
 
 

 
 
 
 

 
 
 

 
 
 
 

 

Towards a Pharmacology Intervention for 
Malignant Catarrhal Fever in Cattle 

 
 
 
 
 
 
 
 
 
 
 
 
 

Thesis submitted in accordance with the requirements of the University of 

Liverpool for the degree of Doctor in Philosophy 

By 

Ishtar Adana Mohammed Alethari  

 
 

2019 



I 
 

 
 

Author’s Declaration 

 
 

Apart from the help and advice acknowledged, this thesis represents the unaided work of the 
author 

 
 
 
 
 
 
 

……………………………………………… 
Ishtar Adnan Mohammed Alethari 

 
 

2019 
 
 
 
 
 
 
 

This research was carried out in the Department of Infection Biology, University of Liverpool. 

 

 

 

 

 

 

 

 

 



II 
 

 

Supervisor’s Certification 

We certify that the thesis entitled “Towards a Pharmacology Intervention for Malignant 

Catarrhal Fever in Cattle" was prepared under our supervision at the Department of Infection 

Biology, Institute of Infection and Global Health, Faculty of Health and Life Sciences, University 

of Liverpool as partial fulfilment of the requirements of University of the Liverpool for the 

degree of Doctor in Philosophy. 

 

 

 

Signature: 

Name: Prof James Stewart 

Title: Chair of Molecular Virology 

Address: Department of Infection Biology 

Institute of Infection and Global Health 

University of Liverpool 

Liverpool Science Park IC2 

146 Brownlow Hill 

Liverpool L3 5RF 

E-mail: j.p.stewart@liverpool.ac.uk 

Date: 

 

 



III 
 

Acknowledgements 

 

First and foremost, I would like to thank Allah for his-never ending grace, mercy and 

provision during what ended up being one of the toughest times of my life. Second, I would 

like to express my sincere gratitude to my advisor Prof James Stewart for the continuous 

support of my PhD study, for his patience, motivation, and immense knowledge. His guidance 

helped me in all the time of research and writing of this thesis. I could not have imagined 

having a better advisor and mentor for my PhD study. My sincere thanks also goes to Dr Vivien 

Bubb from Institute of Translational Medicine who worked actively to provide me with the 

protected academic time to pursue this goal and for her brilliance help in writing. 

Next I would like to thank my truly outstanding director Dr Neil Black for his leadership 

and support to complete my study.  Also I would like to thank my brilliant and truly friend 

Sanaria for her amazing and lovely friendship. I would like to thank my colleagues for their 

wonderful collaboration. You support me greatly and were always willing to help me. I was 

always a pleasure to coming to work every day with such lovely and engaging people. Also I 

would like to thank Dr Stuart Armstrong for his proteomic genius and guidance. A big thank to 

Dr Jordan, the postdoc in our team for his help in colocalisation analysis, thesis formatting and 

for his support. I will not forget Dr Janine Coombes who help me too much in confocal images 

and spend lots of her time to help, all thanks to her. I am also grateful to the lovely technical 

team in the Infection Biology of IGH, at the University of Liverpool, Mrs Catherine Hartley, Mrs 

Catherine Glover and Dr Jennifer Mullin who always provided me extensive personal and 

professional guidance and taught me a great deal about both scientific research and life in 

general, thanks for everything.  I would like to thank my colleague Mohammed for his support. 



IV 
 

Again bid thanks to Dr Isabel who support me and help my emotionally and practically. Big 

thank to Dr Nadine for her help and guidance.  

Many thanks to my sponsor, University of Al-Qadisiyah, Ministry of Higher Education 

and Scientific Research in Iraq (MOHESR) and the Iraqi Cultural Attaché, London for providing 

this opportunity and supporting me financially and enabling me to obtain this degree. 

A very special gratitude goes to my family; my mother, my brother and my sisters for 

their emotional support, love and guidance which was with me in my life all the time. I would 

also like to send a special thanks to the person who wished to see me I take this degree, who 

is the most important part in my education, my deceased father. Lastly, a huge thanks to my 

lovely husband Zaki who grateful support me and help me to pass this hard time and to reach 

to this point, also I would like to thank my three flowers my lovely daughters; Shams, Shahad 

and Fatima to be in my life.   

 

 

 

 

 

 

 



V 
 

Abstract 

Malignant catarrhal fever (MCF) is a frequently lethal disease, which is 

characterised by high fever, depression, profuse nasal discharge, corneal opacity, as well 

as hyperaemic to ulcerative lesions in the mucosa of the respiratory tract. This leads to 

ocular and nasal discharge, diarrhoea.  Severe inflammation of the conjunctival, oral, and 

nasal mucosa is accompanied by necrosis in the oral and nasal cavities sometimes 

extending into the oesophagus and trachea. MCF in general is sporadic, affecting individual 

animals within a group, but occasionally can cause high losses in the herd.  

MCF in domestic cattle is caused by two γ-herpesviruses namely ovine herpesvirus 

2 (OvHV-2) and alcelaphine herpesvirus 1 (AlHV-1).  AlHV-1 is endemic in wildebeest 

(Connochaetes taurinus) in Africa where it causes wildebeest associated malignant 

catarrhal fever (WA-MCF). Whereas OvHV-2 is endemic in sheep populations worldwide 

and causes sheep associated malignant catarrhal fever (SA-MCF).  

MCF is characterized by marked T cell hyperplasia and proliferation of unrestricted 

cytotoxic large granular lymphocytes (LGLs) which leads to necrosis of infiltrated tissues. 

These LGLs can be grown out in culture and contain OvHV-2 in a latent form. Little is known 

about the underlying molecular basis of MCF pathogenesis or what controls the differences 

in clinical outcome of infection in two closely-related host species. 

The overall aim of this project was to understand better the interactions between 

OvHV-2 and cellular proteins during latency to identify possible druggable targets that 

could be used for MCF therapy.  All γ-herpesviruses express a protein during latency called 

latency-associated nuclear antigen (LANA). This protein in other herpesviruses is a master-

regulator of virus latency. It tethers virus genome to host chromatin and ensures genome 
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replication during latency as well as interacting with cellular proteins to control cell 

replication and also innate defence mechanisms.  OvHV-2 has been shown to encode and 

express a LANA protein (oLANA) during latency in LGLs. The specific aim of this project was 

to determine the interactions of oLANA with cellular proteins which would give insight into 

pathogenesis as well as targets for therapeutic intervention. To do this, co-

immunoprecipitatioin in HEK 293T cells was combined with label-free quantitative mass 

spectrometry to identify binding partners. A GFP-tagged recombinant oLANA lacking the 

central repetitive domain (GFP-oLANAΔ) was used as bait with GFP-trap technology to pull 

down cellular partners and then co-precipitants were analysed by mass spectrometry. 

Eight cellular proteins were identified as potential binding partners in this process. Of 

these, only histone H1 was validated by co immunoprecipitation and western blotting. 

While two others CCDC12 and Rad50 were shown to co-localise with oLANA by 

immunofluorescence and confocal microscopy. These results confirm, as other LANAs, a 

chromatin binding role for oLANA. They also give potential cellular targets for future 

investigation and therapeutic intervention. 
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1.1 Herpesviridae  

The first description of the word ‘herpes’ was given about 2600 years ago. The family 

name is derived from the Greek word ‘herpein’, meaning ‘to creep’, referring to the latent, 

recurring infections typical of this group of viruses (Mettenleiter and Sobrino, 2008). The 

Herpesviridae family has a large number of viruses which generally share a common 

structure, with icosahedral capsid symmetry and a relatively large double-stranded linear 

DNA genome encoding 100–200 genes. Herpesviruses are a group of double-stranded DNA 

viruses which belong to the main order Herpesvirales, which includes three main 

subfamilies: Alloherpesviridae, Herpesviridae and Malacoherpesviridae. These are widely 

distributed in the animal kingdom (Davison, 2010).  

The Herpesviridae family consists of the herpesviruses of mammals, birds and reptiles. 

These viruses are widespread in vertebrate species, have a strong effect on humans and 

almost all animal species, and cause serious diseases, which have effects on the organisms’ 

health and epidemiological condition. These viruses also have economic importance in 

food production. Herpesviruses are usually hosted in a species-specific way by their natural 

hosts (McGeoch et al., 2006). The Herpesviridae family can cause a range of clinical diseases 

in different species, including infectious bovine rhinotracheitis (IBR), a major respiratory 

disease of cattle, and the fatal lymphoproliferative disease, malignant catarrhal fever 

(MCF) of cattle (Ababneh et al., 2014). 
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1.1.1 Structure and biological features of herpesviruses 

1.1.1.1 Structure of herpesviruses 

The most important biological feature of herpesviruses is the distinct morphology of 

the virion (virus particle); it is 120–300 nm in diameter and is composed of a unique four-

layered structure: the core, the capsid, the tegument and the envelope. The core contains 

the large linear double-stranded DNA which integrates into the host cell chromosome; this 

is enclosed by an icosahedral capsid about 120–230 kb in size, which includes 162 

capsomers (capsid subunits) and which encloses the viral genome. This capsid is 

surrounded by an amorphous globular material layer (proteinaceous matrix) called the 

tegument, which is further surrounded by a lipid bilayer called the envelope, containing 

viral glycoprotein spikes (Maclachlan et al., 2016) (Figure 1-1). The genome of 

herpesviruses is complex, with unique and repeated regions of DNA. 

The herpesvirus DNA is double-stranded and linear, but it is circularised as an episome 

during latency, and this episome remains inside the nucleus of the host cells. It maintains 

itself by tethering into the host chromosome during genome segregation into daughter 

cells during cell division (Stenglein et al., 2009). 
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Figure 1- 1. Schematic diagram of Herpesviridae virion. 

Virions are enveloped, spherical to pleomorphic, 150-200 nm in diameter, T=16 icosahedral 

symmetry. Capsid consists of 162 capsomers and is surrounded by an amorphous 

tegument. Glycoprotein complexes are embedded in the lipid envelope 

(https://viralzone.expasy.org/176?outline=all_by_species) 

 

1.1.1.2 Biological features of herpesviruses  

Herpesviridae family members share some common features, including the following. 

First, they share a complex double-stranded DNA genome encoding a number of enzymes 

involved in protein processing, DNA synthesis, and nucleic acid metabolism, which varies 

between different members. Secondly, DNA synthesis, capsid formation and virus gene 

transcription take place in the nucleus of the host cell. Third, viruses require a distraction 

method in the host cell to complete the viral replicative processes, which are usually 

characterised by lysis of the infected host cell. Also, each virus has its own host range, 

which may vary considerably both in nature and in the laboratory. And finally, the virus is 

able to persist in a latent form within the host to establish a long-term latent host infection 

(Christian et al., 2012). During latent infection, the virus shuts down its activity inside 

https://viralzone.expasy.org/176?outline=all_by_species
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infected cells, thus evading the immune system and producing progeny virus DNA which 

remains within the host cell as episomal DNA (Pellet and Roizman, 2013). 

These characteristics give herpesviruses the ability to place/maintain their main 

reservoir in latently infected organisms. Herpesviridae family members are distributed in 

nature in such a way that one or more herpesviruses can affect one or more species (Pellet 

and Roizman, 2013). 

1.1.1.3 Herpesvirus genomes 

Herpesvirus DNA genomes are composed of double-stranded DNA organised in a 

number of open reading frames (ORFs) which encode a range of from 70 to more than 200 

proteins. Herpesviridae family members have repeated sequences which are organised 

proportionally according to the genera of the herpesviruses. Each virus has a unique long 

and short sequence region. In gamma-herpesviruses such as Kaposi’s sarcoma herpesvirus 

(KSHV), the DNA genome has a symmetric terminal sequence at both ends, while in other 

members such as EBV, unrelated repeat sequences (internal repeats) are present within 

the genome (Modrow et al., 2013). 

1.1.2 Herpesvirus classification 

The Herpesviridae family is divided into three distinct subfamilies according to their 

genome sequence arrangement, their host-replication behaviour, their biological 

properties and similarities in the functions of important viral proteins (Davison et al., 

2009a; Davison, 2010). The three subfamilies are, Alphaherpesvirinae, Betaherpesvirinae 

and Gammaherpesvirinae, according to their common genetic and biological properties 

and an analysis of their double-strand DNA (Pellet and Roizman, 2013). These are shown in 
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Table (1-1) as well as in Figure (1-2). Many members of the Alphaherpesvirinae and the 

Gammaherpesvirinae are of very great importance in veterinary medicine. 

The most recent classification of herpesviruses has been updated, and its usage is 

recommended by the International Committee on Taxonomy of Viruses; 

http://www.ictvonline.org. 

 

        

Figure 1- 2. A Phylogenetic tree for the DNA polymerase gene proteins of representative 

alpha-, beta-, and gammaherpesviruses.  

Bootstrap values of greater than 50 are shown, and the branch lengths represent relative 

genetic distances (Kleiboeker et al., 2002).Bootstrapping values indicate how many times 

the same branch was observed when repeating the phylogenetic reconstruction on a re-

sampled set of data 

http://www.ictvonline.org/
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Namea Acronymb Common namec 

Order        Herpesvirales   

Family       Herpesviridae   

Subfamily: 

I. Alphaherpesvirinae 

1- Iltovirus Genus:   

Gallid alphaherpesvirus 1 GaHV1 Infectious laryngotracheitis virus 

Psittacid alphaherpesvirus 1 PsHV1 Pacheco’s disease virus 

2- Mardivirus Genus:   

Columbid alphaherpesvirus 1 CoHV1 None Pigeon herpesvirus 

Gallid alphaherpesvirus 2 GaHV2 Marek’s disease virus type 1 

Gallid alphaherpesvirus 3 GaHV3 Marek’s disease virus type 2 

Meleagrid alphaherpesvirus 1 MeHV1 Turkey herpesvirus 

3- Simplexvirus Genus:   

Ateline alphaherpesvirus 1 AtHV1 Spider monkey herpesvirus 

Bovine alphaherpesvirus 2 BoHV2 Bovine mammillitis virus 

Cercopithecine alphaherpesvirus 2 CeHV2 SA8 

Human alphaherpesvirus 1 HHV1 Herpes simplex virus type 1 

Human alphaherpesvirus 2 HHV2 Herpes simplex virus type 2 

Macacine alphaherpesvirus 1 McHV1 B-virus 

Macropodid herpesvirus 1 MaHV1 Parma wallaby herpesvirus 

Macropodid herpesvirus 2 MaHV2 Dorcopsis wallaby herpesvirus 

Papiine herpesvirus 2 PaHV2 Herpesvirus papio 2 

Saimiriine herpesvirus 1 SaHV1 Marmoset herpesvirus 

4- Varicellovirus Genus:   

Bovine alphaherpesvirus 1 BoHV1 Infectious bovine rhinotracheitis 
virus 

Bovine alphaherpesvirus 5 BoHV5 Bovine encephalitis herpesvirus 

Bubaline alphaherpesvirus 1 BuHV1 Water buffalo herpesvirus 

Canid alphaherpesvirus 1 CaHV1 Canine herpesvirus 

Caprine alphaherpesvirus 1 CpHV1 Goat herpesvirus 
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Cercopithecine alphaherpesvirus 9 CeHV9 Simian varicella virus 

Cervid alphaherpesvirus 1 CvHV1 Red deer herpesvirus 

Cervid alphaherpesvirus 2 CvHV2 Reindeer herpesvirus 

Equid alphaherpesvirus 1 EHV1 Equine abortion virus 

Equid herpesvirus 3 EHV3 Equine coital exanthema virus 

Equid herpesvirus 4 EHV4 Equine rhinopneumonitis virus 

Equid herpesvirus 8 EHV8 Asinine herpesvirus 3 

Equid herpesvirus 9 EHV9 Gazelle herpesvirus 

Felid herpesvirus 1 FeHV1 Feline rhinotracheitis virus 

Human herpesvirus 3e HHV3 Varicella-zoster virus 

Phocid herpesvirus 1 PhoHV1 Harbour seal herpesvirus 

Suid herpesvirus 1 SuHV1 Pseudorabies virus 

5- Unassigned Genus:   

Chelonid alphaherpesvirus 5 ChHV5 Chelonid fibropapilloma-
associated 

Chelonid herpesvirus 6 ChHV6 Lung–eye–trachea disease-
associated virus 

Tentative species in the genus 
Equid herpesvirus 6 

EHV6 Asinine herpesvirus 1 

I. Betaherpesvirinae 

1- Cytomegalovirus Genus:   

Cercopithecine betaherpesvirus 5 5 CeHV5 African green monkey 
cytomegalovirus 

Human betaherpesvirus 5 HHV5 Human cytomegalovirus 

Macacine betaherpesvirus 3 McHV3 Rhesus cytomegalovirus 

Panine betaherpesvirus 2 PnHV2 Chimpanzee cytomegalovirus 

Tentative species in the genus 
Aotine betaherpesvirus 1 

AoHV1 Herpesvirus aotus type 1 

Aotine betaherpesvirus 3 AoHV3 Herpesvirus aotus type 3 

2- Muromegalovirus Genus:   

Murid betaherpesvirus 1 MuHV1 Mouse cytomegalovirus 

Murid betaherpesvirus 2 MuHV2 Rat cytomegalovirus 

3- Proboscivirus Genus:   

Elephantid betaherpesvirus ElHV1 Elephant endotheliotropic 
herpesvirus 
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Unassigned species in the subfamily Caviid 
herpesvirus 2 

CavHV2 Guinea pig cytomegalovirus 

Suid herpesvirus 2 SuHV2 Pig cytomegalovirus 

Tupaiid herpesvirus 1 1 TuHV1 Tree shrew herpesvirus 

4- Roseolovirus Genus:   

Human betaherpesvirus 7 HHV7 Human herpesvirus 7 

Human betaherpesvirus 6 HHV6 Human herpesvirus 6 

5- Unassigned Genus:   

Caviid betaherpesvirus 2 CavHV2 Guinea pig cytomegalovirus 

Suid betaherpesvirus 2 SuHV2 Pig cytomegalovirus 

Tupaiid betaherpesvirus 1 TuHV1 Tree shrew herpesvirus 

II. Gammaherpesvirinae 

1- Lymphocryptovirus Genus:   

Callitrichine gammaherpesvirus 3 CalHV3 Marmoset lymphocryptovirus 

Cercopithecine gammaherpesvirus 14 CeHV14 African green monkey EBV-like 
virus 

Gorilline gammaherpesvirus 1 GoHV1 3 Gorilla herpesvirus 

Human gammaherpesvirus 4 HHV4 Epstein-Barr virus 

Macacine herpesvirus 4 McHV4 Rhesus lymphocryptovirus 

Panine gammaherpesvirus 1 PnHV1 Herpesvirus pan 

Papiine gammaherpesvirus 1 PaHV1 Herpesvirus papio 

Pongine gammaherpesvirus 2 PoHV2 Orangutan herpesvirus 

2- Rhadinovirus Genus:   

Ateline herpesvirus 2 AtHV2 Herpesvirus ateles strain 810 

Ateline herpesvirus 3 AtHV3 Herpesvirus ateles strain 73 

Bovine herpesvirus 4 BoHV4 Movar virus 

Human herpesvirus 8 HHV8 Kaposi’s sarcoma-associated 
herpesvirus 

Macacine herpesvirus 5 McHV5 Rhesus rhadinovirus 

Murid herpesvirus 4 MuHV4 Murine gammaherpesvirus 68 

Saimiriine herpesvirus 2 SaHV2 Herpesvirus saimiri 

Tentative species in the genus 
Leporid herpesvirus 1 

Tentative 
1 LeHV1 

Cottontail rabbit herpesvirus 
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Leporid herpesvirus 2 LeHV2 Herpesvirus cuniculi 

Leporid herpesvirus 3 3 LeHV3 Herpesvirus sylvilagus 

Marmodid herpesvirus 1 MarHV1 Woodchuck herpesvirus 

3- Macavirus Genus:   

Alcelaphine herpesvirus 1 AlHV1 Malignant catarrhal fever virus 

Alcelaphine herpesvirus 2 AlHV2 Hartebeest malignant catarrhal 
fever virus 

Bovine herpesvirus 6 BoHV6 Bovine lymphotropic 
herpesvirus 

Caprine herpesvirus 2 CpHV2 Caprine herpesvirus 2 

Hippotragine herpesvirus 1 HiHV1 Roan antelope herpesvirus 

Ovine herpesvirus 2 OvHV2 Sheep-associated malignant 
catarrhal fever virus 

Suid herpesvirus 3 SuHV3 Porcine lymphotropic 
herpesvirus 1 

Suid herpesvirus 4 SuHV4 Porcine lymphotropic 
herpesvirus 2 

Suid herpesvirus 5 SuHV5 Porcine lymphotropic 
herpesvirus 3 

4- Percavirus Genus:   

Equid gammaherpesvirus 2 EHV2 Equine herpesvirus 2 

Equid gammaherpesvirus 5 EHV5 Equine herpesvirus 5 

Mustelid gammaherpesvirus 1 MusHV1 Badger herpesvirus 

Unassigned species in the subfamily 
Equid herpesvirus 7 

EHV7 Asinine herpesvirus 2 

Phocid herpesvirus 2 PhoHV2 Phocid herpesvirus 2 

Saguinine herpesvirus 1 1 SgHV1 Callitrichine herpesvirus 1 
Herpesvirus saguinus 

Unassigned species in the family 
Iguanid herpesvirus 2 

2 IgHV2 Iguana herpesvirus 

Unassigned viruses in the family 
Acciptrid herpesvirus 1 

1 AcHV1 Bald eagle herpesvirus 

Anatid herpesvirus 1 1 AnHV1 Duck plague herpesvirus 

Boid herpesvirus 1 BoiHV1 Boa herpesvirus 

Callitrichine herpesvirus 2 CalHV2 Marmoset cytomegalovirus 

Caviid herpesvirus 1 CavHV1 Guinea pig herpesvirus 

Caviid herpesvirus 3 CavHV3 Guinea pig herpesvirus 3 
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Cebine herpesvirus 1 CbHV1 Capuchin herpesvirus AL-5 

Cebine herpesvirus 2 2 CbHV2 Capuchin herpesvirus AP-18 

Cercopithecine herpesvirus 3 CeHV3 SA6 

Cercopithecine herpesvirus 4 CeHV4 SA15 

Chelonid herpesvirus 1 ChHV1 Grey patch disease-associated 
virus 

Chelonid herpesvirus 2 ChHV2 Pacific pond turtle herpesvirus 

Chelonid herpesvirus 3 ChHV3 Painted turtle herpesvirus 

Chelonid herpesvirus 4 ChHV4 Argentine turtle herpesvirus 

Ciconiid herpesvirus 1 CiHV1 Black stork herpesvirus 

Cricetid herpesvirus 1 CrHV1 Hamster herpesvirus 

Elapid herpesvirus 1 EpHV1 Indian cobra herpesvirus 

Erinaceid herpesvirus 1 ErHV1 European hedgehog herpesvirus 

Falconid herpesvirus 1 FaHV1 Falcon inclusion body disease 
virus 

Gruid herpesvirus 1 GrHV1 Crane herpesvirus 

Iguanid herpesvirus 1 IgHV1 Green iguana herpesvirus 

Lacertid herpesvirus 1 LaHV1 Green lizard herpesvirus 

Macacine herpesvirus 6 McHV6 Rhesus leukocyte-associated 
herpesvirus strain 1 

Macacine herpesvirus 7 McHV7 Herpesvirus cyclopis 

Murid herpesvirus 3 MuHV3 Mouse thymic herpesvirus 

Murid herpesvirus 5 MuHV5 Field mouse herpesvirus 

Murid herpesvirus 6 MuHV6 Sand rat nuclear inclusion agent 

Ovine herpesvirus 1 OvHV1 Sheep pulmonary 
adenomatosis-associated 
Herpesvirus 

Perdicid herpesvirus 1 PdHV1 Bobwhite quail herpesvirus 

Phalacrocoracid herpesvirus 1 PhHV1 Cormorant herpesvirus 

Procyonid herpesvirus 1 PrHV1 Kinkajou herpesvirus 

Sciurid herpesvirus 1 ScHV1 Ground squirrel 
cytomegalovirus 

Sciurid herpesvirus 2 ScHV2 Ground squirrel herpesvirus 

Sphenicid herpesvirus 1 SpHV1 Black footed penguin 
herpesvirus 
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Table 1- 1. The order of Herpesviridae 

a: Species of the family Herpesviridae (ICTV; http://www. ictvonline.org). Formal 
taxonomic names are in italicized font.  
b: Acronyms apply to viruses, not species, and have no taxonomic standing. A hyphen may 
be included prior to the number 
c:  Where the name has changed, the former name is given. Where the name is new, the 
word “None” is given. Where the name has not changed, no information is given 
               

Currently, a great many types of viruses have been identified, and it seems that this 

number will increase further with the discovery of new species. Herpesviridae family has 

at least nine human viruses and 28 viruses of animal species which have importance in 

medical and veterinary practice. 

1.1.2.1 Alphaherpesvirinae 

The Alphaherpesvirinae subfamily is characterised by its ability to infect a wide 

(variable) range of hosts, including mammals (human and animal), birds and reptiles. The 

family’s members are characterised by rapid growth and proliferation in cell cultures, short 

replicative cycles in a host (18 h) and the ability to infect different types of cells with 

efficient lysis of the infected cell.  This ability includes such things as fibroblasts in culture, 

epithelial cells and the establishment and maintenance of latent infections in sensory 

ganglia (Pellet and Roizman, 2013). Members of this subfamily are often referred to as 

neurotropic herpesviruses (which infect nervous system tissue). The most well-known 

human herpesviruses for this subfamily are the herpes simplex virus 1 (HSV-1), the herpes 

simplex virus 2 (HSV-2) and the varicella-zoster virus. However, the most important viruses 

in this subfamily of veterinary medicine are; bovine herpesvirus 2 (BoHV-2) which causes 

lumpy skin disease, bovine herpesvirus 1 (BoHV-1) which causes infectious bovine 

Strigid herpesvirus 1 StHV1 Owl hepatosplenitis virus 



Chapter one                                                                                                                        Introduction 

12 
 

rhinotracheitis in cattle, gallid herpesvirus 2 which causes Marek’s disease in poultry, see 

Table (1-1). 

1.1.2.2 Betaherpesvirinae 

The Betaherpesvirinae subfamily of viruses have slightly different features from 

alphaherpesviruses. They are narrow-spectrum cells (e.g. lymphoid cells and kidney and 

secretory glands), they have a fairly restricted host range and they are slower to replicate 

in cell cultures. Furthermore, unlike alphaherpesviruses, they have a long reproductive 

cycle in the infected host, which often results in the development of a carrier state. The 

infection is established in lymphocytes, secretory glands and the cells of the kidney, as well 

as other cell types. Infected cells then become enlarged (cytomegaly) (Davison, 2010). 

Viruses of this subfamily can establish latency inside immune cells associated with 

monocyte series (Modrow et al., 2013). The human herpesviruses Cytomegalovirus (CMV), 

HHV-6 and HHV-7 are members of this subfamily. 

1.1.2.3 Gammaherpesvirinae 

Viruses of this subfamily have a limited host range. They are lymphotropic, have a 

specific affinity for either T or B lymphocytes (Riaz et al., 2014) and have a predominant 

specificity for lymphoblastoid cells, where they replicate and establish latency. The period 

of the replication cycle is variable according to the virus type. Viruses in this subfamily 

appear to favour the initial establishment of latency, while only a subset support lytic 

replication compared to alpha or beta herpesviruses, which undergo lytic replication 

(Ackermann, 2006). Gammaherpesvirinae include both animal and human viruses such as 

Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV) in humans and 

malignant catarrhal fever in cattle. 
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Gammaherpesviruses share some common features, including the structure of some 

proteins (Ackermann, 2006; McGeoch et al., 2006; Fields et al., 2007). A significant feature 

of gammaherpesviruses is to create a latent infection in the memory of lymphocytes, which 

results in less visible tissue damage (Yin et al., 2003). Generally, a gammaherpesvirus 

infection depends not only on the virus itself but also on the target animal species and the 

type of cell infection. 

The subfamily Gammaherpesvirinae comprises four separate genera. The first is 

Lymphocryptovirus, which to date has been found only in primate hosts. This genus 

includes human herpesvirus 4 (HHV-4), also known as Epstein-Barr virus (EBV), which was 

first found in a lymphoblastoid cell line from a B cell lymphoma in 1964 (Epstein et al., 

1964). The second is Macavirus, which are of veterinary importance and include malignant 

catarrhal fever viruses (MCFVs), which are described in further detail in section (1.2.2) 

below. Third is the genus Percavirus, including Equid herpesvirus 2 (EHV-2) and Equid 

herpesvirus 5 (EHV-5), which were transferred from the genus Rhadinovirus. These viruses 

cause upper respiratory tract disease in horses; latency is established in B cells in the 

respiratory tract and transmission takes place via the respiratory system (Ackermann, 

2006; Ackermann, 2005a). Finally, the fourth is the genus Rhadinovirus, which are found in 

an enormous range of mammals. This group includes human herpesvirus 8 (KSHV), which 

was first found in a Kaposi’s sarcoma in an AIDS patient (Davison et al., 2009b). 

1.1.3 Herpesviruses life cycle 

The herpesviruses life cycle is divided into two different stages in the host: the lytic 

stage and the latent stage (Riaz et al., 2017). A herpesvirus infection begins when the virus 

attaches to the target cell surface and binds to specific host receptors (glycoproteins), 
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initiating viral entry. During virus fusion and entry into the cytoplasm, the virus loses its 

envelope, viral components are liberated and the capsid is translocated into the cell 

nucleus through the nuclear pores. The viral genome can then be injected into the nucleus 

and viral DNA begins a highly controlled cascade of gene expression in three kinetic stages: 

immediate early, early and late. The capsid is then covered with a shell originating from 

the inner nuclear membrane, which is later replaced with a vesicular membrane of the 

trans-Golgi apparatus. This modifies the protein envelope. As a result of this modification, 

the viral particles are enveloped and egress from the host cell membrane by cell-to-cell 

spread and exocytosis, thereby preserving the existence of the viruses in nature (Stenglein 

et al., 2009; Riaz et al., 2017). 

1.1.3.1 Attachment and entry 

Herpesviruses must first attach to host cells in order to enter them. Specific 

glycoproteins (gB, gH and gL) and the binding receptor gD (which determines fusion 

pathways) are present in the viral envelope of herpesviruses. These glycoproteins interact 

with the target molecules present on the host cell membrane and allow the viral capsid 

and tegument proteins to enter the host cell’s cytoplasm (Riaz et al., 2017). Most 

herpesviruses enter a host cell by fusing with the plasma membrane, but some also use the 

endocytic pathway for viral entry (Connolly et al., 2011). After fusion, the virus, which is 

inserted in the host cell membrane, undergoes extensive compositional changes by 

refolding, and starts releasing its contents into the host cell cytoplasm (Stampfer et al., 

2010; Russell et al., 2013). During entry, the outer tegument is released into the cytoplasm, 

while the inner tegument proteins remain associated with the capsid and are transported, 

along with the nucleocapsid, to the nucleus. The virus then initiates the replication 
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mechanism by changing the cellular machinery, either by using the host cell to synthesise 

viral components such as VP16 in HSV-1, by host shut-off components such as SOX in KSHV 

or by immediate early gene activation (Mettenleiter et al., 2006). 

1.1.3.2 The lytic stage of herpesviruses 

The lytic stage involves virus replication and the release of infectious virus particles 

from the infected cell, which can then spread and infect new cells in the host. At this stage 

of infection, there is regular expression of viral genes, genome replication, virion assembly, 

egress and transmission, which results in the establishment of sensory neuronal latency; 

this in turn allows the virus to replicate and causes recrudescent disease whenever the 

immune system is suppressed. The lytic stage starts with transcription of a sequential set 

of genes, including: immediate early genes (IEGs) or α genes, which are involved in 

initiating viral DNA replication and enhancing the expression of later lytic genes; early (E) 

or β genes, which work in DNA replication and control cellular activities such as RNA 

polymerase II; and late (L) or γ lytic products, which are structural proteins and include the 

capsid and glycoproteins incorporated in the viral envelope (Grinde, 2013) (see Figure 1-

3). A number of proteins can be categorised as structural, such as glycoproteins. Non-

structural proteins, however, are necessary for successful replication. Unlike some other 

viruses, herpesviruses have more than one structural glycoprotein embedded in its 

envelope. These glycoproteins play an important role in host cell entry either by 

endocytosis or fusion of plasma membrane (Adler et al., 2017). The common glycoproteins 

found in all herpesviruses are gB, gH, gL and gM that required and sufficient for viral entry 

into host cells. However, Modrow et al. (2013) indicated that some herpesviruses have 

additional unique glycoproteins present in the host cell membrane and/or embedded 
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within the virus envelope. Some glycoproteins, such as gH/gL, are expressed as 

heterodimers, which play an important role in inducing remodelling in host cell fusion 

activity and thus viral internalisation (Spear et al., 2000). Other glycoproteins such as gD 

are also recruited to play specific roles, such as cell tropism specification, receptor binding 

and/or enhancing gH/gL binding (Eisenberg et al., 2012). The new transcribed viral DNA 

will pack into the nucleus of the infected cells to start the viral gene cascade into uninfected 

cells (Mettenleiter et al., 2006). In the end, mature virions fuse with the cell membrane of 

the infected cell and bud into extracellular spaces (Mettenleiter et al., 2006). 

 

 

Figure 1- 3 . Schematic diagram of the lifecycle of a typical herpesvirus. (Riaz et al., 2017) 
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1.1.3.3 The latent stage of herpesviruses 

Gammaherpesviruses are known to be capable of true latency which is the ability of 

a pathogenic virus to lie dormant (latent) within a cell in a hidden or  inactive phase,  

denoted as part of the viral life cycle, which is an important feature of infection and disease 

caused by many herpesviruses (O'Toole et al., 1997). This persistent infection is present 

without causing clinically significant damage to the carrier animal; however, the virus can 

reactivate the lytic mode, resulting in the transmission of infectious viruses—for example, 

to other cattle and susceptible species (Baxter et al., 1997). This latency stage is a unique 

feature of herpesviruses; it predominantly affects the T cells and endothelial cells of the 

host species (Barton et al., 2011). Infected cells retain the virus from one generation to the 

next and can also convert the infected cells into latent infection cells. During a latent 

infection, the entire viral genome is harboured in a circular closed covalent form called an 

episome in the nucleus of the host cell: there is limited expression of a small subset of viral 

genes or no gene expression, few numbers of viral antigens are produced and no viral 

replication occurs (Riaz et al., 2017). The latent virus is able to reactivate following a 

number of stimuli, including cellular stress, exposure to UV and immunosuppression or 

tissue damage, after which viral replication and new infectious virion production occurs 

(Doboro et al., 2016). α-viruses establish latent infections in neurons, while γ-herpesviruses 

are markedly lymphotropic; however, the β-herpesviruses are more variable (Ackermann, 

2006). Herpesviruses establish latency using different mechanisms depending on the open 

reading frames (ORFs). In certain viruses, unique ORFs are expressed, such as Epstein-Barr 

nuclear antigen (EBNA1) (Sivachandran et al., 2012) in EBV, or latency-associated nuclear 

antigen (LANA) in KSHV (Hu et al., 2002). These genes maintain their latent form by 
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tethering the virus episome to the host chromosome during mitosis in cell division to evade 

the immune system (Leight and Sugden, 2000; Grundhoff and Ganem, 2003). 

