
Genetic Basis of Longevity and

Age-Related Diseases: Evidence from

Genetic Association Studies

Thesis submitted in accordance with the requirements of the University of

Liverpool for the degree of Doctor of Philosophy

By

Jingwei Wang

February 2019



Acknowledgement

I would like to thank my supervisors, Dr. João Pedro de Magalhães and Prof. Andy

Jones for their advice and guidance during my study. It is such an honour to work

with you.

I would like to thank all the members of Integrative Genomics of Ageing Group and

many friends who have supported me over the four years. I would like to thank Dr.

Aoife Doherty for her generous help in writing up this thesis.

Finally, I would like to thank my wife Zhi for her support. The daily lunchbox brought

me courage to face any challenge. To my parents for their unwavering support.

i



Abstract

Ageing is a complex process that happens in almost all organisms. Many factors are

involved in the ageing process. Age is a major risk factor for the onset of many diseases

that severely affects life quality and lifespan in almost all known organisms, including

humans. Studies focusing on ageing revealed that both biological and non-biological

factors can affect the ageing process through direct or indirect manners. For example,

in humans, the clustered distribution pattern of centenarians and supercentenarians

in families and the plasticity of lifespan due to genetic manipulations and diet in

model organisms further support the theory that ageing is a complex, multifactorial

phenotype.

Among the factors that could affect ageing and longevity in model organisms and

in human populations, genetic factors are of prime importance. As the fundamental

element that distinguishes one from another, on a per-species level as well as on an

individual level, genetic make-up determines the style of growth, metabolism, and

adaptation to external environment of organisms. The existence of genetic variation

among species and individuals shaped the differentiation in metabolic pathways and

phenotypes such as ageing.

In this thesis, genetic factors were compiled and analysed to reveal their relationship
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with longevity and ageing. In this regard, an introduction of ageing theories and

ageing research is described in Chapter 1. Following this, Human Longevity-Associated

Genes (HLAGs) from hundreds of published longevity-genetic association studies were

manually curated and implemented into a user-friendly database – the LongevityMap

(http://genomics.senescence.info/longevity/). The process of implementing the

LongevityMap is described in Chapter 2.

In the following two chapters, the features (attributes) of those HLAGs collected in

the LongevityMap were analysed. Functional enrichment analysis, which is a powerful

tool to gather common functions from a list of genes, was utilised in analysing the

HLAGs in the LongevityMap. The functional enrichment analysis of HLAGs revealed

enriched clusters of important metabolic and cell signal pathways. Additionally, the

metadata, such as the involvement of pathways, of those HLAGs, which represents

the attributes of the gene set of HLAGs in LongevityMap, was also investigated. The

analysis of this metadata revealed novel perspectives for ageing research. The results

showed evidence of how candidate genes were selected for longevity-genetic association

studies by researchers, as well as how researchers typically submitted and published

the results. These explorations are described in Chapter 3 and Chapter 4.

Although thousands of genes have been examined for their association with longevity,

very few of them have been consistently observed in different studies. Based on this,

perhaps genetic heterogeneity could affect our understanding of the process of ageing,

including longevity and age-related diseases. Through this concept, we investigated the

relationship between genetic heterogeneity and traits/diseases that has been proven to

be ageing related. A measurement of nucleotide changes on the gene level was defined

and termed as “Genetic Diversity (GD)” (described in section 5.3.2.3) to represent

the genetic heterogeneity on gene level. The analyses showed there was consistent

correlation between gene length and the number of traits associated with the gene in
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Genome-Wide Association Studies (GWASs), but not between the GD and the number

of traits associated with the gene. The GD of human Age-Related Traits/Disease

(ARTD) associated genes, some cancers associated genes and Early Onset Disease(EOD)

genes were also investigated. Results showed genetic heterogeneity in EOD genes were

significantly higher than in ARTD or EOD genes. These analysis and results are

described in Chapter 5.

In conclusion, HLAGs identified by genetic association studies are a valuable resource

for ageing research. Organising those HLAGs into the LongevityMap database further

facilitates the usage of HLAGs data, even though publication/study biases may exist.

The results from functional enrichment analysis and pathway analysis not only verified

the importance of some key biological functional pathways in affecting lifespan but also

gave some hits on other pathways that could contribute to ageing/longevity. Finally,

correlation analyses showed GWAS results are affected by gene length or GD. GD is

different in ARTD, cancer and EOD associated genes.
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Chapter 1

Introduction

1.1 Ageing and ageing research

1.1.1 Ageing

“Ageing is an intrinsic process of loss of viability and increase in

vulnerability.” (Comfort, 1964)

“Ageing is usually defined as the progressive loss of function accompanied by

decreasing fertility and increasing mortality with advanced age.” (Kirkwood

et al., 2000)

“Ageing is a universal, intrinsic, progressive and deleterious process.” (Viña

et al., 2007)
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The current definition of ageing is usually quite flexible and changes from time to time

with the advance of medical and ageing research. Different research areas may use a

slightly different definition of ageing. In spite of this, all the definitions of ageing do

share some common concepts: ageing is universal, intrinsic, progressive and deleterious

(Viña et al., 2007).

In Animalia Kingdom, organisms age differently, both in the ageing rate and the

longevity. For example, Roundworm (Caenorhabditis elegans or C. elegans), a common

organism used in ageing research, has a typical lifespan of 2 to 3 weeks, while Ocean

quahog clam (Arctica islandica) can live more than 507 years (Butler et al., 2013).

Hydra does not show signs of ageing (Martínez, 1998). Much shorter lifespans were

usually observations in vertebrate organisms. To date, the documented most long-

lived vertebrate is a Greenland shark (Somniosus microcephalus). With an estimate

of 392 ± 120 years (Nielsen et al., 2016), the lifespan of Greenland shark is ∼2 to

4 fold of human species. In primates, humans have the longest lifespan, with the

documented maximum lifespan is ∼122.5 years old. Chimpanzee, the closest relative

of human species, only has the documented maximum lifespan ∼65 years, which is

roughly half of the longest lifespan of human(for an up-to-date list, please see the

AnAge database (http://genomics.senescence.info/species/index.html). The

variation of maximum lifespan across the species suggests ageing is determined by

many factors. Apparently, genetic factors are among those.

Global human average lifespan increased steeply in the past two centuries. Notably,

in the latest half century, the global life expectancy at birth has been extended by

roughly 20 years (Source: Life expectancy at birth http://www.worldbank.org). In

this background, the global median age was also improved roughly by 20 years. Several

factors contributed to this shift in global age structure. The first part of contribution

can be accounted for the combination of fertility decline in recent years and the “Baby

2
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Boom” after World War II (Centers for Disease Control and Prevention, 2003; Sander

et al., 2014). Others including the improved living environment including clean drinking

water, improvement of nutrients and the decrease of premature death also contributed

to the shift in global median age (Fries, 1980; Bunker, 2001). In addition to those above,

the advance of medical assistance in prolong the lifespan of Cardiovascular Disease and

Cancer patients also played an important role in supporting the lifespan extension in

the last decades (Passarino et al., 2016). In contrast to the huge improvement in global

median age, the maximum lifespan fluctuated only in a much smaller scale. Therefore, it

was proposed that maximum lifespan is predetermined and unchangeable. Individuals

may achieve an age close to the predetermined maximum lifespan but hardly push any

further (Thatcher, 1999). The expectation of curing ageing completely (i.e. obtain

immortal lifespan) in human is still premature (Vijg et al., 2008).

Nonetheless, investigating and understanding the ageing process in order to delay or

alter it for a better, healthier lifespan is still of importance. Individuals sharing a similar

lifespan could have a different quality of life due to the time point of disease onset

(Figure 1.1). A better understanding of the ageing process and applying appropriate

interventions targeting postpone the onset of age-related diseases and prolong lifespan

could improve the life quality and the outcome of ageing.
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Figure 1.1: Illustration of lifespan extension and health-span extension. Taken

from (Hansen et al., 2016)

.
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1.1.2 A brief history of ageing research

Whether you like it or not, “we are all destined to age” (Mori et al., 2009). It has been a

long history since human started aware of ageing and kept seeking interventions. About

5,000 years ago, The Epic of Gilgamesh enthusiastically searched for the “Fountain

of Youth” (Magalhães et al., 2004; Vijg et al., 2008). Later, around 220BC, Qin Shi

Huang, the first emperor of Qin Dynasty in ancient China, was believed to seek magic

pills that could make him live eternally. They were not alone. Several hundred years

later, it is believed that Cleopatra VII Philopator of Egypt, who was the last active

pharaoh of Ptolemaic Egypt, tried everything in her power to keep her beauty (Mori

et al., 2009). These efforts, including those that focused on magical power and not

supported by scientific evidence, can be considered as the earliest sprout of ageing

exploration.

In modern times, scientifically study of ageing dates back to as early as 1932, when

senescence was first described as “the after-result of the mechanism which secures

specific size” (Bidder, 1932). Based on the evidence from “Giant trees, cultures of

chick cells and of paramecium, measurements of plaice and of sponges”, it was believed

“the indefinite growth is natural” (Bidder, 1932). Decades later, in 1961, the cellular

senescence was discovered by Hayflick et al. They found normal human fibroblasts

can only divide a finite number of times in vitro before entering a state of irreversible

cell-cycle arrest, which was defined as cellular senescence (Hayflick et al., 1961). This

senescence state of cell was later considered as one of the contributors to organismal

ageing phenotypes and age-associated chronic disorders (Collado et al., 2007; Magalhães

et al., 2018; Kang et al., 2017).

In the light of the description of senescence, ageing research started to grow vigorously

in the following years. With the accumulation of observations and experimental data
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from ageing related phenotype changes (such as described in (Wiesner, 1932)), many

hypothetical theories tried to explain ageing mechanisms emerged during this time.

Because these theories were based on very limited experimental data, many of them

were redundant and unclassified in today’s view. It was not unusual to see one ageing

theory overlaps or contradicts with another. Some of them were even flawed. Even

so, some ideas stood out of the crowd and formed the cornerstone of future ageing

research.

In the final quarter of last century, ageing research progressed considerably. Those

miscellany of ageing theories were simplified with the aid of rapid development of

modern molecular biology and sequencing technology coupled with the bioinformatics

approach (Magalhães, 2015). Several hundreds of ageing theories from previous studies

were explained and rationally classified (Medvedev, 1990). In the meantime, data in

ageing research was growing at an unforeseen speed. High-throughput data together

with integrative methods from multiple disciplines further promoted the understanding

of ageing and the building concepts of ageing theories in both model organisms and

humans (Kirkwood, 2011).

1.1.3 Ageing research in non-human model organisms

Model organisms have been aiding scientific research for a long history (Müller et al.,

2010). In addition to the most well-known advantages including the easy-accessibility,

high reproducing ability and amenability to experimental studies, model organisms

have other specific advantages in ageing research.

Firstly, model organisms are normally kept in constrained laboratory environments,

which facilitates the experimental conditions manipulation and data collection. Ageing
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is a complex process that involves environmental, genetic factors and the intense

interactions between them (Passarino et al., 2016; Benayoun et al., 2015; Dato et al.,

2017). The constrained laboratory environment provides the feasibility of observing

the effect of single factor alternation. Secondly, model organisms are much easier and

cheaper to reproduce a large number of offspring, which allows large-scale observations

of the population dynamics at a relative economic cost (Wiesner, 1932). Last but not

least, widely-used model organisms normally have a much shorter lifespan compared

to human, which makes the observation of mortality and longevity changes between

generations become feasible. For example, Caenorhabditis elegans (C. elegans), one of

the most popular model organisms in ageing research, has a lifespan of several weeks

(Uno et al., 2016) but shares many common biological features with human (Kenyon,

2010; Horvitz, 2003; Brenner, 1974). On the other hand, a typical reproduction

interval in human is 20∼30 years. Comparing to C. elegans, it is much more difficult

to carry out observations and gather a large amount of data in human subjects within

a relatively short time. These advantages make model organisms are popular in ageing

research. As a result, ageing research in model organisms brought not only the boom

of data but also new concepts in human ageing research. Mechanisms and theories of

ageing postulated from model organisms have been proposed for intervention in human

population (Heilbronn et al., 2003). One example is caloric restriction (Holloszy et al.,

2007), which is obtaining extended lifespan by reducing the intake of caloric with out

being malnutrition.

Although we do share some common ageing characters with model organisms (Jones

et al., 2014), we cannot neglect variations exist between human and model organisms.

A recently systematic analysis of ageing and age-related disease genes across several

organisms, including M. Musculus, D. melanogaster, C. elegans and S. cerevisiae, in

ageing research confirmed human longevity-associated genes only modestly overlapped

with other model organisms. A further investigation in the overlapped genes between
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ageing associated genes and age-related disease genes verified the difference in

overlapped genes in individual organisms, and this overlap decreased with the increase

of evolutionary distance with human (Fernandes et al., 2016).

1.1.4 Ageing research in human

The difference between model organisms and human brings extra barriers in translating

results obtained in model organisms to human population. The worldwide growth of

elderly populations raises both social concerns and academic interests in ageing research.

As age is a risk factor for many chronic diseases, including cancers (Kennedy et al.,

2014), there is also an urgent need to progress ageing research in human. Deciphering

the mechanisms of ageing could extend health-span by improving the morbidity and

reducing mortality in elder populations (Figure 1.1).

Studies have been designed to isolate factors that could contribute to or impair human

longevity. For environmental factors, by comparing the lifestyle of long-lived individuals

to other cohorts, scientists isolated several beneficial lifestyles such as appropriate

amount exercise (Gremeaux et al., 2012), calorie restriction (Bordone et al., 2005) and

Mediterranean diet (James et al., 1989; Trichopoulou et al., 2000).

For the genetic basis of longevity, genetic association studies identified many risk

alleles that could affect human longevity (see Chapter 2). Even many alleles have been

reported, they are not easy to be verified by another study (discussed in Chapter 4).
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1.2 Mechanistic theories of ageing

Many theories of the ageing process have been proposed in the past few

decades(Medvedev, 1990). Yet, none of them is capable of describing the whole

picture (Kirkwood, 2011; Davidovic et al., 2010). The failure in trying to explain

ageing process by single theories revealed the complexity of ageing process and the

limited knowledge in ageing. Nonetheless, some of those theories were consistent with

the experimental verifications in the later years and spread in the field. Herein,

several widely-accepted theories in explaining ageing were summarised and reviewed

in order to describe the latest knowledge in ageing.

1.2.1 Accumulation of DNA damage

Nuclear DNA damage

DNA damage is defined as abnormal structural changes on DNA strands. DNA changes

occur in all cells regularly. It has been estimated that DNA damage occurs roughly

10,000 times a day in a single cell (Bernstein et al., 2013). DNA damage is susceptible to

many factors from both inside the organism and outside environment. External factors,

such as ultraviolet radiation and chemical toxins, and intrinsic factors, such as Reactive

Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), contribute to DNA

damage. While most of these damages can be corrected by DNA repair mechanisms in

nuclear DNA, some of the damages may be corrected improperly. Therefore, the total

damage accumulates with the increasing of age. As nuclear DNA takes a big proportion

in the total DNA(approximately > 99%). It is accused the ageing process is the

exhibition of accumulated damage in nuclear DNA. This time-dependent accumulation
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of damage will eventually alter the homeostasis of cells and causes senescence (Freitas

et al., 2011). For example, in less replicating active cells such as neurons in central

nervous system and myocytes in cardiac muscle, the adverse effect resulted from

accumulated damage is more obvious(Hoeijmakers, 2009; Holmes et al., 1992).

Mitochondrial DNA damage

Mitochondrial DNA (mtDNA) is more susceptible to damage factors compared to

nuclear DNA. Naturally, it is closer to the Reactive Oxygen Species (ROS) in the cell

than nuclear DNA, therefore more exposed to ROS and therefore more susceptible

than nuclear DNA. mtDNA lacks protection from histone protein and suffers a weaker

repair mechanism (Freitas et al., 2011). All of these factors make mitochondrial DNA

more exposed, and therefore more susceptible, to be oxidised than nuclear DNA does

(Richter et al., 1988; Shigenaga et al., 1994). Because mitochondrial supplies energy

for the maintenance of cell functions, the impaired mtDNA gradually compromise cell

functions through compromised energy supply and cause senescence (Jin, 2010).

1.2.2 Free radical theory

The free radical theory of ageing was firstly described in the 1950s by Harman

(Harman, 1956; Harman, 2009). Free radicals such as superoxide anion O2
- and

hydroxyl radical (‘OH), are generated as by-products of aerobic respiration and

various catabolic processes in living organisms (Halliwell, 1991). Free radicals exert

their effect on easily oxidized substances and the cellular constituents nearby where

they were produced. eventually, cellular functional efficiency, reproductive ability and

potentially genes will be impaired (Harman, 1956).
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As mitochondria are the main place where aerobic respiration takes place (also where

free radicals were produced), they are susceptible to oxidative attacks from free radicals.

Because mtDNA encodes important oxidative phosphorylation machinery and it has

a much weaker repair mechanism, the damage to mtDNA accumulates much faster

than nuclear DNA (Taanman, 1999; Freitas et al., 2011). The damaged mtDNA

impairs the efficiency of the respiratory chain, which lead to the accumulation of

free radicals (Hiona et al., 2008; Harman, 1972). The excess of free radicals could

damage DNA or membrane along with other cellular structure in the cell, therefore

cause the cell senescent (Holmes et al., 1992). Ageing is a result of damage from

the free radicals produced from oxygen metabolism (Cui et al., 2012). This theory is

supported by the experiments conducted in Drosophila and mice. In both organisms,

introducing antioxidant substances into daily diet prolonged average and maximum

lifespan comparing to the controls (Ernst et al., 2013). Lastly, this theory is also

proposed for the mechanisms operating underneath the facts of prolonged lifespan and

delayed ageing in model organisms under Caloric Restriction (CR). In animals under

CR, the damage caused by ROS was slowed because ROS was generated in a slower

pace (Weindruch, 1996).

1.2.3 Telomere erosion theory

Telomeres are repetitive DNA sequences at the ends of linear chromosomes. Studies

have suggested that the average length of telomeres in both human and other organisms

is inversely correlated with the counts of DNA replication events (Harley et al., 1990).

When the telomeres are depleted, the cell loses its ability to divide. This initiates the

deficiency of regeneration in cells, then tissues and finally the whole body. This ongoing

telomere depletion process, which happens inside cells, couples with outside ageing

traits on whole body level (Magalhães, 2011). Experimental data revealed consistent
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correlation between the length of telomeres and chronological age. Therefore, the

length of telomeres can be used to reflect biological ageing (Benetos et al., 2001).

1.3 Evolutionary based explanations

Aside from all of the theories above, some researchers claim that the process of ageing

is predetermined; that ageing process follows a programmed manner (Jin, 2010).

Survival rate, endocrine system and immunological response are programmed to

decline with age (Davidovic et al., 2010; Heemst, 2010). With the advance of

chronological age, the capacity of maintaining homoeostasis (i.e. Organ Reserve)

gradually declines, therefore increasing the vulnerability of diseases and thus mortality

(Viña et al., 2007). The observations from prolonged average and maximum lifespan

were just parallel results from decreased premature mortality such as traumatic death.

Manipulations that increased lifespan only push the boundary closer to programmed

maximum lifespan. One of the major evidence that supports this hypothesis is the

disproportional increasing in average and maximum lifespan in the latest centuries.

The programmed ageing theory emphasises on the optimal balance between survival

and metabolic cost. Because the resource that an organism can access is limited, the

organism has to allocate the energy between reproduce next generation and the

maintenance of the organism himself. The programmed ageing accelerates the

generation turnover rate and limits the total population size, which is beneficial for

maintaining the species within a limited resource environment. In the scope of this

theory, any individual lives longer beyond than successfully breeding next generation

would be a waste of resource (Kirkwood, 2011). However, this theory does not take

social factors into account. For example, an elder individual could have more
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knowledge and experience which might be useful in helping the population survival.

Long-lived grandparents could help in breeding their grandchildren successfully.

