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Abstract

The free fermionic formulation of heterotic strings has been able to provide

some of the most phenomenologically viable string models to date. Within this

formulation, classifications of string models with an SO(10) GUT embedding

and its subgroups have been shown to admit three chiral generations of matter,

necessary Higgs representations and various other aspects of phenomenology

associated with the Standard Model.

The classification method is extended to models where the SO(10) symme-

try is broken directly at the string scale to the Left-Right Symmetric subgroup.

The method involves defining a set of basis vectors where fixed boundary con-

ditions are assigned to the free fermions, before exploring the string vacua gen-

erated by varying the Generalised GSO (GGSO) projection coefficients. The

method admits the derivation of algebraic expressions for each of the GGSO

projections on a sector in order to generate the complete massless spectrum

of the models. The derived algebraic expressions can be written in a com-

puter code so as to facilitate a computerised analysis of the entire spectrum

for each choice of GGSO projection coefficients. The classification procedure

has been previously applied to models with the following subgroups of the

observable SO(10) gauge group: SO(6) × SO(4) (Pati-Salam), SU(5) × U(1)

(Flipped SU(5)), SU(4)×SU(2)×U(1) (SU(421)) and SU(3)×SU(2)×U(1)2

(Standard-like Models).

A statistical sampling of models with the Left-Right Symmetric observable

gauge group is performed and the results are presented. In contrast to the

previous classification of Pati-Salam models, no three generation exophobic

vacua were found. However, contrary to the SU(421) case which was found

to be overconstrained and no complete generations of matter exist, complete

generations of matter were found to exist for the Left-Right Symmetric case.

The results of the classification performed demonstrate the existence of Left-

Right Symmetric models with three chiral generations of matter, the necessary

Higgs representations for spontaneous symmetry breaking and a leading top

quark Yukawa coupling.
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1 Introduction

Unification of the fundamental forces of Nature has long been a goal of

theoretical physics. One of the most remarkable achievements of theoret-

ical physics in the 20th century is the formulation of the Standard Model

of particle physics. The Standard Model unifies three of the four known

fundamental forces of Nature into a single framework of Quantum Field

Theory (QFT). Specifically, quantum field theory is the synthesis of quan-

tum mechanics and special relativity which is used as the framework of

the Standard Model to give a description of electromagnetism and the

strong and weak nuclear forces.

However, despite the overwhelming success of the Standard Model,

it has always been known that it is not the complete description of the

known Universe. The largest shortcoming of the Standard Model is its

incompatibility with the fourth fundamental force, gravity, as described

by the theory of general relativity.

This incompatibility arises as the Standard Model lacks a quantum

description of gravity, leading to the breakdown of the Standard Model

when quantum gravity effects become non-negligible. It is therefore rea-

sonable to assume that the Standard Model should be embedded in a

quantum theory of gravity. One approach of describing this embedding

is string theory. String theory is a promising proposition as the proposed

quantum particle of gravity (the graviton) must appear in the spectrum.

This is in fact one of the consistency conditions of the theory. Further-

more, the consistency conditions of string theory allow for the existence

of the matter and gauge structures which appear in the Standard Model.

However, string theory is not without issues. It is currently experimen-

tally unproven due to the mass scale of strings, referred to as the string

scale, being relatively high when compared with quantum field theories

such as the Standard Model. In fact, in the work presented in this thesis,

the string scale is assumed to be comparable to the Planck scale. While

this may be a reasonable feature of a quantum theory of gravity, it means

direct detection of strings is unachievable for any current or planned ex-
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periments. Indeed, without vast leaps in technology, the possibility of

direct detection is out of the question. String theory also predicts more

dimensions than the currently observed four dimensions of spacetime.

Despite these issues, among others, string phenomenology as a field of

theoretical physics has emerged from studying some of the implications

of string theory. String phenomenology is the topic of this thesis.

This thesis focuses on the free fermionic formulation of heterotic string

theory and the building of potentially relevant phenomenological models.

The advantage of the free fermionic formulation is that the theory can be

developed directly in four spacetime dimensions, in line with the current

experimental observations.

The basics of the Standard Model are presented before discussing some

of the problems which the Standard Model exhibits. The Left-Right Sym-

metric extension to the Standard Model is then briefly outlined before

giving a brief discussion of how it solves some of the Standard Model’s

problems. Left-Right Symmetric heterotic string models will form the

basis for the research presented in this thesis.

1.1 The Standard Model

The Standard Model is a description of all the known elementary particles

and their interactions via the electromagnetic, strong and weak nuclear

forces. It is a relativistic quantum gauge theory formulated in four space-

time dimensions.

The known fundamental particles are modelled as zero-dimensional

objects, referred to as point particles. They are grouped into three gen-

erations of matter with distinctions between leptons and quarks. The

matter content of the Standard Model can be found in table 1. There

also exists the antimatter counterparts of all the particles displayed in

the table. The representations of the matter particles under the Stan-

dard Model gauge group can be found in table 2.

The forces in the Standard Model are mediated by gauge bosons found

in the adjoint representation of the gauge group SU(3)C×SU(2)L×U(1)Y

8



Generation

1st 2nd 3rd Qem

Quarks
Up (u) Charm (c) Top (t) +2

3

Down (d) Strange (s) Bottom (b) −1
3

Leptons
Electron (e) Muon (µ) Tau (τ) −1

Electron Neutrino (νe) Muon Neutrino (νµ) Tau Neutrino (ντ ) 0

Table 1: The matter content of the Standard Model.

[1]. The SU(3)C symmetry of the gauge group provides the description

for the strong nuclear force, responsible for the colour charge. The electro-

magnetic and the weak nuclear forces are unified into a single framework

called the electroweak force at the energy level of the Standard Model

(known as the electroweak scale). The gauge group of the electroweak

symmetry is SU(2)L × U(1)Y . However, this unification is not observed

in the normal conditions of the current Universe and the electroweak sym-

metry in the Standard Model must be spontaneously broken. The method

of spontaneous symmetry breaking is referred to as the Higgs mechanism

and postulates a spin-zero scalar boson, known commonly as the Higgs

boson. The Higgs boson was discovered using the LHC at CERN in 2012

[2], which can be considered as further proof of the accuracy of the Stan-

dard Model. Explicitly, the Higgs mechanism breaks the SU(2)L×U(1)Y

electroweak gauge group to the observed electromagnetic U(1)em gauge

group, which provides a description of the electromagnetic force. During

the breaking of the gauge group the bosons Z0,W± obtain a mass whereas

the photon is left massless. Further information on the Higgs mechanism

can be found in reference [3]. The gauge bosons of the Standard Model

can be found in table 3.

Although the Standard Model provides an extremely accurate descrip-

tion of particle physics, there are shortcomings within the theory. Some

of these include a lack of reasonable candidates for dark matter, hierarchy

issues relating to the mass of the matter particles and the fact that the

Standard Model itself offers no motivation for the values of the 19 free
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Gauge Group

Notation SU(3)C SU(2)L U(1)Y Particle Rep.

Qi
L 3 2 +1

3

(
uL
dL

)i
(ucR)i 3 1 −4

3
(ucR)i

(dcR)i 3 1 +2
3

(dcR)i

LiL 1 2 −1
(
νL
eL

)i
(ecR)i 1 1 +2 (ecR)i

Table 2: The gauge representations of the Standard Model matter con-

tent where i = 1, 2, 3 accounts for the three generations of matter and c

denotes a conjugate field.

Force Notation Qem

Electromagnetic γ 0

Weak Nuclear Z0 0

W± ±1

Strong Nuclear g 0

Table 3: The gauge bosons of the Standard Model.

parameters it relies upon for it predictivity [4]. In fact, these need to

be placed in the theory manually from their observed values measured in

experiments, which is unappealing. Another issue is the gauge hierarchy

problem, which refers to the fine tuning needed in order to obtain the

scale of weak interactions and the need to stabilize it against radiative

corrections [5]. Expressed in another way, why is the weak scale ∼ O(103)

GeV so many orders of magnitude lower than the Planck scale (or some

other scale of grand unification), which is ∼ O(1018) GeV? [6]

In light of these shortcomings, among others, it is natural to consider

potential extensions to the Standard Model which may be able to solve

some of these issues. One potential solution to the gauge hierarchy prob-

lem in particular involves the addition of supersymmetry to the Standard

Model in order to create the Minimal Supersymmetric Standard Model
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(MSSM) [7]. Another of the proposed extensions to the Standard Model

is the embedding of the gauge group of the Standard Model into the so-

called Left-Right Symmetric gauge group SU(3)×SU(2)×SU(2)×U(1).

This proposed extension is the topic of the next section.

1.2 Left-Right Symmetric Models

Left-Right Symmetric (LRS) models extend the gauge symmetry of the

Standard Model (SM) by

SU(3)C × SU(2)L × U(1)Y → SU(3)C × SU(2)L × SU(2)R × U(1)B−L ,

where B is the baryon number and L is the lepton number. The anomaly

free matter content of LRS models can be found in table 4.

This extension solves some of the undesirable features of the SM.

Firstly, LRS models have a symmetry between left- and right-chiralities.

At the level of the SM this symmetry is not present, meaning there is a

distinction between left- and right-handed fermions [8]. This is commonly

referred to as parity violation. However, the SM provides no motivation

for why parity should be violated. However, LRS models motivate the

violation of parity in the SM due to the spontaneous symmetry breaking

of the SU(2)R gauge group [9].

Secondly the SM considers the left-handed neutrino as massless, con-

trary to experimental observation [10]. However, in LRS models a small

mass for left-handed neutrinos can be introduced quite naturally by the

introduction of a see-saw mechanism [11].

Finally, LRS models have the potential to provide a solution to the

strong CP and supersymmetric CP problems. This will not be discussed

further here but can be found in references [12, 13].

LRS models contain two instances of spontaneous symmetry breaking.

Firstly, the SU(2)R symmetry must be broken before the SU(2)×U(1)Y

electroweak symmetry of the SM is broken. In this work, the breaking of

the SU(2)R symmetry is achieved using a Higgs mechanism and therefore

introduces a so-called Heavy Higgs (this indicates the energy scale of

11



Gauge Group

Notation SU(3)C SU(2)L SU(2)R U(1)C Particle Rep.

Qi
L 3 2 1 +1

6

(
u
d

)i
Qi
R 3 1 2 −1

6

(
dc

uc

)i
LiL 1 2 1 −1

2

(
ν
e

)i
LiR 1 1 2 +1

2

(
ec

νc

)i
h 1 2 2 0

(
hu+ hd0

hu0 hd−

)
Table 4: The gauge representation of the Left-Right Symmetric matter

content where i = 1, 2, 3 accounts for the three generations of matter and

c denotes a conjugate field.

Force Notation Qem

Electromagnetic γ 0

Weak Nuclear Z0 0

W± ±1

Right Handed Z ′ 0

Charged Currents W±
R ±1

Strong Nuclear g 0

Table 5: The gauge bosons of Left-Right Symmetric models.

the spontaneous symmetry breaking of the SU(2)R is higher than that

of the SM electroweak symmetry breaking). The electroweak symmetry

breaking is the same as for the Standard Model and therefore introduces

a SM Higgs into the spectrum.

The spontaneous symmetry breaking of the SU(2)R symmetry results

in the addition of three gauge bosons to the gauge boson content of the

Standard Model. In the literature, these are commonly referred to as the

W±
R and Z ′ bosons. These bosons obtain a mass during the spontaneous

symmetry breaking and have a electromagnetic charge Qem the same as

their SM electroweak counterparts W±, Z0, which can be seen in table 5.
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Although LRS models do not solve all of the shortcomings of the SM,

their study warrants some attention. In addition to some of the solu-

tions LRS models offer, the proposed existence of the Heavy Higgs and

the gauge bosons W±
R , Z

′ give a testable prediction for either current or

planned collider experiments.

1.3 Thesis Outline

The outline of the thesis is as follows. Chapter 2 introduces the basics of

string theory. The fundamental concepts of the classical bosonic string are

introduced before presenting a method of quantisation which is then ap-

plied to the bosonic string. The spectrum of the quantised bosonic string

is then outlined. Considerations then move to the classical superstring,

which utilises supersymmetry in order to introduce spacetime fermions to

the spectrum of the theory. Quantisation of the superstring is considered

before outlining the spectrum of the superstring.

In chapter 3 the Free Fermionic Formulation of the heterotic super-

string is discussed. A brief introduction to the heterotic superstring is

given before introducing the basic formulation of the free fermions and

the important notation. Modular invariance is discussed before construct-

ing the one-loop partition function of the theory. The derivations of the

necessary rules for phenomenological model building are presented before

outlining the complete Hilbert space of the theory.

In chapter 4 the rules on model building derived in the previous chapter

are presented in a condensed manner, resulting in a self contained chapter

which contains all the necessary rules for building consistent free fermionic

string theories. A simple model consisting of two basis vectors is built in

order to outline the use of the equations presented in the first sections

of the chapter and the general method of deriving the spectrum of a free

fermionic model.

Chapter 5 presents the classification of Left-Right Symmetric heterotic

string vacua. The work presented is the subject of a publication by the

author in collaboration with A. E. Faraggi and J. Rizos which can be

13



found in [14].

Conclusions to the thesis and an outlook for the future of this research

is given in chapter 6.

Appendix A contains a brief overview of previous instances where re-

search groups have performed analysis on large sets of string vacua. Some

details of the research methods and the results obtained are outlined while

some of the similarities and differences to the work presented in Chapter

5 are highlighted.
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2 The Basics of String Theory

This chapter concerns the fundamental concepts of string theory. The

chapter begins with the construction of the classical bosonic string be-

fore applying a method of quantisation. The spectrum of the quantised

bosonic string is then outlined. The chapter progresses by introducing

supersymmetry in order to introduce spacetime fermions to the theory.

This theory is referred to as superstring theory. The superstring is then

quantised using a procedure analogous to the bosonic string and the spec-

trum is discussed. The chapter concludes with a brief discussing of the

GSO projection.

2.1 The Bosonic String

String theory modifies the description of what constitutes the fundamen-

tal particles. Particles in the Standard Model are represented as zero-

dimensional objects, referred to as point particles. String theory modifies

this concept by representing the fundamental particles as one-dimensional

objects, referred to as strings. This modification has some immediate ef-

fects. Where a point particle travelling through spacetime is said to trace

out a one-dimensional worldline, a string traces out a two-dimensional

worldsheet. This can be seen in figure 1.

The action of a point particle is proportional to the proper length of

the particle’s worldline. It is therefore reasonable to begin constructing

string theory using an action proportional to the proper area of the string

worldsheet. This results in the Nambu-Goto action defined as

SNG = − 1

2πα′

∫
M

dA

= − 1

2πα′

∫
d2σ

√
− det

∂Xµ

∂σα
∂Xν

∂σβ
ηµν

= − 1

2πα′

∫
d2σ
√
− det γ

(2.1)

where α′ is the Regge slope, M is the string worldsheet and ηµν is the

flat spacetime metric. The quantity σα = (τ, σ) parameterises the string

15



Figure 1: When a point particle propagates through spacetime, a one

dimensional worldline is traced out. String theory considers one dimen-

sional strings which trace out a two dimensional worldsheet when propa-

gating through spacetime.

worldsheet where τ is a time-like coordinate defined as the proper time and

σ is a space-like coordinate. The variable Xµ maps the string worldsheet

to spacetime where µ runs over the number of spacetime dimensions.

The prefactor to the integration is interpreted as the string tension T

and is defined as the mass per unit length of the string. The quantity

γαβ = ∂Xµ

∂σα
∂Xν

∂σβ
ηµν is often referred to as the induced metric on the string

worldsheet.

The Nambu-Goto action contains a square root of the determinant of

the induced metric γ. This can often become inconvenient to work with

during calculations, specifically as it is relatively difficult to quantise using

path integral techniques [15]. A solution to this is to use the Polyakov

approach to string theory which is achieved by redefining the action as

SP = − 1

4πα′

∫
d2σ
√
−hhαβ∂αXµ∂βX

νηµν

= −T
2

∫
d2σ
√
−hhαβγαβ

(2.2)

where hαβ is defined as the two-dimensional metric of the string world-

16



sheet and the notations ∂αX
µ = ∂Xµ

∂σα
and h ≡ dethαβ have been intro-

duced. An important quantity of any string theory is the energy momen-

tum tensor Tαβ, defined as

Tαβ =
4π√
−h

δSP
δhαβ

. (2.3)

The energy momentum tensor describes how the action is affected by

infinitesimal variations of the metric.

The Polyakov action is invariant under the following

• Poincaré Transformations

Poincaré transformations are a global symmetry of the worldsheet

which take the form

Xµ(τ, σ) = Λµ
νX

ν(τ, σ) + cµ ,

where Λµν = −Λνµ and cµ is some constant. Λµ
ν and cµ account

for Lorentz transformations and translations of the fields Xµ respec-

tively.

• Reparameterisations of the string worldsheet

The string worldsheet possesses a gauge symmetry defined by

(τ, σ)→ (τ̃ , σ̃) ,

which reflects the fact that a reparameterisation of the worldsheet

coordinates does not alter the underlying physics.

• Weyl rescalings

There is another gauge symmetry of the string worldsheet described

by

hαβ(τ, σ)→ e2ω(τ,σ)hαβ(τ, σ) ,

known as Weyl rescaling. Using Weyl rescaling, the two-dimensional

metric hαβ can be set equal to the two-dimensional flat metric ηαβ.

Specifically, the flat metric is defined in this case as ηαβ = ( −1 0
0 1 ).

This is known as the flat gauge and can be used to simplify the form

of the action as described below.

17



Figure 2: The coordinates τ, σ can be mapped to the complex plane.

With the flat gauge selected, the Polyakov action becomes

SP = −T
2

∫
dτdσ ηαβ∂αX

µ∂βXµ ,

which is the form used for the subsequent analysis.

The equation of motion for the fields Xµ which results from this action

is a two-dimensional wave equation, expressed as

∂α∂
αXµ = 0 .

As an aside, we can introduce complex coordinates, which can be useful

for writing some later expressions. By making the definitions

z = τ + iσ and z̄ = τ − iσ (2.4)

the coordinates τ and σ can be mapped to the complex plane, as depicted

in figure 2. Using the complex coordinates, the two-dimensional wave

equation can be expressed as

∂z∂z̄X
µ = 0 .

As this thesis concerns the heterotic string, only the closed string

solution to this equation is considered. The general solution for the closed

string, which has the boundary condition

Xµ(τ, σ) = Xµ(τ, σ + 2π) ,

is then

Xµ(τ, σ) = Xµ
L(τ + σ) +Xµ

R(τ − σ) (2.5a)

18



Xµ(z, z̄) = Xµ
L(z) +Xµ

R(z̄) (2.5b)

where equations (2.5a) and (2.5b) give the general solution in both coordi-

nate systems outlined above, but are entirely equivalent. This shows the

closed string can be split arbitrarily into left- and right-moving solutions.

These solutions can be expanded in terms of their Fourier modes to

become

Xµ
L(τ + σ) =

1

2
xµ +

α
′

2
pµ(τ + σ) + i

√
α′

2

∑
n6=0

1

n
αµne

−in(τ+σ) , (2.6a)

Xµ
R(τ − σ) =

1

2
xµ +

α
′

2
pµ(τ − σ) + i

√
α′

2

∑
n6=0

1

n
α̃µne

−in(τ−σ) , (2.6b)

where xµ and pµ are the position and momentum of the string’s centre of

mass respectively. The Fourier modes αµn, α̃
µ
n obey

αµn = (αµ−n)∗ ,

α̃µn = (α̃µ−n)∗ ,

in order to preserve the reality condition Xµ = (Xµ)∗. Classically, these

Fourier modes are interpreted as amplitudes of the nth order oscillations.

There is another equation of motion which arises from varying the

action with respect to the worldsheet metric. This is simply the equation

of motion which requires the vanishing of the energy momentum tensor,

i.e. Tαβ = 0. This leads to the constraints(
Ẋ ±X ′

)2
= 0 (2.7)

and is a direct consequence of the vanishing of the energy momentum

tensor. These constraints are commonly referred to as the Virasoro con-

straints. Further discussion of the vanishing of the energy momentum

tensor is given in section 2.1.2.

This concludes the discussion of the classical bosonic string. It remains

to perform the quantisation of the bosonic string and also to consider the

addition of fermions to the theory. This is the subject of the following

sections.
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2.1.1 Quantising the Bosonic String

In quantising the bosonic string, the fields Xµ along with the quantities

xµ, pµ, αµn, α̃µn are promoted to operators. The equal time commutation

relations must then be imposed, which are

[xµ, pν ] = iηµν , (2.8a)

[α̃µm, α
ν
n] = 0 , (2.8b)

[α̃µm, α̃
ν
n] = [αµm, α

ν
n] = mδm+n,0η

µν . (2.8c)

In addition to this, imposing the reality condition Xµ = (Xµ)∗ results in

the conditions

(αµm)† = αµ−m and (α̃µm)† = α̃µ−m . (2.9)

Redefining the oscillators according to

aµm →
αµm√
m

and (aµm)† → αµ−m√
m

, m > 0

then gives the familiar result for the commutation relation of the harmonic

oscillator [aµm, (a
ν
n)†] = δm,nη

µν . In this form, it is clear that the modes aµ−m

can be interpreted as creation operators and the modes aµm as annihilation

operators when m > 0.

Therefore, in momentum space defined by

p̂µ |0; p〉 = pµ |0; p〉 ,

where pµ is the eigenvalue of the momentum operator p̂µ and the ground

state is defined as

aµm |0; p〉 = ãµm |0; p〉 = 0 .

From this, a Fock space can be constructed by applying creation operators

to the ground state. Explicitly, a state |Φ〉 is constructed by

|Φ〉 = (aµ1

−1)nµ1 (aµ2

−2)nµ2 . . . (ãν1
−1)nν1 (ãν2

−2)nν2 . . . |0; p〉 . (2.10)
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2.1.2 The Energy Momentum Tensor and the Virasoro Condi-

tions

The energy momentum tensor is found as a result of varying the action

with respect to the worldsheet metric. Explicitly, imposing the constraint

δS

δhαβ
= 0

gives the constraint

Tαβ = 0 (2.11)

on the two-dimensional energy momentum tensor. It should be noted that

the vanishing of the energy momentum tensor is equivalent to the theory

having conformal symmetry [15]. When expressed in complex coordinates,

this constraint on the energy momentum tensor is Tzz̄ = 0, i.e. the

energy momentum tensor is traceless. This result follows directly from

the definition of the energy momentum tensor given in equation (2.3).

