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In the proposed method, receptances are measured from one of the open-loop, nominal
systems chosen at random. In this case, in addition to the variability about the parameter
means, the parameter means are also random. The receptance method is then used to place
the poles of the measured system such that their spread, due to parameter uncertainty, is
Receptance method R 5 3 : s
Optimal pole placement minimised. Th.e measure used .to assess the spread is the variance, determined ?fﬁaentlly
Structural dynamics by a polynomial chaos expansion. Among the advantages of the method are: (i) there is
Uncertainty quantification no requirement to model the system since experimental receptances are used, (ii) it is
not necessary to measure the mean system, and (iii) uncertainty in poles is quantified
across its full range by using variances. Numerical and experimental examples are provided
to illustrate the working of the proposed method.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY
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1. Introduction

Manufacturing variability, unknown environmental conditions and random degradation cause uncertainty in structural
parameters [ 1], which results in variability in measured natural frequencies and damping. Conventional analysis techniques,
such as the finite-element method (FEM), are usually deterministic and therefore do not explicitly consider the effects of
uncertainty. Moreover, such techniques usually assume average structural parameters, which are estimated [2]. As a conse-
quence, there may exist a high degree of discrepancy between predicted and experimentally obtained parameters. It is
desired, therefore, that alternative analysis techniques that quantify and reduce the effects of uncertainty are used.

Robust design optimisation (RDO) and reliability-based design optimisation (RBDO) have been used in recent years to
address this problem. In both methods, an objective function that weights both performance and robustness criteria is
defined such that the system achieves optimum performance with minimal compromise to its robustness or probability
of failure [3]. In the context of dynamic systems, the conventional approach is to passively modify structural elements such
that the overall stiffness and damping of the system is changed in some desirable way. An alternative approach is to actively
modify the system using feedback control. By assigning closed-loop poles, the frequency and damping of some, or all, of a
system’s poles can be altered [4]. This is known as pole placement.
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Nomenclature

polynomial chaos weighting constants
force distribution vector

stiffness matrix

control gains

receptance matrix

measured receptance matrix

stiffness matrix

mass matrix

complex variable

vector of degrees-of-freedom

random function

dynamic stiffness matrix

mean dynamic stiffness matrix
random dynamic stiffness contribution matrix
measured dynamic stiffness matrix

o, B,y weighting constants

¢ vector of random variables

0 vector of random parameters

01,0, vector of zero mean random parameters
Ai open-loop pole

I closed-loop pole

local weighting function

objective function

i multivariate Hermite polynomial
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The receptance method, first formalised by Ram and Mottershead 5], is a methodology that performs pole placement, by
means of active control, using measured receptances. The method is advantageous in that experimentally determined recep-
tances are used directly and thus there is no need to know nor evaluate the mass, stiffness and damping matrices of the stud-
ied system. Whilst the method was originally developed for single-input systems, it has since been extended to the more
general case of multiple-input-multiple-output systems [6] and has been implemented experimentally on a range of differ-
ent systems. Tehrani et al. [7] applied the receptance method to both a lightweight glass-fibre beam with two smart-material
sensors and actuators, and to a heavy modular test structure using various arrangements of accelerometers and electrome-
chanical shakers. Fichera et al. [8] used the receptance method to suppress unstable vibrations on an aeroelastic wind-tunnel
model. Similar work has also been carried out by Singh et al. [9,10] and Mokrani et al. [11], who have used the receptance
method on an aeroelastic wing with multiple control surfaces. Tehrani and Mottershead [12]| implemented the method on an
AgustaWestland W30 helicopter airframe, modifying both the frequency and damping of the first two modes. In recent
works, the method has also been extended to nonlinear systems [13,14].