Innate and adaptive (Lymphocytes represent the most important effector cells of the 

adaptive immune system) immunity play important protective roles by combating 

herpesvirus infection. The γ-herpesviruses actively antagonize the innate and adaptive 

antiviral responses, thereby efficiently establishing latent or persistent infections, during 

virus entry. Sensor molecules called toll-like receptors (TLRs) at the cell surface are 

expressed. These sensors recognize molecules characteristic of pathogens, including their 

DNA genomes. Although the cytosolic DNA-sensing pathway is activated during viral 

infection but herpesviruses have developed multiple mechanisms to attenuate host 

antiviral machinery and to facilitate viral infection and replication including suppression of 

MHC-I- and MHC-II-restricted antigen presentation, impairment cell functions, activation 

of viral-specific regulatory T cells, and induction of inhibitory cytokines, for instance HSV-1 

able to evade the antiviral responses through DNA-sensor-mediated at both the 

recognition level through multiple DNA sensors and innate immune signalling through the 

STING-TBK1-IRF3 or NF-κB axis , (Figure 1-4) (Hu and Usherwood, 2014; Zheng, 2018). 
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Figure 1- 4. Evasion of the DNA-sensor-mediated IFN-I signal pathway by HSV-1.  

Cytosolic DNA sensors, such as cGAS, IFI16, DDX41, and DAI, recognize double-stranded 

DNA in the cytosol and trigger IFN-I production through transmission of a series of signals. 

HSV-1 can targeted the DNA-sensor-mediated IFN-I signal pathway through multiple steps, 

including both DNA-sensor-mediated viral recognition and subsequent signalling. Solid 

lines indicate confirmed interactions between host molecules and HSV-1 proteins. Dashed 

lines indicate uncertain interactions. CBP, CREB-binding protein; P, phosphate; Ub, 

ubiquitin (Zheng, 2018). 

 

 cGAS is the main cytosolic DNA sensor which is essential for IFN production and the 

establishment of a host antiviral state; therefore, herpesviruses such as  HSV-1 must evolve 

certain strategies to antagonize the cGAS/STING pathway for effective infection. The 

interplay between herpesviruses and host antiviral innate immunity is very intricate, with 

viral proteins targeting multiple steps of the cellular DNA-sensor-mediated antiviral signal 
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pathway. In general, the latency and reactivation strategies of herpesviruses are crucial 

strategies these viruses use to survive in nature (Oehmig et al., 2004). There is no common 

pattern of herpesvirus gene expression, which is required in establishing and maintaining 

latency and in reactivation. 

1.2 Malignant catarrhal fever (MCF) 

Animal diseases have been observed and studied since ancient times. Viral infections, 

for instance, cause health issues in animals; while methods have been discovered to 

manage or eradicate some of these infections, researchers are still trying to develop 

treatments and vaccines for others (Moore et al., 2010). The study of animal diseases is of 

great importance because of the economic losses caused by these diseases and because of 

the possible transmission of the pathogenic factors causing the diseases to transfer to 

humans (Marcaccini et al., 2008). 

Malignant catarrhal fever (MCF), which is associated with the infection of certain 

animal species with specific gammaherpesviruses, is one of the viral diseases for which 

researchers have yet to find a way to prevent outbreaks. The first reports of MCF being 

recognised as a distinct entity came from France in the late 1700s, with subsequent records 

of the disease scattered in the literature throughout the 1800s (Plowright, 1965; Metzler, 

1991). Experimental studies on MCF began to appear in the first third of the twentieth 

century.  

MCF is an invariably infectious lymphoproliferative, multi-systemic and frequently 

lethal viral disease which affects a wide range of ungulates (members of the family 

Artiodactyla), which are generally ruminants belonging to the subfamily Bovinae and 



Chapter one                                                                                                                        Introduction 

21 
 

include cattle, bison (Bison bison), water buffalo (Bubalus bubalis), African buffalo 

(Syncerus caffer) and exotic ruminants such as antelope, guar and banteng. The disease 

can also affect animals of the family Cervidae, such as deer, reindeer and moose, and other 

wild living ruminants. It also occasionally affects domestic pigs (family Suidae) and giraffes 

(family Giraffidae) (Moore et al., 2010). MCF has variously been known as African 

malignant catarrhal fever, bovine malignant catarrhal fever (BMCF), wildebeest disease, 

and even snotsiekte, a collective term for the clinical and pathological signs described in 

cattle and other susceptible ungulates (Costa et al., 2009; Headley et al., 2012). MCF has 

been described based on the host in which the virus was originally carried, e.g. ovine 

herpesvirus 2 from domestic sheep, caprine herpesvirus 2 from goats, and alcelaphine 

herpesvirus 1 and 2 from members of the subfamily Alcelaphinae, which includes 

wildebeest and hartebeest (Vikøren et al., 2006). 

Worldwide, MCF usually occurs as sporadic cases (the most common form); however, 

a few epizootic outbreaks have been reported (O'Toole and Li, 2014). MCF has been 

recognised as a particularly serious problem in different parts of the world, including 

Indonesia, North America, Eastern and Southern Africa and New Zealand (Simon et al., 

2003). Because MCF is a frequently lethal immunopathological viral disease, it has a 

significant negative impact on livestock, especially when an infection occurs where 

multiple species (reservoir and susceptible animals) are housed in close proximity, as in 

auctions and zoological collections. Reservoir animals are the species of animal which can 

carry the virus without present any symptomatic infection but can transmit to other 

susceptible animals and cause the fatal disease. Although reservoir species are not 
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adversely affected by the virus, they can be the source of infection for susceptible animals 

(Martucciello et al., 2006). 

1.2.1 The economic importance of MCF 

MCF is important because of the economic losses resulting from significant and 

devastating outbreaks which cause the deaths of large numbers of animals (O'Toole and Li, 

2014). The economic importance of an MCF outbreak differs depending on the source of 

the virus, the species affected and the circumstances in which the animals are kept; for 

example, Bali cattle, American bison and buffalo are more susceptible to MCF (Daniels et 

al., 1988; Wiyono et al., 1994), whereas European cattle are more resistant to it (Otter et 

al., 2002). Over the last few years, in a number of countries, such as Switzerland, the 

farming of water buffaloes for milk production has risen in popularity (Li et al., 2000; Keel 

et al., 2003a; Swai et al., 2013). Game farms in continents including Africa, Australia and 

Europe have also recently developed into a major industry, which has led to an increase in 

the incidence of MCF (Cleaveland et al., 2001). 

The course of the disease is characterised by low morbidity and an increasingly high 

mortality rate (Russell et al., 2009). In some cases, losses of 40–50% of herds have been 

reported, and outbreaks can last for several months. 

Economically, AlHV-1 is an important concern in Africa because it causes outbreaks of 

MCF where cattle share grazing with wildebeest (Bedelian et al., 2007). Outbreaks have 

caused losses of between 5–10% in domestic cattle groups and farm game, although this 

percentage varies depending on the size of the herd and the wildebeest birthing season 

(Ababneh et al., 2014). Sheep-associated MCF (SA-MCF) can occur in cattle when sheep are 

also farmed and this has economic importance worldwide, (Figure 1-5 panel A). It usually 
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presents as a sporadic outbreak in many domestic and wild ruminants and occasionally 

outbreaks will cause losses of about 50% within a herd (Heuschele, 1988). Overall, SA-MCF 

is a worldwide problem and can have a remarkable economic impact resulting from the 

death of a large number of animals on highly susceptible species such as American bison 

(Berezowski et al., 2005), because it is usually fatal and a significant major public health 

problem for highly disease-susceptible species, (Figure 1-5 panel B)(Brown and Torres, 

2008; Russell et al., 2009; O'Toole and Li, 2014). The localized mass loss of livestock 

resources due to MCF may pose significant population bottlenecks and subsequent loss of 

valuable diversity of adapted cattle breeds, whose genetic conservation is critical (Mbole-

Kariuki et al., 2014). 

Over the last decade or so, several large outbreaks of MCF have occurred, making it 

one of the most important viral infectious diseases in commercially farmed animals. A wide 

range of scientific, industrial and veterinary researchers are very interested in and making 

great efforts to control the disease (Moore et al., 2010; Zemljic et al., 2012).

 

Figure 1- 5. The economic importance of MCF.  

    A: mixed animals on the farm. B: MCF infected dead animals. 

https://www.fwi.co.uk/.../dorset-devon-farms-report-rare- cattle fever 

 

https://www.fwi.co.uk/.../dorset-devon-farms-report-rare-%20cattle
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1.2.2 The causative agents of MCF 

MCF is caused by several gammaherpesviruses of the genus Macavirus (they were 

previously classified in the genus Rhadinovirus), which are found in nature as endemic 

subclinical infections in some ruminants (Russell et al., 2009; O'Toole and Li, 2014). 

Malignant catarrhal fever viruses (MCFVs) infect T cells in particular as a part of their life 

cycle (Nelson et al., 2010; O'Toole and Li, 2014) and establish one of two modes of 

infection: (a) latent infection, in which the viral genome persists in its host cell with 

restricted gene expression without cell destruction (Jarosinski, 2017), and (b) lytic 

infection, which produces virion progeny and destroys the host cell (Sarid et al., 1998; 

Gelgor et al., 2018). 

The MCF viruses group comprises at least 10 known viruses (Crawford et al., 2002; Li 

et al., 2005a) which share the ability to propagate infectious viruses without causing clinical 

signs within their specific reservoir host species (Brown and Torres, 2008), as listed in Table 

1-1. Three viruses of this family are not associated with MCF: gemsbok-MCFV, muskox-

MCFV and aoudad-MCFV. A further member, hippotragine herpesvirus 1 (HipHV-1), has 

been described to cause MCF in experimental animals, but to date has not been reported 

to cause MCF under natural conditions (Taus et al., 2014). The remaining six viruses of this 

family have been shown to be pathogenic under natural conditions: ovine herpesvirus-2 

(OvHV-2), alcelaphine herpesvirus-1 (AIHV-1), alcelaphine herpesvirus-2 (AlHV-2) (Reid et 

al., 1989; Bridgen and Reid, 1991; Davison et al., 2009b), caprine herpesvirus2 (CpHV-2) (Li 

et al., 2001c), ibex malignant catarrhal fever virus (Ibex-MCFV) (Okeson et al., 2007) and 

caprine herpesvirus 3 (CpHV-3), a virus of unknown origin which causes MCF in white-tailed 
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deer, Table (1-2) (Teankam et al., 2006; Li et al., 2013a; Giangaspero et al., 2013; Modesto 

et al., 2015). 

The two most widely prevalent and most important viruses causing MCF are AlHV-1 

and OvHV-2. AlHV-1 is harboured by wildebeest (genus Connochaetes) and causes 

wildebeest-associated-MCF (WA-MCF) in Africa where the natural hosts live. OvHV-2, for 

which the natural host is sheep (Ovis aries), causes sheep-associated-MCF (SA-MCF), which 

occurs worldwide and is the major form of the disease (Ensser et al., 1997; Nishimori et al., 

2004; Russell et al., 2009; Sood et al., 2013). The genome sequences of OvHV-2 and AIHV-

1 are very similar, particularly in the presence of unique segments bounded by terminal 

repeats of 1.1 kbp in AlHV-1 (Ensser et al., 1997) or 4.2 kbp in OvHV-2 (Hart et al., 2007) 

(see Figure 1-6). Moreover, the OvHV-2 sequence showed that is shared co-linear with the 

other known rhadinoviruses. However, there are significant differences between OvHV-2 

and AlHV-1 viruses, including infection and shedding from natural hosts, the requirements 

for in vitro propagation and the expression of viral genes responsible for lytic replication in 

affected hosts (Li et al., 2008b; Cunha et al., 2012; Palmeira et al., 2013). Moreover, these 

viruses are related to other gammaherpesviruses such as KSHV, Epstein-Barr virus (EBV), 

murine herpesvirus 4 (MuHV-4) also called murine gammaherpesvirus (MHV-68). 

MCF is also reported in common domestic pigs and has been produced experimentally 

in rabbits (Plowright et al., 1960; Wessels et al., 2011). More MCFV variants are likely to be 

identified in coming years. 
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Causative 

agent 

Reservoir host Susceptible host Economic 
importan

ce 

Reference 

Alcelaphine 
herpesvirus 1 
AlHV-1 

African Wildebeest 
(Connochaetes taurinus 
taurinus; Connochaetes 
taurinus albojubatus; 
Connochaetes 
albojubatus) 

Bison and Domestic cattle 
(Bos taurus) 

Moderate (Plowright 
et al., 
1960) 
 

Alcelaphine 
herpesvirus 2 
AlHV-2 

Hartebeest(Alcelaphus 
buselaphus), topi 
(Ammotragus lervia) 
(Damaliscus lunatus) 

Barbery red deer (Cervus 
elaphus barbarous) 

Minimal (Mackintos
h, 1993) 
 

Ovine 
herpesvirus 2 
OvHV-2 

Sheep(Ovis aries), /goat Cattle( B. Taurus), water 
buffalo (Bubalus bubalis), 
bateng (Bos javanicus), 
antelopes, pigs (Sus scrofa), 

Moderate (Baxter et 
al., 1993) 
 

Caprine 
herpesvirus 2 
CpHV-2 

Goat (C. hircus) Several ruminants, Domestic 
pig (Sus scrofa domesticus), 
sikka deer(Cervus nippon), 
white-tailed deer (Odocoileus 
virginianus), moose (A. alces), 
roe deer (Capreolus 
capreolus) 

Minimal (Li et al., 
2001b) 
 

White –tailed 
deer virus 
(Caprine 
herpesvirus 
3) 

Domestic goat (C. 
hircus) 

White-tailed deer (O. 
virginianus) and red brocket 
deer (Mazama 
americana) 

Minimal (Li et al., 
2000) 
 

Ibex-MCFV Nubian ibex (Capra 
nubiana) Bongo 
Minimal 
HipHV-1 Roan antelope 
(Hippotragus equinus) 
and 
Scimitar-horned oryx 
(Oryx dammah) 

Bongo, anoa, pronghorn Minimal (Gasper et 
al., 2012) 

Hippotragine 
herpesvirus 1 
HipHV-1 

Roan antelope Not documented Non (Reid and 
Bridgen, 
1991) 

Gemsbok-
MCFV 

Gemsbok (Oryx gazella) Not documented Non  (Shapshak 
et al., 
2015) 

MuskoxMCFV 
Muskox 

Muskox (Ovibos 
moschatus) 

Not documented Non (Li et al., 
2003a) 

Audad 
AoudadMCFV 

Aoudad (Ammotragus 
lervia) 

Not documented Non (Li et al., 
2003a) 
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Table 1- 2. List of MCF viruses that cause MCF naturally and their susceptible hosts 

(O'Toole and Li, 2014). 

 
 
 

 
 

Figure 1- 6.  Genome organisation of AlHV-1 and OvHV-2.  

Schematic maps illustrate the relative organisation of genes in the OvHV-2 and AlHV-1 

genomes. The genes scale showed the position and direction of open reading frames 

(ORFs) as block arrows and the terminal repeat (TR) sequences shaded in a pale grey  

(Russell et al., 2009). 

 

 

1.2.2.1 Alcelaphine herpesvirus 1 (AlHV-1) 

AlHV-1, the first identified MCF virus, is carried by African blue and black wildebeest 

(Connochaetes taurinus and Connochaetes gnou, respectively) and causes wildebeest-

associated MCF (WA-MCF) in cattle in Africa. The earliest reports from Plowright et al. 

(1960) found that WA-MCF caused by AlHV-1 was the prevalent disease in sub-Saharan 

Africa and that blue and black wildebeest were the natural hosts for the virus in East Africa. 

AlHV-1 is the most prevalent form of MCFV in Africa and persists as a subclinical infection 

(asymptomatically endemic) in wildebeest. The AIHV-1 name was determined according to 

the taxonomy of its reservoir hosts, wildebeest, hartebeest and topi, which belong to the 

subfamily Alcelaphinae (Mushi and Rurangirwa, 1981). 
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AlHV-1 can be transmitted horizontally and vertically, so a high proportion of 

wildebeest are reported carriers from a young age (Wambua et al., 2016). The incidence of 

WA-MCF infection in horizontal transmission increases after three months of age, because 

maternal antibodies (IgG) provide protection up to that point. By six months of age, animals 

tend to shed viral particles through nasal and ocular secretions rather than the virus itself, 

except for shedding when under stressful conditions (Bartley et al., 2014b; Wambua et al., 

2016). The calving season is characterised by the migration of large numbers of wildebeest 

herds to their favourite areas where green grass is found. This migration increases the 

chances of meeting and coming into close contact with cattle, possibly exposing the latter 

to placental matter and contaminated tissues left in rangelands after the birth of 

wildebeest calves. Plowright (1965) showed that the AIHV-1 virus was recovered from a 

splenic cell culture of a wildebeest foetus and can be transmitted vertically. This 

intermingling of animals represents a real threat of infection to cattle and is compounded 

by stressful conditions such as captivity or starvation (Honiball et al., 2008; Lankester et al., 

2015a). Vertical transmission, which occurs via utero has also been found in 50% of 

parturient wildebeest, as they carry viral DNA in their placental tissue (Lankester et al., 

2015b). 

Animals can become infected with AlHV-1 in the form of the cell-free virus, which is 

shed in nasal and ocular secretions and saliva for a short period. While this may be a main 

source of infection in wildebeest, the cell-free virus has also been reported to survive for 

more than 13 days in moist environments (Pagamjav et al., 2005; Mlilo et al., 2015). AIHV-

1 can be propagated in vitro by using T-lymphoblastoid cell lines known as large granular 

lymphocytes (LGLs) which originate from hosts affected with MCF. These cell lines have 
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enabled researchers to understand the genome sequence of AIHV-1. Russell et al. (2009) 

showed the genome sequence of AIHV-1 contains about 131,000 bp surrounded by 

terminal repeats of 1100 bp. The genome sequence of AIHV-1 contains at least 70 ORFs, of 

which 10 genes are unique and are known as A1-A10. Eight of these unique genes are 

similar to those found in OvHV-2; most of the non-unique ORFs (60) are conserved across 

homologous γ-herpesviruses. 

This disease is seen in cattle in Kenya, Tanzania and other areas of the African sub-

continent and in a variety of ruminant species in zoological collections worldwide where 

susceptible cattle interact with wildebeest. WA-MCF disease annually causes a 

catastrophic loss of cattle affecting the livelihoods of nomadic pastoralist communities in 

eastern and southern Africa (Mlilo et al., 2015). 

1.2.2.2 Ovine herpesvirus 2 (OvHV-2) 

OvHV-2 is the origin of sheep-associated MCF (SA-MCF) in several ruminant species 

and is carried asymptomatically in all breeds of sheep (subfamily Caprinae, which includes 

sheep and goats) wherever sheep husbandry is practised (Li et al., 2006; Bastawecy and El-

Samee, 2012). OvHV-2 has a double-stranded DNA genome: it can be divided into a long 

fragment of about 130 kbp and multiple copies of about 4 kbp repetitive terminal elements 

(Sood et al., 2013). OvHV-2 causes sheep-associated MCF in animals belonging to the 

Bovidae and Cervidae families, including cattle (Bos taurus), bison, water buffalos (Bubalus 

bubalis), various species of deer, swine (Sus scrofa domesticus), farmed sika deer (Sieber 

et al., 2010) and a wide variety of wild animals in captivity (Foyle et al., 2009). OvHV-2 has 

also been found in other species such as pigs, where a polymerase chain reaction (PCR) 

detected a positive OvHV-2 DNA signal in males and the virus was shown to be transmitted 
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sexually to sows via semen (Alcaraz et al., 2009; Azevedo Costa et al., 2010). Goats can also 

be infected asymptomatically with OvHV-2 (Taus et al., 2005). Viral shedding occurs 

intermittently, with higher shedding in adolescent sheep which may result in higher rates 

of transmission to susceptible species. 

In general the paucity of research on OvHV-2 is due to the lack of a cell culture system 

to propagate the virus in vitro, limiting the work which could be done to study the basic 

biological features of the virus and resulting in difficulties in the study of the molecular 

epidemiology, diagnosis and pathogenesis of OvHV-2 (Russell et al., 2009). However, the 

propagation of LGLs which carry OvHV-2 or AIHV-1 originating from tissues of animals 

affected with MCF has provided a better understanding of MCF pathogenesis (Schock and 

Reid, 1996; Russell et al., 2009). These T-lymphoblastoid cell lines have cytotoxic activity. 

Thonur et al. (2006); Hart et al. (2007) described the genomic DNA of OvHV-2, explaining 

that the DNA genome appears as linear and circular conformations inside the LGLs 

originating from hosts affected with MCF (cattle and rabbits), indicating latent and lytic 

viral transcripts. In comparison, the genomic sequence in peripheral blood mononuclear 

cells (PBMNCs) obtained from the reservoir host (sheep affected with MCF), appears as a 

circular internal conformation with ORF73 transcription, indicating a latency phase inside 

these cells. ORF73 is homologous with the Latency-associated nuclear antigen (LANA) of 

KSHV and other gammaherpesviruses.  It is likely therefore that the OvHV-2 ORF73 encodes 

a LANA protein that is a genome maintenance protein (Hart et al., 2007; Russell et al., 

2009). Several attempts to recognise the viral particles inside the cytoplasm of LGLs using 

electron microscopy were efficient in the case of AIHV-1 but not OvHV-2 (Rosbottom et al., 

2002). Taus et al. (2007) found that LANA encode ORF73s are highly variable in length. 
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In 2008, (Jayawardane et al.) analysed a unique ORF in the OvHV-2 genome, which 

was annotated as Ov2.5. This ORF encodes a protein similar to ovine interleukin (IL)-10, 

which may modify the immunity of the host by stimulating mast cell proliferation and 

suppress the production of macrophage inflammatory chemokines. OvHV-2 is similar to 

AIHV-1 in a number of microRNA genomes, including ORF9 (DNA polymerase), ORF25 

(major capsid protein), ORF50 (R-transactivator, inducing a latent to productive cycle 

switch) and the episome maintenance protein, which is encoded by ORF73. 

In 2009, Russell et al. showed that OvHV-2 has four completely unique genes, Ov2.5, 

Ov3.5, Ov4.5 and Ov8 (Russell et al., 2009), and confirmed high variability in ORF73, which 

could be a useful tool for informing epidemiological studies between different isolates. 

Both OvHV-2 and AIHV-1 can form a latent infection by expressing a LANA protein encoded 

by ORF73 in both viruses (Taus et al., 2015). 

1.2.2.3 Caprine herpesvirus 2 (CpHV-2) 

Goats are natural hosts of CpHV-2, another causative agent of MCF disease. DNA 

sequence alignment analysis revealed that CpHV-2 virus is highly similar to OvHV-2 and 

AlHV-1, can spread between goats when housed together and causes a chronic disease in 

both domestic and wild goats (Li et al., 2005b). To date, this virus has been reported to 

cause disease in two cervid species, white-tailed deer and Sika deer (C. Nippon), as well as 

in moose, water buffalo (B. bubalis) and pronghorns (Antilocapra americana) (Li et al., 

2013a). There is little information about the possibility that CpHV-2 virus can cause MCF 

disease in other ruminant species (Keel et al., 2003b; Li et al., 2003b; Li et al., 2005a). 

Most domestic goats are infected with CpHV-2 under natural herd conditions 

(Chmielewicz et al., 2001; Li et al., 2001b). Both CpHV-2 and OvHV-2 infection can occur 
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when goats interact with an OvHV-2 infected animal (Li et al., 2001a); goats do not manifest 

any symptoms of infection and can spread the virus to other susceptible hosts. The clinical 

signs of MCF cases caused by CpHV-2 differ from those induced by OvHV-2 and AlHV-1, as 

the disease tends to be more chronic and dominated by skin conditions such as dermatitis 

and alopecia. Furthermore, histopathological examination would reveal systemic 

lymphoproliferative vasculitis (Suavet et al., 2016). 

Goats can be infected with OvHV-2 and can therefore be a source of infection for SA-

MCF, as OvHV-2 is asymptomatic. While an MCF-like syndrome has been reported in goats, 

at present it is not clear whether this is because of challenge with OvHV-2 and response to 

infection or if OvHV-2 DNA is unrelated to the presence of the infection (Li et al., 2005a). 

1.2.2.4 Malignant catarrhal fever virus white-tailed deer (MCFV-WTD or 

caprine herpesvirus 3) 

MCFV-WTD, recently named caprine herpesvirus 3, was first described in 2000 and 

recognised as a distinct new pathogenic MCFV (Li et al., 2000) which causes MCF in white-

tailed deer in North America, New Zealand, Scotland and elsewhere. It has become 

important due to its high morbidity and cumulative mortality (Palmer et al., 2013). The host 

species of caprine herpesvirus 3 is the domestic sheep and goats according to phylogenetic 

analysis (Brown and Torres, 2008). The susceptibility of deer species to MCF varies from 

mild or low in some species, such as fallow deer, to extremely high in others, such as white-

tailed, axis, and Pere David’s deer. Because the reservoir host is to date unknown, the 

transmission method of the virus has not yet been identified (Li et al., 2003b). 
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In a recent study, it was proposed that goats are a possible reservoir host of caprine 

herpesvirus 3 because deer developed MCF after exposure to goats (Li et al., 2013a). Deer 

infected with caprine herpesvirus 3 show the classical symptoms of MCF, similar to those 

in cattle but without corneal involvement (Li et al., 2000). 

1.2.3 MCF pathogenesis, infection and transmission  

1.2.3.1 Pathogenesis of MCF 

The pathogenesis of MCF is characterised by lymphoproliferation, vasculitis and 

epithelial inflammation (Russell et al., 2009; Russell et al., 2012). Overall, studies suggest 

that different MCFVs may have different pathogenic mechanisms; however, MCF 

pathogenesis is still not fully clear.  Plowright (1968) was the first person to suggest that 

immune mechanisms play a role in the pathogenesis, as the infection occurs in LGLs, which 

have cytolytic or natural killer (NK) activity, and consequently the immune functions of 

these cells are deregulated prior to the development of clinical symptoms. Studies of MCF 

disease suggest that the autoimmune-like pathogenesis is caused by the cytotoxic activity 

of uninfected cells under the regulatory influence of small numbers of infected cells—that 

is, initially, the very few cells infected with the MCF virus interfere with the surrounding 

uninfected T cells, resulting in the auto-destruction of tissues by indiscriminately cytotoxic 

lymphocytes (Schock and Reid, 1996; Swa et al., 2001). 

The pathogenesis of MCF induced experimentally in sheep by nasal OvHV-2 aerosol 

nebulisation indicated lytic replication in the turbinates, trachea and lungs in the 

respiratory tract of infected animals (Taus et al., 2005), indicating that sheep play a role as 

reservoir host in OvHV-2 transmission (Cunha et al., 2008): localisation of the virus in 

alveolar epithelial cells was detected, and was also found in the nasal secretions of 



Chapter one                                                                                                                        Introduction 

34 
 

naturally infected sheep (Taus et al., 2010). Moreover, Anderson et al. (2007) 

demonstrated differences in the pathogenic mechanisms between SA-MCF and WA-MCF 

in rabbits—namely, infection with OvHV-2 was shown to cause more tissue necrosis and 

less lymphoid hyperplasia. Furthermore, Anderson et al. (2007) also suggested that 

predominantly cytotoxic CD8+ T cells were involved in lymphoid hyperplasia associated 

with vasculitis. Another study on laboratory rabbits suggested that the viral infection in 

lymphocytes or possibly in antigen-presenting cells changed the lymphocyte function by 

altering a T cell activator, such as interleukin-2 (IL-2) (Schock et al., 1998). Thus far one 

other study has demonstrated a generalised lymphocytic arteritis in lambs infected with 

OvHV-2 DNA virus (Gaudy et al., 2012). 

In vitro cell cultures from MCF-case lymph nodes have been established to show the 

morphology of LGLs, indicating that LGLs share features of activated NK cells in reacting to 

a host’s own cells as a response to cytokines from infected lymphocytes (Swa et al., 2001). 

On the other hand, a study of the pathogenesis of AlHV-1 infection in laboratory 

rabbits showed that the virus in latent infection was associated with proliferating CD8+ T 

and that these cells were detectable as early as two weeks after inoculation (Dewals et al., 

2008). Another study showed that the virus has its own role in pathogenicity: the lesions 

are positively associated with the abundance of virus ORF25 in experimentally infected 

rabbits with OvHV-2, while cattle with AlHV-1 showed an association with ORF73 latent 

transcripts detected in T cells (Palmeira et al., 2013). 

In goats the infected signs appeared as clinical neurological signs with digestive and 

corneal involvement and tissue damage was seen in several organs, including kidney, 
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spleen, lung, brain and liver, with vascular lesions which appeared as lympho-histiocytic 

with fibrinoid necrosis, especially in medium-sized arteries (Jacobsen et al., 2007). 

1.2.3.2 MCF transmission 

MCF viruses are present anywhere and are usually asymptomatically carried by their 

reservoir hosts, causing infection in susceptible hosts. Viral transmission of any MCFV or 

the several closely related gammaherpesviruses (Russell et al., 2012) occurs by numerous 

methods, including direct and indirect contact with the reservoir infected animals (Münz, 

2016) (Figure 1-7). In the asymptomatic carrier (reservoir), infection is persistent as 

subclinical; whilst completely susceptible to other viral infections, such reservoir hosts do 

not succumb to MCF (Wambua et al., 2016). Therefore, the virus can circulate freely among 

them without causing harm, having evolved strategies to persist in their reservoir hosts 

and enter to lytic infection later. During the lytic stage, the viruses manipulate the host’s 

gene expression to optimise the cellular environment for viral replication and to evade the 

immune response (Slater et al., 2017). In contrast, MCFVs can cause severe, striking and 

fatal diseases in susceptible species. In this situation, the virus is not shed either to other 

animals or the environment; infected animals will die and are considered dead-end hosts 

“a host from which infectious agents are not transmitted to other susceptible hosts” 

(Russell et al., 2009; Parameswaran et al., 2014; Mlilo et al., 2015). One of the key issues 

in the transmission of MCF includes the uncontrolled multiplication of lymphocytes in 

various tissues, which may act as a growth factor for the host’s lymphocytes depending on 

the species of animal infected (Arnold et al., 2006). MCFVs are highly variable in their 

distribution due to the widespread of the reservoir ruminant species; however, 

environmental conditions such as moisture levels, (cool) temperatures and the absence of 
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ultraviolet light provide opportunities for transmission over longer distances (Brown and 

Torres, 2008). The natural transmission of MCFVs generally occurs either via inhalation or 

ingestion of infectious cell-free virus shed in the mucous secretions of reservoir hosts (Li et 

al., 2005a). It is commonly thought that inhalation might be the primary method of 

transmission for all MCF viruses: the respiratory tract remains the common route for both 

entry and shedding of many herpesviruses in animals. Kim et al. (2003) and Taus et al. 

(2005) both proved that the nasal secretions of sheep suffering from MCF contain 

infectious OvHV-2 virions. Direct nose-to-nose contact appears to be the most efficient way 

to transmit MCFVs between animals, while indirect transmission may also take place via 

aerosol, be vector-borne or carried in fomites such as pastures, tools, water and 

contaminated travel or shipping vehicles (Brenner and David, 2005). No studies have been 

conducted on how long the MCF virus may survive in contaminated environments such as 

transport vehicles; however, the virus does not live freely outside the host cell. If 

inappropriate moisture and temperature conditions are prevalent, the virus is unlikely to 

survive more than 24 to 48 hr (Wambua et al., 2016). It is also known that MCF viruses can 

be carried by wind, but it is unknown how this works (Li et al., 2008b). Although intra-

uterine infections sometimes occur in sheep  (Li et al., 1999), the majority of lambs are not 

infected until they reach two to two and a half months of age under natural herd conditions 

(Li et al., 1999). 

The other factor which affects the transmission of MCF between animal’s herds and 

flocks is the minimum distance between them. It is not possible to specify exactly what 

minimum distance is effective; this may vary depending on factors such as temperature, 

relative humidity and the direction, the virus load of infected animals and speed of the 
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wind (Li et al., 2008b). Therefore, maintaining the maximum possible distance between 

adjacent herds and flocks within the limitations of existing facilities will help minimise the 

risk of transmitting MCF viruses. 

AIHV-1 virus in wildebeest is transmitted to calves, which become infected within the 

first few months of life either in utero, via direct contact or through respiratory tract 

secretions (Reid et al., 1989). Infected calves subsequently demonstrate neutralising 

antibodies to the virus in their blood continuously for several weeks or months and shed 

the virus for a prolonged time during their first few months of life. When the animals reach 

13 to 14 months of age, the shedding declines; however, the calves remain latently infected 

for the rest of their lives. They are considered a major source of infection and play an 

important role in transmitting MCF, as they excrete non-cell-associated viruses in their 

nasal and ocular secretions (Lankester et al., 2015a; Lankester et al., 2015b). 

The transmission of OvHV-2 overall is similar to that which occurs with AlHV-1, and 

takes place mainly through respiratory (nasal) and ocular secretions; it is probably also 

spread via aerosol transmission, mainly from lambs less than a year old (Kim et al., 2003; 

Taus et al., 2005). It seems that the age of lambs is particularly important in transmission: 

lambs about 6 to 9 months old are chiefly responsible for spreading the virus, with 

adolescents posing the highest risk. Li et al. showed that lambs who get the virus from ewes 

can spread it to other lambs and the rest of the flock very soon after birth (Li et al., 2008b). 

Some lambs are infected in utero or become infected during the perinatal period, while 

other cases may not occur till after three months of age (Li et al., 2004). However, the 

shedding patterns of OvHV-2 are different from AlHV-1. OvHV-2 infection is mostly 

sporadic and short-lived: the virus is shed intermittently for a short time from the nasal 
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secretions of latently infected sheep. Therefore, in contrast to most new born wildebeest, 

which are considered the source of infection of WA-MCF, the majority of new born lambs 

are not considered a source of infection because the virus-shedding period is short in 

sheep, although it is more intensive than in wildebeest and the transmission of OvHV-2 

between sheep during the perinatal period is minimal (Li et al., 2004). Similarly to AIHV-1, 

direct contact between infected sheep and susceptible species may spread MCF, but in 

some cases susceptible species (cattle) have been reported to get the infection while 

separated from the infected sheep by 70 kilometres (Li et al., 2013a). However, 

transmission of the OvHV-2 from sheep to cattle or bison or between cattle and bison was 

reported (Nelson et al., 2013). Similarly to AIHV-1 and OvHV-2, CpHV-2 transmission occurs 

in the same way between goats and domestic sheep (Li et al., 1998; Li et al., 2000; Li et al., 

2002). Thus, goat kids may be affected between 3 and 9 months of age and they can shed 

the virus to other goats in the herd. In the case of MCF in pigs, large amounts of OvHV-2 

DNA have been found in the semen of asymptomatic boars and in the nasal mucosa and 

skin of sick animals (Li et al., 2012). 

The main remaining issue in MCF transmission is the distance over which the disease 

is transmitted. In wild animals in particular, it is difficult to recommend a typical separation 

distance between reservoir hosts and susceptible host species. In special cases, such as in 

islands, a separation zone between the reservoir and susceptible species is a reasonable 

approach. This distance would vary depending on factors such as viral load, temperature 

(climate conditions), relative humidity, the number of animals involved, wind direction, 

and wind speed (Brown and Torres, 2008). The potential impact of herpesvirus on other 
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species is unknown; there is no evidence that MCF viruses can be transmitted to human 

and no cases have been reported (Li et al., 2001a). 

 

 

       Figure 1- 7. General transmission ways of MCF viruses in reservoir host. 

 

1.2.4 Experimental MCF 

The issue of using large ruminants for the study of transmission and pathogenesis of 

MCF is considered a critical factor in research due to the high costs of caring for these 

animals, the small size of test groups and the range of available immunological reagents. 