There are then two constraint operators [16, 17]

T (z) = Tzz = −1

2
∂zX

µ∂zXµ ,

T (z̄) = Tz̄z̄ = −1

2
∂z̄X

µ∂z̄Xµ .
(2.12)

Classically, the energy momentum tensor can be expanded in terms of

Fourier modes to give [15, 23]

T (z) =
∑
n∈Z

z(−n−2)Ln and T (z̄) =
∑
n∈Z

z̄(−n−2)L̃n (2.13)

where the Laurent modes L and L̃ have been introduced and are defined

by

Lm =
1

2

∑
n∈Z

αm−n · αn and L̃m =
1

2

∑
n∈Z

α̃m−n · α̃n . (2.14)

The classical modes L satisfy the Virasoro algebra

[Ln, Lm] = (n−m)Ln+m (2.15)

and similarly for the modes L̃. When defined in this manner, notable

expressions are the Hamiltonian H and the canonical momentum P

H = L0 + L̃0 and P = L0 − L̃0 (2.16)
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which are the classical expressions of the Virasoro generators.

Upon quantisation, the Laurent modes L, L̃ are promoted to operator

status and must therefore account for normal ordering. This is done by

modifying the definitions of the classical modes given in equation (2.14)

to become

Lm =
1

2

∑
n∈Z

: αm−n · αn : and L̃m =
1

2

∑
n∈Z

: α̃m−n · α̃n : (2.17)

where the colon notation denotes the normal ordered product of the cre-

ation and annihilation operators. Specifically, the annihilation operators

always appear on the right hand side of the expressions of L, L̃.

The quantum operators now obey a modified Virasoro algebra

[Ln, Lm] = (n−m)L(n+m) +
c

12
(n(n2 − 1))δn+m (2.18)

which includes the variable c referred to as the central charge of the

algebra and the conformal anomaly in string theories. Its appearance is

a consequence of the presence of Weyl rescaling in the theory [15].

The addition of normal ordering introduces an ambiguity into the def-

inition of L0 and L̃0. The result is that the general quantum versions of

these operators differ from the normal ordered definitions by a constant.

In practice, this means in the quantum expressions L0 → L0 + a, where a

is a constant. Similarly, L̃0 has a redefinition of the same form. Although

no further motivation for this is discussed here, proofs of this fact can be

found in references [18, 21, 22, 23, 24, 26].

It is now instructive to consider the constraint that the energy mo-

mentum tensor must equal zero, as described by equation (2.11). In the

quantised theory this leads to conditions on the physical states |Φ〉 given

by

(L0 − L̃0) |Φ〉 = 0 (2.19a)

Lm |Φ〉 = 0 and L̃m |Φ〉 = 0 , m > 0 (2.19b)

(L0 − a) |Φ〉 = 0 and (L̃0 − a) |Φ〉 = 0 (2.19c)
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where a is currently left undefined. Noting the physical interpretations

of these Virasoro generators, the generators L−1 and L̃−1 generate trans-

lations in the conformal plane, whereas L0 and L̃0 generate scaling and

rotations in the conformal plane [15].

The spectrum at this level contains states with a negative norm. An

example of these states is

a0†
m |0〉

which has a norm

〈0| a0
ma

0†
m |0〉 = −1

where the ground state is normalised by 〈0|0〉 = 1 [23]. These states are

referred to as ghosts and lead to an inconsistent theory as they violate

unitarity and causality. They arise as the commutation relations are time-

like and there is a residual gauge freedom [16]. However, these negative

norm states can be removed from the spectrum by using the light-cone

gauge, which is the topic of the next section.

2.1.3 Light-Cone Coordinates and Gauge

In order to define the light-cone gauge, the introduction of light-cone

coordinates is necessary. The definition of light-cone coordinates on the

string worldsheet is

σ± = τ ± σ (2.20)

and the introduction of spacetime light-cone coordinates is done accord-

ingly

X± =

√
1

2
(X0 ±XD−1) . (2.21)

The remaining D−2 spacetime coordinates are denoted by XI and remain

unchanged. These coordinates contain a residual gauge symmetry which

can be seen by making the transformations

σ+ → σ̃+(σ+) and σ− → σ̃−(σ−) (2.22)

which has the effect of multiplying the flat metric by an overall factor,

which can be negated by the use of a Weyl transformation. The solution
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to the equation of motion which was given in equation (2.5a) can now be

written in light-cone coordinates as

X+ = X+
L (σ+) +X+

R (σ−)

which we can now gauge fix by utilising the reparameterisation invariance.

The coordinates are chosen in the following manner

X+
L =

1

2
x+ +

1

2
α
′
p+σ+ , X+

R =
1

2
x+ +

1

2
α
′
p+σ−

and subsequently it is found that

X+(τ, σ) = x+ + α
′
p+τ , (2.23)

which is the light-cone gauge. Now that the choice of X+ has been made,

it remains to calculate the corresponding form of X− in this gauge. From

the constraints given in equation (2.7) it can be shown that these con-

straints become

2∂+X
−∂+X

+ =
D−2∑
I=1

∂+X
I∂+X

I , (2.24)

which can be rewritten using the light-cone gauge given in equation (2.23)

as

∂+X
−
L =

1

α′p+

D−2∑
I=1

∂+X
I∂+X

I (2.25)

for the left-movers, and

∂−X
−
R =

1

α′p+

D−2∑
I=1

∂−X
I∂−X

I (2.26)

for the right-movers. It can now be seen that X− is completely determined

by the transverse oscillations XI . This can be seen by writing the mode

expansions for X− in a manner similar to equations (2.6a) and (2.6b),

which are

X−L (σ+) =
1

2
x− +

1

2
α
′
p−σ+ + i

√
α′

2

∑
n6=0

1

n
α−n e

−inσ+

,

X−R (σ−) =
1

2
x− +

1

2
α
′
p−σ− + i

√
α′

2

∑
n6=0

1

n
α̃−n e

−inσ− ,

(2.27)
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then p−, α−n and α̃−n are fixed by the constraints above and x− is an

integration constant. A more robust derivation of this can be seen in

references [15, 26].

This concludes the discussion on the light-cone coordinates and gauge.

The spectrum of the quantised bosonic string can now be considered.

2.1.4 Mass Squared and Spectrum of Quantised Bosonic String

Using the definition of the mass squared1 M2 = −pµpµ (where pµ is the

total momentum of the string) and results from the previous sections, the

mass-shell condition can be shown to be

M2 =
4

α′
(N − a) and M2 =

4

α′
(Ñ − a) , (2.28)

where N, Ñ are the number operators defined as

N =
D−2∑
I=1

∑
n>0

αI−nα
I
n and Ñ =

D−2∑
I=1

∑
n>0

α̃I−nα̃
I
n . (2.29)

As the mass squared must be equal for the left- and right-movers, equating

the two results in equation (2.28) shows

N = Ñ , (2.30)

which is known as the level matching condition. This result simply shows

that the number of left- and right-moving oscillators must be equal. The

mass-shell condition can therefore be redefined as

M2 =
2

α′
(N + Ñ − 2a) . (2.31)

Using the result of the mass-shell condition, the spectrum can now be

discussed. It is again noted that only the spectrum of the closed string is

considered, as it is only the closed string discussed in later chapters.

1Specifically, the mass squared takes this form when using the metric ηµν =

(−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
[15, 18,

23, 25].
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• Ground State |0; pµ〉
The mass-shell condition gives the result2 M2 = −4a

α′
. As discussed

below, it is found that a = 1 and therefore the ground state has

a negative mass squared. This state is therefore tachyonic and its

removal from the spectrum by the addition of further constraints is

discussed later.

• First Excited States αI−1α̃
J
−1 |0; pµ〉

These states are also referred to as level one and therefore N =

Ñ = 1. The mass-shell condition is then M2 = 4
α′

(1 − a). These

states fit into a representation of SO(D − 2) [15, 18]. In order for

Lorentz invariance to be satisfied, all massless particles must fit into

a representation of SO(D − 2) and massive states must fit into a

representation of SO(D − 1) [23]. Therefore, as the states at this

level fit into SO(D− 2) they must be massless. From the mass-shell

condition stated in equation (2.31), it can be seen that massless

states can only be created if a = 1.

The form of a is explicitly stated here, but its derivation can be

found in references [15, 18, 21, 22], and is

a =
D − 2

24
.

Substituting in the result that a = 1 shows the critical spacetime

dimension to be D = 26.

The states of this level fit into the 24⊗24 representation of SO(24)

which can be decomposed into three irreducible representations by

traceless symmetric⊕ anti-symmetric⊕ singlet (i.e. the trace)

which correspond generally to the graviton, anti-symmetric tensor

field and dilaton fields respectively.

2It should be noted this result is for closed strings only. The mass squared for open strings does

not include the factor of four and therefore have a mass squared a quarter than that of the closed

string case.
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• Higher Mass States

Considering the mass-shell condition presented in equation (2.31),

when N, Ñ ≥ 2 it is found that M2 > 0 and therefore all further

excited states are massive.

The theory therefore has been shown to have 26 spacetime dimensions

and a normal ordering constant of a = 1. It should be noted that this is

only one method to obtain the value for a which utilised the requirement

that the theory should be Lorentz invariant. There are other approaches

which justify this value for a, but these will not be discussed here.

The spectrum contains tachyonic states and only bosonic fields. This

leaves the task of formulating a string theory where the spectrum pos-

sesses no tachyons and contains fermions. This requires the use of super-

symmetry in order to create the superstring and is the subject of the next

section.

2.2 The Superstring

The string theory described up to this point contains only spacetime

bosons and has a tachyon in the spectrum. This is undesirable as the the-

ory needs to include spacetime fermions and tachyonic particles should be

removed from the spectrum. The method described here to achieve this

utilises supersymmetry, leading to the formulation of superstring theory.

Firstly, fermionic degrees of freedom will be added to the string theory

by invoking supersymmetry and secondly the superstring theory will be

quantised.

2.2.1 The Ramond-Neveu-Schwarz Formalism

The Ramond-Neveu-Schwarz (RNS) formalism is an extension to the

bosonic string considered in previous sections which introduces new dy-

namical fields. These dynamical fields are vectors with respect to space-

time but are spinors with respect to the worldsheet [27]. This has the

result of introducing fermions to the spectrum of the string theory.
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The RNS construction begins by demanding that for each field

Xµ(τ, σ)→ Xµ(τ, σ), ψµ(τ, σ). These dynamical fields are related to each

other by the supersymmetric transformations

δXµ = iε̄ψµ ,

δψµ = ρα∂αX
µε ,

where ε, ε̄ are constants and ρα are the two dimensional gamma matrices,

defined as

ρ0 =

(
0 −1

1 0

)
and ρ1 =

(
0 1

1 0

)
. (2.32)

The matrices ρ are Grassmann variables and satisfy the anti-commutation

relation {ρα, ρβ} = 2ηαβ, commonly referred to as the Dirac algebra3.

The field ψµ(τ, σ) is a two component Majorana spinor which lives on

the worldsheet and is defined by

ψµ =

(
ψµ−
ψµ+

)
, (2.33)

when written in light-cone coordinates (the definitions can be seen explic-

itly in equation (2.41)). The Dirac conjugate of this spinor ψ is defined

as ψ = ψ†iρ0. As the spinor is a two-dimensional Dirac spinor and is real

by definition, i.e. ψ∗± = ψ±, the spinor is Majorana [18, 23]. The conju-

gate of the Majorana spinor therefore simplifies to ψTρ0. When written

explicitly,

ψ
µ

=

(
ψµ+
−ψµ−

)
. (2.34)

Contrary to the bosonic fields Xµ, these spinors anti-commute accord-

ing to the equation

{ψµA(τ, σ), ψνB(τ, σ′)} = πδABδ(σ − σ′)ηµν , (2.35)

where A,B denote the worldsheet spinor indices. Upon addition of these

fields, the modified action is

S = −T
2

∫
dτdσ (∂αXµ∂

αXµ + iψ
µ
ρα∂αψµ) (2.36)

3The Dirac algebra is also commonly called a Clifford algebra [23].

28



when written in the conformal gauge. The bosonic term in this action is

the same as the bosonic string described in the previous section. There-

fore, only the fermionic terms will be considered below. This will be

achieved by considering only the fermionic term in light-cone coordinates,

in which calculations are clearer. The fermionic term of this action in

light-cone coordinates is then

Sf = iT

∫
d2σ(ψµ−∂+ψ−µ + ψµ+∂−ψ+µ) . (2.37)

There is a conserved supersymmetric current Jµ due to the worldsheet su-

persymmetric and translational invariances. Using the Noether method,

it can be shown that the Virasoro constraints defined in equation (2.7)

lead to the conclusions

J+ = J− = T++ = T−− = 0 . (2.38)

Further information on these results can be found in reference [23].

2.2.2 Fermionic Boundary Conditions and Fourier Modes

Both the Fourier modes and the boundary conditions of the bosonic

term are as described in previous sections. It then remains to find the

Fourier mode expansions and boundary conditions of the newly intro-

duced fermionic term of the action. The variation of the fermionic term

of the action (2.37) is

δSf = −T
[∫

dτdσ(δψµ−∂+ψ−µ + δψµ+∂−ψ+µ)

+
1

2

∫
dτ [ψµ+δψ+µ − ψµ−δψ−µ]σ=π

σ=0

]
,

(2.39)

meaning the equations of motion are

∂+ψ− = 0 and ∂−ψ+ = 0 . (2.40)

These are referred to as the Weyl conditions for spinors in two dimensions

[23]. The fields ψ± are therefore Majorana-Weyl spinors. The equations

of motion also imply

ψµ+ = ψµ+(τ + σ) and ψµ− = ψµ−(τ − σ) . (2.41)
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The boundary conditions can now be found by requiring that the last

term of the action in equation (2.39) vanishes. Explicitly,

[ψµ+(τ, σ)δψ+µ(τ, σ)− ψµ−(τ, σ)δψ−µ(τ, σ)]σ=π
σ=0 = 0 (2.42)

leads to the two boundary conditions below.

In the case of the closed superstring, the bosonic part corresponds to

a tensor product of left- and right-moving modes (as shown in previous

sections). The fermionic case is the same in this respect and the boundary

conditions for the left- and right-moving modes are defined separately as

ψµ+(τ, σ) = ±ψµ+(τ, σ + π) ,

ψµ−(τ, σ) = ±ψµ−(τ, σ + π) .
(2.43)

The cases where the sign is positive are referred to as Ramond (R) bound-

ary conditions, which are periodic. The cases where the sign is negative

are referred to as Neveu-Schwarz (NS) boundary conditions and are anti-

periodic.

In a procedure analogous to the bosonic case, the fermionic mode

expansions of ψµ± are found to be

ψµ+(τ, σ) =
∑
n∈Z

d̃µne
−2in(τ+σ) , (2.44)

ψµ−(τ, σ) =
∑
n∈Z

dµne
−2in(τ−σ) , (2.45)

for the Ramond boundary conditions, and

ψµ+(τ, σ) =
∑

r∈Z+1/2

b̃µr e
−2ir(τ+σ) , (2.46)

ψµ−(τ, σ) =
∑

r∈Z+1/2

bµr e
−2ir(τ−σ) , (2.47)

for the NS boundary conditions. Upon quantisation, the operators dµn

and bµr become raising operators for n, r < 0 and lowering operators for

n, r > 0.

The open superstring has not been discussed here as the remainder of

this document will utilise only closed strings in order to build phenomeno-

logical string models. However, discussion of open strings can be found

in references [18, 19, 21, 22, 23, 24, 25, 26].
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2.2.3 Quantisation of the Closed Superstring

Quantisation of the closed superstring can now be performed using the

method of canonical quantisation. As before, the commutation rela-

tions given in equations (2.8a), (2.8b) and (2.8c) are imposed on the

bosonic fields. The canonical anti-commutation relation given in equa-

tion (2.35) is applied to the fermionic fields which leads to the following

anti-commutation relations for the fermionic Fourier coefficients

{dµn, dνm} = ηµνδn+m,0 (2.48a)

{bµr , bνs} = ηµνδr+s,0 (2.48b)

{d̃µn, d̃νm} = ηµνδn+m,0 (2.48c)

{b̃µr , b̃νs} = ηµνδr+s,0 (2.48d)

where n,m ∈ Z and r, s ∈ Z + 1
2
. All other anti-commutation relations

vanish. As was the case for the bosonic string, there exist negative norm

states. These appear from the time components of the fermionic modes

as the spacetime metric appears on the right-hand side of the above equa-

tions. However, the negative norm states decouple due to the supercon-

formal symmetry present in the RNS string, which is the required result

[23].

The ground state |0; pµ〉, with momentum pµ, of both the R and NS

sectors is defined as

αµm |0; pµ〉NS = bµr |0; pµ〉NS = 0 ∀m, r > 0 , (2.49a)

αµm |0; pµ〉R = dµm |0; pµ〉R = 0 ∀m > 0 , (2.49b)

which is the state defined as being annihilated by the lowering opera-

tors. There are similar expressions for the ground state of the left-moving

modes.

The excited states of the string are obtained by acting on these ground

states with creation operators. In the same manner as for the bosonic

string, the excited states form a Fock space. The Fock space consists
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of states which are formed using both fermionic and bosonic creation

operators, such as

dµ−1d̃
µ
−1 |0〉R , αν−2 |0〉NS , etc.

Acting on a state with a creation operator raises the energy of that state

while acting with an annihilation operator lowers the energy of that state.

In the NS sector, acting with the operator bµr changes the energy of a

state by a half integer unit. The result is that bosons have half integer

energy spacings. In the R sector, acting with the operator dµn changes

the energy of a state by an integer unit. This results in fermions having

integer energy spacings. This is in direct contrast with the requirements

of unbroken supersymmetry and must be resolved [18, 23]. The method

of resolution for this asymmetry between bosons and fermions is the GSO

projection which is described in section 2.2.6.

The NS sector has a unique ground state, as opposed to the R sector

where the ground state is degenerate. The NS ground state corresponds

to states in spacetime with spin 0 and the excited states correspond to

spacetime bosons. It should also be noted that the zero mode operator

dµ0 does not change the mass squared of a given state. This is due to the

fact that the operator dµ0 commutes with the number operator defined in

equation (2.59). By considering the definition given in equation (2.48a)

for the case where n,m = 0, it can be seen that the coefficients realise

the algebra

{dµ0 , dν0} = ηµν .

Upon inspection, this result is a Clifford algebra (referred to as the Dirac

algebra previously) which is missing a factor of two. Therefore, the zero

mode oscillators dµ0 can be identified as the gamma matrices Γµ by

dµ0 =
1√
2

Γµ , (2.50)

which satisfy the Dirac algebra

{Γµ,Γν} = 2ηµν . (2.51)
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The ground state is therefore degenerate. Furthermore, as all the states

in the R sector can be found by applying the raising operators (which are

spacetime vectors) on the degenerate R sector ground state, all the states

from the R sector are spacetime fermions [23].

2.2.4 The Super Virasoro and Mass Shell Conditions

Analogously to defining the Virasoro generators for the bosonic case, the

super Virasoro generators are defined as the Fourier modes of the energy

momentum tensor Tαβ and the supercurrent Jµ. Therefore,

Lm = L(b)
m + L(f)

m , (2.52)

where the bosonic modes are defined as

L(b)
m =

1

2

∑
n∈Z

: α−n · αm+n : m ∈ Z

and the fermionic modes are defined by

L(f)
m =

1

2

∑
r∈Z+1/2

(
r +

m

2

)
: b−r · br+m : in the NS sector,

L(f)
m =

1

2

∑
n∈Z

(
n+

m

2

)
: d−n · dn+m : in the R sector,

where m ∈ Z in both cases.

The Fourier modes of the supercurrents in the NS sector (Gr) and R

sector (Fm) are defined as

Gr =
∑
n∈Z

α−n · bn+r for r ∈ Z+
1

2
,

Fm =
∑
n∈Z

α−n · dm+n for m ∈ Z ,

where the left-moving modes have similarly defined expressions, but use

the tilde notation G̃r and F̃m to distinguish them from the right-movers.
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These expressions adhere to the super Virasoro algebra. For the right-

movers in the R sector, the algebras are

[Lm, Ln] = (m− n)Lm+n +
D

8
m3δm+n,0 ,

[Lm, Fn] =

(
m

2
− n

)
Fm+n ,

{Fm, Fn} = 2Lm+n +
D

2
m2δm+n,0 ,

(2.54)

and for the right-movers in the NS sector the algebras are

[Lm, Ln] = (m− n)Lm+n +
D

8
m(m2 − 1)δm+n,0 ,

[Lm, Gr] =

(
m

2
− r
)
Gm+r ,

{Gr, Gs} = 2Lr+s +
D

2

(
r2 − 1

4

)
δr+s,0 .

(2.55)

where the left-movers realise similarly defined algebras. By quantising

the theory in this way, analogously to the bosonic case, the following

conditions on the physical states |Φ〉 are found in the NS sector

Lm |Φ〉 = L̃m |Φ〉 = 0 for m > 0 , (2.56a)

Gr |Φ〉 = G̃r |Φ〉 = 0 for r > 0 , (2.56b)

(L0 − aNS) |Φ〉 = (L̃− aNS) |Φ〉 = 0 , (2.56c)

and the conditions on physical states in the R sector are

Lm |Φ〉 = L̃m |Φ〉 = 0 for m > 0 , (2.57a)

Fn |Φ〉 = F̃n |Φ〉 = 0 for n > 0 , (2.57b)

(L0 − aR) |Φ〉 = (L̃− aR) |Φ〉 = 0 . (2.57c)

The number operators can therefore be defined for the right-movers in

the NS and R sectors respectively as

NNS =
+∞∑
n=1

αI−nα
I
n +

+∞∑
r=1/2

r bI−rb
I
r , (2.58)
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NR =
+∞∑
n=1

αI−nα
I
n +

+∞∑
n=1/2

n dI−nd
I
n , (2.59)

where there are similarly defined expressions for the number operators of

the left-movers and are denoted by ÑNS/R. The mass shell condition of

the superstring is therefore

M2 =
2

α′
(
NA + ÑB − aA − aB

)
(2.60)

where A,B refers to either the NS or R sector. The level matching condi-

tion for the superstring is therefore modified from the bosonic case defined

in equation (2.30) to become

NA − aA = ÑB − aB . (2.61)

Using the same argument given for the bosonic string, the normal ordering

constants can be determined using Lorentz invariance. This results in

finding

aNS =
1

2
and aR = 0 (2.62)

which, in turn, can be used to calculate the critical dimension of the

superstring. The solution to the calculation of the critical dimension is

D = 10 [18, 23].

