi = 0 and LBOi > 0, then even though this is a surplus depot, it still has a stock-out risk 

on a given day. Thus, minimum (LBOi, + ) determines whether this depot should call 

for help based on the inventory level falling below the level required to meet its average 

demand. 

For deficit depots, apart from the statistical indicators used above, Most Inventory Level 

(MILi) and ‘Largest that can be Repositioned Amount’ (LRA) in this region are also needed. 

MILi is the highest inventory level that this depot has ever reached. LRA is the total number 

of containers available for repositioning in the region. Maximum (MILi, + ) 

determines the lower bound for the deficit depot, helping it to call for more ETCR to 

increase the number of self-container jobs. The upper bound for deficit depots is set as 

minimum (LCCNOi, LRA). This is because ETCR can only be intra-regional for the TC 

industry, therefore, LCCNOi is the amount that allows the deficit depots to meet all 

demands with self-owned containers, but it cannot exceed LRA. Appendix 4 summarises 

the heuristic for threshold values. 

 

4.4.4 The Adapted Genetic Algorithm (AGA) 

Alternatively, the threshold value in Stage 1 can be obtained and optimized using an AGA; 

one of the most commonly used meta-heuristic optimization approaches in container 

operations research (e.g. Dong and Song, 2009; Dang et al., 2013). The AGA used here is 

built upon a modification of the ‘standard’ or default Genetic Algorithm (GA) implemented 

in Matlab using scattered crossover and Gaussian mutation (MathWorks, 2018). It is 

illustrated in Appendix 5.  

i i

i i

i i
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As the first operation, the standard GA is performed with respect to the underlying problem. 

For the genetic representation (chromosome), the candidate solution consists of the double 

threshold values for each depot, coded as a vector of non-negative integers denoted as {[Li, 

Ui] | iP}, where and are the lower and upper bounds of the inventory thresholds for 

depot i. A valid chromosome should satisfy the constraint . The initial 

population of solutions is generated randomly. Since the optimization is to maximize profit, 

the higher the objective function value (profit), the higher the solution fitness value should 

be. To achieve this,  is used to represent the total profits under the solution 

represented by chromosome q, then the fitness value of chromosome q is defined as 

, where  is the population size. For the parent 

selection process, roulette wheel sampling is used; each of two parents is selected from a 

binary tournament, which randomly picks two individuals from the entire population and 

retains the fittest. The two selected parents generate a child using scattered crossover. 

Fourth, probabilities are selected for crossover and mutation, and also, since pairs of 

elements in Stage 1 are formed by the lower and upper inventory bounds of a specific depot, 

these must be copied together to the offspring as a pair during crossover. Finally, all the 

parent and offspring chromosomes are sorted into descending fitness order and only the 

chromosomes with sequence numbers less than or equal to  are carried into the next 

generation. 

After the setting of the standard GA, the next operation will run the simulation module 

iteratively to find an improved variable range for the target variables. Because, as a pilot 

study indicated, the variable range bordered by the current constraints (i.e. ) 

is too broad to find a good result within an acceptable computation time, especially when 

the problem scale is large. Therefore, the range needs to be more precise (narrower) to help 

the GA to evolve fitter solutions within a shorter time. Specifically, this operation involves 

three major steps to reduce the variable constraints range and to fit the standard GA. First, 

the initial variable range is used to run the GA for a fixed number of generations to generate 

the first series of ‘optimized’ results. A value of 70 is used as the initial upper bound for 

the variable range because beyond this value the rate of convergence to optimality slowed 

iL iU

0 i iL U N  

( )E q

( ) min{ ( ) :1 }q pF E q E q q N    pN

pN
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down greatly in pilot experiments. Second, the upper threshold values (i.e. ) are 

gradually reduced concurrently, e.g. 65 to 61, and the simulation module is re-run to see if 

performance is affected. If it is not, it means the current value is too large and the range 

should be reduced further. This process is repeated until the evaluation results change, then 

values from the last run that made no changes to overall evaluation are used as the new 

variable range, and the GA optimization solver is run again to obtain the new series of 

‘optimized’ results. In the final step, the GA parameters such as crossover and mutation 

probabilities, population size, stall generation limit (stop limit for no improvement) and 

selection methods are re-evaluated to determine the final results. 

The above AGA is needed only for the Stage 1 threshold-value optimization problem, as 

the standard GA in Matlab is effective and efficient enough for the Stage 2 FF 

optimization. In Stage 1 the population size is 50, and the GA terminates after 100 

generations or when the improvement in best fitness < 0.001 for 10 consecutive generations. 

Stage 2 uses a population size of 20 and terminates after 20 generations or when the 

improvement in best fitness < 0.001 for 5 consecutive generations. Crossover rate is 0.8 

and mutation rate is 0.2 for both stages. 

 

4.4.5 Verification and Validation (V&V) for model formulation and results 

Up to this point, problems addressed by this chapter is formulated and solved with different 

techniques. Guided by the V&V methods introduced in section 3.3, this section will briefly 

introduce how the V&V process of the computerised model in this chapter is implemented. 

Prior to the V&V activities about the conceptual model and computerised model, data 

validation is firstly carried out. This is because the historical data from real system is the 

key for carrying out model validation and verification later on, it is essential to ensure the 

data obtained is reliable. Yet, since I have no direct access to the data’s owner (the case 

company), there are two ways carried to check the data validity. One, all the data is 

manually screened. This step is carried to filter out some abnormal records that are either 

obvious errors (e.g. travel days from Shanghai to Long beach are only 3 days) or are 

abnormal comparing to other data within the same type (e.g. travel cost for the same 

iU
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journey is largely outside of the normal range). For error data, all the related records are 

deleted while the abnormal ones are validated with the help of literatures, company reports 

or industrial reports. If there’s abnormal data cannot be validated effectively, they are 

excluded from the model simulation and solution process. The second way for data 

validation is that patterns and behaviour of data are validated thoroughly. This refers to 

data records with similar setting should follow similar pattern, for example, records for 

demands between the same cities are considered similar patterns from one cycle to another. 

If abnormal pattern spotted, same process is carried as how abnormal data is treated.  

I. Conceptual model validation 

The conceptual model is constructed from the underlying system and needs to be validated. 

To ensure the two-stage conceptualised model has effectively represented the intended 

system, this is firstly validated through several meetings with industrial practitioners. 

Alongside a series of supported information, a workflow chart is constructed to describe 

the details of this conceptual model (see Appendix 1 and 2), and it is agreed by practitioners 

from this industry. Especially, how the main events are going to be simulated and what 

assumptions will be included are validated by industrial professionals. Meanwhile, in order 

to further justify the rationale for assumptions proposed during model conceptualisation 

process, different papers and ground theories are searched and cited (e.g. Stolt-Nielsen 

(2017) has reported the TC leasing issue; Dong and Song (2009) to support the assumption 

about 40-foot TEUs; Erera et al. (2005) to support the assumption about TC cleaning).  At 

last, to validate the model conceptualisation, traces are used to determine if the logic for 

each sub-model and overall model is correct. This is done by going through the equations 

of the conceptual model with comparing to the intended purpose of the real system. 

Measurements from real system (e.g. data from case company) are used to exam whether 

the conceptual model is valid. For example, inventory data on each day can be used to 

check whether the proposed inventory management process from the conceptual model is 

reasonable; or historical customer demands and job information can be used to check 

whether the proposed job handling mechanism in conceptual model is valid. 

II. Computerised model verification  
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Regarding the validated conceptual model, the constructed computerised model 

(simulation model) is verified with different techniques. First, the whole simulation model 

is designed with different modules. Each module represents different events with different 

functionalities. In this way, each module can be verified independently with appropriate 

data input and output. For example, a simple scenario is used to check whether the ETCR 

activity is deployed as it is intended to be and it is appropriately linked to its correlated 

module(s). Two, auxiliary variables and counters are introduced to help observing the 

dynamics and behavior of the computerised model. For example, job counter is used to 

show the up-to-now new added jobs which can be used to check the status of customer 

demand fulfilment; repositioning job counter can be used to obtain the very recent sum of 

reposition jobs and verify the correctness of ETCR related costs. Third, the “debugger” 

function provided by the programming software is used to verify the computerised model. 

One the one hand, it can be used to check whether there’s any coding language related 

mistakes or ineffectiveness (e.g. inappropriate use of condition language or operation 

symbols), on the other hand, it allows us to verify the results in the middle of some 

processes with the help of manual calculation techniques. For example, we can manually 

calculate container inflow and outflow amount everyday for a particular depot to verify the 

result from the computerised model. Fourth, with the use of historical data as inputs, the 

overall simulation model is verified by comparing its overall output to historical records. 

Especially, by disabling the ETCR function of the simulation model, it should get the same 

results as the historical records in terms of demand vs. job fulfilment, revenue and 

inventory level etc. 

III. Computerised model validation 

Once the constructed computerised model is verified, it needs to be further validated with 

respect to the underlying system. The major activities used to validate the computerised 

model come from two aspects. First, the model behavior is explored. For this validation 

activity, experts (industrial practitioners) are involved again to give both quantitative and 

qualitative validation for the computerised model. For example, they will check whether 

the current optimised result is feasible and they will also explore how the model will 

respond when different scenarios are incorporated with respect to their own expertise. Two, 
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comparison of output behaviors is conducted to validate the computerised model. The day-

to-day inventory level for each depot is plot and presented with respect to the change of 

container cleaning time distribution. Under different circumstances, the current 

computerised model should be able to both handle customer demands and mitigate 

unbalanced container flow pattern.   

In conclusion, above implementation has completed the V&V framework elaborated in 

Section 3.3. Although there are more techniques introduced in that section, some of them 

are hard to be implemented by this research. Because reasons include limited time for this 

research, limited computational ability and no observable real system etc. However, it 

opens up the opportunities to carry further V&V activities in the author’s future research 

life. 

 

4.5 Numerical examples 

Computational tests of the model have been conducted with ‘real’ operational data from a 

major, global TCO.  These tests have three purposes: 

i. to investigate the feasibility of the model in solving realistically sized problems 

with basic PCs;  

ii. to benchmark against general practices to understand the economic significance of 

the proposed tool in achieving better decision-making. (Stage 1 compares the 

performance of the optimization system with the practices in managing TC 

inventory, Stage 2 compares it with the practices choosing FFs and using different 

customer demand predictions);  

iii. to quantify the influences of different factors on operational profits to generate 

managerial insights. 

 

4.5.1 Initialisation of the experiments 

Due to the different objectives of the two stages, two different simulation environments 

were created. For both stages, the simulation horizon (i.e. overall planning horizon) is 180 
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days discretized in days. In delineating the global operation, nine depots are picked across 

three regions as shown in Figure 4.7.   

 

Figure 4.7 the depots and their related regions 

 

Among the nine depots, the travel distances between any two are known and measured as 

shipping days. Transportation between any two depots is available but due to cost 

considerations, ETCR is only intra-regional.  

During the 180 days in Stage 1, 1,003 customer demands occur. Every single demand 

represents one booking request and only one container is needed per booking. Demands 

are specified with origins, destinations, receiving date, execution date and expected 

revenues. The unit costs of inventory, lift-on/lift-off, container cleaning and job rejection 

penalty are listed in Table 1. The transportation cost per self-owned TC between two ports 

is assumed to be the transit time in days multiplied by a constant of £10. If the job is 

fulfilled with pre-planned leasing containers, the pre-planned leasing cost is £100 per day. 

For emergent leasing containers, the cost is £130 per day. The revenue per container ranges 

from £287 to £6,769. These values are generalized from the case TCO’s data. 

The initial inventory levels at the depots are uniformly distributed. The initial fleet size is 

designed to match the overall demands. Taking the average demand per day, the demand 

standard deviation and the average duration time for one job into consideration, the fleet 

size is rounded to 135 units in total.   
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Container cleaning duration is modelled as a random variable with a uniform distribution 

in the range 3 to 7 days. Again, this is a generalization of industrial data. Later, the 

truncated Normal distribution is used to evaluate the influence of different variances.  

The model is implemented using Matlab 2015 and a PC with a four-core 3.30 GHz 

processor and an 8 GB RAM.  

Table 4.1 Cost parameters per TC 

Inventory 

holding 

cost  

Lift on 

& off  

Job-

Rejectio

n 

Penalty 

Cleanin

g 

Self-container 

transportatio

n  

Planned 

leasing  

Emergent 

leasing  

 

£3/day 

 

£20 

 

£200 

 

£20 

 

£10/day 

 

£100/day 

 

£130/day 

 

4.5.2 Computation results in Stage 1 

Experimental results in Table 4.2 compare ETCR with AGA and No ETCR. Also, it is 

compared with two other ETCR approaches seen in TCOs. First, ETCR is guided by a 

‘Regional Average Inventory Level’ (RAIL) for each region. RAIL is obtained by 

averaging the up-to-date inventory level of all depots in the region. Depots with inventories 

lower than RAIL are fed by depots with inventories above RAIL. Figure 4.8 illustrates the 

process. Second, the threshold values of ETCR are determined heuristically by HSM.  

Table 4.2 Comparison of results for No ETCR, ETCR with AGA, RAIL, and HSM 

Indicators ETCR 

with 

AGA  

No ETCR  % 

change 

from 

ETCR 

with 

AGA 

ETCR 

with 

RAIL 

% 

change 

from 

ETCR 

with 

AGA 

ETCR 

with 

HSM 

% 

change 

from 

ETCR 

with 

AGA 

Self-

container 

jobs 

730 685 -6.2% 784 +7.4% 708 -3.0% 

Planned-

leasing 

jobs 

230 242 +5.2% 157 -31.7% 228 -0.9% 
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Emergent-

leasing 

jobs 

43 76 +76.7% 62 +44.2% 67 +55.8% 

Number of 

ETCR  

76 n/a n/a 458 +502.6
% 

21 -72.4% 

Total costs £320,469 £401,130 +25.2% £387,239 +20.8% £373,009 +16.4% 

Total 

profits 

£1,105,1

54 

£1,024,49

3 
-7.3% £1,038,38

4 
-6.0% £1,052,61

4 
-4.8% 

Total 

inventory 

costs 

£37,869 £40,860 +7.9% £35,469 -6.3% £39,609 +4.6% 

Cost of 

self-

container 

jobs 

£84,890 £77,070 -9.2% £89,900 +5.9% £79,810 -6.0% 

Cost of 

planned-

leasing 

jobs 

£121,900 £165,200 +35.5% £87,400 -28.3% £148,800 +22.1% 

Cost of 

emergent 

leasing 

jobs 

£38,870 £84,240 +116.7
% 

£109,590 +181.9
% 

£69,940 +79.9% 

Utilization 67.1% 47.3% -29.5% 75.6% +12.7% 61.7% -8.0% 

Utilization 
for jobs 

62.9% 47.3% -24.8% 58.4% -7.2% 59.2% -5.9% 

 

 

Figure 4.8 the process for RAIL-based ETCR 

Compared to ETCR with AGA, the profit with No ETCR is 7.3% lower, ETCR with RAIL 

is 6% lower and ETCR with HSM is nearly 5% lower. The improvement with ETCR with 

AGA is mainly due to reductions in planned-leasing and emergent leasing costs. 