Laboratory animals such as rabbits (Oryctolagus cuniculus), mice, rats and hamsters are 

thus invaluable tools for investigating the various aspects of virus-host interactions, which 

would otherwise be difficult or impossible to study (Myers and Connelly, 1992). Rabbits 

have been used for experimental studies with OvHV-2 and AIHV-1 due to the similarity of 

the lesions produced to those in naturally affected ruminant species (Li et al., 2011; Cunha 

et al., 2013). Rabbits can develop an MCF-like disease following experimental infection 

with either OvHV-2 or AlHV-1, which is very similar to the MCF seen in naturally susceptible 

animals (Anderson et al., 2007), either by inoculation of lymphoblastoid cells derived from 
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infected animals, cell suspension from lymph nodes of infected animals or from other 

tissues such as spleens or corneas from infected ruminants (Buxton and Reid, 1980; Dewals 

and Vanderplasschen, 2011). The observed lesions in the rabbits subjected to induce MCF 

were indistinguishable from those described in MCF-susceptible species. These animals can 

also be used as a model to study natural infections of AlHV-1 and OvHV-2 by nebulisation 

(Dewals et al., 2008; Gailbreath et al., 2008). 

Another successful model is infected laboratory hamsters (Reid et al., 1986). Both 

rabbits and hamsters developed histological lesions related to MCF, including 

multisystemic interstitial and perivascular lymphoproliferation with less vasculitis (Buxton 

et al., 1984). 

OvHV-2 virus from SA-MCF-affected animals has been found in hyperplastic T cells 

(Bridgen and Reid, 1991; Baxter et al., 1993). Subsequently, these T cells can be cultured 

into lines and will transmit MCF disease back into cattle as well as to experimental animals 

such as rabbits, rats and hamsters (Buxton et al., 1988; Burrells and Reid, 1991).  

1.2.5 Morbidity of MCF 

The morbidity of MCF disease varies from sporadic cases to outbreaks. Differences 

depend on the virus type and the infected species—for example, reports document 

morbidity rates of 65% in deer, 20% in Bali cattle and 28% in water buffalo (Wambua et al., 

2016). In Africa, the approximate rate in domestic cattle infected with WD-MCF can be 6–

7%, but in some cases as high as 50%, while in domestic cattle infected with OVHV-2 the 

morbidity is less than 1%. However, there are reports of higher morbidity rates in cattle 

from different countries, ranging from 8.3–50% in Ireland and South Africa and some U.S. 

states such as Wyoming, California, Colorado and Michigan. While the collected data on 
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bison refer to morbidity rates approaching 50%, especially when they are in close contact 

with sheep flocks, herd losses may reach to 90–94%, and in some cases 5% of the infected 

bison die within a few hours or days of infection. 

1.2.6 Clinical signs of MCF 

MCF disease in susceptible animals tends to appear sporadically, although 

occasionally, relatively large numbers of animals may be affected (Løken et al., 2009). The 

clinical signs of MCF are highly variable in individual animals and different species, 

depending on the virulence of the virus infection, affected species and their susceptibility, 

as well as which organ is most affected and the rapidity of progression. MCF is usually fatal 

in susceptible species; however, cases of animals which recovered from the disease have 

been recorded (O'Toole and Li, 2014). In general, lymph nodes are one of the main sites 

for MCF diagnosis and lymphocytes are the main carriers of OvHV-2 DNA and AIHV-1; 

however, death or euthanasia is the most common final outcome after 2 to 18 days in all 

cases, depending on the animal species (Meier-Trummer et al., 2009). 

The incubation period of herpesviruses, particularly MCFVs, is uncertain and varies 

based on the virus strain, but it can vary between two to three weeks to as long as seven 

to 10 months or even longer. This differentiation is based on the viral dose, host immunity, 

host health and other factors (Bedelian, 2004; Russell et al., 2009). Examples from the 

literature demonstrating different incubation periods include Mushi and Wafula (1983), 

who reported a mean incubation period of 14 days in rabbits infected with AlHV-1, while, 

in contrast, Jacoby et al. (1988) reported 21–90 days in rodent models of AlHV-1 and 

Kalunda et al. (1981) found a mean incubation period of 16–29 days was achieved 

experimentally in cattle with AlHV-1. Furthermore, an experimental investigation by Haig 
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et al. (2008) found that the incubation period ranged between 21 and 68 days depending 

on the host species and the virus. MCF infection can occur any time throughout the year 

but seems to be more common during the birthing season (Zemljic et al., 2012; O'Toole 

and Li, 2014). 

Several characteristic forms of the clinical disease in cattle have been described for 

MCF, ranging from per acute, acute (head and eye), alimentary and chronic (Berezowski et 

al., 2005; Li et al., 2006; Li et al., 2008a). However, the clinical signs are often not clearly 

related to one of the clinical forms and it is difficult to clinically differentiate MCF infection 

from several other common viral diseases. There are no significant clinical differences in 

MCF caused by OvHV-2 from that caused by AlHV-1 (Commission and Committee, 2008). 

In its peracute form (rapid onset), which occurs in highly susceptible animals, the 

clinical signs progress very rapidly within 12–24 hr, through depression followed by 

diarrhoea and dysentery then death. Sometimes no clinical signs may be noted and sudden 

death may occur (Russell et al., 2009). In contrast, the acute form (head and eye) is the 

most common expression of the disease in cattle: in this form, MCF caused by OvHV-2 is 

indistinguishable from that caused by AlHV-1 (O'Toole et al., 2002). The disease usually 

begins with severe depression and a sudden onset of high and severe fever (40–42°C) 

lasting for the initial first to third days of the disease, but the temperatures can vary widely. 

Head down, the animal separates from the herd, tachycardia of 100–120 beats per minute 

develops, accompanied by anorexia and agalactia (Blood and Radostits, 1989). The acute 

form is characterised by bilateral corneal opacity and nasal discharges which are initially 

serous then become more profuse and mucopurulent in all cases. Ocular signs range from 

corneal oedema to severe lacrimation and severe conjunctivitis (Zemljic et al., 2012) 
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(Figure 1-8). The eye becomes cloudy and bulging, and slightly grey to totally white; one or 

both eyes may be affected and they may even rupture (Figure 1-9). Later, signs of necrosis, 

erosion, ulceration and/or crusting of the muzzle are seen. Open mouth breathing, 

dyspnoea and cough may develop as the disease progresses (Mlilo et al., 2015). Superficial 

lymphoma and muscle tremor can be observed by clinical examination. Diarrhoea, 

dehydration, hard faeces or sometimes not passing faeces have been reported as 

alimentary signs related to MCF (Traul et al., 2007). Neurological signs such as 

hypersensitivity, aggressiveness, convulsions, hyperaesthesia, lack of coordination, ataxia, 

inability to walk and eventually paralysis may also appear as the disease progresses 

(Mitchell and Scholes, 2009). Skin lesions may develop in some cases, such as crusting and 

exudation on the skin of the neck, shoulder, axillae, back, udder, vulva or scrotum, and 

sometimes patchy excessive sweating (Dry et al., 2016). 

The symptoms seen in bison and deer are slightly different from those in cattle and 

include dehydration, severe depression, weight loss, haematuria, diarrhoea, melena and 

haemorrhagic enteritis (which is more common in these species than in cattle) developing 

to dysentery; affected animals may die within 12 hr. However, the corneal opacity is less 

than in cattle (Anderson et al., 2007). Other possible signs which may appear on the 

animals are swollen limb joints, possibly leading to lameness, which may be seen after 10 

to 12 days, prior to onset of any other symptoms. Difficult and painful urination or bloody 

urine (haematuria) and terminal signs of involvement such as impaired vision or total 

blindness have been reported in the neurological form (O'Toole and Li, 2014). Studies of 

OvHV-2 show that when MCF is induced in bison it is usually fatal once clinical signs appear 

(O'Toole and Li, 2014; Slater et al., 2017). 



Chapter one                                                                                                                        Introduction 

44 
 

The mild clinical form may occur, with almost no clinical signs but resulting in multiple 

organ failure. Unwell yearling cattle have been reported with a mild form of MCF: these 

animals are seropositive for MCF, but this is a very uncommon form (Zemljic et al., 2012).  

The chronic form of MCF disease can appear in cattle which have recovered from 

acute and subclinical infections (Moore et al., 2010). Infected animals usually die, but some 

cases may survive for a short time and usually remain chronically infected with symptoms 

such as arteriopathy, dermal lesions, emaciation, proliferative arteriopathy present in 

vascular lesions and anterior or posterior iris adhesion and fibrosis in corneal substantia 

(Keel et al., 2003a). The clinical signs in bison and deer are slightly different from those in 

domestic cattle, which manifest severe depression, weight loss, haematuria and bloody 

diarrhoea but are less often affected by corneal opacity (O'Toole et al., 2002; Li et al., 

2014).  

          

Figure 1- 8. Lachrymation and a serous nasal exudate in cattle infected with MCF.  

A.  Profuse and mucopurulent discharges from the eyes and nasal cavities. B. Blockage of 

the nares as a result of nasal exudate (van Vuuren, 2004) 
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Figure 1- 9. Photos demonstrated severe corneal oedema in cattle and bison sequentially.  

 A. MCF corneal oedema in cattle that showed difficult to observe the intraocular 

structures. B. MCF case in cattle showing severe corneal oedema (Zemljič et al., 2012). C. 

MCF case in bison showing severe corneal oedema with oculonasal discharge. D. Cornea 

from experimental of MCF in bison showing the clear and severe oedema (O'Toole and Li, 

2014). 

 

1.2.7 Pathological findings 

Despite the severe pathological changes which occur in animals affected with MCF, 

the presence of lesions based on the severity and the course of the disease, viral genomic 

transcription and replication (which is subsequently associated with clinical signs and the 

severity of the lesions) (Cunha et al., 2012), infection is widespread and may include most 
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organs of the body. Pathological features depend on the duration of disease and the 

affected species rather than the infecting virus, but generally the hallmark of MCF 

pathology includes lymphoproliferative inflammatory infiltrates, systemic vasculitis, and 

epithelial necrosis (Phillips et al., 2018). The main issue of MCF disease is that the disease 

is systemic and the lesions may present throughout the body, including the brain, retina, 

uvea, cornea, synovia and skin. Replication of the virus occurs initially in the lung but 

latterly is propagated throughout multiple tissues (Slater et al., 2017). The common lesions 

in cattle dying from the peracute form are extensive inflammation of the mucosal linings 

with less obvious corneal opacity (Wambua et al., 2016); cattle also exhibit emaciation and 

dehydration. 

On the other hand, in many acute cases, multisystemic ulcerations and erosions 

related to haemorrhages and hypertrophy of lymphoid organs are noted (O'Toole and Li, 

2014). Multifocal petechial haemorrhage and heavy congestion of the alimentary tract, 

erosions and ulcers in the oesophagus and occasionally the small and large intestines are 

features, (erosion and haemorrhages have been also found in the gastrointestinal tract); in 

severe cases, the contents of the intestines may be haemorrhagic (Sood et al., 2013). 

However, it may be difficult to identify lesions in the gastrointestinal tract, especially when 

the carcass is autolysed. Enlargement of the liver, oedema, petechiae, ecchymosis of the 

spleen, intestines, heart, liver, gallbladder and other organs and extensive haemorrhages 

in the musculature and subcutaneous tissue above the epicardium have also been seen 

(Zachary, 2012) (Figure 1-10). Multifocal haemorrhage in the urinary bladder and bloody 

urine are also seen, and frequently the kidneys are slightly swollen and reveal multiple 
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small white foci of lymphoid infiltration in the cortex, appearing grossly as separate white 

lines within the cortex (Li et al., 2004). 

In chronic cases, the small arteries in many different organs may be very prominent 

and sinuous with thickened walls; necrosis of the mucous membrane, accumulation of 

lymphocytes in small and medium arteries and veins (O'Toole et al., 2007). Fibrinoid 

necrosis of the muscular walls (tunica media) of affected arteries has also been found. 

Ulceration of the cornea is also present in some cases. The muzzle is usually found to be 

cold, hard and showing small focal erosions or ulcers on the nasal mucosa (Li et al., 2011).  

There may difficulty in differentiating lesions of MCF from those accompanying bovine 

virus diarrhoea/mucosal disease, infectious bovine rhinotracheitis and epizootic 

haemorrhagic disease (Taus et al., 2006). 

 

Figure 1- 10. Epicardial haemorrhages. Severe multifocal haemorrhages in epicardium in 

the water buffalo cow with MCF.  

The pericardium contained 1.5 litres of serous fluid (evacuated) (Dettwiler et al., 2011). 
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1.2.8 Histopathological findings 

The histopathological findings for the WA-MCF and SA-MCF forms are similar to those 

of other MCFVs, which usually occur in cattle or farmed wild ungulates. The severity of 

lesions varies according to the course of the disease but the main target of the virus is the 

lymphocytes (Li et al., 2005c). 

Histological lesions are mainly lymphocytic infiltrations in multiple tissues in infected 

animals and are principally characterised by extensive vasculitis, necrosis of the epithelial 

cells and the infiltration and accumulation of large numbers of mononuclear cells. This 

infiltration predominantly consists of lymphoid cells (small and large T cells), macrophages, 

plasma cells, neutrophils and a few B cells, leading to T lymphocyte hyperplasia in lymphoid 

organs (hypertrophy), accumulation of these cells in non-lymphoid tissues and necrosis of 

the tunica media in medium-calibre arteries and veins, with a particular orientation to 

vascular structures and beneath inflamed mucous membranes (Plowright et al., 1960; Swa 

et al., 2001; Palmer et al., 2013), (Figures 1-11 and 1-12). Inflammation and fibrinoid 

necrosis of small muscular arteries is a classical lesion, but in some cases of rapid death it 

can be difficult to see (O'Toole et al., 2002). An infiltrate of mononuclear cells, which 

demonstrate a high mitotic index, is seen surrounding arteries and veins in almost all 

organs. Other histopathological signs which may be present include haemorrhagic 

intestinal mucosa, pulmonary congestion, inflammatory secretion and erosion in the upper 

respiratory tract and diphtheria (O'Toole et al., 2002; O'Toole et al., 2007) (Figure 1-11). 

Haemorrhages may be present in many parenchymatous organs, particularly lymph nodes 

and serosanguinous to fibrinous effusion in some cavities (Slater et al., 2017). Detection of 

very low levels of infected cells in lesions accounts for the hypothesis that MCF could be 
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caused by very few infected cells interacting with the surrounding uninfected T cells, 

resulting in their deregulation. 

 

Figure 1- 11. Histopathological changes observed in MCF in tissues of the animal.  

A. Carotid rete mirabile of MCF case that showed mild infiltration of mononuclear 

inflammatory and hyalinization of the parietal gland (200× magnification). B. The renal 

cortex of the kidney illustrating the intensive infiltration of mononuclear inflammatory cells 

and hyalinization in both the tunica and adventitia of blood vessels (100× magnification) 

(Martins et al., 2017) 

 

 

Figure 1- 12. Histological section of the urinary bladder obtained from bison with SA-

MCF.  

The section shows the primary infiltration of lymphocytes on the tunica adventitia (arrow) 

and tunica muscularis (arrowhead) of small to medium-calibre vessels (Nelson et al., 2010) 
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Phillips et al. (2018) demonstrated that lymphocytic vasculitis with a few lymphoblasts 

and segmental fibrinoid necrosis was present in the vascular wall of some organs, such as 

tongue, lung, oesophagus and the liver, (Figure 1-13). 

                  

Figure 1- 13. Different tissue sections from lamb affected with MCF. 

 A. The artery section in a tongue showed the various sizes of lymphocytes, as well as 

fibrinoid necrosis, is observed in the small artery (arrow).B. The arrows refer to the 

extracapsular lymphocytic vasculitis with lymphocytic infiltrates which extending into the 

surrounding adipose tissue and adrenal cortex. C. hepatic coagulative necrosis (arrow) and 

adjacent perportal lymphocytic aggregates. D. Focal ulceration (arrow) and subtending 

lymphocytic vasculitis in the oesophagus (Phillips et al., 2018) 

 

1.2.9 MCF pathogenesis 

The pathogenesis remains to be fully clarified and at present is poorly understood. 

However, in general, both host immune responses and viral gene expression play a role in 

the pathogenesis of MCF in animals (Brown, 2007). Lymphocytes are the predominate host 
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cells for OvHV-2 in sheep  Baxter et al. (1997). Another study showed that cyclosporine-A 

mediated suppression of the T cells but failed to inhibit the development of  MCF lesions 

(Buxton et al., 1984). Research has consistently shown that the pathogenesis of MCF may 

be related in the first place to direct virus-cell interactions or immune-mediated responses 

(as lymphoproliferative and vascular lesions are considered indicators of immunologically 

mediated disease) to infected cells in which the virus causes dysregulation of cell function, 

leading to uncontrolled proliferation and cytotoxicity at the site of a lesion (Simon et al., 

2003). More recently, other researchers have shown that the pathology of MCF is initiated 

by interactions between the virus and host cell, which is affected by the glycoproteins in 

the virus membrane, which are in turn responsible for interacting with the cell-surface 

receptors on target cell types and facilitate or enable the fusion of the virus with cell 

membranes (Cunha et al., 2015). Thus, both the virus entry and lymphoproliferation are 

responsible for vascular and epithelial destruction. Other studies (Ohteki, 2002; 

Waldmann, 2006) have shown that IL-15, a pleiotropic cytokine, plays a role in the 

pathogenesis of MCF and that overexpression of IL-15 is part of an inflammatory response 

which kills T cell. However, the main pathological changes noted in the disease, including 

lymphoproliferation, vascular and epithelial lesions, are well described (O'Toole and Li, 

2014). 

The mechanism by which OvHV-2 and AIHV-1 induce MCF is unknown; it is thought 

that virus-induced cytopathology is not involved in lesion development and it has been 

proposed that tissue damage arises from non-antigen-specific major histocompatibility 

complex (MHC) unrestricted cytotoxicity of the LGLs, as LGL cells play an integral role in the 
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immune system by circulating throughout the blood in search of infected cells (Russell et 

al., 2009).  

MCF viruses are predominate for at least two cell types—CD8+ T cells, which have a 

natural killer phenotype through destroy cells infected by intracellular viruses and cancer 

cells using programmed cell death in the infected cell, and epithelial cells. Interestingly, 

10% of aggregated CD8+ T cells contain viral genes, while the majority do not. Thus, these 

cells may be responsible for mediating the tissue damage caused by MCF (Hart et al., 2007; 

Dewals and Vanderplasschen, 2011) (see Figure 1-14). 

The study of experimental MCF infection in rabbits has further enhanced the 

understanding of the disease’s pathogenesis and differences between SA- and WA-MCF 

(Anderson et al., 2007), particularly by showing that OvHV-2-induced additional tissue 

necrosis and less lymphoid hyperplasia of predominantly CD8+ and fewer CD4+ T cells than 

AIHV-1. Furthermore, the study of MCF in cattle has shown that cytotoxic CD8+ T cells are 

predominantly involved in the lymphoid hyperplasia associated with vasculitis (Simon et 

al., 2003). To further understand MCF, cell cultures from proliferating lymphocytes were 

established to study their features in vitro; it was found that they responded to cytokines 

from other virus-infected lymphocytes and started to react against the host’s own LGLs, 

which are non-MHC (major histocompatibility). The host’s LGLs restrict cytotoxic activity 

and activate NK cells (such as expressing CD4 or CD8, but always CD2, and not transcribing 

IL-1ß or IL-2) (Burrells and Reid, 1991; Swa et al., 2001). 
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Figure 1- 14. MCF lesions in bison and deer.  

A. Urinary bladder of bison affected with MCF, mononuclear cells infiltration of adventitia 

of the arteritis of a submucosal and medium-sized vessel, endothelial swelling of the 

intima, and a thrombus in the lumen. (Campolo et al., 2008). B: Myocardium section from 

a white-tailed deer spleen that exhibited clinical signs of SA-MCF expanded tunica media 

of the artery and tunica adventitia due to infiltrate of lymphocytes and fibrinoid necrosis. 

(Palmer et al., 2013) 

 

1.2.10 Large granular lymphocytes in MCF 

MCF disease is characterised by degenerative changes in multiple organs, with 

infiltration of enormous numbers of lymphocytes which leads to hyperplasia of lymphoid 

organs (Thonur et al., 2006). LGLs can be cultured from different tissues of MCF-affected 

animals infected with OvHV-2 or AlHV-1, such as lymph nodes, spleen, corneas and other 

tissues (Wilkinson et al., 1992). LGLs exhibited cytotoxicity characteristic of T cell or natural 

killer cells (NK) and can kill various target tissues in a major histocompatibility complex 

(MHC) unrestricted manner (Russell et al., 2009). These cell lines can be maintained in vitro, 

by the addition of exogenous interleukin-2 (IL-2). Researchers found that cultured LGL cells 

infected with the OvHV-2 virus contained viral gene transcripts and antigens (Rosbottom 

et al., 2002). These cultured LGL cells from OvHV-2 or AlHV-1 infected cattle may transmit 

MCF when injected into rabbits or other susceptible experimental species (Swa et al., 
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2001). Uninfected T lymphocytes proliferated on the exposure of concanavalin A (ConA) 

whereas LGL cell lines were found to be unresponsive to ConA stimulated proliferation. 

The major features of cultured LGLs include: (1) constitutive and indiscriminate 

cytotoxicity (2) failure to respond to stimulation by mitogens; and (3) LGLs derived from 

cattle infected with OvHV-2 which failed to express IL-2 mRNA and protein, although they 

can express pro-inflammatory cytokines (e.g. TNF-α and IL-1 β) and interferon- γ (IFN-γ) 

(Schock et al., 1998; Swa et al., 2001). LGLs are usually grown in a medium containing IL-2 

but can also be implanted in the absence of IL-2 and other external added cytokines (Swa 

et al., 2001). 

LGL cell lines from cattle infected with OvHV-2 had viral genomes that were mainly 

circular in form, which is suggestive of latency  (Rosbottom et al., 2002). On the other hand, 

another study showed that these cell lines contained a mixture of circular and linear 

genome configurations, which indicated that LGLs may be comprised of a mixture of 

latently and productively infected cells (Thonur et al., 2006). 

1.2.11 Diagnosis of MCF 

1.2.11.1 Clinical signs and differential diagnosis 

MCF is one of the most widely spread viral diseases in ruminants and is difficult to 

differentiate from other viral diseases which cause similar indistinguishable clinical signs. 

These include foot and mouth disease viruses, vesicular stomatitis virus, infectious bovine 

rhinotracheitis virus, bovine viral diarrhoea virus, rinderpest virus, bovine papillar 

stomatitis, bluetongue viruses and MCF-associated viruses (Musser, 2004). The sporadic 

incidence with typical signs and lesions of MCF and contact with infected animals is 



Chapter one                                                                                                                        Introduction 

55 
 

sufficient to reach a hypothetical diagnosis, but diagnosis of MCF generally is based on the 

combination of a history of exposure, epidemiological data, clinical signs and 

histopathologic findings (Williams and Barker, 2008). However, such a diagnosis is not 

reliable because, as noted above, it is difficult to differentiate MCF from some other similar 

viral diseases. Therefore, recourse to laboratory confirmation such as PCR is generally 

required to reach a definitive diagnosis (Holliman, 2005; Traul et al., 2007). Rapid definitive 

diagnosis distinguishing MCF from other pathogens, especially those which cause similar 

clinical diseases, is very important in programs for eradicating and controlling epidemics. 

1.2.11.2 Histopathologic analysis of post-mortem samples 

The World Organisation for Animal Health recognises histopathological analysis as an 

useful test in the diagnosis of MCF because it allows clear a diagnosis in combination with 

the laboratory approaches (Gelaye et al., 2013). Post-mortem examinations are performed 

and tissue samples are taken for histopathological examination to observe vasculitis and 

epithelial necrosis in various organs, especially in the brain (Li et al., 2014). 

1.2.11.3 Serology 

Laboratory serological tests have been developed to detect antibodies against viruses 

in MCF cases, including immunoblotting (Herring et al., 1989), enzyme-linked 

immunosorbent assay (ELISA) (Fraser et al., 2006), competitive inhibition (CI)-ELISA (Li et 

al., 1994; Li et al., 2001c; Powers et al., 2005), indirect immunofluorescence, 

immunoperoxidase assay (Rossiter, 1981b) and complement fixation test (Sentsui et al., 

1996). 
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1.2.11.4 Polymerase chain reaction (PCR) 

Several PCR-based assays have been developed over the years to improve the 

diagnosis options of MCF cases. PCR assays allow the use of organs and fluid (uncoagulated 

blood, ocular and nasal swabs, and tissues) to obtain a highly specific diagnosis of MCF in 

acute and chronic cases (Traul et al., 2005; Lung et al., 2017). Such approaches, however, 

can also be used in the examination of fresh fixed organs from dead cases. The main 

advantages of a PCR assay compared to traditional laboratory methods is that PCR can be 

quickly performed and is highly productive; furthermore, the results are specific and 

sensitive, quantitative information is produced over a large dynamic range and measures 

are available to reduce the potential for cross-contamination (Burggraf and Olgemoller, 

2004). 

1.2.12 Treatment and control 

To date, no effective treatment or vaccine is available for this disease to provide any 

consistent benefit. The treatment is limited to supportive care and to reduce subclinical or 

mild infection in affected animals with drugs such as nonsteroidal anti-inflammatory drugs 

(NSAIDs) which may allow for prolonged survival in some cases (Milne and Reid, 1990). On 

the other hand, the spontaneous recovery of cattle from MCF has been reported, which 

was confirmed by serology and PCR tests (O'Toole et al., 2002). 

In general drugs that are effective against herpesviruses interfere with DNA 

replication. There are two types of inhibitors for herpesvirus; nucleoside analogs and Non-

nucleoside inhibitors. The nucleoside analogs (acyclovir and ganciclovir) mimic the normal 

nucleoside and block the viral DNA polymerase enzyme, which is important in the 

formation of DNA. All the nucleoside analogs before they have antiviral activity, they were 



Chapter one                                                                                                                        Introduction 

57 
 

activated by addition of a phosphate group. Some of the agents (acyclovir) are activated 

by a viral enzyme, so they are specific for the cells that contain viral particles. While other 

agents (idoxuridine) are activated by cellular enzymes, so these have less specificity. Non-

nucleoside inhibitors of herpesvirus replication include foscarnet, which directly inhibits 

the viral DNA polymerase and thus blocks formation of new viral DNA (Bartley et al., 

2014a). 

There is no reliable way to control MCF; however, important strategies to mitigate 

the risk of MCF are to avoid direct contact between susceptible species and carriers, to 

breed virus-free reservoir hosts and to separate grazing areas under natural flock 

conditions (Cleaveland et al., 2001). However, this is not always achievable in places such 

as zoos. Other risk factors which may affect the protection against MCF include the 

concentration of animals (size of flocks/herds), the animals’ ages and stress levels, 

environmental conditions such as climate, wind, temperature and extreme weather, and 

factors such as the weaning and migration seasons. Clearly, there is no one-size-fits-all 

strategy for managing the risk of MCF (Lankester et al., 2015a). One of the main obstacles 

in MCF disease control is livestock management, which involves keeping cattle away from 

wildebeest during the critical calving period. 

1.2.13 A predictable vaccine for MCF 

No vaccine is currently available to prevent MCF; many research attempts to develop 

a vaccine have been unsuccessful (O'Toole et al., 2002; Martins et al., 2017). It is important 

to find an effective vaccine to limit the infection of cattle, bison and exotic animals with 

MCF (Li et al., 2014). In 1981, (Rossiter) showed that there are antigenic relationships 

between AIHV-1 and OvHV-2, as the reservoir and susceptible hosts infected with OvHV-2 
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can produce antibodies which can cross-react with AIHV-1 antigens. However, Taus et al. 

(2015) showed that the possibility for a vaccine based on AlHV-1 to provide cross-

protective immunity against SA-MCF is likely to be slight. 

In the case of OvHV-2, a limited number of studies of vaccines have been done due to 

the lack of a cell-free virus cultured in vitro. However, Li et al. (2013b) showed that the 

antibodies from cases infected in vivo with OvHV-2 can block OvHV-2 entry and help limit 

the infection. Previously, two vaccine models using attenuated AIHV1 either live or 

inactivated were used in rabbits, but these approaches did not prevent MCF (Rossiter, 

1982). 

The different approach to produce a possible vaccine against MCF was to develop a 

recombinant viral vaccine consisting of either an entire or partial virus genome cloned in a 

bacterial artificial chromosome which would allow the propagation of OvHV-2 (Dewals et 

al., 2006; Stear, 2005). Most successful attempts to design and test a vaccine effective 

against MCF have used an attenuated version of the AlHV-1 virus, which protects against 

intra-nasal challenge with virulent AIHV-1 using cell-free virus. These attempts showed that 

a two-dose inoculation of AlHV-1 administered via injection into the cranial musculature of 

the neck on day zero and boosted at day 28 protected cattle when they faced an intranasal 

challenge with a virulent AlHV-1 isolate obtained from low-pass filter tissue culture (Haig 

et al., 2008). 

1.3 Latency-associated nuclear antigen (LANA) 

LANA is a multifunctional protein that has a homologue present in all Rhadinovirus 

and Macavirus subfamilies of the gammaherpesviruses. The KSHV LANA was the first to be 
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discovered and most is known about this protein. KSHV LANA is a large (222- to 234-kDa) 

nuclear protein approximately 1162 amino acids in length, is encoded by the open reading 

frame 73 gene (ORF73). It is the major antigen expressed during latent infection and forms 

nuclear speckles or puncta in infected cells. LANA tethers virus circular episomes to host 

chromosomes during interphase and mitosis, which allows for efficient segregation of virus 

episomes to daughter cells (Piolot et al., 2001; Ye et al., 2011). KSHV LANA binds to the 

viral latent origin of replication located at the terminal repeat (TR) sequence of the KSHV 

genome, and is highly expressed in all KSHV-associated disorders (Kedes et al., 1997; Hu et 

al., 2002). It modulates viral and cellular gene expression affecting both transcription and 

regulation of both cellular and viral genes (Verma and Robertson, 2003). Furthermore, 

LANA contributes to a number of cellular processes, including cell growth, regulation of 

cellular angiogenesis and immune modulation (Cloutier and Flamand, 2010; Zhang et al., 

2016b). For instance, KSHV-LANA can modulate a host’s adaptive immunity by inhibiting 

antigen presentation of both major histocompatibility complex class I (MHC I) and class II 

(MHC II) (Kwun et al., 2011). 

LANA can be subdivided into three major distinct protein domains (Figure 1-15): N-

terminal, central and C-terminal. The N-terminal domain contains a nuclear localisation 

sequence (NLS), a chromosome binding sequence and a proline-rich region which has been 

shown to be important for tethering the protein to the host chromatin (Cotter and 

Robertson, 1999; Krithivas et al., 2002). The central domain region is a large acidic  

repetitive region of which is rich in glutamine (Q), glutamic acid (E) and proline residues, 

which are reported to have variable lengths from different isolates; this may account for 

its slow electrophoretic migration (Ballestas and Kaye, 2011; Vázquez et al., 2013). LANAs 
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vary greatly in size because of variations in the length of the large internal acidic domain 

(Zhang et al., 2000). As shown in (Figure 1-15), LANA interacts with a variety of cellular 

proteins (Gao et al., 1999; Garber et al., 2002). Cotter II and Robertson (1999) showed that 

KSHV LANA binds to histone H1 but not to core histones and tethers virus episomes to the 

host’s chromatin. The C-terminal domain contains a unique leucine zipper motif which is 

important for interaction with various cellular proteins such as p53 and histone H1 (Lim et 

al., 2000). By interacting with the tumour suppressor protein p53 KSHV LANA is also 

thought to suppress lytic viral replication to promote cell survival and prevent apoptosis 

(DeWire and Damania, 2005; Wen et al., 2009).  The C-terminal domain also has a nuclear 

localisation signal sequence, which may be important for the characteristic nuclear 

speckling of LANA (Schwam et al., 2000). KSHV LANA binds to the viral latent origin of 

replication located at the terminal repeat (TR) sequence of the KSHV genome (Kedes et al., 

1997; Hu et al., 2002), which is crucial for tethering the viral genome to the host 

chromosome  (Shinohara et al., 2002b; Ye et al., 2004) . Thus, it was supposed that LANA 

may act as a ‘bridge’ between nuclear heterochromatin and viral episomal DNA (Cotter et 

al., 2001); specifically, LANA associates with host-cell mitotic chromosomes via 

chromosome-binding domains within its N- and C-terminal regions (Ballestas et al., 1999; 

Piolot et al., 2001). LANA plays a critical role in the maintenance and persistence of the 

viral genome in new daughter cells by preventing the loss of viral DNA after the cell divides, 

which is a crucial step in establishing the latent form of MCF. Therefore, the presence of 

LANA has been shown to be essential for the long-term maintenance of the disease (Ye et 

al., 2004). Interestingly, LANA can autoactivate its promoter during latent infection, 

thereby ensuring that the different levels of LANA are sufficient to maintain latency (Groves 

et al., 2001; An et al., 2005). 



Chapter one                                                                                                                        Introduction 

61 
 

    

Figure 1- 15. Latency-associated nuclear antigen protein.  

A: Schematic and location of the KSHV latent genes including miRNA cluster. Bottom: The 
major latency locus (ORF73/LANA, ORF72/v-Cyclin, ORF71/vFLIP, and K12/Kaposin) of 
KSHV is shown in an enlarged view. Position of 12 pre-miRNA cluster is shown in red 
triangle. B: The structure and functional motifs of Latency-associated nuclear antigen 
(LANA). LANA consists of 1162 amino acids. Numbers indicate the amino acids (aa). 
Repetitive regions and key motif of LANA are noted. P, Proline; DE, Aspartic acid and 
Glutamic acid; Q, Glutamine; L, Leucine; NLS, nuclear localized sequence; BC, Elongin B and 
C; Cul: Cullin5; SIM, SUMO-interacting motif. The binding regions of LANA-associated 
cellular and viral proteins are listed at the bottom panel (Wei et al., 2016). 

A 

B 
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1.4 OvHV-2 LANA (oLANA) 

All gammaherpesviruses have a conserved set of genes that show homology between 

each other. One of these, OFR73, is known to encode the latency-associated nuclear 

antigen (LANA). Unlike most gammaherpesvirus genes (and proteins), the degree of 

sequence similarity between LANA proteins is very low (< 20%) and they vary in length 

considerably. In spite of this, they all have a conserved domain structure (short N-terminal 

domain, longer C-terminal domain interspersed by a repetitive domain.), conserved 

nuclear localisation signal and also conserved functions and binding partners. For example 

the MHV-68 LANA, although sharing <20% amino-acid identity with KSHV LANA, still binds 

to viral genome and tethers it to chromatin, binds to similar cellular proteins as KSHV LANA 

and has a similar structure (Hellert J,. PLOS Pathogens 9(10): 

e1003640. https://doi.org/10.1371/journal.ppat.1003640).  Very little is known about the 

OvHV-2 LANA (oLANA). It is 495 aa in length and, like all other LANAs, is divided into a short 

N-terminal domain, a long repetitive domain that mostly composed of glycine, glutamic 

acid and proline and an C-terminal domain. (See Figure 1-16) 

 

 

Figure 1- 16. Schematic diagram of oLANA showing the three domains and the nuclear 

localisation signal.  