Tehrani et al. [15] first studied the effect of uncertainty on the receptance method by considering the sensitivity of the
placed poles to noise in measured receptances. By computing the infinity-norm of each row of eigenvalue sensitivities, poles
were placed optimally within elliptical regions such that the local sensitivities were minimised. Liang et al. [16] later
extended this work to consider how uncertainty in physical parameters, such as contact stiffness and contact damping,
affected the spread of poles. By computing eigenvalue sensitivities through local perturbations, sensitivity matrices were
constructed and their respective Frobenius norms were evaluated. Using a genetic algorithm, the closed-loop poles were iter-
atively placed so that the computed norms were minimised. Bai et al. [17], building upon their earlier work [18,19], intro-
duced a robust quadratic eigenvalue assignment technique for systems with time delays, using measured receptances. Again,
using an optimisation approach, poles were placed such that pole sensitivities were minimised according to the Frobenius
norm. In [17], however, the objective function also included the norm of the control gains so that minimal control effort was
required to shift the closed-loop poles. In all of the above-mentioned works, only local sensitivities have been considered.

In this research, a new globally optimum pole placement method that uses the method of receptances is presented. Using
the Differential Evolution genetic optimisation algorithm by Storn and Price [20], closed-loop poles are iteratively placed
within predefined rectangular regions such that the variance of the real and imaginary part of each pole is minimised. By
using variances, the effect of the uncertainty is considered across its full range; it is not constrained only to its local effect
at a nominal point. Variances are calculated using an efficient polynomial chaos (PC) expansion [21], which significantly
reduces the number of samples required compared to other methods such as Monte Carlo simulation. Uncertainties in struc-
tural parameters are modelled as direct modifications to measured receptances so that no underlying model of the uncertain
system is required. The method is demonstrated both numerically and experimentally on a multi-degree-of-freedom system.
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The remainder of this paper is divided as follows; in Section 2, the theory is presented in the context of a single-input,
linear, time-invariant (LTI) system. The method is then demonstrated numerically on a multi-degree-of-freedom system
and is presented in a tutorial style in Section 3. Next, an experimental implementation of the method is considered in Sec-
tion 4, which highlights its performance and applicability. Finally, the method is summarised and conclusions are drawn.

2. Theory

In this section, the theoretical basis of the method is described. First, a brief overview of the receptance method is pro-
vided. For simplicity, the method is shown using a single-input controller. Next, the process of modelling structural uncer-
tainties is described together with an explanation of their effect on the system’s poles. A method for uncertainty
quantification of the poles is then given and is later used in a global optimisation approach to enable modification of the pole
clusters in terms of size and shape. Finally, a summary of the method is illustrated diagrammatically.

2.1. The receptance method

Consider a linear dynamic system with dynamic stiffness matrix Z € C"*". When a full state feedback controller is used,
the system is governed by

Z(s)x(s) = b(sf’ + g")x(s). (1)
where b € R" is the force distribution vector and f,g € R" are vectors of control gains. Pre-multiplying (1) by the receptance
matrix,

H(s) =Z7'(s), (2)
gives

x(s) = H(s)b(sf' +g")x(s). (3)
When

rs = H(s)b, (4)
(3) becomes

X(5) = r(sf’ +g)x(s). (5)

Suppose it is desired to shift the open-loop poles of the system {/;,4;...., 42,} to a new set of desired closed-loop poles

{1y, My, ..., I, }. Substituting each closed-loop pole into (5) leads to

wy =1, (i f +ghwe, k=1,2,....2n, (6)
where w; is the eigenvector belonging to the k™ closed-loop pole. The non-trivial solution to (6) is

r, (uf+8 =1, vk (7)

which can be solved simultaneously to find f and g. It should be noted that in order to obtain strictly real control gains, it is
necessary that the set of closed-loop poles are closed under conjugation.

The above method has demonstrated how pole placement is performed using only receptances, which can be found
experimentally. It is not necessary to construct the mass, stiffness and damping matrices of the system and therefore no
model-form error is introduced.