Specifically, No ETCR yields 35.5% higher planned-leasing cost and 116.7% higher 

emergent leasing cost, ETCR with RAIL yields 181.9% higher emergent leasing cost 

(reduction of planned-leasing cost for ETCR with RAIL is not enough to compensate for 
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higher emergent leasing cost), and ETCR with HSM yields 22.1% higher planned-leasing 

cost and 79.9% higher emergent leasing cost. Strikingly, ETCR with RAIL results in 

approximately 6 times more ETRC movements than ETCR with AGA.  

To understand what is happening, first note that No ETCR yields 5.2% more planned-

leasing jobs than ETCR with AGA, but the increase in the planned-leasing cost is nearly 7 

times more at 35.5%. To understand this, consider an example with two depots starting 

with inventory levels of 2 and 8 self-owned containers respectively. Suppose each depot 

has 10 demands, 4 of which are long duration and 6 short duration. Without ETCR, the 

first depot would have to service 2 long duration demands with planned-leasing containers. 

If instead the inventory had been rebalanced by ETCR, say to inventory levels of 4 and 6, 

then there would be no need to service long duration jobs with planned-lease containers. 

Therefore, although the overall number of planned-leasing jobs would remain the same at 

10, the cost would fall significantly. This means ETCR is not so much reducing the number 

of planned-leasing jobs as focusing them on to shorter duration demands by having more 

balanced inventories across the depots. 

The more balanced inventories are also spreading out the ability of inventory to provide a 

buffer to protect against stochasticity and subsequent emergent leasing, with ETCR with 

AGA reducing the number of emergent leasing jobs by 43% (No ETCR is 76.7% higher), 

and their cost by 54% (No ETCR is 116.7% higher).  If inventory is not balanced then low-

inventory depots will arise and these are more likely to need emergent leasing. 

The very high volume of ETCR movements for ETCR with RAIL (approximately 6 times 

ETCR with AGA) means more inventory balancing is occurring, resulting in more self-

container jobs, and therefore less planned-leasing, because the self-containers are more 

often in the right place for outflows. However, compared to ETCR with AGA this does not 

translate into higher profits. This is predominantly because ETCR with RAIL yields a big 

increase in the number (44.2%) and cost (181.9%) of emergent jobs in addition to 

the greatly increased amount of ETCR, which is not offset by a sufficient reduction in 

planned leasing. The increase in emergent-leasing costs is more than four times the increase 

in number of emergent-leasing jobs. This means that ETCR with RAIL not only yields 

more emergent leasing, but this tends to be for more expensive longer duration jobs, i.e. a 
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double or amplified shortcoming. Two more metrics were introduced to further analyse 

this phenomenon. ‘Utilization’ is the average total time TCs spend on job related activity 

or ETCR during the whole planning horizon (180 days), with job activity including laden 

delivery, holding by receiver, cleaning and return to inventory. ‘Utilization-for-jobs’ is just 

the average time TCs spend on job related activity excluding ETCR.  In Table 2, these 

show that while ETCR with RAIL is keeping TCs very busy, much of this activity is taken 

up with ETCR with the result that the Utilization-for-jobs is less than for ETCR with AGA, 

which in turn is better than ETCR with HSM. 

What we are seeing is that ETCR with RAIL results in hugely excessive TC repositioning. 

It does yield higher profits than No ETCR, but these are still 6% less than ETCR with AGA 

yields with a sixth of the amount of repositioning. This is a very important result as ETCR 

with RAIL is a natural way for industry to work, demonstrating the practical value of the 

new ETCR with AGA. ETCR with RAIL is too focused on immediate rebalancing of 

inventories rather than planning using a longer-term perspective of net flows and inventory 

levels. For example, excessive ETCR can be caused when a long-term deficit depot 

temporarily has sufficient inventory, or a long-term surplus depot is temporarily deficient. 

ETCR with AGA looks further ahead, making more considered decisions, rather than 

rushing to reposition based on current inventory levels. 

ETCR with HSM yields far fewer ETCR movements than ETCR with AGA (-72.2%) but 

far more emergent leasing (+55.8%) with an even bigger increase in emergent leasing costs 

(+79.9%). Quite simply, ETCR with HSM is simply not doing enough repositioning and 

this is resulting in a big increase in emergent leasing to cover for local shortages. Clearly, 

ETCR with AGA is yielding better results by achieving a better balance between over and 

under repositioning, compared with ETCR with RAIL and ETCR with HSM. 

The cleaning duration is stochastic. In order to evaluate the ETCR policy’s robustness and 

sensitivity to the spread of the cleaning times within the range [3,7], the time is modelled 

using a Normal distribution with mean 5 days and truncated beyond the [3,7] range. Then, 

three experiments were run with the variance set to 0.5, 1 and 2 respectively, with the 

results in Table 4.3 (it is the average of ten times experiments with respect to different 

random cleaning setting). 
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Table 4.3 Comparison of results under normal distribution with different standard 

deviations 

Indicators AGA with 

normal 

cleaning 

𝒃𝒊~𝑵(𝟓, 𝟎. 𝟓) 

AGA with 

normal 

cleaning 

𝒃𝒊~𝑵(𝟓, 𝟏) 

Difference  

from 

𝒃𝒊~𝑵(𝟓, 𝟎. 𝟓) 

AGA with 

normal 

cleaning 

𝒃𝒊~𝑵(𝟓, 𝟐) 

Differenc

e from 

𝒃𝒊~𝑵(𝟓, 𝟎. 𝟓) 

Self-container 

jobs 

732 734 +0.3% 727 -0.7% 

Planned-leasing 

jobs 

227 227 +0.0% 230 +1.3% 

Emergent-leasing 

jobs 

44 42 -4.6% 46 +4.6% 

No. of ETCR 

movements 

78 75 -3.9% 73 -6.4% 

Total costs £309,439 £311,549 +0.7% £316,434 +2.3% 

Total profits £1,116,18

4 

£1,114,704 -0.1% £1,109,189 -0.6% 

Inventory costs £37,389 £37,569 +0.5% £37,704 +0.8% 

Cost of self-

container jobs 

£85,770 £85,660 -0.1% £85,200 -0.7% 

Cost of planned-

leasing jobs 

£122,200 £120,000 -1.8% £121,900 -0.3% 

Cost of emergent 

leasing jobs 

£27,040 £31,330 +15.9% £34,840 +28.9% 

 

Table 4.3 shows that the key effect of increased variability in cleaning times is a shift in 

costs to emergent leasing. This is understandable as emergent leasing is used to cope with 

unavailability of self-owned TCs. The practical implication is that TCOs should increase 

the reliability and certainty of the container cleaning process, not just the mean duration, 

to reduce emergent leasing costs and increase profits.  

To further justify the effects of changes in the random cleaning time settings, Table 4.4 

below listed the range of the ten experiment results for the key indicators (total profits and 

total costs) regarding each random cleaning setting. 

Indicators 

Statistics for ten times experiments 

AGA with 

normal 

cleaning 

𝒃𝒊~𝑵(𝟓, 𝟎. 𝟓) 

AGA with 

normal 

cleaning 

𝒃𝒊~𝑵(𝟓, 𝟏) 

Difference  

from 

𝒃𝒊~𝑵(𝟓, 𝟎. 𝟓) 

AGA with 

normal 

cleaning 

𝒃𝒊~𝑵(𝟓, 𝟐) 

Difference 

from 

𝒃𝒊~𝑵(𝟓, 𝟎. 𝟓) 

Upper £309,846 £312,347 +0.9% £318,778 +3.3% 



147 | P a g e  
 

Total 

costs 

Lower £309,113 £311,131 +0.6% £314,154 +1.7% 
Ave. £309,439 £311,549 +0.7% £316,434 +2.3% 

 Std./ 

Ave. 

(%) 

0.27% 0.38% / 1.2% / 

Total 

profits 

Upper £1,117,069 £1,115,312 -0.25% £1,110,73

6 
-0.4% 

 Lower £1,115,767 £1,113,864 -0.08% £1,107,99

6 
-0.7% 

 Ave. £1,116,184 £1,114,704 -0.13% £1,109,18

9 
-0.6% 

 Std./ 

Ave. 

(%) 

0.6% 0.7% / 1.3%  

Table 4.4 the highlights of the ten experiments for TC cleaning sensitivity analysis 

 

Table 4.4 illustrates the largest and lowest result out of ten times experiments regarding 

two varied TC cleaning random distribution. As the result demonstrates, when variance of 

TC cleaning distribution tends to be heavier, the total costs all tend to be larger (increase 

from 0.6% to 0.9% when standard deviation increase to 1 and increase from 1.7% to 3.3% 

when standard deviation increase to 2) and total profits are thereby shrunk (within the range 

of -0.25% to -0.08% and -0.7% to -0.4% for the two settings) with the given samples. 

 

4.5.3 Computation results in Stage 2 

In this stage, the model is advanced to apply the joint decision-making process associated 

with ETCR, job fulfilments and choice of FFs on a day-to-day basis. In addition to the cost 

components in Stage 1, the FF cost and the cost of job rejection are introduced. To reduce 

the computation complexity, the cost of the best FF is fixed at £40 per job across all regions. 

In reality, the cost of an FF may be different from region to region or even from route to 

route. However, the simplified value used here is sufficient to demonstrate the 

effectiveness of the model. During real-time decision-making, TCOs do not need to 

simulate such a long period as in the tests here, so their computation time will be less, 

allowing them to increase data complexity.  

This stage introduces a penalty cost for rejecting demands to achieve greater profits. It is 

first set as £200 per job and varied later to test the model’s sensitivity to it. The two-week 
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look-ahead approach observed in industry is used, so in ETCR calculations the adjusted 

inventory level will allow for predicted customer demands. The demands’ mean and 

standard deviations from Stage 1 are used to generate new demands. Decisions are then 

made on job fulfilment for demands received daily and the FF for ETCR based on the 

threshold values obtained from Stage 1. The simulation length is again 180 days, and 

performance is evaluated with indicators at the end of the planning horizon. Since the 

influence of different FFs over ETCR is subject to the stochasticity in the model, the 

simulation is run 10 times and the results averaged for each scenario. 

To articulate the significance of optimizing the FF choice with the proposed model, the 

best, lowest-cost, and random FFs (uniform probability) are also applied for comparison. 

Using best FFs represents TCOs who wish to guarantee smooth execution of their plans, 

i.e. to compete on service quality, although this is expensive. Using lowest-cost FFs 

represents TCOs competing on price by offering low-cost services, but to the detriment of 

service quality/reliability. Random FF represents TCOs with limited access to the FF 

market and limited market power in making choices; they have to take whatever they can 

get due to capacity constraints in the industry. 

Table 4.6 shows best FF yields better profits and job fulfilment than random FF and lowest-

cost FF, but optimal FF yields the best profit. This is achieved by big reductions in FF cost 

(best FF is 114.9% higher) and the cost of emergent leasing jobs (best FF is 19.9% higher). 

Underlying the improvement is a substantial reduction in ETCR movements (best FF is 

11.4% higher). From a strategic management perspective, this has advantages beyond just 

an increase in profit. It also means that the TCO is not beholden to just the best FF as 

another better FF can be identified due to its lower costs. Even if the profit differences are 

small, having a feasible alternative opens up competition that could drive costs lower, and 

having options in service providers is always strategically important.  

In order to evaluate the continued robustness of the model at this stage, a simulation was 

run with no ETCR and no job rejection, yielding a total profit of £1,042,336. This is clearly 

less than that achieved across Table 4.5, demonstrating the continued effectiveness of 

ETCR. 

Table 4.5 Results for Optimized and Non-Optimized FF choices 
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   Indicators Optimal 

FF  

Best FF % Diff. 

to 

optima

l FF 

Random 

FF  

% Diff. 

to 

optima

l FF  

Lowest 

cost FF  

% 

Diff. 

to 

optim

al FF  

Self-

container jobs 

746 750 +0.5% 717 -3.9% 708 -5.1% 

Planned-

leasing jobs  

230 231 +0.4% 241 +4.8% 258 +12.2
% 

Emergent 

leasing jobs 

46 43 -6.5% 59 +28.3% 49 +6.5% 

Rejected jobs 53 51 -3.8% 58 +9.4% 60 +13.2
% 

No. of ETCR 79 88 +11.4% 51 -34.5% 34 -57.0% 

Total revenue £1,387,05

6 

£1,391,38

0 
+0.3% £1,381,44

1 
-0.4% £1,376,59

6 
-0.8% 

c

o

s

t

s 

Inventory  £38,184 £38,151 -0.1% £39,129 +2.5% £39,717 +4.0% 

FF  £1,638 £3,520 +114.9
% 

£1,427 -12.9% £544 -66.8% 

Penalty  £10,600 £10,200   -3.8% £11,600 +9.4% £12,000 +13.2
% 

Self-

container 

jobs  

£94,300 £94,220 

 
-0.1% £92,760 -1.6% £91,350 -3.1% 

Planned-

leasing 

jobs 

£51,600 £52,200 +1.2% £55,400 +7.4% £52,300 +1.4% 

Emergent 

leasing 

jobs 

£46,800 £56,100 +19.9% £57,880 +23.7% £59,400 +26.9
% 

Total  

(not sum of 

above) 

£280,852 £292,511 +4.2% £293,871 +4.6% £290,655 +3.5% 

Total profits £1,106,20

3 

£1,098,86

9 

-0.7% £1,087,57

0 

 

-1.7% £1,085,94

1 

-1.8% 

 

The optimized and lowest cost FFs are a source of stochasticity due to their random 

reliability value. To see their effect, Figure 4.9 presents the profits from 10 repeated 

experiments with the same randomly generated stream of container cleaning times, but 

different random values for FF reliability. As the reliability of the best FF is constant at 
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100%, its profits are constant. The optimized FF gives higher profitability than the best FF 

in 7 experiments. The lowest cost FF yields the highest profit in 2 experiments when by 

random chance it produces high reliability, but it clearly gives the lowest profits on 5 

occasions. The random FF yields a dynamic profit-making ability, but with lower average 

profits close to that of the lowest cost FF. 

The reliability of the optimized FFs during each experiment ranged from 50% to 80%, 

showing that this optimization is truly using the FF range and not just going for high 

reliability FFs. 

 
Figure 4.9 Profit by experiment for different FF criteria 

Table 4.6 shows that optimizing the FF reduces leasing costs. If the penalty cost of rejecting 

a job were increased one would expect to see more leasing to accommodate a reduction in 

rejections. Table 4.6 presents the results when the penalty cost for rejecting jobs is varied. 

