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Abstract
Background: Incidental findings of virus-like particles were identified following
electron microscopy of tissue-engineered tendon constructs (TETC) derived
from equine tenocytes. We set out to determine the nature of these particles, as
there are few studies which identify virus in tendons  , and their presenceper se
could have implications for tissue-engineering using allogenic grafts.
Methods: Virus particles were identified in electron microscopy of TETCs.
Virion morphology was used to initially hypothesise the virus identity.  Next
generation sequencing was implemented to identify the virus. A pan
herpesvirus PCR was used to validate the RNASeq findings using an
independent platform. Histological analysis and biochemical analysis was
undertaken on the TETCs.
Results: Morphological features suggested the virus to be either a retrovirus or
herpesvirus. Subsequent next generation sequencing mapped reads to Equid
herpesvirus 2 (EHV2). Histological examination and biochemical testing for
collagen content revealed no significant differences between virally affected
TETCs and non-affected TETCs. An independent set of equine superficial
digital flexor tendon tissue (n=10) examined using designed primers for specific
EHV2 contigs identified at sequencing were negative. These data suggest that
EHV is resident in some equine tendon.
Conclusions: EHV2 was demonstrated in equine tenocytes for the first time;
likely from   infection. The presence of EHV2 could have implications toin vivo
both tissue-engineering and tendinopathy.
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Introduction
Tendons transfer force from muscle to bone, in addition to play-
ing a key role in positioning and reducing locomotion expenditure, 
such as in the equine superficial digital flexor tendon (SDFT). Their 
structure is hierarchical1, with the predominating component being 
a collagen-dominated extracellular matrix (ECM)2. Sparsely distrib-
uted fibroblasts (tenocytes) produce ECM. Tenocytes are utilised 
in the production of tissue-engineered tendon constructs (TETCs), 
which are used within tendon research as a model for in vivo  
tendons, and have been explored as a potential therapeutic modality 
for tendinopathy3.

There are few causes of musculoskeletal disease which have been 
attributed to viral infection, with no previous literature citing viral 
causes of tendinopathy in the horse. Previous viruses implicated in 
tendinopathy of other species include adenovirus and reovirus in 
tenosynovitis of broiler hens4. This study suggests that a primary 
viral infection coupled with subsequent bacterial infection leads to 
catastrophic musculoskeletal infection and death.

Next generation sequencing (NGS) is frequently used as a research 
tool to characterise the transcriptome of eukaryotes, providing 
superior profiling to previously used methods such as microarrays. 
Wang et al.5 describe NGS as a high throughput, highly sensitive 
method for transcriptome analysis. We have previously used it to 
characterise transcriptome-wide gene expression in numerous  
studies, including tendon ageing and disease6. Additionally, it has 
infrequently been used to identify viral isolates within tissues7 with 
a high sensitivity.

In this study equine TETCs were produced to report changing  
protein profiles with ageing. Following electron microscopy, two 
samples were found to contain virus-like structures. The aim of  
this study was to identify these particles using NGS and investigate 
their functional consequences on TETCs.

Materials and methods
All reagents were supplied by Sigma unless otherwise stated.

Sample collection
Equine SDFT was collected from young (n=7; age: 5 years ± 
1.095 SD) and old (n=6; age: 18.5 years ± 2.429SD) donors from 
the equine hospital and abattoir as a by-product of the agricultural 
industry. The Animal (Scientific Procedures) Act 1986, Schedule 
2 does not define abattoir collection as a scientific procedure and 
hence ethical approval was not required. Samples collected from an 
equine hospital were subject to the University of Liverpool ethical 
approval and consent (VREC462).

Tissue-engineered tendon production
Tenocytes were digested from equine SDFT using standard col-
lagenase protocol8. Constructs were engineered as previously 
described by Kharaz et al.9. In brief, tenocytes were seeded at 
600,000 cells per well then scored every other day until full con-
traction of the construct. Constructs were harvested at 28 days and 
either snap frozen, collected for standard histology or transmission 
electron microscopy (TEM).

Transmission electron microscopy
TEM of tendon constructs was performed following fixation 
in 2.5% glutaraldehyde in 0.1M sodium cacodylate buffer for  
8 hours, followed by buffer washing procedures and second fixation  
and contrast stain with 0.1% osmium tetroxide for 90 minutes.  
Samples were stained with 8% uranyl acetate in 0.69% maleic 
acid for 90 minutes, dehydrated in ascending ethanol concen-
trations and embedded in epoxy resin. Ultrathin cross-sections  
(60–90 nm) were cut with a Reichert-Jung Ultracut on an ultra-
microtome (Leica Microsystems, Wetzlar, Germany) using a  
diamond knife. Sections were then mounted on 200 mesh copper 
grids and stained with ‘Reynold’s Lead citrate’ stain for 4 minutes. 
Images were viewed in Philips EM208S Transmission Electron 
Microscope (Philips UK Limited, Guildford, UK) at 80K.

Virion investigation
On examination of TEM images, two TETCs were identified 
as containing virus-like particles (V: Y1, Y6). These particles 
were morphologically assessed for virion identification. Particle  
diameter was estimated from electron micrograph images. Particle  
morphological characteristics were observed for virion diame-
ter, presence of a viral envelope, nucleocapsid shape and surface  
projection presence. The number of full capsids, nucleocapsids and 
empty capsids were counted in 22–26 TEM images from each of 
the infected donors. For each sample, resin sections were mounted 
onto copper grids and viewed in the TEM at X 44000 magnifica-
tion. 25–30 successive grid squares were viewed and the first area 
in each grid square which was found to contain virus was photo-
graphed. The images were loaded into ImageJ (version 1.51n)10  
and counts made of virus with: 

i) envelope + nucleocapsid + DNA (full)

ii) envelope + nucleocapsid – DNA (nucleocapsid only),

iii) envelope only (empty).

TEM images were compared to current literature in order to  
provide a morphological reference (Supplementary File 1).

Histological analysis
TETCs were fixed in 4% paraformaldehyde and paraffin embedded. 
Sections were cut at 4µm onto polylysine slides and subsequently  
stained with haematoxylin and eosin (H&E) and Masson’s  
Trichrome. Histology was assessed using a scoring system 
developed in an unpublished report by Charters11, and shown in  
Supplementary  File 2.

