
Plan Library Reconfigurability in BDI Agents?

Rafael C. Cardoso[0000−0001−6666−6954], Louise A. Dennis[0000−0003−1426−1896],
and Michael Fisher[0000−0002−0875−3862]

University of Liverpool, Liverpool L69 3BX, United Kingdom
{rafael.cardoso,L.A.Dennis,mfisher}@liverpool.ac.uk

Abstract. One of the major advantages of modular architectures in
robotic systems is the ability to add or replace nodes, without need-
ing to rearrange the whole system. In this type of system, autonomous
agents can aid in the decision making and high-level control of the robot.
However, when autonomously replacing a node it can be difficult to re-
configure plans in the agent’s plan library while retaining correctness. In
this paper, we exploit the formal concept of capabilities in Belief-Desire-
Intention agents and describe how agents can reason about these capa-
bilities in order to reconfigure their plan library while retaining overall
correctness constraints. To validate our approach, we show the implemen-
tation of our framework and an experiment using a practical example in
the Mars rover scenario.

Keywords: Belief-Desire-Intention ·modular architectures · autonomous
agents · reconfigurability · robotic systems.

1 Introduction

Robots have been frequently used in real world applications over the years,
from industrial robotics [30] to teleoperated robots in search and rescue [24].
However, there are still many open challenges such as: the German strategic
initiative Industrie 4.0 that encourages research in the intelligent networking of
machines; and robot assisted disaster response in the TRADR project [19]. The
reconfigurability problem originally stemmed from manufacturing systems [18],
but has since been expanded to self-reconfigurable robots [5,31] that can adapt
to different situations via proper selection and reconfiguration of the functional
components and the software that are available.

Due to the complexity present in these challenges modular architectures are
typically employed to speed up and make the development of robotic systems
easier. The Robot Operating System (ROS) [26] is an example of a popular
middleware that can be used to develop a modular robotic system. In ROS,
nodes are used to effectively capture robotic software in terms of a graph that
describes the communication between distinct nodes. Some of the advantages
of decoupling the system in this way include: more precise failure handling and

? Work supported by UK Research and Innovation Hubs for “Robotics and AI in
Hazardous Environments”: EP/R026092 (FAIR-SPACE), and EP/R026084 (RAIN).

2 R. C. Cardoso et al.

recovery mechanisms, since failures can be traced to individual nodes; and the
complexity of the code is reduced when compared to monolithic systems, making
it easier to add, replace, or remove functionality (i.e., nodes).

Agent-based control allows a system to dynamically adapt to changes in the
environment through the use of modularity, decentralisation, autonomy, scala-
bility, and reusability [20]. Many of these systems use cognitive agents, partic-
ularly those in the Belief-Desire-Intention (BDI) paradigm. Kohn and Nerode’s
MAHCA system [17] uses multiple knowledge-based agents as planners which
generate the actions performed by the underlying control system. While these
agents are not based on the BDI paradigm, which was only in its infancy when
MAHCA was originally developed, the approach was designed to represent log-
ical decision-making in a high-level declarative fashion. Recent agent-based ap-
proaches have been use in networks of autonomous agents interacting to solve
complex and dynamic problems in manufacturing and supply chain decision mak-
ing [22], and explored in the control of spacecraft [25], Unmanned Aircraft [33],
and robotics [34]. Many of these approaches are explicitly BDI-based that aim
to separate the symbolic and non-symbolic reasoning, and to model the mission
designer’s intent.

Modular architectures for robotic systems often require a framework for re-
configurability, allowing modules to be added and replaced should the need arise
(e.g., in case of node failure). Several types of reconfigurability can be identified
in these systems [8]: (i) reconfiguration at the hardware level, for instance the
dynamic reconfiguration of effectors and sensors to cope with a hardware change;
(ii) reconfiguration due to low-level control, such as ROS node reconfiguration
and being able to replace nodes while still maintaining a working graph; (iii)
reconfiguration due to high-level control, for example reconfiguring an agent’s
goals, plans, and knowledge.

In this paper, we introduce the reconfigurability of plan libraries in BDI
agents [27]. Specifically, our approach is aimed towards modular architectures
and applications that detect anomalies or malfunctions in a capability (an ex-
tended action specification) and can then reason about replacing it with al-
ternative capabilities that are able to achieve the desired outcome. We use the
BDI-based agent-oriented programming language Gwendolen [6] to implement
our framework. By using this language, we can formally verify our new plan li-
brary using a program model checker, an important, and necessary [10], step
towards the validation and reliability of the framework and its applications.

In the next section we provide a background on BDI agents and clarify the
distinction between actions and capabilities. Section 3 introduces our recon-
figurability framework, with an overview of the overall system and a running
example. Then, we provide a formal description of capabilities and plan replace-
ment in propositional logic. In Section 4 we describe our implementation of
reconfigurability in the Gwendolen language, and then demonstrate its use in
a practical experiment in the Mars rover scenario. Section 5 covers the related
work, from purely theoretical approaches to application-based solutions. We end
the paper in Section 6 with our conclusions and future work.