This shows that as the penalty cost, planned leasing cost or emergent leasing cost increase 

so FF optimization yields greater improvements in profit. This is due to large decreases in 

costs rather than increases in revenue that remain slightly lower in the experiments 

conducted.  
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Table 4.6 Effect of Key Cost Coefficients on Change in Profit for Optimized FF 

compared to Best FF 

Penalty Cost Planned 

leasing 

Emergent 

leasing 

Profit Revenue Cost 

£100 £100 £130 -2.1% -1.2% +2.1% 

£100 £120 £130 -0.7% -0.3% +0.9% 
£100 £120 £150 +0.4% -0.6% -1.2% 
£500 £100 £130 +1.1% -0.5% -5.3% 

£500 £120 £130 +1.8% -0.5% -7.2% 
£500 £120 £150 +2.9% -0.3% -8.4% 
£1000 £100 £130 +2.4% -0.2% -8.1% 

£1000 £120 £130 +3.1% -0.3% -8.9% 
£1000 £120 £150 +4.4% -0.4% -9.6% 

 

Moreover, to enhance the confidence of the conclusion drawn from Table 4.6, Table 4.7 

has contained the range of results (both largest and smallest change in percentage for every 

indicator) from ten experiments for every one cost coefficient change in profit. It can be 

seen that every ten experiments for each cost coefficient change illustrate the same 

tendency as stated above and this thereby enhances the quality of findings obtained from 

above sensitivity analysis (Table 4.6). 

Table 4.7 highlights of the ten experiments of change in profit for optimized FF 

compared to Best FF 

Penalty 

Cost 

Planned 

leasing 

Emergent 

leasing 

Profit Revenue Cost 

min max min max min max 

£100 £100 £130 -2.8% -1.7% -1.8% -0.7% +1.9% +2.6% 

£100 £120 £130 -1.6% -0.4% -0.9% -0.1% +0.4% +1.3% 
£100 £120 £150 +0.1% +0.7% -1.6% -0.3% -1.8% -0.9% 
£500 £100 £130 +0.4% +2.1% -1.5% -0.3% -7.5% -3.8% 

£500 £120 £130 +0.9% +2.4% -0.9% -0.3% -8.1% -6.9% 
£500 £120 £150 +2.1% +3.4% -0.8% -0.1% -9.5% -7.8% 
£1000 £100 £130 +1.8% +3.2% -0.9% -0.1% -9.4% -7.6% 

£1000 £120 £130 +2.5% +3.8% -1.1% 0% -9.8% -8.4% 
£1000 £120 £150 +3.7% +4.9% -0.8% -0.2% -9.9% -8.7% 

 

In line with industrial practice, a 2-week forecast was used in optimizing ETCR and 

inventory planning in Stage 2. To understand the effectiveness of incorporating the 2-week 
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forecast into the optimization (2-week forecast + ETCR with AGA), it is compared with 

not using the forecast in Table 4.8. This shows that including the forecast yields a 

substantial decrease in leasing, penalty and ETCR costs with a corresponding increase in 

profits. The increased visibility given by the forecast is allowing the plans to achieve more 

with self-containers instead of resorting to leasing and excessive container repositioning. 

To see if including the forecast changes the superiority of ETCR with AGA, Table 4.9 

presents the change in performance seen when using ETCR with AGA compared to ETCR 

with HSM and ETCR with RAIL, with all three now using the 2-week forecast. This shows 

that ETCR with AGA is still the most profitable, increasing profit by 6.7% and 7.3% 

respectively, as it makes better use of self-containers resulting in lower leasing and ETCR 

costs. 

Table 4.8 Change in ETCR with AGA performance after including 2-week forecast 

Indicator Change in performance 

with 2-week forecast 

Revenue +3.4% 
Profit +4.7% 
Total Cost -9.6% 
Cost of self-container jobs +2.1% 
Cost of planned-leasing jobs -6.4% 
Cost of emergent-leasing 

jobs 
-8.2% 

Penalty cost -9.2% 
ETCR cost -12.3% 

 

Table 4.9 Change in performance when using ETCR with AGA compared to other 

optimization methods after including 2-week forecast  

Indicator ETCR with HSM  

& 2-week forecast 

ETCR with RAIL  

& 2-week forecast 

Revenue +3.7% +2.8% 

Profit +6.7% +7.3% 

Total Cost -18.7% -22.4% 

Cost of self-container jobs +9.4% +3.5% 

Cost of planned-leasing jobs -15.7% -34.7% 

Cost of emergent-leasing jobs -17.1% -87.1% 

Penalty cost -14.1% -19.1% 

ETCR cost -4.4% -476.7% 
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Having seen the benefits of incorporating a 2-week forecast into the optimization, 

sensitivity to the length of the forecast period was investigated. Table 4.10 compares the 

results for 1, 2, 3 and 4-week forecasts with optimized FF. The 3-week forecast yields the 

highest profit through increasing the number of self-container jobs, resulting in decreased 

leasing jobs, and particularly the cost of these as it is longer more expensive jobs that are 

being switched to self-containers. The 1-week and 4-week forecasting periods result in 

increased ETCR. In the case of 1-week this is because it is too short to take into account 

future demands for the surplus depots, i.e. it is approaching no ETCR, so TCs are shipped 

to deficit depots too readily. In the case of 4-week forecasting, although more of the future 

demand forecast is considered, the forecast demand only tells where the origin is, but not 

the destination. Therefore, when the inventory is planned for the future, some of the future 

arrivals are not clear. However, if containers are reserved or repositioned for the whole 4-

week forecast, too many TCs may be kept or moved, as the cleaned arrival TCs replenish 

the inventory as well.  

Considering the current average job and cleaning durations, most containers will be ready 

for their next job within three weeks. Combining this with the above result the inference is 

that it is not beneficial to forecast beyond the typical job plus cleaning time. As the average 

job plus cleaning duration may be subject to change, due to changes in demand patterns, 

transport facilities or cleaning processes etc., it follows that TCOs should monitor this and 

adjust the forecast period accordingly. 

Table 4.10 Sensitivity analysis to forecast period with optimized FF 

Indicators Forecast Period 

 1-Week 2-Week 3-Week 4-Week 

Self-container jobs 724 746 763 733 

Planned-leasing jobs  244 230 221 241 

Emergent leasing jobs 49 46 43 46 

Rejected jobs 58 53 48 55 

No. of ETCR 92 79 71 88 

Total revenue £1,384,251 £1,387,056 £1,391,093 £1,385,596 

Costs 

Inventory costs £35,772 £38,184 £36,594 £43,683 

FF cost £1,940 £1,638 £1,149 £1,868 

Penalty costs £11,600 £10,600 £9,600 £11,000 

Cost for self-

container jobs  

£91,630 £94,300 £98,820 £92,350 
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Cost for 

planned-leasing 

jobs 

£54,200  £51,600 £49,200  £53,300 

Cost for 

emergent 

leasing jobs 

£48,100 £46,800 £38,740 £45,240 

Total  

(not sum of 

above) 

£297,537 £280,852 £271,093 £294,651 

Total profits £1,086,714 £1,106,204 £1,120,000 £1,090,945 

 

In addition, on top of the different average effects demonstrated in Table 4.10 with the 

application of different forecast period, result for each sample experiment is further 

examined and listed below in Table 4.11. They have provided further evidence to the finds 

obtained regarding Table 4.11. 

Table 4.11 solution quality evaluation for sensitivity analysis to forecast period with 

optimised FF 

Indic-

ators 

Forecast Period 

1-Week 2-Week 3-Week 4-Week 

min max s/

m

* 

min max s/

m* 

min max s

/

m

* 

min max s/

m

* 

Total 

Costs 

£293

,448 

£299

,841 

0.

8

% 

£275,3

21 

£284

,432 

2.0

% 

£268,

147 

£276,4

12 

2

.

3

% 

£291,0

65 

£297,8

13 

1.

2

% 

Total 

profits 

£1,0

79,8

32 

£1,0

89,7

28 

1.

0

% 

£1,105,

663 

£1,1

08,3

12 

0.4

% 

£1,11

4,331 

£1,145

,731 

2

.

3

% 

£1,080

,745 

£1,100

,257 

0.

7

% 

  *s/m means Std./mean in % 

4.6 Summary of this chapter 

To improve Tank Container (TC) operations management, this chapter has proposed a two-

stage model that enables optimization of a double-threshold inventory control policy for 

tank Container Operators (TCOs) to gain better operational profits, as well as demand 

fulfilment, during the quotation-booking process comparing to general practices. On top of 

the optimized inventory policy, the model simulates and optimizes the choice of FFs under 
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a more realistic operational environment including job rejections under a two-week 

demand forecast, on a rolling planning basis. The effectiveness of the two-stage model in 

optimization has been demonstrated through a series of numerical tests. Sensitivity analysis 

has articulated the managerial insights associated with the model with respect to different 

uncertainty levels, different FF costs and different demand forecast lengths.  

Through numerical experiments understanding of the economics behind the decisions in 

this important industrial operation has been gained. Common practices including inventory 

control policy, choice of FFs and customer demand prediction have been emulated and 

their performance compared with that of the new optimization model presented here. Key 

findings from the experiments include four aspects. First, the optimised inventory control 

policy demonstrates the ability for more precise resource allocation and better exploitation 

of market opportunities; Two, it is essential for TCOs to optimise the choice of FFs in 

leading better asset profitability; Three, a more reliable TC cleaning can result more certain 

cleaning duration, and better TC flow efficiency can be yield; Four, TCOs need to adapt 

their demand forecast ability to their demand pattern and use the forecast information and 

develop such capability accordingly.  

The current model is tailored to fit in the “quotation-booking” process with comprehensive 

consideration of daily operations, however, some issues at a higher level that have 

influence or should be influenced in a long-term are hard to be addressed by the current 

model and solutions. The reasons for this are threefold. First, as we discussed in literature 

review section, TCOs have global-based network to be operated on, an operational-oriented 

model is hard to find the optimality for large scale problems within a long-term planning 

horizon. Even though, the designed and optimised inventory control policies belong to 

long-term decisions, inventory control mechanism just used as inputs for better daily 

operation and decision-making, and the core process is still down to the performance with 

respect to “quotation-booking” rather than the performance regarding to different 

inventory-control policies. Second, different from the operational-oriented model, the 

decisions are made at a short-term basis, therefore, all the optimised decision-makings can 

only guarantee the best choices up to that time point. Even though the model is running for 

a long time with a deterministic setting, the way how information is processes still follows 
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the operational way. Hence, the overall result is hard to be optimal holistically, but for 

long-term decisions, it is more important the model is optimal or near-optimal for the whole 

planning horizon. Third, uncertainties with the current model is dealt with heuristic 

techniques (e.g. different realisation way for container cleaning duration), they prove to be 

effective for short-term performance because of the safeguard from the inventory control 

policies and the influence from discrepancies are relatively small in a short time. But as the 

numerical test illustrated, effectiveness of the model is significantly influenced when the 

variability level of uncertain parameters changed. Therefore, if all the uncertainties 

throughout a long-term horizon are taken into account in a static manner, the current way 

of coping with uncertainties may let the system lose its robustness. 

Considering the rest of the research objectives, a new model formulation and the associated 

solution need to be developed, so that the TC customer overholding issue within a global 

network can be controlled and optimised with proper pricing strategy while the uncertain 

container cleaning is considered.    
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5. TC strategic/tactical planning: fleet sizing, overholding pricing 

and network optimisation 

5.1 Significance of TC overholding 

Following the previous chapter, solutions are built to provide better customer job fulfilment 

with increased overall profits and asset utilisation. However, as the objective of asset 

management requested (see the definition of asset management in section 2.3), the 

profitability and utilisation for TCs should be jointly investigated throughout their overall 

journey. Specifically, the full journey for TCs fulfilling customer demands includes both 

outward and inward journeys. For the outward journey, empty TCs will be loaded, departed, 

delivered and receipt as the quoted itinerary required. Then, from the time point that 

customer received TCs until them returned back to TCOs’ appointed depots, TC inward 

journey is completed.  In Chapter 4, the built-up model and designed solutions focus on 

optimising the performance of TC “quotation-booking” process, which particularly, have 

less considered issues and challenges associated with TC inward journey. As a major part 

of TCs’ demand fulfilling lifecycle, improving TC return effectiveness and reducing TC 

return uncertainties can surely contribute to the overall performance of TC asset 

management. Therefore, it draws our attention to investigate further about operations 

within TC inward journey, and hopefully, it can seize more chances to make further 

improvement of TC asset management.  

The TC inward journey is majorly comprised by customer holding period. Specifically, it 

refers to the time when TCs arrived at customer designated port terminal until they return 

back to TCOs’ depot or pre-agreed locations. As mentioned in section 1.1, TCs are 

characterised as reliable and safety storage equipment, especially for hazard products such 

as chemical or petroleum commodities. Consequently, it is prevalent that TCs are overheld 

by their customers as storage equipment to meet production purpose. The motivations for 

such behaviour are two-fold. In this industry, to build dedicated storage facilities for 

liquified products are very costly, and as a result, paying the TC over-holding charge as 

alternative is regarded as a more flexible and economic way. Also, the petrochemical 

industry is highly volatile and unpredictable, even though the overall trend is on rise for 
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the past decades (fig. 5.1), but the fluctuation within every 3-5 years made it hard to 

optimise the investment over long-term capacities. Hence, it is easier and cheaper to use 

TCs to cope with production dynamics. 

  

    

Figure 5.1 the petrochemical index from 1993-2016 

Source from: ICIS 2016 

Due to such behaviour, ‘blind-spot’ is created when customer keep holding TCs because 

TC operators (TCOs) have little information of when those TCs will return to their 

inventory. Even though TC overholding charge is introduced, the current policy only 

generates TCOs another profit resource but makes little difference to the behaviour itself. 

Therefore, the TC flow is less efficient and hard to be controlled. Nevertheless, since TC 

overholding produce large amount of income for TCOs, and customers find the value of 

overholding TCs, a so-called “win-win” situation is created. As a result, risks and negative 

impacts associated with TC overholding are disregarded by the whole industry, but from 

the asset management perspective, they are worth to be pointed out. 

i. Making profits from TC overholding is not a sustainable business mode as this revenue 

is generated by customers’ dependence on TCs’ for storage needs. This goes far off the 
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core business of TCOs and when such dependence is reduced in the future (e.g. cheaper 

storage facilities), TCOs will incur a great profit loss and the current ignorance makes them 

lack of effective resilient strategies.   

ii. although TC over-holding generates significant profits for TCOs, it creates 

sophistications for overall operational planning. When over-holding occurs, an information 

“blind spot” is created in between customers and TCOs. Therefore, it is difficult to estimate 

when the return of those TCs and the overall TC flow planning becomes ineffective (Song 

and Carter, 2009). It is thereby questionable to determine whether the pros brought by TC 

over-holding outweigh its cons.  

iii. the “win-win” situation increased the ignorance of the TC over-holding problem from 

both TCO’s side and customer’s side. Hence, there are few associated practices developed 

to address such issue. Specifically, there are lack of support for integrated planning of job 

fulfilments (e.g. leasing or rejects) and ETCR when over-holding increases the uncertainty 

of TC return.   

iv. the uncertain operational environment will worsen the ineffectiveness that TC over-

holding brought to the operations planning. Notably, TCs requires thorough cleaning after 

each job journey, yet the cleaning process varies due to different moved products and the 

associated cleaning requirements (Erera et al., 2005), so the cleaning duration is hard to be 

determined. Take the TC over-holding and uncertain container cleaning jointly into 

account, it increases the difficulties of tracking TCs real-time status and scheduling the TC 

flows.  