2.2. Uncertainty modelling

Now, the effect of uncertainty in the structural parameters of the system is considered. Consider again the system rep-
resented by (1). When there exists uncertainty in p structural parameters, the dynamic stiffness matrix becomes a random
matrix containing p independent random variables. Mathematically, the system is now written as

Z(s,0)x(s) — b(sf" + g )x(s), (8)

where 0 € B is the vector of random variables. By decomposing the dynamic stiffness matrix as the sum of a mean and ran-
dom component,

Z(s,0) = Z(s) + Z(s,01), 9)
where Z and Z denotes the mean and random components of Z respectively, and 8, is given by
0, = 0—E[0], (10)
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where E[e] is the expectation operator. The mean dynamic stiffness thus obeys
Z(s) = E[Z(s, 0)]. (11)

In practice, it is difficult to obtain an accurate estimate of the mean dynamic stiffness matrix experimentally. Indeed, due
to the presence of the random parameters, any measured system is simply one outcome of the random system.

Let the dynamic stiffness matrix of a measured system be denoted Z,(s). When the outcomes of the random variables
cannot be measured, and so are unknown, the mean component in (9) is uncertain. Since the difference between the mea-
sured and mean system is caused by the random contribution, the mean dynamic stiffness matrix is now written as

Z(s,05) = Zm(s) — Z(5,02), (12)
where @, has the same distribution as 8,, but is independent. Replacing the mean dynamic stiffness in (9) with (12) gives that

Z(5,0) = Zu(5) + Z(s,0,) — Z(s,0,), (13)
which may be simplified to

Z(5,0) = Z(s) + Z(s,0;), (14)
where

0 = 0; — 0. (15)

In this form, the effect of the random parameters on the dynamic stiffness matrix is taken as a single perturbation about a
randomly selected nominal, random system; there is no assumption about the mean dynamic stiffness. The single perturba-
tion is comprised of two elements: 6;, which represents the uncertainty due to the randomness in the manufacturing process
itself; and 6., which represents the uncertainty that arises from being unable to measure the outcome of the random param-
eters in the measured system.

Substituting (14) into (8) and re-arranging leads to

(Zm(s) +Z(s,0,) — b(sf" +gT))x(s) ~0. (16)
Pre-multiplying by the measured receptance matrix Hy,(s) results in

(1 + Hn(5)Z(s,0.) — Hm(s)b(SE" + gT))x(s) —0, 17)
and thus the closed-loop, random poles are given by

det [1 +Hy(5)Z(s. 0;) — Hy(s)b(sf” + gT)] =0 (18)

The effect of the controller and the random contribution in (18) can be considered successively. First, the term
H,.,(s)b(sz + g") serves to shift the open-loop, nominal poles to a new set, which are denoted the ‘closed-loop, nominal

poles’. The term H,,(s)Z(s, 8;) then shifts the closed-loop, nominal poles randomly to a new set of ‘closed-loop, random poles’.
The resulting spread of closed-loop poles are referred to as ‘pole clusters’ hereinafter. Since

E{Z(S,ﬂr)} = 0r|xr|a (19)

the pole clusters are spread about the closed-loop, nominal poles. This effect can be seen in Section 3.

The size and shape of the pole clusters is shown to be dependent on the location of the closed-loop, nominal poles. That is
to say that the control gains not only affect the position of the nominal poles, but also the extent to which the uncertainty
modifies the poles clusters. It is hypothesized, therefore, that there exists some optimum set of control gains such that the
size and shape of the pole clusters are optimised. In order to determine the optimum gains, it is necessary to numerically
quantify the geometry of the pole clusters.

2.3. Uncertainty quantification & optimisation of the poles

In previous works, pole cluster variability has been quantified using local sensitivities. In this paper, however, global vari-
ability is considered by using the variance of the real and imaginary parts of each pole cluster. In this way, the uncertainty in
the pole clusters is considered across the full range of the random structural parameters. The simplest way to obtain the pole
cluster variances is to use Monte Carlo simulation. However, this is computationally expensive and requires a large number
of samples in order to achieve sufficiently accurate estimates. Instead, polynomial chaos (PC) expansions can be used, which
significantly reduces the number of samples needed.