Plan Library Reconfigurability in BDI Agents 3

2 BDI Agent Programming Languages and Capabilities

Agents programmed using BDI languages commonly contain a set of beliefs,
representing the agent’s current state and knowledge about the environment in
which it is situated; a set of goals, tasks that the agent aims to achieve; a set
of intentions, tasks that the agent is committed to achieve; and a set of plans,
courses of actions that are triggered by events. Events can be related to changes
in the agents belief base or to the addition or removal of goals. The agent reacts
to these events by creating new intentions which are generated from the set of
applicable plans related to that event.

The body of a plan often contains a set of actions that can cause changes in
the environment. Languages such as Jason, Gwendolen, and 2APL delegate
these actions’ specifications to the environment. Any preconditions or postcon-
ditions (i.e., effects) that such actions may have are invisible to the agent and
are dealt with at the environment level. The environment may return some value
to be unified with an open variable or, for example, in Jasonit may also return
a failure condition which will trigger the removal of the event that started the
plan (plan failure).

It is possible to specify an action’s pre and postconditions at the agent level
using these languages, for example by creating a dummy plan with only one
action, and writing the preconditions of the actions as the preconditions of the
plan. The postconditions, if any, could then be written as belief operations (add
or remove) to be executed after the action finishes. However, this is not how BDI
agents are traditionally programmed in those languages and it can be difficult
to reason about an action’s pre and postconditions programmed this way.

These actions can also be modelled as capabilities. The main difference be-
tween them is the explicit specification of pre and postconditions. A capability
can only be executed when its preconditions are true, and any postconditions
that it has are added when the capability ends with success. This kind of ac-
tion theory is also used in automated planning, known as actions in classical
planning [12] or primitive tasks (also operators) in Hierarchical Task Network
(HTN) planning [32]. BDI languages that implement this concept of capability
include GOAL, 3APL, and 2APL (only for belief update actions).

The problem that we are interested in solving is improving the system’s
ability to adapt its behaviour in the event of a (software) failure or damage to
some of its (physical) sub-systems in such a way that it can continue to achieve
some, or all, of its goals. A BDI-agent is involved at the highest decision-making
level of the system, and as such, we want the agent to be able to recognise that a
component is no longer behaving as expected, then invoke diagnosis subsystems
to identify the actions related to the failure, and lastly reconfigure the agent’s
plan library to cope with the failure. We note that failure detection and diagnosis
in agents is touched on, for example, with semantics for adding duration and
failure information in actions for the life-cycle of goals in [7], and through the
use of trace expressions to specify protocols on top of sets of events (such as
messages, beliefs, and actions) to be checked at runtime through the use of
automatically generated monitors [11].

4 R. C. Cardoso et al.

3 Reconfigurability Framework

Our framework is aimed towards systems that have a similar architecture to
the one represented in Figure 1. The system goes through phases of potentially
time critical operations followed by an offline phase in which it can reason about
failure, perform reconfiguration, and if necessary reverify any relevant system
properties. When such a system is deployed, the execution of its capabilities is
monitored (e.g., with runtime monitors [11]). If a capability is detected as faulty,
then the reconfiguration process tries to replace calls to the faulty capability with
viable alternatives, which may include one or multiple capabilities.

System execution

System deployment

Faulty capability
detected?

Any plans
were replaced?

Reconfiguration

Program Model Checking

Yes

Yes

Offline period

No

No

Fig. 1. Overview of the system.

We assume that the system has an offline period, which is very common in
robotic systems with long-term autonomy (see [15] for example). During this pe-
riod the robot can recharge and perform cleanup operations, among other things.
But, more importantly from our point of view, it can also reconfigure itself if any
faults were detected and verify any plans that were replaced (i.e., reconfigured)
using, for example, a program model checker for agent programming languages.

Plan Library Reconfigurability in BDI Agents 5

We focus on the formal definition and implementation of the reconfigurability
of plan libraries in BDI agent(s) that perform high-level reasoning within the
system.

3.1 Running Example

Robots are increasingly deployed to explore hazardous environments that are
dangerous for human exploration and often safety-critical, such as areas with
extreme temperatures (monitoring of offshore structures [29]), lack of oxygen
(both orbital [13] and planetary [35] space exploration), or high radiation (nu-
clear inspection and decommissioning [3]). Autonomous robots are especially
important in scenarios with communication bottlenecks, for example, in plane-
tary space exploration it can take a very long time for human operators to send
commands from Earth to the robots. One such example is the Mars rovers used
by NASA1 in several missions. In this scenario an autonomous rover vehicle tra-
verses the surface of Mars collecting image, soil, and rock data. For our example
we assume that the rover has access to a topological map, which indicates areas
of interest (denoted by waypoints) where the rover can collect data.