1.4 Genetic basis of ageing

1.4.1 Genes, environments and traits

It is clear that genetic sequence partially determines traits/phenotypes in humans.

For a given trait, the contribution can come from genes themselves, the complex

interactions between genes and environmental factors, interactions between genes, or

alternative status of genes, such as epigenetics. How epigenetics could affect traits

is beyond the scope of this thesis, herein, only contributions from genetic factors are

discussed.

During meiotic cell division and gamete formation, genetic information from both

parents are passed on to the successive generation, and therefore contributes to the

traits/phenotypes of offspring. Based on the relationship between different genotypes

in affecting the phenotype, several patterns in how genotypes could contribute to

phenotypes have been proposed:

• Dominance pattern: where individual carriers of heterozygote genotype exhibit

indistinguishable phenotype as homozygote individual carriers.

• Partial dominance pattern: where the heterozygote genotype individuals exhibit

intermediate phenotypes between the two homozygotes.

• Codominance pattern: where offspring simultaneously exhibit phenotypes from
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both parents. For example, in human ABO blood group system, Individuals with

blood type AB have both A protein and B protein on the surface of red blood

cells (Stratton, 1952).

• Recessive pattern: where a trait is only exhibited when the genotype is

homozygous. The effect of recessive genes is likely to be masked by other genes

even they co-exist in the heterozygous genotypes.

• Overdominance pattern: where the heterozygote is better adapted than either

homozygote.

In addition to the above described relative dominate and recessive properties of genes,

other properties could also be involved in determining phenotypes. For example,

expression Quantitative Trait Loci (eQTLs) could contribute to phenotypes by affecting

gene expression levels (Nica et al., 2013). The distance between eQTLs and the

gene that is related can be physically close or far away (even in anther chromosome).

Sometimes, a trait of an individual is not simply determined by a single gene or allele,

but rather by a group of genes/alleles. Each gene/allele independently contributes to a

small portion of the overall trait. In this case, it called additive allelic effects, because

the combined effect of those genes/alleles can be estimated by adding together their

separate effects (Ashton, 2013). While not all the traits exhibit in a discrete manner,

some traits reveal as a continuous distribution of phenotypes, such as height or blood

pressure. These traits are named as quantitative traits. Normally, these traits are

determined by the cumulation effects of many genes/alleles and their interaction with

environmental factors.
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1.4.2 Effects of evolution

Natural selection acts on traits through environmental factors. The variation of traits,

which is usually the representation of variation of individual genotypes underneath,

will face different selection pressure in the same environment. The pressure that comes

from environment exerts on the individual through traits will affect the fitness, which

describes individual reproductive success, of the individual and therefore has effects

on the genotypes in the offspring gene pool. Based on the result of genotype/allele

frequency change in the next generation after natural selection, natural selection can

be classified into the following three classes.

• positive selection: when an allele that determines traits that has better fitness

in a given environment, the frequencies of the allele will increase in the offspring

generations. If the environment does not change, the frequency of the allele will

increase until all the individuals in the population carry the same allele in which

case, we say this allele is fixed in the population.

• purifying selection happens as the opposite of positive, alleles determines

deleterious traits are being selected against. As a result, the frequencies of those

deleterious alleles (in a given environment) will decrease in the offspring

populations until they are completely removed in the population.

• stabilizing selection often happens with the overdominance pattern, that is

heterozygote has better fitness than either homozygous genotype. Therefore,

the frequencies of the two alleles are maintained by natural selection. One good

example of stabilizing selection is the sickle-cell anaemia related alleles. The

alternative allele codes sickle-shaped red blood cell due to the deletion of an

amino acid in haemoglobin. Sickle-shaped red blood cells can “collapse” around

the parasites in a malarial infection and therefore help to remove them out of
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blood. However, sickle-shaped red blood cells are not as efficient as normal red

blood cells in transporting oxygen. Therefore, in the malaria risk areas, those

two alleles were maintained by pressure from the environment. Neither of the

two alleles gaining better fitness over the other allele.

Not all the allele have effects on the phenotypic traits, a big portion of alleles does not

have direct influences on the phenotypic traits. They are functionally neutral. These

neutral alleles account for a big proportion of total genetic variation. Because they are

functionally neutral, natural selection cannot exert on them through phenotypic traits,

therefore their variation is determined by other processes. Genetic drift, which refers

to the drastic change of allele frequencies in the population due to chance, could lead

to a loss of genetic variation. Because genetic drift is a stochastic process and the gene

pool of “drifted” population is a subset of the original population, the allele frequencies

in “drifted” population could differ from the original population due to the random

sampling. The rare allele in the original population could become dominate allele in

the “drifted” population. The genetic drift is dominated by the smallest population size

(bottleneck) in a fluctuate-sized population (Masel, 2011). One of the most famous

genetic drift in human history, the Out of Africa bottleneck severely reduced the

genetic variation in the human population and lead to the prevalence of the oldest

alleles (alleles originated in Africa) (Cavalli-Sforza et al., 2003; McClellan et al., 2010).

Genetic linkage happens when two alleles are close enough on a chromosome. During

the recombination in gametes formation, these two alleles are more likely to stay

together. As a result, a much higher co-occurrence of both two alleles is observed

in population compared to if the two alleles are co-existing purely by chance. This

is called Linkage Disequilibrium (LD). If two or more alleles are routinely observed

in a population as a result of LD, then, the combination of those alleles formed a

haplotype. The existence of LD has an effect on the genetic variation of the population.
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A functional neutral (or even slightly deleterious) allele can be indirectly selected by

the environment due to another allele has a strong fitness and in LD with it. This

phenomenon is called genetic hitchhiking. Overall, the change of the human gene pool

over time is a result of the action of many factors (mutation, migration, genetic drift

and natural selection) (Arnold, 2001).

1.4.3 Genetic variation and genetic diversity

From the perspective of genetics, the underlying differences that distinguish one

individual from another are the differences of genome DNA sequence. The subtle

difference in DNA sequence contributes many aspects of human life, from very obvious

skin colour to the less obvious risk of any disease or the ability to live survival until a

late age. Several types of genetic variation in human genome (Figure 1.2) could affect

phenotypic traits in direct or indirect ways. Genetic association studies, usually used

to detect the potential causal loci, can examine SNPs, Copy Number variation (CNV)

or even haplotype for the potential risk loci. In longevity and disease association

studies, the most commonly used type of locus is SNP (Budovsky et al., 2013).

In the scope of this thesis, Genetic diversity(GD) refers to a measurement to describe

the base pair difference of SNPs between genes (Chapter 5). GD was calculated based on

the allele frequencies of a SNP locus in a given gene pool (usually a population cohort).

The values of GD directly reflects the nucleotide change of genes in a population (See

subsubsection 5.3.2.3 for method description). By examining genetic diversity, we could

obtain the most straightforward information in nucleotide changes of a gene. As genes

determine traits and traits are under the selection of environment, investigating the

difference of GDs between genes could potentially reveal information in how selection

pressure (comes from environmental factors) has been exerting on the phenotypic
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traits linked genes. Then, variants within a gene can be further examined to reveal

the contribution to certain traits. In the following sections, only genetic variation in

human population was discussed.

1.4.4 Complex traits, diseases in human population

Genetic variants and environmental factors governed almost all the phenotypic traits,

which determines the outside appearance and inside susceptibility to diseases in human

population. However, The long existed selection together with genetic patterns blurred

the causation between genotype and phenotype. Although methods, such as Genome-

wide association study (discussed in section 1.4.5), have been developed to recover

the connections between genotypes and phenotypes, they are facing low explanation

rate. Therefore, which SNPs contribute to complex traits and disease is still under

debate. At present, there are two major theories on how genetic variants affect traits or

diseases: “Common Diseases- Rare Variants theory (CDRV)” and “Common Diseases-

Common Variants (CDCV) theory”.

In CDRV theory, it is proposed that rare alleles are the causal factor of common

diseases/traits: “multiple rare alleles with high penetrance collectively contribute to a

common phenotype in the general population” (Cohen, 2004). Because rare alleles are

in low frequency in the population, GWAS scanning method, which usually only scans

common SNPs in population, is not able to detect those variants (Goldstein, 2009).

The other theory, however, proposed that the common traits/diseases are displayed as

a result of contributions of many common variants ( > 5%) (Pritchard, 2001). Each

individual variant contributed a small fraction of total results. Because of this, the

small contribution from single variant is easily escaped from being captured by GWAS.
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Figure 1.2: Classes of human genetic variants. (Taken from (Frazer et al., 2009).)
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1.4.5 Genetic association studies

Genetic association studies are effective for screening the substantial relationship

between genetic variants (for example SNPs) and phenotypic traits. It identifies the

risk variants by calculating the odds of risk between case group and control group.

Risk alleles for many diseases and traits, such as cancer, Alzheimer’s diseases, body

mass index as well as ageing, have been successfully identified by genetic association

studies (Easton et al., 2007; Saunders et al., 1993; Schächter et al., 1994; Speliotes

et al., 2010). As a powerful tool to reveal association facts (not necessarily biological

causation) between genotype and phenotype, it is especially useful in disclosing the

genetic architecture of trait and screening candidate loci for functional validation

(Korte et al., 2013).

The scope and capacity of genetic association study design have been changing over

the time. Earlier studies generally focused on a very limited number of loci. Some of

them investigated as few as one single locus. This is mainly due to the limited

number of known human genetic variants loci as well as the restrictions from

experimental throughput capacity. The variants being tested are usually supported by

evidence from other sources, such as model organism or in vitro experiments.

Therefore, the design is also known as Candidate Gene Association Study design

(CGAS). Things have been changed greatly since the release of The 1000 Genome

Project (1KGP) pilot phase data. Thousands of new loci were identified from the

global population. The newly discovered variant loci, together with the Chip-based

variants calling technology, facilitated genetic association study workflow in a more

cost-effective and high-throughput manner. Chip-based sequencing technology has

made the whole genome scanning for trait-associated loci became feasible. The

number of loci under investigation in a single study increased enormously. It is no

longer uncommon to see hundreds of variation loci were investigated in a single study.
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As the number of variants being tested in Genetic Association Studies increasing, a

new method that can examine variants genome-widely emerged. This method is named

as Genome-Wide Association Study (GWAS). Unlike CGAS, which heavily relay on

the supportive evidence of candidate variants, GWAS design does not need prior

knowledge of candidate variants before testing. It searches the associations between

genetic variants and traits by simply testing almost all the known tagging variants

genome-widely. Because no biological evidence behind the association is needed in

advance, it is hypothesis-free (Table 1.1).

GWAS has obtained a great achievement in discovering the connections between

phenotypic traits to potential risk variants. Through finding a small set of risk

variants, the scope of where true causal variants are likely to located in is scaled down

from whole genome-wide to a small set of identified risk variants, which can then by

used for experimental verification. As association is not causation, GWAS is useful in

a way of capturing a set of “high-risk” variants (where the casual variant would be)

(Korte et al., 2013) rather than pinpoint individual casual variant.

Until September 2016, 24,218 unique SNP-trait associations have been identified by

GWAS (MacArthur et al., 2016). Although these potential connections between loci

and traits provided new targets for exploring the underneath mechanisms, GWAS does

have its intrinsic limitations.
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Table 1.1: Comparison of GWAS and Candidate Gene Association Study (CGAS)

GWAS CGAS

Scope Whole genome Any interested loci
Typical number of loci involved Millions 1 to hundreds

Hypothesis-free Yes No
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One major problem is the discrepancy in reproducing the results. GWAS results are

neither easily being reproduced from one population to another population nor not

easily being reproduced from one study to another (Frazer et al., 2009). At present, the

majority of GWAS were performed in European and Asian populations, which could

be a major limitation on the detection of variants (Manolio et al., 2009). Another

issue that GWAS has to face is the weak explanation rate. Only less than 10% of

genetic variants were involved in explaining complex traits. The rest almost 90% of

the genetic variants were unexplained common variants that barely contribute to the

explanation of complex traits (Plomin et al., 2009). In addition to this low explanation

rate, most (>80%) of the identified SNPs were located in intergenic region. Even the

regulate role of these intergenic-region loci have been proposed, few of them have been

experimentally verified (Hindorff et al., 2009).

Many reasons could lead to the fact of why such big number of variants were

unexplained. One proposed reason is lacking statistical power in detecting variants.

Another reason could be due to the contribution comes from rare variants. Because

tagging SNPs in GWAS cannot capture those rare variants, there contribution did not

get revealed. To date, genetic variants that have been identified by GWAS only

explains a small fraction of the susceptibility comes from inherited factors, even for

those well-identified diseases such as Crohn’s disease (Barrett et al., 2008).

1.4.6 Achievements

Many factors could affect process and outcome (healthy lifespan and/or longevity) of

ageing. Successful ageing is closely related to the environment, medical support as

well as genetic factors. Among all the factors that could affect ageing, genetic factors

constitute a large portion of total ageing effects. Results from studies on twin siblings
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suggested genetic variation can explain around 25% of all the differential of longevity.

Family-based follow-up studies further confirmed this (Caselli et al., 2006; Herskind

et al., 1996; Hjelmborg et al., 2006; Skytthe et al., 2003). Progress has been made in

finding genes that associated with longevity.

One type of extreme example that genetic factor contributes to ageing is the

mechanisms operating underneath Progeroid Syndromes. Mutations in single genes

lead to accelerated ageing in those progeroid syndrome patients, such as Werner

Syndrome RecQ Like Helicase (WRN ) gene in Werner’s Syndrome and lamin A/C

(LMNA) gene in Hutchinson-Gilford Progeroid Syndrome (Agrelo et al., 2006;

Dreesen et al., 2011). The biological basis of these syndromes are mainly due to

impaired function of DNA repair proteins. Patients affected by these syndromes

reveal older appearance than their actual age should have.

Besides those examples that single mutation can have a remarkable impact on ageing,

it is commonly accepted that ageing is a complex trait and regulated by multiple

genes. As described in programmed ageing theory, the duty of soma finishes after

reproduction. Therefore, it is very much likely the longevity is controlled by multiple

genes (Kirkwood, 2011). Also, evidence supports the hypothesis that lifespan is plastic

and can be responsive to interventions of nutritional, pharmacological as well as genetic

factors (Magalhães, 2011; Vijg et al., 2008; Wilkins et al., 2003).

In contrast, some researchers argue that ageing is ineluctable and genetics should not

control it because obvious ageing-related traits normally appear after typical active

reproduction ages, therefore, it escapes natural selection (Johnson, 2002). However,

experiments carried out on model organisms demonstrated that genes do control

lifespan. For example, the Mammalian Target of Rapamycin (mTOR) pathway and

insulin signal pathway do have impacts on longevity (Johnson et al., 2013). The
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discovery of mutant genes in different biochemical pathways in model organisms that

could affect lifespan validated the point that lifespan can be affected by genetic

variation (Kenyon, 2005; Passarino et al., 2016).

As of July 2013, 328 genes that associated with longevity have been identified in

human by both GWAS and candidate gene association designs (discussed in section

2.5.1) (Budovsky et al., 2013). 99 genes were identified by CGASs and 243 genes

were identified by GWASs. 14 genes were identified by both methods, they were

APOC3, NR3C1, SOD2, LMNA, PPARG, KL, APOC1, AKT1, IGF2, MLH1, APOE,

TOMM40, FOXO1, FOXO3. Among those 14 genes above, only LMNA is a single

gene disorder gene that leads to a progeroid syndrome. Others are all metabolic

functional related genes. For example, APOC1, APOC3, APOE are apolipoprotein

metabolism regulating genes therefore correlated with the onset of cardiovascular

diseases and neurodegenerative diseases and eventually affects human lifespan. Actually,

the decrease of death in cardiovascular diseases patients hugely contributed to the

extension of global average lifespan (Passarino et al., 2016).

1.5 Challenges in ageing research

Ageing has been studied for a very long time. Results obtained from both model

organisms and human (see section 1.2) have been contributing our understanding in

ageing. Massive progress has been achieved in ageing research over the past several

decades. However, we are still far from understanding the whole picture of ageing,

particularly in human. Obstacles still exist in deciphering ageing.
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1.5.1 Of model organisms

One of the major challenges is the transformation of achievements obtained from model

organisms to human. Model organisms do have their advantages in research (see section

1.1.3). Majority of current knowledge in ageing was derived from experimental data

in popular model organisms, namely yeast, nematode, fruit flies and rodents (Cohen,

2018). However, most of these popularly used model organisms are not phylogenetically

closely related to human. It is clear that demographic trajectories such as relative

mortality and fertility, survivorship varies a lot along the “tree of life” (Jones et al.,

2014). The difference between model organisms and human could introduce errors when

trying to explain the results obtained in the model organisms to human. For example,

mice have separate receptors for insulin and IGF-1, however, in worms and flies, there

is only one single insulin/IFG-1-like receptor (Kenyon, 2005). Another example is

cancer suppression mechanisms. As age-related diseases, cancers severely impair life

quality and longevity. In human and other mammals, cell apoptosis and senescence

prevent cancer from occurring, however, nematodes and files rarely develop cancer (Vijg

et al., 2008). Even though we share aspects of the ageing process with these model

organisms, it takes a huge amount of work to build connections and do the translation

work between human and model organisms. Not to mention the potential idiosyncratic

conclusions drawn from model organisms due to the high genetic homogeneity (Cohen,

2018; McClearn, 1999). In this sense, how directly we can transfer the knowledge

obtained from animal-based studies to human population is unclear (Tissenbaum,

2015; Vanhooren et al., 2013).

Apart from the organism itself, lacking of environmental variation is another barrier

in transferring lab experimental results to the real world. By far, the majority of

experiments were conducted in laboratories or controlled conditions that are different

from real-world complex environments where natural populations live in and lack
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of the ecology context (Cohen, 2018). Ageing has its intrinsic properties, however,

it also operates closely with the environment. Different species owns their private

characteristics and ways of interacting with the environment they live upon with.

The integration of external environmental factors could alter the expected patterns in

mortality, fertility and survivorship (Baudisch, 2011; Jones et al., 2014).

It is not easy to directly transfer the knowledge we obtain about ageing from model

organisms to benefit human species. Due to the different metabolic mechanisms

involved in ageing between human and other species, transformation and

summarization on animal-based data should be carried out. We cannot limit our

understandings to what we obtained from model organism studies, instead, we should

try to summarise from what we learn from the accumulating results. Building

universal models that are valid in both human and other organisms should be

targeted, rather than just revealing what happened in each model organism separately.

A system biology approach should be introduced into the pipeline of ageing research

(Kirkwood, 2011). In the meantime, introducing a wider variety of species into ageing

research (Cohen, 2018) and gathering experimental/observational data directly from

human population should never stop, even it is sometimes challenging. It is expected

that better-designed experiments, more sophisticated statistical methods and

availability of more data will cast light on the ageing research.

1.5.2 Of traits: longevity and ageing

The limitation in phenotyping imposes another level of burden in ageing research.

Complex trait, such as ageing, usually involves many signal pathways and metabolic

pathways and integrative with the environmental effects. Therefore, it is a huge

challenge to distinguish causes (reasons) from effects (results) in ageing research
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(reviewed in Magalhães, 2005).

Many researchers argue that too much focus has been placed on research in longevity

rather than ageing itself (Magalhães, 2005; Jones et al., 2014; Cohen, 2018). It is true.

Simply using an organism’s lifespan as a representation of ageing is not precise, because

a longer lifespan does not necessarily mean better life quality or a slowed ageing pace

(Figure 1.1).

Although the concept of using healthy lifespan instead of longevity as markers in

ageing research is attractive, it is not easy to translate it into reality because ageing

is a complex process with many factors involved in. Some researchers use metabolic

indexes as indications of “how healthy” an individual is (i.e. health-span), while others

use physical characters such as Grip Strength to represent it. But none of them is fully

capable as a gold marker in ageing research, nor to combine both. Not every aged

people will exhibit each particular characteristic that has already been widely using

in ageing research. The ambiguousness in defining age-related traits could potentially

impair the progress in ageing research.