PC expansions use a series of orthogonal functions to form a surrogate model of a random function of one or more inde-
pendent random variables. When the independent variables follow a standard normal distribution, the PC expansion may be
written as
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y©) =Y a0, (20)

where y : ® — R is the random function, g; € R are constants of the expansion, { € R” is the vector of independent random

variables, and ¥; is the i™ multivariate Hermite polynomial. For computational implementation, the expansion is truncated
to the first N terms and therefore

N-1
YO=Y ati(o). 1)

One way to determine the coefficients of the expansion is to perform sampling across a set of random functions and inde-
pendent variables. With relatively few samples, a linear regression can be used to fit the expansion through the sampled data
[22].

Once the constants of the expansion are determined, the variance of the dependent variable may be approximated as [23]

Varly (@)=Y a?E[¥2(0)] (22)

In this particular work, the random functions are the real and imaginary parts of each pole and the independent variables
are the random structural parameters. Thus for an n degree-of-freedom system, there are 4n expansion; one for the real and
imaginary part of each pole.

With expressions for the variances found, an optimisation approach can now be used so that they are reduced according
to some defined objective function. For each random pole, a local weighting function is defined as

p; = Var[Re(y)] + gVar[Im(y,)], i=1,2,...2n, (23)

where «;, f; € R are constants that weight the relative importance of the variance of the real and imaginary part of each ran-
dom pole. Then, by defining the objective function as

2n
0= Z}'xpfr (24)
i1

where y; € [ are additional weighting constants, it is now possible to weight the relative importance of each pole. In theory,
selection of appropriate weighting constants in (23) and (24) permits the alteration of the size and shape of pole clusters, as
will be demonstrated in the numerical examples later.

In practice, the maximum control authority governs the extent to which the poles can be modified. Moreover, large devi-
ations from the initial set of open-loop, nominal poles may lead to non-physical natural frequencies and damping. As a result,
nominal, closed-loop pole constraints are used.

For each nominal pole, the constraints

Remin(ft;) < Re(p;) < Remax(p;), i=1,2,....2n, (25)
and
IMpmin (1) < Im(g) < Immax (), 1=1,2,...,2n, (26)

are introduced. These constraints force the closed-loop, nominal poles to be within rectangular boxes in the complex plane.
2.4. Method overview
An overview of the method is illustrated in Fig. 1.
3. Numerical examples
3.1. Example 1: One random parameter

Consider a three-degree-of-freedom system with mass, damping and stiffness matrices

15 0 0 4 -1 0 3000 —-1000 0
M=({0 m O/|[C=|-1 5 -1|,K=|-1000 3000 -1000/|,
0 0 12 0 -1 4 0 —1000 3000

where

m, ~ N'(2.0,0.01),
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: | Choose the initial set of desired, closed-loop, nominal poles. ‘ :
| Choose the constraints on the closed-loop, nominal poles. eq. (25) and (26). ‘ :

: Decide upon which pole uncertainties are to be minimised and choose suitable
weighting constants. eq. (23) and (24). :

1

Using the receptance method, determine the gains needed to shift the open-loop,
nominal poles to the closed-loop, nominal poles.

Pre-optimisation

{ Place the poles using the calculated gains.

1

Allow the random variable(s) to vary N times and sample the real and imaginary

: | part of each pole.

[ For the real and imaginary part of each pole, construct a PC expansion. ‘
| For the real and imaginary part of each pole, evaluate the variance. eq. (22) ‘
: 1

| Evaluate the objective function. eq. (24) ‘

: | Update the closed-loop, nominal poles such that the objective function decreases. ‘
Using the receptance method, determine the gains needed to shift the closed-loop,
nominal poles to these new positions.