The Mars rover scenario can easily be seen as a system that matches the
overview depicted in Figure 1. While in execution mode, the rover traverses
through routes in the topological map, collecting data at each waypoint. The
rover’s offline period happens, for instance, during the night when it can not
recharge using its solar panels and must conserve energy by remaining stationary.

Specifically, in this scenario we are interested in modelling the agent that is
responsible for autonomously controlling the rover at a high-level. The actions
that the agent can perform include moving between waypoints in a topological
map, charging its batteries, collecting soil, collecting data, and taking images.

3.2 Preliminaries

Propositional Logic. We adopt a language of propositional logic L with formula
φ defined over a finite set of literals, L, and with >,⊥ ∈ L denoting the true
and false connectives respectively. We also use a finite set of abstract states S
with element s and an entailment relation s |=L φ which defines when formula
φ holds in s.

As previously mentioned in Section 2, actions form the body of a BDI plan.
When these actions are executed, some parameters may need to be instantiated
(this is typically done by unification). We use the notation tθ to indicate the
application of a unifier, θ, to a term t.

3.3 Capabilities

Our formal representation of capabilities is based on the action theory found in
classical automated planning, such as STRIPS reasoning [12], situation calcu-
lus [28], and the Planning Domain Definition Language (PDDL) [23]. As such,

1 https://mars.nasa.gov/

https://mars.nasa.gov/

6 R. C. Cardoso et al.

our formalism is deliberately close to those, but a key difference is that we do not
plan from scratch. We discuss the relationship between our work and planning
systems in related work (Section 5).

A capability specification describes an action that an agent can take and any
relation it has to the internal (self) and external (environment) facts of the agent.
The specification is in the form of a set of preconditions and postconditions for
the action. If the preconditions hold before the action is performed then the
action specification states that eventually, if the action terminates with success,
the postconditions will hold.

Capability Specification. We use the notation {Cpre}C {Cpost} where C is the
capability, Cpre are the preconditions and Cpost are the postconditions. C, Cpre,
and Cpost are all formulas φ ∈ L.

Capability Example. The move action of a rover can be represented as:

C = {at(X), notX = Y }move(X,Y) {not at(X), at(Y)}

such that X is the current position of the rover, and Y is the desired desti-
nation. Following the capability specification, we know that the rover must be
at(X) (precondition), and after the end of the execution it must be at(Y) (post-
condition).

Reasoning about the Execution of a Capability. The notation do(Cθ) indicates
the execution of a capability, with its parameters instantiated by the θ unifier.
The execution defines a transition on states in S that is completely specified by
the specification of C. That is, if s ∈ S and s |=L Cpreθ there is some unique
state s′ ∈ S such that:

s
do(Cθ)−−−−−→s′ and s′ |=L Cpostθ

As discussed in Section 2, many BDI systems employ a simplistic action
theory where the pre and postconditions of actions are not represented at the
execution level of the agent. Thus, it is always possible to execute actions in
those systems as long as the preconditions of the plan hold when the plan was
selected. Our theory of plan validity (see next section) assumes that capability
specifications are complete and correct and that the preconditions of a capability
always hold when the system attempts to execute the associated action.

Execution Example. Suppose that in state s the proposition empty(true) holds
and the next action in the plan to be executed is the capability collect sample
with postcondition empty(false):

s
do(collect sample)−−−−−−−−−−−−→s′

results in a state where empty(false) holds.

Plan Library Reconfigurability in BDI Agents 7

3.4 Plans

A BDI plan is a structure which contains a sequence of capabilities as its body,
but may also contain additional elements such as trigger events or guards. For
simplicity, we ignore these additional elements in a plan body when reasoning
about plan replacements, but we point out that most of these elements could be
represented as capabilities.

Plan Specification. Given a plan, P , we write its preconditions as Ppre and its
postconditions as Ppost. We use the notation C = [C1;C2; . . . ;Cn] to indicate
a sequence of capabilities that are to be executed as part of the body, C, of
a BDI plan. Our theory assumes that capabilities are guaranteed to execute
sequentially, i.e., Ci+1 is not executed until Cipost holds.

Plan Body Example. We have a plan, P 1 to collect a rock sample at a particular
position and then transmit the data. The body of this plan, C1, consists of a
sequence of four capabilities:

C1 = [move(X1, Y1); collect sample(S); move(Y1, Y2); transmit data(S)]

The first moves the rover to a position where it is capable of collecting a rock
sample, performs the collection, then moves to a position where it can transmit
the data, and finally performs the transmission.

Many BDI-based languages already allow the specification of preconditions
in plans (e.g., plan context in Jason, or plan guards in Gwendolen), but it is
unusual for a BDI plan to have explicit postconditions. However, we believe these
can often be understood implicitly from the postconditions of the capabilities in
a plan’s body.

Pre and postcondition Example. Using the plan from the previous example, P 1,
we can complete the plan specification by adding P 1

pre = [at(X1), empty(true)]
and P 1

post = [data transmitted(S)] as such:

P 1 = {at(X1), empty(true)}C1 {data transmitted(S)}

meaning that for the plan to be applicable the rover must be at waypoint X1

and it must not be carrying any sample, and after the plan’s conclusion the data
of S will have been transmitted.