NGS analysis
Two samples of TETCs were submitted for RNASeq, one virally 
affected (V: Y1) and one control (NV). RNA was extracted from 
constructs as previously described, and NGS was performed in 
accordance with the method described by Peffers et al.6. Analysis 
was undertaken by the Centre for Genomic Research, University 
of Liverpool. One µg of total RNA was ribosome depleted with 
the RiboZero Magnetic kit (Illumina, San Diego, California, United 
States). NGS libraries were prepared using the ScriptSeq v2 NGS 
Library Preparation Kit (Illumina, San Diego, California, United 
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States). All of the enriched material was used as input material and 
following 15 cycles of amplification, libraries were purified using 
AMPure XP beads. Each library was quantified using Qubit and 
the size distribution assessed using the Agilent 2100 Bioanalyser  
(Agilent, Santa Clara, CA, USA). Libraries were pooled in equi-
molar amounts and quantity and quality of each pool assessed by  
using Bioanalyzer (Agilent, Santa Clara, CA, USA) and subse-
quently by qPCR using the Illumina Library Quantification Kit 
from Kapa (KK4854) on a Roche Light Cycler LC480II accord-
ing to manufacturer’s instructions. The template DNA was loaded at 
300 pM. The sequencing was carried out on one lane of an Illumina 
HiSeq4000 at 2×150 bp paired-end sequencing with v1 chemistry.

Initial processing and quality assessment was undertaken as previ-
ously described12. Coverage plots were created using R. Initially 
a reference sequence file was created using known herpesvirus 
genomes. Reads were then aligned to the reference sequence files 
using Bowtie2 global alignment. PCR and optical duplicate reads 
were subsequently removed using Picard. Resulting alignment files 
were then used as input to Bedtools, (version 2.16.2) which was 
used to calculate coverage across the genomes. The coverage data 
output of this was used as input for a custom R script. Once the 
reads were mapped the number of reads mapped to each transcript 
was undertaken. These counts were calculated using HTSeq-count 
(version 0.6.1p1)13, accepting only hits of quality 10+, and exclud-
ing ambiguous hits and hits on the opposite strand.

NGS analysis: Transcript assembly and removal of host 
genomic reads
Illumina sequence reads were adapter- and quality-trimmed using 
Cutadapt version 1.2.1 (Martin, 2011) and Sickle version 1.200. 
Host sequences were removed by aligning trimmed reads to the 
Equus caballus genome (Equus caballus; EquCab2.56.pep) with 
HiSat (version 2.0.3b)14.

NGS analysis: Viral sequence determination
To taxonomically assign contigs, a BLASTN (MegaBlast, version 
2.2.7+)15) search of the assembled transcripts against the NT data-
base from NCBI was carried out and full taxa information (species, 
order, phylum, superkingdom) was derived based on the best hit, 
using the NCBI taxonomy database (ftp://ftp.ncbi.nlm.nih.gov/
pub/taxonomy/taxdump.tar.gz). The search was carried out with an  
e-value cut off of 1e-5. The results were filtered to identify all hits 
to the virus superkingdom.

All raw read data produced in this study has been submitted to the 
EBI ENA, primary accession PRJEB20552, secondary accession 
ERP022713.

Hydroxyproline assay
Freeze-dried samples (V (n=2) and NV (n=5) of TETC derived from 
the young donors were hydrolysed overnight at 60°C using papain 
reagent. Digests were stored at -20°C and subsequently assayed for 
collagen content by hydroxyproline assay16.

Statistical analysis
Data were normality tested prior to statistical analysis. Data was 
considered statistically significant at P≤0.05. All normality testing 
and statistical analysis was undertaken using Excel (2010, Micro-
soft, Redmond, WA, USA) and GraphPad prism (2016, version 7, 
GraphPad Software Inc, CA, USA).

Pan herpesvirus PCR
As RNAseq is not definitive, we used a pan-herpes PCR to confirm 
that the virus in question was indeed a herpes virus and there were 
no other herpesviruses present.

In order to validate the RNASeq findings with a different platform, 
a pan-herpesvirus PCR was undertaken. Samples V; Y1 and Y6 
(virally affected) and a negative control (O3) were tested using a 
pan-herpesvirus PCR using a modified methodology described by 
Ehlers et al.17. This protocol uses dI-substituted primers that offer 
improved sensitivity and specificity than previous protocols18.

Modifications of the components included using 12.5ul of 2x 
Qiagen multiplex PCR master mix containing HotStar Taq DNA 
polymerase (Qiagen, Crawley, UK). The list of primers used in  
pan herpesvirus PCR is available in Supplementary File 3.

Specific EHV-2 PCR assay of equine SDFT
In order to determine the presence of EHV-2 in SDFT of a larger 
equine population, PCR primers were designed to amplify a region 
within a 37kb contig demonstrating an excellent depth of coverage 
(mean 4919x coverage) and 99% homology to EHV-2. The primer 
sequence was; V1 forward GGGCGGAGAATGTAGAGACG, V1 
reverse GGTGGACTTTAACGGGGAGG (product size 443). DNA 
was extracted from 10 (mean ±SD age: 12.8±7.1) grossly normal 
equine SDFT collected from an abattoir. A QIAmp DNA extrac-
tion kit (Qiagen, Crawley,UK) following the manufacturer’s pro-
tocol was used. A sample of EHV-2 positive DNA (kindly gifted 
by Microbiology Diagnostic Laboratory, Institute of Veterinary  
Science, Liverpool) was used as a positive control.

PCR was performed in a final volume of 50ul consisting of 12.5ul 
ThermoPrime 2x ReddyMix PCR Master Mix, 1.5ul forward 
primer, 1.5ul reverse primer, 24.5ul water and 10ul extracted DNA 
template. Following an initial denaturation at 94°C for 9 min, 
products were amplified by 5 cycles of denaturation at 94°C for 
1 min, annealing at 60°C for 1 min and elongation at 72°C for 1 
minute. This was immediately followed by 30 cycles of denatura-
tion at 94°C for 1 min, annealing at 55°C for one min and elonga-
tion at 72°C for one minute. Amplification was followed by a final 
extension at 72°C for 7 min. 15µl of product was electrophoresed 
on a 1.5% 1× Tris-acetate-EDTA agarose gel containing 10ul of  
PeqGreen. TrackIT 1Kb Plus DNA ladder was used as the standard.