Optimisation

Fig. 1. Method overview.

and force distribution vector

b=[-1 0 0]"
Suppose that an outcome of the random system is measured' and has a receptance matrix
1.552 + 4s + 3000 —5-1000 0 o
H= —s—1000 2.03s? + 5s + 3000 —s — 1000
0 —s — 1000 1.25% +4s 4+ 3000

with corresponding open-loop poles
A2 = —09111+30.2487i,

za = —1.4475+46.5577i,
ise = —1.8730+53.7473i.
Writing the uncertainty in the mass m, as a perturbation about the nominal dynamic stiffness, as in (9),
0O 0 O
Z(5,0,) = |0 mst 0
0 0 O

! For the purposes of this numerical example, the outcome is taken as m; — 2.03 kg. Of course, in practice, the outcome cannot be measured and is thus
unknown.
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where
m; ~ N(0,0.01).
As explained in Section 2.2, the particular outcome of m, in the measured system is unknown and thus the nominal

dynamic stiffness is also unknown. Consequently, the uncertainty must be treated as a perturbation about the measured
value. Using (13),

0 0 0 0 0 O 0 0 0
Z(5,0)= |0 mas? 0| —=|0 mas* 0] =1[0 (mi—ma)s* 0], (27)
0 0 0 0 0 0O 0 0 0

where m.; and m,; are independent random variables with the same distribution of m,. Since m;; and m,> are normally dis-
tributed, (27) may be simplified to

0 0 0
Z(s,0) = [0 myps* O],
0 0 0

where
m,, ~ N(0,0.02).

Suppose that the open-loop poles are to be shifted to a new set with constraints as given in Table 1. If it is desired that the
variance of the real part of the third pole pair is to be minimised, the objective function is chosen as

o = Var[Re(i)]. (28)

Performing the optimisation using 3™ order PC expansions constructed by 50 samples and using the open-loop poles as
the initial set, the optimum set is found to be

My, = —2.0191+33.2487i,
Hya= —1.5805 + 459539,
Usg = —2.0730 +54.7204i,

which is achieved using control gains

f—[43232 66404 2.9018)", g-[368.1 3875 596.4]"

The objective function is reduced from 1.3 x 10 * to 3.6 x 10 ®. Fig. 2 illustrates the pole variability before and after the
receptance control gains are applied. As desired, the geometry of the pole cluster associated with the third mode is now mod-
ified in such a way that it varies less in the real axis direction. This is, however, at the expense of a larger variability in the
first and second mode.

To ensure that the real part variation of the first and second mode is not increased beyond acceptable levels, the objective
function can be changed to

@ =100 x Var[Re(u;)]| + Var[Re(u, )] + Var[Re(u,)]. (29)

Now, the objective function also includes both the variances of the real part of the first and second pole pairs. In this way,
a large variability in these poles penalises the objective function. The variance of the third pole is weighted higher than the
other poles. This is so that the variability of the third pole has a greater penalty than the others and thus the optimisation
searches in such a way that considers the variability of the third pole pair to be of greater importance. Re-running the opti-
misation, with the same settings as before, the new optimum set of closed-loop poles is computed as

My, = —1.9111£27.2487i,
Uyy = —1.2475 +43.5577i,
Hss — —1.6729 £50.7473i,

which is achieved using control gains of

Table 1

Closed-loop pole constraints (numerical - example 1).
Pole Re(#)min Re(-‘”mdx “m(‘u)‘min ‘lm(lu)‘mdx
o -2311 —1.9111 27.2487 33.2487
Uz —1.6475 —1.2475 43.5577 49.5577
Usg —-2.0730 —-1.6730 50.7473 56.7473
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60

Open-loop random poles
Closed-loop random poles | | oo
Open-loop measured poles
Closed-loop nominal poles

o
ooee

Im(z)

.....