We represent pre and postconditions for plans explicitly because even though
two capabilities may have different postconditions it may be the case that one can
be replaced by another in a plan, without changing what the plan is intended
to achieve. Since BDI plans are generally constructed by humans rather than
automated planning systems we can not assume that the capabilities in the
body of a plan are minimal with regards to the postconditions.

It may occur that the postcondition of a plan does not include all of the
effects from the execution of the capabilities in the plan body (i.e., Ppost 6=
C1
post ∪ . . . ∪ Cnpost). For example, the proposition at(Y2) is not a postcondition

8 R. C. Cardoso et al.

of P 1 since in this case we do not care if the final position of the rover is Y2,
only that it has successfully transmitted the data. This may be achievable from
other waypoints, allowing the plan to be modified in a fashion that would have
the rover transmitting data from a different waypoint.

Simple Plan Trace. A simple plan trace is one in which only the capabilities in the
plan body cause state transitions in S. That is, the environment does not change
apart from the execution of those capabilities and the plan’s execution has not
been interleaved with the execution of any other plan. Formally, let [C1; . . . ;Cn]
form the body of some plan, P . Then a sequence of states s1; . . . ; sn+1 together

with a unifier, θ, forms a simple plan trace for P if for all si, si
do(Ciθ)−−−−−→si+1.

3.5 Plan Replacement

When reasoning about plan replacement we assume an idealised execution envi-
ronment for the plan represented by a simple plan trace. We ignore any impact
that the environment (or another external factor) might have in the outcome
of a capability, as these would be impossible to predict. The end system may
still have them and they may make a plan that was replaced fail, but we do
not address this issue in this paper, since this is not directly related to the
reconfigurability problem.

Definition 1 (Valid Plan). We say a plan P with a body consisting of the
sequence of capabilities [C1; . . . ;Cn] is valid with regards to the specifications of
the capabilities, if for all simple plan traces, 〈s1; . . . ; sn+1, θ〉 where θ instanti-
ates all the parameters of all the specifications for capabilities in the body of P ,
si |=L Cipreθ for all Ci. That is, the precondition in the specification for the next
capability in the plan holds when some capability is executed.

Note that plans in an actual BDI program may not be valid w.r.t. to the actions’
specifications since they have been supplied by a programmer, not constructed
from the specifications.

Definition 2 (Valid Plan Specification). We say that a plan specification
P = {Ppre}C{Ppost} for a plan with body [C1; . . . ;Cn] is valid if

1. P is valid;
2. Ppre → C1

pre; and
3. for all simple plan traces, 〈s1; . . . ; sn+1, θ〉 where θ instantiates all the pa-

rameters in the specifications of capabilities appearing in the body of P and
all free variables in Ppre and Ppost, if s1 |=L Ppreθ then sn+1 |=L Ppostθ.

The first point is covered in Definition 1. The second point states that if the
preconditions of the plan holds before its execution, then the preconditions of
the first capability in that plan’s body also hold. The third point declares that
a plan specification is valid if it can establish its postconditions on simple plan

Plan Library Reconfigurability in BDI Agents 9

traces. That is, if the precondition of a plan hold before execution of the plan,
then the plan’s postconditions hold after its execution.

Once again, we assume a static environment where all capabilities behave
according to their specification. Note that this does not guarantee that the plan
always works, only that it has been specified appropriately and sensibly pro-
grammed to work in most situations where it is invoked.

Definition 3 (Preservation of Plan Spec. Validity). Consider a plan spec-
ification P = {Ppre}C{Ppost}. Let P ′ be a plan that is identical to P except that
P ′ has body C ′. We say that P ′ preserves the validity of P if P ′ = {Ppre}C ′{Ppost}
is valid.

We argue that the preservation of plan specification validity is a minimal require-
ment when replacing plans. It states that if there is a static environment and
no interleaved execution of plans, then the new plan will achieve the replaced
plan’s postconditions.

Definition 4 (Rational Plan Body Replacement). We say the replacement
of plan body C for C ′ in a plan P so it becomes a plan P ′ is rational if P ′

preserves the validity of P .

Therefore we seek to implement mechanisms for plan body replacement that are
rational.

Plan Body Replacement Example. If we detect a capability in the previous plan
P 1 to be faulty, for example, the rover can no longer move from the place it
collected the rock sample to a place to transmit the data due to battery deteri-
oration. Then, the capability move(Y1, Y2) can be exchanged in the plan body
replacement:

C1′ =

[
move(X1, Y1); collect sample(S); move(Y1, ChargeWaypoint);
recharge; move(ChargeWaypoint, Y2); transmit data(S)

]
with ChargeWaypoint representing the waypoint where the rover can recharge
its battery. This is a rational plan body replacement: the new plan P 1′ =
{at(X1), empty(true)}C1′ {data transmitted(S)} is a valid plan which achieves
P 1’s postconditions whenever P 1’s preconditions are true.