Phylogeny
All phylogenetic analysis was carried out within MEGA (version 
5). DNA sequences were aligned using Clustal W (EMBL-EBI, 
Hinxton, UK). Neighbour-joining trees constructed. Bootstrap 
analysis (1,000 replicates) was used to provide support for indi-
vidual nodes.

Results
Transmission electron microscopy
Two out of 13 samples contained virus-like particles. The virus-like 
particles identified were approximately 100–150nm in diameter, 
and had an indistinct outer border with surface protrusions and 
a cylindrical nucleocapsid (Figure 1A and 1B). Viral particles 
were identified both intracellularly (T) (including intranuclearly) 
and within the extracellular matrix (Figure 1A). A further char-
acteristic present in several of the images observed were ‘empty  
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capsids’ within cells (Figure 1C and 1D). Viral families have  
distinct morphological characteristics relating to size, nucleocap-
sid shape, and envelope present, which were used to tentatively  
identity the particles. The virus particles identified within the 
TETCs exhibited a spherical shape, with a visible envelope,  
contained within an icosahedral capsid shape. Virion diameter  
was calculated and was suggestive of a retrovirus or herpesvirus. 
The apparent spiked edge of the viral particles was suggestive of 
a retrovirus. In order to tentatively assess the level of infection 
within the TETCs, the number of tenocytes affected with virus 
particles was counted by examining the TEM images of all the 
donors. Whilst no virus particles were evident in images of the ten 
non-infected donors, 65.4% and 100% of the tenocytes of the two 
infected samples contained virus particles. The number of empty, 
full and nucleocapsids was determined for a set of images from 
both of the virus-infected samples. Results are shown in Table 1.

Histological scoring
There were no significant differences in histological score between 
V and NV based upon the characteristics measured (Figure 2).

Hydroxyproline assay
Contrasting V and NV TETCs showed that there was no significant 
difference in collagen content (Figure 3).

NGS analysis
NGS analysis: Transcript assembly and removal of host genomic 
reads. Illumina sequence reads were adapter- and quality-trimmed 
using Cutadapt version 1.2.1 (Martin, 2011) and Sickle version 
1.200. A summary of raw and trimmed sequence data is shown 
in Supplementary File 4, following host sequence removal, and  

Figure 1. A and B: Electron micrographs of virus-like particles found within TETCs. Tenocyte (T), extracellular matrix viral particles (black 
arrows). C and D: Electron micrographs showing full capsids, nucleocapsids (NC) and empty capsids (white arrows) within both of the TETCs 
from which virus were isolated (C; Y1, D; Y6). Scale bars are shown.

Table 1. Counting of full, empty and nucleocapsids in 
virus-infected TETC samples.

Sample Y1 Sample Y6

Sum Mean SD Sum Mean SD

Full capsid 164 7.5 4.5 316 12.2 8.3

Nucleocapsid 
only 129 5.9 5.1 183 7.0 5.3

Full capsid + 
nucleocapsid 293 13.3 5.5 499 19.2 10.6

Empty capsid 261 11.9 20.6 438 16.8 18.8

Empty + 
nucleocapsid 390 17.7 24.3 621 23.9 23.3

SD; standard deviation

subsequent filtering of mapped reads. Resulting paired-end reads 
were assembled using Trinity version r2013_08_1419 for both sam-
ples. V resulted in 913,443 transcripts (including isoforms) and NV 
resulted in 788,076 transcripts (including isoforms).

NGS analysis: Viral sequence determination. Y6 had 131 tran-
scripts that hit viral sequences, 129 were assigned to Equid her-
pesvirus 2, a single read was assigned Equine Infectious Anaemia 
(EIA) virus and a single read to Bovine viral diarrhea virus (BVDV). 
For Y6 84.25% reads were mapped to the Equus caballus genome 
and 1.32% to Equid herpesvirus 2 strain G9/92 complete genome 
(accession; KM924294.1); the strain that most reads mapped to in 
this sample. Identified gene transcripts are in Table 2.

Page 5 of 12

Wellcome Open Research 2017, null:null Last updated: 02 AUG 2017



Figure 2. Histograms of histological scoring of TETCs. Histological scoring of TETCs from virally affected (n=2) and normal (n=8) donors. 
Graphs A–F represent the mean scores + standard deviation of the following characteristics; mean extracellular matrix organisation (A), cell 
shape (B), cellular distribution (C), cellular alignment (D), TETC cellularity (E) and mean total score (F). Where error bars are not present, 
scores for all donors were equal. Further details of the scoring system are available in Supplementary File 2. No significant differences were 
found between virally affected and normal donors (p≤0.05).

Figure 3. Histogram of collagen content of young TETCs containing virus (V; n=2) and not containing virus (NV; n=5). Graphs represent 
mean± standard error mean of percentage collagen normalised to dry weight. No significant difference was found in collagen content 
(p≤0.05).
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Table 2. The reads mapping to specific genes/transcripts 
in EHV2 (G9/92). Counts are presented in the table calculated 
using HTSeq-count.