Considering the above points, this chapter will look into mechanisms that can address TC 

overholding issue in a long term with the consideration of uncertain container cleaning. 

Most importantly, it aims at mitigating the TC overholding influences and designing the 

optimised policies to achieve better TC profitability at the tactic level under the influences 

of industrial uncertainties. By doing so, research gaps at strategic/tactical level illustrated 

in section 2.6.3 can be filled up and the corresponding research objectives (objective 3&4 

in section 2.6.3) can be achieved as well. Next, the research problem will be described in 

detail, and the modelling and solution techniques are selected and designed accordingly. 
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5.2 Problem formulation 

5.2.1 The description of TC operation 

Regarding the feature of “quotation-booking” process, TCOs need to clarify different time 

window constraints or different length of free days for developing quotations as per 

different customer demands. The time window constraint refers to the horizon that TCOs 

need to complete the delivery task within the given earliest job start time and latest job 

finish time. And the free days are the buffer time that allows customers to return the empty 

container back to TCOs’ premises without extra costs. To simplify the narrative of TC 

operation, it can be broken down to four stages: 1) customers place itinerary inquiries; 2) 

TCOs develop the corresponding quotations based on their internal and external resources; 

3) Customers book quotations; 4) empty TCs are assigned to the load and moved from their 

depot to the customers. As part of the quotation, it is very challenging to develop effective 

TC free days and TC hire cost. This is because, 1) TCOs need to make trade-offs in 

deciding TC free days and TC hire cost as they on one hand influence the profitability of 

TC hire business, while on the other hand influence the overall TC flow effectiveness and 

visibility; 2) the correlation between TC free days and TC hire costs make such decisions 

more complicated. Namely, decisions over TC free days and TC hire costs are not 

independent and subtle changes in one would make difference on another. For example, it 

is hard to tell whether longer free days with lower TC hire costs or shorter free days with 

higher TC hire costs could lead to shorter TC over-holding days; 3) the effectiveness of the 

underlying decisions are built upon the overall operational performance, which means, they 

aim at bringing better job fulfilments and job profitability. Therefore, the underlying 

decisions need to be optimised comprehensively in considering other TC operational 

decisions. 

As the common practice, TCOs design the TC free days and hire costs first in a long run. 

This can give TCOs a panoramic view of the average customer holding time for helping 

plan day-to-day TC flows, and meanwhile, it stabilises the market with less fluctuated price 

terms. When the price policies are made, customer behavior (here refers to the TC customer 

holding time) is emerged subsequently. Therefore, under the guide of their relationship 
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picture, TCOs make their daily operational plans within their TC flow networks. Moreover, 

in a long run, TCOs should decide the total TC fleet size as well. It is a strategic decision 

that balances the investment cost and daily TC flow efficiency. As rich literatures 

demonstrated, TC fleet sizing is highly related to operational issues such as empty 

container movements and job fulfilment performance (i.e. Cheung and Powell, 1996; 

Crainic, 2000), it should be jointly optimised at the tactical/strategic level to yield better 

profits and TC utilisation at operational level. 

At the operational level, within the TC flow network, there are three significant network 

nodes. First, the place where TCOs keep empty TCs or prepare the departing laden TCs is 

a TC depot. A group of TC depots that are geographically close to each form a TC depot 

region. Second, the place that customers required to receive the laden TCs are called 

customer sites. Normally, for the convenience of customers, a group of customer sites are 

served by a nearby depot, in that way, all the emptied and cleaned TCs can be returned to 

it. Third, in between a customer site and its corresponding depot, a place equipped with TC 

cleaning facilities is called the TC cleaning depot. In this site, all the returned TCs are 

thoroughly cleaned with different processes according to the commodities they just 

delivered. 

Within such network, the daily operation plans are made dynamically. Specifically, they 

need to decide the types of job fulfilments and the flow of empty containers to cope with 

trade unbalance. There are three types of job fulfilments, which include delivering jobs 

with self-owned containers (such job defined as self-container jobs), delivering jobs with 

leased containers (such job defined as leased jobs), or rejecting some demands (defined as 

rejects). As long as the daily operational plans are clarified, TC containers will be flown 

per their life cycles according to the nature of their missions. For TCs serving self-container 

jobs, they always go through departing from depot to defined customer sites. When 

customers finished the hire of the TCs, they should be returned to the nearest (or TCOs 

pointed) cleaning depot for TC cleaning and then flow back the depot that customer sites 

attached to. For TCs serving leased jobs, their life cycle is always starting from depot and 

finishing at customer sites. When customers finish the hire of those TCs, they will be 

returned directly to lessors, and the length of customer holding time for leased TCs do not 
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influence TCOs’ own TC flows. For empty TC movements, they are only moved in 

between depots. Theoretically, empty TCs can be moved from any depot to another, 

however, since TCOs need to use external resources for completing maritime transport, so 

empty TC movements are normally limited intra-regionally to control the ETCR costs. 

Figure 5.3 in section 5.2.3 shows the different moving routes graphically. 

 

5.2.2. the outline of the research approach 

With respect to above description, we propose a two-stage time-space network model to 

portray the TC operation and address the underlying research questions. Specifically, the 

first stage of the model will formulate the strategic/tactical level decisions (customer 

holding policy and TC fleet size). At the second stage, the model will build a time-space 

network based on historical data to represent the overall TC flows driven by fulfilling 

customer demands, ETCR and TC return from jobs in a defined planning horizon. 

Meanwhile, decisions from the first stage will be included in the second stage, which 

influence the overall structure of time-space network. By doing so, this model is able to 

optimise the first stage decisions that lead to optimal TC flow performance in the second 

stage. Figure 5.2 below depicts the outline of this approach. 

 

Figure 5.2 the overview of the two-stage time-space network model formulation 

Reason of why constructing a time-space network is stated in Section 4.6 and why it is 

decoupled by two stages is because decisions for TC customer holding policy and fleet size 

are long-term scheduling activities which influence the overall structure of the time-space 

network, while decisions related to components of the time-space network can only be 
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made with the acknowledgement of the first stage decision variables. Followed by this 

research method, the model formulation is developed in the next section.  

 

5.2.3 the model formulation 

To match the industrial practice, the model will determine the customer overholding policy 

(free days & over-holding charge) for every depot and the total TC fleet size at stage 1 first 

(tactical level). Once those parameters are determined, customer holding time for each 

depot area is defined and the initial TC fleet size investment is known. Followed, the rest 

of the operational decisions can be optimised at next stage accordingly. Specifically, the 

optimisation process at second stage involves decisions about job fulfilments and ETCR 

arrangements with the consideration of uncertain container cleaning and defined customer 

holding time.  

Next, to support the second stage optimisation process, a time-space network model is 

created. It presents the physical TC flows through a series of artificial arcs and with their 

linkages to physical nodes in a time expanded fashion. In particular, when the TC customer 

holding time and TC cleaning time is certain, arcs of the network can be created, and the 

rest of the operational decisions are made by optimising the values over each arc. 

At last, prior to the model formulation, assumptions need to be pointed out as below: 

1. Only the 20-foot equivalent unit (TEU) TC is considered. 

2. TC lessors have infinite container fleet and leasing demands can be met immediately. 

3. Once free days and TC over-holding charge is decided for one depot, the average total 

TC customer holding time for all the customer sites surrounding that depot is defined. 

4. Customer sites linked to the same depot have the same customer holding time and it 

equals to the average customer holding time.  

5. Customers will always take advantage of TC free days. 

6. All the customers have the same longest customer holding time (  ) regardless of their 

location, TC free days and customer over-holding charges.  
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7. TC return time consists of customer holding period and TC cleaning duration. Travel 

time for container return is assumed as zero.  

8. ETCR is only intra-regional on routes available between any two depots. 

9. All unloaded containers must be cleaned prior to reuse with random duration days. 

The validity of above assumptions is explained below. Assumption 1 is common in the 

literature on maritime container operation researches, e.g. Li et al. (2004, 2007); Dong and 

Song (2009) etc. This is because, 1) in TC market, 20ft TC is main type which takes 

approximately 95% of world fleet size (Tuscor Lloyds, 2018), and it also takes about 90% 

of the world TC fleet size (ITCO, 2017); 2) other sizes such as 40ft TC can be converted 

to 2 TC units. Assumption 2 is used to indicate the better TC availability provided by TC 

lessors (details see Section 4.2), and it can also simplify the model to reduce the possibility 

of computational intractability. Assumption 3 and 4 are used to simplify our model. As we 

discussed in Section 5.2.1, price and TC free days are the two main factors determining the 

length of customer over-holding days. Therefore, similar to any price and demand 

relationship model, once these two factors are decided for an area, the average customer 

holding time is known. Since the aim of our research is looking at long-term policy, the 

variation coming from individual customer holding time is neglected. By doing this, we 

are provided the tool to discover the dynamic relationship between customer holding policy 

and TC operational performances. Also, it provides the opportunity to consider more 

complex context (e.g. customer overholding time is different at customer site level) with 

the same mechanism in future research. Assumption 5 and 6 are reasonable because that 

first TC customers would always like to take fully use of the container free hire days; two 

since TCs need to be cleaned before next use, it is not possible that customers will hold the 

container forever if their production job is finished. Assumption 7 is another common 

assumption in literature (e.g. Choong et al., 2002; Dong and Song, 2009). It indicates the 

sea leg journey of TCs occupies most of the distances that TCs travel to fulfil their customer 

demands. Thus, the distance from depot to its surrounding customer sites is comparatively 

short and not considered. Assumption 8 and 9 are in line with industrial practices that TCO 

has no ownership of vessels, therefore it is not economically efficient to deploy cross-
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regional ETCR(s). Meanwhile, due to the special features of commodities that TC carries, 

cleaning is a must-do process, but the duration is hard to be predicted.   

 

The model 

Index, sets and parameters for the time-space network structure 

T  total planning horizon 

R  the set of regions, r is an index for a region where r R  

P  the set of depots, ,p q P   

rP  the set of depots in region r, ,rP P r R   

pM  the set of customer sites surrounding depot p , p pm M , p P  

ijt  the container travel time from any physical location i  to another physical 

location j  , , pi j P M   

f

pt  the customer free time at depot p P  

h

pt  the average customer over-holding time surrounding depot p  area 

 

Firstly, a time-space network is constructed as the research context (Figure 5.3).  

 

Figure 5.3 Time-space network flow structure 
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Let ( , )G N A be a graph with depot node set, customer node set and various arcs 

respectively. Specifically, 
| |r r R p p PN N N   indicates that the node sets include both 

depot nodes ( rN ) and customer nodes ( pN ).  

rN : The depot node set refers to depots in the same region r R  with discretised time:

{ | , }t

r rN p p P t T   ; 

pN : The customer node refers to customer sites served by the same depot p P   with 

discretised time: pN = { | ,t

p p pm m M t T  }.  

For arc set, it is comprised by four types: G V C EA A A A A    .  

GA : It represents the inventory arc which links node 
tp  and 

1tp 
: 

1 1{( , ) | , , }t t t t

G rA p p p p N t T    ; 

VA : It is used for representing the laden container moving arc from depot node 
tp  to 

customer node 
,p mq

t t

qm


 and it is
, ,

{( , ) | , , }
p m p mq q

t t t tt t

V q r q pA p m p N m N t T
 

    ;  

CA : It is used for the arc representing self-owned TC return, it connects nodes t

pm  & 

f h
p pt t t

p
  

( 0  ). Arc CA  can be written as {( , ) | , , 0}
f h
p pt t tt t

C p p pA m p m N p P



  

    . 

Here   is used to represent a realised TC cleaning time and [3,7] according to 

industrial practice;  

EA : It is used for ETCR arcs. Since only intra-regional ETCR is considered, this arc links 

the depot nodes in the same region. If we use function ( )Rg p  to locate the belonging 

region of depot ( p P ), then , ,{ , | , , ( ) ( )}p q p qt t t tt t

E rA p q p q N Rg p Rg q
 

   .  

Next indices and sets regarding customer demands are introduced. 

Index, sets and parameters regarding customer demands  

   the entire populations of TC cleaning durations 

   a sample of random variable for TC cleaning duration for a particular job 
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K   a set of commodity k K   is a tuple ( , , , , , )k k k k k kO D d r t  , kO  is the origin 

node, kD is the destination node. If we use ( )k  to get the physical location 

of kO  and ( )k  to get the physical location of kD  , then kO = ( ) ktk , kD

= ( ), ( )( ) k k kt t
k


. kd is the amount of containers, kr is the revenue per 

container, kt is the job starting date, k is the cleaning time for this job. 

Meanwhile, k  is a stochastic input in a certain range and ( )k  is a sample 

of k   

ijC  the unit travel cost per TC per travel day for arc ( , )i j from node i  to j ,

( , ) V Ei j A A   

C  the unit cost per TC leasing per day 

pC  the penalty costs per job rejected 

nC  the unit cost per TC cleaned 

hC  the inventory costs per TC per day 

cC  the unit capital cost per TC per period 

LHt   the longest customer holding time for all depots 

 

 

Intermediate and state variables 

,

k

i jF  After serving commodity k , the amount of self-owned TC returning from 

customer site node i  to depot node j . Where ( ), ( )( ) k k kt t

ki D k


  , 

( ), ( )( ( ))
f h

k k k p p kt t t t
j Dp k

   
 and arc ( , ) Ci j A . Node j  is  a stochastic 

variable and ( )j   is a realised node with given sample  , where 

( ), ( ) ( )
( ( ))

f h
k k k p p kt t t t

j Dp k
    

 . 

 

( )tS p  the inventory amount on arc  
1( , )t t

Gp p A   

 

Decision variables: 

,

k

i jX  self-owned containers for commodity k  on arc ( , )i j ,  ( , ) Vi j A , k K . It is a 

binary variable takes value 1 or 0. 

,i jY  the amount of ETCR on arc  ( , )i j ,  ( , ) Ei j A . 