It is instructive at this point to briefly mention the conformal anomaly.

The derivation of the equation which gives the conformal anomaly is more

intuitive by considering the path integral quantisation of the superstring,

as opposed to the covariant approach to quantisation given above. This

method of quantisation will not be discussed here but can be found in the

references [18, 19]. The total conformal anomaly is given by the equation

ctotal = cbg + cfg + cXµ ·D + cψµ ·D , (2.63)

where D is the number of spacetime dimensions and cbg and cfg is the

contribution from bosonic and fermionic ghosts respectively. The term

ghosts refers to Fadeev-Popov ghost fields which arise from quantisation

using the path integral method.
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2.2.5 The Massless Spectrum of the Superstring

Since the mass-shell condition of the superstring has been defined, the

spectrum of the superstring can be considered. It should be noted that

while the complete spectrum of the superstring contains both massive

and massless states, only the massless states are of interest in string phe-

nomenology. This is due to the massive states obtaining a mass compa-

rable to the string scale, which is unobtainable by any current or planned

experiments. Analysis for the remainder of the document is therefore

restricted to the massless spectrum.

The spectrum generated by a single set of NS or R modes is outlined,

which corresponds to one side of the closed string [33].

Neveu-Schwarz Sector

• Ground state

The ground state |0; pµ〉NS has a mass squared value of M2 = − 1
2α′

.

As this value is negative, the state is tachyonic. This should be

removed from the spectrum as it is unstable. The method of removal

is the GSO projection and is discussed in the next section.

• First Excited State

The first excited state is bi−1/2 |0; pµ〉NS which is the ground state

acted upon by the lowest frequency oscillators. This state is a mass-

less vector which has eight transverse components.

• Higher Mass States

Considering the mass-shell condition presented in equation (2.60), it

is found that for second and higher level mass states M2 > 0. These

states are therefore massive, meaning they are omitted from further

analysis.

Ramond Sector

• Ground state

The ground state is denoted by |0; pµ〉R. This is a degenerate state

as applying the oscillators di0 to it do not change the mass squared.

As the number of dimensions is D = 10, the spinors are restricted
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by Majorana and Weyl conditions. Also the Dirac-Ramond equation

must be satisfied [18, 23]. Therefore, the minimal Ramond ground

state has eight physical degrees of freedom and corresponds to an

irreducible spinor of Spin(8). These states are all massless.

• First Excited States

The first excited states are built as αi−1 |0; pµ〉R and di−1 |0; pµ〉R.

These are massive and are therefore not of interest to string phe-

nomenology.

• Higher Mass States

As was the case for the NS sector, any higher mass states have a

positive mass squared and are therefore omitted from further analy-

sis.

The full closed string spectrum is then found by considering the tensor

products of the left- and right-moving sectors consisting of the states

above. There is more than one way of achieving this, which leads to

different string theories such as Type IIA or Type IIB. These will not

be discussed here but further information can be found in the references

[18, 19, 22, 23, 24, 25].

2.2.6 The GSO Projection

As found in the previous section, the ground state of the NS sector con-

tains a tachyon. This can be removed from the spectrum by applying a

method of projection on the spectrum. This is referred to as the Gliozzi-

Scherk-Olive (GSO) projection and was originally introduced in the re-

search article found in reference [34].

The GSO projection involves applying a projection operator on a phys-

ical state according to the equation

|ψ〉 → PGSO |ψ〉 . (2.64)

In the NS sector the projection operator is given by

PGSO =
1

2

[
1− (−1)F

]
(2.65)
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where F is the fermion number operator defined by

F =
∞∑

r=1/2

ηµνb
µ
−rb

ν
r . (2.66)

Upon applying the GSO projection to the NS sector, the states with an

even number of b oscillator excitations are removed which has the effect of

removing the tachyon from the spectrum. In the R sector the projection

operator takes the slightly modified form

P±GSO =
1

2

[
1∓ Γ11(−1)F

]
(2.67)

where the operator Γ11 = Γ0Γ1 . . . ,Γ9 is the 10D analogue of the chirality

matrix γ5 in 4D. This has the effect of defining whether a spinor has a

positive or negative chirality by

Γ11ψ = ±ψ .

The introduction of the GSO projection may seem like an ad-hoc pro-

cedure at first, but it is motivated by the need for modular invariance

and the fact that spacetime supersymmetry requires there to be the same

number of spacetime bosons and fermions at each energy level. Appli-

cation of the GSO projection results in an equal number of degrees of

freedom in the NS and R ground states, as well as ensuring spacetime

supersymmetry between the NS sector bosons and R sector fermions at

every mass level [35].
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3 The Free Fermionic Formulation

This chapter concerns the construction of the free fermionic formulation

of string theory. While the previous chapter concerned a general approach

to the construction of closed superstrings, this chapter concerns only the

heterotic construction of closed superstrings. This is due to the fact that

the LRS models presented in later chapters are constructed exclusively

from free fermionic heterotic superstrings.

The chapter begins with a brief introduction to the construction of het-

erotic strings before outlining how the free fermionic formulation (FFF)

modifies this construction. The FFF is then elaborated upon, providing

the necessary details and basis for string model building.

3.1 Construction of Heterotic Strings

The models which are ultimately obtained in this work have four space-

time dimensions, N = 1 spacetime supersymmetry and are heterotic

string theories, which are by definition, closed string theories. There-

fore, the construction of heterotic string theories is outlined along with

the modifications made in order to obtain 4D heterotic string theories in

the free fermionic formulation.

In order to obtain supersymmetry on the heterotic superstring, the

left- and right-moving modes are decoupled from each other. Supersym-

metry is then imposed on the left-moving modes which leads to the left-

moving currents carrying the supersymmetric charges. The right-moving

modes are left as purely bosonic, meaning the right-moving worldsheet

fields are described by the bosonic formulation of the string.

It can be shown that when the heterotic string is constructed in

this manner, the equation which can be used to calculate the conformal

anomaly is

ctotal = cbg + cfg + cXµ ·D + cψµ ·D , (3.1)

where D is the number of spacetime dimensions and cbg and cfg is the
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contribution from bosonic and fermionic ghosts respectively 4. The left-

and right-moving conformal anomalies of the heterotic string are therefore

cL = −26 + 11 +D +
D

2
,

cR = −26 +D .

(3.2)

The conformal anomalies are then cancelled by requiring both equations

be equal to zero and solving for D. The left-moving sector has the critical

dimension D = 10, which leads to the consideration of the superstring

fields Xµ
+ and ψµ+ where µ = 0, . . . , 9. The right-moving sector has the

critical dimension D = 26, which consists of ten bosonic fields Xµ
−, where

µ = 0, . . . , 9, along with 32 Majorana-Weyl free fermions denoted by λi−.

For the right-movers, 32 Majorana-Weyl free fermions are necessary to

cancel the conformal anomaly as they carry a conformal weight of 1
2
.

It should be noted that this theory still contains ten spacetime dimen-

sions as the coordinates Xµ in both the left- and right-moving sectors

have the spacetime index µ = 0, . . . , 9, whereas the internal fermions λi−

do not contain a spacetime index.

Summarising, this ten-dimensional theory contains the fields

Xµ
+ , ψµ+ in the left-moving sector,

Xµ
− , λ

i
− in the right-moving sector,

(3.3)

where µ = 0, . . . , 9 and i = 1, . . . , 32. The action for the heterotic string

is therefore

S =
1

π

∫
d2σ

(
2∂−Xµ∂+X

µ + iψµ∂−ψµ + i
32∑
i=1

λi∂+λ
i

)
. (3.4)

3.2 The Free Fermionic Formulation of the Het-

erotic String

In the free fermionic formulation, the extra degrees of freedom required in

order to cancel the conformal anomalies are interpreted as free fermions

4The term ghosts refers to Fadeev-Popov ghost fields which arise from path integral quantisation

of the string. This will not be discussed further in this work, but the method of path integral

quantisation can be found in references [18, 19]
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propagating on the string worldsheet. This leads to the modification of

equation (3.2) in the following manner

cL = −26 + 11 +D +
D

2
+
NfL

2
,

cR = −26 +D +
NfR

2
,

(3.5)

where NfL and NfR is the number of left- and right-moving free fermions

respectively. In the same procedure as presented above, cancelling the

conformal anomalies involves setting both equations equal to zero and

solving. Formulating the theory directly in four spacetime dimensions

(i.e D = 4) and solving the equations gives the results

NfL = 18 and NfR = 44 . (3.6)

Therefore, 18 real left-moving and 44 real right-moving Majorana-Weyl

fermions are necessary to cancel the conformal anomalies5. Therefore, the

four dimensional theory contains the fields

Xµ
+ , ψµ+ , λi+ in the left-moving sector,

Xµ
− , λ

j
− in the right-moving sector,

(3.7)

where µ = 0, . . . , 3, i = 1, . . . , 18 and j = 1, . . . , 44.

It is now instructive to make a coordinate change in order to further

construct the theory using complex coordinates. This coordinate change

is performed by defining the complex coordinates

z = τ + iσ and z̄ = τ − iσ , (3.8)

which leads to the redefinition of the fields as such

Xµ(z, z̄), µ = 1, 2 ,

ψµ(z), µ = 1, 2 , (3.9)

λi(z), i = 1, . . . , 18 ,

λ̄j(z̄), j = 1, . . . , 44 .

5These are Majorana-Weyl fermions as they satisfy the same conditions as the fermionic fields

which were introduced in section 2.2.2
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The spacetime fermions and bosons now have only two degrees of freedom,

which are the transverse coordinates.

The action for the heterotic string in this formulation is therefore

S =
1

π

∫
d2z

(
∂zXµ∂z̄X

µ − 2iψµ∂zψµ − 2i
18∑
i=1

λi∂zλ
i − 2i

44∑
j=1

λ̄j∂z̄λ̄
j

)
.

(3.10)

When the heterotic string is constructed in this way, it is referred to as

the free fermionic formulation.

3.3 Free Fermionic Formulation and the Partition

Function

Here the conventional notation is introduced, as is commonly used in

the literature. This consists of the left-moving bosonic components Xµ

and their supersymmetric partners ψµ, which carry a spacetime index µ =

0, . . . , 3. The left-moving free fermions λi are split into three groupings, as

can be seen in table 6. The right-movers consist of the bosonic coordinates

X
µ

which also carry a spacetime index µ = 0, . . . , 3, along with the free

fermions λ
j

which are split into 12 real fermions and 16 complex fermions.

This can be be seen in table 6, where the descriptions motivate why certain

free fermions are grouped in this manner. This notation convention will

be used for the remainder of this document.

Following the worldsheet content as defined in table 6, it is noted that

any two of the real fermions can form a single complex fermion according

to the following prescription

λab =
1√
2

(λa + iλb) ,

λ∗ab =
1√
2

(λa − iλb) .
(3.11)

This will be a useful tool for model building in later chapters.

A mention should also be made with regards to the supercurrent TF .

In the case of the heterotic string, only the left-moving sector is super-

symmetric. The left-moving sector consists of the spacetime coordinates,
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Notation Description

Left-Movers Xµ Bosonic coordinates, where µ = 0, . . . , 3

(SUSY Sector) ψµ Majorana-Weyl superpartners of the bosonic coordi-

nates, where µ = 0, . . . , 3

χ1,...,6 Real Majorana-Weyl superpartners to the six com-

pactified dimensions in the bosonic formulation

y1,...,6 , w1,...,6 Real Majorana-Weyl fermions which describe the six

compactified dimensions

Right-Movers X
µ

Bosonic coordinates, where µ = 0, . . . , 3

(Non-SUSY Sector) y1,...,6, w1,...,6 Real Majorana-Weyl fermions which describe the six

compactified dimensions

ψ
1,...,5

, η1,2,3 Complex fermions which describe the visible gauge

sector

φ
1,...,8

Complex fermions which describe the hidden gauge

sector

Table 6: The worldsheet content is displayed and the standard notation from

the literature is introduced.

their supersymmetric partners and 18 real fermions which non-linearly

realise supersymmetry [29]. When defined generally, the supercurrent is

TF = ψµ∂Xµ + fabcψ
aψbψc , (3.12)

where fabc are structure constants of a semi-simple Lie group G with 18

generators. It can be shown that all other forms of the supercurrent define

string theories which only contain massive fermions and broken spacetime

supersymmetry [31]. There are therefore only three admissible groups for

the choice of G, these are SU(2)6, SU(4)×SU(2) and O(5)×SU(3). The

models built in later chapters will only use the case where the group G

is SU(2)6 in the adjoint representation. This means the fermions χiyiwi

transforms with the same sign as ψµ∂Xµ and therefore ensures a well

defined supercurrent. Specifically, the supercurrent used is

TF = ψµ∂Xµ +
∑
i

χiyiwi , (3.13)

where i = 1, . . . , 6. In this form, the supercurrent is unique (up to a sign)
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and therefore preserves worldsheet supersymmetry [16].

3.3.1 String Amplitude

When considering the Polyakov approach, string theory is formulated as

a perturbative sum over the path integral of the string worldsheet. The

string worldsheet therefore defines a genus-g Riemann surface. Using con-

formal invariance, the string states can be described as vertex operators

on this genus-g Riemann surface. In this approach to string theory, the

string amplitude can be calculated according to the following equation

An =
∞∑
g=0

∫
DhDXµ

∫
d2z1 . . . d

2znV1(z1, z̄1) . . . Vn(zn, z̄n) (3.14)

where An is the string amplitude, g is the genus of the Riemann surface,

h is the worldsheet metric and Vi are the vertex operators of the external

string states. As there exist symmetries of this amplitude, the integration

is performed over physically inequivalent paths to avoid the overcounting

of identical physical states in the partition function.

Using conformal invariance, it is found at tree level (where g = 0)

that the string amplitude is mapped to a Riemann surface which is topo-

logically a sphere. For the one-loop amplitude (where g = 1) the string

worldsheet maps to a Riemann surface which is topologically a torus.

Multi-loop amplitudes (where g ≥ 2) are isomorphic to a linear chain of

g number of tori.

3.3.2 The Torus and Modular Invariance

Before detailing the partition function of the theory, the torus of the one-

loop amplitude is considered before introducing the constraints necessary

to preserve modular invariance.

To find these constraints, the one-loop string amplitude with no ex-

ternal states is considered. This amplitude is therefore isomorphic to the

torus.

The torus can be mapped to the complex plane by cutting along the

two non-contractible loops, which are displayed in figure 3. Unravelling
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Figure 3: The two non-contractible loops of the torus described by a and

b can be cut along and form a parallelogram on the complex plane.

the torus along these two directions leads to the torus being identified

as a parallelogram in the complex plane. Two lengths can be associated

with the two non-contractible loops of the torus, which are now the two

non-parallel lengths of the parallelogram in the complex plane. These

lengths are denoted by λ1, λ2 and are finite, non-zero and periodic. As

the parallelogram in the complex plane is periodic in lengths λ1, λ2, for a

point z in the complex plane the following identification can be made

z ∼ z + λ1 , z ∼ z + λ2 . (3.15)

Furthermore, a two-dimensional lattice Λ(λ1,λ2) can be defined in the com-

plex plane by

Λ(λ1,λ2) = {mλ1 + nλ2; m,n ∈ Z} , (3.16)

where it can be seen that the torus is modular with respect to the lattice

defined in this way.

By applying the reparameterisation z → z
λ2

to equation (3.15), the

lattice is modular with the periods

m
λ1

λ2

and n ,

the smallest unit of which is when m,n = 1, leading to the conclusion that

the torus has the periods 1 and λ1

λ2
. The definition τ = λ1

λ2
can be made

and τ is the commonly called the modular parameter 6. The torus can

6The quantity τ can also be called the complex structure or Teichmüller parameter [28].
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therefore be shown to be invariant under the following transformations

T : τ → τ + 1 redefines the same torus,

S : τ → − 1
τ

swaps the coordinates and reorients the torus.

(3.17)

These two transformations generate the modular group which possesses

the group algebra PSL(2,Z) = SL(2,Z)/Z2. Explicitly,

τ → aτ + b

cτ + d
(3.18)

where a, b, c, d ∈ Z and ad− bc = 1.

The fundamental domain of the modular parameter is therefore

F = {τ ∈ C : |τ | ≥ 1, −1

2
< τ1 ≤

1

2
, τ2 > 0} . (3.19)

Due to the presence of the T and S transformations, any torus outside of

this fundamental domain can always be acted upon by a combination of

the modular transformations to become equivalent to a torus inside the

fundamental domain. However, tori within the fundamental domain are

physically inequivalent and cannot be transformed into one another. All

the physically inequivalent tori must therefore be accounted for by inte-

grating over the whole fundamental domain. A graphical representation

of τ can be seen in figure 4 and the integration must be performed over

the shaded region in order to account for all physically inequivalent tori.

3.3.3 Boundary Conditions

To calculate the one-loop partition function, the boundary conditions

of the fermions must first be defined. Each worldsheet fermion can be

parallel transported around the two non-contractible loops which define

the torus. Under this parallel transportation, each fermion can pick up

a shift in phase which is defined in terms of two boundary conditions of

that fermion. Specifically, when a fermion is parallel transported around

each non-contractible loop, it picks up a phase

f → −eiπα(f)f . (3.20)
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Figure 4: The fundamental domain of the modular parameter τ of the

torus is marked as F. All tori in the regions outside the fundamental

domain can be mapped to tori inside the fundamental domain using the

PSL(2,Z) transformations.

Real fermions pick up a phase α(f) = 0, 1 which signifies NS or R bound-

ary conditions respectively, whereas complex fermions pick up a phase

α(f) = (−1, 1]. As there are two non-contractible loops of the torus,

there are two phases for each fermion. Therefore, for each fermion these

two phases can be written as [
α(f)

β(f)

]
.

If the phases for one non-contractible loop are defined for every fermion,

this is called a spin structure. A spin structure is therefore a 64-

dimensional vector and is written as

α = {α(ψµ1 ), . . . , α(φ̄8)} .

As there are two non-contractible loops, the complete spin structure of

all the fermions, around both loops, can be defined as two 64-dimensional
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vectors as [
α

β

]
.

3.3.4 The One-Loop Partition Function

The construction of the one-loop partition function can now be considered.

As previously stated, the partition function of the one-loop amplitudes

with no external states is isomorphic to the torus. In order to build the

one-loop partition function completely, the path integral of a torus with a

complex parameter τ = τ1+iτ2 will be considered. In this construction, τ1

is associated as a spatial coordinate and τ2 as a Euclidean time coordinate.

When defined in this way, it is found that the generator of translations

in time is the Hamiltonian H = L0 + L0 − c+c̄
24

and the generator of

translations in space is the momentum operator P = L0−L0 [24, 28, 37].

These are the zero modes of the energy momentum tensor and are the

same expressions defined in equation (2.16).

Construction of the partition function begins by considering the trace

over the Hilbert space of the states in the vacuum to vacuum amplitude,

written as

Z(τ1, τ2) =
∑
s∈H

〈s| e2iπτ1P e−2iπτ2H |s〉

= Tr
H
e2iπτ1P e−2iπτ2H .

(3.21)

By defining the quantities q ≡ e2iπτ and q̄ ≡ e−2iπτ̄ for the right- and

left-movers respectively, along with the definition of the generators given

above, this can be rewritten as [28, 37]

Z(τ) = q −
c/24q̄

c̄/24 Tr
H
q L0 q̄ L̄0 . (3.22)

As it is known how L0 and L̄0 act on the Fock space (due to discussions

in the previous chapter), this result for the partition function can be

calculated. However, it remains to specify the boundary conditions for

each worldsheet fermion. The total partition function will then be the

product of the partition functions for each fermion and their respective
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boundary conditions. If the time boundary condition is fixed to be anti-

periodic (NS) then the partition function is given by the trace of L0 acting

on either the NS or R Fock space, explicitly

ZNS
NS(τ) = Tr

NS
qL0−1/48 and ZNS

R (τ) = Tr
R
qL0−1/48 . (3.23)

If the time boundary condition is periodic (Ramond) then the trace defi-

nitions are modified to become

ZR
NS(τ) = Tr

NS
(−1)F qL0−1/48 and ZR

R(τ) = Tr
R

(−1)F qL0−1/48 , (3.24)

where F is the fermion number operator defined as

F (f) = +1 , if f is a fermionic oscillator ,

F (f ∗) = −1 , where f ∗ is the complex conjugate of a fermionic oscillator ,

F |+〉R = 0 ,

F |−〉R = −1 ,

(3.25)

where |+〉R = |0〉 is a state of degenerate Ramond vacua with no oscillator

and |−〉R = f †0 |0〉 is a state of degenerate Ramond vacua with a single

zero mode oscillator. In building the one-loop partition function, the

c, c̄ = 1
2

representations of the Virasoro algebra have been used [37]. These

values have therefore been substituted accordingly into equations (3.23)

and (3.24).

The complete partition function can now be constructed. The com-

plete one-loop partition function is therefore

Z =

∫
F

dτdτ̄

(Im τ)2
Z2
B

∑
spin

structure

C

(
α

β

) 64∏
f=1

ZF

[
α(f)

β(f)

]
(3.26)

where

• The integration is the path integral over the Fock space

• The integration measure dτdτ̄
(Im τ)2 is invariant under the modular trans-

formations of the torus
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• ZB is the bosonic contribution to the partition function and is defined

as

ZB =
1√

|Imτ | |η(τ)|2
,

where η(τ) is the Dedekind eta function defined as

η(τ) = q
1/24

∞∏
n=1

(1− qn)

which uses the definition q = e2iπτ . The bosonic contribution is

inherently modular invariant.