Read 
Count

Gene 
Name Product

0 E1 membrane protein E1

0 E10 apoptosis regulator E10

286 E2 protein E2

86 E3 membrane protein E3

867 E4 apoptosis regulator BALF1

34 E5A protein E5A

3018 E6 membrane protein BILF1

0 E6A protein E6A

853 E6C protein E6C

260 E7 interleukin-10

1704 E7A envelope glycoprotein 42

777 E8 apoptosis regulator E8

8 E9 membrane protein E9

4275 ORF10 protein G10

6163 ORF11 virion protein G11

5187 ORF17 capsid maturation protease

0 ORF17.5 capsid scaffold protein

2661 ORF18 protein UL79

6867 ORF19 DNA packaging tegument protein UL25

3165 ORF20 nuclear protein UL24

2484 ORF21 thymidine kinase

697 ORF22 envelope glycoprotein H

5154 ORF23 tegument protein UL88

13490 ORF24 protein UL87

3629 ORF25 major capsid protein

721 ORF26 capsid triplex subunit 2

736 ORF27 envelope glycoprotein 48

157 ORF28 envelope glycoprotein 150

21228 ORF29 DNA packaging terminase subunit 1

4507 ORF3 protein G3

9 ORF30 protein UL91

286 ORF31 protein UL92

971 ORF32 DNA packaging tegument protein UL17

1339 ORF33 tegument protein UL16

1194 ORF34 protein UL95

107 ORF35 tegument protein UL14

833 ORF36 tegument serine/threonine protein kinase

1325 ORF37 deoxyribonuclease

Read 
Count

Gene 
Name Product

737 ORF38 myristylated tegument protein

2950 ORF39 envelope glycoprotein M

3897 ORF40 helicase-primase subunit

1333 ORF42 tegument protein UL7

2535 ORF43 capsid portal protein

5864 ORF44 helicase-primase helicase subunit

782 ORF45 tegument protein G45

492 ORF46 uracil-DNA glycosylase

26 ORF47 envelope glycoprotein L

1296 ORF48 tegument protein G48

861 ORF49 protein G49

5403 ORF50 protein Rta

538 ORF51 envelope glycoprotein 350

376 ORF52 virion protein G52

579 ORF53 envelope glycoprotein N

2793 ORF54 deoxyuridine triphosphatase

756 ORF55 tegument protein UL51

5083 ORF56 helicase-primase primase subunit

1693 ORF57 multifunctional expression regulator

935 ORF58 envelope protein UL43

1058 ORF59 DNA polymerase processivity subunit

3208 ORF6 single-stranded DNA-binding protein

990 ORF60 ribonucleotide reductase subunit 2

1362 ORF61 ribonucleotide reductase subunit 1

954 ORF62 capsid triplex subunit 1

4884 ORF63 tegument protein UL37

13692 ORF64 large tegument protein

1382 ORF65 small capsid protein

1095 ORF66 protein UL49

597 ORF67 nuclear egress membrane protein

292 ORF67A DNA packaging protein UL33

1494 ORF68 DNA packaging protein UL32

1249 ORF69 nuclear egress lamina protein

1356 ORF7 DNA packaging terminase subunit 2

1328 ORF70 thymidylate synthase

3639 ORF73 nuclear antigen LANA-1

5 ORF74 membrane protein G74

3677 ORF75 tegument protein G75

1561 ORF8 envelope glycoprotein B

2966 ORF9 DNA polymerase catalytic subunit
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O3 had 7 transcripts aligned to virus sequences, all assigned Equid 
herpesvirus 2. A further BLASTN20 search against all animal ERV 
sequences from the NCBI database was carried out to check that the 
contigs suggested to be herpesvirus were not ERVs. No significant 
hits to known ERVS were found for contigs assigned as EHV2 in 
the previous search.

NGS: Genome coverage plots of discovered viral sequence against 
EHV2. Coverage plots of the samples were checked against the 
following genomes; Bovine herpesvirus type 1.1 (AJ004801.1,), 
Equid herpesvirus 1 strain T953 (KM593996.1), Equid herpesvi-
rus 2 strain G9/92 (KM924294.1), Equid herpesvirus 3 strain AR/ 
2007/C3A (NC_024771.1), Equid herpesvirus 4 (NC_001844.1),  
Equid herpesvirus 5 strain 2-141/67 (NC_026421.1). From 
these plots for samples NV (O3) (Figure 4a) and V (Y6)  
(Figure 4b), it is clear that the virus isolated from TETC Y6 is likely 
EHV2. There does not appear to be any EHV2 in the NV sample. 
Occasional coverage spikes were due to mapping low complexity 
reads which would map well against many genomes.

The coverage plot shows that the genomic coverage of the  
TETC virus of EHV2 strain G9/92 was 86.26%. The virus was 

mapped to 3,875.605 contigs to EHV-2, compared with 2–339 from 
the rest of the herpesvirus panel (EHV1, 3, 4, 5) (Supplementary 
File 5).

Pan herpesvirus PCR. Pan herpesvirus PCR was found to be  
positive for EHV2 for the two V samples and negative for NV  
samples (Figure 5). Sequencing of PCR products was used to  
confirm EHV2 presence within the sample.

Specific PCR. Of the ten samples assessed, none were found to 
contain EHV2 (Figure 6).

Phylogenic analysis. A phylogenetic tree was produced in order  
to characterise the relationship between the TETC virus and  
currently identified EHVs (Figure 7). Phylogenetic analysis of the 
TETC isolated virus glycoprotein B gene shows branching with 
Equid herpesvirus 2 strain 275, with further close relationships with 
strains G9/92, 86/87 and 86. The phylogenetic tree produced clearly 
demonstrates that the strain isolated from the TETCs is an EHV2, 
although not a strain which currently has been genome sequenced 
in the NCBI database.

Figure 4. A and B. Log2-Coverage plot demonstrating read mapping. A. Read mapping plot of NV (O3). B. Read mapping plot of V (Y6). Both 
samples were mapped against the Equid herpesvirus 2 strain G9/92 (KM924294) genomes. Y-axes; coverage is log2-scaled. Zero coverage 
bases were assigned a log2-coverage value of -3 for plotting purposes.
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Figure 6. EHV2 PCR assay in an additional cohort of SDFT samples. DNA extractions from ten equine SDFT samples (1–10) were 
amplified with primers (V1) designed within a EHV-2 contig identified following NGS. Genomic DNA from EHV-2 was used as a PCR positive 
control (EHV) and water as a negative control (bl). TrackIT 1Kb Plus DNA ladder was used as a marker (1kb ladder). The positive EHV2 
control demonstrates a band at 450bp.

Figure 5. Pan herpesvirus gel image. Gel image of PCR fragments following restriction by ECOR 1. Virus-infected samples Y1, Y6 and 
virus negative sample O3 are shown. Amplicon size is 229 bp. Bands were removed and subsequently sequenced to confirm identification 
of herpes virus.