,

k

i jZ  leased containers for commodity k  on arc ( , )i j ,  ( , ) Vi j A , k K . It is a binary 

variable takes value 1 or 0. 
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,

k

i jW  rejected jobs for commodity k  on arc ( , )i j ,  ( , ) Vi j A , k K . It is a binary 

variable takes value 1 or 0. 
f

pt   the free days at depot p   

h

pC  the container over-holding charge per TC per over-holding day at depot p   

B   the container fleet size 

C C= { 1

hC ,…,
h

pC ,… | |

h

PC }, a vector consisting of all container over-holding charge 

rates and free days at all depots 

f
T   

f
T = { 1

ft ,…,
f

pt ,… | |

f

Pt }, a vector consisting of all container free days at all depots 

X X= { ,

k

i jX , ,i jY , ,

k

i jZ , ,

k

i jW }, which denotes all the decision variables at stage two 

 

Objective function of this two-stage model is given below (Eq. (5.1)). The first term of the 

right-hand-side is the total fleet size investment cost per period, and the second term is the 

profits made per period:    

P0: 
1

max ( , , , ) ( , , , , )cZ B B C E Q B
T

   C X C X
f f

T T  (5.1) 

At the first stage of the model, three factors are determined. The TC free days and TC 

overholding charge are determined which can consequently decide the TC customer 

holding time at each depot in Stage 2. The TC fleet size is also determined so that the fleet 

size investment can be minimized at the first stage. The second stage is to maximise the 

expectation of job profits and TC over-holding profits after considered shipment 

transportation costs, leasing costs, cleaning costs, inventory costs, penalty costs and ETCR 

costs with respect to random container cleaning duration. For a given realized container 

cleaning durations  , ( , , , )ˆ ,Q B C X
f

T is the optimal value of a mixed integer 

programming problem. When , ,B C
f

T  are given, Eq. (5.2) below is to find the most 

profitable arrangements for all job fulfilments and ETCR activities.    

, , ,

( , ) ( , ) ( )

, ,

( , ) ( , )

, ,

( , ) ( , )

( , , , ) ( )

( ) ( )

( )

,
v V p

V c

V E

k k k h h

i j i j k i j p p

k K i j A k K i j A k m

k k

i j ij ij n i j ij ij

k K i j A k K i j A

k t

i j p i j ij ij h

k K i j A r R i j A p

Q B X Z r X t C

X t C C Z t C C

W C Y t C S p C


    

   

    

     

       

      

    

   

   

C X
f

T

t T P



  (5.2) 



169 | P a g e  
 

It can also be seen that the first term on the right-hand side in Eq. (5.2) represents the total 

revenue made in this period. The second term is the profit made from customer over-

holding revenue. The third term is the transportation costs for self-container jobs. The 

fourth term is the transportation costs and leasing costs for leased container jobs. The fifth 

term is the penalty costs for rejected jobs. The sixth term is the ETCR costs. The last term 

is the inventory holding costs.   

Constraints 

Constraint 1: the customer over-holding time is determined by predefined TC hire free days 

and TC over-holding charge for all depots. We use function ( , )h f

p pJ C t  to illustrate how 

customer over-holding time can be determined. In reality, ( , )h f

p pJ C t could be written in 

many ways, such as ( )*h f

p LH pt t t   , where   is a constant and 0  . But for the 

purpose of simplifying the underlying model, it is kept as the simple form until the 

experiment section. In addition, all customer holding time is no longer than the longest 

customer holding time. 

( , )h h f

p p pt J C t , 
h f

p p LHt t t  , p P    (5.3) 

Constraint 2: for any customer demand, it cannot be split into several sub-orders. Namely, 

it can be fulfilled in only one way. 

,

,

,

, , ,

, , ,

{ ,0}

{ ,0}

{ ,0}

, ( , ) ( , ),

0, ,

k

i j k

k

i j k

k

i j k

k k k

i j i j i j k k k

k k k

i j i j i j k k

X d

Z d

W d

X Z W d i j O D k K

X Z W i O j D

 








     


    

  (5.4) 

Constraint 3: represents the flow balancing at any depot node i considering laden, empty 

and inventory TC movements. 

1

, , , ,

( , ) ( , ) ( , ) ( , )

( ) ( )
t t t t

C E V E

k t k t

j i j i i j i j

k K j i A j i A k K i j A i j Ai p i p i p i p

F Y S p X Y S p 

        

              , t T    

 (5.5) 
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Constraint 4: the initial inventory for every depot is equally distributed. 

( ) / , , 0tS p B P p P t      (5.6) 

Constraint 5: the sum of available self-owned TCs for all depots at any time are smaller 

than the predefined total fleet size with considering returned TCs from job-finishing, ETCR 

arrival and self-owned TC inventory.  

, ,

( , ) ( , ), ,

( )
t t

C E

k t

j i j i

k K j i A j i A p Pp P i p p P i p

F Y S p B
      

         , t T   (5.7) 

Constraint 6: the self-owned TC flow arrived at any customer site node i  should all return 

to the corresponding depot.  

, ,

( , ) ( , )t t
V Cp p

k k

j i i j

j i A i j Ai m i m

X F
  

    , k K   (5.8) 

Finally, there are non-negative integers below. 

 ,

k

i jX , ,i jY , ,

k

i jZ , ,

k

i jW , ( )iS t , ,

k

i jF Z  (5.9) 

 

5.3 Problem solution 

In response to stochastic programming problems, SAA (Sample Average Approximation) 

is a mature method which addresses the whole stochastic population by taking a certain 

number of realized sample processes of the uncertain parameters. Based on the law of 

Large Numbers, results obtained from SAA will converge to the optimal value of the real 

problem if the number of samples are large enough (Dong et al., 2015). However, 

evidences from rich studies show that a typical SAA is not suitable for problems with large 

scale of variables and constraints (e.g. Santoso et al., 2005; Crainic et al., 2011; Long et 

al., 2012). In this study, if the researched network consisting 10 nodes with 100 days, the 

number of decision variables would potentially to be 2,497,522 (22+5*
2

1000C  ). Since the 

number of samples is required to be sufficiently large to ensure the convergence of the 

results, the problem can easily go up to a very large scale when more demands and larger 

network are considered. Next:  

Proposition 1. P0 is a NP-complete problem. 
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Proof. According to Pia et al. (2017), mixed-integer quadratic programming is in NP and 

proved as NP-complete. It is formed as: 

min x Hx c x   

s.t. x P  

                                                                p qx   (5.10) 

Where 
n nH  , and it is symmetric. 

nc  and P  is a polyhedron { : }p x Ax b  . For 

the second term in equation (5.2), if we replace 
h

pt  by ( , )h f

p pJ C t  according to the equation 

(5.3), it can be re-written as ,

( , ) ( ) ( )

( , )
V p p

k h f h

i j p p p

k K i j A Dp m p k m

X J C t C
   

     . Therefore, give any 

forms of function (non-reciprocal) to ( , )h f

p pJ C t , maximisation (equals to negative 

minimisation) the second term in equation (5.2) will be no simpler than 

max H c  M M M  where (( ( ), ( )), )nn n M X C
f

T   
(2 ) (2 )P K P K

H
  

  and 

2 P K
c


 , P  is the total number of TC depots, K  is the total number of commodities. 

Compare to the standard form of mixed-integer quadratic programming, it follows the 

similar format but no simpler than the standard mixed-integer quadratic programming. 

Hence, the objective function P0 is no simpler than the standard mixed-integer quadratic 

programming and P0 is an np-complete problem. This completes the proof. 

Hence, using SAA method indicates a combination of a large number of mixed-integer 

quadratic programming problem to be solved together. Realistically, it is not efficient and 

when the scale of the problem increases, computation complexity of this problem will limit 

SAA method obtaining a result in polynomial time. Alternatively, Progressive Hedging 

Algorithm (PHA) method is introduced to decrease the computation complexity and 

increase the efficiency of the solution method. Following the same principle, Progressive 

Hedging Algorithm (PHA) is transformed from SAA (Long et al., 2012) which tries to 

obtain the optimal value for its addressed problem through a series of realised sampling 

processes. Different from solving all realised samples jointly by SAA, PHA decreases the 

mathematical complexity by decomposing stochastic problems such as P0 in to a number 

of smaller problems that are easier to solve. Specifically, as described in Chapter 3.2, PHA 
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decompose P0 into N  independent scenario based problems while each of the scenario 

based problem models the time-space network for a given sample process (i.e. n , and 

1 n N  ). Similarly, there are other methods such as L-shaped method (Slyke and Wets, 

1969) and Benders decomposition (Santoso et al., 2005), but PHA is more appropriate for 

this model as the overall model is a two-stage one and the second stage is a mixed integer 

programming (Dong et al., 2015). 

However, even though computation complexity can be largely decreased through PHA to 

decompose the large-scale problem into scenario-based one, every scenario-based problem 

is still hard to be solved mathematically. This is because, the decomposed sub-problems 

eliminated the disruption of sample difference caused by random parameters, but the 

structure of the time-space network at the lower level is still hard to be fixed due to the 

uncertain of the decision variables ( ,h f

p pC t ) at the upper level. Specifically, the self-owned 

TC return arc (i.e. 
CA  ) set is dependent on the known of the customer holding policy 

related decision variables, and then the lower level decision variables are able to be solved 

but the upper level decision variables (as it is relevant to cost) can only be decided if the 

following lower level decision variables can result in the best operational profit. Thus, the 

upper level decision variables and lower level decision variables are hard to be jointly 

optimised but need to be solved sequentially. Therefore, instead of using mathematical 

solutions to jointly optimise both the upper and lower decision variables for each scenario-

dependent optimisation, a math-heuristic technique is incorporated after P0 is decomposed 

by PHA method. Particularly, we use Genetic Algorithm to randomly decide the value of 

upper level decision variables and optimise them according to a profit-based mathematical 

result from the optimisation of lower level (it will be elaborated later in section 5.3.2). By 

doing so, the PHA method is able to be implemented and lead to the overall optimisation 

for this stochastic mixed-integer multivariate optimisation problem. Figure 5.4 below 

shows the overall structure of the proposed solution method. 
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Figure 5.4 the overall structure of the designed solution method 

In comparison with the PHA-based mathheuristic solution, a GA-based solution is also 

implemented to find the optimised TC fleet size and customer holding policies. Differently, 

instead of progressively approaching the optimality of the underlying decision variables 

with the help of Lagrangian multipliers, the GA-based solution is searching the optimalities 

(or near-optimality) through evolving the decision variables iteratively regarding the 

evaluation of the average profit across all samples. 

Next, the designs of the PHA-based meth-heuristic solution and the GA-based solution are 

discussed respectively. 

   

5.3.1 Progressive Hedging Algorithm (PHA) 

In PHA, Lagrangian relaxation is employed to decompose the problem. Prior to the 

application of PHA algorithm, the scenario-dependent decision variables are introduced 

first. 
1( ) { ( ),... ( ),... ( )}(1 )f f f

n n p n nP
t t t n N     

f
T ,
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1 | |( ) { ( ),... ( ),... ( )}(1 )n n p n P nC C C n N     C , ( )(1 )nB n N   , and P0 can be 

substituted as following, 

P1:  
( ),, , , ( ), ( ), ( )

1

max ( , , , ( ), ( ), ( ))

1 1
( ) ( ( )

( ),

(, ( ), ( ), )),

nn n n

n n n
B B

N

n c n n n

n

n

n

n

Z B B

B C Q B
N T

  
  

 



  




 
   
 



C C X
C C X

C X

f f

f f
T T

f

T T

T

    (5.11) 

s.t. 

(( ) ( ), ( ), ),n n n n nB n    AX B( C )   
f

T   (5.12) 

( )  nB B n    (5.13) 

( )  ,p n pC C n p     (5.14) 

( )
f

p nt  =
f

pt  ,n p  (5.15)  

Eq. (5.10) above is the objective function to maximise the profits by taking customer 

overholding policies, TC fleet size and average of operational profits related to N different 

cleaning realisation. Eq. (5.12) comprises N copies of Eqs. (5.3) - (5.9). Eqs (5.13) - (5.15) 

represents that the first stage decision variables become scenario-dependent decision 

variables, which related to the given sample process of container cleaning n . If we drop 

the constant coefficient 
1

N
and move the non-anticipativity constraints into the objective 

function based on Lagrangian relaxation method, we can have 

P2: 

1 2 3

1 2 3
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 (5.16) 

s.t. 

1 2 3( ) 0, ( , ) 0, ( , ) 0n n p n p      ,p n   (5.17) 

Eqs (5.12) -(5.15) (5.18) 

To relax the non-anticipativity constraints, we use the Lagrangian multipliers times the 

absolute value of the difference between scenario-dependent variables and their 
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corresponding first stage decision variables. The same method is used in the study of Dong 

et al. (2005), Long et al. (2012) for the purpose of simplifying the computer programming. 

Followed, since P2 comprises N  different scenarios, each of the individual scenario can 

be indexed by (1, )n N  and write with the following form, 

P3:

1 2 3

1 2 3
, , , , , ( ), ( ), ( )

| |

1

( )

2 3

,

1

max max ( , , , ( ), ( ), ( ), , , )

1
( ) ( ( ), ( ), ( ), )

( ) ( ) ( , ) (
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) ( , )
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( )
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n n nn

n n n n
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P
f f
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T  (5.19) 

s.t. 

( ) ( ), ( ), ( ),n n n nnB    AX B( C )  
f

T  (5.20) 

1 2 3( ) 0, ( , ) 0, ( , ) 0n n p n p     p  (5.21) 

Further, as the third term and fourth term in Eq. (5.19) are non-linear, we introduce 

auxiliary variables  , ' , { | }p p P  , ' { ' | }p p P  , { | }p p P   and 

' { ' | }p p P   to linearise the two terms and P3 can be re-written as, 

P4: 

1 2 3

1 2 3
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 (5.22) 

s.t. 

( ) ( ), ( ), ( ),n n n nnB    AX B( C )  
f

T  (5.23) 

( )nB B  '    (5.24) 

( )p n pC C   'p p  p  (5.25) 

( ) 'f f

p n p p pt t     p  (5.26) 

0, ' 0    (5.27) 
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0, ' 0p p   p  (5.28) 

0, ' 0p p    p  (5.29) 

1 2 3( ) 0, ( , ) 0, ( , ) 0n n p n p     p  (5.30) 

Then we use ( , , , ( ))nZ B C X
f

T or Z  to denote an approximated profit solution for P1, 

and Z  can be calculated by the solution to P4 as,  

1 2 3

1 2 3

1
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 (5.31) 

Proposition 2. (1) if 
1 2 3( ) 0, ( , ) 0& ( , ) 0n n p n p     ( p ), then 

1 2 3

1

1
( , , , ( ), ( ), ( ) , ,( ), , )
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 C C X
f f

T T is the upper bound to Z in P1; (2) 
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 C C X
f f

T T converges to a lower bound to Z  

if 1 2 3( ), ( , ) & ( , )n n p n p   are sufficiently large. Therefore, their relationship can be 

written as below: 
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1 2 3 1 2 3

1
max{ ( , , , ( ), ( ), ( ),0,0,0)}

1
max{ ( , , , ( ), ( ), ( ), , , )}

( , ,  represent suffciently la

( ),

( ),

rge , , )

N

n n n n

n

N

n

nn n n n

n

Z B B Z
N

Z B B
N

  





    

     





 



C C X

C C X

f f

f f

T T

T T   (5.32) 

Proof. When 
1 2 3( ) 0, ( , ) 0& ( , ) 0n n p n p     ( p ), each scenario chooses their best 

customer overholding policies and TC fleet sizes, hence, the sum of the maximised profits 

over all scenarios are more than it from the original problem P1 which requires all scenarios 

should have the same customer overholding policy and TC fleet size. Therefore, it is the 

upper bound of the optimality to P1. Conversely, when 1 2 3, ,    are sufficiently large, 

1( ) ( ')n    , 
| |

2

1

( , ) ( ' )
P

p p

p

n p  


  and 
| |

3

1

( , ) ( ' )
P

p p

p

n p  


   are forced to be zero 
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respectively. Thus, when 1( ) ( )nn B B   , 
| |

2

1

( , ) ( )
P

p n p

p

n p C C 


  and

| |

3

1

( , ) ( )
P

f f

p n p

p

n p t t 


   are equal to zero respectively, it is a feasible solution to P1, and 

it also leads to the lower bound. This completes the proof. This idea is inspired by the study 

of Dong et al. (2015). 