In recent years, there is an increased interest in studying healthy ageing (Kennedy et al.,

2014). Healthy ageing research is a new concept and an elevation of current ageing

research. In contrast to current lifespan focused experimental design, healthy ageing

emphasises the independent living ability and disease-free lifespan. The continuous

introduction of new concepts brings new challenges into the ageing research field.

To date, it is still not possible to inclusively represent ageing with all traits that have

been used as markers for ageing research. In this sense, using longevity as a proxy in

ageing research is a reasonable compromise.
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1.5.3 Of cohorts

From the angle of intrinsic factors, the extent of genetic diversity in a species is

determined by the de novo mutation rate and the reproduction cycle. De novo

mutation occurs randomly across the genome. Through reproduction, germline de

novo mutations get the opportunity of being integrated into the lineage and passed to

offspring (Kimura et al., 1969). If a mutation happens in the genic region or

regulatory region of a gene, with the interference of environment, the de novo

mutation is either kept at a certain frequency or completely “swept out” in the

population. The stochastic mutation rate is low in nature. In human, the mutation

rate is as low as ∼ 1.2× 10−8 per nucleotide per generation (Kong et al., 2012).

Considering the current global population size and typical human generation intervals,

these SNPs need a long time to reach the current frequency in populations since their

de novo mutations. Therefore, the SNPs are relatively old and common variants. One

of the most well-known bottlenecks happened in human history, the Out of Africa

bottleneck, further reduced the genetic variability in non-African human population

(Chakravarti, 1999). Alternatively, to describe this from another perspective, the

Out of Africa bottleneck reduced the genetic variability carried by common ancestors

of current non-Africa populations. When common ancestors of current non-Africa

populations dispersed around the world, the genetic exchange between subgroups was

quite limited until long-distance transports are invented.

On global population level, human population exhibits a low divergence in terms of

genetic variability (Barbujani et al., 2013). Of this low genetic variability, 83% comes

from genetic variability between individuals (Lewontin, 1972). The relatively low

global genetic variability, as well as high genetic variability between individuals, bring

hurdles in the genetic association studies. In the scope of global population, lower
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genetic variability needs more samples to compensate in achieving a given strength

of statistical power (Tan et al., 2014). If results that universally apply to the global

human population are expected, huge sample sizes are necessary. In the scope of

this particular thesis, where human longevity and ageing related traits/diseases were

focused, long-lived individuals (LLI, i.e. centenarians and supercentenarians, who live

to or beyond the age of 100 and 110, respectively) were needed for investigations.

However, the number of LLI is quite limited, which obviously will impair the statistical

power.

On the other hand, the high genetic variability between individuals introduced excess

noises to the results of GWAS. Because the genetic variability between individuals is

high at the basal line, it will make the difference between groups hard to be detected.

In other words, When comparing the difference of genetic variability between LLI

cohorts and younger-aged cohorts, the actual difference contributes to longevity may

be immersed in the basal line genetic variability difference.

1.6 Summary

Ageing research has advanced obviously in the past decades. To date, it is commonly

accepted that ageing as an irreversible, intrinsic, universal and complex biological

process that cause deleterious effect, including gradual decline in function and increase

of vulnerability, with the increase of chronological age. Regardless of the achievements

and obstacles in ageing research mentioned above, there are still many questions need

to be answered. For example, in the human population:

1. It is known genetic factors contribute to the ageing process and outcome. But,
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what are those genes, do they share anything in common?

2. Ageing is a complex trait and many genes involved in the ageing process. However,

those genes may have other effects apart from involving the ageing process. How

could those longevity associated genes couple with the underneath metabolic

processes?

3. Genetic association studies identified many genetic variants that could contribute

to the longevity/ageing process, how much reliable are they?

4. In terms of the genes themselves, what could affect the ability of getting a hit

by genetic association design? What is the difference of genic attributes between

longevity associated genes and that of other complex traits, such as cancer,

associated genes?

The development of genomic technology sheds lights on the genetic basis of ageing,

especially in human. In this thesis, I described a full workflow from gathering HLAGs

and populating them into a database, through looking into the functional enriched

clusters, assessing the data quality delivered by genetic associated study design, to the

examination of genetic diversity of those HLAGs and how that differs from the genetic

diversity of other complex trait associated genes. By doing this, it is expected to have

a better understanding in the genetic basis of ageing and age-related diseases from

the perspective of genetic diversity and contribute to the ultimate goal, deciphering

ageing.
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1.7 Aims of the thesis

Ageing is inevitable, universal but variable from one species to another. Genetic factors

are undoubtedly important in affecting the pace and outcome of ageing in humans.

Herein, an exploration on the genetic basis of ageing and age-related traits/diseases

was conducted in order to achieve those following aims:

1. To gather a dataset of HLAGs, then construct a database for HLAGs called

LongevityMap.

2. To analyse the longevity-associated genes as a whole and look for new biological

functions or pathways that could contribute to human longevity.

3. To assess data quality and analyse the attributes of the LongevityMap dataset.

4. To investigate the relationship between the Genetic Diversity (GD) of HLAGs

and ageing related traits.
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Chapter 2

The LongevityMap Database

2.1 Introduction

The ageing process is the result of interactions between genetic and environmental

factors. Genetic variants undoubtedly affect the process and outcome of ageing. Many

efforts have been put into the discovery of genetic variations. Some of the biggest

international collaborative projects, such as The 1000 genomes project (The 1000

Genomes Project Consortium, 2010), The ENCODE Project (ENCODE Project

Consortium, 2004), The International HapMap Project (International et al., 2003)

have successfully discovered numerous variants in human genome. Those above

projects have also been promoting usage of the data by making the data freely

accessible. Besides the effort comes from the scientific community, the development of

chip technology further accelerated data accumulation. New emerged methods can

genotype SNPs in an accurate, high-throughput and low-cost manner. The reduced

average cost for genotyping single locus promotes the increase of loci capacity in
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individual study (Magalhães, 2015). This leads to rapid accumulation of both human

genomic data and the results from trait-genetic association studies in ageing research.

In order to meet the urgent need for a tool to manage and index this enormous

amount of data, we built the LongevityMap database to cope with the updating data.

My main role in this project was a database curator. Therefore, only literature

review, data preparation and the LongevityMap website interface will be described in

this thesis. While the underneath of the database, such as how the database was

implemented, will not be covered.

2.1.1 Demands of building the LongevityMap

Genetic association studies have been playing an important role in ageing research

since the 1990s when the first longevity-genetic association study was published.

Looking for potential ageing-causal variants through identifying longevity/ageing

associated genetic variants became feasible and easier with the aid of high-throughput

sequencing technologies. In the past decades, overwhelming novel information of

longevity associated DNA loci were delivered to research community. The rapid

increasing publications brought a huge amount of data in ageing research and also the

issue of managing and indexing these data, which brought urgent demand for a

database.

While the data was accumulating in an un-foreseen speed, the corresponding solution

that can handle the data was yet ready in the ageing research community. Back to

early 2013 when I started to work in human genetic ageing research, there was no

single repository or any other equivalent tool-kit functions as a central hub available

for storing or indexing the huge amount data. Gathering small pieces of information in

ageing research was not easy, not mention to have an overview or obtain information in
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a more effective way. The shortage of essential tools brought the inspiration of building

a longevity-associated-gene themed database.

We expected the database can integrate all the up-to-date published studies in longevity

research. In the aim of indexing and promoting the usage of genetic data more

efficiently, the LongevityMap database was implemented in 2013. The managed pooled

information in the LongevityMap database has been serving ageing research effectively

since then.

2.1.2 Databases in genetic research

Databases are important in bioinformatics research. They are useful in integrating,

indexing and transferring information within the research community. Many popular

databases such as GenBank, dbSNP have been serving the research community and

promoting the use of these data for years (Teufel et al., 2006).

Well-designed databases can be user-friendly and functionally sophisticated. On one

hand, databases can index and export specific information as the end user requested.

On the other hand, it can keep itself updated by communicating and exchanging

information with other outer resources. Databases seem to be the best solution for

managing that information complex biomedical data. Having a well-designed database

not only benefits the current research field but also promotes spreading information to

other related disciplines. In addition, the centralised and structured data facilitate the

exerting new information by other contemporary technology such as system biology

methods (Kirkwood, 2011).
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2.1.3 Rationale for the LongevityMap

To fill the gap of indexing human genetic association studies and storing the outcomes

from those, we sketched up the LongevityMap database with following aims:

1. It should be theme-focused, inclusive and up to date. What we need is a database

that collects all the human longevity-genetic association studies in healthy people

(without obvious disease or morbidity). Therefore, it should be designed only

focusing on this topic. In addition to this, the database should be updated

regularly to keep abreast of the latest outcomes in the field.

2. It needs to be concise and functionally sophisticated. As the data is already

overwhelming, the database should not be an overcrowded harbour that just

simply populating all the available data. It should work as an index by providing

key information of each individual study and pointing to its source.

3. It needs to be accurate. As the database is designed in the aim of being a central

hub, we want the concise information provided by the LongevityMap is reliable.

Therefore, we manually curated the data for constructing the database, followed

with manually re-examination by another professional curator.

4. It needs to be user-friendly. Building a database needs some specific professional

skills, however, accessing certain information does not have to be. In the

consideration of potential users may consist of researchers with various

backgrounds, we want the database is easy-accessible and convenient to use. A

user-friendly interface should be supplied to researchers who do not involved

many programming skills in their every research or just want a quick enquire in

the database, However, for researchers who want to use the LongevityMap data

in a programmatic way, a downloadable source file should be available.
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5. It needs to be community involved. This project was inspired by the lacking of

an essential database in the community. It is necessary to make this database

publicly available to anyone interested in the ageing research. We want this

database not only aid our own research but also support the community. With

this regard, the database should be distributed with least restriction on the usage

of data.

With targeting the above aims, we built the LongevityMap database in 2013.

2.2 Data preparation

2.2.1 Literature review

In the literature review phase, candidate journal articles that were published in the

major journals in the field were obtained by searching key words, such as “ageing”,

“association study” and “ longevity”, in PubMed, Web of Science and Google Scholar.

In this step, different spell format of the same word, like “ageing” vs. “aging”, or the

combinations of key words, such as “ longevity” AND “association study”, were also

enquired.

Besides the results returned from online enquires, key journals in the ageing research

field were also carefully checked to make sure not missing any studies. Additionally,

the reference section of literature also provided a good resource for candidate literature.

With this approach, we further boosted the coverage of our database. The candidate

articles were collected for further examination.
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In the next step, a filtering process was applied to those candidate articles. Only

papers that focused on longevity-genetic association studies were selected, regardless

of the involved sample size in the study. This means both large and small studies have

equal opportunities of being included in the database. Although inclusion of small

sample size studies could potentially introduce biases (discussed in Chapter 4) it is

still important to do so because the LongevityMap is designed to be “inclusive” by

capturing all the available information and honestly reflect the current status of the

field (i.e. longevity-genetic association studies). However, as the focus of building this

database is to provide information on the genetic basis of natural longevity and healthy

ageing, studies that focused on morbid cohorts such as cancer patients were excluded

from the current database (“exclusive” to irrelevant studies).

Additionally, the LongevityMap database follows another baseline “inclusive” criterion

in data processing. The “exclusive” criterion refers to the standard that was followed

when selecting the literature. In contrast, the “inclusive” criterion applied to those

literature that have been selected. For a research paper that meets the selection criteria,

we want more “inclusive” in retaining information from the paper. This means we want

to provide users with sufficient details of selected literature. With respect to these

above standards, information was manually curated from the literature and organised

into the database.

In summary, the first “inclusive” criteria guaranteed the scope of candidate studies

while the second asserted coverage depth in a given study. Additionally, the “exclusive”

criteria filtered out the irrelevant information from being included. Moreover, manually

curation process offered maximum data accuracy.
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2.2.2 Data curation

Studies that meet the literature selection criteria were passed down for data curation.

From each study, the meta-data such as PubMed unique Identifier (PMID), studied

population, study design, results (significant/non-significant) were directly retrieved

and recorded. In addition, a brief description of major outcome from the author’s

original conclusion was summarised for the outcomes of each study.

The statistical usage and criteria in the literature were also examined. Before carrying

out a statistical test, the null hypothesis H0 representing no difference between two

groups was defined. An alternative hypothesis H1 representing there is difference

between two groups under examination was also defined. Usually, researchers draw

conclusions based on the comparison between p values and the predefined significant

threshold α. If p value less than α, then the H0 was rejected and H1 was accepted.

This will result a significant/positive outcome. Otherwise when p value bigger than α,

H0 will be accepted and therefore a non-significant/negative conclusion will be drawn.

In most of the cases, α is defined as 0.05. However, α can be adjusted to meet the

actual need. For example, in Bonferroni correction, which is one of the most used

multiple test correction method, an adjusted α = 0.05/n, where n is the number of

independent statistical tests, is often used to minimise the multiple test effect. Overall,

three types of α were observed in the candidate studies:

1. A cut-off of α = 0.05 was used in majority of the CGASs.

2. Some CGASs use adjusted α values when multiple testing is involved.

3. In all GWAS studies, the default cut-off (normally α = 5× 10−8) was used.

Each variant was highlighted with either “Significant” or “Non-significant” based on the

39



author reported results. In many studies, only a subset of studied genes, or variants

in the same gene, were significantly associated with longevity while others were not.

In these cases, multiple entries were created for the same study according to genes or

their significant/non-significant outcomes. As a result, each entry only include one

significant or non-significant result. All these efforts were targeting on clarifying the

major outcomes.

GWAS and CGAS are two basic types of genetic association studies. The scale of

targeted loci differs very much although they share similar statistical methods and

study design underneath. GWAS design evaluates tens of thousands of genetic variants

in a single study, however, the number of genetic variants that were investigated in a

typical non-GWAS (CGAS) is usually quite limited (see Table 1.1). Given the different

features of these two study types, we designed two templates to present data from

these two type studies. The application of different templates based on the intrinsic

properties of study made the database concise and robust. In short, only significant

genes/variants were displayed in each GWAS. While in CGASs, all the candidate loci

were listed regardless of whether the result was significant or not.

2.3 Data organisation and web interface

All the curated data as described in the previous section was integrated into a database,

named as LongevityMap (http://genomics.senescence.info/longevity/). A user-

friendly interface was provided for the ease of use (Figure 2.1). Since LongevityMap

serves as an information hub of associations between longevity and genetic variants,

the database was implemented with two types of the entry page, study-centric page

and gene/variant-centric page.
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Figure 2.1: The landing page of the LongevityMap database. Available at
http://genomics.senescence.info/longevity/.
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In study-centric pages, information on the outcomes of the current study, the studied

cohort, the design of a study as well as a brief conclusion was described in the “Entry

Details” section. The variants that were reported in the current study were listed in

following “Variants” section (Figure 2.2). The genes that harbours the variants were

also presented on the page.

In gene-centric pages, the basic information such as cytogenetic location and

description of the gene were displayed on the page (Figure 2.3). Further information

was provided through additional links to other public databases, such as Ensembl and

Online Mendelian Inheritance in Man (OMIM), were also implemented into the page.

Importantly, a list of studies that including the currently displayed gene was listed.

Users can access all the studies including a given gene through cross-links in any

gene-centric page. Similarly, users can retrieve all the studied genes from a listed

study. It is also easy to navigate to other outer sources databases through the

implemented links. For instance, Reference SNP (rs) numbers to the dbSNP database

and cytogenetic locations to UCSC genome browser. All these features make

retrieving information from the LongevityMap very efficient.
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Figure 2.2: Partial of a study-centric page in the LongevityMap database.
Red boxes indicate the “Entry Details” and “Variants” sections in the page.
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Figure 2.3: Partial of a gene-centric page in the LongevityMap database. All
studies include ACE gene were listed in the “Studies” section. Links to corresponding
“study-centric” page were provided through those “Study 1”, “Study 2” ... texts. The
red box indicates the “Study” section. The pink boxes indicate links to “study-centric”
pages.
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2.4 Major update

Genomic research is a rapidly developing field. With the aim of LongevityMap being the

central repository of longevity genetic association studies, keeping the data up to date

and accurate are essential. Until 2016, almost three years after the initial release, many

new studies emerged (Vanhooren et al., 2013). Newly published papers includes both

Genome-Wide Association Study (GWAS) and Candidate Gene Association Study

(CGAS or non-GWAS). Some of the new studies are relatively large-scaled in the

number of candidate loci and sample sizes (Dato et al., 2014; Debrabant et al., 2014;

Deelen et al., 2014; Raule et al., 2014). The organisation of LongevityMap database is

loci/gene-oriented rather than individual study oriented, which means a single study

could correspond to several entries in LongevityMap according to the number of studied

genes. The large-scale studies aggravate the latency of data collection in the database.

There was an urgent requirement to update the database at the time.

Due to the decreasing cost of high-throughput sequencing and the increasing of publicly

accessible data from previous studies, individual study tends to include more sample

(Figure 2.4) and more loci (not showed). Two extra large-scale CGAS studies (Dato

et al., 2014; Debrabant et al., 2014), involving 311 SNPs from 38 genes in 1089

individuals and 592 SNPs from 77 genes in 1825 individuals respectively, were observed

in the newly published studies. New study designs by gathering, combing and re-

analysing previous data for potential new discoveries (Deelen et al., 2014) also emerged.

The latest update brought 135 new entries from 12 studies into the database.

Corrections were also made to errors and incomplete information of entries in the

first release. Twelve new entries split from initial entries were added and 28 loci with

incomplete information were improved (see Table 2.1, Table 2.2).
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Figure 2.4: Sample sizes involved in single CGAS increases over years.

(Pearson correlation, r = 0.234, p = 0.0005. The ascending ordered PMID on the x-axis

represents time. Each data point in the figure represents single individual Candidate

Gene Association study(CGAS) in the LongevityMap. The fitted line indicates the

increasing trend of sample size.)
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Table 2.1: Summary of the first LongevityMap update

Information type Numbers

Studies 12

Entries 135

Missing entries added 12

Errors revised 28
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Table 2.2: Comparison of two releases of LongevityMap database

Release 1 Release 2
(Jul 2013) (Feb 2016)

Entries 512 551
Studies 255 267
Genes 755 860

Variants 2005 3025
Significant entries 257 275

Non-significant entries 255 276
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2.5 Summary and discussion

2.5.1 Overview of the database

The latest LongevityMap release covers longevity-genetic studies from three decades

since 1987. Since all literature was collected following an in-depth literature survey

method and included both large and small studies, users should feel confident for the

coverage of the database, in terms of depth-coverage and time-span coverage.

The initial release of the database was on 26th July 2013. In the first release, there

were 755 genes that have been investigated in the 255 studies. Of the 755 genes, 328

of them were significantly associated with human longevity. With an update in the

early of 2016, the number of studies and studied genes/loci were increased. As of 14th

Feb 2016, the second release of LongevityMap presented 3025 variants came from 859

genes, which is approximately 1.5-fold of the original (described in section 2.4). The

new included genes and variants will certainly bring more information capacity for the

genetic basis of ageing research.

Sufficient statistical power is vital for detecting risk alleles in genetic association studies

(both CGASs and GWASs). Genetic models, minor allele frequency and sample sizes

and many other factors affect the statistical power. For example, less sample is needed

under dominant model than other genetic models. Previous study has estimated the

required sample size to achieve sufficient statistical power (Table 2.3) (Hong et al.,

2012). Comparison between require sample size with actual involved cohort sizes in

LongevityMap studies confirmed studies that included in the LongevityMap are well

powered for both CGASs and GWASs.

49



Table 2.3: Number of cases needed to achieve sufficient statistical power

Number of loci to be tested Sample size

1 248

500,000 1206

1,000,000 1255

The required sample sizes were estimated under the assumption of odds ratio = 2,

disease prevalence = 5%, MAF = 5%, case/control = 1 : 1, Error rateallelic test =

5%, complete linkage disequilibrium. Data was taken from (Hong et al., 2012).
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2.5.2 Data access

A user-friendly interface was designed for users who want to have a quick check a

desired gene or a study. Users can use the query box to quickly retrieve information

by keywords, such as gene names or PMIDs. It is also possible to browse through

cytogenetic regions from the presented chromosome figure (Figure 2.1). A built-in filter

system is always there to help in retrieving information more efficiently.