2.6 2.4 2.2 -2 -1.8 -1.6 -1.4 -1.2 A1 0.8 0.6
Re(y)

Fig. 2. Open- and closed-loop pole variability (objective function 1).

f-—[1.8002 52514 05826]", g-[ 1134 9994 1583

The objective function now decreases from 1.4 x 10 ' to 5.0 x 10 >. Fig. 3 shows the variability of the new closed-loop
poles. As before, the real part variation of the first mode is reduced. Although the reduction is not as significant, the variabil-
ity of the first and second mode is now not as large.

At this point, the need to use global measures to quantify pole uncertainties becomes clear. Consider again the pole clus-
ter belonging to the second mode in Fig, 3. Given its large curvature, local sensitivities, which quantify uncertainty using only
first order information, would not capture the variability well. Indeed, it would only quantify uncertainty in the region near
to the nominal pole and thus neglect the full range of the random parameters. By contrast, variances do not rely on low-order
approximations and so quantify the uncertainty globally.

3.2. Example 2: multiple random parameters

Consider again the system in Example 1, but now with modified mass matrix

my 0 0
M=|0 m o],
0 0 ms

Open-loop random poles
Closed-loop random poles | _| 55
Open-loop measured poles

OQee

S F) Closed-loop nominal poles
|jmmmmmmmmmmm -1 50
I
I
! - .
i \}3 - 45
) ‘2
E
-140
135
:’777777777777’: e,
| ! \ <30
1 - ! .
e o e .M\
1 1 | I ks 1 I | 1 1 25
2.6 2.4 22 2 -1.8 -1.6 -1.4 -1.2 -1 0.8 0.6

Re(u)

Fig. 3. Open- and closed-loop pole variability (objective function 2).
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where
my; ~N(1.5,0.01),m; ~N(2.0,0.01),m3 ~ N (1.2,0.01),

In this case, all three masses are uncertain and thus there are now three random parameters.
Suppose that an outcome of the new random system is measured and has a receptance matrix of

-1

1.652 + 4s + 3000 —s — 1000 0
H = —s— 1000 2.03s% + 55 + 3000 —s—1000
0 —s — 1000 1.125% +4s + 3000

and corresponding open-loop poles of

J1a = —0.8998 +30.1019i,
34 = —1.3953 +45.6534i,
Jsg = —1.9105 + 54.2425i.

Now writing the uncertainty in the three masses as a perturbation about the measured system, as in (13), and simplifying

as before
m ;5% 0 0
Z5,00)=| 0 mys2 0 |, (30)
0 0 M3, s*

where m; ¢, my, and ms, are independent random variables with distribution
my, my, ms ~ N(0,0.02).

Suppose now that the open-loop poles are to be shifted to a new set with constraints as given in Table 2. Note that the
constraints enforce the restriction that no poles may move further right in the complex plane. If it is desired that the variance
of the imaginary and real part of the second conjugate pair of poles is to be minimised, the objective function is chosen as

¢ = Var[Im(p;)] + 1000 = Var[Re(p,)]. (31)

Note that the weighting constants here serve to scale the variance of the real and imaginary parts to a comparable level. Per-
forming the optimisation using 3rd order PC expansions constructed by 1000 samples and using the open-loop poles as the
initial set, the optimum set is found to be

Iy, = —1.8998 +27.1019i,

My = —1.3953 +48.6534i,

Hsg = —2.0885+53.6353i,

which is achieved using control gains of
f—[37694 69049 3.7324]", g-[78.13 —6767 -612.6]".

Fig. 4 illustrates the pole variability before and after the receptance control gains are applied. In this case, the objective
function increases from 10.5 in the open-loop to 18.3 in the closed-loop. This means that, regardless of where the poles are
placed in the constraint boxes, the variability of the mode of interest will always become worse. As a consequence, the result
obtained from the optimisation can only give the best solution for the chosen constraint boxes.