• C
(
α
β

)
are spin structure coefficients which are currently undefined,

but will be discussed in section 3.4

• ZF
[
α(f)

β(f)

]
is the fermionic contribution to the partition function of

each fermion f . It can be seen that ZF depends on the boundary

conditions α, β of the fermion f . The value of the contribution of

each fermion can be calculated using equation (3.22) for each of the

possible boundary conditions configurations. Explicitly, these four

configurations are

Z

[
0

0

]
=

√
ϑ3

η
, (3.27a)

Z

[
0

1

]
=

√
ϑ4

η
, (3.27b)

Z

[
1

0

]
=

√
ϑ2

η
, (3.27c)

Z

[
1

1

]
=

√
ϑ1

η
, (3.27d)

where

ϑ1 = ϑ

[
1

1

]
, ϑ2 = ϑ

[
1

0

]
, ϑ3 = ϑ

[
0

0

]
, ϑ4 = ϑ

[
0

1

]
. (3.28)
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Here a new modular function ϑ has been defined. The general defi-

nition of ϑ with the characteristics θ, φ is

ϑ

[
θ

φ

]
= η e2πiθφq

1
2
θ2− 1

24

∞∏
n=1

(1 + qn+θ− 1
2 e2πiφ)(1 + qn−θ−

1
2 e−2πiφ) ,

(3.29)

which can be equally expressed as an infinite sum

ϑ

[
θ

φ

]
(τ) =

∑
n∈Z

q
1
2

(n+θ)2

e2πi(n+θ)φ (3.30)

due to arguments relating to bosonisation/fermionisation [36]. These

equations describe the left-movers and the right-movers are defined

similarly.

3.4 Derivation of the Rules of Model Building

Now the one-loop partition function has been specified and the modu-

lar invariance of the torus has been discussed, it remains to derive the

conditions which arise due to the requirement of modular invariance of

the one-loop partition function. The rules outlined below were originally

derived by I. Antoniadis, C. Bachas and C. Kounnas in the publications

given in reference [29]7.

3.4.1 Modular Invariance of the Partition Function

The one-loop partition function must be modular invariant in order to

produce consistent string theories. As stated in the previous section, the

integration measure and the bosonic contribution of the partition function

are a priori modular invariant. It remains to impose modular invariance

on the remaining terms in the partition function. By imposing modular

invariance additional constraints are introduced which must be satisfied

in order to build consistent free fermionic models.

7It is noted that these rules were derived by another group in a different formalism given in

reference [30].
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Under the T transformation τ → τ+1, which leaves the torus invariant,

the following transformations are true

η → e
iπ/12 η , (3.31a)

ϑ1 → e
iπ/4 ϑ1 , (3.31b)

ϑ2 → e
iπ/4 ϑ2 , (3.31c)

ϑ3 ←→ ϑ4 , (3.31d)

and under the S transformation τ → − 1
τ

the following transformations

are true

η → (−iτ)
1/2 η , (3.32a)

ϑ1

η
→ e−

iπ/2 ϑ1

η
, (3.32b)

ϑ2

η
←→ ϑ4

η
, (3.32c)

ϑ3

η
→ ϑ3

η
. (3.32d)

The partition function is a product of the spin structures of 64 fermions.

By performing the modular transformations described as S and T , one

spin structure can transition to another i.e. one product of ϑi functions

will transition to another product of ϑi functions.

Modular invariance requires that spin structures related by a transfor-

mation must contribute to the partition function with an equal weight.

This is accounted for in the partition function by the spin structure co-

efficients C
(
α
β

)
. In order to ensure modular invariance, the following con-

straints on the coefficients must be imposed

C

(
α

β

)
= −e

iπ
4

(α·α+1·1)C

(
α

β − α + 1

)
, (3.33)

C

(
α

β

)
= e

iπ
2
α·βC

(
β

α

)∗
, (3.34)

where the vector 1 is a 64-dimensional vector in which every fermion has

periodic boundary conditions and the Lorentzian product α · β is defined
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as

α · β =

{ ∑
Complex Left

+
1

2

∑
Real Left

−
( ∑

Complex Right

+
1

2

∑
Real Right

)}
α(f)β(f) .

(3.35)

The next constraint considered regards higher order loops and is therefore

not necessary for calculations regarding the one-loop partition function.

However, it is instructive in deriving further constraints on the one-loop

coefficients included in the one-loop partition function. As stated previ-

ously, a higher loop calculation can be considered as a linear chain of tori

and the spin structure is found by specifying the spin structure of every

fermion on each torus separately. This leads to the constraint in the two

loop case being

C

(
α

β

)
C

(
α′

β′

)
= δαδα′ e

− iπ
2
α·α′C

(
α

α′ + β

)
C

(
α′

α + β′

)
(3.36)

where δα is the spacetime spin statistics index defined by

δα = eiπα(ψµ1,2) =

−1 if α(ψµ1,2) = 1 ,

+1 if α(ψµ1,2) = 0 .
(3.37)

By considering equation (3.36) and setting α′ = α and β = β′ = 0, as

well as using equation (3.34), the following result can be found

C

(
α

0

)2

= δα C

(
α

0

)
C

(
0

0

)
. (3.38)

This result admits the two solutions

C

(
α

0

)
= 0 or C

(
α

0

)
= δαC

(
0

0

)
.

The normalisation C
(

0
0

)
= 1 is free to be made and the first solution

will be discarded from further analysis. Using the second result, a set of

vectors can be defined as

Ξ =

{
α

∣∣∣∣C(α0
)

= δα

}
. (3.39)

It can then be shown that the set of vectors Ξ form an Abelian addi-

tive group if the group action is defined as the standard addition of the
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boundary conditions of each fermion separately [37]. If Ξ is taken to be

finite, i.e. the boundary conditions in the vector α are rational, then Ξ is

found to be isomorphic to a direct sum of ZN factors [38]

Ξ = ZN1 ⊕ · · · ⊕ ZNk . (3.40)

Therefore, there exists a basis of vectors {b1, . . . , bk} which generates the

additive group Ξ such that [29]

k∑
i=1

mibi = 0 if and only if mi = 0 mod Ni ∀i , (3.41)

where Ni is the smallest positive integer for which Nibi = 0 is true. It

should be noted that the condition 1 ∈ Ξ is true, i.e. the basis vector 1

must be included in the additive group. This is a direct consequence of

equation (3.33) and can be derived by setting α = β = 0 in the equation.

For convenience, the choice b1 = 1 will be used.

In fact, equation (3.36) can be written in a more general form by

utilising the result found in equation (3.38). For the case where α, β, γ ∈ Ξ

C

(
α

β + γ

)
= δαC

(
α

β

)
C

(
α

γ

)
. (3.42)

Using this result and the fact that β generates a finite group of order Nβ

[37], the phase can be expressed as

C

(
α

β

)
= δαe

2iπ
Nβ

n
,

= δβe
iπ
2
α·βe

2iπ
Nα

m .

(3.43)

Another useful result used in model building can be derived by con-

sidering equation (3.33) and setting β = α. This leads to the equation

C

(
α

α

)
= −e

iπ
4
α·αC

(
α

1

)
, (3.44)

where the result 1 · 1 = −12 and therefore e
iπ
4
1·1 = −1 has been used.

Finally, it only remains to derive two more conditions on the modular

nature of basis vectors. The first condition is found by making the as-

signments α = bi and β = bj in equation (3.34), before raising both sides
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of the equation to the power of the least common multiple between the

two basis vectors, denoted by Nij. Using the known result which can be

derived from equation (3.42) [29], the equation

e
iπ
2

(Nijbi·bj) =
(
δbiδbj)

Nij (3.45)

is found. As Nij is always an even number, the right hand side of the

equation is always positive. Therefore, the solution to this equation gives

the constraint required in order to preserve modular invariance

Nijbi · bj = 0 mod 4 . (3.46)

This result applies to all the pairs of elements in the canonical basis. The

final constraint is in the case where i = j. In the case where Ni is even,

equation (3.46) becomes the stronger constraint

Nib
2
i = 0 mod 8 . (3.47)

This completes the derivations of the conditions which are necessary in

order to build consistent and modular invariant free fermionic string mod-

els. The useful results found in this chapter which are most commonly

used in model building are outlined in a more condensed manner in the

next chapter.

3.4.2 Hilbert Space

Using the general form of equations (3.23) and (3.24) as well as the def-

inition of the Hamiltonian, the fermionic contribution to the partition

function can be expressed in the form

ZF

[
α(f)

β(f)

]
= Trα[qHαeiπβ·Fα ] . (3.48)

This result can be used to rewrite the partition function in equation (3.26)

as

Z =

∫
F

dτdτ̄

(Im τ)2
Z2
B

∑
spin

structure

C

(
α

β

)
TrHα [qHαeiπβ·Fα ] (3.49)
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where Hα is the Hilbert space sector defined by the vector α =
∑

i nibi.

Hα is the Hamiltonian and β · Fα is the Lorentzian product of the vec-

tor β and the fermion number operator Fα defined similarly to equation

(3.35). The notation here is changed in order to account for a model

which consists of basis vectors bi. Noting that the basis vectors bi are

the generators of a discrete group ZNi [37] and using equation (3.42), the

partition function is found to be

Z =

∫
F

dτdτ̄

(Im τ)2
Z2
B

∑
α∈Ξ

δα Tr

{∏
bi

(
δαC

(
α

bi

)
eiπbi·Fα + . . .

. . .+

(
δαC

(
α

bi

)
eiπbi·Fα

)Ni−1

+ 1

)
qHα
}
,

(3.50)

where it can be seen that the sum is finite. The states which are included

in the spectrum are those which satisfy the Generalised GSO (GGSO)

projection equation

eiπbi·Fα |s〉α = δαC

(
α

bi

)∗
|s〉α . (3.51)

Therefore, the complete Hilbert space of the model is

H =
⊕
α∈Ξ

k∏
i=1

{
eiπbi·Fα = δαC

(
α

bi

)∗}
Hα . (3.52)
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4 Rules on Model Construction

In this chapter the rules of model construction will be recalled and out-

lined in a condensed format. The chapter then concludes by detailing the

construction of a simple model consisting of two basis vectors in order to

outline the main process of model building.

A model requires the definition of two sets of quantities in order to

be fully specified. Firstly, a set of basis vectors must be defined, where

every basis vector consists of the boundary conditions of each of the free

fermions. Secondly, the Generalised GSO (GGSO) phases C
(
vi
vj

)
between

these basis vectors must be specified.

When each fermion is propagated around the non-contractible loops

of the torus associated with the one-loop partition function, each fermion

obtains a non-trivial phase. These phases are commonly referred to as

the boundary conditions of the free fermions. Basis vectors are defined

as the set of boundary conditions for each free fermion. Therefore, each

basis vector is a collection of 64 boundary conditions. Explicitly, basis

vectors bi are defined as

bi = {α(ψµ1 ), . . . , α(w6) | α(y1), . . . , α(φ
8
)} (4.1)

where α(f) is the boundary condition of the fermion f defined as

f → −eiπα(f)f. (4.2)

The boundary conditions α(f) can take the values 0, 1 or ±1
2
, meaning

the fermions are anti-periodic, periodic or complex respectively.

The basis vectors form an additive group Ξ which is defined as

Ξ =
n∑
i=1

mibi where mi = 0, . . . , Ni − 1, (4.3)

where Ni is the smallest positive integer which satisfies Nibi = 0.

The scalar product used in this definition and those in the following

rules is given by

bi · bj =

{ ∑
Complex Left

+
1

2

∑
Real Left

−
( ∑

Complex Right

+
1

2

∑
Real Right

)}
bi(f)bj(f)

(4.4)
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where the sum over ‘complex left’ refers to the sum over all left-moving

complex fermions, the sum over ‘real left’ refers to sum over all left-moving

real fermions etc.

4.1 Rules on the Basis Vectors

Due to the constraints outlined in the previous chapter, all basis vectors

must conform to the following rules in order to preserve modular invari-

ance

1)
n∑
i=1

mibi = 0 where mi = 0 mod Ni , ∀i (4.5a)

2) 1 ∈ Ξ (4.5b)

3) Nijbi · bj = 0 mod 4 (4.5c)

4) Nib
2
i = 0 mod 8 if Ni is even (4.5d)

5) There must be an even number of real fermions (4.5e)

The second rule states the basis vector which has periodic boundary con-

ditions for all fermions, defined as 1, must be included in the additive

group. Ni is the smallest positive integer for which Nibi = 0 and Nij is

the least common multiple of Ni and Nj.

4.2 Rules on the One-Loop Phase Coefficients

Now the basis vectors have been defined and the rules they must satisfy

have been outlined, the rules which govern how they intersect must be

given. These intersections between the basis vectors are described as the

one-loop phases and are denoted by C
(
bi
bj

)
in the common notation. The
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following rules apply to the one-loop phases:

1) C

(
bi
bj

)
= δbi e

2iπ
Nj

n
= δbje

iπ
2
bi·bj e

2iπ
Ni

m
(4.6a)

2) C

(
bi
bi

)
= −e

iπ
4
bi·bi C

(
bi
1

)
(4.6b)

3) C

(
bi
bj

)
= e

iπ
2
bi·bj C

(
bj
bi

)∗
(4.6c)

4) C

(
bi

bj + bk

)
= δbi C

(
bi
bj

)
C

(
bi
bk

)
(4.6d)

where δbi is the spacetime spin statistics index defined as

δbi = eiπbi(ψ
µ
1,2) =

−1 bi(ψ
µ
1,2) = 1

+1 bi(ψ
µ
1,2) = 0

. (4.7)

This quantity ensures the spacetime fermions and bosons have the correct

space-time statistics.

4.3 The GGSO Projection

The next equation to be defined is the Generalised GSO (GGSO) projec-

tion. The term ‘generalised’ refers to an extension of the GSO projection

presented in section 2.2.6. Specifically, the GSO projection acts on a sin-

gle state whereas the Generalised GSO projection is simply the common

nomenclature to denote that the projection operator is being applied to

a collection of multiple states (e.g. a basis vector) at once.

In addition to the arguments presented in section 2.2.6, where it was

stated that the GSO projection was necessary in order to preserve mod-

ular invariance, it is also necessary so as to avoid the overcounting of

states within the spectrum. As the partition function is a sum over the

spectrum at all masses, when the partition function is expanded for a

sector it can be taken as a sum over the intersection with other sectors.

This can result in cancellations of terms between the two sectors which

is ultimately reflected in the spectrum. The GGSO projection accounts

for those cancellations and therefore prevents the overcounting of states

from occurring.

59



The GGSO projection equation is given by the equation

eiπ bi·Fξ |Sξ〉 = δξ C

(
ξ

bi

)∗
|Sξ〉 (4.8)

where Fξ is the fermion number operator defined in equation (3.25) and

|Sξ〉 is the state in the sector ξ ∈ Ξ. If a state satisfies this equation,

this state contributes to the one-loop partition function of the model.

Therefore, the state is contained in the spectrum and is said to be ‘kept

in’. If the state does not satisfy the equation, the state is said to be

‘projected out’ and no longer appears in the spectrum as it does not

contribute to the one-loop partition function.

4.4 The Massless Spectrum

The necessary components needed in order to define a model, as well as

the rules these components need to satisfy, have been outlined above.

Presuming a model is well defined, i.e it satisfies the above constraints,

the spectrum of the model can begin to be calculated.

As the heterotic string is being considered, the left- and right-moving

masses can be considered separately. However, the Virasoro condition

must be satisfied, which states that the mass squared of the left- and

right-moving modes must be equal in order to provide a physically viable

string model. In effect, the condition M2
L = M2

R must hold. The left- and

right-moving masses of a sector, defined as ξL and ξR respectively, are

calculated using the following equations

M2
L = −1

2
+
ξL · ξL

8
+NL, (4.9a)

M2
R = −1 +

ξR · ξR
8

+NR, (4.9b)

where NL, NR are the sum over the left- and right-moving oscillators re-

spectively, given explicitly as

NL =
∑

νL =
∑
f

L−osc

νf +
∑
f∗

L−osc

νf∗ , (4.10a)
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NR =
∑

νR =
∑
f

R−osc

νf +
∑
f∗

R−osc

νf∗ . (4.10b)

The frequencies νf,f∗ of the fermionic oscillators for a given fermion f or

the complex conjugate f ∗ are

νf =
1 + α(f)

2
, νf∗ =

1− α(f)

2
. (4.11)

The sectors which are interesting phenomenologically are massless, and

therefore M2
L = M2

R = 0. This is due to massive sectors obtaining a

mass comparable to the Planck scale which is physically unobtainable for

experiments. Therefore, in building quasi-realistic heterotic string vacua

the restriction is made to only consider sectors which are massless in order

to consider only the low energy field content.

4.5 U(1) Charges

It only remains to comment on the U(1) currents generated by the

fermions. Every complex fermion f (or two real fermions which have

been complexified according to equation (3.11)) generate a U(1) current.

The corresponding charge Q of each current can be calculated using the

following equation

Q(f) =
1

2
α(f) + F (f) (4.12)

where F (f) is the fermion number operator as defined in equation (3.25).

It should be noted that the charge Q is the charge of the U(1) current

with respect to the unbroken Cartan generators of the four dimensional

gauge group [44].

This result is simply stated here, but a more detailed derivation of this

result can be found in reference [37].

4.6 Building a Simple Model

This section concerns how to build simple models utilising the rules given

in the previous sections of this chapter. The simplest model consists of

a single basis vector. Due to the rule described in equation (4.5b), this
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basis vector must contain periodic boundary conditions for all fermions,

which was defined as 1.

In the case where the model only contains the basis vector 1, there

exists only two sectors

Ξ = {1, NS}

due to equation (4.5a). According to this rule, mi = 2 and therefore

2 · 1 = 0. In this sector all the fermions have anti-periodic boundary

conditions. The sector is therefore the Neveu-Schwarz (NS) sector.

The rules on the basis vectors are all trivially satisfied for a model

consisting of only the 1 basis vector.

We proceed by considering the sector 1. In this sector, the left- and

right-moving masses are found to be

M2
L = −1

2
+

10

8
+NL > 0,

M2
R = −1 +

44

8
+NR > 0.

(4.13)

Therefore, the sector 1 cannot give rise to massless states and is excluded

in the following analysis.

The masses of the NS sector can be calculated using the Virasoro mass

equation, which gives the result

M2
L = −1

2
+

0

8
+NL = −1 +

0

8
+NR = M2

R (4.14)

As all the fermions in the sector have anti-periodic boundary conditions,

the following is found to be true for the oscillators of all fermions

νf,f∗ =
1

2
. (4.15)

Massless states can therefore be created by requiring that the sector con-

tains one left-moving fermionic oscillator and either one bosonic or two

fermionic right-moving oscillators. The massless states admitted by the

NS sector are found to be

•
ψµ12 ∂X̄

ν |0〉NS (4.16)
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where ψµ12 is the left-moving fermion and ∂X̄ν is the bosonic creation

operator, which acts as the right-moving boson. The bosonic states

which arise from this sector are the graviton, the anti-symmetric

tensor and the dilaton, as defined previously in section 2.1.4.

•
ψµ12 Φ̄a Φ̄b |0〉NS (4.17)

where a, b = 1, . . . , 44. This state consists of one left-moving and two

right-moving fermionic oscillators. The two right-moving oscillators

correspond to gauge bosons which generate an SO(44) gauge group

in the adjoint representation.

•
{χi , yi , wi} ∂X̄ν |0〉NS (4.18)

where i = 1, . . . , 6. This state consists of one left-moving fermionic

oscillator and one right-moving bosonic oscillator. The left-moving

fermionic oscillators correspond to gauge bosons which generate an

SU(2)6 in the adjoint representation.

•
{χi , yi , wi} Φ̄a Φ̄b |0〉NS (4.19)

where i = 1, . . . , 6 and a, b = 1, . . . , 44. This state consists of one

left-moving and two right-moving fermionic oscillators. The left-

movers correspond to gauge bosons which generate an SU(2)6 gauge

group in the adjoint representation and the right-movers correspond

to gauge bosons which generate an SO(44) gauge group in the adjoint

representation.

There also exists tachyonic states in the spectrum which arise due to

the following state

Φ
a |0〉NS . (4.20)

The state is tachyonic as M2
L = −1

2
, meaning the ground state is un-

stable and is therefore an undesirable state to have present in the spec-
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trum. The appearance of tachyonic states are a well known feature of

non-supersymmetric string theories [18, 21]8.

In order to find which states are actually present in the spectrum, the

GGSO projections of all these states must now be performed. The GGSO

projection equation of the basis vector 1 on the NS sector is described by

the equation

eiπ 1·FNS |S〉NS = δNS C

(
NS

1

)
|S〉NS (4.21)

where the states |S〉NS are given in equations (4.16) - (4.20). Using the

definition of the spacetime spin statistics index given in equation (4.7), it

is found that δNS = +1. Using equation (4.6a), it can be shown that

C

(
NS

bj

)
= δbj . (4.22)

Again, using the definition of the spacetime spin statistics index δbj , the

result

eiπ 1·FNS |S〉NS = δNS δ1 |S〉NS
= − |S〉NS

(4.23)

is found. The left hand side of the GGSO projection equation is now

considered. The values depend on each state being considered from the

sector. As an example, the state described in equation (4.16) which con-

tains the graviton, dilaton and anti-symmetric tensor will be considered.

Using the definition of the scalar product given in equation (4.4)

1 · FNS =
(
1(ψµ12) · FNS(ψµ12) + 1(∂X̄ν) · FNS(∂X̄ν)

)
= −1

(4.24)

The GGSO equation is therefore satisfied so this state remains in the

spectrum. Applying the same procedure to all other states in the NS

sector gives the same result i.e no states are projected out.