4 Implementation

We have implemented our theory as an extension of the Gwendolen program-
ming language [6], chosen for its association with the Agent Java Pathfinder
(AJPF) model-checker [9]. This provides a potential route for verification of a
reconfigured plan library. To simplify implementation, we only use grounded
capabilities in our practical experiment.

Algorithm 1 shows a high-level abstraction of our implementation for recon-
figurability of plan libraries in BDI agents. Due to the availability and accessibil-
ity of implementations of fast classical planners, we opted to translate the search

10 R. C. Cardoso et al.

for the replacement of plan bodies into a limited planning problem. Limited here
refers to the use of a very small subset of information, instead of planning from
scracth.

Algorithm 1: Implementation of plan library reconfigurability.

1 Function replace (capability)
2 Capabilities← get capabilities;
3 Capabilities← Capabilities \ {capability};
4 if Capabilities = ∅ then
5 return false;

6 domain← create domain (Capabilities);
7 PlanLibrary ← get plan library;
8 Plans← get plans (capability);
9 while there exists {plan} ∈ Plans do

10 InitState← propagate (plan, capability);
11 Goals← get post cond (plan);
12 problem← create problem (InitState, Goals);
13 replacement← STRIPS planner (domain, problem);
14 if replacement = ∅ then
15 return false;

16 newplan← replace cap (plan, replacement);
17 PlanLibrary ← PlanLibrary \ {plan} ∪ {newplan};
18 Plans← Plans \ {plan};
19 update plan library (PlanLibrary);
20 return true;

We start the reconfiguration of the plan library when a capability is detected
to be faulty and in need of a replacement. First, we retrieve all capabilities that
the agent has, except for the one that it wants to replace (lines 2–3). If we are
left with an empty set of capabilities, then that capability cannot be replaced.
Otherwise, the domain is created, translating all capabilities into STRIPS oper-
ators. Next, we fetch all plans from the agent’s plan library that have the faulty
capability in a plan’s body (line 8).

In lines 9–18 we cycle through each of the plans that include the capability to
be replaced. We construct the initial state from the propagation of the literals
from the preconditions and postconditions starting at the first capability and
going up to the last capability before the faulty one in the plan. This propagation
is also known as progression in search algorithms. Our Goals set contains the
postconditions of the plan to be replaced. We create the problem specification
and then call a STRIPS planner to find the replacements by providing the domain
and problem specifications that were translated from the Gwendolen syntax.
Although any STRIPS planner would suffice, we chose the SIW+-then-BFSf

Plan Library Reconfigurability in BDI Agents 11

planner [21], one of the faster and top performing planners from the agile track
in the International Planning Competition.

If no replacement is found by the planner, then the faulty capability cannot
be replaced in that plan. Otherwise, we swap it with the replacement that was
found (which can contain one or more alternative capabilities), remove the old
plan from the temporary plan library, and add in the new plan. After we cycled
all plans and replaced the faulty capability within them, the plan library is
updated with the new modifications.

A plan in Gwendolen is started by an event, for example, a plan for com-
pleting a mission mission1 is activated when the goal (!) mission1 is added (+);
this is known as a goal addition event. The plan will be selected and added to
the agent’s intention base if the formulae present in the guard (i.e., the context
or precondition of the plan, goes after a colon and between curly brackets) are
true. After a plan is selected, a sequence of actions in the plan body (denoted
by ←) is executed.

4.1 Practical Experiment

We use a simple problem in our running example of the Mars rover scenario as
a practical experiment. The problem is to replace a faulty movement capability,
moveW1W2 that represents the route between the topological nodes W1 and
W2. For this experiment we focus only on movement capabilities. Although other
actions such as collecting rock data are also represented as capabilities, we omit
them since they are not relevant to this experiment.

1 :Capabilities:
2 { at(waypoint1) } moveW1W2 { −at(waypoint1), +at(waypoint2) }
3 { at(waypoint2) } moveW2W1 { −at(waypoint2), +at(waypoint1) }
4 { at(waypoint1) } moveW1W3 { −at(waypoint1), +at(waypoint3) }
5 { at(waypoint3) } moveW3W1 { −at(waypoint3), +at(waypoint1) }
6 { at(waypoint3) } moveW3W2 { −at(waypoint3), +at(waypoint2) }
7 { at(waypoint2) } moveW2W3 { −at(waypoint2), +at(waypoint3) }
8 { at(waypoint1) } moveW1W4 { −at(waypoint1), +at(waypoint4) }
9 { at(waypoint4) } moveW4W1 { −at(waypoint4), +at(waypoint1) }

10 { at(waypoint2) } moveW2W5 { −at(waypoint2), +at(waypoint5) }
11 { at(waypoint5) } moveW5W2 { −at(waypoint5), +at(waypoint2) }
12 { at(waypoint5) } moveW5W4 { −at(waypoint5), +at(waypoint4) }
13 { at(waypoint4) } moveW4W5 { −at(waypoint4), +at(waypoint5) }

Fig. 2. Capabilities of the rover agent in Gwendolen.