According to Proposition 2, we can design two algorithms to update 1 , 2 ( , )n p  and

3( , )n p . Such designs are based on the study of Long et al. (2012) and Dong et al. (2005). 

Notably, as there’s no effective mathematical solutions to Z , the GA-based solution can 

only obtain a near-lower-bound and near-upper-bound through the updating of Lagrangian 

multipliers. Since the solution ( 'Z ) obtained from GA-based math-heuristic at each 

iteration is a feasible solution to the scenario-dependent problems, the lower bound ( 'LB  ) 

and ( 'UB  ) are satisfy the following equation (5.33), and so the two algorithms are detailed 

as follow.  

1

1 2 3

1
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f f

f f

T T

T T  (5.33) 

 

Algorithm 1 

First, we set 1 , 2 ( , )n p  and 3( , )n p  as 0. ( )nB  , ( )nC  and ( )nf
T can be obtained 

depending on each sample, and so as the average value B̂ , Ĉ  and ˆ
f

T  across all samples. 

Followed, the  1 , 2 ( , )n p  and 3( , )n p increase independently depending on the 

absolute value of the difference between the sample results and average values from 

previous round respectively. Iteratively, this algorithm can be terminated when certain 

criteria are satisfied. The detailed step-by-step of this algorithm is as follows.  
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Step 1: Initialise 1 , 2 ( , )n p  and 3( , )n p  as 0 ( ,n p ). Set iteration number k=1, 

constant 
k

B , 
k

C , 
k

T (
1 1 1

B C T     ) and another constant  ( 1  ). 

Step 2: Solve P4 for each scenario and obtain the average value as ( )ˆ kB , and ( )ˆ k

f
T  at 

kth iteration. Specifically, ( ) ( )ˆ { ( ) | 1,2,...,| |}k h k

pC n p p C , 

( ) ( )ˆ { ( ) | 1,2,...,| |}k f k

pt n p p 
f

T , where
1

1ˆ ( )
N

n

n

B B
n




  , 

( ) ( )

1

1ˆ ˆ ( )
N

k k

n

nn




 C C  and 
( ) ( )

1

1ˆ ( )
N

k k

f n

nn




 f
T T . 

Step 3: Stop the current algorithm if either of the following criteria is satisfied: 

(1) all 
( ) ( 1)

1

ˆ| ( ) |
N

k k

n

n

B B 



  ,  
| |

( ) ( 1)

1 1

ˆ| ( ) |
P N

h k h k

p n p

p n

C C 

 

  , and 

| |
( ) ( 1)

1 1

ˆ| ( ) |
P N

f k f k

p p

p n

t n t 

 

  ,   is a pre-defined very small positive number; 

(2)  There is no improvement for all three variables in L steps, L is a pre-

defined positive integer; 

Step 4: 

 

 

 

 

 

Update the Lagrangian multipliers from the second iteration with the follow 

rule: 
( 1) ( ) ( 1) ( ) ( 1)

1 1
ˆ( ) ( ) | ( ) |k k k k k

B nn n B B        , 

( 1) ( ) ( 1) ( ) ( 1)

2 2
ˆ( , ) ( , ) | ( ) |k k k h k h k

C p n pn p n p C C        ,  

( 1) ( ) ( 1) ( ) ( 1)

3 3
ˆ( , ) ( , ) | ( ) |k k k f k f k

T p pn p n p t n t         and 

( 1) ( 1) ( 1), ,k k k k k k

B B C C T T           

Step 5: 1k k  , and then go to Step 2; 

 

According to above description, 1 , 2 ( , )n p  and 3( , )n p are updated incrementally by the 

pre-defined parameters 
k

B , 
k

C , 
k

T . In order to increase the convergence speed, the value 

of 
k

B , 
k

C , 
k

T  are increased with the same and a fixed positive slope  at each iteration. 

Alternatively, we can design a new algorithm to dynamically increase the pre-defined 

parameters 
k

B , 
k

C , 
k

T  according to the largest difference among all the scenario-
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dependent best optimal values of objective function at iteration k . Since the ultimate goal 

of the optimisation is to force all the feasible scenario-dependent solutions are the same, 

so we update the Lagrangian multipliers with larger parameters when the current variations 

of the best optimal values are great among all samples, and we update the Lagrangian 

multipliers with smaller ones when the occasion is opposite. In this regard, the detail of 

Algorithm 2 is as follows:   

Algorithm 2 

Step 1: Initialise 1 , 2 ( , )n p  and 3( , )n p  as 0 ( ,n p ). Set iteration number k=1, 

constant 
k

B , 
k

C , 
k

T (
1 1 1

B C T     ) and another constant  ( 1  ). 

Step 2: Solve P4 for each scenario and obtain the average value as ( )ˆ kB , and ( )ˆ k

f
T  at kth 

iteration. Specifically, ( ) ( )ˆ { ( ) | 1,2,...,| |}k h k

pC n p p C , 

( ) ( )ˆ { ( ) | 1,2,...,| |}k f k

pt n p p 
f

T , where
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and 
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N
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 f
T T . Also, obtain the upper bound value ( kUB ) and lower 

bound value ( kLB ) at this iteration from all optimal values of objective functions 

for all samples. In particular, max( )k k

nUB Z  and min( )k k

nLB Z .  

Step 3: Stop the current algorithm if either of the following criteria is satisfied: 

(1) all 
( ) ( 1)

1
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k k

n
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B B 



  ,  
| |
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  ,   is a pre-defined very small positive number; 

(2)  There is no improvement for all three variables in L steps, L is a pre-

defined positive integer; 

Step 4: 

 

 

 

Update the Lagrangian multipliers from the second iteration with the follow rule: 

( 1) ( ) ( 1) ( ) ( 1)

1 1
ˆ( ) ( ) | ( ) |k k k k k

B nn n B B        , 

( 1) ( ) ( 1) ( ) ( 1)

2 2
ˆ( , ) ( , ) | ( ) |k k k h k h k

C p n pn p n p C C        ,  
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Step 5: 1k k  , and then go to Step 2; 

 

Next, the detailed description of the adopted math-heuristic method is going to be 

introduced for solving each scenario-dependent problem. 

 

5.3.2 The adopted Math-Heuristic technique 

According to the definition and characteristics of Math-Heuristic mechanism in previous 

chapter (Section 4.4.1), the overall solution design of this research is pinned down in the 

same category. Specifically, regarding the illustration of figure 5.4, the PHA method is 

firstly used to decompose the overall problem into a series of smaller scenario-dependent 

problems, then for each scenario-dependent problem, the GA search solution is used for 

finding solutions for upper level decisions variables (i.e. ( )nB  , ( )nC  and ( )nf
T ) and 

the lower level decisions variables (i.e. ,

k

i jX , ,

t

i jY , ,

k

i jZ , ,

k

i jW ) are solved by integer 

optimisation techniques. In addition to the two algorithms used for updating the Lagrangian 

multipliers, figure 5.5 below illustrates how the math-heuristic method is applied to find 

the optimality for each scenario-based decomposed problems. 
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Figure 5.5 The solution for scenario-dependent problem 

To start the GA search, the chromosome representation is firstly initialised. The candidate 

solutions consisting of values for overall fleet size (i.e. ( )nB  ), values of free customer 

holding days and customer overholding charge for every depot. In particular, the later two 

are coded as vectors respectively. Also, constraints to define the valid chromosomes are 

designed as well. For the fleet size chromosome, same idea can be borrowed from the term 

LCCNOi in section 4.4.3 and a valid fleet size chromosome should be in the range 

[0, LCCNO ]ii P . For free days and overholding rates, the range of them are developed 
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from industrial practice. The initial population of solutions is generated randomly. Since 

the optimization is to maximize profit, the higher the objective function value (profit), the 

higher the solution fitness value should be. To achieve this,  is used to represent the 

total profits under the solution represented by chromosome q, then the fitness value of 

chromosome q is defined as , where  is the 

population size. For the parent selection process, roulette wheel sampling is used; each of 

two parents is selected from a binary tournament, which randomly picks two individuals 

from the entire population and retains the fittest. The two selected parents generate a child 

using scattered crossover. Fourth, probabilities are selected for crossover and mutation, 

they are 0.8 and 0.05 respectively. Finally, all the parent and offspring chromosomes are 

sorted into descending fitness order and only the chromosomes with sequence numbers less 

than or equal to  are carried into the next generation. At last, the solution needs to be 

terminated when it runs up to 50 generations or the improvement in best fitness is smaller 

than 1/1000 for 10 consecutive generations. This setting is acquired from several pilot tests. 

Next, a series of numerical tests will be carried to highlight the insights of the underlying 

research problems. 

 

5.3.3 The brief of the GA-based solution 

In this section, how the formulated problem can be solved by the GA-based solution is 

going to be described. Since the procedure for this solution is very standard, and there are 

many discussions about processes of GA are presented previously (e.g. section 5.3.2 or 

section 4.4), only the key steps of this solution with respect to this problem and the 

associated parameter settings are introduced. 

First, the upper level decision variables (TC fleet size and customer holding policies) are 

initialised with proper chromosome representations. Second, a certain series of samples 

will be realised and then chromosomes at the current generation will be incorporated to 

evaluate how much profit they can generate with respect to each realised sample and the 

deterministic time-space network. Third, all the obtained profits over all the samples will 

be averaged and then it will be regarded as the fitness result to determine how the current 

( )E q

( ) min{ ( ) :1 }q pF E q E q q N    pN

pN
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GA process is going to be evolved or terminated. Figure 5.6 below shows the simple flow 

chart of this GA solution. 

 

Figure 5.6 the GA-based solution 

In addition, we set 15 as the initial population size for all three decision variables, 

termination criteria are either the solution runs up to 75 generations or there’s not changes 

from the evaluation for 10 consecutive generations. Other settings for the GA solution is 

the same as section 4.4.2. 
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5.3.4 Verification &Validation (V&V) for the computerised model formulation and 

results 

Similar to the V&V implementation process in Section 4.4.5, V&V activities in this chapter 

are implemented within the same paradigm discussed in Section 3.3.  

First, since data used in this chapter is the same set as used in Section 4.4.5, therefore, the 

data validity activity is not going to be repetitively implemented. 

Then, a full picture of TC network flow under a time-space manner is prepared. Alongside 

this, the overall structure of the two-stage model is conceptualised with both qualitative 

description and quantitative description (i.e. the mathematical equations). They are all 

approved by industrial experts for the representation of the real-time system as well as the 

feasibility of its intended purpose. Moreover, assumptions and abstraction of the real-

system proposed in this Chapter is double validated, which refers to credibility of the 

conceptual model is coming from both existing studies and industrial voices. 

To verify the computerised model based on the conceptual model, similar mechanisms 

used in Section 4.4.5 are employed. The computerised model is designed modularly based 

on different functions and addressed sub-problems. Walk-through analysis is conducted 

with the help of Matlab Debugger and manual calculation. Pilot tests are conducted with 

the some sample data, and then their results are compared across different proposed 

solution methods. Different from Section 4.4.5, the computerised model in this section is 

not simulation but analytical based, the solution part can be worked out with different 

solvers, therefore, both Cplex and Gurobi are used to compare the computation results. 

At last, to verify the operational validity of the computerised model, industrial practitioners 

are again involved to validate the output behaviours, the rationale of different sensitivity 

analyses and the obtained implications.      

 

5.4 Numerical tests 

In this section, several experiments are carried to firstly compare the efficiency and quality 

of different solutions (GA-based one and the PHA-based ones) with given region, depot 
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and customer site information. By varying the size of samples, a more suitable solution is 

chosen to conduct a series of further sensitivity analyses. Specifically, the sensitivity 

experiments are designed to unfold insights that affect the effectiveness and performance 

of TC customer holding policies and the potential solutions for improving customer over-

held behaviour when external environment changes. 

Data to be used in this section are derived from real-time operational records, which 

including, route network information, revenue for customer demands, journey duration and 

various cost components (Table 5.2). Also, according to the recent new TC purchase cost 

(£6,000+/TC) (Alibaba, 2018), the capital cost of holding TC is calculated by dividing the 

new unit purchase cost over the average unit life time (normally 20 years according to 

industrial practice) in days and round up to £1/day.  This dataset is modelled in a 

hypothetical shipping network which consisting 3 regions, 9 depots and 21 different 

customer sites (Table 5.1).  

Region Name Depot Name Customer Sites 

Region A 

Depot A1 
Customer Site A1-1 

Customer Site A1-2 

Depot A2 
Customer Site A2-1 

Customer Site A2-2 

Depot A3 

Customer Site A3-1 

Customer Site A3-2 

Customer Site A3-3 

Region B 

Depot B1 
Customer Site B1-1 

Customer Site B1-2 

Depot B2 
Customer Site B2-1 

Customer Site B2-2 

Depot B3 

Customer Site B3-1 

Customer Site B3-2 

Customer Site B3-3 

Region C Depot C1 
Customer Site C1-1 

Customer Site C1-2 
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Depot C2 
Customer Site C2-1 

Customer Site C2-2 

Depot C3 

Customer Site C3-1 

Customer Site C3-2 

Customer Site C3-3 

 

Table 5.1 the regions, depots and customer sites network 

According to the region and route difference of each demand, the job revenue is ranged 

from £250 to £700. The length of the planning horizon is 133 days, and 3,939 customer 

demands received. In line with the industrial practice, each self-container job will be 

associated with a random cleaning time which takes value uniformly from range [3,7] days. 

The model is coded by Matlab 2017b, and all the solutions for the lower (operational) level 

are implemented in IBM CPLEX and the solutions for the upper (strategic) level are solved 

by standard GA optimisation implemented in Matlab 2017b. The computer used to run the 

programme has an INTEL I7 3.6HZ 8 cores and 16 GB RAM. 

Inventory 

cost per 

TC 

Self-

container 

cost per TC 

Leasing-

container 

cost per TC 

Cleaning 

cost per 

TC 

Capital cost 

per TC 

Penalty 

cost per 

job 

£3/day £30/day £80/day £40 £1/day £500 

Table 5.2 the main cost components of TC operation 

Furthermore, by borrowing the basic price and demand function from Burkett (2006), we 

assume the overholding duration ( h

pt ) and overholding charge ( h

pC ) follow the behaviour 

* ,h f h

p p pt M t C p P     , where M and   are two control parameters. According to 

industrial practice and statistics from realistic data, we set M as 20 (which means no matter 

how cheap the overholding cost is, customers would overheld the container for more than 

20 days), and   is 0.2. Also, h

pt and f

pt should satisfy the constraint that 20h f

p pt t  . 