Alternatively, it is also possible to download the whole database as a single file

(http://genomics.senescence.info/download.html#longevity) for users want to

integrate the whole LongevityMap data into their own working pipeline and analysis

the LongevityMap data locally.

The LongevityMap database was distributed under Creative Commons Attribution 3.0

Unported Licence, which provided most convenient for the usage of the data. In short,

it is free for all the purposes, including educational, academic and even commercial

purposes.

2.5.3 Limitations

The LongevityMap database was built as a new member of the Human Ageing Genomic

Resources (http://genomics.senescence.info/) (Tacutu et al., 2013), and a sister

database of GenAge database (http://genomics.senescence.info/genes/), which

is mainly focused on the genes that associate with longevity and progeroid syndromes in

model organisms. Therefore, similar rigid data collection criteria as in its predecessors

were obeyed.
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Even so, it is worth to mention the limitations of the database. Curators made a

great effort to make sure the information loyalty to the original study. However, any

errors introduced before the curation will be kept and included into the LongevityMap.

Misuse statistical methods and potential publication biases (discussed in Chapter 4)

could inflate the type I error (false positive finding) in the database. Users should be

aware of the limitations while using the database.

Another limitation is the time effectiveness. As the LongevityMap is manually

curated, there will be latency between release cycles. Any new literature published

after the release date maybe still in the curation process and will not be available in

the LongevityMap. Therefore, checking the release date of current version is highly

recommended before use.

2.5.4 Conclusion

The LongevityMap database is the first database that harbours all the human longevity-

genetic association studies and the corresponding results in one place. It not only serves

as an invaluable central hub for looking into studies and achievement of those studies,

but also an excellent portal for exploring other related information collected in HAGR

through built-in cross-links.

Genomic research is a fast-moving field, the LongevityMap database is maintained and

updated on a regular basis, depending on the publication density and breakthroughs

in this field. Error corrections are carried out as soon as they are spotted. All of

these efforts are targeting at providing the community with a freshest and reliable data

resource in ageing research.
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Chapter 3

Data Analysis of the LongevityMap

3.1 Introduction

Thanks to the implementation of the LongevityMap database, we have a central

resource of longevity genetic association studies and the outcome of studied variants.

Using this database, we gained the chance to investigate the genetic basis of human

longevity. However, a collection of HLAGs will provide nothing more than the database

itself.

With the aim of having a clearer view of the properties of longevity genetic association

studies in LongevityMap, and to have a better understanding of the genetic basis of

longevity, analyses targeting at the meta information of the LongevityMap were carried

out.
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3.2 Pathway-based analysis methods and tool

selection

3.2.1 Gene Ontology (GO) based methods

Gene Ontology (GO) is a list of standardised words that describing attributes of genes

and gene functions (Harris et al., 2004). These standardised words are named as GO

terms. They are useful in presenting information from different studies in standardised

vocabularies. Because the terms are standardised, they are easier to be processed by

computers in an automated way.

GO enrichment analysis is one of the most commonly used methods for Gene Set

Analysis (GSA) (Subramanian et al., 2005). It statistically compares the observed

occurrence of ontology terms with the expected purely random occurrence. Through

these GSAs, a set of ontology terms that overrepresented in a given themed gene set

can be obtained. These ontology terms contain biological information of the gene

products. By examining the scope that covered by ontology terms, one can have an

overview of the functions that were covered by those themed gene sets as well as the

potential new functions that not yet known before the analysis (Jensen et al., 2003).

However, the results from a GO based analysis will not reveal or imply any details

regards to the biological interactions (Mooney et al., 2015).

In the current study, we mainly focused on the discovery of novel functional clusters

based on the Longevity-themed gene sets. Therefore, GO analysis was carried out

aiming to reveal any un-observed functional clusters from ontology terms. Functional

enrichment analysis tools are useful in obtaining an overview of the functional clusters
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for a given set of genes (Huang et al., 2009b). By comparing the results obtained from

functional enrichment analysis with the current knowledge of longevity, it is possible

to discover new functional enrichment clusters that contribute to the ageing process.

In this context, DAVID Functional Annotation Tools (DAVID 6.7,

https://david-d.ncifcrf.gov) was employed in analysing the functionally

enriched clusters of GO terms that were associated with the longevity gene set.

DAVID tools use an EASE(enrichment) score system, which is a modified, more

conservative version of Fisher Exact test, to estimate whether the occurrence of GO

terms associated with certain group is higher than by random chance (Huang et al.,

2009a). If the observed occurrence is statistically higher than that of by random

chance, then an enrichment is observed. A p value associated with the statistical test

is also reported. In addition to the p value, an enrichment score, which is obtained by

calculating the geometric mean ( in - log scale) of the p values in a cluster, will also

be reported. Higher ranked enrichment score of a functional enriched cluster means

the smaller aggregated p values of the members in the cluster, therefore, the

functional enriched cluster is more representative. The introduction of enrichment

scores and more stringent Fisher’s exact test made results generated by DAVID is

reliable and easy to understand. The DAVID is also fast, reliable and user-friendly for

gene functional annotation and classification (Jiao et al., 2012).

3.2.2 Physical interaction analysis

Physical interaction analysis methods focus on the details of how proteins translated

from a set of themed genes interacted with each other in a given background. By

providing the information of Protein-Protein Interactions (PPIs), the functions of

genes can be characterised(Yook et al., 2004; Safari-Alighiarloo et al., 2014). One
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major limitation of this method is that the detected interactions are affected by the

background. Variables existed in experimental design, material could result differences

of the physical interaction analysis. The other limitation of physical interaction analysis

is the results will not reveal any information on what biological role the whole set of

themed genes act, or how the whole set of gene fit into any biological functions.

Since we wanted to know how biological basis could contribute and affect longevity,

the physical interaction analysis is not suitable to the current longevity data. At the

moment, studies collected in the LongevityMap comes from different studies examined

from different geographic locations with distinct genetic backgrounds, the variation

among studies is very high. Given the physical interaction analysis method is

sensitive to the variations in experimental factors, it is still too early to apply these

physical interaction based methods to LongevityMap data. Nevertheless, the physical

interaction analysis will play an import role in deciphering the molecular basis of

longevity and ageing once smaller functional clusters, such as pathways, has been

pinpointed.

3.2.3 Pathway based analysis

Pathway based analysis discovers the most basic, common shared biological interactions

in a given set of genes. Normally, how those genes interconnected with each other,

how a set of genes as a whole fits into the biology functions can be revealed from

pathway analyses. It explains the biological information of a set of genes from well-

studied pathway interactions, therefore, it is useful in connecting a set of genes to the

associated biological functions and revealing the potential explanations of biological

processes.
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Many resources can provide the most updated information of pathway analysis, such

as KEGG pathways (Kanehisa et al., 2000), PANTHER (Mi et al., 2009). Among

all those data resources, Reactome database suits our needs best because a), it is

a manually annotated database, which provided the best data accuracy. b), it only

focuses on the single species, Homo sapiens (Croft et al., 2014; Fabregat et al., 2018),

which guarantees the results obtained from Reactome analysis can be translated to the

explanation the biological basis of human longevity with minimum variation.

Cytoscape is an open-source software to visualising, modelling and analysing different

types of biological data by integrating biological networks (Shannon et al., 2003).

The core algorithm of Cytoscape only provides the function of layout and query the

network, to visualise the network and to link the network to function annotation

network (Shannon et al., 2003).

Even the basic function of Cytoscape is quite limited, new functions can be easily

obtained by installing plugins through the Cytoscape App Store

(https://apps.cytoscape.org)(Saito et al., 2012). For example, scientists can

extend the functions to expression enrichment analysis by installing the BiNGO

plugin (Maere et al., 2005), or install the KEGGscape plugin (Nishida et al., 2014) to

analysis and visualise KEGG pathway (Kanehisa et al., 2014). In this study, the

ReactomeIFIViz plugin (Wu et al., 2014), which is distributed by Reactome, was used

to rendering the layout of Reactome analysis results following the steps described in

(Cline et al., 2007).
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3.3 Results

3.3.1 DAVID functional enrichment analysis

The initial release of LongevityMap collected 755 genes in total (Table 2.2). Of the total

755 genes, 328 genes have been positively (significantly) reported at least once. In order

to see how those 328 longevity-associated genes were functionally clustered against

the human genome background, the first DAVID Functional Enrichment analysis was

performed.

Two sets of genes, the “query genes” and the “background genes”, are needed for running

DAVID Functional enrichment analysis. Users will need to provide a set of “query genes”

to the DAVID tool. For the “background genes”, users can either select the built-in

default background, which is the human genome genes, or provide their own gene set

as a customised background.

In the first analysis, those 328 genes were submitted to the DAVID tools as the “query

genes”. However, due to the update intervals of DAVID tools, 29 genes failed to be

identified by DAVID tools. Therefore in the following analysis, the “query genes” list

only contains the rest 299 genes that were identified by DAVID tools. The “background

genes” was set as the default human genome genes. The results show that those 299

genes were clustered into 190 functional clusters with the enrichment scores ranged

from 14.09 to 0.03. Of the 190 clusters, 108 clusters showed an enrichment score greater

than 1.3, which met the significance threshold (Huang et al., 2007; Huang et al., 2009a).

The enrichment score (E score) of top five percentile of the 190 clusters (the top 9

functional annotation clusters) stopped at an enrichment score of 5.55. Considering

the reality of using those data, a more reasonable (applicable) cut-off of enrichment
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score of 2.5 was used to reduce the noise in the results. After applying the new cut-off

score of 2.5, 49 clusters were left (Appendix 1). The functional annotation clusters

mainly related to the vital processes or key mechanisms that affect lifespans, such

as cell-programmed death, cell locomotion, ion binding, and signal pathways et al

(Table 3.1).

Functional enrichment analysis is background-dependent. The same set of “query

genes” could reveal different enrichment clusters against different sets of “background

genes”. In order to see how these genes were enriched against the background of all the

LongevityMap genes, all 755 genes that collected in the LongevityMap were set as the

“background genes” for the second run. Again, in these 755 genes, some genes failed to

be recognised by the DAVID tool due to the DAVID tool did not keep up-to-date with

the latest known genes. 706 genes out of the total 755 candidates were recognised by

the DAVID tools. The “query genes” list was kept the same as those 299 genes in the

first run. In short, the second run was performed with those 299 genes as “query genes”

and 706 genes as “background genes”. The result showed that the enrichment scores

of the new 188 functional annotation clusters were ranged from 18.23 to 0.11, and the

top 5% of the 188 clusters scored from 7.86. There were 126 clusters enriched over the

significance threshold. After filtering the results with an enrichment score of 2.5 as

the threshold, 62 functional enrichment clusters were obtained (Appendix 2). Major

clusters consisted of regulation of apoptosis, regulation of phosphorylation, response to

the environment, regulation of locomotion and response to hormone stimulus (Table 3.2,

analysed on 21th Jan 2015). By comparing the results of the two analysis, a similar

functional annotation clustering pattern as the first run was observed (Figure 3.1).
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Table 3.1: Annotation clusters with the human genome background
Annotation Cluster Enrichment Score the most representative term n FDR*

ACDB 1 14.09 Regulation of cell death 64 5.50E-22
ACDB 2 10.81 positive regulation of signal transduction 32 6.40E-14
ACDB 3 8.88 regulation of response to external stimulus 24 3.00E-13
ACDB 4 8.69 regulation of locomotion 23 1.40E-10
ACDB 5 7.77 response to hormone stimulus 33 4.30E-12
ACDB 6 6.98 response to extracellular stimulus 23 2.10E-09
ACDB 7 6.09 regulation of phosphorylation 36 2.40E-11
ACDB 8 5.98 regulation of cell size 20 1.60E-07
ACDB 9 5.55 response to oxidative stress 16 6.80E-06
ACDB 10 5.31 regulation of transferase activity 27 1.00E-07
ACDB 11 5.04 regulation of protein kinase B signalling cascade 8 2.00E-07
ACDB 12 5.02 cell fraction 45 8.00E-06
ACDB 13 4.78 regulation of lipid metabolic process 22 2.00E-14
ACDB 14 4.59 mTOR signalling pathway 19 3.10E-14
ACDB 15 4.53 behavior 26 3.60E-05

*DAVID reports FDR as percentage, therefore, the above FDR = FDRDAVID/100.

n: Number of genes linked to the current term.

ACDB: Annotation Clusters with Default DAVID tools Background.
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Table 3.2: Annotation clusters with the LongvityMap background
Annotation Cluster Enrichment Score the most representative term n FDR*

ACLB 1 18.23 membrane-enclosed lumen 49 2.80E-21
ACLB 2 16.11 regulation of cell death 64 4.50E-25
ACLB 3 14.8 cell fraction 45 1.90E-18
ACLB 4 11.8 non-membrane-bounded organelle 48 1.00E-13
ACLB 5 10.02 protein dimerization activity 29 3.90E-12
ACLB 6 9.29 regulation of cellular protein metabolic process 36 2.20E-14
ACLB 7 8.79 regulation of locomotion 23 1.30E-10
ACLB 8 8.56 macromolecular complex subunit organization 31 3.40E-13
ACLB 9 7.86 cation binding 78 1.10E-12
ACLB 10 7.64 nucleus 72 1.30E-19
ACLB 11 7.42 response to organic substance 45 4.30E-13
ACLB 12 7.39 positive regulation of molecular function 35 7.60E-13
ACLB 13 7.32 plasma membrane 88 3.90E-26
ACLB 14 7.26 cell death 30 3.80E-09
ACLB 15 7.14 regulation of cellular component size 22 4.60E-10

*DAVID reports FDR as percentage, therefore, the above FDR = FDRDAVID/100.

n: Number of genes linked to the current term. ACDB: Annotation Clusters with LongevityMap genes as Background.
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Figure 3.1: Top ranked functional annotation clusters between two
backgrounds. Higher ranked cluster obtained from default background also ranked
higher when using LongevityMap genes as background.
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This may reflect how researchers choose candidate genes for longevity association

studies. In CGASs, researchers tended to select candidate genes that play important

roles in human lifespan, or in severe pathology processes that can significantly impair

lifespan for their studies. Therefore, when longevity-associated genes were clustered by

the functional annotation, these genes were enriched in the key pathology processes or

mechanisms. Similar functional clustering pattern was also observed when using the

DAVID tools to analyse different ethnic subgroups, like Americans (data not shown).

3.3.2 Pathway analysis

Pathway analysis was performed in the Cytoscape Reactome FI plugin. Cytoscape

Reactome FI plugin calculates p values and FDR by binomial test and Benjamini-

Hochberg method, respectively. The results showed many enriched pathways from the

input longevity-associated genes. After filtering the results with FDR < 0.001, 161

clusters were left. Several longevity-associated pathways, such as mTOR pathway and

Insulin Signalling pathway were listed in the results (Table 3.3).
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Table 3.3: Top 15 enriched pathways detected by Reactome FI plugin
Pathway Number of hit genes p-values FDR

AMPK signalling pathway(K*) 27 1.11E-16 1.02E-14
Generic Transcription Pathway(R) 40 1.11E-16 1.02E-14
HIF-1 signalling pathway(K) 22 1.11E-16 1.02E-14
Longevity regulating pathway(K) 31 1.11E-16 1.02E-14
Longevity regulating pathway - multiple species(K) 18 1.11E-16 1.02E-14
mTOR signalling pathway(K) 34 1.11E-16 1.02E-14
mTOR signalling pathway(N) 31 1.11E-16 1.02E-14
PI3K-Akt signalling pathway(K) 38 1.11E-16 1.02E-14
signalling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R)(R) 27 4.89E-15 4.01E-13
Proteoglycans in cancer(K) 24 2.19E-14 1.62E-12
signalling by Insulin receptor(R) 27 3.46E-14 2.32E-12
FoxO signalling pathway(K) 20 4.69E-14 2.86E-12
Macroautophagy(R) 15 5.88E-14 3.35E-12
Insulin signalling pathway(K) 20 1.04E-13 5.51E-12
PIP3 activates AKT signalling(R) 18 2.36E-13 1.16E-11
EGFR tyrosine kinase inhibitor resistance(K) 16 2.87E-13 1.32E-11

*Indicate data source: C - CellMap, R - Reactome, K - KEGG, N - NCI PID, P - Panther, and B - BioCarta
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Network Cluster function in the Cytoscape uses spectral partition based network

clustering algorithm to detect community structure in the networks (Newman, 2006).

In our case, the network clustering analysis is helpful in revealing modules in the

longevity genes network. Eight Network Clusters with modularity of 0.492 were

obtained after applying the Cluster FI Network function (Figure 3.2). Modularity is

the over-represented fraction of edges (connections) observed within clusters

compared to the expected fraction if the edges are randomly distributed. It was

designed to describe the structure of networks. Networks with high modularity

indicate nodes that are more densely connected together within modules than to the

rest of the network (Subelj et al., 2011). The value of modularity ranges from −0.5 to

1 (Brandes et al., 2008). Higher modularity represents stronger connections within

network modules than between network modules. Unsurprisingly, the clusters were

connected through several hub genes, like TP53, NFKB1, MTOR.

High inner-cluster connections were observed in a cluster consisted of 30 genes (coloured

in purple in Figure 3.2). Further investigating this cluster showed its main components

were from mTOR signalling pathway(K/N) (Figure 3.3, Figure 3.4) and Longevity

regulating pathway - multiple species(K) (Figure 3.5). High overlapped genes between

the two pathways also supports the hypothesis that mTOR pathway plays an important

role in regulating ageing process and longevity. HLA-DQA1, HLA-DQB1 and HLA-

DRB1 were clustered together with loose connection in the left lower corner. Two

separate clusters, one consisted of LMNA, SYNE1 and POT1, the other consisted of

TRIM25 and NLRC5, were isolated from the rest of gene network.

The cluster LMNA, SYNE1 and POT1 mainly contributes to the pathway of regulation

of telomerases, apoptosis, which are important to the ageing (see section 1.2.3).

HLA-DQA1, HLA-DQB1 and HLA-DRB1 genes belong to the human leukocyte
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antigen(HLA) family. The protein complex, formed by binding protein products of

HLA-DQA1, HLA-DQB1 together, in vital to trigger immune response by present

foreign peptides to the immune system. The product of HLA-DRB1 also plays similar

roles when binding to another protein produced by HLA-DRA gene. They play a

critical role in human immune system response.

One of the most interesting facts wa1s the most enriched pathway from TRIM25 and

NLRC5 cluster. The most enriched pathway is Influenza A pathway from KEGG

(http://www.genome.jp/kegg/pathway/hsa/hsa05164.html). This cluster,

together with the HLA-DQA1, HLA-DQB1 and HLA-DRB1 cluster, indicate

evidence of longevity/ageing is also affected by environmental factors.
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Figure 3.2: Network clustering analysis use Reactome FI plugin in Cytoscape. Modularity:0.492, generated by Reactome
FI plugin in Cytoscape 3.61. The purple cluster in the right middle indicates the mTOR-Longevity regulating cluster.67



Figure 3.3: mTOR pathway genes in the mTOR-Longevity regulating cluster.
Genes belong to mTOR pathway were labelled with yellow backgrounds. Figure was
generated by Reactome FI plugin in Cytoscape 3.61.
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Figure 3.4: Identified mTOR cluster genes in the mTOR signalling pathway. The identified genes are highlighted in red
colour in the above figure. The figure was rendered by NCBI BioSystems mTOR signalling pathway (KEGG: hsa04150) in Homo
sapiens (https://www.ncbi.nlm.nih.gov/biosystems/83059).69
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Figure 3.5: Longevity regulating pathway genes in the Cluster. Genes belong
to Longevity regulating pathway were labelled with yellow backgrounds. The figure
was generated by Reactome FI plugin in Cytoscape 3.61. The corresponding figure
that showing the positions of those genes in KEGG pathways (like Figure 3.4) was not
shown due to the identified longevity regulating pathway - multiple species (K) involves
multiple species. It is difficult to show multiple species in a single figure.
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3.4 Discussion

The huge number of functional enrichment clusters suggests that the factors that

manipulating ageing and ageing process are quite disperse, which verified the common

sense that ageing is a complex trait (Johnson, 2002; Johnson et al., 2013) and controlled

by many internal factors as well as external factors such as environment (Caselli et al.,

2006).