The capabilities in Figure 2 represent the topological map that the agent
has access to. A precondition list precedes the capability, which is followed by
a postcondition list. The topological map consists of the following navigation
routes between each waypoint: W1⇔W2, W1⇔W3, W3⇔W2, W1⇔W4,
W2⇔W5, and W5⇔W4.

The plans for the rover agent are listed in Figure 3. There are plans for three
different missions, each applicable when the agent is at a different location. For

12 R. C. Cardoso et al.

example, the guard of mission1 (line 3) states that the agent must have the belief
at(waypoint1) expressing that the rover must be currently located in waypoint1.
The body of mission1 (lines 5–8) contains the capabilities that must be executed
in sequential order to successfully achieve the mission’s goal.

1 :Plans:
2 +!mission1 [perform] :
3 { B at (waypoint1) }
4 ←
5 moveW1W2,
6 collect soil,
7 moveW2W5,
8 collect rock;
9 +!mission2 [perform] :

10 { B at (waypoint4) }
11 ←
12 moveW4W1,
13 collect rock,
14 moveW1W2,
15 take image;
16 +!mission3 [perform] :
17 { B at (waypoint3) }
18 ←
19 moveW3W1,
20 moveW1W2,
21 collect rock,
22 moveW2W5,
23 take image;

Fig. 3. Plan library of the rover agent in Gwendolen.

Figure 4 shows a simple example in the Mars rover scenario using a represen-
tation of all the capabilities described in Figure 2. A lander spacecraft stays in its
original position and acts as a charging station for the rover, which starts next to
the lander at waypoint 1 (W1). At some point during the system’s deployment,
either while in execution or in the offline period, the capability moveW1W2 is
detected to be faulty. This could have been caused because, for example, the
route between waypoint 1 and waypoint 2 is no longer valid (e.g., there is an
unavoidable obstacle), or the route is consuming too much battery (e.g., the
terrain became difficult to traverse).

The solution found by the planner was to replace the faulty capability
moveW1W2 for moveW1W3 and moveW3W2. Then, we replace all occurrences
of that capability in all plans, effectively removing the route between waypoint
1 and waypoint 2, and replacing it with the route from waypoint 1 to waypoint
3, and then from waypoint 3 to waypoint 2. Although this solves the problem
caused by the faulty capability in all three mission plans, it also introduces some
backtracking in the plan for mission3. This illustrates the trade-off between
speed and optimality.

Because we are using an agile planner the solution is not always guaran-
teed to be optimal. However, as we previously mentioned, the translation from

Plan Library Reconfigurability in BDI Agents 13

L
W5 W1

R
W2

W3

W4

L = Lander
R = Rover

W = Waypoint 1..5

1 2 3 4 5

1

2

3

4

Fig. 4. Mars rover practical example.

Gwendolen can be used in any STRIPS classical planner, including optimal
planners.

5 Related Work

In [16], an extension of a temporal epistemic logic is used to generalise model
checking as a solution to reconfiguring reactive multi-agent systems. In this case
the problem was to determine whether a set of reactive robots can combine into
a robot that satisfies the functionality of the system. Two scenarios are given,
one is a monolithic system and the other is an individual module that is part
of a bigger system. They also defined a new logic-based language to represent
multi-agent systems and reason about reconfigurability at an abstract level, but
our approach is intended as a generic extension applicable to a range of BDI-
based agent-oriented programming languages and which, as we have shown, can
result directly in an implemented system.

An agent-based framework is proposed for resource reconfiguration in produc-
tion lines of industrial assembly applications considering product specification
and capabilities of production resources [2]. The reconfiguration is goal-based
and done through task reallocation. The authors claim that the framework is
implemented and runs on a real-world assembly system, however, there is no
formal description of the framework or any of its features. Although the concept
of reconfigurability and capability is similar to ours, the main difference is that
their concepts are intrinsically tied to industrial assembly applications, whilst
our framework is domain independent.

An architecture for planning in reconfigurable manufacturing systems is pre-
sented in [4]. Reconfiguration in these systems are described to occur in three
different scenarios: a production change, physical malfunctions, or a change in
production goals. The control system implements a sense-plan-act cycle using
ontology-based knowledge to regenerate the planning domain specification when

14 R. C. Cardoso et al.

necessary. Similar to the previous approach, this architecture is application spe-
cific, and thus, it does not address generic reconfigurability problems.

A reconfigurable agent-based architecture for use in autonomous nuclear
waste management is reported in [1]. In this system a BDI-agent controls a
ROS-based system for sorting and segregating different types of low radiation
level nuclear waste. Reconfiguration is handled by pre-existing plans in the BDI
agent rather than by the agent reconfiguring its existing plans. This necessarily
limited the extent to which the system could adapt to hardware degradation and
changes in its environment.