First, results (TC fleet size and customer holding policies) to each solution are 

demonstrated in table 5.3a (sample size is 15). Followed, we have varied the sample size 
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( SN  ) to compare the efficiency of the two algorithms. Also, results from the two different 

PHA algorithms are compared to GA-based solution as well (table 5.3b). 

 GA-based Algorithm 1 (PHA-based) Algorithm 2 (PHA-based) 

 Free 

days 

TC overholding 

charge (£/day) 

Free 

days 

TC overholding 

charge (£/day) 

Free days TC overholding 

charge (£/day) 

DepotA1 4 38 5 55 3 48 

DepotA2 7 57 4 68 5 62 

DepotA3 2 79 4 71 3 72 

DepotB1 3 72 5 74 4 68 

DepotB2 5 68 2 67 3 71 

DepotB3 3 74 3 71 1 89 

DepotC1 4 67 7 69 6 58 

DepotC2 2 49 4 58 5 63 

DepotC3 4 67 3 79 2 87 

TC fleet size 207 189 216 

Table 5.3a the solutions to the problem from three algorithms when sample size is 15 

 

S
N  GA-based  Algorithm 1 (PHA-based)  Algorithm 2 (PHA-based) 

Obj. 

result 

Time 

(s) 

 Obj. 

result 

diff. to GA 

(%) 

Time 

(s) 

 Obj. 

result 

diff. to GA 

(%) 

Time 

(s) 

10 £1.69M 2,677  £1.86M 10.06% 15,337  £1.85M 9.47% 10,259 

15 £1.72M 3,897  £1.89M 9.88% 21,365  £1.87M 8.72% 17,920 

20 £1.77M 5,218  £1.89M 6.78% 28,784  £1.86M 5.08% 23,472 

30 £1.74M 8921  £1.88M 8.05% 42,061  £1.88M 8.05% 34,637 

40 £1.78M 13124  £1.90M 6.74% 74,315  £1.89M 6.18% 51,247 

Table 5.3b the efficiency and results for SAA, PHA Algorithm 1 and PHA Algorithm 2 

(M:million) 

As table 5.3a indicated, the GA-based solution tends to have lower average customer 

holding cost (£63.4/day) and larger TC fleet size while the PHA-based solution tends to 

have lower average customer holding cost (£68.7/day) but smaller TC fleet size. Followed, 

in table 5.3b we can see, using the GA-based algorithm is more efficient but the 
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optimisation results are much lower compare to PHA-based algorithms (PHA-based 

Algorithm 1 is 8.3% higher than GA and PHA-based Algorithm 2 is 7.5% higher than GA 

on average) when the sample size varies. One of the reasons lead to lower solution quality 

for GA-based algorithm is because the search of GA-based solution is less efficient within 

the range of the variables but the PHA-based one tends to provide better guide when 

updating the solutions iteratively. Even though the GA-based solution might have the 

chance to reach the same quality level of optimisation results (or even higher) as PHA-

based ones if they can run to the same amount of time, they all terminated before they 

reached the maximal generations indicated such chance is very small. Moreover, 

comparing to the objective result of Algorithm 1, Algorithm 2 has slightly lower quality 

than Algorithm 1 (0.54% lower when sample size is 10, 1.06% lower when sample size is 

15, and 1.59% lower when sample size is 20), however, the computation efficiency is much 

better especially when the sample size increased incrementally. The main reason of the 

better efficiency for Algorithm 2 is result by the faster convergence speed and the fewer 

iterations required to update the Lagrangian multipliers corresponding to the 

nonanticipativity constraints (Algorithm 2 takes 28% fewer iterations averagely than 

Algorithm 1). When sample size increased, this advantage become more significant. Due 

to the better efficiency provided by Algorithm 2 and the corresponding quality is also 

acceptable, it is used for carrying the rest of the experiments with sample size 15. 

In order to seek the effectiveness of the joint optimisation for fleet size and TC customer 

holding policies, the optimised one is compared to the one with the current practice. Since 

the data used for this experiment are extracted and modified from realistic company’s 

records. By averaging free days and the overholding charge for each depot. It can be 

regarded the current practice for customer holding policy. In addition, the current fleet size 

before optimisation is 252 in total and evenly distributed in 9 depots. With the built model, 

these two practices are compared by different metrics and summarised in table 5.4 below 

 

Items 

 The current practice  The optimised model 

 Results 

 

 Results 

 

Difference to the 

current practice 

(%) 
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Profits  £1.72M  £1.87M +8.7% 

Revenue  £2.27M  £2.30M +1.3% 

Overholding 

revenue 

 £1.43M  £1.32M -7.7% 

Self-container 

job cost 

 £1.01M  £1.24M +22.8% 

Leasing cost  £0.59M  £0.21M -64.4% 

Penalty cost  £68,000  £11,000 -83.8% 

ETCR cost  £0.20M  £0.17M -15.0% 

Inventory cost  £1,321  £1,535 +16.2% 

Capital cost  £33,516  £28,728 +14.2% 

Table 5.4 the optimisation model vs. the current practice (M:million) 

As above table illustrated, with the optimisation model, the profit is improved by 8.7% and 

it is majorly contributed by the increase of self-owned container jobs (22.8% increase in 

cost) and decrease of job rejections (83.8% decrease in cost). The optimisation model 

increased the overall fleet size to 901 and the associated costs increased by 25.3%, yet the 

inventory cost makes no significant increase, which is only £214 difference. As a result, 

the new practice is able to better satisfy the market with self-owned containers, therefore 

the notable increase of self-owned container cost (22.8%) and decrease of penalty cost 

(83.8%). Moreover, after adjusting the customer holding policy (customer holding free 

days + overholding charge rate), the new overholding revenue decreased by 7.7% but the 

overall profit is improved by 8.7%, which implies, it is worth evaluating the effectiveness 

of TC customer holding policy and it is possible that some revenue made by customer 

overholding would hamper the asset profitability as overall. 

In order to take a further investigation about the customer holding policy, some deductions 

and sensitivity analyses are carried as well. Based on the optimised results from previous 

test, we have listed the changes (table 5.5) between the current customer holding policy 

and the old one for each depot and included the overall TC flow for the corresponding 

depot as well. 
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Depot 

TC flow(TEU)  Changes of customer holding policy 

Inflow Outflow Net 

flow 

 Free days Overholding charge 

Depot 

A1 

434 365 69  33 £54/day£48/day 

Depot 

A2 

425 391 34  45 £48/day£62/day 

Depot 

A3 

449 527 -78  43 £58/day£72/day 

Depot B1 444 371 73  54 £64/day£68/day 

Depot B2 444 357 87  63 £66/day£71/day 

Depot B3 378 601 -223  41 £53/day£89/day 

Depot 

C1 

476 391 85  46 £48/day£58/day 

Depot 

C2 

451 367 84  35 £54/day£63/day 

Depot 

C3 

410 541 -131  42 £72/day£87/day 

Table 5.5 the changes of customer holding policy with respect to TC flow 

According to table 5.5, the first thing need to be pointed out is almost all the optimised 

overholding charges have gone up regardless the magnitudes. Which means, the optimised 

one is in favour of promoting a faster TC return to speed up the TC turnover. Especially, 

with respect to the TC flow situation for each depot, it is more significant of reducing the 

over-customer holding days for net-export depots (i.e. Depot A3, B3 and C3) than net-

import depots. That is to say, the design of the customer holding policies is closely linked 

to the overall TC flows. Moreover, in Region A, B and C, the overall net regional TC flow 

can be further calculated out as 25, -63 and 38, and since TCOs can only carry intra-

regional ETCR activities, the ability of re-balancing the intra-regionally inventory 

distribution through ETCR is thereby ranked as Region C > Region A > Region B. 

Accordingly, we can see it is more heavily to reduce the TC return duration for net-export 

depot in region B (free days reduced by 3 days and the overholding charge increased by 

£36/day) than the other two and the net-import depots in region B are also tweaked for 

faster TC turnover (both Depot B1 and B2 have reduced free days and increased 

overholding charge), so that more empty TCs can be ready for self-container jobs and 
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ETCR deployments. To further verify above conclusion, table 5.6 below illustrated the 

comparison between the performance of using uniform policy and location-based policy. 

It can be seen that the location-based on demonstrate better revenue-making in both job 

revenue (0.9% higher) and overholding-revenue (3.1% higher) while a great reduction in 

leasing cost (70.4% reduced) and penalty cost (80% reduced). 

 

Items 

 The uniform policy  The location-based policy 

 Results 

 

 Results 

 

Difference to the 

current practice 

(%) 

Profits  £1.74M  £1.87M +7.4% 

Revenue  £2.28M  £2.30M +0.9% 

Overholding 

revenue 

 £1.28M  £1.32M +3.1% 

Self-container 

job cost 

 £1.15M  £1.24M +7.8% 

Leasing cost  £0.71M  £0.21M -70.4% 

Penalty cost  £55,000  £11,000 -80.0% 

ETCR cost  £0.23M  £0.17M -26.1% 

Inventory cost  £1,438  £1,535 +6.8% 

Capital cost  £0.11M  £0.12M +9.1% 

Table 5.6 Uniform TC customer holding policy vs. Location-based one (M:million) 

In addition, by varying the price difference (between self-containers and leasing containers) 

and the sensitivity that customer overholding duration over overholding charges (i.e. 

different  ), more insights about the design of customer holding policy can be extracted. 

Price 

difference 

  Profit Job Rev. Overholding 

Rev. 

Over. 

Rev./Job Rev. 

(%) 

30 0.1 £2.01M £2.32M £1.98M 85.3% 

30 0.2 £1.97M £2.31M £1.66M 71.9% 

30 0.4 £1.91M £2.31M £1.48M 64.1% 
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50 0.1 £1.93M £2.30M £1.81M 78.7% 

50 0.2 £1.87M £2.31M £1.57M 67.9% 

50 0.4 £1.85M £2.31M £1.09M 47.2% 

80 0.1 £1.89M £2.18M £1.67M 76.6% 

80 0.2 £1.78M £2.23M £1.44M 64.5% 

80 0.4 £1.81M £2.26M £1.09M 48.2% 

Table 5.7 the sensitivity analysis (M:million) 

Above table demonstrates three essential implications. First, in a long-term the 

effectiveness of customer holding policy is greatly influenced by the price fluctuation 

(market condition) of the leasing market. To be more explicitly, when leasing price is high 

in the market, the model tends to reduce the weight of the overholding job revenue, so that 

the self-owned TCs have a higher job turnover, and as a result, the overall profit can still 

maintain at a high level. For example, we can see when the cost of using leased TCs 

increased from £30/day more expensive to £80/day more expensive (+167%), the overall 

profit is only dropped by 5.7% (from £1.94m average to £1.83m average). This explains 

as the faster TC return increased the utilisation of self-owned TCs, hence the operational 

costs are less influenced by the increased price difference of using leased TCs. Regarding 

the weight ratio that overholding revenue versus job revenue, a significant decrease can be 

spotted along the increase of leasing cost, which means, the total overholding duration is 

reduced even though the overholding price is increased. Second, different values for   

indicates that how sensitive the price mechanism can influence demand pattern. A larger 

  means customers are very sensitive to price changes which implies that customers’ 

dependence on TCs as storage equipment are no longer that critical. This could be the 

emergence of new storage solution or other cheaper substitutions. While a smaller   

means the dependence from customers are essential and unreplaceable. As the test result 

indicated, when   is low, increase the customer overholding price and decrease customer 

free days can greatly contribute to overall profit, as it provides the possibility to increase 

overholding revenue without compromising self-owned container utilisation (e.g. when 

is 0.1, the high percentage of overholding revenue over job revenue). While   increases, 

it will be more competitive to make revenue from customer overholding, instead, they can 

consider lower down the customer overholding revenue to reduce inefficient TC flow 

caused cost increase and maintain the good performance of overall profitability (e.g. when 



193 | P a g e  
 

  is 0.4, the corresponding profit). Third, in dealing with the fluctuated leasing market 

with dynamic TC storage dependence, matrix below illustrates the corresponding strategies 

(table 5.8). 

            

 

 

Dependence on TC as storage 

High Low 

Cost 

difference 

between 

using self-

owned TC 

and leased-

TC 

High 
Balance the policy for better 

TC flow efficiency  

Use to policy to make the 

best TC flow efficiency 

Low 
Use the policy for best 

overholding revenue 

Balance the policy for better 

TC overholding revenue 

Table 5.8 the strategy matrix 

According to implication 1 and 2, when the price difference is high, but the dependence is 

low, the key to maintain a good asset profitability is to largely reduce the overholding 

occurrence and increase the job-related profits. Conversely, the low-level price difference 

and high TC storage dependence provides the best opportunity that TC can be used for 

making both job and overholding revenue. When both the dependence and price difference 

is low, the cost for using non-self-owned TCs is low but it is very competitive for TC used 

as storage equipment. In this sense, it will be difficult for TCOs making high revenue from 

customer overholding because a little cost increase for overholding will largely reduce the 

overholding duration. For example, in table 5.6, when the price difference is 30 and   is 

changed from 0.1 to 0.4, the profit dropped notably (from £2.01m to £1.91m) due to the 

overholding revenue decrease. Hence, strategy for this scenario has the goal of maintaining 

the overall profitability with optimal overholding income. Meanwhile, when the 

dependence and price difference are both high, over generating TC overholding revenue 

will hamper the job-related profits. For example, in table 5.6, when price difference 

increased from £30/day increased to £80/day while   remain at 0.1, the total profit 

decreased significantly due to more expensive operational cost and rejected jobs. Hence, it 
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is intrinsic to balance the policy that can reduce cost and contribute to better TC flow 

efficiency. 

In addition, similar to actions carried in Chapter 4.5, Table 5.9 below has included the min 

and max results for each parameter change, which can further indicate that the quality of 

obtained solution and findings from Table 5.8 are enhanced with stronger evidence. For 

each parameter change, with respect to each random sample, the whole results (indicated 

by the range) have the same trend as their average result. Also, the difference for those 

results comparing to their corresponding average results are very small (less than 5%). In 

turn, the quality of the solution and observations are reinforced.   