It should be noted that the graviton cannot be projected out by the

GGSO projection. This is due to the fact that the identity given in equa-

tion (4.22) is always true for the NS sector. Therefore any free fermionic

8It should be noted there are examples of non-supersymmetric heterotic string models, which

can be seen in references [32].
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string model, a priori, always contains at least one graviton and therefore

gravity is always present in any of the string theories built.

This simple model contains all the states listed in equations (4.16) -

(4.19), but the spectrum still contains a tachyon. In order to remove the

tachyon from the spectrum, the method of introducing supersymmetry to

the model will be utilised.

4.7 Adding Supersymmetry to the Simple Model

Supersymmetry is included in the model by addition of a basis vector S.

The vector S is defined as

S = {ψµ12, χ
12, χ34, χ56} , (4.25)

where the fermions have been complexified.

In the previous model which only contained the sectors {1, NS}, it

can be seen there were no gravitinos present in the spectrum. In this

section we will now see that gravitinos are present in the spectrum and

therefore spacetime supersymmetry is realised.

It can easily be shown that the addition of the S basis vector satisfies

the rules on the basis vectors listed in equations (4.5a - 4.5e). Inclusion

of this basis vector extends the additive group, meaning the following

sectors are now present in the model

Ξ = {1, NS, 1+ S, S} . (4.26)

As in the previous section, the sector 1 gives no massless states. The

states from the NS sector are the same as in the previous section, but

now the GGSO projection of the basis vector S must be performed on

the sector. Using equation (4.22) the GGSO projection is found to be

eiπS·FNS |s〉NS = δNS C

(
NS

S

)
|s〉NS

= δNS δS |s〉NS
= − |s〉NS

(4.27)

65



It now remains to calculate the left hand side of the GGSO projection

equation for the states in the NS sector. For the state given in equation

(4.16) the following result is found

S · FNS =
(
S(ψµ12) · F (ψµ12) + S(∂X̄ν) · F (∂X̄ν)

)
= 1

(4.28)

meaning the state remains in the spectrum. It should be noted that this

result was expected as the graviton state cannot be projected out, as

mentioned previously. The state given in equation (4.17) is also found to

be kept in the spectrum, as

S · FNS =
(
S(ψµ12) · F (ψµ12) + S(Φ̄a) · F (Φ̄a) + S(Φ̄b) · F (Φ̄b)

)
= 1

(4.29)

meaning the gauge group of SO(44) in the adjoint representation is kept

intact. The result now changes for the following states. Performing the

GGSO projection on the states given in equation (4.18) gives the results

χi ∂X̄ν |0〉NS : S · FNS =
(
S(χi) · F (χi) + S(∂X̄ν) · F (∂X̄ν)

)
= 1

(4.30a)

yi ∂X̄ν |0〉NS : S · FNS =
(
S(yi) · F (yi) + S(∂X̄ν) · F (∂X̄ν)

)
= 0

(4.30b)

wi ∂X̄ν |0〉NS : S · FNS =
(
S(wi) · F (wi) + S(∂X̄ν) · F (∂X̄ν)

)
= 0

(4.30c)

where i = 1,. . . ,6. It can be seen from these results that only the states

in equation (4.30a) survive, while the states in equations (4.30b - 4.30c)

are projected out. The result is the same for the states given in equation

(4.19), meaning the states which survive the projection are

χ1,...,6 Φ̄a Φ̄b |0〉NS . (4.31)
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The final state to be considered is the tachyon. Calculating the rele-

vant information from the left hand side of the GGSO projection gives

S · FNS =
(
S(Φ̄a) · FNS(Φ̄a)

)
= 0

(4.32)

and therefore the tachyon is projected out. Addition of the S basis vector

will always generate this result. As the tachyon is formed only by a right

moving fermion, then S(Φ̄a) = 0 is always true. The right hand side of

the GGSO projection equation is fixed meaning the tachyon can never

survive the addition of the supersymmetry basis vector S to the additive

group. For the remainder of this document, removal of the tachyonic

instability will be achieved by the addition of supersymmetry to the string

models. However, it should again be noted that approaches to resolving

instabilities in heterotic string theories which are non-supersymmetric

have been considered by other groups in the references [32].

This concludes all the states which remain the NS sector after the

addition of the supersymmetric S basis vector. It remains to consider if

the sectors {1 + S, S} admit massless states and to calculate which, if

any, of these states remain in the spectrum.

4.7.1 1+ S Sector

The sector 1 + S is found to only produce massive states. When the

Virasoro condition is considered,

M2
L = −1

2
+

6

8
+NL > 0 ,

M2
R = −1 +

22

8
+NR > 0 .

(4.33)

This sector is therefore omitted from further analysis.
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4.7.2 S Sector

The final sector to be considered is S and when the left- and right-mass

squared is calculated as

M2
L = −1

2
+

4

8
+NL ,

M2
R = −1 +

0

8
+NR ,

(4.34)

it can be seen that massless states can be formed using either one right-

moving bosonic oscillator or two right-moving fermionic oscillators. The

left-moving sector can be seen to be Ramond and requires no oscillators.

This means the possible states which arise from the S sector are

•
|S〉L ∂X̄µ |0〉NS (4.35)

These states are the supersymmetric partners of the gravitons and

are therefore referred to as gravitinos. The gravitinos possess spin
3
2
.

•
|S〉L Φ̄aΦ̄b |0〉NS (4.36)

These states are the supersymmetric partners of the gauge bosons

defined in equations (4.17) and (4.19). These are therefore referred

to as gauginos and possess spin 1
2
.

In the above two states, L denotes the left-moving components of the

sector and a, b = 0, . . . , 44.

In order to represent the left-moving fermions in a clearer manner, a

combinatorial notation will be introduced. As the left-moving component

of the sector is

|S〉L = ψµ12 χ
12χ34χ56 |0〉NS (4.37)

and each complexified fermion is in the state |±〉 before the GGSO pro-

jection, the notation (
Total

i

)
(4.38)
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is introduced, where ‘total’ is the total number of fermions being consid-

ered and i = (0, . . . , total) counts the number of ‘negatives’ (i.e |−〉) in

the sector. For example,(
4

0

)
= |+〉 |+〉 |+〉 |+〉 ,(

4

3

)
= |+〉 |−〉 |−〉 |−〉 ,

(4.39)

and any possible cyclic permutations in the position of the negative states.

Now the GGSO projection of these states can be considered. The

GGSO projection equation for the projection with the basis vector 1 on

the sector S is

eiπ 1·FS |s〉S = δS C

(
S

1

)∗
|s〉S

= −C
(
S

1

)∗
|s〉S

(4.40)

where s denotes the state and S denotes the sector. In contrast to the

phase
(
1

1

)
, which must equal −1 due to arguments presented in the pre-

vious section (specifically the result given in equation (4.22)), the phase

C
(
S
1

)
can take the values ±1. Therefore, a choice must be made. Without

loss of generality, the choice for this calculation will be C
(
S
1

)
= −1. This

leaves the right hand side of the GGSO projection equation as

eiπ 1·FS |s〉S = + |s〉S . (4.41)

Considering the state in equation (4.35), we find

1 · FS =
(
1(|s〉L) · F (|s〉L)− (1(∂X̄µ) · F (∂X̄µ)

)
=
(
1(|s〉L) · F (|s〉L)

) (4.42)

where |s〉L is given by equation (4.37). In order to satisfy the GGSO pro-

jection equation, the number of negative contributions from the fermions

in state |s〉L is found to be even. Therefore, using the combinatorial

notation, the states which survive are

|s〉S =

[(
4

even

)]
∂X̄µ |0〉NS

=

[(
4

0

)
+

(
4

2

)
+

(
4

4

)]
∂X̄µ |0〉NS .

(4.43)
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Similarly, the gaugino states which remain in the spectrum after the

GGSO projection with the 1 vector are

|s〉S =

[(
4

even

)]
Φ̄aΦ̄b |0〉NS . (4.44)

It now remains to project with the S basis vector. The GGSO projection

equation for this case is

eiπ S·FS |s〉S = δS C

(
S

S

)
|s〉S

= −C
(
S

S

)
|s〉S

(4.45)

In fact, due to the rule given in equation (4.6b)

C

(
S

S

)
= C

(
S

1

)
, (4.46)

and therefore

eiπ S·FS |s〉S = + |s〉S , (4.47)

which necessarily finds that there is no further projections performed by

the S vector.

Finally, it is instructive to calculate the number of gravitinos present in

the spectrum at this point. This can be found by considering the fermions

ψµ12 separately from the χ1,...,6, like so(
1

0

)[(
3

0

)
+

(
3

2

)]
+

(
1

1

)[(
3

1

)
+

(
3

3

)]
. (4.48)

Considering the fermions in this way is valid as the two components of

ψµ12 (as given above) form the two components of a spacetime Weyl spinor

[16]. It can now be seen that there are four gravitinos present due to the

combinatorics of the states of χ1,...,6 i.e using the combinatorics equation(
n

k

)
=

n!

k!(n− k)!
, (4.49)

the fermions χ1,...,6 in the first square bracket of equation (4.48) give

3!

0!(3− 0)!
+

3!

2!(3− 2)!
= 4 . (4.50)
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The second square bracket also gives this result. Due to the spectrum

containing four gravitinos, the model possesses N = 4 spacetime super-

symmetry.

At this point of construction, the spectrum of this model has a gauge

group of SO(44), has N = 4 supersymmetry and is free of tachyonic

instabilities. However, the model contains no matter. Therefore, this

model will form the initial configuration of the Left-Right Symmetric

models constructed in the remainder of this document, but more basis

vectors must be added in order to obtain quasi-realistic LRS string vacua.

This will be the focus of the next chapter.
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5 Classification of Left-Right Symmetric

Heterotic String Vacua

This chapter concerns the classification of Left-Right Symmetric models

in the free fermionic formulation of heterotic string theory. The contents

of this chapter is the subject of a research paper published by the author

and collaborators and can be found in reference [14].

The classification method of the free fermionic heterotic string vacua

is extended to models where the SO(10) GUT symmetry is broken di-

rectly at the string scale to the Left-Right Symmetric subgroup. The

method involves using a fixed set of basis vectors which are defined by

the boundary conditions assigned to the free fermions before enumerating

the string vacua by varying the Generalised GSO (GGSO) projection co-

efficients. It allows the derivation of algebraic expressions for the GGSO

projections for each sector that generates massless states in the models.

This enables a computerised analysis of the entire massless spectrum of a

given choice of GGSO projection coefficients. The total number of vacua

in the class of models chosen is 266 ≈ 7.38×1019. A statistical sampling is

performed and a sample size of 1011 vacua with the Left-Right Symmet-

ric gauge group is extracted. We present the results of the classification,

noting that contrary to the previous classification of Pati-Salam models,

no three generation exophobic models were found. The results obtained

demonstrate the existence of three generation models with the necessary

Higgs representations needed for viable spontaneous symmetry breaking

and with a leading top quark Yukawa coupling.
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5.1 Left-Right Symmetric Free Fermionic Models

This chapter concerns the extension of the free fermionic classification

method, utilised in [39, 40, 48, 50, 52], to vacua which possess the Left-

Right Symmetric (LRS) subgroup of SO(10).

The free fermionic formulation provides a set of rules which enables ex-

traction of the physical states in a string model and provides a straightfor-

ward approach to studying the phenomenological properties of the string

vacua. The models are constructed by defining a set of basis vectors and

the Generalised Gliozzi-Scherk-Olive (GGSO) projection coefficients of

the one-loop partition function. The details are outlined in the following

section.

The breaking of the SO(10) GUT symmetry occurs directly at the

string scale. All the models which are classified possess N = 1 spacetime

supersymmetry and preserve the SO(10) embedding of the weak hyper-

charge. The unbroken subgroup of SO(10) in the low energy effective field

theory considered here is SU(3)C×U(1)C×SU(2)L×SU(2)R. The matter

states which give rise to the Standard Model fermionic representations are

found in the spinorial 16 representation of SO(10) decomposed under the

unbroken SO(10) subgroup. Similarly, the SM light Higgs states occur

from the vectorial 10 representation of SO(10).

5.1.1 The Free Fermionic Formulation

The notable features of the free fermionic formulation used in model build-

ing and classification will be briefly outlined. A more detailed discussion

of these features can be found in reference [29, 30].

The free fermionic formulation of string theory is directly formulated

in four spacetime dimensions, whereby the extra degrees of freedom found

in string theories are interpreted as free fermions propagating on the two

dimensional string worldsheet. The approach considered here utilises the

four dimensional heterotic string in the light-cone gauge, meaning there

are 20 left-moving and 44 right-moving free fermions introduced to ac-

count for all the extra degrees of freedom. In the standard notation the
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left-movers are represented by ψµ12 , χ
1,...,6 , y1,...,6 , w1,...,6 and the right-

movers by y1,...,6 , w1,...,6 , ψ
1,...,5

, η1,2,3 , φ
1,...,8

.

When these fermions are parallel transported around the two non-

contractible loops of the one-loop partition function, they obtain a non-

trivial phase9. These phases can be either periodic, anti-periodic or com-

plex, denoted by 0,1 and ±1
2

respectively. The boundary conditions of

the fermions are specified in 64-dimensional vectors called ‘basis vectors’

which are given in the form

vi = {αi(f1), . . . , αi(f20) | αi(f 1), . . . , αi(f 44)},

where the boundary condition α is defined as the transformation property

for a fermion f . Accordingly,

fj → −eiπαi(fj)fj, j = 1, . . . , 64.

Each model is specified by a set of basis vectors v1, . . . , vN , which must

satisfy modular invariance constraints. The basis vectors of the model

span a space Ξ, which consists of 2N+1 sectors. Each sector is formed as

a linear combination of the basis vectors and is given by

ξ =
N∑
i=1

mjvi mj = 0, 1, . . . , Nj − 1, (5.1)

whereNj ·vj = 0 mod 2. The string states in each sector, denoted by |Sξ〉,
must also conform to modular invariance constraints. This is imposed on

the string states in the form of the one-loop GGSO projections via the

equation,

eiπvi·Fξ |Sξ〉 = δξ C

(
ξ

vi

)∗
|Sξ〉 , (5.2)

where Fξ is the fermion number operator, δξ = ±1 is the space-time spin

statistics index and C
(
ξ
vi

)
= ±1 ; ±1

2
is the GGSO projection coefficient.

By varying the choice of the GGSO coefficients, distinct vacua of the

string model are obtained.

9In the common nomenclature, these phases are also referred to as ‘boundary conditions’ of the

free fermions.
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Summarising, a model is constructed by using a set of basis vectors vi

and by a set of distinct GGSO projection coefficients C
(
vi
vj

)
, with i > j,

of which there are 2N(N−1)/2.

5.1.2 SO(10) Models

In order to build the Left-Right Symmetric models that are studied in

this chapter, a set of thirteen basis vectors are used. The first twelve

basis vectors considered generate SO(10) models and are common to the

previous publications [40, 46, 50, 52]. These basis vectors are also included

in the basis of the LRS models discussed here and are defined as:

v1 = 1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|

y1,...,6, ω1,...,6, η1,2,3, ψ
1,...,5

, φ
1,...,8},

v2 = S = {ψµ, χ1,...,6},

v2+i = ei = {yi, ωi | yi, ωi}, i = 1, . . . , 6,

v9 = b1 = {χ34, χ56, y34, y56 | y34, y56, η1, ψ
1,...,5}, (5.3)

v10 = b2 = {χ12, χ56, y12, y56 | y12, y56, η2, ψ
1,...,5},

v11 = z1 = {φ1,...,4},

v12 = z2 = {φ5,...,8},

where the fermions which appear in the basis vectors have periodic (Ra-

mond) boundary conditions, whereas those not included have antiperiodic

(Neveu-Schwarz) boundary conditions.

The basis vector 1 is required by the rules set out in the papers listed

in reference [29, 30] and generates a model with an SO(44) gauge group

from the Neveu-Schwarz (NS) sector. Addition of the S basis vector

generates N = 4 space-time supersymmetry and leaves the gauge group

intact. The ei vectors break the gauge group to SO(32) × U(1)6 but

preserve the N = 4 supersymmetry. These vectors correspond to all the

possible internal symmetric shifts of the six internal bosonic coordinates.

Addition of the vectors b1 and b2 corresponds to Z2×Z2 orbifold twists and
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breaks the spacetime supersymmetry firstly toN = 2 and subsequently to

N = 1. They also break the U(1)6 gauge symmetry, therefore reducing the

rank of the gauge group, while simultaneously decomposing the SO(32)

to SO(10)×U(1)3×SO(16). Addition of the basis vectors z1 and z2 then

break the hidden SO(16) gauge group, generated by the fermions φ
1,...,8

,

to SO(8)×SO(8). The untwisted vector bosons present due to this choice

of basis vectors generate the gauge group SO(10)×U(1)3×SO(8)2 in the

adjoint representation.

At this point, it is instructive to briefly mention orbifolds and how

some of the underlying structure of the FFF can be interpreted in the

orbifold construction.

In the formulation used throughout the following work, the six internal

dimensions are compactified on a flat six-torus T6. This is factorisable, as

the T6 structure can be split as T6 = T4×T2 = T2×T2×T2 by applying

the Z2 × Z2 orbifold to the six-torus. The Z2 × Z2 orbifold action acts

on a T4, therefore distinguishing between the T4 the orbifold is acting on

and the T2 it is not acting on. This introduces a Z2×Z2 ‘twist’ of the T6.

There are three combinations of how Z2 × Z2 can act on T2 ×T2 ×T2,

which generates three distinct twists and results in three orbifold planes.

The three orbifold planes are defined as B1,2,3
pqrs and are commonly referred

to as the twisted sectors. In contrast, sectors which give rise to states

invariant under the orbifold action are designated untwisted sectors.

The orbifold action of Z2 on each of the target spaces (T2) has four

fixed points. Therefore, when considering Z2 × Z2 twists on two of the

two-tori, i.e. T4 = T2 × T2, there are 4 × 4 = 16 fixed points. These

sixteen fixed points are represented in the free fermionic formulation by

the sixteen different configurations of each of p, q, r, s = 0, 1 which appear

in the twisted sectors B1,2,3
pqrs , presented in section 5.3.2 and the sections

following.

Further information on the orbifold formulation can be found in refer-

ences [28, 37, 53, 54].
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5.1.3 Left-Right Symmetric Models

Previous constructions of free fermionic LRS models used two or more

basis vectors to break the observable gauge group. Firstly, one basis

vector with either the assignment ψ
1,2,3

= 1 (as in [44]), or equivalently

ψ
4,5

= 1 (as in [40]), is used to obtain the SO(6) × SO(4) Pati-Salam

gauge group and a second basis vector with the assignment ψ
1,2,3

= ±1
2

breaks the Pati-Salam gauge group to the LRS.

However, the model under consideration uses only one additional basis

vector, given by

α = {ψ1,2,3
=

1

2
, η1,2,3 =

1

2
, φ

1,...,6
=

1

2
, φ

7} (5.4)

where the restriction that the phase on the complex right-moving fermions

is positive is made, i.e ψ
1,2,3

= +1
2
. The assignment of η1,2,3 = +1

2
is made

due to the constraint that bj · α = 0 mod 1, where j = 1, 2, 3, must be

true in order to satisfy modular invariance.

It should be noted that while the assignments on the fermions

ψ
1,2,3

, η1,2,3 must be as above, this choice of α is not unique due to possible

variations of assignments for the fermions φ
1,...,8

. However, in this paper

only models with the α defined above are considered.

With this choice of basis vectors, we note two sectors which are com-

binations of the basis vectors and facilitate the classification and presen-

tation of the physical spectrum. The first is the composite vector defined

as ‘b3’ which is given by

b3 = 1+ S +
6∑
i=1

ei + b1 + b2 + z1 + z2

= {χ12, χ34, y12, y34, | y12, y34, ψ
1,...,5

, η3} .

(5.5)

This combination of basis vectors corresponds to the third twisted plane

of the Z2×Z2 orbifold, where the first two are related to b1 and b2, respec-

tively. The second composite vector is given by the linear combination
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denoted by ‘x’, given by

x = 1+ S +
6∑
i=1

ei + z1 + z2

= {ψ1,2,3,4,5
, η1,2,3} .

(5.6)

This linear combination produces the spinorial 128 multiplet in the 248

adjoint representation of the observable E8, generated by the subset

{1, S, x, z1 + z2} of the basis set (5.3). It generates the so–called x–

map [56] that exchanges spinorial and vectorial representations from the

twisted sectors Bj, to be defined below, and Bj+x, respectively. It should

be noted that this linear combination is not generated in the LRS models

of ref. [44] and therefore the models presented there do not admit the x–

map. This is an important distinction between the models considered here

and those of ref. [44]. We note that the x–map is crucial in our classifica-

tion method as the sectors Bj +x are those that give rise to the Standard

Model electroweak doublets. Therefore, the basis of the models consid-

ered consists of the basis vectors {1, S, e1, e2, e3, e4, e5, e6, b1, b2, z1, z2, α}
with two notable linear combinations {b3, x}.

5.1.4 GGSO Projections

Now that the basis has been specified, the next components of the model

which need defining are the GGSO projection coefficients C
(
vi
vj

)
which are

necessary in order to completely describe the one-loop partition function.

The GGSO coefficients span a 13 × 13 matrix. The lower triangle

of the matrix containing 78 coefficients is fixed by the corresponding 78

coefficients in the upper triangle by modular invariance constraints. In

addition, the phases on the diagonal are also fixed by modular invariance.
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Accordingly,

C

(
ei
ei

)
= −C

(
ei
1

)
i = 1, . . . , 6

C

(
bk
bk

)
= C

(
bk
1

)
k = 1, 2

C

(
zk
zk

)
= C

(
zk
1

)
k = 1, 2

C

(
α

α

)
= C

(
α

1

)
(5.7)

To ensure N = 1 supersymmetry, without loss of generality, the following

coefficients are fixed

C

(
1

1

)
= C

(
S

1

)
= C

(
S

S

)
= C

(
S

ei

)
= C

(
S

bk

)
= C

(
S

zk

)
= C

(
S

α

)
= −1,

(5.8)

where i = 1, . . . , 6 and k = 1, 2. We are therefore left with 66 independent

coefficients, which generates 266 ≈ 7.38× 1019 distinct string vacua.