Given the potential study biases existing in the LongevityMap database (discussed in

Chapter 4), the actual biological factors involved in ageing could be more than what

has been shown here. Even in the current small set of longevity genes that has been

repeatedly studied, there are plenty of modestly enriched clusters. If more genes/loci

are integrated in the future, for instance, in the scope of all human genes, the results

could be much richer.

Moderate overlap was observed between known longevity-associated genes from human-

based studies and other model organism-based studies (Fernandes et al., 2016). This

inconsistency reflects not only the difference between human and other organisms, but

also the difference in experimental designs. Researchers may prefer to play on “safe-side”

when carrying out human-based studies by verifying an identified longevity-associated

locus in another population rather than looking for new longevity-associated loci. It

should not be blamed because human population is quite mixed. However, in the model

organism based studies, researchers showed the “courage” of exploring new continent

in the genome, maybe due to they have more control of experimental factors and less

variation exists in model organisms.

Investigation of contributions from small enriched clusters is also necessary. Even some
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of the most studied pathways have been revealed in the current analysis, the biological

mechanisms of the majority modest enriched pathways still yet to be discovered. As

survival to extremely old age is rare, it is likely the effect is due to contributions from

rare alleles or private pathways (Brooks-Wilson, 2013). Further investigation of those

middle or lower enriched pathways could provide new insight in ageing research.

Other data could help to identify the biological basis of ageing. For example, RNAseq

data from long-lived cohorts can be integrated into the current analysis to see if any

expression changes contribute to living into old age, therefore help in locating the key

mechanisms in the ageing process.

Finally, network analysis is based on the current knowledge in the field. It provides a

new way to combine existing data and suggesting the hypothesis. However, it lacks

of mechanistic explanations (Cho et al., 2012). With biological data accumulation in

the field, results shown here could change in the future when more data is available.

Results shown here only represents the current understanding to ageing research. The

predicted pathways are reflections of where the true contribution to ageing could come

from. Over time, some of the predictions could be supported or rejected by future

studies. Each support or rejection will help in shaping the correct understanding of

ageing. Eventually, the key to ageing will be deciphered.
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Chapter 4

Publication Biases investigation in

Longevity Association Studies

4.1 Introduction

Publication bias is “the tendency on the parts of investigators, reviewers, and editors to

submit or accept manuscripts for publication based on the direction or strength of the

study findings” (Dickersin, 1990). It is a phenomenon that researchers tend to submit,

and publishers tend to publish significant/positive results over non-significant/negative

results. Every year, research papers reporting significant outcomes are overwhelmingly

published in academic journals comparing to non-significant/negative results (Fanelli,

2012).

Many reasons could contribute to this fact. One of the most common reasons is the

preference comes from readers. It is likely those “breakthrough” researches attract
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more attention than studies showing nothing has been found. Researchers are unlikely

to spend time on negative results papers, although the negative results are equally

important as positive ones (Matosin et al., 2014). The unequal reporting of significant

versus negative results has been noticed by the community. Opinion and discussions

on how to improve publication biases have been given on this topic (Dickersin, 1990;

Easterbrook et al., 1991; Ioannidis et al., 2007).

Nevertheless, the fact is we are still in lack of effective ways to detect publication biases.

Those potentially biased results could bring illusions and make research less objective

if we do not have a clear view of this issue. Thus, a process of assessing data quality

in the LongevityMap by detecting publication biases was described in the following

sections.

4.1.1 Statistical terms

Statistical test provides mechanisms for making quantitative decisions about one or

more processes. With the supporting evidence from statistical tests, we can make more

reasonable decisions.

Before applying a statistical test, one question should be asked is what decisions we

want to make. In other words, what hypothesis we want to accept or reject? The

hypothesis is termed as null hypothesis in statistics. Null hypothesis, as indicated by

its name, is an assumption that no relationship between two accessed variables. By

observing something that is not consistent with the null hypothesis, we reject the null

hypothesis and accept the opposite hypothesis, termed as alternative hypothesis, and

draw a conclusion.
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How confident of the conclusion is indicated by the p values from statistical test. p

value, ranges from 0 to 1, is the probability of the null hypothesis is true. In the context

of null hypothesis, a p value returned by statistical method indicates the strength of

evidence if the null hypothesis is rejected. Smaller p values suggest strong evidence

against the null hypothesis, which means the null hypothesis is unlikely. A commonly

accepted cut-off of p values is 0.05. If p less than 0.05, then it is normally confident

enough to say the null hypothesis is unlikely to happen as there is only 5% chance of

observing the observed results plus more extreme results under a given null hypothesis

(Goodman, 2008).

No matter how sophisticated an experimental design is or how careful a statistical test

was used, there is always a chance that the null hypothesis was wrongly rejected when

it is true. Or the opposite, the null hypothesis was accepted when it was actually false.

The former one, which wrongly rejected the null hypothesis and lead to false positive

findings, is also referred as type I errors. While the latter one is referred as type II

errors, which brings false negative findings by wrongly accepted the null hypothesis

(Banerjee et al., 2009).

Care should be taken when testing the same null hypothesis with a set of different

statistical inferences. As each statistical inferences has a potential to bring evidence to

reject the null hypothesis, type I errors (false positive discoveries) are likely to happen

when the number of statistical inference is big enough. In other words, the results will

be less reliable due to the inclusion of type I error if no corrections were applied.

To estimate the adverse effect caused by multiple tests, Family-wise Error Rate (FWER)

was introduced. FWER is defined as the probability that at least one type I error

occurs after a series of statistical tests. In order to reduce the inflation of type I errors,

FWER must be controlled. Methods have been developed to correct the inflated
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false discovery. One of the most used methods is Bonferroni correction. Bonferroni

correction simply compare p values from each statistical test with an adjusted cut-off

threshold α, where α = pcut-off/nnumber of tests. Null hypothesis can only be rejected if

p < α. Bonferroni correction applied a more stringent standard to control type I errors.

Although the Bonferroni method is easy to use and widely accepted, it also has been

criticised for reducing the statistical power and increasing type II errors.

4.1.2 p values in scientific publications

The concept of p values has been applicable to scientific research field for a very long

time. p value, by itself, was born as an indication of how likely errors occur for a

given statistical test. It is a continuous vector without any breaking point. There

is no compulsory rule of how to discriminate results by p values (Wasserstein et al.,

2016). In practice, researchers tend to use a threshold of 0.05, which is suggested by

Fisher (Fisher, 1926), to decide whether accepting or rejecting the null hypothesis and

therefore conclude whether an outcome is “significant” or not.

The introduction of p value cut-offs brings a convenient way of describing the outcome

of an experiment. However, it is flawed. Too much focus has been put on the threshold

suggested by Fisher. When a threshold/cut-off is artificially introduced, the attribute

of p values was converted from a continuous vector to a dichotomous factor, so changed

the meaning. The term “low error probability” can be seen as an indication of “positive

outcome” when p value is less than a predefined threshold. The ambiguous boundary

of describing the outcome of a study as “the error chance of this study is low” or “the

outcome of a study is true” cause non-standard use, sometimes misuse, of these two

concepts.
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The artificially introduced threshold brought marginal non-significant/negative p values.

Two algebraical similar p values could be classified into opposite categorises because

of the existence of p thresholds. Some study with p values slightly greater than the

threshold will be tagged as “negative outcome study” and, as a consequence, less

likely be published in the current p value dominated publish system. However, in the

perspective of statistic, the chance of error does not differ very much if the two p values

are comparable (Biau et al., 2010).

4.1.3 Impacts of overweighting p values

The prevalence of using p values in academic publication propels the emphasis of p

values. Even though there is much debate on the imperfection of p values and other

statistical methods such as Bayes statistical or confidence interval has been suggested

in the publications, using p values to evaluate research results is still prevalent in

academic publications (Nuzzo, 2014).

p values from statistical analysis are important in evaluating the outcome of an

experiment. In most circumstances, whether a result is positive or negative

(significant or non-significant) is simplified as if the p value has fallen into the

significant zone. It is common to see in a published paper that the author described

the outcome of an experiment was “significant”, then a p value from the statistical test

was followed. To some extent, this common format in reporting an experimental

outcome promotes the emphasis on the conclusion (“significant” or “non-significant”)

rather than the statistical meaning. Because positive results are in the favour of being

published, p value somewhat determines whether a study is publishable.

The favour of significant p values in the publication system potentially promotes
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scientists pursuing smaller p value. The smaller the p value is, the stronger the result

seems to be (Sterne, 2001). There are a number of ways by which to get artificially

low p values. For example, it is common to see a study did not do multiple tests

correction even when it was essential (Streiner et al., 2011). Multiple statistical tests

increase the chance of getting a smaller p value, therefore, correcting for multiple

tests is necessary when multiple statistical tests were involved. When a multiple-tests

correction is omitted where necessary, an error occurs. Another common circumstance

is the researcher did multiple testing correction, but the corrected result did not

get emphasised as expected (Bellavia et al., 1999; Naumova et al., 2004). These

descriptions often seen when the uncorrected p value gives a significant outcome while

the corrected p value does not. Sometimes the hints come from the uncorrected p

values are emphasised and exaggerated. This is clearly wrong because unadjusted p

values will inflate type I error rates and therefore should be discarded.

p values are important, sometimes vital, in affecting the possibility of publication. The

underneath connections between p values and the chance of being published potentially

encourage some researchers to pursuit p values less than the 0.05 threshold in order to

increase the chance of being published. The behaviour of obtaining significant p values

by manipulating data or dishonestly reported result is termed as p-hacking, which is

also the main component of publication biases (Simmons et al., 2011).

Several common tricks have been reported relating to p-hacking. One of the most

common tricks is selective including experimental data to obtain a significant result.

Researchers selectively include data leads to significant outcomes and/or excludes data

leads to non-significant outcomes (Head et al., 2015). Because these operations happen

before presenting results, they are not easy to be detected. Another common trick is

by manipulating the statistical methods. Several statistical methods were tried, but

only the one giving significant result was reported. This conflicts with statistical rules
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because appropriate statistical method should be decided before carrying out a study,

rather than picking up a statistical method that can give significant results after data

collection (Nayak et al., 2011).

The favour of significant p values harms scientific research very much. Experiments

presenting significant results are in the favour of being published. It potentially

encourages researchers to submit the significant results and “file-drawer”

non-significant (usually p > 0.05) ones (Scargle, 1999). For those published papers,

whether they are trustworthy is still under debate. The significant-results-favoured

publishing system potentially reduces the reliability and quality of papers (Smith,

2006). It makes the low probability event looks like a high probability event because

the negative results did not get the equal chance to be displayed. This could be

harmful to scientific research. Firstly, it misleads other researchers by assuming a low

probability incidence as a general fact. The referential value is impaired. Any work or

any hypothesis deduced from biased reports will have a much lower chance to be

successful. Secondly, it makes some of the studies hardly to be replicated in some way.

Last but not least, it prevents the truth from being discovered by providing a false

illusion (Begley et al., 2012).

Luckily, research community has noticed the publication bias issue in recent years and

efforts have been put into to reduce this adverse effect (Colhoun et al., 2003). For

example, a journal named as Journal of Negative Results in Biomedicine has been

created to publish the negative results specifically (Pfeffer et al., 2002).
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4.1.4 GWAS and non-GWAS (CGAS) studies in publications

The differences in experimental design and the scope of an experiment between GWAS

and non-GWAS brings many different aspects between one and the other. The typical

format in reporting results is a good example.

The GWAS experimental design employs majority human genetic variants in a single

study. With the advantage of current chip technology, GWAS screens variants genome-

widely for any hit (risk allele) statistically associated with targeting traits, such as

longevity. Since the scope of GWAS is the whole human genome and no assumptions

were made before experiments, GWAS designs are hypothesis-free, and they are not

biased (Frazer et al., 2009). in GWAS designs, researchers do not usually consider if

there is any causal relationship between the variants and the traits in advance. It more

like observing the results first, then seeking for a proper explanation for the association.

Therefore, GWAS is important to identify potential causal alleles by scaling down the

scope from genome-wide to several risk alleles.

In the CGAS designs, the selection of candidate gene(s)/variant(s) is knowledge-based.

The experiment is used to verify the suspect relationship between target gene/variant

and the traits. There is an expectation before performing the experiments. The

expectation is core difference between GWAS and CGAS, as there is no hypothesis

involved in GWAS designs (see Table 1.1).

The difference between these two types of experiment design brings the difference

between these two typical formats in reporting the results. The wide scope of GWAS

makes reporting results (p values) of all the variants very redundant. Therefore only

positive or marginally positive variants are reported in GWAS outcomes. In contrast,

candidate gene based design focuses much fewer variants, which makes it relatively easy
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to report results for all the variants. As a result, in the candidate gene based design,

normally we can find p values of all the variants. Also, as there is an expectation

in CGASs, publication biases are more likely to exist. Therefore, in the following

estimation of publication bias, only candidate gene based studies were involved.

Although the above tricks are relatively private and implicit, they are not undetectable.

It may be not easy to pinpoint whether a single study has been manipulated by any of

the above tricks. However, if several similar studies under a same topic were gathered

as a group, methods such as meta-analysis and p-curve application are available to

detect the trace of publication bias (Macaskill et al., 2001; Peters, 2006; Simonsohn

et al., 2014).

4.2 Inspiration for this project

As a central repository of longevity genetic association studies, the LongevityMap

database is an up-to-date collection of longevity genetic association studies. Since

publication bias has deleterious effects on scientific research, it is necessary to evaluate

publication biases in the LongevityMap database before carrying out any further

analysis. By integrating the information of publication biases into the projects, we can

deliver more precise results with more objective and reasonable explanations. In this

project, two categories of publication bias, p-hacking and file-drawer effect, are being

examined in the CGASs in the LongevityMap.
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4.3 Methods

4.3.1 p value selection criteria

The design and aims differences of an experiment could affect how results are reported.

In global view of the LongevityMap, there were three types of variables being studied:

alleles, genotypes and haplotypes. Allele-based study design tests single locus at a

SNP position in the chromosome, like rs107251 in SIRT6 gene (Soerensen et al., 2013).

Genotype-based study design only seen in early literature, when SNP information was

incomplete, researchers have to report the nucleotides on both strands at a position

to refer the variation being examined. For instance, -438 A/A in TAFI gene (Reiner

et al., 2005). Haplotype-based study tests the combinations of several alleles, it usually

represents the cumulative effects of a group of small effect SNPs. For example, rs405509,

rs440446 and rs769449 in APOE gene (Soerensen et al., 2013).

According to the subjects being studied (allele, genotype or haplotype), different

assumptions on which genetic models were followed were made and statistical methods

were used under the assumptions. For example, logistic regression and linear regression

tests were used when additive allelic effects were assumed. While in a Chi-squared test

or ANOVA test, an assumption of alleles being studied are functioning independently

is usually made. Therefore, the alleles were treated as categorical variables.

Due to the heterogeneity of statistical methods and assumptions that authors have

made in those studies, and the aim of this chapter is examining publication biases in

CGASs, we are not going to evaluate the validity of statistical tests used in the article

or make judgements on the correctness of assumptions in different genetic models.

We only want to test if the authors are honestly reported their results without any
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modification or not. In this aim, p values reported in each individual study were

manually extracted following the rules below:

• Discard studies do not meet the Hardy–Weinberg Equilibrium (HWE).

• If p values exist in the article, we take the p values.

• Where states as “significant” or “non-significant”, but no p values can be found

in the article, we excluded those studies as it was impossible to recover p values

from articles.

• If p values for both of alleles and haplotype exist, take the p values for allele over

the ones for haplotype.

• Take p values of genotype over haplotype.

• Gender specific p values were collected where exist.

For CGASs, the default cut-off is 0.05. The p value cut-offs in each study were also

examined. Only one publication (PMID: 15621215) used an adjusted p value

(Bonferroni corrected: pcut−off = 0.05/11 in the article) as cut-off instead of 0.05.

Therefore, the uncorrected p value was back-computed (puncorrected = p× 11) in order

to matches cut-offs from other studies. After these steps, a list of studies with

corresponding reported p values was obtained.

4.3.2 Skewness of p values distribution by plotting

In statistics, the distribution of p values from a set of studies are tightly connected with

the Study Effects (SEs). If there was no SE, each p value shares the same probability
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of being observed, which made p values following uniform distribution between 0 and

1. This means the probability of a p value falling between 0.01 and 0.02 should be

identical as it falling between 0.04 and 0.05 (red dashed line in Figure 4.1). If SE

does exist, the probability of obtaining a small p value is much higher than obtaining

a modest or a large p value. It means the p value has more chance falling between

0.01 and 0.02 than falling between 0.04 and 0.05. Therefore, the distribution of p

values from a series of studies should display a right-skewed pattern in the whole range

between 0 and 1 (blue dashed line in Figure 4.1) (Masicampo et al., 2012; Simonsohn

et al., 2014; Wallis, 1942). If the number of studies is big enough and all the p values

were honestly reported, the number of p values in each 0.05-scale should gradually

decrease from 0 to 1 (as indicated by the blue dashed line in Figure 4.1).

Since p = 0.05 is the most commonly used cut-off in longevity genetic association

studies, if p values from “p-hacked” studies were included in the significant result

studies, the existence of hacked p values would alter the skewness of the distribution.

By detecting the sign of this alternation, we can trace the evidence of publication bias

(green solid line in Figure 4.1).
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Figure 4.1: Study effects, publication bias and p values distribution. Red
dashed line demonstrates uniform distribution, where no study effect exists. Blue
dashed line demonstrates right-skewed distribution where study effect exists and results
were honestly reported. Green solid line demonstrates altered right-skewed distribution,
where study effect and publication biases co-exist.
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4.3.3 p-curve analysis

To statistically test whether publication bias exists in the LongevityMap, a further

investigation on the positively reported studies and the corresponding significant p

values were carried out by the p-curve application.

p-curve application is an online tool implemented by Simonsohn et.al. in 2014

(Simonsohn et al., 2014). It assesses the reliability of published research by evaluating

the distribution of p values. Since it checks the existence of evidential value, it only

focuses on the significant studies that were reported with p values smaller than 0.05

(Simmons et al., 2011; Simonsohn et al., 2014).

The p-curve application not only asks for p values, it also needs the statistical method

and the relevant parameters, such as the degree of freedom and the result of a Chi-

Squared test. In this case, all the positively reported papers in the LongevityMap have

been re-reviewed to retrieve raw statistical data. Surprisingly only approximately 29%

in the positive studies reported raw data (Table 4.1).

A set of 183 formatted raw statistical data entries (one LongevityMap entry may contain

several loci. For each locus, there could be one raw statistical data entry) was fed

into p-curve app online tool (V3.01, http://www.p-curve.com/app3/pcurve3.php)

for analysis.
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Table 4.1: Summary of significant/non-significant entries and the number of raw data
reported entries

Entries Significant entries Non-significant entries Total

Total 177 232 409
Raw data reported 51 40 91

Percentage ∼ 29% ∼ 17% ∼ 22%
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4.3.4 D’Agostino skewness test

As p-curve analysis can only analysis p values with raw statistical data, D’Agostino

skewness test in RStudio Statistics Package (RStudio Team, 2015) were used to test

the skewness of p values from studies did not report raw statistical data.

4.4 Statistical hypotheses

In the current project, the null hypothesis(H0) is defined as no publication biases in

the LongevityMap. The alternative hypothesis(H1) is publication biases exist in the

LongevityMap. If analyses from p-curve and D’Agostino skewness test detect any

evidence of publication biases, then we can reject H0 and accept H1. Otherwise, we

will accept H0.