 

oLANA-FL Internal Repeat C-terminal domainNTD 495 aa

39 354

oLANA-Δ C-terminal domainNTD 180 aa

(Glycine, Glutamic acid, Proline)

GFP-oLANA-Δ C-terminal domainNTD 419 aaeGFP

Nuclear localisation signal

https://doi.org/10.1371/journal.ppat.1003640
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It has a predicted molecular weight of 49 KDa and a pI of 3.75. It has low DNA or 

protein (aa) sequence homology with other LANA proteins including KSHV (<20% sequence 

identity) although there are patches of sequence identity/similarity that indicate that 

oLANA may conserved some function with other LANA proteins (Figure 1-17). Analysis of 

the sequence shows that the internal repetitive domain is composed of 44% glutaminc 

acid, 42% glycine and 12% proline and is largely composed of blocks of the element 

PGGEEEG. Like other LANA proteins there is a conserved nuclear localisation signal. Work 

by a previous PhD student led to the development of an antibody to oLANA  (Al-Saadi, 

2018). This demonstrated that the native protein migrates on SDS-PAGE gels with an 

apparent Mr of 37 KDa and is predominantly localised to the nucleus of infected cells in 

puncta (Al-Saadi, 2018). 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2    1 ------------------------------------------------------------ 

RRV          1 ------------------------------------------------------------ 

KSHV         1 ------------------------------------------------------------ 

HVS          1 ------------------------------------------------------------ 

OvHV-2       1 ------------------------------------------------------------ 

AlHV-1       1 MVLLRSGLGTRPGEEDCDGGPSTRTRGHGPLGPNIKSAAGIGGKFPPSPQGRKRKKGPKK 

 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2    1 ------------------------------------------------------------ 

RRV          1 ------------------------------------------------------------ 

KSHV         1 ------------------------------------------------MAPPGMRLRS-- 

HVS          1 ------------------------------------------------------------ 

OvHV-2       1 ------------------------------------------------------------ 

AlHV-1      61 SGGKKKKRKVTGEGPGGGEGPGGGEGPGGGEGPGGGEGPGGGEGPGGGEVPGGGEVPGGG 

 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2    1 ------------------------------------------------------------ 

RRV          1 ------------------------------------------------------------ 

KSHV        11 -----------GRST-GAPLTRGSCRKRNRSPERCDLGDDLHLQPRRKHVADSIDGR-EC 

HVS          1 ------------------------------------------------------------ 

OvHV-2       1 ------------------------------------------------------------ 

AlHV-1     121 EGPGGGEGPGGGEGPGGGEGPGGNSRKRKRGDGSKKHGG-----KKKK--KTTVTGEGGS 

 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2    1 ------------------------------------------------------------ 

RRV          1 ------------------------------------------------------------ 

KSHV        58 GPHTLPIPGSPTVFTSGLPAFVSSPTLPVAPIPSPAPATPLPPP-----ALLPPVTT-SS 

HVS          1 ------------------------------------------------------------ 

OvHV-2       1 ------------------------------------------------------------ 

AlHV-1     174 GPEG------PERDDPDGPGSQEGPKREEGPLGPDGPEGPEGPEGEGPEGLEGPKGEGPE 

 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2    1 ------------------------------------------------------------ 

RRV          1 ------------------------------------------------------------ 

KSHV       112 SPIPPS--HPVSPGTTDT----HS-------PSPALPPTQSPESSQRPPLSSPTGRPDSS 
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HVS          1 ------------------------------------------------------------ 

OvHV-2       1 ------------------------------------------------------------ 

AlHV-1     228 GPEGPEGDSPDGPGAQEGPEGLEGPEGDEGPEGPEGPEGEGPEGPEGPKGDSPDGPGAQE 

 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2    1 ------------------------------------------------------------ 

RRV          1 ------------------------------------------------------------ 

KSHV       159 TPMRPPPSQQTTPP---HSPTTPPPEPPSKSSPDSLAPSTLRSLRKRRLSSPQGPST--- 

HVS          1 ------------------------------------------------------------ 

OvHV-2       1 ------------------------------------------------------------ 

AlHV-1     288 GPEGPGGPDEDEGPEEPEGPEGEGPEGPEG-----EGPEGLEGPEGEGPEGPEGPEGDSP 

 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2    1 ------------------------------------------------------------ 

RRV          1 ------------------------------------------------------------ 

KSHV       213 LNPICQSPPVSPPRCDFANRSVYP-------PWATES-----------------PIYVG- 

HVS          1 ------------------------------------------------------------ 

OvHV-2       1 -------------------------------------------------------MVLLR 

AlHV-1     343 DGPDAQEGPEGPGGPDEDEGPEEPEGPEGEGPEGPEGPEGEGPEGPEGPEGEGPEGLEGP 

 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2    1 ------------------------------------------------------------ 

RRV          1 ------------------------------------------------------------ 

KSHV       248 --SSSDGDTPP-----------RQP--PTS-----------PISIGSSSPSEGSWGDDTA 

HVS          1 ------------------------------------------------------------ 

OvHV-2       6 SGTSTDGD-------EDGRGRRPGPKKRPVTE---------GKGEGPGGEEEGPGGEGEG 

AlHV-1     403 EGEGPEGPEGPEGDSPDGPGAQEGPEGPEGPEGEGPEGLEGPEGEGPEGPE-GP--EGEG 

 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2    1 ----MADSEKRGPGRPPKKPR-------DGDGGDGER-------PGPSKKQPKGDGVKKP 

RRV          1 ------------------------------------------------------------ 

KSHV       282 MLVLLAEIA----EEASKNEKECSE---NNQAGEDNGDNEISKESQVDKDDNDNKDDEEE 

HVS          1 ------------------------------------------------------------ 

OvHV-2      50 PGGEVEGPGG---------EGEGPGGEVEGPGGEGEGPGGE----------VEGPGGE-- 

AlHV-1     460 PEGP-EGPEGEGPERPEGPEGEGPEGP-EGP--EGEGPEGP---EGPERDSPDGPGA--- 

 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2   43 PHKRPRDDDGGDGERP--------------GPSKKPTKG---------------DGVRKP 

RRV          1 ------------------------------------------------------------ 

KSHV       335 -QETDEEDEEDDEEDDEEDDEEDDEEDDEEDDEEDDEEDDEEDDEEDDEEDDEEEDEEED 

HVS          1 ------------------------------------------------------------ 

OvHV-2      89 -VEGPGG----EGEGPGE-EVEGPG-GEGEGP-E----G---------E----GEG---- 

AlHV-1     510 -QEGPEGPEGPEGEGP-E-GLEGPE-G--EGP-E----G---------PEGPEGEG---- 

 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2   74 P-----RKRPRD--GDGGDREKPGPSKKPKHDDGQKSKQKRRGAWKLPHTRSRGTPPVKW 

RRV          1 ------------------------------------------------------------ 

KSHV       394 EEEDEEEEDEEDDDDEDNEDEEDDEEEDKKEDEE--DGGDGNKTLSIQSSQQQQEPQQQE 

HVS          1 ------------------------------------------------------------ 

OvHV-2     120 ------PG---------GEGEGPGGE------------GEGPG--------GE--VEGPG 

AlHV-1     546 ------PEGP-----EGPEGEGPEGPEGP---ER--DSPDGPG--------AQEGPEGPE 

 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2  127 PP-KSPGMGYKPWTQGGKKKKKRHPKPKPKEDPKPGPGPGPDPGPDPGPGP--DP--GPG 

RRV          1 ------------------------------------------------------------ 

KSHV       452 PQQQEPQQQ-EP-LQEPQQQ---EPQQQEPQQQEPLQEPQQ---------------QEPQ 

HVS          1 ------------------------------------------------------------ 

OvHV-2     143 GE--GEGPG-GE-VEGPGG---------EGEGPEGEG-----------EGPGGE-GEGPG 

AlHV-1     582 GPEEDEGPE-GP--EGPEGE---GPEGPEGEGPEGLEGPEGDEGPEEPEGPEGDSPDGPG 

 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2  182 P------------D------P--------GP-GPDP---GPGP----DPGPGPDPGPGPD 

RRV          1 ------------------------------------------------------------ 

KSHV       492 QQEPLQEPQQQEPQ-QQEPQQQEPQQQ--EPQQQEPQQQEPQQQEPQQ--QEP-Q--QQE 

HVS          1 ------------------------------------------------------------ 

OvHV-2     178 GEE--EGPGG---E-------------EEGPGGEEEGPGGEGE-GPGGEGEGP-VGEGEG 

AlHV-1     636 AQEVPEGPKGPEGECQSGPSSCEGQQVPKGPDGPEEGSSGPGS----SEGEGP-SGPGSS 
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MHV-68       1 ------------------------------------------------------------ 

EquinEHV2  208 PGPG------PDPGPGPDPGPG---PDP-------GPGPDP--GPGPD-PGPGP------ 

RRV          1 ------------------------------------------------------------ 

KSHV       544 PQQQEPQQREPQQREPQQREPQQREPQQ-REPQQREPQQREPQQREPQQREPQQQDEQQQ 

HVS          1 ------------------------------------------------------------ 

OvHV-2     218 P---------GGEGEGP----G-------GEEE--GPGGE---EEG-----PGGE----- 

AlHV-1     691 EGQQVPKGAEGSEGEGPCR-PG--GPDEDGDPE--GPDGTE--GEGP--CGPGGPDEDGD 

 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2  243 DPG--PGPDPGPGPDPEPGPDPEPGPEPDPPINF------LDFWFEFPPYPSPTHDSTDG 

RRV          1 ------------------------------------------------------------ 

KSHV       603 DEQQQDEQQQDEQQQDEQQQDEQQQDEQQQDEQQQDEQQQDEQQQDEQQQDEQQQDEQQQ 

HVS          1 -----------------MAPRRRKAKRR---RHTLRSECKDKCKCHVQCYVSPRKRRRKL 

OvHV-2     243 GEG-PEG--EGEGPGGEG------------------------------------------ 

AlHV-1     742 PEG-PDGT-EGEGPCGPGGPDEDGDPEE-------SEGTEDDIKVGLTELLGS----MKL 

 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2  295 PPPPSDP-----D------PDP----------K----------------PKP-------- 

RRV          1 ------------------------------------------------------------ 

KSHV       663 DEQQQDEQQQDEQQQDEQQQDEQQQDEQQQDEQQQDEQEQQDEQEQQDEQEQQDEQQQDE 

HVS         41 KPQGDDD-----I-----NTTHQQQA-ALTEEQRREEVEEEGE-----ERERRGE----- 

OvHV-2     258 ------------------------------------------------------------ 

AlHV-1     789 DSSDSDS-----D-----NSSD--------------------------SANRRA------ 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2  310 ---------------------KPEPEPEPEPELEPEPEPEPEPEPELE-------PEPEP 

RRV          1 ------------------------------------------------------------ 

KSHV       723 QQQQDEQQQQDEQQQQDEQQQQDEQQQQDEQEQQEEQEQQEEQEQELEEQEQELEDQEQE 

HVS         80 ------------EEREGEGGEEGEGREEAEEEEAEEKEAEE---EEAE--EAEEEAEEEE 

OvHV-2     258 ---------------EGPGGGGPGG---EEEEEEEEGEEEEEEEEEEE--EEEEE--EEE 

AlHV-1     807 --------------LEGVCGSHSSSKDSDDEEEEEEEEEEEEEEEEDD--EEEEEDDEEE 

 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2  342 EPEPEPELEPEPEPEPEPEPELEPEPEPEPEPEPELEPEPEPEPEP-------------- 

RRV          1 ------------------------------------------MWGS-------------- 

KSHV       783 LEEQEQELEEQEQELEEQEQELEEQEQELEEQEQELEEQEQELEEQEQELEEQEQELEEQ 

HVS        123 AEEAEAEEEEAEEE-E-------AEEEEAEEAEEE-EAEEA---EE-----EAEEE---- 

OvHV-2     296 EEE-EEEEE--EEEEE--------EEEEEEEEEEE-EEE--------------------- 

AlHV-1     851 EEDDEEEEEDDEEEEE-------DDEEEEEDDEEE-EEEEVIIITS-----SGEDGCGSS 

 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2  388 --------EPEPEDKK----------------------------------------DPPP 

RRV          5 -----------------RQHRSGIVSGHGLRSSCRGHCGRRGGTREQAGRRGRGRGTAAP 

KSHV       843 EVEE---QEQEVEEQEQEQEEQELEEVEEQEQ-----------------E----QEEQ-- 

HVS        162 EAEEE--AEEEAEEAE-EAEEEAEEEAEEAE------------------E-------A-- 

OvHV-2     323 -------EEGEGE-------------GPGGEG-----------------E-------G-- 

AlHV-1     898 DVVCVGEEKGEGEKGK-GREEDGGEGGEGGEGG-EGGEGGEGGEGGEGGEGGEGGEGG-- 

 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2  400 PPPPLPRPPPPPQPQPRFPPPLPRLPPDWPLPRIPFQ----------------------- 

RRV         48 AAAPAPPAPTTSGPQVRAVAEQG-HGSDTE-TATESRHG--------------------- 

KSHV       877 EEQELEEVEEQEEQELEEVEEQ--EEQELE-E-VEEQE---------------------- 

HVS        192 E--EAEEAEE--EAE--EAEEEA-E--EAE-EEAEE------------------------ 

OvHV-2     337 ---P---G-----G---E---G---------E---------------------------- 

AlHV-1     954 EGGEGGEGGE--GGEGGEGGEGG-EGGEGG-EGGEGGEGGEGGEGGEGGEGGEGGEGGEG 

 

MHV-68       1 ------------------------------------------------------------ 

EquinEHV2  437 ------------------------HQPLSHPFPSSRFPFFAPPGRFPSPWPWIDPFWCGF 

RRV         85 ------------S--SQGSPSGSG----SESVIVLGSPT-------PSPSGSAPVLASGL 

KSHV       911 -----QQELEEVEEQEQQGVEQQEQETVEEPIILHGSSS----------EDEMEVDY-PV 

HVS        218 ------AE--EAEEAEEAEEEAEEAE-EEEEEAGPSTPR---------LPHYKVVGQ--- 

OvHV-2     343 ------GPGGEG------------------------------------------------ 

AlHV-1    1010 GEGGERGKGGEGGEGGEGGEGGEGSEEDKKPFPCPRSPG---------VSGFYDLTW-SS 

 

MHV-68       1 -------------------------MP------------------------TSPPTTRNT 

EquinEHV2  473 PY-NFGGDGPPLPPLHSQFFLPPPPLPPPPPPPPPPPPPPPPPPPPEPEPKPKPPPEPEP 

RRV        120 SPQNTSGSSPASPASHSP-----PPSPP------------SHPGPHSP----APPSSHNP 

KSHV       955 VSTH-----------------------------------------EQIA--SSPPGDNTP 

HVS        257 ----------------------------------------------------------KP 
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OvHV-2     349 ------------------------------------------------------------ 

AlHV-1    1060 SDRSTEGSR-G------------------------------SPGPDDLD--GRPGSQGPP 

 

MHV-68      12 -------TSGKTR----SGCKRRC--FNKPAAMPPKRRRAPKRPAPPPPPGCQGDEESSQ 

EquinEHV2  532 KPKPPPEPEPKPKPPPEPEPKPKPPPEPEPKPKPPPEPEPKPKPPPPPEPKPKPPPEPEP 

RRV        159 --------SPNQQPS--SFLQPS----HHDSPEPP-E------P-----PTSLPPPDS-- 

KSHV       972 ------DDDPQPGPS--REYR------YVL------------------------------ 

HVS        259 ------STQPGGVPK--L---------------------------------CL------- 

OvHV-2     349 ------------------------------------------------------------ 

AlHV-1    1087 ------TLSPQGFPG--SGYGSN----YDDDREPPVL------S-----PQCGGPSGN-- 

 

MHV-68      59 GTQTPNPPS-----------------PPVPPSSPTLPSSPVPPSSP-------------- 

EquinEHV2  592 KPKPPPPPEPEPKPKPPPPPEPEPKPKPPPPPEPEPKPKPPPPPEPKPRPPPPPEPKPKP 

RRV        191 ---------P------G------------PPQSPTPTSSP-PPQSP----PDSPGPP--- 

KSHV       988 ------------------------------------------RTSP----PHRPGVR--- 

HVS        271 ------------------------------------------KMQP----QHR------- 

OvHV-2     349 ------------------------------------------------------------ 

AlHV-1    1122 ---------E------G------------DESDPDSSREP-PDLSP----QNPPEGD--- 

MHV-68      88 --------------------------VHEPPSP-----SPPPA---PPSPDVD------- 

EquinEHV2  652 PPPPEPKPRPPPPPEPKPKPPPPPEPKPKPPPPPEPKPKPPPQPQPKPKPGPDVGKWPLP 

RRV        216 -QSPTPQQ--APSPNTQ--QA--VSHTDHPTGPSRP--G-PPF-PGHTSHSYTVGGWGPP 

KSHV       999 ------------------------------------------------M----------- 

HVS        278 ------------------------------------------------------------ 

OvHV-2     349 ------------------------------------------------------------ 

AlHV-1    1147 -NGNE-------------------------------------------S----------- 

 

MHV-68     107 ---------VEGLDVGETDDPGP---------------------------------PPPK 

EquinEHV2  712 QICEKFGDPSHGVHVGSKSDPGPDPYCRPTTSTGDG---------------------GTR 

RRV        265 TRA--------------GGVPCLRLRCTSHNSHEDEAPERQQEQEGEERQQQPARPPRPP 

KSHV      1000 -----------------RRVPVTHPKKPHPRYQ------------------------Q-- 

HVS        278 ---------------------SRLPKGK-------------------------------- 

OvHV-2     349 ----------------------EGPGGEGEEGEEPE---------------DPMEGPS-- 

AlHV-1    1152 -----------------DSDPSYQPLGGSSSSSEDD---------------DPGEGT--- 

 

MHV-68     125 RYSRYQKPH---NPSDPLPKKYQGMRRHLQVTAPRLFDPEGHPPTHFKSAVMFSSTHPYT 

EquinEHV2  751 KYPRYQHSAPHPDPTPPPSKKYLAGWKFFKDYLNGLC-HW-IPGCGWRFMVMISGTDPEK 

RRV        311 RPPRYPIPIPYPSSEEEVPRKYRPQRRFYRQV-L-GPRIDPPRPGPWCHGVIFCNSDPYS 

KSHV      1017 ------PPVPY-RQIDDCPAKARPQHIFYRRF-LGKDGRRD-PKCQWKFAVIFWGNDPYG 

HVS        285 ------------QSHDKVPKKYQARNKF---FSQAAPSVLDLSPKSWCWVVDFWG-PTDA 

OvHV-2     370 ------SGPPV-RGRRKRPPKHQPETDRAKR--KKLAPIWDPTLKEATYSLHLNCTSKDP 

AlHV-1    1177 ----------S-QGPPKRPPKHHPQTKRAQGKTLGLDPLYDPRQKAATFSLHLGCPTKDP 

 

MHV-68     182 LNKLHKCIQSKHVLSTPVSCLPLVPGTTQ--QCVTYYLLSFVEDKKQAKKLKRVVLAYCE 

EquinEHV2  809 LYRISKYCCQDGYCPTGVQASPKTP----LTTHDVWNVQVWCQSRDQALGLQGCITAYTT 

RRV        369 LYRLARCLQFPGIRASSVRVLPDAPGSPVI---PAFCITVFCQSRGTAKAVKKARRRWER 

KSHV      1068 LKKLSQAFQFGGVKAGPVSCLPH---PGPDQSPITYCVYVYCQNKDTSKKVQMARLAWEA 

HVS        329 LYRLSRSLSFPGAVSSGIQTFPKGPHATGP---WVYFITVYCRTFQTAKEVIKAQKKYEK 

OvHV-2     421 VVRVSRSVRA---------LNPNAPHSNIFFTGGMYTFVIYGNDKEAVESLFQFLLQDAM 

AlHV-1    1226 LVRLSRMIRT---------LHPEGPHSSIFFTGGQYVVVFYVTSYFEAKKLKDFIIREQN 

 

MHV-68     240 KYH--SSVEGTIVKAKPYFPLPEPPTEPPTDPEQPSTSTQASGT------QHGPTASLDA 

EquinEHV2  865 IYP--PLLQASIGSFWPPVDLGERNYRPDAYPPGPGEEEGQLGATPESSPESGPGDPRNT 

RRV        426 HHPSAPHFQASIVRMDRGLPIQH------------------------------------- 

KSHV      1125 SHPLAGNLQSSIVKFKKPLPLTQPGEN-----QGPGDSPQEMT----------------- 

HVS        386 KYPRSAKLKASLGKFSKSLPIE-------------------------------------- 

OvHV-2     472 NNPQAGAVNISTGPLTPSLPFNQQ------------------------------------ 

AlHV-1    1277 RNPLQGRVNVSLARHYPPFPFPHE------------------------------------ 

 

MHV-68     292 GAEQGATGSPGSSPGQQGQGSQT-------- 

EquinEHV2  923 GEDDGRDP----TNPDEGDGDPVIVLSDDSD 

RRV            ------------------------------- 

KSHV           ------------------------------- 

HVS            ------------------------------- 

OvHV-2         ------------------------------- 

AlHV-1         ------------------------------- 
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Figure 1- 17. Alignment analysis of LANA amino acids homologue of different γ-

herpesviruses including:  MHV-68, Equid HV2, RRV, KSHV, HVS, OvHV-2, and A1HV-1) 

corresponded with GenBank accession numbers (NP_044913, AIU39518, NP_570820, 

ACY00477, NP_040275, AAL05844, and NP_065570) respectively. 

 This was performed using “Clustal Omega” program and displayed by the “BOXSHADE” 

server. This highlights sequence diversity of LANA in which the highly identical residues 

(can be seen predominantly within C terminal homologue) are depicted in black. Similar 

residues are depicted in grey (appear mostly within N terminal homologue). Dashes 

represent sequence gaps. The predominant tandem repeats appear within the central 

domain of LANA. The Glutamic acid is coloured in blue while the Proline are highlighted 

red. (Al-Saadi, 2018)  
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1.5 The Aim 

MCF is a frequently lethal, immunopathological, viral disease, which can be caused by 

several distinct gammaherpesviruses, it is a worldwide disease which occurs in many 

ruminants, including domestic cattle, bison, deer and others. The most frequent causative 

agent of MCF is OvHV-2 which cannot be propagated in vitro. There is no vaccine and there 

are no effective drugs to treat animals that are affected by MCF. The ultimate aim is to 

understand the mechanism of disease pathogenesis and to develop possible drug 

interventions that might be useful in combatting disease.  I hypothesised that, by homology 

with other gammaherpesviruses, the LANA protein plays an important role in the 

maintenance of virus and establishment of the disease. Other LANA proteins are known to 

function by binding/association with proteins involved in cell replication and the innate 

immune response. The specific aim of this project was to work out which cellular proteins 

OvHV-2 LANA interacts with to start determining its exact function. Using the information 

of LANA-interacting proteins it may be possible to be able to use known drug inhibitors of 

these cellular proteins to treat MCF. 
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2. Materials and Methods 

In this section, we intend to determine the cellular protein interact with oLANA 

through three different approach; first, three-plasmid production system was used to 

generate a recombinant retrovirus to deliver oLANA into bovine T cells. Second approach 

was to insert GFP-oLANA template which lack the internal domain into a pMSCV-IRES-GFP 

vector using EcoRI and NOTI restriction enzymes. The success insertion of the protein was 

transfected into HEK 293T cells followed by co-immunoprecipitation of the transfected 

cells which then proceed for proteomics. Third and final approach was to confirm these 

interactions using immunofluorescence and localisation assays.    

2.1 Generation of recombinant retrovirus 

A key aspect in the generation of recombinant retrovirus as tools is the introduction 

of appropriate DNA vectors into a cell line which is able to produce the viral proteins 

needed for encapsidation of the required recombinant. One of the most important steps 

in gene transfer applications is the generation of pure stocks of recombinant virus free of 

replication-competent helper (Coffin et al., 1997). 

The three major proteins encoded within the retroviral genome are gag, pol and 

env, each of which plays a specific role in the retrovirus structure. Gag, an acronym for 

Group Antigens (Ag), is a polyprotein which acts as the core structure of the virus. It is the 

major component of the herpesvirus viral capsid and the major protein comprising the 

nucleoprotein core particle. Pol, a reverse transcriptase, is the essential enzyme which 

carries out the reverse transcription process which transforms the RNA genome to a 

double-stranded DNA pre-integrate form. Env, the envelope protein, determines the viral 
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tropism and plays a role in the association and entry of virions into the host cell; it also 

allows the retrovirus to bind to its target host cell using specific cell-surface receptors         

(Coffin et al., 1997). 

2.1.1 Purification of three plasmids  

To express oLANA, a three-plasmid production system was used based on the murine 

stem cell retrovirus (pMSCV) (Plasmid 20672, Addgene). These vectors will then be used to 

transfect mammalian cells and make recombinant retrovirus expressing the gene of 

interest. For recombinant retroviral work we will use three vectors containing LTRs and 

packaging signal (pMSCV-IRES-GFP) gag and pol (pEQpAM3) (The Pol-coding region 

conserved regions of reverse transcriptase) and the vesicular stomatitis virus G protein 

(pSRG), these plasmids were kindly provided by friend to this study. The recombinant 

retrovirus is replication defective the three plasmids were expressed using transfection 

assay into HEK293 T cells (Graham et al., 1977). The VSV G molecule will confer a broad 

host and cell type range to the recombinant virus (Finkelshtein et al., 2013).  

2.1.2 Plasmid Purification (Maxi prep technique) 

2.1.2.1 Agar plate and cell culture preparation 

  Agar plates were prepared by diluting the appropriate weight of LB agar (Luria-Bretani 

agar) (LB 1 % w/v tryptone, 0.5 % w/v yeast extract, 1 % w/v NaCl) (22700025, Invitrogen) 

in distilled water and then autoclaved. After cooling the agar to be below 60°C, 0.5 µl /ml 

ampicillin (Ampicillin, sodium salt 100mg/ml, A5354, Sigma) was added, then the agar was 

poured into Petri dishes (150318, ThermoFisher) and left to solidify. A volume of 10-20 µl 

of glycerol stock for each plasmid was add to the surface of separate plates and spread 

over using disposable loops, then plates were incubated overnight at 37 °C. On the 
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following day, single colonies were picked and inoculated in 10 ml LB broth (LB Broth 

Powder microbial growth medium (Lennox), 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L 

NaCl, L3022, Sigma), containing 0.5 µl/ml ampicillin (minipreparation), then incubated 16 -

18 hr at 37 °C in individual universal tubes on orbital incubator (Sanyo) at 200 rpm to 

prepare sufficient cells for plasmid purification. 

2.1.2.2 Plasmid Purification 

For large-scale propagation of the three plasmids in E. coli and to produce a large 

amount of plasmid DNA suitable for transfection into cell lines, Endo Free Plasmid Maxi Kit 

(10) (12362, QIAGEN) was used following the manufacturer’s instructions. Single colonies 

were picked up from previously cultured plates (one for each plasmid) and used in to 

inoculate 10 ml LB broth starter supplemented with 0.5 µl/ ml ampicillin, and incubated 

overnight at 37 °C with shaking at 200 rpm in an orbital incubator (Sanyo).  On the following 

day and in order to yield enough culture for plasmid expression, the starter culture was 

used to inoculate a further overnight culture of 100 mL LB broth containing 0.5 µl/ml 

ampicillin in a 1 L conical flask. The flask was placed in orbital incubator (SANYO) with 

shaking and incubated overnight using the same parameters mentioned before for culture. 

On the following day, the large-scale bacterial cultures were centrifuged at 6000 x g for 15 

minutes at 4 °C. The resulting bacterial cell pellet was resuspended in 10 ml buffer P1 (50 

mM Tris.Cl, 10 mM EDTA, 100 μg/ml RNase A, pH 8.0), then the bacteria were lysed by 

adding 10 ml buffer P2 (200mM NaOH, 1 w/v SDS) and inverting 4–6 times to mix and 

incubated for 5 minutes at room temperature (RT). The next step neutralised the lysate by 

addition of 10 ml chilled buffer P3 (3 M potassium acetate, pH 5.5). The solution was mixed 

thoroughly by inverting 4–6 times until the solution became completely colourless, and 
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then the cell lysate was poured into the barrel of the QIAfilter Cartridge (Qiagen) and 

Incubated at room temperature for 30 minutes. The cleared cell lysate was collected in a 

clean 50 ml tube (430829, Corning) by inserting the plunger gently into the QIAfilter 

Cartridge. 2.5 ml Buffer ER was added to the filtered lysate and mixed by inverting the tube 

approximately 10 times, followed by incubation for 30 minutes on ice. The lysate was 

decanted into Qiagen tip 500 (Qiagen) which had been pre-equilibrated by washing with 

10 ml equilibration buffer QBT (750 mM NaCl, 50 mM MOPS, 15% isopropanol v/v, 0.15% 

Triton X-100 v/v) that was allowed to drain by gravity flow. The lysate was applied into the 

QIAGEN-tip and allowed to enter the tip. The tips were then washed twice with 30 ml Buffer 

QC (1.0 M NaCl, 50 mM MOPS, 15% isopropanol v/v, PH 7.0) and left to pass through by 

gravity flow. The DNA was then eluted with 15 ml QN buffer (1.6 M NaCl, 50 mM MOPS, 

15% isopropanol v/v, PH 7.0). The eluted DNA was precipitated with 10.5 ml isopropanol 

(2-propanol BioReagent, 19516, Sigma) and pelleted by centrifugation at ≥15,000 x g for 

30 minutes at 4 °C. Pellets were further washed with 5 ml 70% molecular grade ethanol 

(E7023, Sigma), and spun at 15000 x g for 10 minutes, air dried for 5-10 minutes and the 

DNA resuspended in  1 ml of endotoxin-free Buffer TE (10 M Tris, PH 8.0; 1 mM  EDTA).  

Concentration and purity of the DNA was measured as mentioned in section (2.1.3) and 

DNA was stored at 4 °C. 

2.1.3 Measuring the deoxyribonucleic acid (DNA)   

The concentration of each DNA samples was measured using the Qubit® dsDNA BR 

Assay kit, (Q32850, Invitrogen) following the manufacture’s instruction. Initially, Qubit 

working solution was prepared in a ratio of1:200 by mixing Qubit dsDNA reagent with Qubit 

dsDNA buffer in a clean 1.5 ml sterile tube (S1615-5500, STARLA). The assay was performed  
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using 0.5 ml tubes (Axygen™ PCR Tubes with 0.5mL Flat Cap, 11331974, AXYGEN)  with a 

final volume in each tube of 200 μL, 190 μL of working solution was pipetted into two 

individual tubes followed by 10 μL of Qubit standard 1 and 2 respectively to prepare the 

standards for the assay.  199 μL working solution was pipetted into a clean tube for each 

sample to be assayed followed by 1 μL of each DNA separately, then mixed by vortexing 2–

3 s, the tubes then were incubated at room temperature (RT) for 2 minutes (to allow the 

DNA to stabilize with the reagent) and measured by Qubit® 2.0 Fluorometer, Invitrogen. 

The DNA was either used directly or stored at 4 °C until further use. 

DNA concentration was calculated using the following equation: 

Concentration of the DNA = QF value × (200)/x 

QF value = the value given by the Qubit® 2.0 Fluorometer. 

x = the number of microliters of the sample that was added to the assay tube. 

2.1.4 Endotoxin free Plasmid Samples 

Endotoxin-free preparations of plasmid DNA and high molecular weight genomic DNA 

is required in many molecular biology applications. As E. coli and Gram-negative eubacteria 

are common hosts for plasmid production, and the outer membrane contains 

lipopolysaccharides (endotoxin) which can cause inflammatory reactions, fever and 

endotoxic shock in vivo and decrease transfection efficiencies in vitro. Thus, Endotoxin 

Removal Kits were used to remove the endotoxin preparations (Petsch and Anspach, 2000). 

Some cells respond strongly even to very low endotoxin concentrations in plasmid DNA, 

resulting in significantly reduced transfection efficiencies in these so called endotoxin-

sensitive cell lines. 
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The three plasmids were cleaned to remove harmful endotoxins that could cause 

decreased transfection efficiencies using a Mira CLEAN® Endotoxin Removal Kit (Mirus Bio 

LLC, MIR 5910) which based on a rapid phase extraction that efficiently and conveniently 

removes endotoxin contamination from DNA according to the manufacturer’s instructions. 

The EndoGO Extraction Reagent was warmed to room temperature and vortexed before 

use.  The DNA samples were diluted to 0.5 - 1.0 mg/ml using TE buffer (10 M Tris, PH 8.0; 

1 mM EDTA), Table (2-1).  

DNA Volume µL TE µL Total Volume 

mL 

pEQpAM3 960  40  1  

PMSC-IRES-

GFP 

920  80  1  

pSRG 577  423  1  

                      

                      Table 2- 1. Dilution volumes used for endotoxin removal assay 

 

Volumes of 0.1 of MiraCLEAN® Buffer were added to the DNA, which was then 

mixed by vortexing, Table (2-2). The samples were incubated on ice for 5 minutes, then 

vortexed, the DNA was extracted by adding 0.03 volumes of the EndoGO Extraction 

Reagent to each tube, Table (2-3), the reaction’s colour changed to pink. Samples were 

vortexed briefly and incubated in the ice box for 5 minutes with intermittent vortexing (at 

least 2 times), followed by incubation for 5 minutes in a pre-warmed water bath at 50°C, 

which is required for complete separation of phases.  
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DNA Volume µL MiraCLEAN 

buffer µL 

pEQpAM3 960  96  

pMSC-IRES-GFP 920  92  

pSRG 577  57.7  

          

            Table 2- 2. Volumes of MiraCLEAN® Buffer used in endotoxin removal assay 

 

DNA Volume EndoGO Extraction 
Reagent µL 

pEQpAM3 1096  32.88  

pMSC-IRES-GFP 1092  32.76 

Psrg 1057.7  31.73  

         

  Table 2- 3. EndoGO Extraction Reagent volumes used in endotoxin removal assay 

 

Samples were centrifuged for approximately 20 seconds at 14000 x g or faster at 

room temperature, the tubes were removed gently from the centrifuge and tilted carefully. 

The upper colourless aqueous phase (containing the DNA) was transferred slowly to new 

sterile tubes to avoid the collapse of the interface between the two phases, the lower pink 

phase which contained the extracted endotoxin was discarded, then the tubes were placed 

on ice. To get a high quality and quantity of purified DNA, an extra 2/3 rounds of extraction 

were performed by repeating the steps but 0.03 volumes of the EndoGO Extraction 

Reagent were added to each tube to take in account the changes in volume, Table (2-4). 
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This repetition is sufficient to remove (or reduce to undetectable levels) endotoxin from 

contaminated plasmid DNA preparations. 

DNA Volume µL EndoGO Extraction 

Reagent µL 

pEQpAM3 1000  30  

pMSC-IRES-GFP 900  27  

pSRG 1000  30  

         

Table 2- 4. EndoGO Extraction Reagent volumes used in second round of endotoxin 

removal assay  

 

DNA samples were precipitated with 2 volumes of cold 100% ethanol, Table (2-5), 

then incubated at -20 °C or colder for 30 minutes. Samples were centrifuged at 14000 x g 

at 4°C for 20 minutes. The pellet was washed with 1 ml of 100 % ethanol and the 

supernatant was discarded. Followed by centrifugation at 14000 x g at 4°C for 20 minutes, 

the supernatant was discarded. Pellet was air dried for 5-10 minutes, then pellet was 

resuspended in 1 ml of TE buffer. 

DNA Volume µL 100 %ethanol 

µL 

pEQpAM3 500  1000  

pMSC-IRES-GFP 750  1500  

Psrg 800  1600  

       

Table 2- 5. Ethanol concentration used per DNA sample in endotoxin removal assay 
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2.1.5 Cell line culture maintenance 

Cells were thawed in a 37 °C water bath for about 1-2 minutes then added into 10 ml 

tissue culture media containing foetal calf serum (F6178, Sigma). After 2-4 days, cells were 

passaged when they reached a cell density of approximately 90% confluent. All cell lines  

except the LGL cell line (suspension), as described in section (2.1.5.3) were split and 

harvested into a new flasks once they covered ~80% of the bottom of the flask, as assessed 

by eye and seeded at a density of 10,000 cells per cm2. The media was removed and the 

cells were washed three times with 10 mL of sterile 1 x PBS (Phosphate Buffered Saline, 

D8662 Sigma). Monolayer cells were then detached from the plastic flask using 5 mL pre-

warmed trypsin-EDTA (Trypsin-EDTA (0.25%), 25200072, Life Technologies) and incubated 

a 37 °C for 1 minute. To inhibit the activate trypsin, 5 ml of fresh media containing 10 % 

foetal calf serum was add to the trypsinised cells and gently pipetted to break up the 

clumps and ensure the homogeneity. The cells were pelleted by centrifuged for 5 minutes 

at 1500 rpm (Eppendorf Centrifuge 5810 R, Eppendorf) to obtain the cell pellet and remove 

the trypsin residue, the supernantant was discard and the cells were resuspended in 10 ml 

fresh media. Cells were then counted by haemocytometer to about 1 x 106 cell/ ml ( 0.5-

2.5 ml depending on the cell number of the cell suspension) and seeded into new T175 cm2 

tissue culture flasks (431080,Corning) which contained 30 mL of fresh media. This 

procedure was repeated twice a week. 