It should be noted that all the phases are real and take the discrete

values ±1 except for the phase C
(
1

α

)
which takes values ±i due to the

fact that 1 · α = −7.

5.2 String Spectrum

Adapting the methodology of previous cases [40, 46, 50, 52], the sectors

which can contribute massless states are enumerated and the correspond-

ing algebraic conditions for the GGSO projections are derived for each

sector.

Spacetime vector bosons that arise from the untwisted sector, gener-

ate the SO(10) symmetry and its unbroken subgroups. There are further

sectors in these models that can give rise to additional physical spacetime

vector bosons, which enhance the untwisted gauge symmetry. Further-

more, if the additional spacetime vector bosons are charged with respect

to the Cartan generators of the SO(10) GUT symmetry, the unbroken

SO(10) subgroup is enhanced. Thus, a pivotal requirement in the con-

struction is that the additional spacetime vector bosons are projected
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out.

The twisted sectors produce matter multiplets which possess N = 1

supersymmetry and can be grouped depending on which SO(10) subgroup

they leave unbroken. Sectors which contain the α basis vector in the

linear combination break the SO(10) symmetry to the LRS and gives rise

to exotic states. If the linear combination contains 2α then the SO(10)

gauge group is broken to the Pati-Salam SO(6) × SO(4) gauge group

and also contains exotics. As α is the only SO(10) breaking basis vector,

all the remaining sectors which, a priori, do not include α in the linear

combination do not break the SO(10) symmetry.

The sectors in a model can be categorised according to the left- and

right-moving vacuum. The physical states satisfy the Virasoro condition,

defined as

M2
L = −1

2
+
ξL · ξL

8
+NL = −1 +

ξR · ξR
8

+NR = M2
R (5.9)

where NL and NR are the sums over the left- and right-moving oscillators

respectively. Sectors that have the products ξL · ξL = 0 and ξR · ξR =

0, 4, 6, 8 can produce spacetime vector bosons, which determine the gauge

symmetry in a given vacuum. Sectors where the products are ξL · ξL = 4

and ξR · ξR = 4, 6, 8 produce matter states which are outlined in section

5.3. All the models considered preserve N = 1 spacetime supersymmetry,

which is generated by the basis vector S where the products are (SL ·
SL ; SR · SR) = (4; 0).

5.2.1 The Gauge Symmetry

Vector bosons from the untwisted sector correspond to generators of the

following observable and hidden gauge group symmetries

Observable : SU(3)C × U(1)C × SU(2)L × SU(2)R × U(1)1 × U(1)2 × U(1)3

Hidden : SU(4)× U(1)4 × SU(2)5 × U(1)5 × U(1)7 × U(1)8
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and the weak hypercharge is given by10

U(1)Y =
1

3
U(1)C +

1

2
U(1)L. (5.10)

Depending on the choice of GGSO projection coefficients, additional

spacetime vector bosons may arise from the following 26 sectors

G =



x z1 z2 z1 + z2

z1 + 2α z1 + z2 + 2α 2α + x z2 + 2α + x

z1 + 2α + x z1 + z2 + 2α + x

α 3α z1 + α z1 + 3α

z2 + α z2 + 3α z1 + z2 + α z1 + z2 + 3α

α + x 3α + x z1 + α + x z1 + 3α + x

z2 + α + x z2 + 3α + x z1 + z2 + α + x z1 + z2 + 3α + x



,

(5.11)

where x is defined in equation (5.6). The sectors in (5.11) have been or-

ganised such that the sectors which do not break the SO(10) symmetry

are on row 1; rows 2-3 break the SO(10) symmetry to the Pati-Salam

SO(6)× SO(4) gauge group and finally rows 4-7 break the SO(10) sym-

metry to the LRS SU(3)× U(1)× SU(2)× SU(2) gauge group.

It should be noted that any projections on sectors containing 3α can

be inferred from the projections made on the corresponding sector which

contains only α. Therefore, in the following analysis these sectors will not

be discussed in detail.

If any of the gauge bosons from the sectors in eq. (5.11) survive the

projections, the untwisted gauge symmetry is enhanced. We restrict the

classification analysis to vacua with no enhancements, meaning the gauge

symmetry of all the vacua classified is identical. In the classification

method the GGSO projection coefficients of the 26 sectors listed above

were derived and expressed in an analytic form so that a computer code

can easily detect if a particular vacua is enhanced. Of the vacua that

10It should be noted that U(1)C = 3
2U(1)B−L and U(1)L = 2U(1)T3R
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were scanned in the classification, approximately 29.1% contained extra

vector bosons and were therefore enhanced.

5.3 The Twisted Matter Spectrum

5.3.1 General Remarks

In the table below, the hypercharge and electromagnetic charge have been

normalised according to the equations

Y =
1

3
(Q1 +Q2 +Q3) +

1

2
(Q4 +Q5) (5.12a)

Qem = Y +
1

2
(Q4 −Q5) (5.12b)

In these equations, the U(1) charges Q1,...,5 are the U(1) charges generated

by the fermions ψ
1,...,5

respectively and are calculated according to the

equation

Q(f) =
1

2
α(f) + F (f) (5.13)

where α(f) is the boundary condition of the fermion in the sector and

F (f) is the fermion number given by

F (f) =

+1 for f

−1 for f ∗
(5.14a)

for fermionic oscillators and their complex conjugates, and

F |+〉R = 0

F |−〉R = −1
(5.14b)

for the degenerate Ramond vacua where |+〉R = |0〉 is a degenerated

vacuum with no oscillator and |−〉R = f †0 |0〉 is the degenerated vacua

with one zero mode oscillator.

The table below outlines the electromagnetic charges, and the charges

under the electroweak SU(2)×U(1) Cartan generators, of the states which

are contained in the observable LRS chiral matter representations:
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Representation ψ
1,2,3

ψ
4,5

Y Qem

(3,+1/2 ,2,1) (+,+,−) (+,−) 1/6 2/3 , -1/3

(+,+,−) (+,+) 2/3 2/3

(3,+1/2 ,1,2) (+,+,−) (−,−) -1/3 -1/3(
3,−1/2 ,2,1

)
(+,−,−) (+,−) -1/6 1/3 , -2/3

(+,−,−) (+,+) 1/3 1/3(
3,−1/2 ,1,2

)
(+,−,−) (−,−) -2/3 -2/3

(1,+3/2 ,2,1) (+,+,+) (+,−) 1/2 1 , 0

(+,+,+) (+,+) 1 1

(1,+3/2 ,1,2) (+,+,+) (−,−) 0 0

(1,−3/2 ,2,1) (−,−,−) (+,−) -1/2 0 , -1

(−,−,−) (+,+) 0 0

(1,−3/2 ,1,2) (−,−,−) (−,−) -1 -1

where the representation is decomposed as SU(3)C × U(1)C × SU(2)L ×
SU(2)R. The notation ‘+’ above denotes a state of the degenerated Ra-

mond vacua with no oscillator, i.e a state with a fermion number F = 0,

whereas the notation ‘−’ denotes a state of the degenerated Ramond

vacua with a zero mode oscillator and therefore a state where F = −1.

The values for Y and Qem are calculated using equations (5.12a) and

(5.12b) respectively.

It is when these representations are decomposed under the SM gauge

group SU(3)C ×SU(2)L×U(1)Y that the particle states of the Standard

Model are obtained. The leptons and quarks are realised by the following

representations

Qi
L = (3,2,1) 1

6
=

(
u

d

)i
, (5.15a)

Qi
R = (3,1,2) 1

3
,− 2

3
=

(
dc

uc

)i
, (5.15b)

LiL = (1,2,1)− 1
2

=

(
ν

e

)i
, (5.15c)

LiR = (1,1,2)1,0 =

(
ec

νc

)i
, (5.15d)
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h = (1,2,2)0 =

(
hu+ hd0

hu0 hd−

)
(5.15e)

where hu and hd are the low energy supersymmetric superfields associated

with the Minimally Supersymmetric Standard Model (MSSM).

5.3.2 The Observable Matter Sectors

The chiral matter spectrum is obtained from the twisted sectors, which

are as follows

B(1)
pqrs = S + b1 + pe3 + qe4 + re5 + se6

= {ψµ, χ1,2, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4, (5.16)

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄1, ψ̄1,...,5}

B(2)
pqrs = S + b2 + pe1 + qe2 + re5 + se6

B(3)
pqrs = S + b3 + pe1 + qe2 + re3 + se4

where p, q, r, s = 0, 1 and b3 = b1 +b2 +x. These 48 sectors contain the 16

and 16 spinorial representations of the SO(10) observable gauge group

decomposed under SU(3)C × U(1)C × SU(2)L × SU(2)R as

16 = (3,+1
2
,2,1) + (3,−1

2
,1,2) + (1,−3

2
,2,1) + (1,+3

2
,1,2),

16 = (3,−1
2
,2,1) + (3,+1

2
,1,2) + (1,+3

2
,2,1) + (1,−3

2
,1,2).

In this construction, each of the sectors B
(i)
pqrs with i = 1, 2, 3, can con-

tribute at most a single multiplet to the physical spectrum. The inte-

gers {pqrs} essentially label the sixteen fixed points of the ith twisted

plane. For this reason the identification of the {pqrs}–sectors can be

interchanged with states in the physical spectrum, i.e. the spectrum of

states that survive the GGSO projections. The power of the formalism is

that all the states producing sectors can be expressed in a similar fashion.

In addition to the twisted matter spectrum, there are vector-like states

which contribute to the observable matter spectrum. These states arise

84



from the sectors

B(4)
pqrs = S + b1 + pe3 + qe4 + re5 + se6 + x

= {ψµ, χ1,2, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4, (5.17)

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄2,3}

B(5)
pqrs = S + b2 + pe1 + qe2 + re5 + se6 + x

B(6)
pqrs = S + b3 + pe1 + qe2 + re3 + se4 + x

which have four periodic right-moving complex fermions. Massless states

can be obtained by acting on the vacuum with a Neveu-Schwarz right-

moving fermionic oscillator. If the oscillator is from either the fermions

ψ
1,...,5

or their complex conjugates ψ
∗1,...,5

then these sectors give rise to

the vectorial 10 representation of SO(10) decomposed under SU(3)C ×
U(1)C × SU(2)L × SU(2)R as

10 = (3,−1,1,1) + (3,+1,1,1) + (1, 0,2,2)

where the first and second representations are generated by the fermions

{ψ1,2,3} and {ψ∗1,2,3} respectively and the final representation is generated

by the fermions {ψ4,5} and {ψ∗4,5}. It can be seen that the first two

representations are colour triplets, usually referred to as leptoquarks in

the literature, which mediate proton decay via dimension five operators.

Therefore, these states must be either sufficiently heavy so as to agree with

the current proton lifetime of ≥ 1033 years [57] or must be projected out of

the string spectrum by the GGSO projections. This is a constraint which

is considered when the classification is performed. The representation

(1, 0,2,2) gives rise to the light Standard Model Higgs.

The remaining right-moving complex fermions can give rise to states

which are singlets under the observable gauge group but form the follow-

ing representations

• {ηi} |R〉(4,5,6)
pqrs or {η∗i} |R〉(4,5,6)

pqrs , i = 1, 2, 3, where |R〉(4,5,6)
pqrs is the de-

generated Ramond vacuum of the sectors B
(4,5,6)
pqrs respectively. These

states transform as vector-like representations of the U(1)i’s.
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• {φ1,...,4} |R〉(4,5,6)
pqrs or {φ∗1,...,4} |R〉(4,5,6)

pqrs . These states transform as

vector-like representations of the SU(4)× U(1)4 gauge group.

• {φ5,6} |R〉(4,5,6)
pqrs or {φ∗5,6} |R〉(4,5,6)

pqrs . These states transform as vector-

like representations of the SU(2)5 × U(1)5 gauge group.

• {φ7,8} |R〉(4,5,6)
pqrs or {φ∗7,8} |R〉(4,5,6)

pqrs . These states transform as vector-

like representations of the U(1)7 and U(1)8 gauge groups respectively.

5.3.2.1 Chirality Operators

In order to calculate the number of families of a model, the number of

chiral 16 and 16 representations of SO(10) decomposed under the LRS

gauge group have to be counted. In these models families and anti-families

are formed from the following representation

16 = (3,+1
2
,2,1) + (3,−1

2
,1,2) + (1,−3

2
,2,1) + (1,+3

2
,1,2)

= QL +QR + LL + LR

16 = (3,−1
2
,2,1) + (3,+1

2
,1,2) + (1,+3

2
,2,1) + (1,−3

2
,1,2)

= QL +QR + LL + LR

(5.18)

A model must then have three families in order to be phenomenologically

viable i.e

NQL −NQL
= NQR −NQR

= NLL −NLL
= NLR −NLR

= 3 (5.19)

The number of these representations that occur in a model depends on the

choice of the GGSO coefficients. Firstly, in order to distinguish between

the 16 and 16 an SO(10) chirality operator is defined. These chirality

operators for the sectors B
(1,2,3)
pqrs are defined, respectively, as

X(1)SO(10)
pqrs = C

(
B

(1)
pqrs

(1− r)e5 + (1− s)e6 + b2

)
X(2)SO(10)
pqrs = C

(
B

(2)
pqrs

(1− r)e5 + (1− s)e6 + b1

)
X(3)SO(10)
pqrs = C

(
B

(3)
pqrs

(1− r)e3 + (1− s)e4 + b1

) (5.20)
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and can take the values X
(1,2,3)SO(10)
pqrs = ±1. Another chirality operator

needs defining to determine whether the representations ((1,2) or (2,1))

of the SU(2)L × SU(2)R occur. These are defined for the sectors B
(1,2,3)
pqrs

respectively as

X
(1)SU(2)L/R
pqrs = C

(
B

(1)
pqrs

2α + x

)
X

(2)SU(2)L/R
pqrs = C

(
B

(2)
pqrs

2α + x

)
X

(3)SU(2)L/R
pqrs = C

(
B

(3)
pqrs

2α + x

) (5.21)

where x is the linear combination x = 1+ S +
∑6

i=1 ei + z1 + z2.

Furthermore, there is one final chirality operator which needs to be

defined in order to determine the representations under the SU(3)C ×
U(1)C gauge group. These are

X(1)SU(3)×U(1)
pqrs = C

(
B

(1)
pqrs

(1− p)e3 + (1− q)e4 + b3 + x+ 2α

)
X(2)SU(3)×U(1)
pqrs = C

(
B

(2)
pqrs

(1− p)e1 + (1− q)e2 + b3 + x+ 2α

)
X(3)SU(3)×U(1)
pqrs = C

(
B

(3)
pqrs

(1− p)e1 + (1− q)e2 + b2 + x+ 2α

)
.

(5.22)

By performing the GGSO projections of these chirality operators the sur-

viving states and therefore the number of families are calculated.

5.3.2.2 Projectors

The projectors are a set of equations which determine whether a sector

is either projected out or kept in the string spectrum. These projectors

consist of the relevant GGSO coefficients for the sector. For the observable

chiral matter there are 48 projectors which are calculated to be

P (1)
pqrs =

1

16

(
1− C

(
e1

B
(1)
pqrs

))
·
(

1− C
(

e2

B
(1)
pqrs

))
·
(

1− C
(

z1

B
(1)
pqrs

))
·
(

1− C
(

z2

B
(1)
pqrs

))
P (2)
pqrs =

1

16

(
1− C

(
e3

B
(2)
pqrs

))
·
(

1− C
(

e4

B
(2)
pqrs

))
·
(

1− C
(

z1

B
(2)
pqrs

))
·
(

1− C
(

z2

B
(2)
pqrs

))
P (3)
pqrs =

1

16

(
1− C

(
e5

B
(3)
pqrs

))
·
(

1− C
(

e6

B
(3)
pqrs

))
·
(

1− C
(

z1

B
(3)
pqrs

))
·
(

1− C
(

z2

B
(3)
pqrs

))
(5.23)
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The analysis of the physical spectrum is formulated as algebraic equa-

tions. The projectors can be expressed as a system of linear equations

where p, q, r, s take unknown values. The sectors which survive the GGSO

projections are found by solving the systems of equations for p, q, r, s.

Using this formalism allows for a computer analysis of the models as the

systems of linear equations are easy to express in a computer code.

The following notation is used in the algebraic representation of the

GGSO projections

C

(
vi
vj

)
= eiπ(vi|vj) (5.24)

when the GGSO coefficients are expressed in this way the analytic ex-

pressions for the projectors P
(1,2,3)
pqrs are given in matrix form ∆iW i = Y i

as 
(e1|e3) (e1|e4) (e1|e5) (e1|e6)

(e2|e3) (e2|e4) (e2|e5) (e2|e6)

(z1|e3) (z1|e4) (z1|e5) (z1|e6)

(z2|e3) (z2|e4) (z2|e5) (z2|e6)



p

q

r

s

 =


(e1|b1)

(e2|b1)

(z1|b1)

(z2|b1)




(e3|e1) (e3|e2) (e3|e5) (e3|e6)

(e4|e1) (e4|e2) (e4|e5) (e4|e6)

(z1|e1) (z1|e2) (z1|e5) (z1|e6)

(z2|e1) (z2|e2) (z2|e5) (z2|e6)



p

q

r

s

 =


(e3|b2)

(e4|b2)

(z1|b2)

(z2|b2)




(e5|e1) (e5|e2) (e5|e3) (e5|e4)

(e6|e1) (e6|e2) (e6|e3) (e6|e4)

(z1|e1) (z1|e2) (z1|e3) (z1|e4)

(z2|e1) (z2|e2) (z2|e3) (z2|e4)



p

q

r

s

 =


(e5|b3)

(e6|b3)

(z1|b3)

(z2|b3)


respectively. Such algebraic matrix equations can be written for the entire

physical spectrum. In the ensuing discussion we list all the sectors that

can a priori produce physical states, but do not list explicitly all the

algebraic matrix equations for the corresponding GGSO projections.
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5.3.3 Exotic Sectors

Additional sectors exist in the string models that can give rise to states

that carry fractional charges under the LRS gauge group. This leads to

states with a fractional electric charge at the level of the Standard Model.

The term ‘exotic states’ used here is reserved purely for the states with

fractional electric charge which arise from the sectors containing the ba-

sis vector α. Exotic states arise from these sectors due to Wilson line

breaking of the non-Abelian GUT symmetries. These exotics states are a

generic feature of string compactifications [58, 59, 60] and experimental

searches are being conducted in order to find them [61]. There are inter-

esting phenomenological aspects to exotic states as charge conservation

implies that the lightest of these states is necessarily stable. To date how-

ever, no such exotic states have been observed, leading to strong upper

bounds on their abundance [61]. In addition, if these states are too plen-

tiful in the early universe they can cause problems during the reheating

phase as the lightest of these states is necessarily stable, meaning they

continue to scatter and cannot decouple from the plasma in the early

Universe due to their charge.

There are two solutions to the lack of experimental data for the ex-

istence of exotics. The first solution is by demanding that the exotics

are confined to integrally charged states [41]. The second is to demand

that the exotic states are sufficiently heavy and diluted in the cosmolog-

ical evolution of the universe [60]. However, there are issues with the

integrally charged state solution as these states affect the renormalisation

group running of the weak-hypercharge and gauge group unification. This

leads to the preferred solution of demanding that the exotic states are suf-

ficiently massive and dilute. A sufficient mass for these states is above

the GUT scale so that they are diluted during the inflationary period of

the universe as during the reheating phase they will not be reproduced.

Previous classifications of heterotic-string models found examples of

vacua in which massless exotics states were absent and only appeared in

the massive spectrum. These models were dubbed ‘exophobic heterotic
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string vacua’. In the case of the Pati-Salam models, three generation

exophobic vacua were found [40] and in the FSU5 case exophobic vacua

were found in models with an even number of generations [50]. A question

of interest for the current research is therefore whether any exophobic LRS

models can be found.

5.3.3.1 Spinorial Exotics

The term spinorial exotics refers to sectors which involve the basis vector

α and have the products ξL · ξL = 4 and ξR · ξR = 8, therefore requires no

oscillators to produce massless states.

The sectors below all give rise to states with the representations

(1,−3
4
,1,2) and (1,−3

4
,2,1) under the SU(3)C × U(1)C × SU(2)L ×

SU(2)R observable gauge group. These states are defined in the analysis

as nLLe and nLRe respectively. It can be seen that these are singlets under

the SU(3)C gauge group but are still charged under U(1)C . The corre-

sponding sectors with 3α in the linear combination of basis vectors give

states with the representations (1,+3
4
,1,2) and (1,+3

4
,2,1). It can be

seen that the only change is the sign reversal of the charge under U(1)C .

The following are the sectors which give rise to these representations

B(7)
pqrs = B(1)

pqrs + α

= {ψµ, χ1,2, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4,

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄1 = −1
2
, (5.25)

η̄2,3 = 1
2
, ψ̄1,2,3 = −1

2
, ψ̄4,5, φ̄1,...,6 = 1

2
, φ̄7}

B(8,9)
pqrs = B(2,3)

pqrs + α

B(13)
pqrs = B(1)

pqrs + z1 + α

= {ψµ, χ1,2, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4,

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄1 = −1
2
, (5.26)

η̄2,3 = 1
2
, ψ̄1,2,3 = −1

2
, ψ̄4,5, φ̄1,...,4 = −1

2
, φ̄5,6 = 1

2
, φ̄7}

B(14,15)
pqrs = B(2,3)

pqrs + z1 + α
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B(22)
pqrs = B(1)

pqrs + z2 + α

= {ψµ, χ1,2, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4,

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄1 = −1
2
, (5.27)

η̄2,3 = 1
2
, ψ̄1,2,3 = −1

2
, ψ̄4,5, φ̄1,...,4 = 1

2
, φ̄5,6 = −1

2
, φ̄8}

B(23,24)
pqrs = B(2,3)

pqrs + z2 + α

B(31)
pqrs = B(1)

pqrs + z1 + z2 + α

= {ψµ, χ1,2, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4,

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄1 = −1
2
, (5.28)

η̄2,3 = 1
2
, ψ̄1,2,3 = −1

2
, ψ̄4,5, φ̄1,...,4 = −1

2
, φ̄5,6 = −1

2
, φ̄8}

B(32,33)
pqrs = B(2,3)

pqrs + z1 + z2 + α

5.3.3.2 Vectorial Exotics

The following are vectorial states, meaning they have the products ξL ·
ξL = 4 and ξR ·ξR = 6, and therefore requiring one 1

4
oscillator to produce

massless states. Firstly, there are the sectors

B(46)
pqrs = B(1)

pqrs + α + x

= {ψµ, χ1,2, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4,

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄1 = 1
2
,(5.29)

η̄2,3 = −1
2
, ψ̄1,2,3 = 1

2
, φ̄1,...,6 = 1

2
, φ̄7}

B(47,48)
pqrs = B(2,3)

pqrs + α + x

Using B
(46)
pqrs as an example to show the states that can be obtained

from these sectors, the possible states are

• {ψ∗1,2,3} |R〉(46)
pqrs, where |R〉(46)

pqrs is the degenerate Ramond vacua of the

B
(46)
pqrs sector. These states transform as vector-like representations of

the observable SU(3)C × U(1)C .