To be more specific, plotting of all the available p values can visualise the distribution

of p values. If no publication biases exists in the LongevityMap, the p plotting will

show a smooth right-skewed distribution(blue dashed line in Figure 4.1). If publication

biases exists, the plotting of p values will display discontinuity around p = 0.05. The

discontinuity of p value can attributes to “p-hacking”, “file-drawer effect” or both.

p-curve Application only tests significant p values. If the missing marginal p values

were due to p-hacking, it will be detected by p-curve analysis. If the missing marginal

p values disappears and no evidence of p-hacking were observed, it is likely due to

“file-drawer effect”. D’Agostino skewness test was used as an supplement of p-curve

analysis to test the skewness of p values did not report raw statistical information.
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4.5 Results

4.5.1 Sample size effects with p values

Undoubtedly, the sample size of a study has impacts on the results. Larger sample size

increases statistical power, which allows the low study effects factors can be detected.

Given the same study effects, increasing sample size also increases the reliability of

study by decreasing the sampling bias. Therefore, generally speaking, studies with

larger sample size are more reliable compared to the ones with fewer samples involved.

In this context, the sample sizes of CGASs entry was also extracted.

In the scope of statistical sampling, where assume samples are a subset of individuals

that can partially reveal properties of the whole population, larger sample size can

better inherit the properties of the population. To see if there is any relationship

between reported p values and sample sizes, a scatterplot of p values against sample

sizes in each CGAS (non-GWAS) entry was generated by R statistics package (http:

//www.R-project.org/). No clear relationship between sample sizes and p values was

revealed (Figure 4.2).
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Figure 4.2: Scatterplot of p values against sample sizes for CGASs. The red
vertical line indicates the widely-used significant threshold of p = 0.05.
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4.5.2 Evidence from p values plotting

As discussed before, p values are important in affecting the outcome of a study. The

distribution of p values could reveal some hints in the existence of publication bias

(see Figure 4.3). Therefore, a histogram plot of p values from CGASs could provide

the most direct impression of the p value distribution. Overwhelming p values were

observed in the commonly defined significant range (p < 0.05) when author reported p

values from all the CGASs were plotted (Figure 4.4). The extremely high number of p

values in the most right-side bin (0.99 < p ≤ 1.00) was due to a single study reported

many p values of 1.00. Other bins, including the bin (0.00 < p ≤ 0.01), were consist

of p values from multiple studies with small number of p values reported. Therefore,

in the following analysis, the most right-side bin (0.99 < p ≤ 1.00) was considered as

an outlier and will not be discussed.

The distribution of p values showed a drop between the two bins around p = 0.05 (Red

solid line in Figure 4.4). By comparing the distribution of p values with the theoretical

p value distribution (Figure 4.3), it is likely the p values could be influenced, as it

showed signs of chance like Figure D in the Figure 4.3. The irregularly distributed

p values around 0.05 could indicate the existence of publication bias. However, it is

difficult to tell whether it was due to “file-drawer” or “p-hacking”. For example, if some

researchers “file-drawered” their non-significant results (0.05 < p < 1). The base level

of p values in the non-significant area (p > 0.05) will be decreased. This will cause the

discontinuity of p frequencies around p = 0.05 (Figure D in Figure 4.3).

If enough non-significant p values (0.05 < p < 1) were “hacked” into significant area,

the distribution of p values will show an altered distribution pattern (like Figure B

in Figure 4.3) This was based on the assumption of most p-hacking activity stops

after obtaining a p value just below the significant threshold (Simonsohn et al., 2014).
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The modest tense of p-hacking can be detected by observing the over-accumulation of

positive p values near p = 0.05. This accumulation of marginal significant results could

lead to a left-skewed distribution of p values in the significant area (Masicampo et al.,

2012; Simonsohn et al., 2014). Even in the current p value distribution plot did not

show sign of increased p frequency in the bin of 0.04 < p ≤ 0.05, it is still impossible

to make conclusion of no “p-hacking” because the shape of histogram changes with the

bin-sizes. To find out which reason is more likely, other more sophisticated methods,

p-curve Application and D’Agostino Skewness Test, were used to detect publication

bias.
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Figure 4.3: The effect of file-drawer and p hacking on the distribution of
p values around the significance threshold of 0.05. A) The black line shows
the distribution of p values when there is no study effect and no p hacking, the red
line shows how p hacking influences the distribution. B) The black line shows the
distribution of p values when there are evidential value and the red line shows how
p hacking influences this distribution. C) The black line shows the distribution of p
values when there is no study effect and no file-drawer. Red line shows the effect of
file-drawer on the distribution of p values. D) The black line shows the distribution
of p values when there is no file-drawer. Red line shows the distribution of p values
influenced by file-drawer effect. Taken from (Head et al., 2015)

93



Figure 4.4: Distribution of p values from CGASs in the LongevityMap (bin
size = 0.01). The red vertical line indicates the significance threshold of 0.05. The
visible drop of p value counts between the two adjacent bins across 0.05 (bins of
0.04 < p ≤ 0.05 and 0.05 ≤ 0.06) indicates publication bias could exist (see Figure 4.3).
The very high counts of p values in the bin of 0.99 < p ≤ 1.00 was due to a single
study reported many p of 1.00. As p values in other bins were from multiple studies,
the study reported many p value of 1.00 can be considered as an outlier.
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4.5.3 p-curve analysis

Results were displayed below (Figure 4.5). The blue solid line in the figure demonstrates

the observed p-curve, which is from entries that with raw statistical data provided.

The green dash line demonstrates the expected p-curve’s position if the studies have

1/3 power. The red dotted line demonstrates the expected p-curve position when there

was no study effect (in this case, the p values distribute uniformly). The binomial test

here compares the observed proportion of significant results that are p < 0.025 to the

expected proportions of 33% or no study effect.

The Continuous Test, on the other hand, computes the p value of each p value (pp-

value) and converts them to Z scores (Simonsohn et al., 2014). Then the obtained Z

scores were added together before being divided by the square root of the number of

inputted tests. After this, the Z score reported in the p-curve results is obtained.

In this case, the binomial test results showed those p values contain evidential values.

The curve is right skewed (p = 0.0027) and they are unlikely to contain any inadequate

evidential value (p = 0.6985) or to be p-hacked (p = 0.9989). The Continuous Test

verified these results with Z scores by different p values (Figure 4.5). It is worth to

mention that the p-curve analysis results gave an estimated statistical power of less

than 5%. This was probably due to very limited number of p values were involved to

run the analysis.
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Figure 4.5: Results of p-curve analysis. No publication bias was observed. Both
Binomial Test and Continuous Test gave p < 0.05. However, the statistical power
was very low (< 5%). The blue solid line in the figure demonstrates the observed
p-curve, from entries that with raw statistical data provided. The green dash line
demonstrates the expected p-curve’s position if the studies have 1/3 power. The red
dotted line demonstrates the expected p-curve position when there was no study effect.
The figure was generated by p-curve application v3.01 (http://www.p-curve.com/
app3/pcurve3.php).

96

http://www.p-curve.com/app3/pcurve3.php
http://www.p-curve.com/app3/pcurve3.php


Statistical power is inversely correlated with type II error (false negative findings) rates.

It is determined by sample size and the strength of study effect. Same statistical power

can be achieved by bigger sample size with smaller study effect or vice versa. Lower

statistical power means higher probability of making type II errors, which results the

null hypothesis is less likely to be rejected. Given the statistical power is low (< 5%)

and p values supported the existence of publication biases, we cannot make a conclusion

unless the type I error rate has been calculated. Therefore, no conclusion regards to

the publication bias can be made at the moment based on the p-curve analysis results.

Apolipoprotein E (APOE ) gene is a popular gene in longevity research, and it is the

only gene that has been replicated by large-scale in longevity genetic association studies

among different cohorts (Deelen et al., 2014). In LongevityMap there were many APOE

related significant results, which could potentially contribute to the excessive significant

p values in the significant area. I did another p-curve analysis of 44 genes (APOE

gene was excluded). The new results were similar to the previous ones (Binomial Test

p = 0.0012 for right skewness, p = 0.8819 for inadequate evidence value and p = 0.9996

for p-hacking, statistical power < 5%. Figure not shown). Again, this low statistical

power prevented a conclusion of no publication bias from being made.

4.5.4 D’Agostino skewness test

D’Agostino skewness test was used to test the skewness of all the p values. The null

hypothesis here was defined as the data does not have skewness, and the alternative

hypothesis is the data has skewness. Firstly, the skewness of p values from p-curve

studies (significant studies with raw statistical results reported, e.g. χ2(1) = 8.54, p =

0.003 ) was tested. The results showed the skewness was right-skewed (skew = 3.5885,

z = 6.5559, p = 5.532e-11 ). This result was similar to the p-curve analysis. Secondly,
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the skewness of p values from all significant studies were tested. This includes all

studies that claimed to have a significant result, no matter the raw statistical data has

been reported or not. The results showed the data was not skewed (skew = 0.595, z =

1.851, p = 0.064 ). It is worth to mention that a widely-used cut-off of p = 0.05 in the

current publishing system was used when deducing the above conclusion. As discussed

before, the introduction of cut-offs could bring some problems. However, even we do

not view the result as either significant or not by imposing a threshold on the p values,

the skewness was still much weaker than the results came from p-curve analysis. In

short, the skewness of p values was much weaker in either case.

A summary of how p-curve analysis and skewness test were carried out was

demonstrated in Figure 4.6. The results from p-curve analysis were consistent with

the results from D’Agostino skewness test on studies with raw statistical data

reported. However, with the inclusion of studies that without raw statistical data

reported, the skewness of the p values distribution was changed from right-skewed to

left-skewed.
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Figure 4.6: A brief view of the statistical methods and results. The inclusion
of studies without raw statistical data changed the total right-skewness. This indicates
publication bias may exist in those new included studies.
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4.6 Discussion

Sample sizes can affect the results of genetic association studies. For a given study

effect of a random variant, there is a corresponding effect size with the locus. If sample

size involved in a genetic association did not meet the requirement of the effect size,

the association test is unlikely to detect the relationship. The impact of a variant is

inversely correlated with the required sample size for detecting the effect. Bigger impact

variants needs smaller sample size for a successful genetic association study. In contrast,

smaller impact variants will require larger sample size to compensate. Longevity, as

a complex trait, can be affected by many factors. Even solely talking about genetic

factors, different variants may have different strength in affecting longevity. Some

variants have strong impacts on longevity (e.g. WRN ), while some other variants may

act in a more subtle way. In either of the above cases, once the required sample size

is achieved, the relationship between the impact of a variant and the ability of being

detected is no longer linear. Further increasing sample sizes will not increase the power

in detecting the association.

For variants that have been identified from genetic association studies, how the variants

affect, and how much a variation contributes to, longevity is still unclear. Therefore,

it is not possible to obtain a clearer signal by removing those noises came from non-

related loci. In the case of non-related loci signal exists, the distribution of p values

for those loci involved studies will distribute uniformly. i.e. no matter how many

individuals involved, the p values will not be affected by that (Figure 4.1). Association

does not necessarily mean causation. Due to lacking of sound explanation on the causal

relationship between each association-study-identified locus and longevity, we cannot

filter out the non-related loci. Too much noise in those p values prevented the pattern

from being discovered.
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The change of skewness might indicate the existence of publication bias. Only ∼ 29% of

significant entries reported the raw statistical data. This percentage is surprisingly low,

and it is even lower in non-significant entries (Table 4.1). The potential explanations

to this low rate of reporting raw statistical includes researchers did not think it is

important, or due to a protective concern of their data. However, what concerns

us most is another possibility. That is some researcher did not report all the raw

statistical data maybe just because they are not confident enough to do so. As there is

no compulsory requirement of reporting all the statistical raw data in genetic association

studies, if someone obtained a significant p value by playing tricks on the data or on

statistical methods, the last thing he/she wants to do might be showing out the raw

statistical data. The non-transparent part in statistics could be a shelter for those data-

manipulated studies. In the above analysis, right-skewed distribution disappeared after

the inclusion of p values from studies without raw statistical data (pskewness changed

from 5.532e-11 to 0.064). The alternation of p values skewness suggested that there

was a high probability that newly included entries contain left-skewed p values. The

left-skewed p values are a clear indication of publication bias and they are likely from

p-hacking.

Although we cannot estimate to what extent the publication bias exists in the

LongevityMap and it is even still premature to conclude that publication bias exists

in the LongevityMap entries, the current study still provided some clues in this issue.

With data accumulates over time (see Figure 2.4) and breakthroughs in methodology,

it is very optimistic to assess the publication bias in longevity genetic association

studies in the future.
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Chapter 5

Genetic Diversity and its Impact on

Genetic Association Studies of Ageing,

Ageing-related Diseases, Cancers and

Early Onset Diseases

5.1 Introduction

It is clear that genetic factors contribute to diseases and phenotypic traits, such as

longevity, in human population. Gene functions can be inferred based on the genetic

variability in accordance with the respective phenotypic variability. Mapping gene

functions to phenotypic traits is easier for some simple diseases, as they are usually

high penetrance and inherited following specific patterns. While in complex diseases,

it is usually tricky to identify disease-causal genes under this way, because the amount
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of contribution to the complex trait come from each locus could be too small to be

detected (CDCV) or the actual causal variants are too rare to be detected (CDRV)

(see section 1.4.4).

The main difference between those two theories is where the contribution to complex

diseases comes from. CDCV theory proposed that the common variants, which are

shared in population, contributed to the onset of complex diseases. In contrast, CDRV

theory proposed that complex diseases are attributed to the rare alleles. Both of the

two theories have evidence and lack of in supporting the genetic basis of complex

diseases. Neither of them could cover the whole picture and explain the complex

disease well.

GWAS design is useful in connecting the phenotypic traits with the known variants,

It is especially useful in screening connections between risk variants and traits (see

section 1.4.5). However, we cannot simply rely on GWAS without careful consideration

and further examination. GWAS has its own limitations in identifying the actually

causal variants in the framework of either CDCV or CDRV. In CDCV theory, as

the number of common variants is huge in populations, therefore, the contribution

from each individual common variant is too small to be detected by GWAS. While

in CDRV theory, the rare variant loci simply do not get covered by typical GWAS

chip design. With this uncertainty, a positive GWAS hit could be just a proxy rather

than the actual causal variant itself. Results from longevity genetic association studies

further confirmed the ambiguity of GWAS hits in explaining the complex traits from

the aspect of genetic basis. In the scope of LongevityMap, inconsistent outcomes were

observed across loci/genes in different genetic association studies (GWASs and CGASs)

(Figure 5.1) (Budovsky et al., 2013). Even new studies get published on an unforeseen

speed, to date, few gene has been consistently reported.
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Arguably, APOE and Forkhead Box O3 (FOXO3) are the only two genes that were

constantly associated with longevity (Deelen et al., 2014; Morris et al., 2015). They

were verified by ever-since large-scale study. Even for these two genes, there were

failure replications in some early CGASs. Given the total numbers of human genes and

traits that have been investigated, those outcomes from longevity-genetic association

studies appeared to be disappointing.

There have been voices accusing the over-stringent multiple testing corrections has

been applied in GWAS (Kenyon, 2010). This leads to the limited finding from GWAS

results, as the true-causal loci could fail to pass the over-stringent statistical test. Apart

from the methodologies reason, the intrinsic properties could also affect the GWAS hits.

A statistically successful GWAS-hit was obtained by calculating the allele frequency

differences between case and control groups. Bigger difference usually means better

chance of getting a successful GWAS-hit. This has nothing to do with whether they

are functionally connected to a studied trait or not.

Based on this, in the current thesis, the normalised nucleotide change on gene level,

which we termed as “Genetic Diversity (GD)”, were calculated based on The 1000

Genomes Project (1KGP) data (see section 5.3.2.3). The genetic diversity represents

the genetic variation on the gene level. Estimating the relationship between GWAS

outcomes and GD could give hints in better understanding the limitations of current

GWAS design and help in explaining why few SNP gets constant GWAS hits.

In addition, examining the genetic diversity in Age-Related Traits/Diseases(ARTDs)

associated genes and cancer-associated genes could help in revealing the genetic basis of

complex diseases. Herein, a pipeline was attempted to reveal the relationship between

human genetic diversity and its ability in affecting phenotypic traits, especially ageing-

related traits and diseases.
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Figure 5.1: Genes with conflict findings in the LongevityMap. Red bars indicate non-significant studies, and blue bars
indicate significant studies. The numbers in each individual coloured area are the counts of genes in that category. Only genes that
have been reported more than two times were included.105



5.2 Hypothesis and aims

Since GWAS calculates the frequency difference of genetic variants distributed in case

and control groups, the characters of a locus are the main factors that affect the

outcome of a GWAS besides the impact of statistical methods involved in GWAS.

In the CDCV theory, the common variants will unlikely be captured by GWAS because

the contribution from each variant is too small. Therefore, GWAS should get random

hits because no study effect exists. In CDRV theory, the true causal variants will not be

captured by GWAS either, because the true causal variants are not in the tag SNP sets.

GWAS could capture the tag SNPs that in LD with the casual SNPs. Cohorts from

different genetic background likely to have different rare alleles in LD with different

tag SNPs. Therefore, GWAS should identify different risk loci. However, we identified

genes/loci that associated with longevity but lacking of biological explanations in

different populations. This result contradicts with the prediction above. Therefore, we

propose there might be something else that could affect the probability of getting a

GWAS hit and it is likely to be the basic characters of genes.

In this context, an investigation of whether or not the genetic diversity affects the

outcome of GWASs became necessary. GWAS hits could be biased towards to high

diverse genes, in which case the true causal will be excluded from risk variants if the

genetic diversity of true causal variants are low. In this case, the following experimental

verification of biological functions between risk allele and traits will be very difficult

because the biased GWAS hits will unlikely including true causal variants from risk

variants. A better understanding of how genetic properties could potentially affect

GWAS outcome would help in better understanding and interpreting GWAS results.
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To illustrate, APOE is the only consistently reported longevity-association gene to

date in large-scale GWAS (Magalhães, 2014). We could propose that the fact that

APOE can be consistently detected may be due to its variability on common loci are

different from other genes. It is possible the variability on common loci are higher than

that in other genes, because low variability on common loci within a gene is likely to

be missed by GWAS statistical test. By comparing the genetic variability of APOE to

other genes could reveal some new evidence that can contribute to the interpreting of

this topic.

To the current knowledge, ageing is still a complex trait. It is a phenotype reveals

the combination of many different sub-traits, such as reduced mobility, decreased

ability to maintain homeostasis or weakened cognitive abilities in elder age. The

current limitations in accurately defining ageing brought hurdles in ageing research.

For example, many ageing related studies use longevity as a proxy of ageing rates.

The underneath hypothesis is longer lifespan somewhat means slower ageing rates in a

given organism. Some ageing related risk genes/variants were actually identified from

some age-related traits. This is acceptable but we are still far away from seeing the

full picture of ageing.

In this aim, we used a collection of well studied Age-Related Traits/Diseases (ARTDs)

to maximumly represent the current knowledge of ageing traits. The genes associated

with the collection of traits can be recognised as ageing-associated genes. In order to

keep concise, we termed the collection above as ARTDs class. Similarly, a Cancers

class and an Early-Onset Diseases (EODs) class were also constructed. Cancers class

were used because it is age-related and has clear characters. EODs class served as a

control group because those traits onset in early age, which is different from ARTDs

class or Cancers class. Environmental factors exert on those traits and leave traces

in the genome sequence. These traces can be reflected in the genetic diversity. By
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comparing the genetic diversity between those three trait classes, it is expected to

reveal the genetic basis of ageing.