Price 

difference 

  Profit Job Rev. Overholding Rev. Over. Rev./Job 

Rev. (%) 

  min max min max min max min max 

30 0.1 £1.99M £2.02M £2.30M £2.35M £1.94M £2.01M 83.2% 86.5% 

30 0.2 £1.95M £1.99M £2.29M £2.35M £1.62M £1.68M 68.9% 72.3% 

30 0.4 £1.90M £1.94M £2.28M £2.34M £1.43M £1.53M 63.6% 64.8% 

50 0.1 £1.91M £1.97M £2.28M £2.32M £1.79M £1.84M 78.2% 79.7% 

50 0.2 £1.85M £1.91M £2.30M £2.34M £1.55M £1.62M 66.3% 68.9% 

50 0.4 £1.83M £1.88M £2.29M £2.33M £1.04M £1.13M 46.2% 48.8% 

80 0.1 £1.85M £1.91M £2.17M £2.19M £1.64M £1.72M 75.4% 77.9% 

80 0.2 £1.76M £1.81M £2.20M £2.25M £1.41M £1.48M 62.8% 65.3% 

80 0.4 £1.78M £1.84M £2.23M £2.27M £1.05M £1.14M 47.5% 49.4% 

Table 5.9 Highlights of ten-experiment with respect to each parameter change   

5.5 Summary for this chapter 

In this chapter, pricing policy for TC customer holding behaviour and TC fleet sizing are 

jointly investigated and optimised. In order to address the strategic/tactic level of 

management issues, a corresponding model is designed accordingly. With the designed 

numerical experiments, the PHA-based algorithm is shown better optimisation quality 

comparing to GA-based one within a reasonable computation time. In addition, some 

insights are obtained through different sensitivity analyses which revealed the negative 

influence of TC overholding phenomenon to the overall performance of TC asset 

management, the more effective way of designing the customer overholding policies, and 
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how TC customer holding policies can be influenced by leasing market and customers’ 

requirements. As a result, the associated strategies are proposed to fit the designed policies 

with different scenarios. 
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6. Conclusion, limitation and future research 

In this section, the main findings with respect to the proposed research objectives and the 

overall journey of this PhD research are going to be concluded and presented. Followed, 

the limitations that might affect the quality, accuracy and effectiveness of this research are 

analysed and discussed as well. In the end, regarding what has been reached; what has been 

identified but not reached yet; and what could be touched but not significant now, the future 

research directions are pointed out with some initial research approaches.  

 

6.1 Main findings 

This thesis reflected the authors’ four years PhD research efforts and outcomes in the TC 

asset management domain. As a highly specialised industry with great uncertainties, 

challenges such as unbalanced global trade, TC “quotation-booking”, uncertain TC return 

and unreliable FFs are throughout TC asset management agenda and heavily limited TCOs’ 

ability of increasing their TC asset management performance. To cope with those issues, 

the author is motivated to construct an improved TC asset management that can support 

better decision-making, comprehensive evaluation and effective planning with 

thorough consideration of TCs’ features and uncertainties. Follow this motivation, this 

thesis identified its research gaps based on extensive literature review. Especially, by 

reviewing the existing studies about DCs and other relevant asset management researches, 

the research objectives are identified with appropriate development of its rationale. With 

respect to the constructed conceptual framework, the proposed research objectives are 

grouped into different planning levels and addressed with selected methodologies. At the 

operational level, the thesis constructed a two-stage simulation model that 

comprehensively emulated the key features of TC “quotation-booking” process with an 

inventory-control fashion. With the designed optimisation mechanisms, the proposed 

system is proven to increase TCs’ profitability and utilisation while TCOs cope with daily 

job fulfilment, ETCR and FF choices decision-makings despite different kinds of 

uncertainties. Through various numerical and sensitivity analyses, this research has not 
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only demonstrated its effectiveness in respond to the research objectives, but also revealed 

a number of research insights from TCOs’ interests: 

(1) The benefits of optimizing with respect to profits the choice of FF for empty TC 

repositioning (ETCR), rather than always using the most reliable and therefore expensive 

FF, have been demonstrated. From a strategic management perspective, this has important 

advantages beyond just profits as it means that the TCO is not dependent on just the most 

reliable FF. Even if the profit differences are small, having a feasible alternative opens up 

competition that could drive costs down and service quality up. 

(2) The importance of including stochastic TC cleaning times has been demonstrated, as 

this is a source of uncertainty that leads to emergent leasing when TCs are held up. 

Experiments have shown that increased reliability (reduced variation) in cleaning times 

results in higher profits due to reduced emergent leasing due to increased certainty in 

planning. This means that TCOs should aim for more reliable (less variable) cleaning times 

and not just shorter cleaning times. 

(3) Taking into consideration a demand forecast in the optimization can reduce excessive 

ETCR that would cause higher costs and less profits. Experiments with ETCR guided by 

regional average inventory levels (ETCR with RAIL), which emulates a natural industrial 

practise, have revealed that not taking a longer-term perspective in planning and simply 

repositioning TCs based on current inventory levels results in hugely excessive 

repositioning, as well as more emergent-leasing and this tends to be for expensive, longer 

distance jobs. The greatly reduced repositioning, and thereby greater profits, achieved with 

ETCR with adapted GA (AGA) using demand forecasts, demonstrates the validity of the 

novel approach presented here, and in particular the value of taking a longer-term 

perspective of net flows and inventory levels in planning ETCR. To this end TCOs should 

aim to develop their forecasting capabilities to achieve more accurate forecasts. Results 

have shown that the forecast horizons should correspond to the typical TC job plus cleaning 

times for best results, and it is recommended that TCO’s monitor their average job plus 

cleaning times with a view to revising forecast horizons accordingly. 

At the tactical and strategic planning level, this thesis designed a two-stage time-space 

network flow model to address TC fleet sizing and customer overholding issues with the 
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consideration of unbalanced trade pattern and uncertain container return.  With the 

constructed model, TCOs are able to optimise their fleet sizing and container overholding 

policies, and in turn, it can contribute to improved TC profitability and TC flow efficiency 

compare to general practice in a long run. Through the presentation of numerical 

experiment results, the proposed novel algorithm shows the ability of returning good 

quality results with acceptable computer time consuming. Also, the sensitivity analyses 

discovered:  

(1) At the current situation, TC overholding phenomenon does generate juicy profits for 

TCOs, but it also covers the cons that how it can negatively influence self-asset utilisation 

and profitability as whole. Since customer overholding delays TC return duration and 

worsen the associated uncertainties, the revenue made from customer overholding is made 

from more chances of rejecting jobs or more expensive job cost because of TC leasing. As 

a result, the built model shows the great ability to improve the asset profitability and 

utilisation through adjusting TC fleet sizing and TC customer holding policy at depot level. 

By doing so, the strategy aims to promote the balance of maintaining high performance in 

making job-related profits as well as securing the profitable customer overholding business. 

In addition, the journey for TC return can be better monitored, controlled and evaluated 

with the proposed model even when environment changes.   

(2) By linking the adjustment of customer holding policies with overall container flow 

network, it is spotted that the design of customer holding police is worth being more 

sophisticated with respect to different depots or even customer sites. Because different 

policies will directly influence the inward speed of TC flow for their corresponding 

locations, thus different demand pattern at different location can interplay with tailored 

location-based policy to determine the TC flow performance of each point. Due to 

unbalanced trade pattern, the location-based policy can be more effective in adapting the 

local demands and contributing to overall efficiency and profitability. 

(3) Apart from local flow situation, customer holding policy also needs to be well adapted 

with the external market characteristics. Particularly, how much more expensive when 

using a leased TC for jobs or how likely customers will keep holding TCs when 

overholding charge varies. Regarding the numerical test results, the difference in cost of 
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using leased containers would decide whether the current customer holding policy is in 

favour of more overholding revenue or less operational cost. Specifically, when using 

leased containers is every expensive, the holding policy is moving to support better TC 

flow turnover and reduce the leasing-related cost. While the cheap leasing cost provides 

opportunity for making good customer overholding revenue in addition to the core business. 

However, since customers’ dependence on TC as storage equipment will not remain 

unchanged, the dynamic about this dependence will affect the effectiveness of customer 

holding policy in pursuing its strategic interests. Specifically, a high dependence allows 

easier revenue making while a lower one makes it more effective for cost reduction.  

In addition, table 6.1 below is created to have a better view of how the propose research 

objectives are achieved and what the main findings are respectively. 
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Planning levels Research objectives Response to research 

objectives 

Key findings 

Operational level 

To build a model that can simulate, 

evaluate and optimise the TC 

“quotation-booking” process under 

various uncertainties, as well as 

giving decision support to job-

fulfilment, ETCR arrangements and 

selection of freight forwarders 

A two-stage inventory-

control simulation model is 

created with featuring TC 

“quotation-booking” 

process and industry 

characteristics 

1. Inventory control plays a key role in 

maintaining good TC asset management 

performance under various uncertainties; 

2. Optimising FF choices enables more 

cost economic way of conducting ETCR 

activities; 

3. It is worth investing in improving 

reliability of TC cleaning, where a more 

effective TC flow planning can be 

obtained, and higher asset profitability is 

thereby yielded; 

4. Forecast ability is a key factor to TC 

asset management performance. 

To form the systematic way of 

setting up inventory control 

policies that can help TC operators 

cope with uncertainties and 

manage more efficient TC flow; 

The inventory control 

policies are optimised with 

consideration of uncertain 

container cleaning and 

“quotation-booking” 

process 

Tactical/strategic 

level 

To design TC flow network that 

meets both customer delivery and 

holding demand with optimised TC 

profitability at strategic viewpoint; 

 

A two-stage TC time-space 

network model is 

constructed. 

1. Instead of being the more customer 

overholding, the better asset profitability, 

TC container overholding needs to be 
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To jointly optimise TC fleet size 

and TC customer holding pricing 

strategy which can control and lead 

the overall TC network flow with 

increased efficiency and 

profitability 

 

TC fleet sizing and customer 

holding pricing policies are 

jointly optimised which can 

lead the time-space network 

model with improved 

profitability  

well managed to achieve better TC asset 

management; 

2. Instead of having uniform TC 

customer holding policy, a location-

based one seems more suitable; 

3.  Effectiveness of TC customer holding 

policy is highly influenced by the price 

dynamics of leasing market and 

customers’ reliance on TC as storage 

equipment. 

Table 6.1 the response to research objectives and main findings
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6.2 Limitations 

Due to both subjective and objective reasons, there are several limitations existed in the 

whole research process. The author has concluded five main limitations, which include 

data limitation, method limitation, time limitation, verification limitation and industry 

limitation respectively. 

Data limitation 

Even though some V&V processes are carried for each subtopic study (see Chapter 4 and 

5), data validity problem is still existed. Specifically, apart from manually screening out 

error and abnormal data, the rest of the available records are hard to be guaranteed their 

reflection of reality. Also, the available data can only reflect the operational situation in 

one company. Findings obtained, and conclusions made through this thesis may lose their 

application in other companies in the same industry, therefore, it is worth further efforts to 

validate them with more case studies. 

Method limitation 

To acquire the research outcomes, the chosen methods for model formulation and solution 

have their own limitations, in turn, application of research outcomes from this thesis could 

be reduced. For example, several assumptions are defined when both models are 

formulated in Chapter 4 and 5; the adaptive GA solution used in Chapter 4 can only return 

the near-optimal results; and the designed solution algorithm for Chapter 5 will still have 

computation intractability issue when the researched problem scale increased above a 

certain level. Moreover, heuristic solutions are proposed in Chapter 4 and 5 for evaluating 

the effects of changing input parameters. Since the proposed solutions to their 

corresponding formulation can only obtain the near-optimal result, they could have the 

possibility that the quality of the near-optimal solution may influence the confidence of the 

corresponding conclusions. For example, Figure 6.1 below shows the near-optimal solution 

decreased largely from Setting 1 (S1) to Setting 2 (S2), whereas the exact solution actually 

increased from S1 to S2. Even though, we have further included the solution range from 

all samples for each changing input parameters, it can only enhance the quality of the near-

optimal solution not eliminating the risk of the risk mentioned above. Therefore, only if 
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method is incorporated to find the exact solution, such risks cannot be avoided otherwise. 

In another words, the current research outcomes may not be effective enough. 

 

Figure 6.1 an example of sensitivity analysis for near-optimal solution and optimal 

solution 

Time limitation 

The whole research has been carried over 3 years including literature reviewing, data 

collection, model formulation, solution design, and experiments five main components. 

Due to the complexity and the scale of the fundamental knowledge body of the researched 

subject, some of the research components are very time consuming and time is not enough 

to cover everything. For example, due to time limit, only certain subtopics are focused and 

researched within the whole container asset management domain; it takes time for the 

author to learn and master different model techniques to get this research achieved, 

however, there are still a lot of other model and solution mechanisms that the author is not 

be able to learn and try but they could be performing better; Some of the experiment process 

is very time consuming so that the author is not be able to carry more dimensions and larger 

scale experiments. Therefore, the total available time is a constraint which limit the 

coverage, depth and performance of the overall research outcomes. 

Access limitation  
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Even though this is an industrial-based research, the whole thesis is finished with open data 

without access to the case company. As a result, problems such as the data validity issues 

cannot be verified with people from the case company. Meanwhile, without an effective 

access, the author is hard to appreciate more company details such as some practices of the 

case company, customer characteristics or its supply chain configuration. This is also the 

reason that some of the methodologies only can be constructed upon some assumptions. 

Industry limitation 

The last limitation is coming from this particular industry. Although those test results, 

optimisation models can be good for the case company, it requires a lot of changes as well. 

Companies may need to change their governances and structures to implement some 

applications from the research outcomes. If the petrochemical industry is so dynamic that 

TCOs are too conservative to make a move, it will limit the feasibility of the research 

outcomes from this thesis. Also, if some of the optimisations may take time to reveal their 

contributions, it will be hard to draw TCOs attention, and they may feel less motivated to 

apply what are obtained from this research. 

 

6.3 Future research opportunities 

Due to above mentioned limitations, some of the issues mentioned during the research 

process are either not fully addressed or unaddressed. In addition, throughout the PhD 

research journey, more ideas are inspired during literature reviewing, model formulation 

and experiments as well. Therefore, three main directions are summarised below to 

illustrate how this thesis can be expanded in the future. 

First, due to the large variety of commodities that TCs serving, types of TCs are also highly 

diversified. According to T-code classification (defined by TC pressure and shell thickness) 

(Exsif, 2018), there are more than 20 types of different TCs with different physical features 

and used for different purposes. Considering the complex TC “quotation-booking” and the 

uncertain TC cleaning caused by different commodities, it is worth researching 

heterogenous TC fleet management with consideration of type differences. Based on the 

research results from this study (especially Chapter 4), it then requires a more complicated 
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simulation model that is able to deal with different demand pattern with the “quotation-

booking” process, more constrained ETCR and different TC cleaning uncertainties 

regarding the features of different TC types. 

Second, at the operational level and in respect of demand fulfilment, the current simulation 

model assigns different job types in a rule-based fashion. Instead, decisions on self-

container jobs, planned-leasing jobs and rejected jobs could be optimized simultaneously 

and solved by mathematical programming techniques. 

Third, at the strategic level, the current designed optimisation solution still has its limitation 

in addressing larger and more complex TC network model (e.g. time consuming and 

potential computational intractability). As a result, its practical application is limited 

accordingly especially if more detail is included by that time-space network model. Hence, 

it will be nice to have more efficient and powerful optimisation algorithms that can counter 

more complex and larger networks with quality results. 
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Appendix 2. The Simulation Module in Stage 2 
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