• {η∗1} |R〉(46)
pqrs. These states transform as vector-like representations

of U(1)1.

• {η2,3} |R〉(46)
pqrs. These states transform as vector-like representations

of U(1)2 and U(1)3 respectively.
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• {φ∗1,...,4} |R〉(46)
pqrs. These states transform as vector-like representa-

tions of the hidden SU(4)× U(1)4.

• {φ∗5,6} |R〉(46)
pqrs. These states transform as vector-like representations

of the hidden SU(2)5 × U(1)5.

The states obtained from the sectors B
(47,48)
pqrs transform in the same man-

ner as those above.

Secondly, there are the following 48 sectors

B(52)
pqrs = B(1)

pqrs + z1 + α + x

= {ψµ, χ1,2, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4,

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄1 = 1
2
, (5.30)

η̄2,3 = −1
2
, ψ̄1,2,3 = 1

2
, φ̄1,...,4 = −1

2
, φ̄5,6 = 1

2
, φ̄7}

B(53,54)
pqrs = B(2,3)

pqrs + z1 + α + x

The states found from these sectors only differ from B
(47,48,49)
pqrs by a neg-

ative sign on the 1
2

boundary conditions of the fermions φ
1,2,3,4

. This

has the effect of changing the sign of the U(1)4 charges while leaving the

other charges unaffected. The structure and charges generated by the

other worldsheet fermions therefore remain identical.

Similarly, in the sectors

B(58)
pqrs = B(1)

pqrs + z2 + α + x

= {ψµ, χ1,2, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4,

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄1 = 1
2
, (5.31)

η̄2,3 = −1
2
, ψ̄1,2,3 = 1

2
, φ̄1,...,4 = 1

2
, φ̄5,6 = −1

2
, φ̄8}

B(59,60)
pqrs = B(2,3)

pqrs + z2 + α + x,

the observable states are identical to those in the sectors B
(47,48,49)
pqrs and

only the hidden charges differ by a slight change in the Ramond vacua and

a sign difference of the boundary conditions of the fermions φ
5,6

, which

only affects the sign of the charges under U(1)5.

92



The final 48 sectors are

B(64)
pqrs = B(1)

pqrs + z1 + z2 + α + x

= {ψµ, χ1,2, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4,

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄1 = 1
2
, (5.32)

η̄2,3 = −1
2
, ψ̄1,2,3 = 1

2
, φ̄1,...,6 = −1

2
, φ̄8}

B(65,66)
pqrs = B(2,3)

pqrs + z1 + z2 + α + x

These differ from sectors B
(58,59,60)
pqrs by changing the sign on the 1

2
boundary

conditions of the fermions φ
1,2,3,4

and therefore, as above, there is a sign

change on the charges under U(1)4. All other states are unaffected and

remain as in the sectors B
(58,59,60)
pqrs .

5.3.3.3 Pati-Salam Exotics

In the case of left-right symmetric models, there can be states which

are exotic with respect to the Pati-Salam gauge group SO(6) × SO(4).

The sectors from which these states can arise are those which contain the

vector combination 2α. This is due to the fermions ψ
1,2,3

or ψ
4,5

having

periodic boundary conditions in the sector (therefore generating the Pati-

Salam gauge subgroup), while still having a fractional electric charge with

respect to the Standard Model.

In the model being discussed, all of the Pati-Salam exotics are found

in the following sectors:

B(70)
pqrs = B(1)

pqrs + z1 + 2α

= {ψµ, χ1,2, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4, (5.33)

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄2,3, ψ̄4,5, φ̄5,6}

B(71,72)
pqrs = B(2,3)

pqrs + z1 + 2α

These states transform in representations of the gauge group SU(2)L ×
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SU(2)R × SU(2)5 × U(1)5.

B(34)
pqrs = B(1)

pqrs + z1 + z2 + 2α

= {ψµ, χ1,2, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4, (5.34)

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄2,3, ψ̄4,5, φ̄7,8}

B(35,36)
pqrs = B(2,3)

pqrs + z1 + z2 + 2α

These states transform as representations of the gauge group SU(2)L ×
SU(2)R × U(1)7 × U(1)8. The states from the previous 96 sectors are

defined in the analysis as nLLs, nLRs, nLLs and nLRs.

B(40)
pqrs = B(1)

pqrs + z1 + 2α + x

= {ψµ, χ1,2, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4, (5.35)

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄1, ψ̄1,2,3, φ̄5,6}

B(41,42)
pqrs = B(2,3)

pqrs + z1 + 2α + x

These states transform as representations of the gauge group SU(3)C ×
U(1)C × SU(2)5 × U(1)5

B(43)
pqrs = B(1)

pqrs + z1 + z2 + 2α + x

= {ψµ, χ1,2, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4, (5.36)

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄1, ψ̄1,2,3, φ̄7,8}

B(44,45)
pqrs = B(2,3)

pqrs + z1 + z2 + 2α + x

These states transform as representations of the gauge group SU(3)C ×
U(1)C×U(1)7×U(1)8. The states from the previous 96 sectors are defined

in the analysis as n3v and n3v.

5.3.4 Hidden Matter Spectrum

The hidden matter spectrum refers to sectors which produce states that

transform under the hidden gauge group but are singlets under the ob-

servable SO(10) GUT gauge group. This means that the states produced

are not exotic with respect to the Standard Model gauge charges.
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There are 48 sectors present from B
(1,2,3)
pqrs + z1 + x which are

B(19)
pqrs = B(1)

pqrs + z1 + x

= {ψµ, χ1,2, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4, (5.37)

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄2,3, φ̄1,2,3,4}

B(20,21)
pqrs = B(2,3)

pqrs + z1 + x

These sectors contain states which transform under the hidden SU(4) ×
U(1)4 gauge group with the representations (1,+2), (1,−2), (4,+1),

(4,−1), (6, 0).

There exists another 48 sectors B
(1,2,3)
pqrs + z2 + x given by

B(28)
pqrs = B(1)

pqrs + z2 + x

= {ψµ, χ1,2, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4, (5.38)

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄2,3, φ̄5,6,7,8}

B(29,30)
pqrs = B(2,3)

pqrs + z2 + x

These sectors produce states which transform under the SU(2)5×U(1)5×
U(1)7 × U(1)8 gauge group with the representations: (1,+1,±1

2
,±1

2
) ,

(2, 0,±1
2
,±1

2
) , (1,−1,±1

2
,±1

2
) where the charges of U(1)7 and U(1)8 can

take all possible permutations of the values given, meaning there are 12

distinct representations in total.

5.4 Classification Results and Analysis

The classification process involves utilising the calculated algebraic condi-

tions which were presented in the previous sections. By using the projec-

tors and chirality operators for each sector the entire massless spectrum

can be analysed for a specific choice of the one-loop GGSO projection

coefficients. These algebraic conditions can be written in a computer pro-

gram which enables a scan over the different choices of GGSO projection

coefficients. As the total number of possible configurations, and therefore

vacua, is 266 ≈ 7.38 × 1019 a complete scan of the entire space of string
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vacua is not possible. Therefore, a random generation of the GGSO pro-

jection coefficients is used in order to provide a random sample of vacua11

from which models with desirable phenomenological criteria can be found.

The algebraic conditions were programmed into a JAVA code in or-

der to perform the classification and the accuracy of this program was

checked against an independently written FORTRAN code. In the JAVA

program, a random generator was used in order to provide the different

GGSO configurations. This program initially produces a random GGSO

configuration, before running these values through the algebraic condi-

tions calculated for each sector in order to produce the full spectrum of

each model. By repeating this process, the statistics associated with clas-

sification can be developed while also fishing for single models which are

of phenomenological significance.

Previous papers which have utilised this technique can be seen in refer-

ences [40, 46, 50, 52]. In the case of the classification of Pati-Salam models,

this method was shown to produce three-generation models which con-

tained no exotic massless states with fractional electric charge, and were

therefore exophobic.

Therefore, an example question of phenomenological interest is

whether exophobic LRS models can be found.

The observable sector of a heterotic string Left-Right Symmetric model

is characterised by 27 integers which are defined in table 7. These contain

the relevant quantities of phenomenological interest. Notable numbers de-

fined in table 7 are ng, nh and nH as these give the number of generations

of a model and whether the model contains non-chiral light and heavy

Higgs representations.

The numbers given in the first two columns of table 7 are as described

above in section 5.3.2. The first four numbers form a complete 16 of

SO(10) and the last four form a complete 16. The first four in the LRS

Exotics column arise from the spinorial exotic sectors and the last two

11It is noted here that analysis of large sets of string vacua have been performed by other research

groups. A discussion on these can be found in Appendix A.
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Spinorial SO(10) Vectorial SO(10) LRS Exotic Pati-Salam Exotic

Observable Observable

nLL = (1,−3/2,2,1) nh = (1, 0,2,2) nLLs = (1,+3/4,2,1) nLLe = (1, 0,2,1)

nLR = (1,+3/2,1,2) n3 = (3,−1,1,1) nLRs = (1,+3/4,1,2) nLRe = (1, 0,1,2)

nQL = (3,+1/2,2,1) n3 = (3,+1,1,1) nLLs = (1,−3/4,2,1) n3e = (3,+1/2,1,1)

nQR = (3,−1/2,1,2) nLRs = (1,−3/4,1,2) n3e = (3,+1/2,1,1)

nLL = (1,+3/2,2,1) n3v = (3,+1/4,1,1) n1e = (1,+3/2,1,1)

nLR = (1,−3/2,1,2) n3v = (3,−1/4,1,1) n1e = (1,−3/2,1,1)

nQL = (3,−1/2,2,1) n1v = (1,+3/4,1,1)

nQR = (3,+1/2,1,2) n1v = (1,−3/4,1,1)

ng = nLL − nLL = nLR − nLR = nQL − nQL = nQR − nQR
nH = nLR

Table 7: The 27 integers used to categorise the quantities of phenomenological inter-

est. The first column contains states from the 16 and 16 representations of SO(10).

The second contains the states from the 10 representation of SO(10). The third and

fourth list the states which are exotic with respect to the Left-Right Symmetric and

Pati-Salam gauge groups respectively.
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arise from the vectorial exotic sectors.

To perform the classification, the analytic formulae for all the sectors

which contribute to these numbers were derived so as to describe the

complete spectrum of each model.

For a model to be phenomenologically viable, it must satisfy the fol-

lowing phenomenological criteria:

ng = 3 Three light chiral generations

nH ≥ 1 At least one heavy Higgs pair to break the SU(2)R symmetry

nh ≥ 1 At least one light Higgs bi-doublet

n3 = n3 Heavy mass can be generated for the colour triplets

n3e = n3e Heavy mass can be generated for the colour triplets

n1e = n1e Heavy mass can be generated for vector-like exotics

n3v = n3v Heavy mass can be generated for the colour triplets

n1v = n1v Heavy mass can be generated for the vector-like exotics

nLLs = nLLs Heavy mass can be generated for vector-like exotics

nLRs = nLRs Heavy mass can be generated for vector-like exotics

where the constraints which generate the heavy masses have been imposed

in order to generate LRS models which contain no chiral exotics in the

massless spectrum. By applying these constraints, all the exotic states

(including those which are confined to being integrally charged states)

are vector-like and can therefore obtain a superpotential term consisting

of the vector-like state coupled to a SM singlet state. The singlet state

then obtains a Vacuum Expectation Value (VEV) which generates a heavy

mass and therefore decouples the exotic state from the massless spectrum.

An initial classification run of 109 distinct models was performed and

the results are displayed in section 5.4.2. Due to a relative lack in abun-

dance of three generation models a second run of 1011 distinct models

was performed with the constraints on the vector-like chiral exotic states

relaxed. Namely, the condition that n1e = n1e which arise from the Pati-
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Salam exotic sectors were relaxed, along with the conditions nLLs = nLLs,

nLRs = nLRs and n1v = n1v which arise from the LRS exotic sectors. A

remark should be made, that whereas a 109 run typically takes 2 days,

a corresponding 1011 run can take 28 weeks, which becomes prohibitive.

The results of these two runs is presented and commented on in section

5.4.2.

5.4.1 Top Quark Mass Coupling

For a model to be phenomenologically viable, it must reproduce the spec-

trum of the Standard Model while also reproducing the Standard Model

interactions at the low energy limit. Therefore, our analysis extends to

classifying the number of models which give the necessary conditions to

include the top quark mass.

In order to ensure a model permits a top quark mass, the condition

that there exists a top quark mass coupling at the tree level of the super-

potential is imposed. As previously stated, all models considered in the

classification possess N = 1 supersymmetry. Therefore, the coupling of

the top quark arises due to a superpotential interaction of the form

λt

∫
d2θ ΦSΦSΦV , (5.39)

where λt is the coupling constant, Φ are superfields and S, V denote the

spinorial or vectorial representation of the fields respectively. The value

of the coupling constant λt can be calculated as it is proportional to the

correlation function of the set of vertex operators of the massless string

modes [62]

λt ∼
〈
SFSFV B

〉
(5.40)

where S, V denote the spinorial and vectorial part of the vertex opera-

tor associated with the superfields ΦS/V respectively. The superscripts

F,B correspond to the fermionic or bosonic part of the vertex operator

respectively.

Due to a result from conformal field theory, the total charge of the

vertex operators in equation (5.40) under the three U(1)’s must equal
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zero in order for the non-vanishing of the correlator [62]. The derivation

of all the types of couplings permitted is beyond the scope of the thesis,

but can be found in reference [62]. It can then be shown that there are

only three non-vanishing correlation functions [63]. These are〈
(R)1(R)2(R)3

〉
,
〈
(R)i(R)i(NS)

〉
,
〈
(NS)(NS)(NS)

〉
, (5.41)

where R represents a generic Ramond (twisted) field, NS represents a

generic Neveu-Schwarz (untwisted) field and the superscript denotes the

orbifold plane (i = 1, 2, 3).

An important feature of the models being considered in the classifi-

cation is that the leptons and quarks only arise from the twisted sectors

of the SO(10) spinorials, whereas the light SM Higgs are only admitted

by the vectorial representation of the twisted sectors. Therefore, only the

correlation functions of the form〈
(R)1(R)2(R)3

〉
(5.42)

are viable options which admit a top quark mass coupling for the partic-

ular class of models under consideration.

In this class of models, the top quark mass coupling term in the su-

perpotential is

λtQ
FucFhBu . (5.43)

By comparing equations (5.42) and (5.43), it can be seen that suitable

conditions to impose are: Q must arise from the first orbifold plane, uc

from the second and hu from the third. Therefore, in the case of the

models under consideration, the orbifold planes which can give rise to the

necessary states are B
(1)
pqrs, B

(2)
pqrs and B

(6)
pqrs = B

(3)
pqrs+x which are the first,

second and third orbifold planes respectively.

This leads to a straightforward general analytical method for these

models. The general method details, without loss of generality, that if

Q, uc and hu arise from the sectors B
(1)
pqrs, B

(2)
pqrs and B

(6)
pqrs = B

(3)
pqrs + x

respectively, there exists a top quark mass coupling.
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5.4.2 Results

We now explore the space of the Left-Right Symmetric free fermionic

heterotic string vacua. The sample size used in the first classification was

109 vacua out of a possible total of 266. Some of the results are presented

in Figures 5 - 7 and table 8.

In Figure 5 the number of generations is presented against the natural

logarithm of the number of models found. The results show the greatest

number of models have zero generations and the number of models de-

creases as the number of generations increases. The maximum number of

generations found was ng = 5. Figure 6 shows that only exophobic models

with zero generations were found. Figure 7 displays the number of three

generation models with no chiral exotic multiplets found with respect to

the total number of exotic multiplets they contain. The results show

minimally exotic models to have 22 exotic multiplets while maximally

exotic models have 90 exotic multiplets. The greatest number of mod-

els contained 50 exotic multiplets and the results show an approximately

normal distribution, skewed slightly to models containing more than 50

multiplets. It can be seen in table 8 that ≈ 62.2% of the non-enhanced

models with complete families had no chiral exotics. The inclusion of the

constraint demanding that the model must have three generations then

drastically drops the probability of finding a viable model. The probabil-

ity of finding a model which satisfies all these criteria is 1.49× 10−6. Of

these models, the probabilities that they contain no Higgs particles, only

SM light Higgs particles or only heavy Higgs particles are 5.42 × 10−7,

9.39 × 10−7 and 7.00 × 10−9 respectively. Table 8 shows that requiring

the model to contain both a light SM Higgs and a heavy Higgs yielded

one model. Although this suggests models with interesting phenomenol-

ogy exist, this result is not statistically significant and therefore does not

allow meaningful conclusions to be drawn. This result also does not allow

for any analysis involving further constraints.

Due to the lack of models with suitable phenomenology found during

the 109 sample, the sample size was increased to 1011 and some of the con-
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Constraints
Total models

in sample

Inferred

Frequency

Estimated num-

ber of models in

class
No Constraints 1000000000 1 7.38× 1019

(1) + No Enhancements 708830165 7.09× 10−1 5.23× 1019

(2) + Complete Families 70241057 7.02× 10−2 5.18× 1018

(3) + No Chiral Exotics 43660665 4.37× 10−2 3.30× 1018

(4) + Three Generations 1486 1.49× 10−6 1.10× 1014

(5) + SM Light Higgs 1 1.00× 10−9 7.38× 1010

+ & Heavy Higgs

(6) + Minimal Heavy Higgs 0 0 N/A

& Minimal SM Light Higgs

(7) + Top Quark Mass Coupling 0 0 N/A

Table 8: Statistics for the LRS models with respect to phenomenological

constraints for 109 models.

straints were relaxed. Specifically, the constraints concerning the chiral

exotic triplets in the models were included (i.e n3 = n3 and n3v = n3v),

whereas the constraints concerning the vector-like chiral colour–singlet

exotics were omitted. We note that relaxing these constraints entails that

in some of the scanned models U(1)C is anomalous. It should also be

noted that vacua which have an anomalous U(1)C are not phenomenolog-

ically viable, as the weak hypercharge U(1)Y defined in equation (5.10)

contains a description of the U(1)C . Therefore if the U(1)C is anoma-

lous, the resulting weak hypercharge is also anomalous, which is not in

agreement with the Standard Model.

The sample size was then increased to perform a classification on 1011

vacua out of a possible total of 266 and the program was run again. Some

of the results are presented in Figures 8 - 10 and Tables 9 - 10.

In Figure 8 the number of models versus the number of full generations

is displayed for the 1011 model run. The greatest number of models can be

seen to have zero generations and the number of models decreases as the

number of generations increases. This result is in accordance with the 109
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run and the previous results of classifications [40, 50, 52]. It can be seen

that once the number of generations is greater than six, there is an absence

of models. This result indicates that for this choice of basis vectors,

models with ng ≥ 7 are either completely forbidden or are extremely

unlikely in the total space of model possibilities. As an aside, the upper

limit on the number of generations is ng = 12. This can be calculated

by considering that there are 48 possible states which can arise from the

sectors B1,2,3
pqrs , which can potentially give rise to nLL , nLR , nQL , nQR = 12

states (where the ‘n’ values are defined in table 7), meaning the maximal

number of generations is ng = 12 for these LRS models. This decreases

to an upper limit of ng = 11 if the requirement of having a heavy Higgs

is imposed, as this necessarily requires the existence of at least one nLL
which reduces the number of states from which full generations can be

made.

Figure 9 displays the number of exophobic models versus the number

of generations. Analogously to the 109 classification run, the results show

a relative abundance of zero generation exophobic models but an absence

of any exophobic models with ng ≥ 1. This result leads to the conclusion

that there are no three generation exophobic models with a statistical

frequency larger than 1 : 1011. It should however be noted that the lack

of exophobic models with ng ≥ 1 does not suggest that exophobic Left-

Right Symmetric models are completely forbidden, only that for the choice

of basis vectors used in this analysis none were found with a reasonable

statistical likelihood.

This result is in contrast to the case of the results of both the Pati-

Salam and Flipped SU(5) classifications [40, 50]. In the Pati-Salam case,

exophobic models with ng = 0, . . . , 6 were found and where ng ≥ 7 ex-

ophobic models with an even number of generations were found with a

notable absence for ng = 14. In the flipped SU(5) case, exophobic mod-

els with an even number of generations were found. While this means

no three generation exophobic models were found, the flipped SU(5) case

admits many more exophobic models than the current LRS case.
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In Figure 10 the total number of three generation models with matched

number of colour triplets is displayed against the number of exotic frac-

tionally charged multiplets in a given three generation model. It can be

seen that the minimal number of exotic multiplets was again found to be

22, while the maximally exotic models contained 98, an increase from the

previous run. The results again show a roughly normal distribution with

a central peak at 50 exotic multiplets with a slight skew toward models

where the number of exotic multiplets greater than 50. This result is sim-

ilar to what was found in the classification of Pati-Salam models [40], but

in the case of the LRS the average number of exotic multiplets is much

higher. In the Pati-Salam case, there was a central peak at 18 exotic mul-

tiplets with maximally exotic models having 54 multiplets. This result

is, in general, to be expected as in the LRS models both Pati-Salam and

LRS exotic sectors exist, therefore there is the potential for many more

exotic states to enter the spectrum.