Figure 7. Neighbour-joining trees. Trees characterised the relationship between virus isolated from V (EHV2 RJW248419) and previously 
isolated strains using glycoprotein B gene. Bootstrap analysis (1,000 replicates) was used to provide support for individual nodes.
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Discussion
This study is the first to identify EHV2 within cells derived from 
equine tendons. Findings of virus particles in samples of TETCs 
in which TEM was undertaken were incidental. At the time in our 
laboratory, equine tenocytes were the only cell type being cultured. 
We were interested in the nature of the particles and thus set out 
to investigate further. As this was a post-experiment attendant 
result identified a number of weeks after the end of the study, we 
were unable to undertake culture of the virus-infected tenocytes or  
determine what the titre of the virus was and if this was infectious. 
We realise this is a limitation of our work. However, as the pres-
ence of EHV2 was previously unreported in tendons, and due to the 
potential use of TETCs as allogenic transplant agents, we believe 
the finding of EHV2 in tenocytes could have implications for 
future tissue-engineering studies. Additionally, it should serve as a  
warning that viral contamination of musculoskeletal tissues may 
not be appreciated if screening is not undertaken.

Initial analysis tentatively identified a herpesvirus through elec-
tron microscopy, and this was confirmed as EHV2 with NGS and 
a pan-herpesvirus PCR. The structure of virion particles on TEM 
was initially suggestive of a retrovirus or a herpesvirus. Differen-
tial features based upon morphology included glycoprotein spikes, 
suggestive of a retrovirus21, and undefined tegument protein, sug-
gestive of a herpesvirus22. We demonstrated the presence of empty 
capsid structures within both TETCs. Previous studies have hypoth-
esised that empty capsids are precursors of mature herpesvirus23,24.  
Previous images identifying A-capsids24 are similar to those in our 
study, further implicating identification of an equid herpes virus. 
This, coupled with measurement of virion diameter, was suggestive 
of a herpes or retrovirus25. Due to the non-conclusive ultrastructural 
features in regard to differentiating between a herpesvirus and ret-
rovirus, further analytical methods were employed to distinguish 
viral identity.

NGS identified the virus within the TETCs as most similar to 
EHV2 strain G9/92. Phylogenic analysis of the sequence isolated  
through NGS (EHV2 RJW 248419) demonstrated the close  
relationship between the virus in this study and the currently 
sequenced strains.

Swenson et al.26 studied the presence of feline herpesvirus-1 
(FHV1) within the feline tendon following experimental inocu-
lation. It has previously been described that tissue-engineered  
tendons can be used as allographic transplant agents27. They  
implied that the presence of FHV1 for application of TETCs in 
allogenic transplantation could lead to immune rejection of the 
engineered tissue and hence transplant failure. Whilst the histologi-
cal structure and collagen content of the TETCs was not altered by 
the presence of EHV2, the ability of EHV2 within TETCs here to 
survive culture and multiple passages whilst retaining the ability 
to reproduce, may have implications for their use as a therapeutic 
option in terms of transplant rejection.

In the literature, isolation of primary virus within tenocytes is 
limited, though fibroblasts from other anatomical locations have  
demonstrated the ability for viral replication. Klevjer-Anderson  
et al.28 describe the persistent infection of equine dermal fibroblasts  

with EIA. Further virus isolated from fibroblasts include herpes 
simplex virus within avian fibroblast cells. Stulberg et al.29 dis-
cuss the growth of herpes simplex virus within cultured fibrob-
lasts, illustrating a cytopathic effect upon cells cultured using a  
non-plasma technique. Such areas of focal necrosis were not  
evident in the TETCs here.

Viral causes of tenosynovitis have previously been described in 
chickens4. The study investigated outbreaks of tenosynovitis in com-
mercial broilers using virus isolation. Tendon from affected flocks 
yielded isolation of reoviruses and adenoviruses. To our knowl-
edge, viral agents have not previously been isolated from tendons 
in horses. Zeng et al.30 used TEM to visualise adenovirus particles. 
Their TEM images suggest that adenoviruses are much smaller 
than the particles isolated in this experiment, with the approxi-
mate diameter being 70–90nm. A similar result was evident with  
reoviruses’, which have an average diameter of 60–80mm.

Whilst all culturing was undertaken in sterile conditions the iden-
tified virions could have originated from a culture contaminant. 
Likely causes include cross-contamination between TETCs and 
other tissue within the laboratory or use of contaminated reagents 
during production. Previous studies have found viral contamina-
tion in commercially available foetal calf serum such as that used 
in TETC production here. However, as the virus was limited to a  
subset of cultured TETC this is unlikely. Viral isolates include 
BVDV, bovine parainfluenza virus-3 and bovine herpesvirus-1 
(BoHV1)31,32. Membrane filtration removes many contaminants, 
however these may be an ineffective against viruses due to their 
small size33.

It is important to consider host-range and tissue specificity of 
viruses, which could be present as a contaminant of tissue cul-
ture reagents. Foetal calf serum was used in the tissue-engineered  
culture system. As a result, we compared the viral reads obtained 
to a variety of bovine virus’ with suggestive morphology. One read 
to BoHV1 was identified in virally affected TETC. As an alpha-
herpesvirus BoHV1 has previously shown limited scope for cross-
ing species-barriers34. The single read to BoHV1 when compared 
with EHV2 (129) suggest that BoHV-1 was not the virus isolated 
here. Moreover, the BoHV1 read could be a consequence of cross  
mapping. One read was found to EIA. This is a notifiable disease 
within the UK. The single read was of only 52bp hence it was  
suspected due to cross-mapping and further investigation was not 
pursued.

Unfortunately the EHV status of the donor horses was unknown. 
The clinical history for one of the TETC donors containing virus  
was available. The donor was presented at the hospital with right 
hind lameness and proprioceptive deficits. The horse was eutha-
nased on humane grounds. EHV myeloencephalopathy was not  
suspected on presentation due to the absence of cauda equina  
signs35. Moreover, the equid herpesvirus most associated with 
myeloencephalopathy is EHV136. NGS data in this study revealed  
minimal coverage of the EHV1 genome when compared with  
EHV-2. There was no clinical history of the TETC donor as this 
was derived from an abattoir and hence further conclusions cannot 
be drawn. Since a small population of other horses were assessed 
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for the presence of EHV2 RJW 248419 it would appear that the  
presence of this virus in equine tendon is uncommon.