2.1.5.1 Human embryonic cells (HEK 293T) cell line culture 

Adherent HEK 293T cell line was established from human embryonic kidney (Graham 

et al., 1977), cells were maintained at 37 °C in a humidified atmosphere at 5% CO2 in DMEM 

(Dulbecco's modified Eagle's medium, D6429 Sigma) supplemented with 1% L-glutamine 
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(350 μg/ml) (G7513, Sigma), penicillin (100 U/ml)/ streptomycin (100 μg/ ml) (P0781, 

Sigma), and 10% heat-inactivated foetal bovine serum (FBS) (F6178 Sigma).  

2.1.5.2 Mouse embryonic fibroblast cells lines (NIH 3T3) 

NIH 3T3 mouse embryonic fibroblast cells (originally derived from Swiss albino mouse 

embryo tissue) (ATCC® CRL1658™) were maintained in DMEM media (Dulbecco’s Modified 

Eagle’s Medium-high glucose, D6429, Sigma) supplemented with 10% FBS, 100 μg/ml of 

penicillin/ streptomycin (100 μg/ ml) (P0781, Sigma), and 350 μg/ml of glutamine. The cells 

were grown and maintained as described in section (2.1.5). 

2.1.5.3 Large granulocyte lymphocyte (LGL) 

The large granulocyte lymphocyte cell line known as (BJ1035) contains OvHV-2 and 

was propagated from infected cattle in vitro, this line was kindly provided for this study by 

(George Russell, Moredun institute). The LGL cell line was maintained in Iscove’s Modified 

Dulbecco’s Medium (IMDM) (13390, Sigma) supplement with 10 % foetal calf serum 

(F6178, Sigma), penicillin (100 U/ml) / streptomycin (100 μg/ ml), and 350 IU/ ml of IL-2 

(Chiron), the LGL cell  was incubated at 37 °C and 5 % CO2 as recommended by  (Schock et 

al., 1998).  

2.1.5.4 Preparation of cell Lines for long term storage 

For long term storage, cells which were 70-80% confluent were detached from the 

flask, as described in section (2.1.5), at a concentration of 2-10 x 106 cells per ml were 

transfered to 15 ml tubes and pelleted by centrifuge at 1300 rpm for 5 minutes. The 

supernatant was discarded and the pellet were incubated on ice for 10-30 minutes. 

Meanwhile, freezing medium was prepared by mixing 1.5 ml of dimethylsulphoxide 
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(DMSO) (D8418 Sigma-Aldrich), 4ml of FBS and 4.5 ml of required media and incubated on 

ice for 10 minutes. One- three ml of the freezing medium was then added to the cell pellet, 

1 ml of suspension was aliquoted in a cryovial and slowly frozen overnight at -80°C. The 

vials were then transferred to liquid nitrogen for long term storage. 

2.1.5.5 Growing cell lines from frozen stock 

Frozen cells were removed from liquid nitrogen and immediately thawed at 37 °C. The 

thawed sample was transferred to 15 ml tubes, pre-warmed media was added gradually to 

the thawed cells to prevent disruption of the cell membrane.  Then complete medium add 

to 10 ml. Cells were pelleted at 1300 rpm for 5 min, re-suspended in 10 ml of the pre-

warmed complete medium and added to a T25 cm2 flask. Cells were then placed in an 

incubator at 37°C with 5% CO2 in air. 

2.1.6 In vitro transfection of pMSCV-IRES, pSRG and pEQpAM3 in HEK 293T 

cells 

2.1.6.1 Calcium phosphate Transfection 

Transfection is a powerful scientific technique widely used in the study of the action of 

genes, gene products, gene expression and protein functions in cells. The transfection 

technique was developed to deliver foreign nucleic acids into certain cellular regions of 

cells to produce genetically modified cells (Recillas-Targa, 2006). The classical calcium 

phosphate transfection method was developed by Graham and van der Eb from 1973 

(Graham and van der Eb, 1973). It has become one of the major methods for DNA transfer 

into mammalian cells. 

For transfections, HEK 293T cells were plated the night prior to transfection in sterile 6-

well tissue culture plates (Corning® Costar® TC-Treated Multiple Well Plates, CLS3516, 
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Sigma) at 2 x105/well with DMEM containing 10% FBS and incubated overnight at 37°C with 

5% CO2 in air to give 80 to 90% confluence next day. Cells were counted for seeding by 

viable cell number per ml using a haemocytometer by mixing Trypan blue (Trypan Blue 

solution 0.4%, liquid, Sigma, T8154) with  the cultured cell suspension in a 1:1 v/v ratio then 

added to the haemocytometer chambers. Basically, the number of cells was multiplied by 

total cell suspension volume (10 ml) to estimate total viable cell numbers. All transfections 

were done with freshly prepared 2 M CaCl2 (Calcium chloride dehydrate, C7902, Sigma) 

with the desired amount of plasmid DNA (2-30 µg). 

Firstly, the pMSCV-IRES-GFP plasmid was transfected in HEK 293T cells as it is tagged 

with GFP and can express the green fluorescent protein. The transfection mixes were 

prepared by mixing an equal volume of 2xHEPES solution (274 mM NaCl (S7653, Sigma), 

1.5 mM Na2HPO4 (71643, Sigma), 50 mM HEPES (54457, Sigma), 4·7 H2O, pH 7.0) and 

DNA/CaCl2 precipitation, the volumes are shown in Table (2-6), the two solutions (tube A 

and tube B) were mixed dropwise to give a final volume 344 µl (172 µl/ well), and added to 

the cell culture medium after the time frame indicate below. For each transfection 

experiment, one well was transfected with pEGFP-C1 as a control which expressing the 

green fluorescent protein (GFP) alone to allow comparison of transfection efficiency with 

the pMSCV-IRES-GFP plasmid.  
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DNA Tube A Tube B 

 2XHEPES  2M CaCl2 

 
DNA  

 
nuclease-

free Water  
Total 

Volume 
of tube B 

pEGFP-C1 172 21 2 (1.6 
µg/ml) 

149 172 

pMSCV-

IRES-GFP 

172 21 6 (1 µg/ml) 145 172 

 

Table 2- 6. Volumes of DNA plasmids, 2XHEPES, CaCl2 and nuclease-free water for the 

transfection assay 

 

To make the transfection solutions, 2 sterile Eppendorf tubes each containing 172 

µl 2XHEPES (Tube A) were prepared, a further 2 sterile Eppendorf tubes were then 

prepared (Tube B) containing the nuclease-free water which was added first, and then 21 

µl of  2M CaCl2, finally 6 µg of DNA was added. The contents of tube B were added to the 

2XHEPES in tube A dropwise and incubated for 30 minutes at room temperature to allow 

the DNA complexes to form. 172 µl media from each well in the plates was discarded and 

then 172 µl from the mixture was added drop by drop to each of two wells, cells were 

incubated for 24 hr in a humidified incubator at 37°C and then processed for subsequent 

assays. 

Secondly, and after confirmed the green fluorescent expression of pMSCV-IRES-

GFP, transfection was performed for the three plasmids (pEQPMA3, pSRG and pMSCV-

IRES-GFP) together in order to produce the recombinant retrovirus in same procedure 

above with different DNA concentrations, Table (2-7).  
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 Tube 
A 

Tube B  

DNA 2XHEP
ES  

2M 
CaCl2 

DNA  
 

nuclease-
free 

Water  

Total 
Volume 
of tube B 

pEGFP-C1 172 21 2 (1.6 µg/ml) 149 172 

pMSCV-IRES-
GFP, pSRG and 
pEQpAM3 

172 21 3.42,5.42,5.7 
(1, 1.71 and 
1.83 µg/ml)  

136.46 172 

 

Table 2- 7. Volumes of DNA plasmids pEQPAM3, pSRG and pMSCV-IRES-GFP, 2XHEPES, 

CaCl2 and nuclease-free water for the transfection assay 

 

2.1.6.2 In vitro transfection of three plasmids using Polyethlenimine PEI 

PEI reagent was used in order to increase the efficiency of transfection in consider 

the insufficiency using calcium phosphate. To express the plasmids in HEK 293T cells, the 

plasmids were transfected in to the seeded cells using Polyethlenimine PEI reagent1 

(Polysciences, Germany, cat no 23966) according to manufacturer’s instructions. The 

transfection was prepared by diluting Polyethlenimine PEI reagent (4 µl) in 46 µl of 

OptiMEM medium per well (Opti-MEM™ Reduced Serum Medium, 31985070, 

Thermofisher). An appropriate amount of each vector (pMSCV-IRES-GFP, pSRG, pEQpAM3) 

(0.35, 0.52, 0.58 µg/ well of each vector sequentially) was added to the diluted PEI reagent, 

Table (2-8) and then mixed by pipetting up and down 4-6 times, then the components were 

centrifuged for 2 seconds. This was followed by incubation for 30 minutes at room 

temperature. The old media was discarded from each well and 1 ml of OptiMEM medium 

was added taking care not to disturb the cells, then 120 µl of PEI and DNA mixture was 

                                                      
1 0.1g Polyethlenimine dissolve in 150mM NaCl, Once all PEI has dissolved, pH adjust to 7.0 with 6M 
HCL then filter with 0.2 filter 
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added drop by drop spread over the plates(because we used 2 plats so we mix 56 µl of PE 

and 644 µl of OptiMEM, 14 wells). Then the plates were incubated for 6 hr at 37 °C with 

5% CO2 in air. Subsequently, the medium was replaced with 2.5 ml fresh MDEM medium 

supplemented with 10% FBS, glutamine (350 μg/ml) and penicillin (100 μg/ml). The plates 

were then incubated at 37°C, 5% CO2 in air for 72 hr. 

The transfected cells were prepared on ice by collecting the supernatants 72 hr post 

transfection in new sterile Eppendorfs and centrifuged at 150 xg for 10 minutes to pellet 

and collect any cell debris. Replace supernatant carefully using a pipette into a new 

Eppendorfs, discarding the pellet (Virus is stable at 4 °C no longer then 3-4 weeks). 

 

Volume per well (µl) Total OptiMEM Final 

1 GFP 0.56 (1.6 
µg/ml) 

   1 GFP 

2 pMSCV-
IRES-

GFP,pEQpA
M3 and 

pSRG 

0.35 
(1µg/ml) 

0.58 
(1.83µg/ml
) 

0.52 
(1.71µg/ml) 

1.4
5 
 

48.00 59.4
5 

Volume per 2 plates (x5) (µl) Tot
al 

OptiME
M 

Final 

1 GFP 0.56 
(1.6 

µg/ml) 
 

/ / 0.5
6 

48.00 48.5
6 

2 pMSCV-IRES-
GFP, 

pEQpAM3 
and pSRG 

1.75 
(1µg/ml) 

2.9 
(1.83µg/ml
) 

2.60 
(1.71µg/ml) 

7.2
5 

48.00 55.2
6 

 

Table 2- 8. The volumes of pSMCV-pEQpAM 3-pSRG plasmids and GFP 
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2.1.7 Determination of Viral Titres 

 2.1.7.1 Cell culture maintenance 

NIH 3T3 fibroblast cells were maintained in DMEM media and seeded into 6 well 

plates as 1.2x106/plate, cells were 60-70% confluent or less the next day, as described in 

section (2.1.5.2).  

2.1.7.2 Virus titre determination 

Virus titre was determined as the average number of fluorescence-activated cell (the 

infected cells will appear green fluorescent under the fluorescent microscope) take in 

consider the plate size, and dilution of the infectious stock. Initially, the virus stocks were 

filtered through a 0.45 m filter, then diluted (on ice) with different volumes;  1 ml, 200 µl, 

100 µl, 40 µl and 20 µl crude supernatant made up to 1 ml with fresh DMEM media (without 

serum), (Figure 2-1). These virus dilutions from transfected HEK293T cells were used to 

infect NIH 3T3 cells by replacing the old media with 1 ml virus dilution and incubated for 1-

3 hr at 37°C with 5% CO2 in air, the plate was agitatied every 10-15 minutes or so, then a 

further 4 ml DMEM media plus 10 % serum was added, then the plates were incubated for 

5 days at 37°C with 5% CO2 in air.  Cells were visualized under an inverted fluorescence 

microscope for a green signal of transduction over the course of 5 days.  
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        Figure 2- 1.  Dilutions of virus used in measurement the viral titre  

 

2.1.8 Isolation mononuclear cells from healthy cattle blood (MINCs) 

Blood contains different types of cells such as red blood cells (RBC) and white blood 

cells (WBC). Peripheral blood mononuclear cells (PBMCs), comprising lymphocytes (B-cells, 

T-cells, and NK-cells), monocytes, and dendritic cells, are frequently used for the evaluation 

of immune responses (Grievink et al., 2016). 

  Isolation of MINCs from peripheral blood was performed using bovine blood which 

was acquired from healthy cattle from the abattoir in Liverpool city. The mononuclear cells 

were separated from peripheral blood leukocyte (PEL) using Lymphoprep™ density 

gradient medium (07801, STEMCELL Technologies) according to the manufacturer’s 

instructions. Fifteen ml of Lymphoprep density medium was add to the SepMate™-50 (IVD) 

(85450, STEMCELL Technologies) by pipetting it through the central hole of the tube insert, 

then the blood samples were diluted with an equal volume of PBS with 2%FBS which will 

help to dispose the red blood cells later. The diluted blood then was pipetted slowly down 

to the side of the tube.  The SepMate tubes were centrifuged at 1300 xg for 10 minutes at 
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room temperature, then the top layer which contains the enriched MINCs was poured into 

a new sterile tube.  Ten ml of sterile water was add immediately to cells to remove the 

RBC, and centrifuged at 300 xg for 8 minutes at room temperature. Cells were washed 

twice with PBS with 2%FBS and then centrifuged at 300 xg for 8 minutes at room 

temperature. The pellet was resuspended with 10 ml of RPMI 1640 (Roswell Park Memorial 

Institute, R8758, Sigma) supplement with 10% FBS and 100 U/ml of penicillin. Then, 500 µl 

of Concanavalin A Jack bean (Con A to final concentration 500 µl) (C5275/ Sigma) was add 

to stimulate the cell growth. Cells were seeded into 24 well plates (3524, Costar) and 

incubated at 37°C. 

2.2 oLANA cloning into pMSCV-IRES-GFP vector 

Cloning is a molecular biology technique producing genetically identical individuals of 

an organism either naturally or artificially. On the other hand, in biological research the 

clone (molecular cloning) is generated by using recombinant DNA molecules which are 

inserted into a cloning vector, then incorporated into cultured host cells through a set of 

experimental methods (Lodish and Matsudaira, 2000). Many of The common cloning  

vectors that are used in molecular biology contain a green fluorescence protein (GFP) gene 

which is extremely useful as a reporter in eukaryotic cells studies since it was discovered in 

the jellyfish Aequorea victoria in the 1990s (Dai et al., 2007). GFP-oLANA template which 

was synthesised by Invitrogen (Amp 2016AB3JIP, Kozak-eGFP-oLANA del, 2053282, 

Invitrogen), was amplified using PCR, then inserted into pMSCV-IRES-GFP vector (Plasmid 

20672, Addgene) (Figure 2-3) using EcoRI and NotI enzymes and then cloned to produce a 

new construct oLANA DNA (Figure 2-2). We clone full-length oLANA protein which is 

encodes open reading frame 73 of OvHV-2 viruses by cloning approach and generated an 
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oLANA protein deletion mutant which lacked the internal domain. To date, only a small 

number of protein interactions have been reported for OvHV-2. To further confirm the 

quality of our construct results and generate a set of high-confidence interactions, we 

tested all positive DNA interactions in parallel by western immunoblotting and 

immunoprecipitation assays (IP) (Figure 2-2). About 50% of the protein interactions could 

be confirmed by IP, however, those which could not confirmed have previously been 

identified in studies focusing on other herpesviruses. However, some of the interactions 

not confirmed by IP may be nonphysiological and, for example, caused by auto activation 

(false positive results). We indicated that protein interactions occurred predominantly 

between proteins expressed at the same time point after infection. 
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Figure 2- 2. Schematic representation of oLANA construct generation 

HEK 293T cells stably expressing LANA Δ140–419 were obtained from OvHV-2 herpesvirus 

virus. OLANA-FL: oLANA-Full length, NTD: N-terminal domain. Constructs were utilised for 

immunoprecipitation and MS analysis. 

 

2.2.1 Conventional Polymerase Chain Reaction (PCR). 

PCR is one of the revolutionary molecular biology method developed by (Mullis, 1990) 

which is used to make many copies (millions or billions) of a particular region of DNA.  PCR 

is one an important, basic and valuable methods used in molecular biology field for DNA 

analysis, not only because the ability to run quickly with highly specific and sensitive 

Synthesis codon optimised gen 
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Plasmid expression
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protein isolated and Mass 

Spectrometry identification

Verification of the protein 
interactions by western immunoblot 

with specific antibodies
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quantitative production, but also to reduce the potential of cross-contamination (Burggraf 

and Olgemoller, 2004). 

Conventional PCR was employed to confirm the successful oLANA construct. PCR 

reactions were performed in a 20 μl volume in a thin-walled 200 μl PCR tube (PCR Tubes 

with Individual Attached Caps, Star Lab) following the manufacturer’s instructions for KODX 

kit (71087-3, Merck, Novagen). The reaction mix was prepared in a clean hood (Captair® 

Biohood, Erlab) treated by UV exposure for 20 min prior and after use. The reaction mix 

consisted of 2 μl of 10x KODX1 buffer (50 mM KCl, 50 mM Tris-HCl pH 8.0, 1 mM DTT, 0.1 

mM EDTA, 50% glycerol, 0.1% Nonidet P–40, 0.1% Tween® 20,); Merck (Novagen), 71087-

3), 0.62 μl of PCR Grade Water (Nuclease-Free Water, AM9937, Thermofisher (Ambion)), 2 

μl of 2 mM dNTPs (71154, Novagen), 0.8 μl of each primer (working concentration 10 

pmol/µl) (Eurofins Genomic), primer sequences are shown in Table (2-9), 0.4 μl of KOD XL 

polymerase (2.5 U/μL) ( Novagen, 71157) to which was added  100 ng/ml of template DNA 

(Invitrogen) predicted to encode a protein of 495 amino acids, Table (2-10), The 

appropriate annealing temperature (52.9°C) was determined and confirmed using a BIO-

RAD T100™ Thermal Cycler machine through using 8 samples from the same template with 

different temperatures to optimize the appropriate temperature. The PCR thermal cycle 

programme was composed of an initial denaturation step consisting of a 30 second 

incubation at 94 °C, an additional incubation for 5 seconds at 52.9 °C and extension step of 

74 °C for 60 second, then  these  amplification cycles were repeated for 30 cycles,  followed 

by a final extension at 74 °C for 10 min. 
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Oligonucleotide Sequence (5’→3’) 

 

Volume for 

100pmol/µl 

Forward primer 5’ ATGAATTCCGCCGCCACCATGGTGAGCAAGGGCGAG 3’ 

 

234 

Reverse primer 5’ TAGCGGCCGCCTATTGTTGGTTAAAAGGTAAAGATG 3’ 

 

322 

 

Table 2- 9. Primer sequences and p moles used in PCR assay to add restriction enzymes 

sites to synthetic gene.  

Restriction sites are underlined EcoRI in forward primer sequence and NotI in reverse 

primer sequence.  These primer used in conventional PCR assay to produce construct DNA     

 

Reagents Volume per reaction 

(µl) 

10X Buffer KODX1 2 

nuclease -free water 0.62 

(0.5 mM) dNTPs 2 

Primer F 0.8 

Primer R 0.8 

KOD polymerase 0.4 

DNA 13.37 

Total 20 

                                   

                             Table 2- 10. Reagents, primers and DNA used in PCR Assay 

 

2.2.2 Agarose gel electrophoresis 

Agarose gel electrophoresis is a process used to identify and separate the DNA based 

on size/ molecular weight and rate of movement through the gel under the electric field. 

A 1% w/v agarose gel was made by mixing 1 g of agarose (Agarose Molecular grade, BIO-
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41025, Bioline) with 100 ml of 1x TAE buffer (40 mM Tris-base, 20 mM glacial acetic acid, 

1 mM EDTA pH 8.0). The mixture was heated in a microwave oven until all agarose had 

melted, then the solution was left to cool (to approximately 65 °C).  Followed by adding 10 

μl of fluorescent nucleic acid SYBR Safe gel stain (S 33102, Invitrogen) and gently mixed 

into the agarose. Then, gel was poured slowly into a gel tray, the comb was set at one side 

of the gel, and any bubbles in the solution were removed. The gel was allowed to set 20 -

30 minutes to solidify, then the comb was removed and the gel placed into a gel tank 

(BioRad) filled with 1X TAE running buffer. PCR reactions were mixed 3:1 with loading dye 

(0.4% orange G, 0.03% bromophenol blue, 0.03% xylene cyanol FF, 15% Ficoll® 400, 10mM 

Tris-HCl (pH 7.5) and 50mM EDTA (pH 8.0) Blue/Orange 6x loading Dye, Promega) in order 

to visualize the DNA samples. Then 10-20 µl of amplified products were electrophoresed 

through 1 % w/v agarose gels and run at 100 V for the appropriate time. Gels were then 

documented under ultraviolet (UV) light (Ultraviolet Transilluminator, BioRad), images 

taken and target DNA bands sizes compared with 1 kb (CSL-MDNA-1KB DNA ladder, 

1x500ul vial, Cleaver) or 100 bp DNA ladders (green cleaver CSL- MDNA 100BP, lot 15D10). 

2.2.3 Extraction of DNA from agarose gels 

Initially, and after confirming the expected DNA fragments size, each gene sample 

visualized from agarose gel under UV light was excised from the gel using a clean sharp 

scalpel (Disposable Scalpels – Sterile, Swann Morton, 0501), and placed in a clean 1.5 ml 

Eppendorf tube; then purified using The PureLink™ Quick Gel Extraction Kit (Quick Gel 

Extraction Kit, K210012, Invitrogen) according to the manufacturer’s instructions. The DNA 

fragments of interest were dissolved in 500 µl Buffer L3 and then incubated for 10 minutes 

in a 50°C heat block which was preheated to 50°C before starting. The tube was inverted 



Chapter Two                                                                                                      Material and Methods 

92 
 

every 3 minutes to mix and dissolve the gel and then incubated for a further 5 minutes. 

One gel volume of isopropanol was added to the dissolved gel slice and mixed well. This 

was followed by transfer of the DNA onto a Quick Gel Extraction Column which was placed 

inside a wash tube, and the column was centrifuged at >12,000 × g for 1 minute to allow 

the DNA to bind to the column. Then the DNA was washed with 500 µl wash buffer (W1) 

which contained ethanol and the flow-through was discarded. The column was centrifuged 

at >12,000 × g for 1 minute. Further centrifugation of the column for an extra 2 minutes 

was done to completely remove the wash buffer and the flow through was discarded.  The 

column then was placed in a new 1.5 ml Eppendorf tube and 25-50 µl elution buffer (E5) 

was added and left for 1 minute at room temperature to elute the DNA. The column was 

centrifuged at >12,000 × g for 1 minute to get the elution which contains the purified DNA 

and stored at 4°C for immediate use or at −20°C for long-term storage. 

2.2.4 Restriction digest reaction of the DNA  

The PCR product containing the pMSCV-GFP-oLANA DNA sequence was cloned into 

the effector plasmid pMSCV-IRES-GFP vector, (Figure 2-3) (Plasmid 20672, Addgene), which 

was used for expression studies. The vector and purified PCR product were both cleaved 

using two restriction enzymes NotI which used to cut the 5’..GCˇGGCCGC..3’ sequence site 

(R0189s, 10U/ml, Biolabs) and EcoRI which was used to cut the 5’..GˇAATTC..3’ sequence 

site (R0101s, 20,000U/ml, Biolabs); in 1x reaction buffer 3.1 (NEB buffer 10x concentrate, 

B7203s, 1.25 ml, Biolab), Table (2-11), by incubation for 2 hr at 37°C, reactions contained 

10U and 20 units of NoTI and EcoRI enzyme sequentially in a total volume of 20 µl. This 

released the IRES-GFP fragment from the pMSCV-IRES-GFP vector. Then the vector only 

was processed with calf intestinal alkaline phosphatase (CIAP) (18009-027, Invitrogen) to 
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remove the terminal 5’-phosphate groups from the plasmid backbone and the IRES-GFP 

fragment, reactions were in a total volume of 20 µl and contained 1µl of CIAP and 2 µl of 

10X dephosphorylation buffer (Y 01371, Invitrogen), this procedure suppresses re-ligation 

of vector molecules with the IRES-GFP fragment in the ligation reaction. This step will 

favour the intact 5’-terminal phosphate residues of our PCR product ligating into the 

dephosphorylated plasmid vector by reducing the efficiency of the relegation of the IRES-

GFP reaction.  

Buffers pMSCV-IRES-GFP 

Vector  

pMSCV-GFP-

oLANA 

nuclease -free water 11 µl - 

Buffer3.1  2 µl 2 µl 

DNA 5 µl 16 µl 

NoTI Enzyme (10000U/ml) 1 µl 1 µl 

EcoRI Enzyme (20,000U/ml) 1 µl 1 µl 

 

Table 2- 11. Restriction enzymes and buffers used in restriction digests of pMSCV-GFP-

oLANA PCR product and the plasmid vector  
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Figure 2- 3. MSCV-IRES-GFP map indicating the EcoRI and NotI restriction sites 

Other restriction sites are shown alongside the location of restriction. Long terminal repeat 

(LTR) regions are shown, as in the ampicillin (Amp) and green fluorescent protein (GFP) 

genes. The internal ribosome entry site (IRES) is shown downstream of the GFP gene. 

Direction of translation is represented via arrows. 

 

2.2.5 PCR product purification  

The PCR product was purified (to remove the unwanted fragment ends after 

restriction enzyme digestion) using (QlAquick PCR purification kit, 28104, Qiagen). Initially, 

5 volumes of Buffer PB were added to 1 volume of the PCR sample and mixed thoroughly. 

The DNA was transferred to the QIAquick column which placed in 1.5 ml microcentrifuge 

tube to bind to the column membrane and centrifuged for 30–60 seconds, the column was 
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washed with 750 µl of Buffer PE and centrifuged for 30–60 seconds and the flow-through 

was discarded. The QIAquick column was centrifuged once more for 1 minute after 

discarding the flow-through to remove residual wash buffer. The DNA was eluted by adding 

20-50 µl of EB Buffer (10 mM Tris-Cl, pH 8.5) and centrifuged for 1 minute, then the purified 

DNA was analysed on a 1% agarose gel as in (2.2.2). 

2.2.6 DNA ligation 

Ligation is a method by which a DNA insert is joined to a vector through a covalent 

bond called a phosphodiester bond. T4 DNA ligase is an enzyme that catalyses the end-to-

end joining of the DNA by forming a phosphodiester bond between the 3’hydroxyl and the 

5’phosphate ends of nucleic acid molecules (Sambrook et al., 2001).  

For ligation step in a microfuge tube to ligation mixture was set up by mixing 1 µl (5 

ng) of linearised vector and  4 µl (5-50 ng) of digested PCR product was set up, then 1 µl of 

T4 DNA ligase (1U/ul) (15224-017, Invitrogen), and  4 µl of 1x T4 buffer (5x T4 ligase buffer 

250 mM Tris-HCl (pH 7.6),  50 mM MgCl2, 5 mM ATP, 5 mM DTT, 25% (w/v) polyethylene 

glycol-8000) (1253689, Invitrogen) were added to a final volume of 10 µl, the Ligation 

reaction was mixed gently and incubated at 4°C, overnight. 

2.2.7 Plasmid transformation into chemical competent cells 

Transformation is the ability of bacteria to directly uptake, incorporate and express 

exogenous genetic material from its surrounding. It might occur in nature as a response to 

environmental conditions such as starvation and cell density, and can also be induced in a 

laboratory (Johnston et al., 2014). 
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To transform the pMSCV-GFP-oLANA DNA, clone reaction was prepared by mixing 4 

µl of the ligation reaction with 1 μl supplied salt solution (1.2 M NaCl, 0.06 M MgCl2, 

1718889, Invitrogen). For transformation, a volume of 2 μl (5-50 ng DNA) of the cloning 

reaction was mixed gently with 50 µl vial of Chemically Competent Escherichia coli (E.coli) 

(Mach1™ One Shot®, C404003, Invitrogen), and incubated on ice for 30 minutes, the 

bacterial mixture was heat- shocked for 30 seconds at 50 °C in a water bath (Heat water 

bath, Grant Instruments) which opens the pores of the cell membrane allowing entry of 

the plasmid. The vial was then transferred back to ice immediately  and 250 μl of supplied 

S.O.C medium (Super Optimal broth with Catabolite repression) ( 15544034, Invitrogen) (2 

% tryptone, 0.5 % yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 

and 20 mM glucose) was added into the  transformed E.coli, then capped tightly and 

incubated horizontally with rotation for 1 hr at 37 °C in an orbital incubator (Sanyo) at 200 

rpm to allow the bacteria to recover from the heat shock and to express the antibiotic 

resistance gene present on the plasmid DNA. This was followed by streaking the 

transformed bacteria on pre-warmed LB agar plates supplemented with 0.5 µl/ml 

ampicillin, as mentioned in section (2.1.2.1), then the plates were incubated inverted, 

overnight at 37 °C.   

2.2.8 Plasmid purification (mini preparation)  

Purification of the plasmid DNA from transformed bacteria was carried out using a 

mini preparation using Qiagen plasmid purification kit (QIAprep Spin Miniprep Kit (50), 

27104, Qiagen) following the manufacturer’s instructions. A single colony was picked from 

the freshly streaked LB agar plate, and inoculated in 5 ml LB broth (LB Broth Powder 

microbial growth medium (Lennox), 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L NaCl, L3022, 
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Sigma), supplement with 0.5 µl/ml ampicillin (minipreparation), and incubated 18-24 hr at 

37 °C in individual universal tubes in orbital incubator (Sanyo) at 200 rpm to prepare 

sufficient cells for plasmid mini purification. The overnight saturated growth cultures from 

an inoculating individual-single colony were harvested by spinning at 6800 x g (› 8000 rpm) 

for 3 minutes at room temperature using microfuge centrifuge (Backman Coulter). The 

supernatant was discarded and the bacterial pellet was resuspended in 250 μl 

resuspension buffer P1, when there were no visible cell clumps, 250 μl lysis buffer P2 was 

added after transfer to a micro centrifuge tube, the reaction was mixed thoroughly by 

inverting the tube 4-6 times until the colour turned blue, 350 μl of Buffer N3 (3 M 

potassium acetate, pH 5.0) was added to neutralized the reaction by mixed thoroughly until 

the solution became colourless. The lysate was centrifuged at 13,000 rpm (~17,900 x g) for 

10 minutes. 800 μl of the supernatant which contained the plasmid DNA was carefully 

applied into the QIAprep 2.0 spin column and centrifuged for 30-60 s.  The flow-through 

was discarded, 500 µl of PB buffer was added to the column and centrifuged for 30-60 s. 

at 13,000 rpm (~17,900 x g) and the flow-through was discarded, the column was washed 

with 750 µl Buffer PE and centrifuged for 30-60 s. and the flow-through was discarded, 

then the column was placed in a clean 1.5 ml microcentrifuge tube and further centrifuged 

for 30-60 s at 13,000 rpm to completely remove the residual ethanol. The DNA was eluted 

from the column 1.5 ml microcentrifuge by apply 50 μl of Buffer EB (10 mM TrisCl, pH 8.5), 

then incubated for 1 minute at room temperature, followed by centrifuge for 1 minute, the 

purified plasmid DNA was stored at 4 °C. 
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2.2.9 Restriction digestion mini prep DNA and agarose gel electrophoresis 

To confirm the identity the insertion, the mini prep DNA was cut with restriction 

enzymes NotI and EcoRI as described in section (2.2.4.) Table (2-11), then the DNA 

electrophoresed through 1 % w/v agarose gel as described in section (2.2.2).        

2.2.10 Measuring the deoxyribonucleic acid (DNA)  

To measure the concentration of the DNA plasmid, Qubit® dsDNA BR Assay kit from 

ThermoFisher (Q32850) was used according to the manufacturer instructions, as 

mentioned in section (2.1.3). 

2.2.11 DNA sequencing 

The resulting plasmids (10-20 ng) were sequenced at Source Bioscience (Rochdale, 

UK) to confirm the identity and orientation of the inserts after being confirmed by 

restriction enzyme digestion by using 3′ sequencing primer: pCDH-rev 

(GCATTCCTTTGGCGAGAG), and 5' sequence primer: pBABE 5' (CTTTATCCAGCCCTCAC) 

(Weinberg Lab) Psi packaging signal, these primers central M to the vector sequences 

adjacent to the insert, facilitating sequencing of the entire insert. The derived sequence 

data were aligned using Basic Local Alignment Search Tool programme (BLAST) via the 

National Centre for Biotechnology Information website (http://www.ncbi.nlm.nih.gov/) to 

confirm the sequence of the cloned targets and compared to other available sequences on 

Genbank (http://blast.ncbi.nlm.nih.gov/Blast.cgi).  

2.2.12 Plasmid purification (maxi preparation)  

For large-scale propagation of the plasmid from transformed bacteria in order to 

produce a large amount of plasmid DNA suitable for transfection into mammalian cells, the 

http://www.ncbi.nlm.nih.gov/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Endo Free Plasmid Maxi Kit (10) (12362, QIAGEN) was used following the manufacturer’s 

instructions. Single colonies were picked up from a freshly streaked LB agar plate previously 

confirmed to contain the correct insert by mini preparation analysis as described in section 

(2.2.8), inoculated into 10 ml LB broth supplemented with 0.5 µl/ ml ampicillin, and 

incubated overnight at 37 °C with shaking at 200 rpm in an orbital incubator (Sanyo).  On 

the following day and in order to yield enough cells culture for plasmid expression, this 

starter culture was inoculated into 100 ml LB supplement with 0.5 µl/ml ampicillin in a 1 L 

conical flask. The flask was placed in an orbital incubator (SANYO) with shaking and 

incubated overnight using the same parameters mentioned before for culture. Bacterial 

cells were harvested by centrifugation at 6000 x g for 15 minutes at 4 °C. The resulting 

bacterial cell pellet was resuspended in 10 ml buffer P1 (50 mM Tris.Cl, 10 mM EDTA, 100 

μg/ml RNase A, pH 8.0), 10 ml of buffer P2 (200mM NaOH, 1 w/v SDS) in order to lyses 

them, and incubated for 5 minutes at RT. next and to neutralise the lysate 10 ml of chilled 

buffer P3 (3 M potassium acetate, pH 5.5) was added and the solution mixed thoroughly 

until the solution became completely colourless. Then, the cell lysate was poured into the 

barrel of the QIAfilter Cartridge (Qiagen) and Incubated at room temperature for 30 

minutes. The cleared cell lysate was collected in a clean 50 ml tube by inserting the plunger 

gently into the QIAfilter Cartridge. 2.5 ml Buffer ER was added to the filtered lysate and 

mixed, followed by incubation for 30 minutes on ice. The lysate was decanted into a Qiagen 

tip 500 (Qiagen) which had been pre-equilibrated by washing with 10 ml equilibration 

buffer QBT (750 mM NaCl, 50 mM MOPS, 15% isopropanol v/v, 0.15% Triton X-100 v/v) 

that was allowed to drain by gravity flow. The lysate was applied into the QIAGEN-tip and 

allowed to enter the tip, the tips were then washed with 2 x 30 ml Buffer QC (1.0 M NaCl, 

50 mM MOPS, 15% isopropanol v/v, PH 7.0) and left to pass through by gravity flow. The 
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DNA was then eluted with 15 ml QN buffer (1.6 M NaCl, 50 mM MOPS, 15% isopropanol 

v/v, PH 7.0). The eluted DNA was precipitated with 10.5 ml isopropanol (2-propanol 

BioReagent, 19516, Sigma) and pelleted by centrifugation at ≥15,000 x g for 30 minutes at 

4 °C. Pellets were further washed with 5 ml 70% molecular grade ethanol (E7023, Sigma), 

spun at 15000 x g for 10 minutes, air dried for 5-10 minutes and the DNA resuspended in  

1 ml of endotoxin-free Buffer TE (10 M Tris, PH 8.0; 1 mM  EDTA).  Concentration and purity 

of the DNA was measured (section 2.1.3) and DNA was stored at 4 °C. 