The reconfigurability scenarios that we described could be represented as
replanning problems or plan repair problems [14]. We are particularly interested
in applications where a high degree of assurance (ideally formal verification)
is required. Formal verification of planning is still an area in its infancy while
the verification of BDI agents is well studied — hence we have developed a
framework in which planning is used to instantiate new replacement plans2 in
BDI programming languages. Furthermore the complete state of the world would
have to be passed to a planner. By using our reconfigurability framework this
can be avoided, potentially saving computation time.

6 Conclusions

There are different ways that the reconfigurability problem can be solved, such
as: preemptively adding plans that cover plan failure; or replanning from scratch.
However, the former is prone to human error, and the latter can take substan-
tially longer in complex problems.

In this paper, we have described a formal framework for plan library reconfig-
urability in BDI agents. We presented a theory based on capabilities and plans,
and introduced several definitions concerning how to reason about valid plan re-
placement. Further to this, we implemented our framework into the Gwendolen
BDI language and used an agile planner to find capability replacements that are
then merged into a plan replacement. As a demonstration of the implementation
of our framework we performed a practical experiment on reconfigurability in
the Mars rover scenario.

The performance of the implementation our reconfigurability framework is
intrinsically tied to the performance of the planner’s implementation that we
used to find the proper replacements for a faulty capability. Therefore, future
experiments to measure the scalability of our framework should include differ-
ent planners to better evaluate how well our approach scales by isolating the
performance of the planning component. Future work also include considering
plan regression to rationally discard redundant capabilities that came before the
faulty capability to remove any unnecessary backtracking.

2 The areas of automated planning and BDI agent programming both use the word
“plan” but with slightly different meanings.

Plan Library Reconfigurability in BDI Agents 15

References

1. Aitken, J.M., Veres, S.M., Shaukat, A., Gao, Y., Cucco, E., Dennis, L.A., Fisher,
M., Kuo, J.A., Robinson, T., Mort, P.E.: Autonomous nuclear waste management.
IEEE Intelligent Systems 33(6), 47–55 (Nov 2018)

2. Antzoulatos, N., Castro, E., de Silva, L., Rocha, A.D., Ratchev, S., Barata, J.: A
multi-agent framework for capability-based reconfiguration of industrial assembly
systems. International Journal of Production Research 55(10), 2950–2960 (2017)

3. Bogue, R.: Robots in the nuclear industry: a review of technologies and applica-
tions. Industrial Robot: An International Journal 38(2), 113–118 (2011)

4. Borgo, S., Cesta, A., Orlandini, A., Umbrico, A.: A planning-based architecture
for a reconfigurable manufacturing system. In: Proceedings of the Twenty-Sixth
International Conference on International Conference on Automated Planning and
Scheduling. pp. 358–366. ICAPS’16, AAAI Press, London, UK (2016)

5. Chen, I.M., Yang, G., Yeo, S.H.: Automatic modeling for modular reconfigurable
robotic systems: Theory and practice. In: Cubero, S. (ed.) Industrial Robotics,
chap. 2. IntechOpen, Rijeka (2006)

6. Dennis, L.A., Farwer, B.: Gwendolen: A BDI language for verifiable agents. In:
Logic and the Simulation of Interaction and Reasoning. AISB, Aberdeen (2008)

7. Dennis, L.A., Fisher, M.: Actions with durations and failures in BDI languages.
In: 21st European Conference on Artificial Intelligence. vol. 263, pp. 995–996. IOS
Press (2014)

8. Dennis, L.A., Fisher, M., Aitken, J.M., Veres, S.M., Gao, Y., Shaukat, A., Bur-
roughes, G.: Reconfigurable autonomy. KI - Künstliche Intelligenz 28(3), 199–207
(Aug 2014)

9. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent
programming languages. Automated Software Engineering 19(1), 5–63 (2012)

10. Farrell, M., Luckcuck, M., Fisher, M.: Robotics and integrated formal methods:
Necessity meets opportunity. In: International Conference on Integrated Formal
Methods. pp. 161–171. Springer (2018)

11. Ferrando, A., Dennis, L.A., Ancona, D., Fisher, M., Mascardi, V.: Verifying and
validating autonomous systems: Towards an integrated approach. In: Proceedings
of the 18th International Conference on Runtime Verification. Lecture Notes in
Computer Science, vol. 11237, pp. 263–281. Springer (2018)

12. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(3), 189 – 208 (1971)

13. Flores-Abad, A., Ma, O., Pham, K., Ulrich, S.: A review of space robotics tech-
nologies for on-orbit servicing. Progress in Aerospace Sciences 68, 1–26 (2014)

14. Fox, M., Gerevini, A., Long, D., Serina, I.: Plan stability: Replanning versus plan
repair. In: Proceedings of the 16th International Conference on Automated Plan-
ning and Scheduling. pp. 212–221. AAAI Press, Cumbria, UK (2006)