5.3 Data sources and methods

5.3.1 Data sources

5.3.1.1 The 1000 Genomes Project data

The 1000 Genomes Project was employed as the source data for calculating the genetic

diversity across all genes. Since the first release, 1KGP provides complete, unbiased,

reliable, high-quality and open accessed human genome variation data to the scientific

community (The 1000 Genomes Project Consortium et al., 2012; The 1000 Genomes

Project Consortium, 2010). In the latest release, the genetic variation data of 2504

individuals from all of the major populations across all the continents was released. In

addition to its high geographical coverage, the high chromosomal coverage rate and the

high sequencing depth guaranteed the quality of data. Lastly, the public availability,

as well as its unbiased sequence, made this repository an ideal resource for the current

project (The 1000 Genomes Project Consortium et al., 2012).

5.3.1.2 GWAS-Catalog data

GWAS-Catalog is a manually curated database that collected all the published human

GWASs. New individual GWAS were retrieved from PubMed on a daily basis through
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an automatic tool (Welter et al., 2014). Then the literature was examined and key

information was extracted by a group of trained researchers. New data is added to the

database on weekly basis after a double curation process (MacArthur et al., 2016). As

of 31st Jan 2018, 3279 GWASs were collected in GWAS-Catalog database.

In the current project, the GWAS-Catalog data (available at: www.ebi.ac.uk/gwas.

Accessed [31st Jan 2018]), were retrieved for calculating the total number of associated

traits of each gene.

5.3.1.3 Ensembl data

Other generic information such as locations of genetic variants and gene length were

retrieved from GRCh37 Ensembl BioMart (available at http://grch37.ensembl.org/

biomart/martview/).

5.3.2 Methods

5.3.2.1 Overview

1KGP phase 3 genetic variants data was retrieved from 1KGP FTP server

(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/) (1000

Genomes Project Consortium et al., 2015). Then, numbers of variant loci (both

synonymous and non-synonymous) were counted and normalised at per 1000 bp

length of DNA at whole population, subpopulation and small cohort levels. This

normalised nucleotide change on gene level was defined as the GD of a gene. On the
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other hand, the total number of GWAS hits of each gene were counted from

GWAS-Catalog data. After obtaining both GD data and GWAS hits count,

correlation tests were carried out to see the relationship between genetic variability

and the outcome of association studies.

In the later sections, age-related diseases and cancer-associated genes were examined to

see if there was any difference in GD between those diseases/cancers-associated genes.

5.3.2.2 SNPs mapping to genes

Since the latest major release of 1KGP data (2nd May 2013) was based on GRCh37

assembly, all the analyses involved in the current project were referenced to GRCh37

assembly. The location of each individual SNP on the chromosome was obtained from

1KGP Phase 3 data (available from EBI FTP site ftp://ftp.1000genomes.ebi.ac.

uk/vol1/ftp/release/20130502/). The spans of genes were retrieved from Ensembl

BioMart GRCh37 base assembly. Considering the regulatory regions around a gene

may be involved in affecting the functions of a gene, an inclusive flank length of 1000bp

was applied on both upstream and downstream sequences. Any SNP located in the

flank regions was considered a genic SNP (Figure 5.2). Where a SNP is located in the

overlapped regions of two or more adjacent genes, the SNP was counted separately in

each gene.
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Figure 5.2: An indication of how SNPs were mapped to genes. Blue colour indicates genic region as shown in GRCh37 base
assembly. Light blue indicates 1kb flanks around a gene. Vertical bars indicate SNPs. An orange coloured indicates a successful
mapped SNP (e.g. SNP 1-5), while a green one indicates a failed mapping (e.g. SNP 6 - 8). Any SNP located exactly on the border
were counted as a successful mapping (e.g. SNP 1 and SNP 5).
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5.3.2.3 Genetic Diversity (GD) calculation

The basis of genetic variation between two population or even two individuals is the

variability represented by the sequence of DNA base pairs. Here, we used the normalised

nucleotide change at the individual gene level, defined as Genetic Diversity(GD), as

a representative of genetic variability across all the genes(see equation 5.4). The

calculation of GD was performed as follows:

1. Consider a cohort consisting of n individuals, for a given SNP with a minor allele

frequency MAF ) at position i, the total number of minor alleles (representing

the nucleotide changes) at position i in the population is:

n×MAFi (5.1)

2. If there are m SNPs located in the genic region and the corresponding two flank

regions, the total number of minor alleles within the genic and flank regions can

be calculated by:
m∑
i=0

n×MAFi (5.2)

3. As n is a constant, the above formula can be simplified as:

m∑
i=0

MAFi (5.3)

4. Then the normalised nucleotide change (defined as GD) in every 1000bp DNA

can be represented as:

GD =

∑m
i=0MAFi × 1000

lengthgenic + lengthupstream + lengthdownstream

(5.4)

112



Where the lengths of upstream and downstream flanks were arbitrary chosen as 1000

bp DNA. GD is the measurement of genetic diversity at the level of individual genes.

MAF is the Minor Allele Frequency of SNPs located in the same gene and upstream

downstream flanks (see Figure 5.2).

This method calculate the genetic diversity in the most straightforward way. It only

takes into account the number of nucleotides change in a given gene without making

any assumptions. The normalised nucleotide change made comparison between genes

become feasible. With the aid of population coverage from 1KGP, it is expected

calculating GD across human genes could provide new insights in understanding human

genetic variation and phenotypic traits. This methods was verified by comparison the

GDs between protein-coding genes and non-protein-coding genes.

The major limitation of this method is it only reflects the nucleotide change on the

genes level. The genetic variation information at the allele level was not included in

the GD calculation. For example, two genes with the same GD could have different

genetic composition. One might consist of a high number of low-MAF loci while the

other might have a low number of high-MAF loci. As long as those two genes share

the same number of total nucleotide changes, they will have the same GD value and

there is no way to distinguish one from another in cases like this in the above described

GD calculation method. Another limitation is about the missing information in the

low-frequency alleles. When defining SNPs, 1KGP embedded cut-offs of MAF > 0.1%

and > 1% for coding regions and the rest of genome, respectively. Therefore, any

genetic variation with MAFs less than the above thresholds was not considered as

polymorphism and would not contribute to the GD in the following analyses. This

means individual private variants or rare alleles will unlikely to be included in the

analyses, even they contribute to the overall individual phenotypic traits.
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5.3.2.4 Reported traits and mapped traits

Two types of traits were recorded in GWAS-Catalog data, Reported Traits(RTs) and

Mapped Traits(MTs). Reported traits were taken from the original paper. They were

the terms that were used by the author of literature to describe the traits. The same

referred trait can be described in different words between authors due to language habit

or different emphasis. For example, “Alzheimers Disease” and “Alzheimer’s Disease” are

referring to the same disease based on common sense. Similar with “type-2 diabetes”

and “type II diabetes mellitus”. Therefore, words used in RTs can have variation. For

human reading, it is not difficult to understand these cases and probably will not cause

confusion. But to computer and software, they are different from each other in either

group. The variation in describing a same trait could cause errors for automated data

processing.

In contrast, mapped traits were ontology based-terms (Welter et al., 2014). They are

managed, standardised terms that mapped from curated traits description based on

Experimental Factor Ontology (EFO) (Malone et al., 2008). Through this ontology

mapping method, different descriptions of the same trait or disease were mapped to the

same ontology-based term, which is MT in the GWAS-Catalog. Take the above two

cases as an example, either “Alzheimers Disease” or “Alzheimer’s Disease” is mapped

to “Alzheimers disease (http://www.ebi.ac.uk/efo/EFO_0000249)”. Similarly, either

“type-2 diabetes” or “type II diabetes mellitus” is mapped to “type II diabetes mellitus

(http://www.ebi.ac.uk/efo/EFO_0001360)”. In this way, confusion was minimised.

Also, the introduction of ontologies facilitates the integration and processing data

obtained from multiple sources (Smith et al., 2007; Welter et al., 2014). Therefore,

in the current project, MTs were utilised for software analysis. By using MTs, data

consistency and the quality of results generated from software can be assured.
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5.3.2.5 Correlation analyses

Correlation analysis is a statistical method that investigates the extent to which two

variables tend to change together. There are two typical correlation methods, one

type examines the linear relationship between two variables and the other examines

monotonic relationship between two variables. Pearson’s correlation test measures

the linear dependency between two variables while Spearman’s correlation test and

Kendall’s correlation test examines the monotonic relationship (rank-order) between

two continuous or ordinal variables. Rank-order correlation analysis measures the

degree of similarity between the two rankings from the two variables that being tested.

In this project, the monotonic correlation method were selected over linear correlation

method because 1) linear correlation result is susceptible to outlier data points. 2) the

relationships between genetic diversity of a gene and other attributes being tested are

unlikely to be linear due to the variation in gene effects.

For Spearman’s correlation and Kendall’s correlation, the limitation of Spearman’s

correlation is it cannot deal with a “tie” situation. Whereas, on the opposite, Kendall’s

Correlation test can handle this problem. Therefore, in the following sections where

correlation tests were employed, Kendall’s Correlation test was used.

5.3.2.6 Sequential Removal of Rarely successfully reported Genes

Procedure (SRRGP)

As a hypothesis-free method, GWAS design examines each individual variant evenly

in different studies. However, the outcomes from those GWAS studies varies very

much from study to study. In fact, the majority of genes has been positively reported
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very few times. These low-frequent positively reported genes potentially bring bias

into correlation analysis due to lacking replicating ability. In this case, a Sequential

Removal of Rarely reported Genes(SRRGP) method was introduced into the following

analyses to minimise the effects from rare reported genes.

5.3.2.7 Mapping traits to EFO terms

As GWAS-Catalog uses Experimental Factor Ontology(EFO) mapping as a dictionary

to convert author reported traits to standardised ontology terms. Each traits in ARTDs,

Cancers and EODs trait classes were manually mapped to the EFO terms. Then any

significantly reported SNP associated with the related EFO term in GWAS-Catalog

were extracted and recorded. Following this, the author reported most significant

SNP(s) was/were mapped to GRCh37 assembly genes using 1kb flanks. After this,

three lists of genes corresponding to individual three trait classes disease (ARTDs,

Cancers, EODs) were obtained.

5.3.2.8 Statistical tests

Mann–Whitney U tests were performed in comparing GDs between groups. Bonferroni

correction was introduced to control type I errors when comparing GDs between genes

from Age-Related Traits/Diseases (ARTDs), Cancers and Early-Onset Diseases (EODs)

classes. All the statistical tests were performed in RStudio (RStudio Team, 2015).
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5.4 Results

5.4.1 Summary of the data

In the human genome GRCh37 assembly, there are 54849 genes in the autosomes of

GRCh37 assembly, including protein-coding gene, lincRNA, antisense, misc_RNA,

snRNA, pseudogene. To clarify, “gene” here and below refers to all the types of genes

listed above. 54592 of the total 54849 genes have been successfully calculated GD.

The rest 257 genes did not have GD information (discussed in section 5.5). Figure 5.3

demonstrates one of the 257 genes (ENSG00000260399) in ensembl genome browser.

See appendix 3 for the gene types of those 257 genes. Of the 54592 genes, 11869

genes have at least one GWAS hit in the GWAS-Catalog. These genes were named as

GWAS-Hit Genes(GHGs).

About 68% of the 11869 GHGs were protein-coding genes (Table 5.1). The minimum

GD calculated in the genome-wide was zero. It was due to the reported allele frequency

was zero in the 1KGP data. The summary information of GDs were listed in Table 5.2.

Those GHGs were reported at different frequencies. The most reported gene in GWAS-

Catalog was GCKR (ENSG00000084734), which appeared 83 times (Table 5.3). On

the contrary, the majority of those genes were only shown less than three times in

GWAS-Catalog. Among those 11869 genes, 4640 (∼ 39.1%), 2546 (∼ 21.5%) and 1441

(∼ 12.1%) of them have been reported only once, twice and three times, respectively.

Only 1827 and 628 of those genes have been reported more than five and more than

10 times (Figure 5.4), respectively.
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Figure 5.3: An example of genes without GD information (ENSG00000260399).
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Table 5.1: Number of genes with GD in GRCh37 assembly

Protein coding genes non-protein coding genes Total

GWAS-hit genes 8196 3673 11869

Non-GWAS hit genes 11204 31519 42723

Total 19400 35192 54592

Table 5.2: Summary of GD

Gene class n Min. 1st Qu. Median Mean 3rd Qu. Max.

Genome-Wide 54592 0 0.00057 0.00092 0.00110 0.00138 0.03352

GHGs 11869 0.000024 0.00072 0.00101 0.00116 0.00136 0.03352

non-GHGs 42723 0 0.00053 0.00089 0.00108 0.00139 0.01902
n :Number of genes; GHG: GWAS-Hit Genes
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Figure 5.4: Scatter plot of the number of mapped traits for each gene. 2402

genes with NMTs ≥ 5 were included. Genes were ordered by NMTs in GWAS-Catalog.

Each circle in the figure represents an individual gene. NMT: Number of Mapped Traits

in GWAS-Catalog
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Table 5.3: The top ten most reported genes in the GWAS-Catalog.

ENSG ID GD* Gene name NMTs

ENSG00000084734 0.00056 GCKR 83

ENSG00000183117 0.00292 CSMD1 80

ENSG00000134824 0.00063 FADS2 79

ENSG00000175164 0.00327 ABO 77

ENSG00000149485 0.00039 FADS1 62

ENSG00000140945 0.00197 CDH13 58

ENSG00000153707 0.00145 PTPRD 55

ENSG00000253111 0.00161 RP11-136O12.2 54

ENSG00000206337 0.00331 HCP5 51

ENSG00000109917 0.00074 ZNF259 49

*indicates the calculated Genetic Diversity for all the 1KGP data based on the formula

5.4; ENSG, Ensembl Gene IDs; NMTs: number of mapped traits. (as of Jan/2018)
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5.4.2 Kendal correlation tests

5.4.2.1 Genome-wide: gene length vs. GD

A correlation test was carried out between gene length and GD to see if genes length

could potentially affect GD. In genome-wide (n = 54592, all genes in Table 5.1), there

was significant correlation between gene length and genetic diversity (Kendall Tau

= 0.021, z = 7.416, p = 1.206e-13 ). The correlation between Gene length and GD

was positive, which means longer genes have higher GD. However, the strength of

correlation was weak (Tau = 0.02).

5.4.2.2 Within GWAS-Hit-Genes (GHGs): gene length vs. GD

Considering there were many genes that have been rarely reported (Figure 5.4), and

these less reported genes could have biases in affecting the correlation test results,

the correlation was tested after SRRGP (see section 5.3.2.6). Significant positive

correlations were observed when NMT ≥ 3, NMT ≥ 4 and NMT ≥ 6 in GWAS-

Catalog (Table 5.4).

5.4.2.3 Gene length vs. NMTs

The correlation analyses results showed there were significant positive correlations

between Gene Length and NMTs in GHGs (Kendall’s Tau = 0.3075, p < 2.2e − 16).

The results demonstrated that longer genes are more likely to have more NMTs in

GWAS-Catalog.
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Table 5.4: Correlation test: gene length vs. GD

NMT(n) No. of genes Kendall’s Tau Z score p

n ≥ 1 11869 0.00424 0.6922 0.4888

n ≥ 2 7229 0.0127 1.613 0.1068

n ≥ 3 4683 0.0208 2.1329 0.03293*

n ≥ 4 3242 0.02996 2.5563 0.01058*

n ≥ 5 2402 0.02575 1.8909 0.05864

n ≥ 6 1827 0.04533 2.9026 0.003701*

*indicates significant p values. For global correlation between gene length and NMT,

see section 5.4.2.1.
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5.4.2.4 GD VS. NMTs

To test whether or not higher genetic variation could bring more GWAS hits, another

correlation test between GD and the NMTs in GWAS-Catalog was examined. Of all

the genes that have been reported in GWAS-Catalog, Kendall Correlation test between

the number of mapped traits and GD showed a significant positive correlation (Tau

= 0.05018, Z = 7.4985, p = 6.456e-14 ). This means genes with higher GD are more

likely to have more NMTs in GWAS-Catalog.

In the current data from GWAS-Catalog, many genes were reported only once in

the GWAS-Catalog. As GWAS design usually use a stringent, maybe over-stringent,

statistical test threshold, the chance of getting false positive hits is very low (Kenyon,

2010). Therefore, the big proportion of GWAS-hits with NMT = 1 indicates the

pleiotropy of genes.

Nevertheless, to minimize the potential false positive effect comes from genes with

the least reported numbers of times, SRRGP was applied here (see section 5.3.2.6).

Correlation tests were performed between GD and NMTs in SRRGP until NMT ≤ 6

times. Positive significant correlations were observed when NMTs ≥ 1, NMTs ≥ 2,

NMTs ≥ 3, NMTs ≥ 4. No correlation was observed when NMTs ≥ 5 and NMT ≥

6 (Table 5.5).
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Table 5.5: Correlation test: GD vs. NMTs

NMT No. of genes Kendall’s Tau Z score p GD Min. GD 1st Qu. GD Median GD Mean GD 3rd Qu. GD Max.

n ≥ 1 11869 0.05018 7.4985 6.456e-14* 0.000024 0.00072 0.00101 0.00116 0.00136 0.03352

n ≥ 2 7229 0.04996 5.8907 3.846e-09* 0.00006 0.00076 0.00103 0.00117 0.00136 0.03352

n ≥ 3 4683 0.03769 3.6165 0.0002986* 0.00006 0.00078 0.00105 0.00119 0.00136 0.03352

n ≥ 4 3242 0.03469 2.7937 0.005211* 0.000115 0.000804 0.001065 0.001228 0.001348 0.033518

n ≥ 5 2402 0.00818 0.56972 0.5689 0.00012 0.00082 0.00108 0.00124 0.00136 0.03352

n ≥ 6 1827 0.01840 1.1227 0.2616 0.00013 0.00083 0.00107 0.00127 0.00135 0.03352
*indicates significant p values.
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5.4.3 GD comparisons

5.4.3.1 GHGs vs. non-GHGs

Mann-Whitney test showed there was significant difference between GHGs and non-

GHGs in the global population (p < 2.2e − 16, see Table 5.2). GD in GHGs were

significantly higher than that in non-GHGs.

5.4.3.2 Protein-coding genes vs. non-protein-coding genes

In GRCh37 assembly, there are 19400 protein coding genes and 35192 non-protein

coding genes. Genome-widely, GD of protein-coding genes was significantly lower than

that in non-protein-coding genes (Mann–Whitney test, p = 9.001e − 09, Table 5.6).

Similar results were observed when comparing GDs in GHGs (Table 5.7) or non-GHGs

(Table 5.8, Mann–Whitney test, p < 2.2e− 16 in both tests).

In summary, GD of protein-coding genes was significantly lower than that of non-

protein-coding genes in GHGs, non-GHGs or genome-wide.
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Table 5.6: GD: Protein-coding genes vs non-protein-coding genes

Gene class n Min. 1st Qu. Median Mean 3rd Qu. Max.

Genome-Wide 54592 0 0.00057 0.00092 0.00110 0.00138 0.03352

Protein-coding Genes 19400 0 0.00061 0.00091 0.00102 0.00127 0.03105

non-protein-coding genes 35192 0 0.00055 0.00093 0.00114 0.00146 0.03352

Table 5.7: GD in GHGs: Protein-coding genes vs non-protein-coding genes

Gene class n Min. 1st Qu. Median Mean 3rd Qu. Max.

All GHGs 11869 0.000024 0.000721 0.001009 0.001158 0.001362 0.033518

Protein-coding Genes 8196 0.000061 0.000701 0.000976 0.001073 0.001302 0.031054

non-protein-coding genes 3673 0.000024 0.000773 0.001087 0.001347 0.001518 0.033518

Table 5.8: GD in non-GHGs: Protein-coding genes vs non-protein-coding genes

Gene class n Min. 1st Qu. Median Mean 3rd Qu. Max.