2.2.13 Preparation of bacterial stocks for long term storage 

To store bacterial clones, 750 μl of sub-confluent bacterial culture was mixed with 250 

μl of sterile glycerol (60 %) and immediately snap frozen in dry ice and kept at -80 °C as a 

glycerol stock (Ferrer-Miralles et al., 2015) .  

2.2.14 In vitro calcium phosphate Transfection of pMSCV–GFP-oLANA in 

HEK 293T cells: 

 2.2.14.1 HEK 293T cell culture maintenance  

HEK 293T cell line was maintained at 37 °C in a humidified atmosphere at 5% CO2 in 

DMEM as described in section (2.1.5.1) 

2.2.14.2 In vitro calcium phosphate Transfection 

For transfections, HEK 293T cells were seeded the day before transfection, and the 

transfection was done with freshly prepared 2 M CaCl2 with the desired amount of plasmid 

DNA, as described in section (2.1.6.1) take in consider the different DNA concentration, as 

shown in Table (2-12). 
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 Tube A Tube B 

DNA 2XHEPS  2M CaCl2  DNA  
 

nuclease
-free 

Water  

Total 
Volume 
Tube B  

pEGFP-C1 172 21 2 (1.6 
µg/ml) 

149 172 

pMSCV-IRES-
GFP 

172 21 6 (1 
µg/ml) 

145 172 

pMSCV-GFP-
oLANA 

172 21 6.44 (1.86 
µg/ml) 

144.56 172 

 

Table 2- 12. Volumes of DNA, 2XHEPES, CaCl2 and nuclease-free water for the          

transfection assay 

 

Successful transfection of pEGFP-C1 and pMSCV-GFP-oLANA was confirmed by 

visualizing the expression of GFP by fluorescent microscope 24 hr after the transfection 

procedure. Cells were harvested in 500 µl PBS (Dulbecco’s Phosphate Buffered Saline, 

D8662, Sigma), by scraping from the surface of the substrate using a cell scraper (CytoOne® 

Cell Scrapers, CC7600-0250, Star lab) after removal of the media from the cells, and then 

pelleted by centrifugation at 2,500 rpm for 5 minutes at 4°C. The supernatant was 

discarded and the cell pellet was lysed in 50 µl of 2x SDS sample buffer (1M Tris PH 6.8, 1% 

v/v of 20% SDS (sodium dodecyl sulphate), 20% glycerol, 90 mM 2-mercaptoethanol, 0.05% 

bromophenol blue) followed by sonication with Ultrasonic Processor for Small Volume 

Applications (VCX130, Sonic) for 5 seconds, followed by heating for 10 minutes at 95 °C, 

then quick centrifugation and stored at -20°C for immunoblot analysis. 

2.2.15 western Immunoblotting (WB) 

Western blotting or Sodium- dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE) is an important technique used in cell and molecular biology which was 

introduced by Towbin et al. (1979).  Western blotting technique is a technique used for 

protein analysis because it uses a specific antibody to identify target proteins that have 
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been separated based on size by gel electrophoresis. The technique uses three elements 

to accomplish this task: (1) separation by size, (2) transfer to a solid support, and (3) 

marking target protein using a primary antibody for detection and a secondary antibody to 

visualize. In general, the primary antibody that recognizes the target protein in a western 

blot is not directly detectable. Therefore, tagged secondary antibodies are used as the 

means of ultimately detecting the target antigen (indirect detection). 

2.2.15.1 Sample preparation  

Monolayer cells were harvested by adding 500 µl PBS (Dulbecco’s Phosphate Buffered 

Saline, D8662, Sigma), and scraping the cells from the surface of the substrate using cell 

scraper (CytoOne® Cell Scrapers, CC7600-0250, Star lab) after discarded the old media from 

the cells, then transferred into Eppendorf tube and centrifuged at 2,500 rpm for 5 minutes 

at 4°C.  The supernatant was discarded and pellets were resuspended in equal amount of 

sample loading buffer (2 x) (62.5 mM Tris–HCl pH 6.8, 3 % (w/v) SDS, 5 % β– mercapto-

ethanol, 10 % glycerol and 0.01 % bromophenol blue) (about 20-50 μl) for protein 

extraction. Cell lysate were sonicated with Ultrasonic Processor for Small Volume 

Applications (VCX130, Sonic) for 5 seconds, followed by heating for 10 minutes at 95 °C to 

denature the protein, then centrifugation and use directly or stored at -20°C for later 

immunoblot analysis. 

2.2.15.2 SDS-Polyacrylamide gel electrophoresis preparation (SDS-PAGE) 

The glass plates (90 mm-wide x 83 mm-high x 1 mm-thick) (ATTO, AE6530 mPAGE, 

Japan) were thoroughly cleaned and then dried and assembled according to the 

manufacturer’s instruction. The resolving gel stocks of 15% and 12% concentration (15 ml/ 

2 gels) were prepared freshly with dH2O, see Table (2-13). After pouring the resolving gel 
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into the plates, it was overlaid by adding 1 ml of dH2O then permitted to polymerize for 30 

min. Then 5% stacking gel (5 ml/ 2 gels) was prepared (0.62 ml of 0.5 M Tris pH 6.8, 0.833 

ml of 30 % acrylamide, 25 μl of 20 % SDS, 50 μl of 10 % (w/v) APS, 5 μl TEMD) and added 

after removing the H2O, to fill the space above the resolving gel; the comb was then 

inserted immediately without forming air bubbles and left for 30 minutes to polymerise. 

The comb was removed gently, when the gel was completely polymerized. After removing 

comb the wells were washed with 1 x running buffer to remove any un-polymerised 

acrylamide.  

Buffers 12%Resolving 

Gel 

15%Resolving 

Gel 

Stacking Gel 

Acrylamide/bisacrylamide 6 ml 7.5 ml 833 µl 

Resolving gel buffer (1.5M 

Tris pH 8.8) 

5 ml 5 ml ------ 

Stacking gel buffer (0.5M 

Tris pH 6.8) 

 ----- 820 µL 

dH2O 3.9 ml 2.4 ml 3.817 ml 

20% SDS 75µl 75µl 25 µl 

10% APS 75 µl 75 µl 50 Μl 

TEMED 25 µl 25 µl 5 Μl 

  

   Table 2- 13.  The recipe for 12% and 15% SDS-PAGE gels for western blot assay 

 

2.2.15.3 Western blotting  

Equivalent amounts of denatured protein samples (10 µg-20 µg) were loaded onto 

the gel alongside one well loaded with 8-10 µl of protein marker sample (Spectra™ 

Multicolour Broad Range Protein Ladder, 26634, thermos scientific, Lithuania) for protein 

size estimation. Electrophoresis was performed in 1X running buffer (50 mM Tris, 192 mM 

glycine, 0.1 % (w/v) SDS pH 8.3) using a vertical gel apparatus (ATTO, Japan) at 220 V for 60 
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min at room temperature (or at 60 Volts (V) for 90 minutes), then at 200 V for 1 hr or until 

the dye front had migrated to the bottom of the gel to separate the proteins (Kurien, 2012). 

Wet transfer method was used to transfer the separated proteins onto a polyvinylidene 

fluoride (PVDF) membrane (IVPH00010, Merck). To assemble the transfer sandwich, 

double  Whatman filter paper and the sponges were saturated in cold transfer buffer (120 

mM Tris, 192 mM glycine and 20 % (v/v) methanol), and the membrane soaked in 100 % 

methanol for 1 min followed by washing  in freshly prepared transfer buffer for 1 min at 

RT. This was followed by assembly of the gel sandwich without trapping air bubbles by 

placing the gel and membrane between the double filter papers and sponges which were 

saturated with transfer buffer (any trapped air bubbles were carefully squeezed out by 

gently rolling a pipette over the top blotting paper). The membrane was always placed 

between the gel and the positive electrode in a vertical electrophoresis tank that was filled 

with cold transfer buffer and frozen cool block. The tank was kept cold during the 

electrophoresis by placing in an ice tray. The electro- blotting was performed at 200V and 

350mA for 60:15 min. Then and to identify the transferred protein the membrane was 

carefully removed after transfer and  blocked in blocking buffer (5% (w/v) skimmed milk 

powder ( Marvel,Uk) in 1x Tris buffered saline-tween 20 (TBS-T) (20 mM Tris-HCl, pH 7.5, 

150 mM NaCl and 0.1 % (v/v) Tween 20) overnight at 4 °C with gentle shaking.  

Subsequently, the membrane was incubated with required concentration of primary 

antibody diluted in blocking buffer for 2hr at RT with gentle shaking, Table (2-14), then the 

membrane was washed three times with 1x Tris buffered saline-tween 20 (TBS-T) (20 mM 

Tris-HCl, pH 7.5, 150 mM NaCl, 0.1 % (v/v) Tween20) for 10 minutes each with shaking. 

Bound primary antibody was incubated with an appropriate secondary (HRP) (referred in 
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the following relevant following sections) diluted appropriately in blocking buffer for 1 hr 

at RT with gentle agitation. The membranes were further washed 3X  with 1x TBS-T for 10 

minutes each with shaking at room temperature, and then the membrane was developed 

for detection the protein band by freshly prepared substrate working solution 

(chemiluminescence (ECL)) (ECL substrate, 1705060, BioRad) by mixing both substrate 

components 1:1 (0.1 mL/ cm2) to identify the target proteins and visualised by using 

ChemiDoc™ touch Imaging Systems (Bio-Rad, 1708370) according to manufacturer’s 

instructions (Kurien and Scofield, 2015). 

2.2.15.4 Antibodies used in western blot assay. 

Western blot assays were performed to analyse pMSCV-GFP-oLANA protein samples 

and to determine the molecular size of the target protein using a number of primary 

antibodies with different host origins combined with appropriate secondary antibodies. 

The primary antibodies were diluted to the appropriate concentration with blocking buffer 

(5% skimmed milk/ TBS-T) and incubated for 2 hr at room temperature with shaking. The 

secondary antibodies were diluted in the same buffer but incubated for 1 hr at room 

temperature with shaking. Following Table (2-14) showed the antibodies with their dilution 

and host origin. 
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 Antibody Dilution Manufacturer  Host 

Primary Antibody 

GFP-SC 1:500 Santa Cruz Biotechnology, 

sc-9996 

 Mouse 

Anti-Rad50 1:2000 Merck, 05-525  Mouse 

Anti-p53 1:5000 Sigma, PLA0072  Rabbit 

Anti-cGAS 1:10000 Merck, ABF124  Rabbit 

Anti-SDF2L1  1:1000 ThermoFisher,PA5-71817 Rabbit 

Anti-CCDC12 1:1000 Sigma,SAB1412929 Rabbit 

Anti-histone 1:500 Abcam, 71594 Mouse 

Secondary Antibody 

Anti-mouse IgG 
(whole molecule)  
Peroxidase 

1:10000  Sigma, A4416   Mouse 

HPR Goat Anti-
Rabbit IgG 

1:10000 Vector Laboratories, PI-1000  Rabbit 

           

Table 2- 14. List of primary and secondary antibodies used for western blot assay. 

GFP: green fluorescent protein, Rad50: DNA repair protein, p53: tumour protein, CGAS: 
Cyclic GMP-AMP synthase, SDF2L1: Stromal Cell Derived Factor 2 Like 1, CCDC12: Cell 
division control protein 12, HPR: horseradish peroxidase 

 

2.2.16 Immunoprecipitation of pMSCV-GFP-oLANA from HEK 293T 

mammalian cell 

2.2.16.1 In vitro calcium phosphate transfection of pMSCV-GFP- oLANA in 

HEK 293T cells 

 For immunoprecipitations, the HEK 293T cell line was seeded into large 25 cm Cell 

Culture/Petri Dishes (168381, ThermoFisher) at 4.5 x106/dish and cultured in DMEM media 

without penicillin, so that cells were more than 70-80% confluent after 24 hr incubation at 

37°C with CO2 in air. The cells were transfected by calcium phosphate transfection method 
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using 2 M CaCl2 reagent (Calcium chloride dehydrate, C7902, SIGMA), mixed with 2XHEPES 

in a total volume of 2560 µl, Table (2-15) see section (2.1.6.1). 

 
Tube A Tube B  

DNA 2XHEPE
S  

CaCl2  DNA  Nuclease-
Free Water  

Total 
Volume  

pEGFP-C1 1280 156.16 32 (1.6 
µg/ml) 

1091.84 1280 

pMSCV-GFP-
oLANA 

1280 156.16 96.6 
(1.86 

µg/ml) 

1027.24 1280 

pMSCV-GFP-
oLANA 

1280 156.16 
 

41.4 
(1.28 

µg/ml) 

1082.44 1280 

 

Table 2- 15. The volumes of DNA, 2XHEBES, CaCl2 and dH2O for calcium chloride 

transfection assay 

  

The tube B contents were added to tube A dropwise and incubated for 30 minutes at 

room temperature as described in section (2.1.6.1), 2560 µl media were discarded from  

each plate and the transfection mixture was added in a dropwise manner (very slowly) and 

the plates then were incubated overnight at 37°C in CO2 incubator.      

 2.2.16.2 Immunoprecipitation using GFP-Trap A   

2.2.16.2.1 Immunoprecipitation using lysis buffer without sodium 

deoxycholate  

GFP-Trap A beads (Chromotek) were used for immunoprecipitation of GFP-fusion 

proteins according to the manufacturer’s instructions. The growth media was aspirated 

and the adherent cells were harvested by adding 1 ml ice-cold PBS (Dulbecco’s Phosphate 

Buffered Saline, D8662, Sigma) to the cells and the cells were scraped from the dishes. The 
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cells were transferred to a pre-cooled tube (Protein LoBind Tubes, Eppendorf, 022431081) 

and spun at 500 xg for 3 minutes at 4°C to pellet them, the supernatant was discarded. The 

cell pellet was washed twice with ice-cold PBS. Cells were lysed by resuspending  and  

pipetting up and down in 200 μl ice-cold lysis buffer (10 mM Tris/Cl pH 7.5; 150 mM NaCl; 

0.5 mM EDTA; 0.5% NP-40) which contained  proteinase inhibitor cocktail at 1:100 (Halt™ 

Protease Inhibitor Cocktail (100X), 78429, Thermo Scientific™). The tubes were placed on 

ice for 30 minutes with extensive pipetting every 10 minutes. The cell lysate was 

centrifuged at 20,000 x g for 10 minutes at 4°C, the supernatant was transferred  to a pre-

cooled tube and the pellet was discarded, 300 µl dilution buffer (10 mM Tris/Cl pH 7.5; 150 

mM NaCl; 0.5 mM EDTA) containing proteinase inhibitor at 1:100  was added. GFP-Trap®_A 

beads (Chromotek) were vortexed to ensure they were in suspension and 25 μl beads slurry 

were pipetted into 500 μl ice-cold dilution buffer, then centrifuged at 2500x g for 2 minutes 

at 4°C. This wash was repeated twice, the diluted lysate was then added to the equilibrated 

GFP-Trap®_A beads, and 50 µl of diluted lysate was saved for immunoblot analysis. The 

lysate and beads mix was incubated overnight at 4°C with end-over-end tumbling. After 24 

hr incubation, the lysate and beads mix was resuspended in 500 µl ice-cold dilution buffer 

(wash buffer). The beads with bound complexes were then centrifuged at 2.500 x g for 2 

minutes at 4°C and the pellet was washed twice with 500 µl dilution buffer and the 

supernatant discarded. 

For western blot analysis, the GFP-Trap®_A beads and lysate mixes were resuspended 

in 100 μl 2x SDS-sample buffer and heated for 10 minutes at 95°C to dissociate 

immunocomplexes from GFP-Trap®_A beads. The beads were pelleted by centrifugation at 
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2.500 xg for 2 minutes at 4°C and SDS-PAGE gels were performed with the supernatant, 

section (2.2.15.2), and the bead pellet discarded. 

2.2.16.2.2 Immunoprecipitation using lysis buffer with sodium 

deoxycholate 

Basically, the same procedure as that described in the above section (2.2.16.2.1) was 

repeated for same target protein with similar conditions. The only different step was to 

use 200 μl ice-cold lysis buffer that contains sodium deoxycholate (10 mM Tris/Cl pH 7.5; 

150 mM NaCl; 0.5 mM EDTA; 0.5% NP-40; 0.5 Mm sodium deoxycholate) to better extract 

the proteins from the nucleus, which also contained proteinase inhibitor cocktail at 1:100. 

2.2.17 Proteomic analysis 

Recently, developments in the field of genome sequencing, transcriptomic and 

proteomic approaches have been crucial for identifying the interactions of proteins 

expressed in host cells. The field of proteomics is the large-scale study of proteins, it 

involves many techniques; including; LC-MS/MS,  immunoassays and two-dimensional 

differential gel electrophoresis (Wilson, 2013). Proteomics involves the study of peptides 

and proteins within a biological system and it is intended to quantify changes in protein 

abundance. 

 More recently, advances in mass spectrometry (MS) have allowed the development 

of methods which are more sensitive and are not hindered by modifications to or a blocked 

N-terminus. MS-based proteomics is now the most commonly used technology for 

identifying proteins in a single spot or gel band slice from a simple experiment and is 

increasingly being used to identify as many proteins in a single experiment as possible. The 
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technique is not always completely successful and requires a high level of expertise (Steen 

and Mann, 2004). 

In order to identify proteins, they can be enzymatically cleaved using proteases and 

the resulting peptides are analysed by MS. Proteins are commonly digested using trypsin 

which cleaves proteins at the C-terminal side of arginine and lysine residues. Other 

proteases used include Lys-C and Glu-C which cleave at the C-terminus of lysine and 

glutamate residues respectively and Asp-N which cleaves at the N-terminus of aspartate 

residues.  

Furthermore, the importance of proteomic analysis is its ability to study post-

transcriptional control as well as post-translational modifications (PTMs) of proteins. The 

challenge with proteomics is to establish effective connections between protein level and 

nucleic-acid level information about genes and gene networks which is important for 

understanding the mechanism of pMSCV-GFP-oLANA replication and interaction.  

2.2.17.1 Sample preparation for proteomic analysis  

Samples were prepared by using calcium phosphate transfection process, as 

described in section (2.2.14), followed by  immunoprecipitation with GFP-Trap A beads, as 

described in section (2.2.16), but instead of using SDS sample buffer to resuspend the 

bound proteins, the bound proteins from the  lysate were eluted from the washed beads 

by adding 25 μl 0.2 M glycine pH 2.5 to give a final concentration 200 mM glycine pH 2.5 

and incubated for 30 s under constant mixing at room temperature, followed by 

centrifugation to pellet the beads. The supernatant was transferred to a new tube and 2.5 

μl 1M Tris base pH 10.4 added for neutralization. The elution step was repeated 3 times to 

increase elution efficiency. 
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2.2.17.2 Proteomic analysis 

Samples were prepared for proteomics by Dr Stuart Armstrong using the following 

protocol. The eluted samples were diluted two-fold with 25mM ammonium bicarbonate 

to normalize the protein content between the samples, then the proteins were reduced 

with 3 mM dithiothreitol (Sigma) at 60 °C for 10 minutes to reduce and blocked cytesines 

and allows more complete denaturation and allows trypsin to cleave more completely, 

followed by alkylation with 9 mM iodoacetamide (Sigma) at room temperature for 30 

minutes in the dark, 0.2 µg of Proteomic grade trypsin (Sigma) at ratio 50:1 protein: trypsin 

was added and samples incubated at 37°C overnight. The resulting peptide samples were 

then acidified by adding trifluoroacetic acid (TFA) to a final concentration of 1% (v/v). The 

peptides were concentrated and desalted using C18 Stage tips (ThermoFisher Scientific) 

and then the samples were dried using a centrifugal vacuum concentrator (Eppendorf). 

Peptides were resuspended in 0.1% (v/v) trifluoroacetic acid and 5% (v/v) acetonitrile. 

All peptide mixtures within this thesis were run through the mass spectrometer by Dr 

Stuart Armstrong. Protein data was generated using the following protocol which was 

essentially described by  (Dong et al., 2017).  

Peptide mixtures (2μl) were separated by nanoflow reverse phase HPLC (Ultimate 

3000 nano system, Dionex/Thermo Fisher Scientific) coupled to a Q-Exactive mass 

spectrometer (Thermo Fisher Scientific) that measured both the peptide mass and 

obtained the peptide sequence. Samples were loaded on a 50cm Easy-Spray column with 

an internal diameter of 75 µm, then packed with 2 µm C18 particles, samples then fused to 

a silica nano-electrospray emitter (Thermo Fisher Scientific). The analytical column 

(nanoACQUITY UPLCTM BEH130 C18 15cm x 75μm, 1.7μm capillary column) was operated 
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at a constant temperature of 35 °C. Chromatography was performed with a buffer system 

consisting of 0.1 % formic acid (buffer A) and 80 % acetonitrile in 0.1 % formic acid (buffer 

B). The peptides were separated by a linear gradient of 3.8 – 50 % buffer B over 30 minutes 

at a flow rate of 300 nl/min. The survey scans were acquired by the Q-Exactive mass 

spectrometer at a resolution of 70,000. And the analysis was performed in data-dependent 

mode. 

 Up to the top 10 most abundant isotope patterns with charge states +2, +3 and/or +4 

from the survey scan were selected with an isolation window of 2.0Th and fragmented by 

higher energy collisional induced dissociation (CID) with normalized collision energies of 

30. The maximum ion injection times for the survey scan and the MS/MS scans were 250 

and 100ms, respectively, and the ion target value was set to 1E6 for survey scans and 1E4 

for the MS/MS scans. Repetitive sequencing of peptides was minimized through the 

dynamic exclusion of the sequenced peptides for 20 second. 

2.2.17.3 Label free analysis 

Label-free quantitation of proteins was performed using MaxQuant (MQ) software 

(version 1.6.1.0) with its internal search engine Andromeda as described in  (García-Dorival 

et al., 2014). Precursor mass (the mass of the intact peptide) and fragment mass (the mass 

of the associated fragments from the peptide) were searched with the mass tolerance of 6 

ppm and 0.01 Da respectively. All other settings were defaulted. The search included 

variable modifications of methionine oxidation and N-terminal acetylation and fixed 

modification of carbamidomethyl cysteine. Enzyme specificity was set to trypsin, minimal 

peptide length was set to 7 amino acids and a maximum of two mis-cleavages was allowed. 

The false discovery rate (FDR) is a statistical measure to ensure the reliability of protein 

identification in a given dataset. It uses a decoy database (usually a reverse of the database 
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used) concatenated with the target database to estimate how many identifications will be 

false by chance alone (a hit to a decoy peptide). It is usually set at 1%for peptide and 

protein identifications. The Andromeda search engine was configured for a database 

containing human proteins (UniProt release-2018_03) and oLANA constructs. The MQ 

software further includes a decoy database as well as common contaminants database to 

determine the false discovery rate and to exclude false positive hits due to contamination 

by proteins from different species. For LFQ analysis, “multiplicity” was set to one. Feature 

matching between raw files was enabled; using a retention time window of 2 min. “Discard 

unmodified counterpart peptides” was unchecked. Only unmodified and unique peptides 

were utilized. Averaged LFQ intensity values were used to calculate protein ratios. 

2.2.17.4 Bioinformatics Analysis 

Label-free mass spectrometry results were processed and analyzed using the Perseus 

software (version 1.6.1.1) which contains several statistical and visualization tools for the 

analysis of proteomic data (Tyanova et al., 2016); this software was used to perform the 

statistical analysis and to differentiate background proteins (those cellular proteins that 

interacted with EGFP alone) from interacting proteins (those cellular proteins that 

interacted with pMSCV-GFP-oLANA). LFQ intensity values were analyzed using a t-test. A 

volcano plot graphic and a table were generated showing the statistical significant proteins, 

those proteins that had a high probability of interacting with pMSCV-GFP-oLANA.  

 

2.3 Indirect immunofluorescence assay (IF) 

Immunofluorescence (IF) is a common laboratory technique which is used primarily 

on biological samples, and it is based on the use of specific antibodies which have been 
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chemically conjugated to fluorescent dye detect antigens in cellular contexts. The 

technique has a number of different biological applications including evaluation of cells in 

suspension, cultured cells, tissue, beads and in microarrays (Odell and Cook, 2013) (Figure 2-

4). 

 

 

                     Figure 2- 4. Flowchart of indirect immunofluorescence  

 

2.3.1 Transfected Cell Fixation, Antibody Staining and Confocal Imaging for 

HEK 293T cells  

To study the localization of expressed proteins utilising the GFP tag, 2×105  HEK 293T 

cells were seeded on 13mm glass coverslips (round, No1.5, VWR) inside 6  well tissue 

culture plates with DMEM 10% FBS and incubated overnight at 37 °C 5% CO2 in air. HEK 
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293T cells were transfected with 1-10 µg of pMSCV-GFP-oLANA using the calcium 

phosphate method, as mentioned in section (2.1.6.1), 24 hr post-transfection, cells were 

washed 3X with 1X PBS after discard the media. Cells were fixed in 500 µl-1 ml of 40:60 

methanol/acetone mixture and incubated for 10 minutes at 4-8°C. The cells were washed 

with 1X PBS three times, followed by permeabilisation by adding 0.5-1 ml of 

permeabilization buffer (1X PBS, 0.1 % (v/v) Triton x-100) for 10 minutes at RT to induce 

cell membrane permeability . After 3 rounds of rinsing with washing buffer (1 X PBS-0.5 % 

tween-20), cells were incubated with primary antibody that had been diluted  in blocking 

buffer (1X PBS, 2% donkey serum  (D9663,  Sigma), 1% Triton X-100) for 1 hr, see Table (2-

16).  After three rounds of rinsing of coverslips with washing buffer ( 1X PBS with 0.5% 

Tween 20) to remove unbounded antibody, cells then were incubated with either Alexa 

Fluor 594-conjugated goat anti-mouse IgG (115-585-062, Jackson ImmunoResaerch 

Laboratories, Startech), or Alexa Fluor 594-conjugated goat anti-rabbit (111-585-144, 

Jackson ImmunoResaerch Laboratories, Startech) conjugated antibodies for 1 hr at RT in 

dark (The IgG secondary antibodies diluted 1:100/ 1:800 in blocking buffer, according to 

the manufacturer’s recommendations). The cells were washed 3 X in washing buffer. 

Meanwhile, a drop of either ProLong® Gold Antifade Reagent with DAPI (P36941, 

Invitrogen) or Vectorshiled (Vector, H-1500) was put on each clean glass slides to stain the 

cells and to maintain them in good condition, either for a short period or for long-term 

storage and preservation. The coverslips were then semi-dried and placed upside down 

onto the drop of mountant on the glass slides, and then left for 24 hr at room temperature 

in dark to allow hardening followed by imaging under the fluorescent microscope (Carl 

Zeiss, Axio Imager 2) and analysis by ZEN 2 Pro software. 
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The immersion oil lens (63X) was used for studying the localization of expressed 

proteins inside cells. The images were linearized and formatted to automated best fit using 

blue (DAPI) and green (GFP) imaging filters forming either mono or double colour merge 

images. 

Antibody Dilution Manufacturer Host 

Primary Antibody 

GFP-SC 1:500 Santa Cruz Biotechnology, sc-
9996 

Mouse 

Anti-Rad50 1:500 Sigma, 05-525 Mouse 

Rabbit anti-p53 1:500 Sigma, PLA0072 Rabbit 

Anti-Histone H1 1:1000 Abcam, 71594 Mouse 

Anti-CCDC12 1:1000 Sigma,SAB1412929 Mouse 

SDF2L1 1:1000 ThermoFisher,PA5-71817 Rabbit 

Anti-cGAS 1:1000 Merck,AB124 Rabbit 

Secondary Antibody 

Goat Anti-Mouse 
IgG Alexa Fluor 
594 

1:100 Jackson ImmunoResearch 

/Startech 

Mouse 

Goat Anti-Rabbit 
IgG Alexa Fluor 
594 

1:100 Jackson ImmunoResearch 

/Startech 

Rabbit 

 

Table 2- 16. List of primary and secondary antibodies used in the indirect 

Immunofluorescence assay with HEK 293T cells. 

GFP: green fluorescent protein, Rad50: DNA repair protein, p53: tumour protein, CGAS: 

Cyclic GMP-AMP synthase, SDF2L1: Stromal Cell Derived Factor 2 Like 1, CCDC12: Cell 

division control protein 12 

 

All images reported were acquired in the Centre for Cell Imaging within the Institute 

of Integrative Biology, University of Liverpool. Confocal images were acquired using Zen 

Black software (Zeiss) on a Zeiss LSM880 upright confocal microscope with laser lines Diode 

(405), Argon (488), DPSS-5610 (561) and HeNe633 (633) and W-Plan Apochromat 40x/1.0 
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Dic (water immersion) objective (Zeiss) or Plan-Apochromat 63x/1.0 oil DIC M27 (oil 

immersion) objective (Zeiss) lenses (Marchisio and Trusolino, 1999). 

2.3.2. Indirect immunofluorescence assay of LGL cells (Double-labeling 

antibodies)  

The LGL cells were splotch onto a coverslips using CytoSpin 4 centrifuge (A78300003, 

ThermoFisher). About 100-150 µl of the suspension cells were loaded through the  

Shandon cytofunnel (5991040, ThermoFisher) after placed with Shandon cytoslide 

(5991056, ThermoFisher) into Cytoclip Slide Clip (59910052, ThermoFisher). 

Initially, the cells were fixed for 15 min with 4 % paraformaldehyde (PFA) PH 7 (16% 

Formaldehyde, 28906, ThermoFisher) diluted in PBS (D8537 Sigma-Aldrich), then the slides 

were washed 3X in PBS buffer.  The slides were then incubated in permeabilization buffer 

(1X PBS 0.1 % (v/v) Triton x-100) for 10 minutes at RT to induce cell membrane 

permeability, followed by 3X washing with washing buffer. Then nonspecific binding sites 

were blocked in blocking buffer containing (1x PBS, 2 % donkey serum, 1 % Triton X-100). 

Then, slides were incubated with the mixture of two primary antibodies diluted in blocking 

buffer (to limit cross-reactivity and non-specific binding with high sensitivity for many 

targets at the same time give the ability to use conjugated secondary, which are usually 

offered with a wide selection of fluorophores and other probes ), Table (2-17) for 1h at Rt, 

the slides were washed 3 X in washing buffer (1 X PBS-0.5 % tween-20) for 30 min to 

remove unbounded antibody followed by adding the mixture of two  Alexa Flour antibodies 

for 1h in dark at RT . The cells were washed 3 X in washing buffer then one drop of Prolong 

Gold® anti-fade reagent (P36941, Invitrogen) were applied on each slides and incubated 
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overnight in dark. The slides were examined under fluorescent microscopy (Carl Zeiss, Axio 

Imager 2). 

All images reported were acquired in the Centre for Cell Imaging within the Institute 

of Integrative Biology, University of Liverpool. Confocal images were acquired using Zen 

Black software (Zeiss) on a Zeiss LSM880 upright confocal microscope with laser lines Diode 

(405), Argon (488), DPSS-5610 (561) and HeNe633 (633) and W-Plan Apochromat 40x/1.0 

Dic (water immersion) objective (Zeiss) or Plan-Apochromat 63x/1.0 oil DIC M27 (oil 

immersion) objective (Zeiss) lenses (Marchisio and Trusolino, 1999). 

Antibody Dilution Manufacturer Host 

Primary Antibody 

Anti-oLANA + Anti-
Rad50 

1:500/1:5
00 

Al-Saadi /Sigma, 05-525 Rabbit/ 
Mouse 

Anti-oLANA + Anti-
Histone H1 

1:500/1:1
000 

Al-Saadi / Abcam, 71594 Rabbit 
/Mouse 

Anti-oLANA + Anti-
CCDC12 

1:500/1:1
000 

Al-Saadi /Sigma,SAB1412929 Rabbit 
/Mouse 

Secondary Antibody 

Donkey anti-rabbit IGg 
FITIC Alexa Fluor 488 + 
Goat Anti-Mouse IGg 
Alexa Fluor 594 

1:200/1:1
00 

 Startech Scientific/ Jackson 
ImmunoResearch 

Rabbit/ 
Mouse 

 

Table 2- 17. List of primary and secondary antibodies used in the indirect 

Immunofluorescence assay with LGLs 

 

2.3.3 Quantification analysis of Confocal Images 

The colocalisation can be readily observed using images obtained with confocal 

microscopes but significantly more important information can be obtained when 
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estimating colocalisation quantitatively. Colocalisation quantification allows to extend the 

applicability of qualitative observations (Zinchuk et al., 2005). 

All images quantified for characterisation were processed using Imaris x64 v9.0.1 

image analysis software (BitPlane), then detection the fluorescent signals from any chosen 

source channel to quantify nuclear staining by detecting DAPI fluorescence. To identify the 

total number of localised cells within an image, the spots function was used to quantify 

nuclear staining by detecting DAPI fluorescence. Using the default settings (minimum 

diameter: 4.15μm), followed by manually adjusting the detection threshold, it was possible 

to generate an overlay of “surfaces” that was representative of the cells within the image 

and quantified the cells using “surfaces” functions in Imaris. Within this surface, it was 

possible to detect overlapping AF594 fluorescence of oLANA generate a duplicated channel 

which was allocated the colour yellow. There are some factors impact on the level of 

resolution and image quality must take in consider; oversaturation, noisy images and 

human factor such as; parameter settings and colocalisation method.   

2.3.4 Colocalisation Analysis 

Colocalisation analysis of the fluorescent signal in paired images is based commonly 

on superimposition of images (“merging”) and visual inspection (Zinchuk et al., 2007). 

Colocalisation analysis was performed of three images to show the fluorescence for red 

and green channels, as well as a third merged image where the channels are combined and 

overlapping pixels turn yellow. The degree of colocalisation was quantified using ImagePro 

using the Pearson’s correlation coefficient. This quantitative analysis is based on the 

assessment the colour components of a pair of selected channels. Quantitative 

colocalisation analysis depend on a number of coefficients to estimate the degree of 
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colocalisation, which enables to observe the actual areas of colocalisation on the images 

(BOLTE and CORDELIÈRES, 2006; Dunn et al., 2011).  



 

 

 

 

 

 

 

 

Chapter Three: Results
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Section one: Generation of recombinant retrovirus 

The aim of this project was to determine interactions between the OvHV-2 oLANA 

protein and cellular proteins. This will give information on the function of oLANA in terms 

of virus biology and also identify potential druggable targets for the treatment of MCF. The 

approach taken to identify oLANA interactions was to express a recombinant oLANA-GFP 

fusion protein in cells and then identify interacting partners by mass spectroscopy in 

complexes pulled down using GFP-trap technology (Min et al., 2013). In MCF there is a 

proliferation of T cells that are infected by OvHV-2. It was therefore surmised that the most 

relevant cell type to study oLANA interactions was bovine T cells. However, GFP trap 

experiments require high expression levels in a high proportion of cells. T cells are largely 

refractory to transfection but can be transduced by retroviruses  (Ebert et al., 1997). It was 

therefore decided to attempt the use of recombinant retroviruses to deliver oLANA-GFP to 

bovine T cells.  