Finally, an interesting point to consider is the potential role of an 
equid herpes virus in tendinopathy. EHV2 has not previously been 
isolated in cases of musculoskeletal disease in the horse. Whether 
this is because it has not been investigated or because it has no 
significant role in disease has not been established. Due to the 
unknown status of horse from the abattoir it is difficult to draw  
conclusions from the single case in which hind limb pathology  
was described. Whilst histological examination and limited  
biochemical tests within this study implies that EHV2 has no  
significant affect upon the structure of TETCs the mechanical  
properties of the TETCs were not assessed. Further work is  
required to determine if EHV-2 has a role in tendinopathy.

Conclusions
This study identifies EHV2 in equine tendons for the first time, 
and describes NGS as a useful tool for virus identification. The 
implications of the presence of EHV2 in tendon to both tissue- 
engineering and tendinopathy requires further work. However, 
there are potential implications for the use of TETCs as allogenic 
transplant agents, as the presence of virus could result in transplant 
failure.

Data availability
All raw read data produced in this study has been submitted to the 
EBI ENA, primary accession PRJEB20552, secondary accession 
ERP022713. The data underlying this work has been uploaded to 
the Open Science Framework Database, and can be accessed via 
DOI, 10.17605/OSF.IO/WYPKQ37.

Competing interests
No competing interests were disclosed.

Grant information
This work was supported by the Wellcome Trust [107471]; the 
Medical Research Council (MRC) and Arthritis Research UK 
as part of the MRC-Arthritis Research UK Centre for Integrated 
research into Musculoskeletal Ageing (CIMA), and by a Wellcome 
Trust Summer Studentship.

Acknowledgments
We thank Charlotte Charters (University of Liverpool Veterinary  
School) for the use of her histology scoring system and Yalda 
Ashraf-Kharaz, Institute of Ageing and Chronic Disease,  
University of Liverpool) for her assistance with the hydroxyproline 
assay.

Supplementary material
Supplementary File 1. Table of the characteristics of various virus families that have previously been isolated in fibroblasts or as  
contaminants in tissue culture.

Click here to access the data.

Supplementary File 2. Table showing the scoring system used during histological analysis of TETCs.

Click here to access the data.

Supplementary File 3. Table of the primer sequences used in the pan herpesvirus PCR.

Click here to access the data.

Supplementary File 4. Summary table of the raw and trimmed sequence data.

Click here to access the data.

References

1.	 Screen HR, Lee DA, Bader DL, et al.: An investigation into the effects of the 
hierarchical structure of tendon fascicles on micromechanical properties. Proc 
Inst Mech Eng H. 2004; 218(2): 109–19.  
PubMed Abstract | Publisher Full Text 

2.	 Evans JH, Barbenel JC: Structural and mechanical properties of tendon related 
to function. Equine Vet J. 1975; 7(1): 1–8.  
PubMed Abstract | Publisher Full Text 

3.	 Bagnaninchi PO, Yang Y, El Haj AJ, et al.: Tissue engineering for tendon repair. 
Br J Sports Med. 2007; 41(8): e10; discussion e10.  
PubMed Abstract | Publisher Full Text | Free Full Text 

4.	 Kibenge FS, Robertson MD, Wilcox GE, et al.: Bacterial and viral agents 
associated with tenosynovitis in broiler breeders in Western Australia. Avian 
Pathol. 1982; 11(3): 351–9.  
PubMed Abstract | Publisher Full Text 

5.	 Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for 
transcriptomics. Nat Rev Genet. 2009; 10(1): 57–63.  
PubMed Abstract | Publisher Full Text | Free Full Text 

6.	 Peffers MJ, Fang Y, Cheung K, et al.: Transcriptome analysis of ageing in 
uninjured human Achilles tendon. Arthritis Res Ther. 2015; 17(1): 33.  
PubMed Abstract | Publisher Full Text | Free Full Text 

Page 11 of 12

Wellcome Open Research 2017, null:null Last updated: 02 AUG 2017

http://dx.doi.org/10.17605/OSF.IO/WYPKQ
https://wellcomeopenresearch.s3.amazonaws.com/supplementary/12176/3b64c710-7c8e-42f2-a15c-2d9d041c8396.pdf
https://wellcomeopenresearch.s3.amazonaws.com/supplementary/12176/9013cfbf-e815-49a6-bd18-d33743295d96.pdf
https://wellcomeopenresearch.s3.amazonaws.com/supplementary/12176/e85e3db5-ed13-486c-a156-1267fa62177a.pdf
https://wellcomeopenresearch.s3.amazonaws.com/supplementary/12176/1fa76b6c-f79e-47ff-aec2-831ad5080933.pdf
http://www.ncbi.nlm.nih.gov/pubmed/15116898
http://dx.doi.org/10.1243/095441104322984004
http://www.ncbi.nlm.nih.gov/pubmed/1116491
http://dx.doi.org/10.1111/j.2042-3306.1975.tb03221.x
http://www.ncbi.nlm.nih.gov/pubmed/17062654
http://dx.doi.org/10.1136/bjsm.2006.030643
http://www.ncbi.nlm.nih.gov/pmc/articles/2465448
http://www.ncbi.nlm.nih.gov/pubmed/18770201
http://dx.doi.org/10.1080/03079458208436110
http://www.ncbi.nlm.nih.gov/pubmed/19015660
http://dx.doi.org/10.1038/nrg2484
http://www.ncbi.nlm.nih.gov/pmc/articles/2949280
http://www.ncbi.nlm.nih.gov/pubmed/25888722
http://dx.doi.org/10.1186/s13075-015-0544-2
http://www.ncbi.nlm.nih.gov/pmc/articles/4355574


7.	 Khoury JD, Tannir NM, Williams MD, et al.: Landscape of DNA virus associations 
across human malignant cancers: analysis of 3,775 cases using RNA-Seq.  
J Virol. 2013; 87(16): 8916–26.  
PubMed Abstract | Publisher Full Text | Free Full Text 

8.	 Williamson KA, Lee KJ, Humphreys WJ, et al.: Restricted differentiation potential 
of progenitor cell populations obtained from the equine superficial digital 
flexor tendon (SDFT). J Orthop Res. 2015; 33(6): 849–58.  
PubMed Abstract | Publisher Full Text | Free Full Text 

9.	 Kharaz YA, Tew SR, Peffers M, et al.: Proteomic differences between native and 
tissue-engineered tendon and ligament. Proteomics. 2016; 16(10): 1547–56. 
PubMed Abstract | Publisher Full Text | Free Full Text 

10.	 Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ: 25 years of image 
analysis. Nat Methods. 2012; 9(7): 671–5.  
PubMed Abstract | Publisher Full Text 

11.	 Charters C: Optimisation of Ascorbic Acid in Tendon Construct Formation from 
Human Bone Marrow-Derived Mesenchymal Stem Cells and Equine Tenocytes 
2012. University of Liverpool: Liverpool.