All non-GHGs 42723 0 0.00053 0.00089 0.00108 0.00139 0.01902

Protein-coding Genes 11204 0 0.00054 0.00085 0.00098 0.00124 0.01343

non-protein-coding genes 31519 0 0.00052 0.00091 0.00112 0.00145 0.01902127



5.4.3.3 GD comparison between genes in ARTDs, Cancers and EODs trait

classes

In addition to the above analyses, the genetic characters of those genes that are

associated with age-related traits/diseases and cancers were also investigated. Different

traits/diseases have different gene/loci or a set of genes/locus involved. Apparently,

some traits/diseases have more genes/SNPs involved than others. In the following

analysis, we focused on the genetic diversity character of those commonly regarded

complex traits/diseases. In particular, those well-known ARTDs, Cancers and EODs

(See Table 5.9, Table 5.10 and Table 5.11).

Each disease and cancer entries that met the targets were manually extracted and

recorded (see material and methods). Then a collection of author reported SNPs from

those selected entries were mapped to genes with 1kb flanks upstream and downstream

according to GRCh37 assembly. Subsequently, the GD of those genes under each

age-related traits and cancers were investigated. The summary of GD data was showed

in Table 5.12.

Mann-Whitney tests with Bonferroni correction (pcorrected = 0.0167) were selected in

comparing GDs between genes in three trait-classes (Table 5.12). The results showed

GDs of Cancers class genes were significantly lower than that of EODs class genes

(p = 8.53e − 6). The GDs of ARTDs class genes were also significantly lower than

that of EODs class genes (p = 0.0019). However, no significant difference was observed

between ARTDs class genes and Cancers class genes (p = 0.0421).
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Table 5.9: Age-Related Traits and Diseases (ARTDs) class

trait Ontology term number of associated genes

Alzheimers disease EFO_0000249 338

age-related macular degeneration EFO_0001365 69

cardiovascular disease EFO_0000319 8

hypertension EFO_0000537 89

metabolic syndrome EFO_0000195 44

obesity EFO_0001073 84

Parkinson’s disease EFO_0002508 114

stroke EFO_0000712 78

type 2 diabetes mellitus EFO_0001360 379

Table 5.10: Cancers class

trait Ontology term number of associated genes

breast cancer breast carcinoma EFO_0000305 522

colorectal cancer EFO_0005842 175

ovarian carcinoma EFO_0001075 56

pancreatic carcinoma EFO_0002618 69

prostate carcinoma EFO_0001663 190

Table 5.11: Early Onset Diseases class (EODs)

trait Ontology term number of associated genes

asthma EFO_0000270 273

type 1 diabetes mellitus EFO_0001359 111

testicular cancer EFO_0005088 17
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Table 5.12: Summary of GD across the three trait classes

Trait class n Min. 1st Qu. Median Mean 3rd Qu. Max.

ARTDs 1111 0.00013 0.00076 0.00103 0.00121 0.00133 0.03352

Cancers 898 0.00011 0.00073 0.00100 0.00107 0.00130 0.00712

EODs 389 0.00014 0.00084 0.00112 0.00143 0.00140 0.03105
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5.5 Discussion

The genome-wide correlation analysis between gene length and genetic diversity

indicated that there was significant positive correlations between them (see section

5.4.2.1). However, the correlation did not maintain during the SRRGP. Additionally,

Kendall’s correlation analysis showed consistent significantly positive correlation

between NMTs and gene lengths (p < 2.2e− 16, see section 5.4.2.1). Longer genes are

more likely to get GWAS-hits and therefore more NMTs mapped to them. On the

other hand, the correlation analysis between GD and NMTs showed fluctuate

correlations depending on which data have been excluded in the SRRGP. The

correlation was maintained until n ≥ 4 but disappeared from n ≥ 5. The observation

of the strongest correlation between GD and NMTs only exists when low NMTs are

included indicates the trace of natural selection. Generally speaking, if a gene has

multiple phenotypic traits mapped to it (pleiotropy), it becomes functionally

important and therefore tends to be conserved across generations.

GD of GHGs was significantly higher than that of non-GHGs, which means genes with

higher GD could potentially have better chance of getting a GWAS-hit (see section

5.4.3.1). GD of protein-coding genes was significantly lower than that of non-protein-

coding genes. This can be explained as protein-coding genes normally functionally

related and therefore likely to be conserved. Unsurprisingly, protein-coding genes have

lower GD in both GHGs and non-GHGs group (see section 5.4.3.2).

The above findings of both gene length and GD of genes are positively correlated

with NMTs suggest GWAS hits are likely to be found in longer genes and/or genes

with higher GD. One straightforward explanation would be longer genes and high-GD

genes are more likely to be genes that determine more phenotypic traits or diseases.
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Therefore, those genes (longer and/or with higher GD) are easy to be detected by

GWAS. Our correlation tests just revealed the true fact.

An alternative explanation is the GWAS hits could be biased to longer genes and/or

genes with higher GD. If this is the case, then the loci identified by GWAS will contain

false positive hits and the trait associated gene will be less accurate because they are

biased towards to genes that are longer and/or with higher GD. In this context, the

true causal variants and the true functional genes may not be captured by GWAS if

they are not long enough or display high GD.

Similar level of GDs were observed between ARTDs class genes and Cancers class

genes. However, GDs of EODs class genes were significantly higher than GDs of either

ARTDs class genes or Cancers class genes (see section 5.4.3.3). These results indicate

EODs class genes may experiencing different selection process from genes in the other

two classes.
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Chapter 6

General Discussion

In this work, we presented a work-flow in exploring the genetic basis of longevity and

ageing. The project started from building the LongevityMap database by curating

information from current available longevity genetic association studies, to exploring

the functional clusters in the longevity, then assessing publication biases in those study

and finally testing the genetic diversity of genes in different trait classes. The outcomes

from the whole work-flow have helped in developing a better understanding of how

genetic components contribute to the complex biological process of ageing, and how

the variability of genes could affect the discovery of potential causal SNPs.

The manually curated LongevityMap database is a reliable data repository for

HLAGs. It is the first database that presenting the latest knowledge of human

longevity associated genes as a whole. This facilitates the integration of new

technologies into analysing the data in a systemic way (like described in Chapter 3).

The following analyses of LongevityMap data with functional enrichment tools and

reactome pathway tools provided new insights in understanding the LongevityMap
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data. The most enriched functional clusters and pathways revealed the current

limitations in selecting candidate genes for CGASs. Researchers tend to select

genes/variants that known to play vital roles in deciding human lifespan for their

CGASs design. The preference in selecting candidates was reflected by functional

enrichment analyses.

On one hand, those results verified the ageing process could be decided by effect from

all those vital biological processes. On the other hand, those modest to least enriched

clusters and pathways could also suggest some new directions in the future work. For

example, the small pathway clusters consisted by HLA-DQA1, HLA-DQB1 and HLA-

DRB1 genes could be an indication of contributions from environmental factors. The

cluster consisted of LMNA, SYNE1 and POT1 explains the importance of telomerases,

through which the length of telomeres are maintained, in affecting human lifespan

(see section 1.2.3). Similarly, each of those small clusters should be examined for any

potential contribution to ageing.

To assess the data quality in the LongevityMap, the publication biases in the

LongevityMap were investigated. By examining the skewness of p values with p-curve

application and D‘Agostino skewness test, a skewness change was found when

including p values from studies that did not report raw statistical data. This suggests

there is high probability of existing publication biases.

One issue that arises from GWAS analyses is the identified loci cannot be consistently

replicated in other studies. One possible explanation, which is out of the scope of

current thesis, is the over-stringent multiple test correction criteria. Another possible

explanation includes impacts from genetic diversity. Therefore, in Chapter 5, we

investigated the relationship between GWAS hits and the GD of genes. Results showed

longer genes and higher GD genes are likely to get GWAS-hits. This could due to
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longer genes or higher GD genes are more likely to be the genes that determines more

phenotypic traits or diseases. Or, GWAS-hits could be biased towards to those above

genes. Results from other studies also suggested the impact of gene length. Longer

genes are more likely enriched in the cancer related pathways (Sahakyan et al., 2016).

Investigating the strength of biases from gene length and GD should be planned in the

future work.

In most cases, it is not known if it is a single SNP itself or a set of SNPs that is

working with the external environment in shaping a phenotypic trait. Therefore, only

considering individual SNPs for causal variants may lead to incomplete conclusions.

Luckily, some researchers have already started to account for this issue. For example,

in 2015, Kim et al. reported longevity traits associated with chromosome regions rather

than individual SNPs (Kim et al., 2015).

Although old and new methods have generated new data into academia on daily

basis, genetic association study design is not flawless. A certain number of SNPs that

have been identified by genetic association study located in the intergenic regions,

which are inferred “regulatory regions” but rarely been verified (Hindorff et al., 2009).

Further to this, compared to accurate genotyping, the relatively ambiguous phenotyping

brings another layer of noise in remapping the causal relationship between SNPs and

phenotypes. As stated by Altshuler et al. “The ability to measure genotype now far

exceeds our ability to measure phenotype, plus the environment exposures play a larger

role in human phenotypic variation than does genetic variation”. (Altshuler et al.,

2008).

GD comparison between ARTDs, Cancers and EODs class showed GD was significantly

higher GD in EODs class than that in Cancer class or ARTDs class. This indicated

the potential difference of selection pressures exert on genes in different classes.

135



In summary, our work contributed to the genetic basis of ageing research in several

aspects:

1. The LongevityMap database is the first repository providing the human longevity-

genetic association studies and the outcomes to the community.

2. Functional enrichment analyses and pathway analyses on longevity-associated genes

provided many potential biological functions that could contribute to ageing.

3. Publication biases investigation firstly provided new perspective on how to

objectively view the data.

4. Genetic diversity analyses provided some clue in connections between GWAS-hits

and gene properties as well as the GD difference between different trait classes.

Although some achievements have been made in the thesis, there are many interesting

questions worth to be answered in the future. For example, many modest enriched

clusters and pathways should be explained and experimentally tested when possible.

More detailed information on the processes and mechanisms of environmental factors

affect GD in different trait classes should be explored.

Ageing is a complex trait and not yet well defined in terms of phenotype. Many

risk alleles have been identified by GWASs and CGASs. However, the true causal

relationship still to be discovered. Potential publication biases brings extra difficulties

in to the field. Even so, we should be encouraged by the achievements have been made

in ageing research in the past several decades. Genome research is a fast-moving field,

new experimental methods and new statistical algorithm emerge quickly. With the

increasing number of centenarians and global average lifespan, we have the opportunity

of applying the most advanced technologies and methods to deciphering ageing.
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Chapter 7

Appendices

1. Functional annotation of longevity-associated genes with whole genome as

background

Annotation

Cluster

Enrichment

Score

The most representative term Number

of genes

linked to the

current term

FDR*

ACDB 1 14.09 Regulation of cell death 64 5.50E-22

ACDB 2 10.81 positive regulation of signal

transduction

32 6.40E-14

ACDB 3 8.88 regulation of response to external

stimulus

24 3.00E-13

ACDB 4 8.69 regulation of locomotion 23 1.40E-10

ACDB 5 7.77 response to hormone stimulus 33 4.30E-12

ACDB 6 6.98 response to extracellular stimulus 23 2.10E-09

ACDB 7 6.09 regulation of phosphorylation 36 2.40E-11

ACDB 8 5.98 regulation of cell size 20 1.60E-07
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ACDB 9 5.55 response to oxidative stress 16 6.80E-06

ACDB 10 5.31 regulation of transferase activity 27 1.00E-07

ACDB 11 5.04 regulation of protein kinase B

signaling cascade

8 2.00E-07

ACDB 12 5.02 cell fraction 45 8.00E-06

ACDB 13 4.78 regulation of lipid metabolic process 22 2.00E-14

ACDB 14 4.59 mTOR signaling pathway 19 3.10E-14

ACDB 15 4.53 behavior 26 3.60E-05

ACDB 16 4.52 response to abiotic stimulus 25 1.50E-06

ACDB 17 4.38 homeostatic process 53 8.20E-16

ACDB 18 4.29 response to wounding 26 3.00E-04

ACDB 19 4.25 protein dimerization activity 29 2.30E-05

ACDB 20 4.25 regulation of foam cell differentiation 8 4.40E-06

ACDB 21 4.01 neuron projection 23 5.80E-06

ACDB 22 3.99 positive regulation of DNA metabolic

process

9 1.40E-04

ACDB 23 3.91 Glioma 13 3.00E-06

ACDB 24 3.79 diabetes mellitus 7 1.10E-03

ACDB 25 3.74 response to reactive oxygen species 10 1.70E-04

ACDB 26 3.67 regulation of lipid transport 13 1.40E-12

ACDB 27 3.56 regulation of monooxygenase activity 8 4.40E-06

ACDB 28 3.56 regulation of vasodilation 6 4.60E-04

ACDB 29 3.52 regulation of secretion 21 1.80E-08

ACDB 30 3.51 cellular response to extracellular

stimulus

9 4.00E-04

ACDB 31 3.49 regulation of foam cell differentiation 8 4.40E-06

ACDB 32 3.45 negative regulation of lipid transport 6 9.60E-05
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ACDB 33 3.42 positive regulation of cellular

component organization

17 4.40E-06

ACDB 34 3.29 regulation of hormone levels 14 8.10E-05

ACDB 35 3.22 positive regulation of multicellular

organism growth

7 8.90E-05

ACDB 36 3.2 cell death 30 1.10E-03

ACDB 37 3.07 regulation of interleukin-6 production 7 8.30E-04

ACDB 38 3 positive regulation of macromolecule

metabolic process

49 5.80E-11

ACDB 39 2.96 regulation of smooth muscle cell

proliferation

8 3.50E-04

ACDB 40 2.93 macromolecular complex subunit

organization

31 3.50E-04

ACDB 41 2.8 peptide binding 13 7.60E-03

ACDB 42 2.72 regulation of interleukin-6 production 7 8.30E-04

ACDB 43 2.71 regulation of hormone levels 14 8.10E-05

ACDB 44 2.68 blood vessel development 14 1.20E-02

ACDB 45 2.66 regulation of neurological system

process

12 2.30E-03

ACDB 46 2.65 obesity 6 1.20E-03

ACDB 47 2.54 immune system development 19 6.80E-05

ACDB 48 2.51 regulation of protein secretion 10 1.90E-05

ACDB 49 2.5 regulation of behavior 7 3.40E-03

*DAVID reports FDR as percentage, therefore, the above

FDR = FDRDAVID/100.
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2. Functional annotation of longevity-associated genes with LongevityMap as

background

Annotation

Cluster

Enrichment

Score

The most representative term Number

of genes

linked to the

current term

FDR

ACLB 1 18.23 membrane-enclosed lumen 49 2.80E-21

ACLB 2 16.11 regulation of cell death 64 4.50E-25

ACLB 3 14.8 cell fraction 45 1.90E-18

ACLB 4 11.8 non-membrane-bounded organelle 48 1.00E-13

ACLB 5 10.02 protein dimerization activity 29 3.90E-12

ACLB 6 9.29 regulation of cellular protein metabolic

process

36 2.20E-14

ACLB 7 8.79 regulation of locomotion 23 1.30E-10

ACLB 8 8.56 macromolecular complex subunit

organization

31 3.40E-13

ACLB 9 7.86 cation binding 78 1.10E-12

ACLB 10 7.64 nucleus 72 1.30E-19

ACLB 11 7.42 response to organic substance 45 4.30E-13

ACLB 12 7.39 positive regulation of molecular

function

35 7.60E-13

ACLB 13 7.32 plasma membrane 88 3.90E-26

ACLB 14 7.26 cell death 30 3.80E-09

ACLB 15 7.14 regulation of cellular component size 22 4.60E-10

ACLB 16 7.08 Pathways in cancer 28 1.70E-19

ACLB 17 7.03 cell projection 31 1.50E-11

ACLB 18 6.84 regulation of response to external

stimulus

24 2.40E-11
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ACLB 19 6.79 response to extracellular stimulus 23 5.80E-09

ACLB 20 6.62 cell-cell signaling 27 4.80E-10

ACLB 21 6.44 defense response 27 1.50E-07

ACLB 22 6.05 regulation of transferase activity 27 6.10E-10

ACLB 23 5.62 homeostatic process 53 2.30E-16

ACLB 24 5.38 mTOR signaling pathway 19 1.60E-16

ACLB 25 5.16 reproductive process in a multicellular

organism

22 1.90E-07

ACLB 26 5.15 negative regulation of macromolecule

metabolic process

26 7.00E-08

ACLB 27 5.01 behavior 26 1.60E-07

ACLB 28 4.92 Hypertrophic cardiomyopathy (HCM) 8 3.80E-06

ACLB 29 4.81 vesicle 22 8.00E-06

ACLB 30 4.67 Pancreatic cancer 12 6.00E-08

ACLB 31 4.53 cell projection organization 19 1.00E-06

ACLB 32 4.38 response to abiotic stimulus 25 5.20E-07

ACLB 33 4.34 negative regulation of biosynthetic

process

25 3.40E-08

ACLB 34 4.33 response to oxidative stress 16 3.30E-04

ACLB 35 4.09 cell adhesion 20 1.50E-04

ACLB 36 3.91 vesicle-mediated transport 16 3.30E-05

ACLB 37 3.9 regulation of hormone levels 14 1.10E-05

ACLB 38 3.64 cytoskeleton 14 6.60E-06

ACLB 39 3.84 cytoskeleton organization 15 2.00E-05

ACLB 40 3.75 regulation of DNA metabolic process 12 1.40E-04

ACLB 41 3.63 regulation of lipid metabolic process 22 6.40E-10

ACLB 42 3.55 cell leading edge 9 4.60E-04

ACLB 43 3.53 protein localization 21 4.70E-07
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ACLB 44 3.39 positive regulation of cellular

component organization

17 1.50E-06

ACLB 45 3.37 endoplasmic reticulum part 11 6.20E-05

ACLB 46 3.31 regulation of foam cell differentiation 8 2.30E-04

ACLB 47 3.27 blood circulation 14 9.00E-05

ACLB 48 3.13 Toll-like receptor signaling pathway 10 2.20E-06

ACLB 49 3.05 regulation of neurological system

process

12 6.80E-04

ACLB 50 3.04 blood vessel development 14 5.10E-03

ACLB 51 3.03 regulation of cellular localization 22 4.50E-07

ACLB 52 3.02 peptide binding 13 8.20E-06

ACLB 53 3.01 cellular response to extracellular

stimulus

9 1.30E-03

ACLB 54 2.98 regulation of protein kinase B signaling

cascade

8 7.30E-04

ACLB 55 2.98 diabetes mellitus 7 6.40E-04

ACLB 56 2.85 nucleotide binding 57 5.20E-08

ACLB 57 2.82 cell activation 18 2.90E-05

ACLB 58 2.7 p53 signaling pathway 7 6.80E-04

ACLB 59 2.67 regulation of cell cycle 23 1.60E-07

ACLB 60 2.65 regulation of lipid transport 13 4.30E-08

ACLB 61 2.65 cytoplasmic vesicle part 8 9.20E-03

ACLB 62 2.51 Systemic lupus erythematosus 8 2.70E-05

*DAVID reports FDR as percentage, therefore, the above

FDR = FDRDAVID/100.
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3. Frequencies of genes in each gene type category

Type of gene Frequency in whole

genome

Frequency in genes

without GD

3prime_overlapping_ncrna 20 0

antisense 5160 7

IG_C_gene 14 0

IG_C_pseudogene 9 0

IG_D_gene 37 0

IG_J_gene 18 0

IG_J_pseudogene 3 0

IG_V_gene 138 2

IG_V_pseudogene 187 9

lincRNA 6932 27

miRNA 2847 14

misc_RNA 1936 12

polymorphic_pseudogene 45 0

processed_transcript 499 2

protein_coding 19430 30

pseudogene 12745 120

rRNA 497 17

sense_intronic 723 0

sense_overlapping 194 0

snoRNA 1391 3

snRNA 1814 14

TR_C_gene 5 0

TR_D_gene 3 0

TR_J_gene 74 0

TR_J_pseudogene 4 0
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TR_V_gene 97 0

TR_V_pseudogene 27 0
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Chapter 8

Published Works

• Budovsky A*, Craig T*, Wang J*, Tacutu R, Csordas A, Lourenco J, Fraifeld

VE, de Magalhaes JP. (2013) "LongevityMap: A database of human genetic
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