3.1. Production of T cell blasts from peripheral blood  

Generation of recombinant retrovirus (MSCV) was performed using three plasmids 

which contain; gag, pol and a variety of env molecules in order to deliver the construct 

protein in bovine T cells which isolated from cattle. The generation of MSCV was successful 

but and unfortunately, the infection was not achieved.    

Bovine blood treated with EDTA was obtained from healthy cattle from the   abattoir 

in Liverpool. Mononuclear cells were isolated from peripheral blood (PBMCs), the primary 

source of lymphoid cells for investigation of the human and animal immune system, using 

Lymphoprep density gradient cell separation medium (07801, STEMCELL Technologies) 
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according to the manufacturer’s instructions, as described in section (2.1.8). Isolated cells 

were plated into 24 well plates after mixing with Con A for first plant and incubated O/N at 

37 °C (Figure 3-1 panel A and B), however few cells were successfully cultured. Therefore 

after 24 hr incubation, IL-2 (106 U/µl) was added and the cells incubated for a further 24 hr 

(Figure 3-1 panel C and D). After this modification PBMCs were successfully cultured. Con 

A blasts were then generated using ConA and IL-2 to maintain the PBMCs.  

ConA blasts were therefore successfully generated from bovine PBMCs as a source of 

activated bovine T cells in vitro that will be transduced with recombinant retroviruses 

expressing GFP-oLANAΔ. 
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Figure 3- 1. Isolation of PBMCs from peripheral blood, using Lymphoprep™ as density 

gradient medium.  

A and B: The arrows show the Con A blasts of PBMCs 24 h after being plated. The images 

were taken at 10x magnification. C and D: The arrows show the Con A blasts of PBMCs cells 

after adding IL-2. 48 h after plating. The images were taken at 40x magnification 

 

3.1.1 Generation of recombinant retrovirus 

Generation of recombinant retrovirus is a technological approach that enables gene 

transfer. Retroviruses can acquired an envelope gene (env) from a distantly related 

retrovirus or other viruses such as vesicular stomatitis virus (VSV), which is useful since env 

is the main factor in host range determination. A key aspect in the generation of 

recombinant retrovirus as tools is the introduction of appropriate DNA vectors in to a cell 
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line that is able to produce the viral proteins needed for encapsidation of the required 

recombinant retrovirus. It is also important in gene transfer applications to generate pure 

stocks of recombinant virus free of replication-competent helper (Coffin et al., 1997). 

Recombinants are generated by providing gag, pol and env in trans either by use of a 

packaging cell line or by co-transfection of plasmids (Coffin et al., 1997). 

3.1.2 Development of recombinant retroviruses  

It was decided to use a recombinant retrovirus based on the murine stem cell 

retrovirus (MSCV) (Cherry et al., 2000). This system has been used with great effect to drive 

high levels of recombinant gene expression in haematopoietic cells (including T cells) in a 

number of species (Stuhlmann et al., 1984). Three plasmid vectors were used to produce 

recombinant MSCV. The vector backbone pMSCV–IRES-GFP (which drives expression of 

recombinant protein from the MSCV LTR) pEQpAM3 (which encodes MSCV gag and pol) 

and pSRG (which encodes the VSV G envelope protein) (Figure 3-2).  The inclusion of the 

VSV G protein enables recombinant particles to enter multiple cells types from multiple 

species (xenotropic) (Gallardo et al., 1997). The three plasmids were cultured, as described 

in section (2.1.2.1 and 2.1.2.2).  

 

                           Figure 3- 2. Flow diagram of transfection method 

 



Chapter Three                                                                                                             Results 

125 
 

3.1.3 Optimisation of Transfection Procedure using the three plasmid 

approach 

The transfection optimisation was carried out using pMSCV-IRES-GFP plasmid and the 

pEGFP-C1 positive control plasmid (as it expresses the GFP protein) using calcium 

phosphate into HEK 293T mammalian cells seeded in 6 well tissue culture plate at 2x 105 

cells/well. The expression of transfected pMSCV-IRES-GFP was seen in approximately 70% 

of the cells, equivalent to the percentage of cells seen with the control pEGFP-C1 (Figure 

3-3) when visualised using an inverted fluorescence microscope  

   

Figure 3- 3. Transfection of pEGFP-C1 and pMSCV-IRES-GFP into HEK 293T cells 

demonstrating successful transfection by monitoring GFP expression 

Cells were transfected with plasmids using calcium phosphate and visualised after 24h 

using a fluorescence microscope. A. pEGFP-C1 B. pMSCV-IRES-GFP C. a bright field of cells 

shown in panel (B). The images were taken at 10x magnification 
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After confirmation of the expression of pMSCV-IRES-GFP plasmid in mammalian cells, 

pMSCV-IRES-GFP and the two other plasmids pSRG and pEQpAM3 were transfected 

together into HEK 293T cells in order to produce recombinant retrovirus. The transfection 

was performed using calcium phosphate, as described in section (2.1.6). As seen in (Figure 

3-4) the expression of GFP in cells transfected with pEGFP-C1 (positive control) was strong 

in comparison with the expression of the cells transfected with three plasmids after 

observation using a fluorescence microscope. Thus, we hypothesised that endotoxins in 

the plasmid preparations may be causing a reduction in the transfection efficiency, so in 

the next section (3.1.4) we used an endotoxin free kit in order to clean our plasmids.  
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Figure 3- 4. Comparison transfection of pEGFP-C1 (control) and the three plasmids 

(pMSCV-IRES-GFP, pSRG and pEQpAM3) into HEK 293 T cells using the calcium phosphate 

method.  

The images indicated the efficiency of transfection. Cells were imaged 24 hr after 

transfection with plasmids using calcium phosphate A. Fluorescence in pEGFP-C1 B. 

pMSCV-IRES- GFP, pSRG and pEQpAM3 (A). C. bright field of cells. The images were taken 

at 10x magnification  

 

3.1.4 Preparation and transfection of Endotoxin free plasmids  

Endotoxins are known to be frequent contaminants in plasmid DNA extracted from 

bacteria, they may serve as potent inhibitors in sensitive downstream applications such as 

the transfection of eukaryotic cells. Therefore, our aim was to remove any endotoxin 

contaminants from our plasmids hypothesising this would enhance the transfection, 

improve transfection efficiency and help to get pure and concentrated recombinant 
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retrovirus. Thus, Mira CLEAN® Endotoxin Removal Kit (5910, Mirus) was used to remove 

the endotoxin from the plasmids.  

3.1.5 Optimisation of Transfection of endotoxin-free plasmids 

Two transfection methods were compared, the calcium phosphate method and the 

PEI method. The transfection of both methods was repeated twice in order to confirm the 

results. Both methods demonstrated successful transfection but the efficiency varied 

between the two methods (Figure 3-5). PEI reagent showed a higher efficiency of 

transfection of three endotoxin-free plasmids together (recombinant retrovirus) when 

compared to the calcium phosphate method (Figure 3-6 B) (by comparing the number of 

fluorescent transfected cells). In calcium phosphate method cells were visualised 24 hr 

after transfection, while cells were visualised 72 hr after transfection in PEI method. The 

efficiency level of the calcium phosphate transfection lacked reproducibility (i.e calcium 

phosphate sometimes appeared to be toxic to the cells if did not added in appropriate 

way). Principally, using calcium phosphate transfection method need 24 h which could be 

not enough to generate the recombinant.  In comparison, fluorescence intensity with PEI 

was higher, thus, the PEI method was chosen to generate recombinant retrovirus. 
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Figure 3- 5. Transfection of pEGFP-C1 (control) and the three endotoxin-free plasmids 

(pMSCV-IRES-GFP, pSRG and pEQpAM3) into HEK 293 T cells using calcium phosphate 

method.  

HEK 293T cells were transfected with plasmids and then visualised by fluorescence 

microscopy 24h post-infection. Plasmids were as follows A. pEGFP-C1. B. pMSCV-IRES- GFP, 

pSRG and pEQpAM3 C. pEGFP-C1 (2nd experiment) D. pMSCV-IRES- GFP, pSRG and 

pEQpAM3 (2nd experiment). The images were taken at 10x magnification 

  

PEI reagent was used to transfect the three endotoxin-free plasmids, as described in 

section (2.1.6.2). Interestingly, PEI reagent showed a higher efficiency of transfection 

(increase the number of transfected cells) when using three endotoxin-free plasmids 

together in comparison with calcium phosphate (Figure 3-6). The results indicated that 

endotoxin-free (EF) plasmids enable highest transfection efficiency in comparison with 

non-endotoxin-free plasmids.  
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Figure 3- 6. In vitro transfection of endotoxin-free DNA; pMSCV-IRES-GFP, pSRG and 

pEQpAM3 and pEGFP-C1 using PEI reagent.   

HEK 293T cells were transfected with endo-free plasmids using the PEI method and 

visualised using fluorescence microscopy 72 h post-transfection. Plasmids used were A. 

pEGFP-C1. B. pMSCV-IRES- GFP, pSRG and pEQpAM3. C: bright field of cells. The images 

were taken at 10x magnification 

  

3.1.6 Production of recombinant retrovirus 

Recombinant retrovirus was made by transfection of pMSCV-IRES-GFP, pSRG and 

pEQpAM3 into HEK 293T cells as above. After collection of the crude recombinant virus, 

the NIH3T3 cell line was used to determine the viral titre (described in section (2.1.7)). The 

titre of the crude stock of virus was analysed before and after endotoxin-free plasmid 

preparation to compare the role of endotoxin in virus production. Unfortunately with virus 

produced from cells transfected with plasmid DNA before endotoxin removal we found 
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that GFP signal was not apparent when the cells were visualized under an inverted 

fluorescence microscope over the course of 5 days. In comparison (Figure 3-7) shows a 

clear GFP signal indicating infection and transduction by recombinant MSCV.  

Although production of recombinant MSCV was successful, unfortunately, production 

of high-titre retroviral stocks by transient transfection was not achieved. Thus this 

approach was not deemed suitable for the delivery of oLANA-GFP at levels that would be 

sufficient to perform the GFP-trap experiments. 
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Figure 3- 7. Titration of recombinant retrovirus in NIH3T3 cells after endotoxin-free 

plasmid DNA preparation.  

The images show the NIH3T3 cells after infection with different dilutions of virus stock: 1 

ml, 200µl, 100µl, 40µl and 20µl respectively. The arrows indicate the infected cells 
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Section two: Identification of oLANA binding partners 

3.2 Construction of pMSCV-GFP-oLANAΔ   

As the approach of introducing recombinant proteins into bovine T cells using 

retroviruses was not efficient enough to perform GFP-trap pull-down experiments, the 

more conventional approach of transfection into HEK293T cells was taken. Any interactions 

could then be confirmed in bovine T cells or OvHV-2-positive LGLs. 

In this section of work we successfully insert the   Kozak-eGFP-oLANA del in pMSCV-

IRES-GFP vector expressing a fusion protein of GFP with LANA mutant lacking the internal 

repeat domain using DNA clone technique. Next, we showed significant transfection of the 

construct into HEK 293T cells using transfection assay. In addition, samples were co-

immunoprecipitated using GFP Trap A to process for proteomics in order to identify the 

proteins interact with oLANA.  

To identify novel cellular proteins interacting with oLANA, a clone which would 

express oLANA with eGFP fused to the N terminus was generated (Figure 3-8).  The 

construct is also a mutant of oLANA lacking the internal repeats (glycine, glutamic acid and 

proline-rich). Previous studies on the homologous KSHV LANA have used this approach as: 

1) The majority of the protein-protein interactions and DNA tethering domains are in the 

N-terminal and C-terminal domains and 2) There is a much higher level of protein 

expression and stability when the complex repetitive domain is removed (Figure 3-9) 

(Domsic et al., 2013; Uppal et al., 2014). The DNA sequence of this construct (GFP-oLANAΔ) 

was further codon-optimised for mammalian expression and a consensus ‘Kozak’ sequence 



Chapter Three                                                                                                             Results 

134 
 

(translationial initiation) inserted at the 5’end. This construct was then synthesised and 

inserted into a generic cloning vector using the GeneArt service (ThermoFisher Scientific). 

 

Figure 3- 8. Sequence of synthetic gene Kozak-eGFP-oLANAΔ.  

The synthetic gene (1274 bp) consists of a Kozak consensus sequence (yellow) followed by 

the eGFP coding sequence (green) fused in frame to the oLANA coding sequence (blue) 

from which the internal repeats (glycine, glutamic acid and proline) have been deleted 

 

  

Figure 3- 9. Schematic diagram of eGFP-oLANAΔ constructs.  

OLANA-FL: full-length oLANA showing the three domains and the nuclear localistaion 

signal. oLANAΔ: oLANA with the internal repeats deleted. GFP-oLANAΔ: Final construct 

with GFP fused in frame at the N-terminus.  
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3.2.1 Cloning GFP-oLANAΔ into pMSCV-IRES-GFP 

The vector pMSCV-IRES-GFP is known to drive high level expression of recombinant 

protein in a variety of mammalian species and cell types, either using DNA transfection or 

when used to make a recombinant retrovirus. This vector was therefore used to drive GFP-

oLANAΔ for the GFP-trap pulldown experiments. 

The eGFP-oLANAΔ plasmid obtained from GeneArt synthesis was used as template to 

amplify the gene by conventional PCR using the proof-reading KOD polymerase (KODX kit, 

Novagen).  Primers were used so as to generate an EcoRI site at the 5’ end of the construct 

and a NotI site at the 3’ end (see Materials and Methods). Cloning between the EcoRI and 

NotI sites of pMSCV-IRES-GFP (Figure 2-3) will replace IRES-GFP in the vector with GFP-

oLANAΔ. The annealing temperature was optimised using gradient PCR and the correct size 

product was identified at 52 – 55 oC (Figure 3-10).  

 

 

Figure 3- 10. Amplification of GFP-oLANAΔ  

Plasmid containing GFP-oLANAΔ was amplified using forward and revers primers using 

different annealing temperatures as indicated. Samples were analysed using agarose gel 

electrophoresis (1% agarose) and visualised using BIO-RAD. DNA marker (100 bp, Cleaver 

Scientific).  
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The PCR product (52.9) was cut with EcoRI and NotI restriction endonucleases and 

inserted between the EcoRI and NotI sites of the pMSCV-IRES-GFP vector. Insertion was 

confirmed by restriction digest of mini-plasmid preparation using EcoRI and NotI l (Figure 

3-11). All six clones tested showed positive bands at 1200 bp, as compared with 1500 bp in 

the parent vector. 

         

Figure 3- 11. Analysis of pMSCV-IRES-GFP and pMSCV-GFP-oLANAΔ mini prep DNAs.   

DNA samples as indicated were cut using EcoRI and NotI and analysed using agarose gel 

electrophoresis (1% agarose).  DNA marker (100 bp, Cleaver Scientific). 

 

The DNA sequence of the insert was confirmed by sequencing using 3′ sequencing 

primer:  pCDH-rev and 5' sequence primer: pBABE as described in materials and methods. 

Sequencing confirmed that the selected clone was correct and that there were no 

mutations as a result of PCR and sub-cloning.  Large plasmid preps of pMSCV-eGFP-oLANAΔ 

and pMSCV-IRES-GFP (control) were made using Qiagen endo-free DNA preparation kits 

for use in transfection experiments. 
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3.2.2 In vitro transfection and expression of GFP-oLANAΔ   

The expression of GFP-oLANAΔ and GFP (used as a transfection Control) was 

confirmed by transfection into HEK293T cells using the calcium phosphate method. All the 

transfections were carried out in 6-well plates and were assayed for GFP expression 24 hr 

after transfection, as described in section (2.2.14). Highest transfection efficiencies were 

observed with precipitation mixtures 24 hr post-transfection. Representative images of 

expression 24 hr after transfection are shown (Figure 3-12). Strong GFP signal, which was 

in more than 80% of cells in the well comparison with the monolayer, was obtained with 6 

and 6.44 µg (section 2.2.10) of unmodified pMSCV-IRES-GFP vector and pMSCV-GFP-

oLANAΔ respectively. Three independent transfection experiments were performed in 

order to get cell lysate for western immunoblotting analysis.  

 

 

        

Figure 3- 12. In vitro transfection in HEK 293T.  

HEK 293T cells were transfected with pMSCV-IRES-GFP and pMSCV-GFP-oLANAΔ and 

images taken 24 h post-transfection using a fluorescence microcope. A. pMSCV-IRES-GFP 

B. pMSCV-GFP-oLANAΔ. The magnification factor at 10x  
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3.2.3 Western immunoblotting analysis of pMSCV-GFP-oLANAΔ  

Western immunoblotting was carried out for expressed protein in cell lysates. The cell 

lysates were analysed using SDS-PAGE and western blotting. The eGFP-oLANAΔ fusion 

protein has a molecular weight of approximately 47 kDa as predicted from the sequence 

using the ExPasy Comute pI/Mw algorithm. A band of this size was visible on the blot 

(Figure 3-13). With some smaller bands that are more than likely breakdown products. GFP 

has a molecular weight of 27 kDa and is shown expressed from pMSCV-IRES-GFP vector. 

No bands were observed to react with the GFP antibody in lysate from mock transfected 

cells. Furthermore the respective bands were not seen when probed with goat anti-rabbit 

IgG HRP conjugated antibody alone (negative control). This result confirms the expression 

of pMSCV-GFP-oLANAΔ and the experiment was repeated to confirm the positive finding. 
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Figure 3- 13. Western immunoblotting analysis of GFP-oLANAΔ  

HEK 293T cells were transfected with plasmids as indicated and lysates analysed by SDS-

PAGE and western blotting. Panel A:  blot probed using mouse monoclonal GFP-SC 

antibody at 1:500 dilution (Santa Cruz Technology) and goat anti-mouse HRP conjugate 

(A4416, Sigma). Panel B: blot probed with goat anti-mouse-HRP conjugate alone (A4416, 

Sigma). M: molecular weight marker (Spectra™ Multicolour Broad Range Protein Ladder, 

ThermoFisherScientific. 

 

To confirm native oLANA expression for use in further analyses, OvHV-2 infected 

bovine large granulocyte lymphocytes (LGL; BJ1035) were also analysed by western 

immunoblotting using anti-oLANA antibody. These revealed a band at 37 kDa representing 

the full-length oLANA protein, with a second, smaller band at 17 kDa representing probable 

break down of protein (Figure 3-14). Additionally, the LGL lysates were probed with goat 

anti –rabbit IgG HRP conjugate alone as a negative control.  The presence of immune 

reactivity in the bovine lymphocytes indicates that the OvHV-2- infected bovine LGLs 
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express detectable oLANA and demonstrate the instability of this protein. The size of the 

protein and the presence of the smaller 17 KDa band have been described previously (Al-

Saadi, 2018). The high specificity of this antibody for oLANA has also been confirmed using 

a wide range of mammalian cell lines and viruses (Al-Saadi, 2018). 

 

Figure 3- 14. Western immunoblotting analysis of bovine large granulocyte lymphocytes.  

A: blots of harvested BJ1035 LGL cells were probed using anti-oLANA polyclonal antibody 

diluted at 1/5000. Molecular weights of protein molecular weight markers run in parallel 

lanes are shown on the right and the location of expected bands for oLANA on the left. B: 

same protein lysate probed with secondary antibody alone goat anti- rabbit IgG  

conjugated to HRP (HRP P1-1000, Vector) as a negative control at dilution factor of 

1:10000. M: molecular weight marker (Spectra™ Multicolour Broad Range Protein Ladder, 

Thermoscientific. 

 

To further understand the function of oLANA, we used immunoprecipitation and mass 

spectrometry to identify oLANA-associated proteins in HEK 293T cells. 
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3.2.4 Optimisation of GFP-trap pull-down 

Transfection using calcium phosphate was carried out to express the GFP-oLANAΔ 

fusion protein and GFP alone, as described in section (2.2.16.1). The expressed fusion 

protein GFP-oLANAΔ and unmodified GFP from the vector alone were immunoprecipitated 

using GFP-Trap A beads (chromotek) to obtain bound complexes, which were later 

dissociated for analysis. The transfection efficiency of the DNA construct in HEK 293T cells 

was confirmed as previously after transfection by fluorescence microscopy. Interestingly, 

the fusion protein expressed in HEK 293 cells was comparable with that seen from the 

unmodified vector when evaluated 24 hr post transfection. Cell lysates were obtained by 

lysing the cells with lysis buffer, as described in section (2.2.16.2).  

In each experiment western immunoblot was performed to analyse for the presence 

of expressed proteins using both rabbit polyclonal and mouse monoclonal antibodies 

(explained in below section). The expression of the GFP-oLANAΔ fusion protein was high in 

all the independent experiments.  

Lysates from HEK 293T cells were processed from successfully transfected cells 

using GFP-Trap A, as described in section (2.2.16.2). The whole lysates (input) and samples 

after pull-down and elution from pMSCV-GFP-oLANAΔ and pMSCV-IRES-GFP transfections 

were monitored by western immunoblotting using equal quantities of cell lysates and by 

probing with anti- GFP and detected with HRP conjugated antibody. As oLANA exists in 

both nuclear and cytoplasmic forms we tested using lysis buffers containing NP-40 

(standard lysis buffer) or NP-40 plus sodium deoxycholate as previous studies have 

indicated that this may be better at extracting nuclear complexes for pull-down 
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experiments. The expected or predicted bands of GFP-oLANAΔ fusion with molecular 

weight of approximately 47 kDa were observed in both input and samples eluted from the 

GFP-trap beads when using the mouse monoclonal GFP-SC antibody, and there were 

several smaller breakdown products (Figure 3-15 A and B). While unmodified GFP was 

detected at approximately 27 kDa. Comparison of Figure 3-15 panel A and  B shows that 

similar sized bands were extracted using both lysis buffers but that there appeared to be 

little difference in the intensities of bands between proteins extracted with lysis buffer 

either without or containing sodium deoxycholate.  Identical blots were analysed with goat 

anti-mouse HRP conjugate alone which showed no reaction (Panel C).  
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Figure 3- 15. Western immunoblotting analysis of GFP-Trap pulldowns. 

Cell lysates were obtained 24 h post-transfection with the indicated plasmids and 

processed using GFP-trap and then subjected to SDS-PAGE and immunoblotting using 

mouse monoclonal GFP antibody at dilution 1:500. Samples were analysed after lysis 

(Input) and after elution from the GFP-trap beads (Elution) A: protein lysate of HEK 293T 

cells transfected with pMSCV- IRES-GFP- and pMSCV-GFP-oLANAΔ using lysis buffer with 

sodium deoxycholate. B: lysate of pMSCV-GFP-IRES and pMSCV- GFP-oLANAΔ using lysis 

buffer without sodium deoxycholate C: Similar to (A) but incubated with goat anti-mouse 

25

35
GFP-oLANAΔ 

pMSCV-RES-
GFP

MkDa

40

15
15

25

35

40

kDa M

A B

C

35

40

25

15

MkDa



Chapter Three                                                                                                             Results 

144 
 

as a negative control that shows no reaction. M: molecular weight marker (Spectra™ 

Multicolour Broad Range Protein Ladder, ThermoFisher Scientific. 

 

3.2.5 Identification of oLANA interacting proteins by GFP-trap and Mass 
Spectrometry  

To identify interacting proteins, HEK 293T cells were transfected with pMSCV-GFP-

oLANAΔ and control GFP-expressing plasmid and then extracted using lysis buffer. The 

extract then was subjected to affinity purification mass spectrometry (APMS) analysis, as 

described in section (2.2.17). First, the complex formed by GFP-oLANAΔ was affinity 

purified via immunoprecipitation using GFP-Trap A beads. Secondly, western blot for GFP 

was performed to identify the presence of GFP-containing proteins.  Samples eluted from 

GFP-Trap A beads were then processed for mass spectrometry as described in section 

(2.2.17.2) (Figure 3-16). Sequenced peptides were then identified using MaxQuant 

software using the Andromeda search engine against a database of human proteins and 

the oLANA construct. Label-free MS results were then analysed using Perseus software to 

quantify the data and identify significant peptides. The analysis procedure was repeated in 

triplicate to enable statistical evaluation of data. To identify significant interactions, 

exclusion criteria of; >2 unique peptides for quantification, log2 fold change > +/- 1 in 

abundance and p value < 0.05 was used. Two independent experiments were performed 

using lysis buffer with NP40 alone. Although both these runs identified approx. 600 unique 

peptides, none were significant interactions using the exclusion criteria. A third run was 

performed using NP40 plus sodium deoxycholate in the lysis buffer. This resulted in the 

identification of 355 proteins with > 2 unique peptides. Using the exclusion criteria, eight 

cellular proteins were identified as potential specific binding partners to the GFP-oLANAΔ.  

A ‘volcano’ plot showing the distribution of hits and those that are significant is shown in 
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Figure 3-17 and a list of the most abundantly associated proteins ranked according to the 

numbers of peptides identified is shown Table (3-1).  

 

 

Figure 3- 16. Simplified proteomic workflow of analysis of putative oLANA interacting 

proteins 
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Figure 3- 17. Quantitative label-free proteomics of GFP-trap pull-downs reveals specific 

oLANA interactions.  

The x-axis represents log2 of gene expression fold change between samples transfected 
with pMSCV-GFP-oLANAΔ in comparison to unmodified pMSCV-IRES-GFP. The y-axis 
represents the p-value of differential levels in the pull-down complexes. The text in the two 
halves of the plot area provides information about the total number of proteins with 
differential expression P-value more significant than the cut off (0.05); and greater than 2-
fold change (FC).Blue spots:  significant (p <0.05) and >2FC 
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GFP-oLANAΔ -
interacting Proteins 

                            Proteins GFP-oLANAΔ      

    Fold 
change                   

No. of 
peptide 

HIST1H1C;HIST1H1A Histone H1.2; Histone H1.1 2.6 2 

RPL39P5;RPL39 Putative 60S ribosomal protein L39-

like 5;60S ribosomal protein L39 

2.6 2 

PHF5A PHD finger-like domain-containing 

protein 5A 

2.0 2 

RPL37 60S ribosomal protein L37 2.6 3 

PQBP1 Polyglutamine-binding protein 1 2.0 3 

CCDC12 Coiled-coil domain-containing 

protein 12 

2.1 4 

CD3EAP DNA-directed RNA polymerase I 

subunit RPA34 

2.4 5 

SDF2L1 Stromal cell-derived factor 2-like 

protein 1 

1.9 8 

 

    Table 3- 1. Cellular proteins interacting with GFP-oLANAΔ were identified by MS.  

 

To confirm that the proteins identified by mass spectrometry did interact with GFP-

oLANAΔ and to determine the binding interrelationship among all the associated proteins, 

we carried out western immunoblot of pull-downs with antibodies against selected 

proteins.  

Stromal Cell-Derived Factor 2-Like 1 (SDF2L1) is a endoplasmic reticulum (ER)-resident 

protein that is involved in the ER-chaperone machinery and is highly expressed in 

haematopoietic cells (Fujimori et al., 2017). Although this protein did not exactly match the 

inclusion criteria, it was deemed interesting enough to warrant further investigation.   
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CCDC12 is located within the nucleus. Its exact function is not known but CCDC12 is 

associated with erythroid differentiation and also susceptibility to Juvenile Idiopathic 

Arthritis (Fan et al., 2012; McIntosh et al., 2017).  

Cell lysates of HEK 293T cells transfected with pMSCV-GFP-oLANAΔ and pMSCV-IRES-

GFP and processed using GFP-trap were analysed by western immunoblotting using an 

SDF2L1 antibody (ThermoFisher) and anti-CCDC12 antibody (Sigma) (Figure 3-18). 

Unfortunately, neither antibody reacted with the protein in input cellular lysates or indeed 

with pulldown complexes.  This could be because expression levels are below the 

sensitivity for this antibody. However, it does mean that we can neither confirm whether 

or not these proteins interact with oLANA. 
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Figure 3- 18. Western immunoblotting analysis of GFP-trap pull-downs probed with anti-

SDF2L1 and anti-CCDC12 

 Cell lysates were obtained 24 hr post-transfection using NP40 lysis buffer plus sodium 

deoxycholate with the indicated plasmids and pulled-down using GFP-Trap A beads. 

Samples were analysed by western blotting after lysis (Input) and after elution from the 

GFP-trap beads (Elution) A: SDF2L1 antibody (Apa5-71817) diluted 1/1000. B: anti-CCDC12 

antibody (CB121-7B1, Sigma) diluted 1/1000. C: control negative blot probed with HRP goat 

anti-rabbit only. D: control negative blot probed with HRP goat anti-mouse only. M: 

molecular weight marker (Spectra™ Multicolour Broad Range Protein Ladder, 

ThermoFisher Scientific. 

 

Histone H1 is one of the key components of chromatin and binds to the nucleosomal 

core particle around the DNA (Catez et al., 2006). It has also been shown to interact with 

KSHV LANA and help tether latent genomes to chromatin (Verma and Armstrong-Altrin, 

2013). To confirm oLANA- histone H1 interactions, proteins were immunoprecipitated by 

GFP Trap A beads, as described in section (2.2.16) and then western blots probed with an 

anti-histone- H1 antibody. The results, (Figure 3-19 A) showed that there was a band at 27-
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29 kDa corresponding to histone-H1 and also a number of bands of other molecular 

weights. In contrast, no bands were present in both cells alone and vector-transfected cells. 

No reaction was seen in an identical blot probed with HRP goat anti-mouse (Figure 3-19 B). 

These data strongly suggest that histone-H1 associates with oLANA.  

 

 

Figure 3- 19. Western immunoblotting analysis of GFP-trap pull-downs probed with anti-

H1. 

Cell lysates were obtained 24 hr post-transfection with the indicated plasmids and pulled-

down using GFP-Trap A beads. A: protein expression was detected using an anti-histone 

H1 antibody (ab71594) diluted as 1/500 B: negative control blot using HRP goat anti-mouse 

only. M: molecular weight marker (Spectra™ Multicolour Broad Range Protein Ladder, 

ThermoFisher Scientific. 
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Recent data concerning the homologous KSHV LANA protein has shown that this 

protein can associate with a number of cellular molecules including cGAS, Rad50 and P53. 

Cyclic GMP-AMP synthase (cGAS) is a cellular sensor of foreign DNA that interacts with 

stimulator of interferon genes (STING) to initiate antiviral interferon responses. KSHV LANA 

has been shown to inhibit the cGAS-STING induction of interferon by binding to cGAS 

(Zhang et al., 2016a). Rad50 is a DNA damage repair protein and is also involved in DNA 

sensing. KSHV LANA binds to Rad50 and modulates the IFN response after infection 

(Mariggiò et al., 2017). Therefore, in addition to proteins identified by the GFP-trap and MS 

analysis proteins that co-immunoprecipitated with GFP-oLANAΔ were analysed by western 

immunoblotting using antibodies that recognise these proteins (Figure 3-20). 
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Figure 3- 20. Western immunoblotting analysis of GFP-trap pull-downs probed with anti-

cGAS and anti-Rad50. 
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Cell lysates were obtained 24 hr post-transfection using lysis buffer contained sodium 

deoxychilate with the indicated plasmids and pulled-down using GFP-Trap A beads. 

Samples were analysed by western blotting after lysis (Input) and after elution from the 

GFP-trap beads (Elution) A: polyclonal anti-cGAS antibody (Millipore) B:  anti-Rad 50 

antibody (Sigma) C: secondary goat anti-mouse IgG (Sigma) as negative control. D:  

secondary antibody goat anti-rabbit. M: molecular weight marker (Spectra™ Multicolour 

Broad Range Protein Ladder, ThermoFisher Scientific. 

 

The results (Figure 3-21) showed that while the respective bands were seen at 53 kDa 

for cGAS and 153 kDa for anti-Rad50 in the input samples, there were no bands in the 

elution samples indicating a lack of association between oLANA and these two proteins. 

The experiment was repeated with the same antibodies using cells lysed with and without 

sodium deoxycholate with a similar result (not shown).  

It has been shown that KSHV LANA interactions with P53 are important for 

overcoming the P53-dependent cell cycle block induced by an activated DNA damage 

response (Chen et al., 2010).  GFP-oLANAΔ co-immunoprecipitating proteins were 

therefore analysed using an anti-p53 antibody. The results (Figure 3-21) showed that while 

the respective band was seen at 53 kDa for P53 in the input samples, there were no bands 

in the elution samples indicating a lack of association between oLANA and p53. The 

samples were blotted again and probed with goat anti-rabbit HRP conjugate only as a 

negative control 
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Figure 3- 21. Western immunoblotting analysis of GFP-trap pull-downs probed with anti-

P53. 

Cell lysates were obtained 24 hr post-transfection using lysis buffer contained sodium 

deoxycholate with the indicated plasmids and pulled-down using GFP-Trap A beads. 

Samples were analysed by western blotting after lysis (Input) and after elution from the 

GFP-trap beads (Elution) A: anti-P53 antibody (Sigma) diluted as 1/5000. B: control 

negative blot which detected with HRP goat anti-rabbit only. M: molecular weight marker 

(Spectra™ Multicolour Broad Range Protein Ladder, ThermoFisher Scientific.  
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Section three: Validation of putative oLANA interacting 

proteins using co-localisation  

Indirect and double immunofluorescence assay was carried out to define the 

subcellular location of GFP-oLANAΔ and full length oLANA within HEK 293T and LGL cells to 

determine localise of oLANA and interacts with cellular proteins using numerous of 

monoclonal and polyclonal antibodies which labelled later with Alexa flour 594 either 

mouse or rabbit antibodies and measure the quantification of coclocalisation using 

Pearson’s Correlation. 

The results in section 2 and previously published data identified proteins that 

potentially interacted with oLANA in HEK293s. Of these, only histone H1 was confirmed by 

co-immunoprecipitation analysis. This could be for a number of reasons. MS is extremely 

sensitive and the hits identified could either be low abundance/low affinity and thus not 

picked up by co-immunoprecipitation/western blot or they could be false hits. Co-

localisation was therefore chosen as a means of identifying oLANA-protein interactions. 

Although it does not formally describe protein-protein interactions, colocalisation 

compares the subcellular distributions of two fluorescently labelled molecules by 

fluorescent confocal microscopy (Fay et al., 1997; Lachmanovich et al., 2003; Nicolas et al., 

2008; Zhang et al., 2009).    

The colocalisation of two probes can be determined individually by the appearance of 

structures whose colour reflects the combined contribution of both probes when the 

images of each probe are superimposed (or “merged”). For example, fluorescein and 
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rhodamine-labelled proteins can be colocalised by the appearance of yellow, due to  

combined fluorsecent contributions of green and red, respectively. 

Channel overlap (overlap between two (or more) different fluorescent labels, each 

having a separate emission wavelength, to see if the different "targets" are located in the 

same area of the cell or very near to one another) can be quantified using cross-correlation 

algorithms like Pearson’s correlation coefficient. Pearson’s Correlation is a well defined and 

commonly accepted means for describing the extent of overlap between image pairs. It is 

a value computed to be between -1 and 1, with -1 being no overlap whatsoever between 

images and 1 being perfect image registration (van Steensel et al., 1996; Zinchuk and 

Grossenbacher-Zinchuk, 2011). Pearson’s correlation was calculated from confocal images 

using an inbuilt aglorithm in Image Pro Plus (Media Cybernetics). 

3.3.1 Co-localisation analysis of oLANA and interacting proteins in HEK293T 

cells 

Indirect immunofluorescence assays were carried out to detect the subcellular 

location of GFP-oLANAΔ protein in HEK 293T cells transfected with pMSCV-GFP-oLANAΔ.  

The native green fluorescence of GFP was used to mark GFP-oLANAΔ. Monoclonal and 

polyclonal antibodies to cellular proteins were then used as the primary antibodies which 

were then detected using Alexa flour 594-labelled secondary antibodies. After staining, the 

cells were imaged by confocal microscopy as described in section (section 2.3.1).   