Table 9 shows the number of non-enhanced three generation models

which have matched numbers of colour triplets with respect to the num-

ber of Pati-Salam, spinorial and vectorial exotic multiplets. It can be

seen that of the total number of models, there were models found which

contained no spinorial exotic multiplets. This is also true in the case of

vectorial exotic multiplets. However, no models were found which were

exophobic with respect to the Pati-Salam exotic multiplets, which is a

leading reason for the lack of exophobic three generation models. This

result is in contrast to the results of the classification performed in [40]

as three generation exophobic Pati-Salam models were found.

Of the total models sampled, ≈ 61.1% of the non-enhanced full gen-

eration models were found to have matched numbers of colour triplets.

This is a slight increase from the 109 classification run due to the relaxing

of some of the conditions as mentioned previously. This can be seen in

table 10. It should be noted that the probability of finding non-enhanced

three generation models is actually lower in the 1011 classification run

than in the 109 case. This is expected to be a statistical fluctuation due
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to the random nature of the classification method. Further analysis on

the effect of relaxing the requirement that all colour–singlet exotics are

vector–like in three generation models may be an interesting area of re-

search. However, this is beyond the scope of this analysis and is left for

future work.

If the constraint of having a top quark mass coupling is included,

then of the total number of non-enhanced full generation models only

≈ 0.015% were found to be viable. While three generation models with

a top quark mass coupling were found, it can be seen from table 10 that

their appearance was not found to be frequent, as the probability for

finding such a model was found to be 4.0× 10−11.

Of all the non-enhanced models with complete generations, ≈ 46.0%

contained at least one light Higgs. This is much higher than for the

case of the heavy Higgs, where only ≈ 14.0% of the total non–enhanced,

generation complete models contained at least one heavy Higgs. When

considering non–enhanced three generation models in which all exotic

colour triplet are vector–like, the number which had at least one Stan-

dard Model Higgs is approximately 57.5% and the number which had at

least one heavy Higgs is approximately 0.57%. Only 0.03% of the non–

enhanced three generation models with vector–like exotics contain both

light and heavy Higgs multiplets. Comparing with previous classifica-

tions, we note that in the three generation Pati-Salam models classified

in [40], 7.9% had a heavy Higgs and 81.0% of these had a SM Higgs.

Whereas, in the flipped SU(5) case [50], the non–enhanced and anomaly

free three generation models had ≈ 95.7% which contained a SM Higgs

and ≈ 6.3% contained a heavy Higgs. In comparison, it can be seen that

the number of three generation free fermionic LRS models, free of U(1)C

anomalies and enhancements, which contain either Higgs is drastically

lower. This outcome should nevertheless be compared with the case of

the SU421 models in which no viable models can be constructed at all.
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5.4.3 A Model of Notable Phenomenology

The random classification method can be used to trawl models with spec-

ified phenomenological properties. Using the notation convention

C

(
vi
vj

)
= eiπ(vi|vj) (5.44)

the model defined by the GGSO projection coefficients in eq. (5.45) pro-

vides an example of a non–enhanced three generation model, with poten-

tially viable phenomenology.

(vi|vj) =



1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2 α

1 1 1 0 0 0 1 0 1 1 1 0 1 −1
2

S 1 1 1 1 1 1 1 1 1 1 1 1 1

e1 0 1 1 1 0 0 0 0 0 0 1 0 0

e2 0 1 1 1 0 0 0 0 0 1 1 1 1

e3 0 1 0 0 1 1 0 0 1 0 0 0 0

e4 1 1 0 0 1 0 0 0 0 0 0 0 1

e5 0 1 0 0 0 0 1 1 0 0 1 0 1

e6 1 1 0 0 0 0 1 0 0 0 1 0 0

b1 1 0 0 0 1 0 0 0 1 1 1 0 1

b2 1 0 0 1 0 0 0 0 1 1 0 1 1

z1 0 1 1 1 0 0 1 1 1 0 0 1 0

z2 1 1 0 1 0 0 0 0 0 1 1 1 0

α 1 1 0 1 0 1 1 0 0 0 1 1 1


(5.45)

The observable matter sectors of this model produce three chiral genera-

tions, a minimal SM Higgs (nh = 1) and a minimal heavy Higgs (nH = 1).

There exists colour triplets from the vectorial 10 representation of SO(10)

as n3 = 1 and n3 = 1, but as there are equal numbers of them heavy mass

can be generated and there exists no anomaly in the LRS gauge group

from these sectors. This model also contains no enhancements. The

numbers defined in table 7 for the spinorial LRS exotic sectors of this

model are as follows: nLLs = nLLs = 1, nLRs = nLRs = 1. The vec-

torial LRS exotics have the values n3v = n3v = 1 and n1v = n1v = 5.
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The Pati-Salam exotic states have the values nLLe = 4, nLRe = 10 and

n3e = n3e = n1e = n1e = 0. The model therefore has no anomaly under

the LRS gauge group (i.e. all the exotic states are in vector–like repre-

sentations) but is pseudo-anomalous under the U(1)2 and U(1)3 gauge

groups as one linear combination of the charges can be defined which is

anomaly-free, or alternatively another linear combination of the charges

can be defined which is anomalous, but can then be cancelled by the

Green-Schwarz mechanism [64, 65]. The model contains exotic multiplets

and is therefore not exophobic. The model also admits a top quark mass

coupling of order one.

Figure 5: Natural logarithm of the number of models against the number

of generations (ng) in a random sample of 109 GGSO configurations.
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Figure 6: Number of exophobic models against the number of generations

in a random sample of 109 GGSO configurations.

Figure 7: The number of three generation models with no chiral exotic

multiplets against the number of exotic multiplets in a random sample of

109 GGSO configurations.
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Figure 8: Natural logarithm of the number of models against the number

of generations (ng) in a random sample of 1011 GGSO configurations.

Figure 9: Number of exophobic models against the number of generations

in a random sample of 1011 GGSO configurations.
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# Exotic

Multiplets
Pati-Salam Spinorial Vectorial

0 0 5536 1720

2 0 0 0

4 0 20854 3215

6 0 0 0

8 0 26727 19764

10 0 0 0

12 319 19102 4272

14 3030 0 0

16 894 10616 19750

18 15580 0 0

20 18598 1648 2157

22 13014 0 0

24 8703 3796 18673

26 15918 0 0

28 3528 739 1532

30 3386 0 0

32 1797 169 8093

34 2632 0 0

36 1169 0 952

38 398 0 0

40 25 73 7209

42 233 0 0

44 0 0 600

46 35 0 0

48 0 0 1212

50 1 0 0

52 0 0 9

54 0 0 0

56 0 0 46

58 0 0 0

60 0 0 40

62 0 0 0

64 0 0 16

Table 9: The number of models is presented with respect to the number

of Pati-Salam, Spinorial and Vectorial exotic multiplets.
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Figure 10: The number of three generation models with no chiral exotic

triplets against the number of exotic multiplets in a random sample of

1011 GGSO configurations.

Constraints
Total models

in sample

Inferred

Frequency

Estimated num-

ber of models in

class
No Constraints 100000000000 1 7.38× 1019

(1) + No Enhancements 70882805410 7.09× 10−1 5.23× 1019

(2) + Complete Families 7023975614 7.02× 10−2 5.18× 1018

(3) + No Chiral Exotic Triplets 4291254503 4.29× 10−2 3.17× 1018

(4) + Three Generations 89260 8.93× 10−7 6.59× 1013

(5) + SM Light Higgs 29 2.9× 10−10 2.14× 1010

+ & Heavy Higgs

(6)
+ Minimal Heavy

Higgs
22 2.2× 10−10 1.62× 1010

& Minimal SM Light Higgs

(7) + Top Quark Mass Coupling 4 4.0× 10−11 2.95× 109

Table 10: Statistics for the LRS models with respect to phenomenological constraints

for 1011 models.
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6 Conclusions

The free fermionic formulation of the heterotic string offers one of the

best formulations in order to study the field of string phenomenology.

While it is true that the string models presented in this thesis are still

referred to as quasi-realistic, the accuracy of the phenomenology of free

fermionic models in general has steadily progressed since the models were

first presented in the mid- to late-1980’s [29, 30, 41, 42] and the early

2000’s [43, 44]. The classification procedure has also been elaborated

upon in order to gain more information from the models found during

a classification scan [47]. For example, in the classification procedure

presented in the previous chapter, the number of models which possess

a top quark Yukawa coupling was investigated, which has not previously

been achieved.

In this thesis, a new approach to the construction of Left-Right Sym-

metric models was presented and the classification procedure was applied

to them. In previous constructions, LRS models utilised two separate ba-

sis vectors α, γ which resulted in breaking the observable SO(10) symme-

try to the SO(6)×SO(4) Pati-Salam gauge group before finally reaching

the SU(3)C×SU(2)L×SU(2)R×U(1)B−L LRS gauge group [44], whereas

construction in the current work utilised the addition of only one basis

vector α in order to break the SO(10) directly to the LRS gauge group12.

The LRS models in [44] also contained a ‘NAHE’-basis [41, 66] whereas

the LRS models presented here use a basis which has symmetric bound-

ary conditions, as found in [46, 49, 50, 52]. The result of these differences

between the LRS models here and in reference [44], is that the models

here admit an x-map [56] whereas the previous LRS models do not. It is

due to the presence of the x-map and of the vector 2α that these models

12It is noted that as a consequence of the complex boundary conditions contained in the basis

vector α, the linear combination 2α also exists which breaks the observable SO(10) gauge group

to the observable Pati-Salam gauge group. However, the breaking of the SO(10) to the observable

LRS gauge group does not fundamentally require the intermediate Pati-Salam step, in contrast with

the previous LRS models of reference [44].
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appear more constrained than for the cases of the FSU(5), PS and SLM

models. The inclusion of these two vectors also gives rise to many more

exotic sectors, which can potentially give rise to exotic states. This is the

reason why there are, in general, more exotic states for these LRS models

as opposed to the FSU(5), PS and SLM models and is likely to be the

reason why there were no exophobic models found with ng > 0 for the

case of the LRS models.

In the case of the LRS models presented, the addition of one basis

vector α breaks the SO(10) gauge group to the LRS observable gauge

group. Consequently, due to the inclusion of complex boundary condi-

tions in α, the linear combination 2α exists which also breaks the SO(10)

gauge group to the Pati-Salam observable gauge group. In these models,

there are therefore two vectors which break the observable SO(10) gauge

symmetry. This is the same as the SLM case where there are necessarily

two basis vectors which break the observable SO(10). The presence of

two SO(10) breaking vectors constrains these models to a higher degree

than for the FSU(5) and PS cases where there is only one vector which

breaks the SO(10). This is the cause for the relative suppression in the

number of three generation models in the LRS and SLM cases. Some new

approaches to the classification procedure which create a better yield for

the number of three generation LRS and SLM models are discussed in

section 6.1.

In the case of free fermionic SU(4)× SU(2)×U(1) (SU(421)) models

and the LRS models, the vector 2α breaks the SO(10) symmetry. This is

not the case for FSU(5), PS and SLM models where the vector 2α leaves

the SO(10) symmetry unbroken. In the case of the SU(421) this leads to

an absence of models which had complete generations of matter [45, 46].

This is not the case for LRS models which is proven by the classification

presented. In the case of the SU(421) models, the 2α projection selects ei-

ther the left- or right-handed Standard Model states to survive. However,

due to a remaining freedom in the phase of the U(1)1/2/3 symmetries in

the LRS models, there exist both left- and right-handed Standard Model
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states after the 2α projection. This is the reason why LRS models admit

complete families of chiral matter whereas SU(421) models do not.

6.1 Outlook

The future of this area of research is set to take an interesting direc-

tion. One line of research has been into the investigation of so-called

‘fertile regions’ of free fermionic heterotic string models. In short, certain

conditions can be specified which leads to fertile regions which can then

be explored in order to produce a greater yield of models with desirable

phenomenology, such as three chiral generations of matter. The method

has so far been applied to Standard-Like models with success as can be

seen in the reference [52], along with a more detailed description of the

method. In fact, fertile regions have been found for the class of LRS

models presented in this thesis and a publication detailing a classification

which utilises these fertile regions will appear in the future.

Another interesting direction of research is into the application of ma-

chine learning techniques to free fermionic heterotic string models. Use

of these techniques has been shown to greatly improve the frequency with

which phenomenologically interesting free fermionic models (such as mod-

els which have three generations of matter) are found when compared to

the pseudo-random approach used in previous classifications [46, 50]. Such

an example is the application of Genetic Algorithms (GA’s) which can be

found in reference [67].

The use of deep reinforcement learning13 has also been applied to the

class of LRS free fermionic models presented in the previous chapter by

the author and collaborators. The aim of this research is to utilise deep

reinforcement learning in order to increase the frequency with which free

fermionic models of notable phenomenology are found. Another interest-

ing application is the ability of the program to discover the conditions

on the fertile regions of particular models. While the latter described ap-

13The term deep reinforcement learning applies to the use of reinforcement learning techniques

where an artificial neural network is applied.
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plication is theoretically possible, the concept is currently practically un-

proven. The application of deep reinforcement learning to free fermionic

models is still a work in progress but will appear in a future publication.

In conclusion, the use of free fermionic heterotic string models provide

a detailed framework in order to bring string theory closer in line with

possible detection by experiment. In the hope that string theory proves

somehow relevant to a description of the known Universe, the field of

string phenomenology will already be relatively well defined. Even in the

case that string theory is proven to not be a complete description of the

Universe, the hope is that the methods developed in order to study string

phenomenology, such as the creation of the classification procedure and

the application of machine learning techniques, will be transferable to

other areas of interest to research.
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A An Overview of String Model Scans Per-

formed by Other Research Groups

There have been various different approaches to performing computerised

scans over different constructions of string vacua. For example, reference

[68] performed a counting of supersymmetric solutions to the tadpole

cancellation conditions in Type IIA intersecting D-brane models. The

analysis then extended to finding the statistical distribution of various

quantities in six-dimensional models on a T 4/Z2 orientifold, such as the

probability of the appearance of an SU(M) gauge factor, the rank of the

gauge group and the number of generations. This was done by employing

a ‘semi-analytical saddle point’ method (the details of which can be found

in [68]) in order to make the problem tractable. This is in contrast to the

brute force computer search method utilised by the classification method

performed for the LRS string vacua presented in Chapter 5, as apply-

ing the brute force search method to the construction of string models

in reference [68] would not have produced results in a reasonable time.

The research presented in [68] then generalised this semi-analytical saddle

point method to analyse the same distribution of intersecting branes on

the T 6/Z2 × Z2 orientifold.

String models with the T 6/Z2 × Z2 orientifold were also considered

in reference [69] and therefore studied the same ensemble of intersecting

brane models as was introduced in reference [68]. Reference [69] con-

sists of the construction of tools for analysing the space of intersecting

brane models before specifically applying them to Type IIB T 6/Z2 × Z2

orientifolds. However, in the approach of reference [69] algorithms were

produced which could enumerate all (in principle) of the configurations

on this orientifold which satisfy the Diophantine equations arising from

supersymmetry, which are finite in number. Another contrast between

the two works is that reference [69] had a greater focus on the enumer-

ation of models which have a specific visible gauge group and charged

matter content, therefore allowing for the searching of SMs with three

116



chiral generations of matter.

There have also been computerised scans involving the use of Gepner

models. The paper [70] considered open string Gepner models which

are supersymmetric, tadpole free, four-dimensional models with N = 1

SUSY. The scan found ∼ 1.8×105 of these models which had only the SM

as their chiral spectrum, but most also had non-chiral exotics and / or

mirror pairs. Similar to the classification scan of the LRS vacua presented

in this thesis, one aspect of the scan in [70] was to calculate the number

of Higgs particles each model had. This allowed for the investigation into

the statistical distribution of the number of Higgs particles of each model.

Reference [70] reported a distribution peak of 3 Higgs pairs for the models

analysed, with a maximum number of 56 Higgses.

Reference [71] considered an extension to the search of Gepner models

approach in [70]. Specifically, the intention was to reduce the impact of

some of the assumptions made in [70] and to investigate a large number of

ways to realise the SM with D-branes. In total, approximately 1.9× 104

models with a chirally distinct top-down SM spectrum before tadpole

cancellation and 1.9×103 chirally distinct models which solved the tadpole

conditions were found. Among various other results, the first examples

of supersymmetric SU(5) and SU(5)×U(1) orientifold vacua were found

which had the correct chiral spectrum (i.e. no extra gauge groups and no

states which were exotic with respect to the Chan-Paton gauge group).

The search method of reference [71] was further extended in refer-

ence [72], which built string models from orientifolds of Type IIB closed

strings in a free fermionic construction. Specifically, it used an algebraic

approach to constructing orientifold vacua, as opposed to a more geo-

metric approach considered when building the LRS free fermionic models

which are the topic of this thesis. The search method was employed

to find, among various other phenomenological criteria, three generation

standard model configurations with tadpole cancellation in the particular

class of models constructed. Although no such models were found, one

special case which utilised complex free fermions was found if the criteria
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of tadpole cancellation was relaxed.

Although there are some similarities between the search methods em-

ployed in the references [68] - [72] and the method used to classify the LRS

models presented in this thesis, the comparison of the models constructed

by these other groups and the free fermionic LRS models is limited due to

the fact they use primarily different constructions of string theory. How-

ever, an interesting line of research could be to generalise some of the

search methods developed by other groups to the case of free fermionic

heterotic string models, such as those constructed in this thesis, to inves-

tigate if more phenomenologically interesting vacua could be obtained in

a shorter computational period.

Scans over classes of heterotic string models have also been performed

by other groups, which allow for a more direct comparison with the free

fermionic heterotic string models constructed in Chapter 5. In particular,

in 1989 D. Sénéchal used the free fermionic formulation of string the-

ory in order to utilise a computerised method for the generation of four-

dimensional heterotic string models [73]. A random generator was imple-

mented in order to generate spin structures and therefore produce distinct

string models of which the massless spectrum could be analysed. In con-

trast to the LRS string models found in this thesis (for which N = 1),

the search for models in reference [73] allowed a varying number of super-

symmetries. In reference [73], 900 models with N = 4 and over 3.2× 104

models with N = 1 were found.

Also in contrast to the LRS models presented in this thesis, models

in reference [73] were found with varying observable gauge groups. These

included a direct SM gauge group embedding, in addition to the SM

embedding in a grand unified gauge structure, specifically the SU(4) ×
SU(2)L × SU(2)R (Pati-Salam) and the SU(5) gauge groups.

However, in the same manner as with the LRS classification, low

energy requirements of favourable phenomenology were imposed in the

search method of reference [73] and models were found which obeyed

them. Specifically, reference [73] required a non-anomalous linear combi-
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nation of U(1) factors which fit the standard hypercharge assignment in

addition to the requiring at least one complex Higgs isodoublet, among

various other requirements. The difference between the two approaches

is the LRS classification method built a statistical distribution of how

many models satisfied the phenomenological criteria, while recording the

massless spectrum of those which did, whereas in [73] no such statistical

distribution was presented.

The computer program developed in reference [73] was then used by

K. R. Dienes to generate non-supersymmetric four-dimensional heterotic

string models [74]. The aim was to investigate the conjecture that these

4D non-SUSY models lead to vanishing one-loop cosmological constants

by searching for models with specific criteria (as opposed to a statistical

analysis of the total of the scanned models). Although no specific models

were found, the scan produced ∼ 1.23 × 105 distinct models with 4303

different partition functions which satisfied various constraints imposed by

the physical consistency of the underlying string models. In reference [75]

the total sample generated by the scan in reference [74] was statistically

analysed. The focus was on the statistical correlations which emerge

between quantities of the models such as the gauge group and their one-

loop cosmological constants.

Using an updated version of the code used to generate the string mod-

els found in references [73, 74, 75], reference [76] presented a larger data

set of approximately 107 heterotic string models which were randomly

generated. This data set of string models was then analysed in order

to study the statistical correlations between the gauge symmetries and

the degree of spacetime supersymmetry of the generated string models.

This analysis found that string models with unbroken spacetime super-

symmetry at the string scale tended to favour gauge group factors with

a larger rank. The statistical analysis also showed that nearly 50% of

the models were non-supersymmetric but were still tachyon-free at tree

level, in addition to less than a 25% of the tree-level models exhibiting no

supersymmetry at the string scale.
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The classifications performed in this thesis involve both the search-

ing method of finding single string models which are of phenomenological

interest, such as in references [73] and [74], but also perform the statis-

tical analysis approach of references [75, 76]. In contrast to the work

of references [73, 74, 75, 76], models with only N = 1 SUSY and one

gauge group were analysed. This, combined with the increase of com-

puting power available, allowed for the scan size of vacua to increase

from O(105)−O(107) distinct models to O(1011) vacua performed in the

present classification. It also allows for a reduced computation time when

searching for more imposed phenomenological criteria while producing the

complete massless spectrum of each string model.

The classification method in this thesis utilises a random generation

method which provides the data set of heterotic string models. There

have been other approaches used in order to generate the data sets of

string models, such as in reference [77]. In reference [77], a ‘fertile region’

of the heterotic landscape was found by considering the E8×E8 heterotic

string compactified on a Z6-II orbifold [78, 79, 80] with SO(10) and E6

local GUT structures. The search strategy was based on the concept of

local GUTs which inherit certain features of standard grand unification,

such that while the local GUTs are specific to certain points in the com-

pact space, the 4D gauge symmetry is that of the SM. Using this search

method, it was shown that approximately 1% of models allowed the exact

MSSM spectrum out of a total of 3 × 104 inequivalent models that were

found.

While the execution of finding fertile regions for the LRS models con-

structed in this thesis is fundamentally different to that of reference [77]

(due to the differences in the constructions of the string models), the

concept of investigating regions in the string landscape which give rise

to a higher statistical likelihood of phenomenologically interesting models

remains an interesting one. This is the focus of a current research project

by the author for the class of LRS models constructed in this thesis and

the results will appear in a future publication.
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There are other examples of research groups performing analysis of

large sets of string models which are not mentioned here. For the inter-

ested reader, some of these can be found in reference [81] and references

therein.
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