12.	 Peffers MJ, Goljanek-Whysall K, Collins J, et al.: Decoding the Regulatory 
Landscape of Ageing in Musculoskeletal Engineered Tissues Using Genome-
Wide DNA Methylation and RNASeq. PLoS One. 2016; 11(8): e0160517.  
PubMed Abstract | Publisher Full Text | Free Full Text 

13.	 Anders S, Pyl PT, Huber W: HTSeq--a Python framework to work with high-
throughput sequencing data. Bioinformatics. 2015; 31(2): 166–9.  
PubMed Abstract | Publisher Full Text | Free Full Text 

14.	 Kim D, Langmead B, Salzberg SL: HISAT: a fast spliced aligner with low memory 
requirements. Nat Methods. 2015; 12(4): 357–60.  
PubMed Abstract | Publisher Full Text | Free Full Text 

15.	 Zhang J, Madden TL: PowerBLAST: a new network BLAST application for 
interactive or automated sequence analysis and annotation. Genome Res. 
1997; 7(6): 649–56.  
PubMed Abstract | Publisher Full Text | Free Full Text 

16.	 Bannister DW, Burns AB: Adaptation of the Bergman and Loxley technique for 
hydroxyproline determination to the autoanalyzer and its use in determining 
plasma hydroxyproline in the domestic fowl. Analyst. 1970; 95(131): 596–600. 
PubMed Abstract | Publisher Full Text 

17.	 Ehlers B, Küchler J, Yasmum N, et al.: Identification of novel rodent 
herpesviruses, including the first gammaherpesvirus of Mus musculus. J Virol. 
2007; 81(15): 8091–100.  
PubMed Abstract | Publisher Full Text | Free Full Text 

18.	 VanDevanter DR, Warrener P, Bennett L, et al.: Detection and analysis of diverse 
herpesviral species by consensus primer PCR. J Clin Microbiol. 1996; 34(7): 
1666–71.  
PubMed Abstract | Free Full Text 

19.	 Grabherr MG, Haas BJ, Yassour M, et al.: Full-length transcriptome assembly 
from RNA-Seq data without a reference genome. Nat Biotechnol. 2011; 29(7): 
644–52.  
PubMed Abstract | Publisher Full Text | Free Full Text 

20.	 Camacho C, Coulouris G, Avagyan V, et al.: BLAST+: architecture and 
applications. BMC Bioinformatics. 2009; 10: 421.  
PubMed Abstract | Publisher Full Text | Free Full Text 

21.	 Goldsmith CS, Miller SE: Modern uses of electron microscopy for detection of 
viruses. Clin Microbiol Rev. 2009; 22(4): 552–63.  
PubMed Abstract | Publisher Full Text | Free Full Text 

22.	 Zhou J, Lyaku J, Fredrickson RA, et al.: Improved detection of bovine 

herpesvirus 1 in artificially infected bovine semen by protein amplification.  
J Virol Methods. 1999; 79(2): 181–9.  
PubMed Abstract | Publisher Full Text 

23.	 Ladin BF, Blankenship ML, Ben-Porat T: Replication of herpesvirus DNA. V. 
Maturation of concatemeric DNA of pseudorabies virus to genome length is 
related to capsid formation. J Virol. 1980; 33(3): 1151–64.  
PubMed Abstract | Free Full Text 

24.	 Tandon R, Mocarski ES, Conway JF: The A, B, Cs of herpesvirus capsids. 
Viruses. 2015; 7(3): 899–914.  
PubMed Abstract | Publisher Full Text | Free Full Text 

25.	 Flint J, Racaniello VR, Rall GF, et al.: Principles of Virology. 4th ed. Washington, 
DC.: American Society for Microbiology. 2015.  
Publisher Full Text 

26.	 Swenson CL, Gardner K, Arnoczky SP: Infectious feline herpesvirus detected in 
distant bone and tendon following mucosal inoculation of specific pathogen-
free cats. Vet Microbiol. 2012; 160(3–4): 484–7.  
PubMed Abstract | Publisher Full Text 

27.	 Cao Y, Liu Y, Liu W, et al.: Bridging tendon defects using autologous tenocyte 
engineered tendon in a hen model. Plast Reconstr Surg. 2002; 110(5): 1280–9. 
PubMed Abstract 

28.	 Klevjer-Anderson P, Cheevers WP, Crawford TB: Characterization of the infection 
of equine fibroblasts by equine infectious anemia virus. Arch Virol. 1979; 
60(3–4): 279–89.  
PubMed Abstract | Publisher Full Text 

29.	 Stulberg CS, Schapira R: Virus growth in tissue culture fibroblasts. I. Influenza 
A and herpes simplex viruses. J Immunol. 1953; 70(1): 51–9.  
PubMed Abstract 

30.	 Zeng Q, Han J, Zhao D, et al.: Protection of adenovirus from neutralizing 
antibody by cationic PEG derivative ionically linked to adenovirus. Int J 
Nanomedicine. 2012; 7: 985–97.  
PubMed Abstract | Publisher Full Text | Free Full Text 

31.	 Kniazeff AJ, Wopschall LJ, Hopps HE, et al.: Detection of bovine viruses in fetal 
bovine serum used in cell culture. In Vitro. 1975; 11(6): 400–403.  
PubMed Abstract | Publisher Full Text 