 

3.3.1.1 GFP Control 

First, as a positive control, anti-GFP was used to determine co-localisation with the 

GFP fluorescence. Figures (3-22 and 3-23) showed the expected cellular localisation of GFP-
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oLANAΔ which was expressed predominantly in nuclei. There was excellent overlap 

between the GFP and anti-GFP signals as shown by yellow speckles in the nuclei (Panel D).  

 

 

 

Figure 3- 22.  Colocalisation of GFP-oLANAΔ with anti-GFP. 

 HEK 293 T cells were transfected with pMSCV-GFP-oLANAΔ using calicum phosphate. After 

24 hr, cells were fixed, permeablised and immunostained using an anti-GFP antibody (Santa 

Cruz Biotechnology) and Alexa-fluor 594 anti-mouse. Nuclei were stained blue using DAPI 

and cells then visualised by  confocal microscopy. A: Green channel B:  Red channel C: Blue 

Channel D:  Overlay of green and red pixel intensities. Images are representative of three 

experimental replicates. Scale bars represent 15μm. The arrows show the overlap areas 
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Figure 3- 23. Colocalisation of GFP-oLANAΔ with anti-GFP.  

HEK 293 T cells were transfected with pMSCV-GFP-oLANAΔ using calicum phosphate. After 

24 hr, cells were fixed, permeablised and immunostained using an anti-GFP antibody (Santa 

Cruz Biotechnology) and Alexa-fluor 594 anti-mouse. Nuclei were stained blue using DAPI 

and cells then visualised by  confocal microscopy. A: Green channel B:  Red channel C: Blue 

Channel D:  Overlay of green and red pixel intensities. Images are representative of three 

experimental replicates. Scale bars represent 15μm. The arrows show the overlap areas 

 

 

3.3.1.2 Rad50 

As shown in Figure 3-24 and 3-25, Rad50 (Panel B) was diffusely distributed 

throughout the nucleus as well as present  as clear speckles observed in the nuclei of many 

cells.  This pattern was similar to the pattern of oLANA localisation as puncta in the nuclei 
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(Panel A). Panel D shows that there appeared to be some colocalisation (yellow) of GFP-

oLANAΔ and Rad 50. 

 

Figure 3- 24. Colocalisation of GFP-oLANAΔ with Rad50.  

HEK 293 T cells were transfected with pMSCV-GFP-oLANAΔ using calicum phosphate. After 

24 hr, cells were fixed, permeablised and immunostained using an anti-Rad50 antibody 

(Merck) and Alexa-fluor 594 labelled secondary. Nuclei were stained blue using DAPI and 

cells then visualised by  confocal microscopy. A: Green channel B:  Red channel C: Blue 

Channel D:  Overlay of green and red pixel intensities.   Images are representative of three 

experimental replicates. Scale bars represent 15μm. The arrows show the overlap areas 
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Figure 3- 25. Colocalisation of GFP-oLANAΔ with Rad50.  

HEK 293 T cells were transfected with pMSCV-GFP-oLANAΔ using calicum phosphate. After 

24 hr, cells were fixed, permeablised and immunostained using an anti-Rad50 antibody 

(Merck) and Alexa-fluor 594 labelled secondary. Nuclei were stained blue using DAPI and 

cells then visualised by  confocal microscopy. A: Green channel B:  Red channel C: Blue 

Channel D:  Overlay of green and red pixel intensities.   Images are representative of three 

experimental replicates. Scale bars represent 15μm. The arrows show the overlap areas 

 

 

3.3.1.3 CCDC12 

As shown in Figure 3-26 and 3-27, CCDC12 appeared to be localised as puncta in the 

cytoplasm with a much lower more diffuse pattern of staining in the nucleus (Panel B). As 

the GFP signal was far brighter than the Alexa Fluor 594 is hard to discern any overlap of 

signal.   
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Figure 3- 26.  Colocalisation of GFP-oLANAΔ with CCDC12.  

HEK 293 T cells were transfected with pMSCV-GFP-oLANAΔ using calicum phosphate. After 

24 hr, cells were fixed, permeablised and immunostained using an anti-CCDC12 antibody 

(Sigma) and Alexa-fluor 594 labelled secondary. Nuclei were stained blue using DAPI and 

cells then visualised by  confocal microscopy. A: Green channel B:  Red channel C: Blue 

Channel D:  Overlay of green and red pixel intensities. Images are representative of three 

experimental replicates. Scale bars represent 15μm.  

 

 

(A) oLANA

(C) DAPI

(B) Anti-CCDC12 

(D) oLANA Anti-CCDC12
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Figure 3- 27.  Colocalisation of GFP-oLANAΔ with CCDC12.  

HEK 293 T cells were transfected with pMSCV-GFP-oLANAΔ using calicum phosphate. After 

24 hr, cells were fixed, permeablised and immunostained using an anti-CCDC12 antibody 

(Sigma) and Alexa-fluor 594 labelled secondary. Nuclei were stained blue using DAPI and 

cells then visualised by  confocal microscopy. A: Green channel B:  Red channel C: Blue 

Channel D:  Overlay of green and red pixel intensities.   Images are representative of three 

experimental replicates. Scale bars represent 15μm. 

 

3.3.1.4 SDF2L1 

Analysis of transfected cells using an SDF2L1 antibody (Figure 3-28 and 3-29) showed  

staining in the cytoplasm and to a lesser extent in nuclei. Although GFP signal from GFP-

oLANAΔ was seen in nuclei it was hard to discern any yellow colour indicating overlap in 

these images by eye.  
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Figure 3- 28.  Colocalisation of GFP-oLANAΔ with SDF2L1.  

HEK 293 T cells were transfected with pMSCV-GFP-oLANAΔ using calicum phosphate. After 

24 hr, cells were fixed, permeablised and immunostained using an anti-SDF2L1 antibody 

(ThermoFisher) and Alexa-fluor 594 labelled secondary. Nuclei were stained blue using 

DAPI and cells then visualised by  confocal microscopy. A: Green channel B:  Red channel 

C: Blue Channel D:  Overlay of green and red pixel intensities. Images are representative of 

three experimental replicates. Scale bars represent 15μm.  
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Figure 3- 29.  Colocalisation of GFP-oLANAΔ with SDF2L1.  

HEK 293 T cells were transfected with pMSCV-GFP-oLANAΔ using calicum phosphate. After 

24 hr, cells were fixed, permeablised and immunostained using an anti-SDF2L1 antibody 

(ThermoFisher) and Alexa-fluor 594 labelled secondary. Nuclei were stained blue using 

DAPI and cells then visualised by  confocal microscopy. A: Green channel B:  Red channel 

C: Blue Channel D:  Overlay of green and red pixel intensities. Images are representative of 

three experimental replicates. Scale bars represent 15μm. The arrows show the overlap 

areas 

 

 

3.3.1.5 Histone H1 

The results in  Figures 3-30 and 3-31 demonstrated that histone H1 was observed in 

the nuclei of cells as puncta (Panel B). This is a typical distribution for histone H1. GFP-
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oLANAΔ protein was localised in a similar pattern in nuclei and there appeared to be good 

evidence of  colocalisation as yellow splecks (Figures 3-30 D and 3-31 D). 

 

 

Figure 3- 30.  Colocalisation of GFP-oLANAΔ with Histone H1.  

HEK 293 T cells were transfected with pMSCV-GFP-oLANAΔ using calicum phosphate. After 

24 hr, cells were fixed, permeablised and immunostained using an anti-histone H1 antibody 

(Abcam) and Alexa-fluor 594 labelled secondary. Nuclei were stained blue using DAPI and 

cells then visualised by  confocal microscopy. A: Green channel B:  Red channel C: Blue 

Channel D:  Overlay of green and red pixel intensities. Images are representative of three 

experimental replicates. Scale bars represent 15μm. The arrows show the overlap areas 
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Figure 3- 31.  Colocalisation of GFP-oLANAΔ with Histone H1.  

HEK 293 T cells were transfected with pMSCV-GFP-oLANAΔ using calicum phosphate. After 

24 hr, cells were  fixed, permeablised and immunostained using an anti-histone H1 

antibody (Abcam) and Alexa-fluor 594 labelled secondary. Nuclei were stained blue using 

DAPI and cells then visualised by  confocal microscopy. A: Green channel B:  Red channel 

C: Blue Channel D:  Overlay of green and red pixel intensities. Images are representative of 

three experimental replicates. Scale bars represent 15μm. The arrows show the overlap 

areas 
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3.3.1.6 P53 

As shown in Figure 3-32 and 3-33, p53 was localised in puncta in the cytoplasm and 

to a lesser extent in nuclei (Panel B). The pattern of staining was distinct from GFP-oLANAΔ 

and there appeared to be little colocalization (panel D).  

 

 

Figure 3- 32.  Colocalisation of GFP-oLANAΔ with P53.  

HEK 293 T cells were transfected with pMSCV-GFP-oLANAΔ using calicum phosphate. After 

24 hr, cells were fixed, permeablised and immunostained using an anti-P53 antibody 

(Sigma) and Alexa-fluor 594 labelled secondary. Nuclei were stained blue using DAPI and 

cells then visualised by  confocal microscopy. A: Green channel B:  Red channel C: Blue 

Channel D:  Overlay of green and red pixel intensities. Images are representative of three 

experimental replicates. Scale bars represent 15μm. 
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Figure 3- 33.  Colocalisation of GFP-oLANAΔ with P53.  

HEK 293 T cells were transfected with pMSCV-GFP-oLANAΔ using calicum phosphate. After 

24 hr, cells were fixed, permeablised and immunostained using an anti-P53 antibody 

(Sigma) and Alexa-fluor 594 labelled secondary. Nuclei were stained blue using DAPI and 

cells then visualised by  confocal microscopy. A: Green channel B:  Red channel C: Blue 

Channel D:  Overlay of green and red pixel intensities. Images are representative of three 

experimental replicates. Scale bars represent 15μm. 

 

 

(A) oLANA (B) Anti-p53

(C) DAPI (D) oLANA Anti-p53
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3.3.1.7 cGAS 

As shown in Figure 3-34 and 3-35, cGAS was localised in puncta in the cytoplasm 

(Panel B). The pattern of staining was distinct from GFP-oLANAΔ and there appeared to be 

little colocalisation (panel D). 

 

 

Figure 3- 34.  Colocalisation of GFP-oLANAΔ with cGAS.  

HEK 293 T cells were transfected with pMSCV-GFP-Olanaδ using calicum phosphate. After 

24 hr, cells were fixed, permeablised and immunostained using an anti-cGAS antibody 

(Merk) and Alexa-fluor 594 labelled secondary. Nuclei were stained blue using DAPI and 

cells then visualised by  confocal microscopy. A: Green channel B:  Red channel C: Blue 

Channel D:  Overlay of green and red pixel intensities. Images are representative of three 

experimental replicates. Scale bars represent 15μm. 
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Figure 3- 35.  Colocalisation of GFP-oLANAΔ with cGAS.  

HEK 293 T cells were transfected with pMSCV-GFP-oLANAΔ using calicum phosphate. After 

24 hr, cells were fixed, permeablised and immunostained using an anti-cGAS antibody 

(Merk) and Alexa-fluor 594 labelled secondary. Nuclei were stained blue using DAPI and 

cells then visualised by  confocal microscopy. A: Green channel B:  Red channel C: Blue 

Channel D:  Overlay of green and red pixel intensities. Images are representative of three 

experimental replicates. Scale bars represent 15μm. 
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3.3.2 Quantification of coclocalisation of transfected  GFP-oLANAΔ  protein 

with cellular proteins 

To quanifiy co-localisation between GFP-oLANAΔ and cellular proteins, images 

generated as in the section above were analysed using Image Pro Premier. The degree of 

pixel overlap between the green (GFP-oLANAΔ) and red (cellular protein) images was 

analysed and expressed using Pearson’s Correlation. Separate images from three 

experimental replicates were analysed and the data expressed as a mean. The results 

(Figure 3-36), showed that the positive control (GFP antibody) as expected had a near 

perfect correlation between GFP and the antibody (0.8).  Looking at cellular proteins, the 

data show very good coclocalisation of GFP-oLANAΔ and Rad 50  (0.75), CCDC12 (0.56) and 

histone (0.48). In contrast, there was a much lower level of colocalisation between GFP-

oLANAΔ and p53, SDF2L1 and cGAS.  

These quantification results generally correlate with the observations made by eye 

where good overlap was seen between GFP, histone H1 and Rad50.  Overlap was not seen 

by eye for CCDC12 but was picked up by image analysis. Image analysis is far more sensitive 

and will pick up overlap even when one signal is far greater, as is the case with this 

antibody.  
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Figure 3- 36.  Quantification of colocalisation between GFP-OLANAΔ and cellular 

proteins. 

Immunofluorescence images of HEK 293T cells transfected with pMSCV-GFP-oLANAΔ and 

then stained with antibodies for cellular proteins were analysed using Image Pro Premier 

software and the Pearson’s correlation coefficient was calculated. Y-axis represents the 

Pearson’s correlation coefficient with values shown as the mean Pearson’s correlation 

coefficient for three biological replicates for each antibody ± SD. Values close to 1 represent 

increased colocalisation. 

 

3.3.3 Co-localisation analysis of oLANA and interacting proteins in bovine 
LGLs 

The results above indicated co-localisation of oLANA with cellular proteins. However, 

this analysis was performed with an GFP-tagged expression construct that lacked the 

repetitive domain of oLANA. To confirm interactions of full-length oLANA in bovine cells, 

colocalisation analysis was performed in OvHV-2-infected bovine LGLs (T cells). In this 

analysis, oLANA was detected by using a polyclonal rabbit antibody to oLANA (Al-Saadi, 

2018). This limited the double immunofluorescence to proteins where we either had or 

could source a mouse monoclonal antibody. These proteins were Rad 50, CCDC12 and anti-

histone H1. These were detected using goat anti-mouse Alexa flour 594 (red) and anti-
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rabbit-FITC (green)as described in section (2.3.2). The LGL cell line was obtained from 

infected cattle with SA-MCF which means that these cells carry an oLANA protein.  

3.3.3.1 Rad50 

Figures 3-37 A and 3-38 A showed oLANA distributed as nuclear puncta. Rad50 

showed a similar pattern of staining to oLANA (panel B). Figures 3-37 D and 3-38 D showed 

the clear colocalisation of Rad 50 with the oLANA in the nuclei. 

 

Figure 3- 37.  Colocalisation of oLANA with Rad50.  

LGL cells were fixed, permeablised and immunostained using rabbit anti-oLANA and anti-

rabbit FITC as well as anti-Rad50 antibody (Merk) and Alexa-fluor 594 labelled secondary. 

Nuclei were stained blue using DAPI and cells then visualised by  confocal microscopy. A: 

Green channel B: Red channel C: Blue Channel D:  Overlay of green and red pixel intensities. 

Images are representative of three experimental replicates. Scale bars represent 15μm.  
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Figure 3- 38.  Colocalisation of oLANA with Rad50. 

LGL cells were fixed, permeablised and immunostained using rabbit anti-oLANA and anti-

rabbit FITC as well as anti-Rad50 antibody (Merk) and Alexa-fluor 594 labelled secondary. 

Nuclei were stained blue using DAPI and cells then visualised by  confocal microscopy. A: 

Green channel B: Red channel C: Blue Channel D:  Overlay of green and red pixel intensities. 

Images are representative of three experimental replicates. Scale bars represent 15μm.  

 

 

3.3.3.2 CCDC12 

Further immmunoflurescence was performed to idenifiy colocalisation CCDC12 with 

oLANA in the nuclei of LGL cells. As shown in Figures 3-39  and 3-40, oLANA and CCDC12 

discplay a similar pattern of staining in cells and there is also good overlap between the 

two molecules (Panel D). 
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Figure 3- 39.  Colocalisation of oLANA with CCDC12.  

LGL cells were fixed, permeablised and immunostained using rabbit anti-oLANA and anti-

rabbit FITC as well as anti-CCDC12 antibody (Sigma) and Alexa-fluor 594 labelled secondary. 

Nuclei were stained blue using DAPI and cells then visualised by  confocal microscopy. A: 

Green channel B:  Red channel C: Blue Channel D:  Overlay of green and red pixel 

intensities. Images are representative of three experimental replicates. Scale bars 

represent 15μm.  
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Figure 3- 40.  Colocalisation of oLANA with CCDC12. 

 LGL cells were fixed, permeablised and immunostained using rabbit anti-oLANA and anti-

rabbit FITC as well as anti-CCDC12 antibody (Sigma) and Alexa-fluor 594 labelled secondary. 

Nuclei were stained blue using DAPI and cells then visualised by  confocal microscopy. A: 

Green channel B:  Red channel C: Blue Channel D: Overlay of green and red pixel intensities. 

Images are representative of three experimental replicates. Scale bars represent 15μm.  

 

 

3.3.3.3 Histone 

Finally, as seen in Figures 3-41 and 3-42, we detected high level of nuclear localisation 

of histone H1 which was similar to the oLANA nuclear localisation in the LGL cells. A definite  

colocalisation was found between oLANA protein and histone H1 in the nucleus (Panel D). 
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Figure 3- 41.  Colocalisation of oLANA with histone H1. 

LGL cells were fixed, permeablised and immunostained using rabbit anti-oLANA and anti-

rabbit FITC as well as anti-histone H1 antibody (Abcam) and Alexa-fluor 594 labelled 

secondary. Nuclei were stained blue using DAPI and cells then visualised by  confocal 

microscopy. A: Green channel B:  Red channel C: Blue Channel D:  Overlay of green and red 

pixel intensities. Images are representative of three experimental replicates. Scale bars 

represent 15μm. 
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Figure 3- 42.  Colocalisation of oLANA with histone H1. 

LGL cells were fixed, permeablised and immunostained using rabbit anti-oLANA and anti-

rabbit FITC as well as anti-histone H1 antibody (Abcam) and Alexa-fluor 594 labelled 

secondary. Nuclei were stained blue using DAPI and cells then visualised by  confocal 

microscopy. A: Green channel B:  Red channel C: Blue Channel D:  Overlay of green and red 

pixel intensities. Images are representative of three experimental replicates. Scale bars 

represent 15μm. 

 

3.3.4 Quantification of coclocalisation of oLANA protein with cellular 
proteins in bovine LGLs 

 

To quanifiy co-localisation between oLANA and cellular proteins, images generated as 

in the section above were analysed using Image Pro Premier. The degree of pixel overlap 

between the green (oLANA) and red (cellular protein) images was analysed and expressed 

using Pearson’s Correlation. Separate images from three experimental replicates were 

analysed and the data expressed as a mean. The results (Figure 3-43), showed that all 
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cellular proteins had a degree of overlap with oLANA and that this was greatest and least 

variable for CCDC12 (0.68) than for Rad50 and histone H1. These quantification results 

generally correlate with the observations made by eye. They also support the observations 

of colocalisation of GFP-oLANAΔ  with all these molecules. CCDC12, Rad50 and H1 are all 

therefore strong candidates for oLANA interacting proteins and warrant future 

investigation. 

 

 

Figure 3- 43.  Quantification of colocalisation between oLANA and cellular proteins. 

Immunofluorescence images of LGLs stained with antibodies for oLANA and cellular 

proteins were analysed using Image Pro Premier software and the Pearson’s correlation 

coefficient was calculated. Y-axis represents the Pearson’s correlation coefficient with 

values shown as the mean value coefficient for three biological replicates for each antibody 

± SD. Values close to 1 represent increased colocalisation. 
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4.1 Discussion 

Malignant catarrhal fever (MCF) is a fatal disease, and the pathogenesis of MCF is 

not precisely understood. In spite of the importance of SA-MCF, until recently little 

research has been conducted with OvHV2 because there are no OvHV2 isolates available 

for research due to challenges with the virus isolation (Coulter et al., 2001) and a lack of 

tools to study the virus (Ackermann, 2005b). However The availability of the complete 

genome sequence of  OvHV-2, has made it possible more recently to initiate molecular 

studies of this virus (Hart et al., 2007).  

This project was undertaken to understand the pathogenesis of MCF further by 

evaluating the role of OvHV-2-oLANA and its interactions with cellular proteins. KSHV LANA 

is one of the major viral proteins expressed in virus latency, and it is essential for the 

replication and persistence of the viral episome during latent infection (Si et al., 2008), 

particularly in proliferating cells. KSHV LANA recruits a number of molecules to regulate 

replication of cells, modulate the host response and it mediates the segregation of the 

newly synthesized genome copies to daughter nuclei during latency by tethering to the 

host chromosomes (Verma et al., 2006). LANA has homologues in all gammaherpesviruses 

but their sequences are quite divergent and they are different sizes.  In spite of this they 

all retain many of the functions that have been identified for KSHV LANA and they all 

contain a central highly repetitive domain (Domsic et al., 2013; Uppal et al., 2014). It was 

therefore assumed at the start of this project that the OvHV-2 oLANA protein also retained 

functions and similar cellular binding partners as the prototypic KSHV LANA. Indeed, work 
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in a previous PhD project has shown that, like all other LANA proteins studied to date, 

oLANA is localised in puncta in the nucleus of OvHV-2 infected cells (Al-Saadi, 2018).  

In order to determine the potential role of oLANA protein in MCF pathogenesis, it 

was necessary to identify the presence of protein binding partners in cells. The approach 

taken was to express a recombinant oLANA fused to GFP, use this to pull down cellular 

partners using GFP-trap technology and then analyse co-precipitants by mass 

spectrometry. The central repetitive domain of KSHV LANA inhibits translation of the 

protein (Mariggiò et al., 2017) and most of the interactions of KSHV are localised to the N- 

and C- terminal non-repetitive domains. So, an approach to studying KSHV LANA has been 

to utilise a deleted version of the protein lacking the central repetitive domain to maximise 

expression levels and hence the chances of identifying binding partners (Zhang et al., 

2016b). A codon-optimised GFP-oLANA lacking the central repetitive domain (GFP-

oLANAΔ) was therefore used as bait in this project.  Using this approach, eight oLANA-

interacting proteins in HEK293T cells were identified by co-precipitiation and MS. Of these, 

only histone H1 was confirmed by co-immunoprecipitation and western blotting. Two 

others (CCDC12 and Rad50) were shown to co-localise with oLANA 

4.1 Construction of recombinant retroviruses 

The original aim was to use a recombinant retrovirus based on the murine stem cell 

retrovirus (MSCV) to deliver GFP-oLANAΔ- to bovine T cells and study interacting proteins. 

Retroviruses have many distinct advantages over other vectors, especially when 

permanent gene transfer is the preferred outcome. They can be ‘pseudotyped’ to contain 

alternative envelope glycoproteins and so efficiently infect a wide range of cells. However, 
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the use of retroviruses as a delivery tool for gene therapy is often limited by relatively low 

levels of virus production (Weber et al., 2001). 

The retrovirus chosen for these studies, MSCV has been used with great effect to 

deliver and express genes in a wide range of mammalian cells, in particular cells that are 

difficult to transfect such as T cells. The recombinant MSCV was generated using a three-

plasmid system one containing the retroviral backbone (LTR, packaging signal and the GFP-

oLANAΔ) one containing Gag and Pol and a third containing the VSV G protein to allow 

infection of most cell types. These were then transfected into HEK 293T cells to generate 

virus. HEK 293T cells are able to produce infectious retroviral stocks within 24 h after 

transfection and without selection. Retroviral stocks of high titres are necessary for 

efficient introduction of recombinant genetic material into target cells and ideally for the 

GFP-trap/MS technique to be successful >80% of the cells need to contain the bait protein. 

Unfortunately, the titre of the virus stocks generated on NIH3T3 cells was low and 

insufficient to efficiently infect the cells in a large target population. Improvements were 

made to the protocols by removing endotoxin from the plasmid DNA stocks and modifying 

the transfection protocols but the percentage of transduced cells was still too low. In the 

interests of time, this approach was not followed further. Future improvements might 

include testing different batches of HEK 293T cells from different sources as there may be 

variability in their ability to produce retrovirus. Also, an established protocol for 

transfection of the 3 plasmids was followed, but optimisation of the amounts of DNA of 

each plasmid may lead to improved yields. Finally large preparations of virus could be 

produced and then concentrated down to produce a more potent stock.  
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4.2 Transfection into HEK 293T cells 

In the absence of an efficient method of delivery into bovine T cells, it was decided 

to use the more conventional method of transfection into HEK 293T cells. A codon-

optimised GFP-oLANAΔ gene was cloned into the pMSCV-IRES-GFP vector as this would 

work well for expression in HEK 293T cells as well as possible future retroviral construction. 

Using this vector, GFP-oLANAΔ protein was strongly expressed in HEK 293T cells 24 h post 

transfection and was predominantly located in the nucleus of the cells. The nuclear 

localisation of GFP-oLANAΔ is not surprising as, like other LANA proteins, the sequence has 

two nuclear localisation signal sequences as predicted using the NucPred algorithm 

(Brameier et al., 2007). 

Western blotting was performed on lysates from transfected and 

immunoprecipitated samples. The fusion protein was apparent as a band at 47 kDa which 

corresponds to the predicted molecular weight, thus confirming the expression of GFP-

oLANAΔ. The transfection efficiency is subjective and prone to many variable factors, such 

as cell cycle progression, the biological processes of gene expression activity, general 

activity of specific cell type and the reagent type. These factors can affect and inhibit the 

expression of the transfected DNA (Kim and Eberwine, 2010). The results presented here 

demonstrate that at 24 h post-transfection the fusion protein was present and abundant. 

However, the signal level was different between biological replicates. Nevertheless the 

overall signature of the response was similar and significant when observed by 

fluorescence microscope. Several important factors, such as the DNA quantity and quality, 

cell type, cell health, and transfection method (as stated above) affect transfection results 

also (Pfeifer and Verma, 2001). 



Chapter Four                                                                                                Discussion and Conclusion 

184 
 

4.3 GFP-trap and MS identification of oLANA-interacting proteins 

Co-immunoprecipitation experiments using GFP-oLANAΔ and LC MS/MS identified 

8 potential oLANA interacting proteins. Mass spectrometry is a primary tool for protein 

identification and is used to detect the multiple reaction of a peptide with greater 

sensitivity because the precursor ion is not detected in the full mass spectrum  (Domon 

and Aebersold, 2006). The data gathered from proteomic analysis provides information on 

GFP-oLANAΔ relationships. A number of compromises were made in the proteomic study, 

including the number of replicates, quantitative nature of the mass spectrometry and cell 

line in which the immunoprecipitation was performed. In addition, the over-fitting due to 

detection of hundreds of proteins in small sample sizes which may easily lead to false 

correlations and over-interpretation of proteomic data (Borrebaeck, 2012). There were a 

large number of proteins identified that were present in immunoprecipitation samples. 

Although the protein score does approximately relate to the abundance of the protein such 

as number of peptides matching the protein are taken into consideration. In this analysis, 

there are a number of proteins that have a differential protein score of more than two-fold 

in the GFP-oLANAΔ sample compared to the control. There were also a large number of 

ribosomal proteins identified in GFP-oLANAΔ samples. Also, worth noting was the fact that 

GFP-oLANAΔ had a low protein score (The sum of the ion scores of all peptides that were 

identified).  

Co-immunoprecipitation experiments using GFP-oLANAΔ identified 8 potential 

oLANA interacting proteins. Of these, only histone H1 is known to interact with other LANA 

proteins (Zhang et al., 2016b). It was decided to follow up on a subset of these 8 proteins, 
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histone H1, CCDC12 and SDF2L1 as these has potentially interesting functions and there 

were antibodies readily available for further studies. 

4.4 Confirmation of oLANA interactions 

Interactions between oLANA and cellular proteins were tested by co-

immunoprecipitation using GFP-oLANAΔ and western blotting using specific antibodies. 

Co-localisation of the proteins by confocal microscopy was also performed using GFP-

oLANAΔ-transfected cells as well as OvHV-2 infected bovine LGLs. As well as the three 

interacting proteins identified by GFP-trap, we tested association between oLANA and p53, 

cGAS and Rad50 as these proteins have recently been identified as interacting with KSHV 

LANA and have functions critical for KSHV pathogenesis (Zhang et al., 2016b). 

Importantly, it was observed that the GFP-oLANAΔ fusion protein has affinity to 

some chromosomal proteins including histone-H1. Following the initial observation that 

GFP-oLANAΔ interacts with histone-H1 it was shown that histone H1 co-

immunoprecipitated with oLANAΔ. GFP-oLANAΔ and native oLANA in LGL cells was also 

shown using confocal microscopy to co-localise with H1 in nuclear puncta.  KSHV LANA was 

shown to bind to linker histone, H1 which was proposed to be required for tethering onto 

the host chromosome (Verma et al., 2013).  Further studies were carried out by Shinohara 

et al. (2002a) to determine whether a chimeric KS-LANA with histone H1 could be targeted 

to host chromosome and persist over multiple cell divisions. The results of the study 

showed that LANA deleted for aa 1–22 were unable to target to chromatin and replicate 

terminal repeat (TR) containing plasmids, whereas Δ1–22 aa LANA fused with histone H1 

bound to chromosomes as well as supported replication.  
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The results presented here suggest that oLANA may have a similar function to other 

LANAs in associating with chromatin and tethering the viral genome. Further studies would 

be required to formally show this. In addition, chromatin immunoprecipitation assays with 

sequencing could be used to determine the binding sites for GFP-oLANAΔ in order to study 

OvHV-2 control of gene expression.   

In this study the endo reticulum localised protein SDF2L1 was identified by GFP-

trap as associating with oLANA. SDF2L1 is an ER-resident protein found in diverse cells and 

tissues, It has an N-terminal 28 amino acid residue hydrophobic signal sequence and a C-

terminal HDEL sequence for ER-retention (Bies et al., 2004). It could not be detected in co-

IP/western blot assays as associating with oLANA and did not co-localise by 

immunofluorescence. Thus, the association between oLANA and SDF2L1 was not 

confirmed. Likewise, CCDC12 was identified by GFP-trap as associating with oLANA. A 

coiled coil is a motif constituted of α-helices that are coiled together like the strands of a 

rope, is found in many proteins, including transcription factors and signaling molecules. 

More recently, coiled coils have emerged as a unifying structural feature of several protein 

complexes that maintain spatial genome organization and DNA stability (Mason and Arndt, 

2004). It could not be detected in co-IP/western blot assays as associating with oLANA but 

did co-localise with it by immunofluorescence in both GFP-oLANAΔ-transfected cells and 

LGLs. Thus, while oLANA-CCDC12 associations were not definitively confirmed by co-IP 

western, the co-localisation suggests that there may be some interactions that are 

potentially interesting and require further investigation. We suppose that CCDC12 

maintains the stability and genome organization of the LANA protein during cell mitosis 

(Mason and Arndt, 2004). 
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KSHV LANA has been associated with many proteins  (Radkov et al., 2000). Several 

studies have shown that LANA in KSHV associates with tumour suppressor p53, and it 

inhibits p53-dependent transcription and apoptosis, and it has been demonstrated that 

LANA modulates p53-dependent pathways to prevent cell cycle arrest and apoptosis 

(Borah et al., 2004; Si and Robertson, 2006; Petre et al., 2007; Sarek et al., 2007; Jia et al., 

2010).  In contrast with these studies in KSHV it was found that GFP-oLANAΔ did not co-

precipitate with p53 in western Immunoblot or co-localise in cells. A potential confounding 

factor is the status of the p53 gene in HEK 293T cells, which has a mutation in the amino 

acid sequences and may mean that GFP-oLANAΔ- p53 interactions are negated (Sarek et 

al., 2007).  

A further interacting protein with KSHV LANA is cGAS (Zhang et al., 2016b). As 

shown in chapter three, cGAS protein was not detected in western blot for IP lysate cell or 

co-localising with oLANA.  A subsequent literature search highlighted that  Orzalli et al. 

(2015) were unable to detect a band corresponding to cGAS protein in HEK 293T cells when 

they examined the basal levels of cGAS protein in HEK293T cells in comparison with other 

different human cell lines by ‘name technique’. Thus, it is still undetermined if oLANA can 

interact with cGAS in other more related cells and future work should investigate this 

further using cell lines in which the expression of cGAS has been confirmed. Further study 

by  Zhang et al. (2016b) showed that the LANA-cGAS interaction occurs mainly in the 

cytoplasm of KSHV-infected cells and that cGAS immune-precipitated from the cytoplasm 

is associated with lower-molecular-weight forms of LANA. 

Rad 50 has also been shown to associate with KSHV LANA. Rad50 belongs to the 

structural maintenance of chromosomes (SMC) protein family that control the higher-
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order structure and dynamics of chromatin and displaying both sequence and structural 

homology (Lamarche et al., 2010). Rad50 is involved in DNA replication, DNA repair, and 

checkpoint activation in KSHV (Dupré et al., 2006). Cytoplasmic Rad50 sense cytoplasmic 

DNA and activate the NF-κB pathway, LANA isoforms recruit Rad50 in the cytosol and 

thereby interfere with the activation of the NF-κB cascade induced by transfected DNA, as 

well as KSHV reactivation from latency (Mariggiò et al., 2017). It could not be detected in 

co-IP/western blot assays as associating with oLANA but did co-localise very well with it by 

immunofluorescence in both GFP-oLANAΔ-transfected cells and LGLs. Thus, while oLANA-

Rad50 associations were not definitively confirmed by co-IP western, the co-localisation 

suggests that there may be some interactions that are potentially interesting and require 

further investigation. Rad50 is involved in DNA replication, DNA repair and often described 

as a ‘first responder’ to DNA damage. Similarly, in the case of KSHV, activation of Rad50  

has been demonstrated following initial viral entry and during the lytic replication 

programme and appears to play a positive role in the viral lifecycle (Hollingworth et al., 

2015). Rad50 coiled coils also forms a metal-mediated bridging complex between two DNA-

binding heads (Sohn and Hearing, 2012; Mariggiò et al., 2017). 

Some proteins identified by GFP-trap/MS did not show antibody binding (immune 

reactivity) in co-IP/western blot analysis, but did show clearly colocalisation in 

immunofluorescence with both HEK293T cells and LGLs. Some possible reasons for these 

findings might be based on many reasons include the protein interaction was not 

strong/stable which leads to total or partial protein loss during washing steps.  Another 

possible reason for different detection between western immunoblot and 

immunofluorescence may be because the western immunoblotting is less sensitive than LC 
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MS/MS and there was an insufficient amount of GFP-oLANA protein present in the sample 

or the sample was too complex to detect the lowest abundance proteins. Future studies 

might include over-expression of target molecules to maximise the chances of seeing 

interactions, optimising the pull-down conditions to stabilise interactions and also 

adopting live-cell imaging techniques such as FRET and FRAP to study possible weaker 

protein-protein interactions.  

Effective pharmacological intervention of MCF is an attractive option since no 

treatment or vaccine found which can reduce the progression of diseases by inhibiting the 

immune modulation. Pharmacological intervention relies greatly on the effective 

intervention of the interaction between LANA protein and cellular proteins to block the 

transmission of the virus from reservoir host to cattle. Such intervention would be highly 

desirable, as it would negate the need to separate cattle and other susceptible ungulates 

from reservoirs. However, further research is needed to elucidate the mechanisms 

underlying the interaction between LANA and cellular proteins so that they find a proper 

place in the pharmacological intervention. 

Results obtained from this thesis present novel mechanisms of potential regulation 

of cellular processes by LANA protein. These may contribute to the differential outcomes 

observed in oLANA in cattle in compare with in sheep and MCF-susceptible species 

(previous others studies). The results also identify possible novel virus-cell interactions that 

could, if confirmed, provide druggable targets for intervention in SA-MCF disease. Although 

the story is incomplete, mainly due to restrictions in both time and the availability of 

appropriate systems for the study of OvHV-2, this thesis paves the way for future 

investigations into the role of LANA protein in OvHV-2 biology. 
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