15. Hawes, N., Burbridge, C., Jovan, F., Kunze, L., Lacerda, B., Mudrova, L., Young,
J., Wyatt, J., Hebesberger, D., Kortner, T., Ambrus, R., Bore, N., Folkesson,
J., Jensfelt, P., Beyer, L., Hermans, A., Leibe, B., Aldoma, A., Faulhammer, T.,
Zillich, M., Vincze, M., Chinellato, E., Al-Omari, M., Duckworth, P., Gatsoulis,
Y., Hogg, D.C., Cohn, A.G., Dondrup, C., Fentanes, J.P., Krajnik, T., Santos,
J.M., Duckett, T., Hanheide, M.: The STRANDS project: Long-term autonomy in
everyday environments. Robotics Automation Magazine 24(3), 146–156 (2017)

16. Huang, X., Chen, Q., Meng, J., Su, K.: Reconfigurability in reactive multiagent
systems. In: Proceedings of the 25th International Joint Conference on Artificial
Intelligence. pp. 315–321. AAAI Press, New York, USA (2016)

16 R. C. Cardoso et al.

17. Kohn, W., Nerode, A.: Multiple agent autonomous hybrid control systems. In:
Proc. 31st Conf. Decision and Control (CDC). pp. 2956–2964. Tucson, USA (1992)

18. Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., Brussel,
H.V.: Reconfigurable manufacturing systems. CIRP Annals 48(2), 527–540 (1999)

19. Kruijff-Korbayová, I., Colas, F., Gianni, M., Pirri, F., de Greeff, J., Hindriks, K.,
Neerincx, M., Ögren, P., Svoboda, T., Worst, R.: TRADR Project: Long-term
human-robot teaming for robot assisted disaster response. KI - Künstliche Intelli-
genz 29(2), 193–201 (Jun 2015)

20. Leitão, P.: Agent-based distributed manufacturing control: A state-of-the-art sur-
vey. Engineering Applications of Artificial Intelligence 22(7), 979–991 (2009)

21. Lipovetzky, N., Ramirez, M., Muise, C., Geffner, H.: Width and inference based
planners: SIW, BFS (f), and PROBE. In: Proceedings of the 8th International
Planning Competition (2014)

22. Marik, V., McFarlane, D.: Industrial adoption of agent-based technologies. IEEE
Intelligent Systems 20(1), 27–35 (Jan 2005)

23. Mcdermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld,
D., Wilkins, D.: PDDL - the planning domain definition language. Tech. Rep.
TR-98-003, Yale Center for Computational Vision and Control (1998)

24. Murphy, R.R.: Trial by fire [rescue robots]. IEEE Robotics Automation Magazine
11(3), 50–61 (Sept 2004)

25. Muscettola, N., Nayak, P.P., Pell, B., Williams, B.: Remote agent: To boldly go
where no AI system has gone before. Artificial Intelligence 103(1-2), 5–48 (1998)

26. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng,
A.: ROS: an open-source robot operating system. In: Workshop on Open Source
Software at the International Conference on Robotics and Automation. IEEE,
Japan (2009)

27. Rao, A.S., Georgeff, M.P.: BDI agents: From theory to practice. In: Proceedings
of the first International Conference on Multi-Agent Systems. pp. 312–319 (1995)

28. Reiter, R.: The frame problem in situation the calculus: A simple solution (some-
times) and a completeness result for goal regression. In: Lifschitz, V. (ed.) Artificial
Intelligence and Mathematical Theory of Computation, pp. 359–380. Academic
Press Professional, Inc., San Diego, CA, USA (1991)

29. Shukla, A., Karki, H.: Application of robotics in offshore oil and gas industry – A
review Part II. Robotics and Autonomous Systems 75, 508–524 (2016)

30. Singh, B., Sellappan, N., P., K.: Evolution of industrial robots and their applica-
tions. International Journal of Emerging Technology and Advanced Engineering
3(5), 763–768 (May 2013)

31. Støy, K., Brandt, D., Christensen, D.J.: Self-Reconfigurable Robots. MIT Press
(2010)

32. Tate, A.: Generating project networks. In: Proceedings of the 5th International
Joint Conference on Artificial Intelligence - Volume 2. pp. 888–893. IJCAI’77, Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA (1977)

33. Webster, M.P., Fisher, M., Cameron, N., Jump, M.: Formal methods for the cer-
tification of autonomous unmanned aircraft systems. In: Proc. 30th Int. Conf.
Computer Safety, Reliability and Security. LNCS, vol. 6894, pp. 228–242. Springer
(2011)

34. Wei, C., Hindriks, K.V.: An agent-based cognitive robot architecture. In: Program-
ming Multi-Agent Systems, LNCS, vol. 7837, pp. 54–71. Springer (2013)

35. Wilcox, B.H.: Robotic vehicles for planetary exploration. Applied Intelligence 2(2),
181–193 (1992)

	Plan Library Reconfigurability in BDI Agents