4. Experimental implementation

In this section, an experimental implementation of the method is described. First, the set-up is outlined and the open-loop
frequency response functions (FRFs) and poles are given. Two experiments, each with their own optimisation goal, are then
presented together with a brief physical interpretation of the optimisation’s result. For the purposes of simplicity, both
experiments will consider only one uncertain parameter.

Table 2

Closed-loop pole constraints (numerical - example 2).
Pole Re(#)min Re(-‘”mdx “m(‘u)‘min ‘lm(lu)‘mdx
o —-2.2998 —1.8998 27.1019 33.1019
Uz ~1.7953 —~1.3953 42.6534 48.6534
Usg -2.3105 -1.9105 51.2425 57.2425
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Fig. 4. Open- and closed-loop pole variability (objective function 3).

4.1. Set-up

Experiments were conducted on a three-degree-of-freedom mass-spring system, which is shown in Fig. 5. The system
consisted of three block masses connected by a series of thin steel plates that served as spring elements. The mass of the
middle block, which was considered uncertain, was varied by adding or removing up to six 0.1 kg masses. Throughout
the tests, the nominal, measured system was defined as the original structure plus three small masses (0.3 kg). This allowed
the effect of adding and removing masses to be considered equally. The leftmost mass was actuated by an electromechanical
shaker. It was through this shaker that the control force was applied and thus the corresponding force distribution vector
was

b=[-1 0 0]".

The force input to the system was measured by a load cell and the positions of the masses were measured using three
laser displacement sensors (LDS).

Since force feedback is used in these experiments, a PID was required to output a desired force, as measured by the load
cell, from a voltage input to the amplifier. The Ziegler-Nichols method [24] was used initially to tune the PID gains before
they were manually adjusted to optimise performance. The final transfer function of the PID was

Fig. 5. Experimental mass-spring system.
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F(s) 0.002s? + 1.45 + 400

E(s) s ’

and remained constant throughout both experiments. The PID and high-level feedback control were both implemented in a
real-time processing environment. This arrangement is illustrated diagrammatically in Fig. 6. As shown, 2nd order Butter-
worth filters with a cut-off frequency of 40 Hz were used on both the force and LDS outputs. This was necessary because
the signals were differentiated and therefore it was essential remove unwanted noise and disturbances.

The open-loop receptances of the system were collected by means of impact hammer testing. With the PID active, but
setting all of the receptance control gains to zero, the desired controller input to the system was held at 0 N. An impact
was then imparted on each mass and FRFs at each sensor measured. The advantage of collecting FRFs of the open-loop sys-
tem in this way is that the dynamics of the PID, shaker and filters were all included and thus the only change in the closed-
loop testing was the receptance gains. Fig. 7 shows the open-loop measured FRFs and the curve fits using a normal modes
assumption [25].

The open-loop, nominal poles were found to be

Az= —0.3530+41.39i,
A34 —0.9760 + 57.71i,
Asg = —0.1475+72.12i,

Il

In order to visualise the effect of the uncertainty, 0.3 kg was added to and removed from the middle mass in increments of
0.1 kg. Fig. 8 shows the FRF variability at H;. As shown, the frequency of the first, second and third mode vary by 0.7028 Hz,
0.1707 Hz and 0.1440 Hz respectively.

In the proceeding experiments, the variability of the first two modes are to be minimised using pole placement according
to the constraints given in Table 3. Given the low damping of the third mode in the open-loop testing, it was decided that the
limits on the real parts would be strongly constrained to greater negative values than in the open-loop in order to prevent
the system becoming unstable.
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Fig. 6. System interconnection diagram.
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Fig. 7. Measured and fitted open-loop FRFs.