32.	 Yanagi M, Bukh J, Emerson SU, et al.: Contamination of commercially available 
fetal bovine sera with bovine viral diarrhea virus genomes: implications for the 
study of hepatitis C virus in cell cultures. J Infect Dis. 1996; 174(6): 1324–1327. 
PubMed Abstract | Publisher Full Text 

33.	 Ryan J: Understanding and Managing Cell Culture Contamination. Corning 
Incorporated: USA. 2008; 24.  
Reference Source

34.	 Brake F, Studdert MJ: Molecular epidemiology and pathogenesis of ruminant 
herpesviruses including bovine, buffalo and caprine herpesviruses l and 
bovine encephalitis herpesvirus. Aust Vet J. 1985; 62(10): 331–4.  
PubMed Abstract | Publisher Full Text 

35.	 Walter J, Seeh C, Fey K, et al.: Clinical observations and management 
of a severe equine herpesvirus type 1 outbreak with abortion and 
encephalomyelitis. Acta Vet Scand. 2013; 55: 19.  
PubMed Abstract | Publisher Full Text | Free Full Text 

36.	 Pusterla N, Hussey GS: Equine herpesvirus 1 myeloencephalopathy. Vet Clin 
North Am Equine Pract. 2014; 30(3): 489–506.  
PubMed Abstract | Publisher Full Text 

37.	 Peffers M: “Identification of EHV2 in Equine Tissue Enginered Tendon.” Open 
Science Framework. 2017.  
Data Source

Page 12 of 12

Wellcome Open Research 2017, null:null Last updated: 02 AUG 2017

http://www.ncbi.nlm.nih.gov/pubmed/23740984
http://dx.doi.org/10.1128/JVI.00340-13
http://www.ncbi.nlm.nih.gov/pmc/articles/3754044
http://www.ncbi.nlm.nih.gov/pubmed/25877997
http://dx.doi.org/10.1002/jor.22891
http://www.ncbi.nlm.nih.gov/pmc/articles/4657492
http://www.ncbi.nlm.nih.gov/pubmed/27080496
http://dx.doi.org/10.1002/pmic.201500459
http://www.ncbi.nlm.nih.gov/pmc/articles/5132062
http://www.ncbi.nlm.nih.gov/pubmed/22930834
http://dx.doi.org/10.1038/nmeth.2089
http://www.ncbi.nlm.nih.gov/pubmed/27533049
http://dx.doi.org/10.1371/journal.pone.0160517
http://www.ncbi.nlm.nih.gov/pmc/articles/4988628
http://www.ncbi.nlm.nih.gov/pubmed/25260700
http://dx.doi.org/10.1093/bioinformatics/btu638
http://www.ncbi.nlm.nih.gov/pmc/articles/4287950
http://www.ncbi.nlm.nih.gov/pubmed/25751142
http://dx.doi.org/10.1038/nmeth.3317
http://www.ncbi.nlm.nih.gov/pmc/articles/4655817
http://www.ncbi.nlm.nih.gov/pubmed/9199938
http://dx.doi.org/10.1101/gr.7.6.649
http://www.ncbi.nlm.nih.gov/pmc/articles/310664
http://www.ncbi.nlm.nih.gov/pubmed/4911884
http://dx.doi.org/10.1039/AN9709500596
http://www.ncbi.nlm.nih.gov/pubmed/17507487
http://dx.doi.org/10.1128/JVI.00255-07
http://www.ncbi.nlm.nih.gov/pmc/articles/1951306
http://www.ncbi.nlm.nih.gov/pubmed/8784566
http://www.ncbi.nlm.nih.gov/pmc/articles/229091
http://www.ncbi.nlm.nih.gov/pubmed/21572440
http://dx.doi.org/10.1038/nbt.1883
http://www.ncbi.nlm.nih.gov/pmc/articles/3571712
http://www.ncbi.nlm.nih.gov/pubmed/20003500
http://dx.doi.org/10.1186/1471-2105-10-421
http://www.ncbi.nlm.nih.gov/pmc/articles/2803857
http://www.ncbi.nlm.nih.gov/pubmed/19822888
http://dx.doi.org/10.1128/CMR.00027-09
http://www.ncbi.nlm.nih.gov/pmc/articles/2772359
http://www.ncbi.nlm.nih.gov/pubmed/10381088
http://dx.doi.org/10.1016/S0166-0934(99)00025-7
http://www.ncbi.nlm.nih.gov/pubmed/6245265
http://www.ncbi.nlm.nih.gov/pmc/articles/288648
http://www.ncbi.nlm.nih.gov/pubmed/25730559
http://dx.doi.org/10.3390/v7030899
http://www.ncbi.nlm.nih.gov/pmc/articles/4379554
http://dx.doi.org/10.1128/9781555819521
http://www.ncbi.nlm.nih.gov/pubmed/22795772
http://dx.doi.org/10.1016/j.vetmic.2012.06.028
http://www.ncbi.nlm.nih.gov/pubmed/12360068
http://www.ncbi.nlm.nih.gov/pubmed/228638
http://dx.doi.org/10.1007/BF01317499
http://www.ncbi.nlm.nih.gov/pubmed/13035088
http://www.ncbi.nlm.nih.gov/pubmed/22412299
http://dx.doi.org/10.2147/IJN.S27526
http://www.ncbi.nlm.nih.gov/pmc/articles/3299205
http://www.ncbi.nlm.nih.gov/pubmed/172434
http://dx.doi.org/10.1007/BF02616377
http://www.ncbi.nlm.nih.gov/pubmed/8940226
http://dx.doi.org/10.1093/infdis/174.6.1324
http://www.level.com.tw/html/ezcatfiles/vipweb20/img/img/20297/contamination-COR.pdf
http://www.ncbi.nlm.nih.gov/pubmed/3002311
http://dx.doi.org/10.1111/j.1751-0813.1985.tb07652.x
http://www.ncbi.nlm.nih.gov/pubmed/23497661
http://dx.doi.org/10.1186/1751-0147-55-19
http://www.ncbi.nlm.nih.gov/pmc/articles/3630004
http://www.ncbi.nlm.nih.gov/pubmed/25300635
http://dx.doi.org/10.1016/j.cveq.2014.08.006
http://dx.doi.org/10.17605/OSF.IO/WYPKQ