4.2. Experiment 1: frequency variability of the second mode

In the first experiment, it was desired to minimise the imaginary part variation of the second mode. This is equivalent to
minimising the variation of the frequency of this mode. Selecting

a = Var[Im(u,)]

as the objective function, the optimisation was performed using 3rd order PC expansions constructed by 50 samples from a
normal distribution with zero mean and a standard deviation of 0.14 kg. Note that the zero mean condition arises from (10)
and the standard deviation is chosen such that +2 standard deviations are shown experimentally. The optimum closed-loop,
nominal poles were found to be

= —0.544+4387i,

—0.928 + 59.20i,
fsg = —0.537 +72.00i,

=

@

£
Il

which required the control gains
f—[1.2861 —1.2736 7.4807)", g-—[494.43 888.06 —30.78]".

Numerically, the objective function decreased from 5.20 x 10 2 to 3.26 x 10 ®. This meant that the imaginary part of the
pole was shifted to a location in the complex plane where it was close to being invariant. With the control gains applied,
Fig. 9 shows the FRF of the closed-loop system as the middle mass was modified between +0.3 kg. It was found that the fre-
quency of the second mode now varied by 0.0316 Hz, a reduction from the open-loop case of 81.49%.
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Table 3
Closed-loop pole constraints (experimental).
Pole Re(#)min Re(-u)max “m(#)‘min “m(lu)‘max
1. ~0.55 ~035 38.39 44
g ~1.07 ~0.87 57.7 59.7
Usg ~0.60 ~0.50 72.0 722
102 ' '
0.0316 Hz | -81.49%
AT Mol

Physical insight of the optimisation result may be found by examining the closed-loop, nominal FRF at H,,, as shown in

Fig. 10. In comparison with its open-loop counterpart, the displacement of the second mass in the second mode is now smal-
ler. Moreover, the zero to the left of the peak is now closer to the pole of the second mode. Therefore, it appears that the
optimisation is attempting to assign a node such that the amplitude of the second mass in the second mode is much smaller.
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Fig. 11. Closed-loop FRF variability at H,; between £0.3 kg - experiment 2.

In this way, the effect of adding a mass to this position is very small and thus has little impact upon the frequency variation,
as was desired.

4.3. Experiment 2: frequency variability of the first mode

In the second experiment, it was desired to minimise the frequency variation of the first mode. Using the same optimi-
sation settings as the first experiment but selecting
& = Var[Im(u,)]
as the objective function, the optimum closed-loop nominal poles were found to be

t, = —0.400 + 38.39i,
.= —0.870+57.70i,
Hsg = —0.594 +72.00i,

which required control gains of
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Fig. 12. Nominal closed-loop FRF at Hy;.

f—[08867 -3.8621 9.9066]", g-—[ 30638 ~863.89 ~388.20]".

Numerically, the objective function decreased from 1.3920 to 0.8904, a change of —36%. Experimentally, the frequency
variation in the first mode become 0.5668 Hz, a reduction of 19.4% from the open-loop, as shown in Fig. 11.

Notably, the reduction of the frequency variation in this second experiment is not as large as the first experiment. This is
likely due to the fact that assignment of a node to the second mass in the first mode would require extremely large control
gains; in other words, the closed-loop poles would have to be moved to locations well outside of the constraint boxes. This is
confirmed in Fig. 12, which shows that the location of the zero, in terms of frequency, remains unchanged before and after
the control gains are applied.

5. Conclusions

This paper has presented a new method for optimal pole placement in dynamic systems with uncertain structural param-
eters. It has been shown that, by coupling pole placement with a global optimisation algorithm based on the variance of the
real and imaginary part of each pole, it is possible to modify the size and shape of pole clusters such that they satisfy some
desired performance criterion. The method is advantageous in that: (i) uncertainty in structural parameters is evident in
measured receptance data directly; (ii) there is no requirement to measure receptances for the mean system; (iii) by using
variances calculated by a polynomial chaos expansion, the effect of the uncertainty is considered across its full range.

The method has been tested both numerically and experimentally. In both cases, it is shown that appropriate selection of
objective functions allows significant reduction of the above-mentioned variances. Experimentally, it has been demonstrated
that it can reduce the variation of the frequency of a mode by approximately 81% across the ranges tested.
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