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Abstract

In recent years, air pollution in China become more serious than before. Thermal power
generation is one of the main pollution sources, so the Chinese government wants to develop
distributed energy systems (DESs) to solve the problem.

However, the monitoring and control of the DESs become a challenge. In order to solve
the problem, the concept of smart microgrid is introduced. Smart microgrid can monitor
and optimize the running of DESs in an intelligent way. Smart microgrid systems usually
include the following components: DESs, converters, inverters, sensors, gateways, and
servers. The control algorithms are imported into the inverters and converters to realize
the optimal control of DESs. The internet of things (IoT) network in a smart microgrid is
used for monitoring the operation of the DESs.

However, the reliability of smart microgrid is still a challenge. In recent years, some of
the researchers also focus on the reliability of smart microgrid[53]. But the research about
the reliability of the smart microgrid is still not enough. Most of the researchers focus
on the power quality reliability of the microgrid. However, few research concentrates on
optimizing the structure design of smart microgrid.

In this project, we will optimize the architecture design of smart microgrid. Continuous-
time Markov chain (CTMC) models will be used to evaluate the reliability of smart micro-
grid. The architectures of the IoT system and DC microgrid will be evaluated respectively.
Then the analysis results will show our optimized architecture is better. The optimized
design of smart microgrid in this project will help the designer to improve the architecture
design of smart microgrid in real cases. In this project, Monte Carlo method, reliability
block diagram (RBD) method and case study system are used as benchmarks.
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Chapter 1

Introduction

1.1 Background

In the last decades, air pollution in China became serious. What’s more, coal resources are

dwindling. Thus, distributed energy systems has attracted increasing attention. For dis-

tributed energy system, energy is generated or stored by a variety of small, grid-connected

devices referred to as distributed energy resources (DER) or distributed energy resource

systems[13]. Distributed energy systems use some renewable energy sources such as small

hydro, biomass, biogas, solar power, wind power, geothermal power. The distributed ener-

gy sources help to solve the air pollution problem. In order to effectively control the DER,

the concept of the microgrid is introduced to coordinate the operation of the DERs. For

distributed energy systems (DESs), the most widely used one is photovoltaic (PV) ener-

gy system. They are widely used for providing energy to domestic appliances, charging

piles[15][32].

However, the monitoring of microgrid become a challenge [6]. According to [27], in

2009 and 2010, domestic PV energy systems caused 2 fire disasters in Germany. In recent

months, in Fujian province and Shanxi province, 2 fire disasters happened in rooftop PV

systems. The disasters reveal the monitoring problems of DES. So in recent years, the

concept of the smart microgrid is introduced for monitoring the operation of the microgrid

in an intelligent way [21]. The smart microgrid systems usually have distributed energy

sources, converters, inverters, and the sensor network for monitoring the whole microgrid

system. However, the reliability of the DC microgrid is still a challenge.

1
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1.2 Some Current Research About Smart Microgrid

1.2.1 Microgrid

Microgrid gets energy from DES and provides the energy to the grid. Take the PV based

microgrid as an example, The PV panels fed an input voltage to the DC/DC converters,

the DC/DC converter gives a suitable voltage for the inverter. The function of the inverter

is transferring the DC electricity to AC electricity. In this way, the microgrid can provide

energy to the main grid. Microgrid is divided into 2 types, DC microgrid and AC microgrid.

The typical DC microgrid is shown in Fig. 1.1. The typical AC microgrid is in Fig. 1.2.

In recent years, the application of DC microgrid is increasing.

The typical microgrid includes the following components:

• PV panel: gets the luminous energy and transfer it into electric energy.

• DC/DC converter: adjusts the input voltage into a suitable one.

• DC/AC inverter: transfers the DC electricity into AC electricity.

• AC load: consumes AC energy.

• DC load: consumes DC energy

• AC/DC converter: transfers the AC electricity into DC electricity.

1.2.2 Control Methods of Microgrid

The microgrid usually includes the following components: distributed energy sources (DES),

converters and inverters. The most widely used DES are PV energy system and wind en-

ergy system[2]. We will first concentrate on the PV energy system. PV energy system is

an energy system designed to supply usable solar power by means of photovoltaic. For the

domestic PV energy system, they are connected to the main grid[38]. For the control of

PV energy system, the researchers focus on maximum power point tracking (MPPT) to

improve the efficiency of PV energy system[31][34][35]. Some other researchers concentrate

on the voltage stabilization for the PV energy system [23][24][49]. The control of the PV

energy system is realized by importing control algorithms to the converters and inverters.

For example, the maximum power point tracking (MPPT) method is used to improve the

efficiency of the PV energy system to get more energy. The control algorithms are realized
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by adjusting the duty cycle of the converter or inverter. Take the converter as an example,

the output voltage of the converter is shown as follows:

Vout = Vin ×D (1.1)

Vin is the input voltage, Vout is the output voltage, D is the duty cycle. In Fig. 1.3,

we can see that the output power of the PV panel is related to the output voltage of the

converter. For the first half, the output power is proportional to the output voltage of the

converter. For the latter half, the output power is inversely proportional to the output

power. So the MPPT control algorithms are used to track the maximum power point.

For the wind energy system, some of the researchers also focus on the MPPT control

of it, these control algorithms contribute to improving the efficiency of the wind energy

system [10]. The low voltage ride through (LVRT) method is used to solve the transient

fault problem of the power system.

For microgrid, the coordinate control of the microgrid is also very important to absorb

the energy of DES. Typical control method include hierarchical control and droop control

[36][5].

1.2.3 Monitoring System for Microgrid

In recent years, the number of domestic DC microgrid is increasing. The fire disaster for

these microgrids is also increasing. So the monitoring of such microgrid become a challenge

to avoid such disasters [36][5].

Many researchers also give some research about monitoring system for DES [14][19][40].

They usually focus on the monitoring of the domestic microgrid. A typical IoT system for

DES is shown in Fig.1.4.

In this monitoring system, power monitoring modules and solar radiation modules are

used to monitor the output power and real-time irradiation. The data is transmitted to

the controller (PC) via wireless modules. The controller can provide data to users. Based

on the output power and irradiation data, the controller will give commands to the control

switch modules to adjust DC loads. Some researchers also give some other monitoring

systems for the PV energy system, some other functions are added to the democratic

monitoring system.
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1.2.4 The Evaluation Methods for Sensor Network in Power System

The sensor network is widely used in many areas. For example, it can be used to get

environmental data and health data. In a smart microgrid, the sensor network is used to

meter the irradiation, temperature, wind speed and so on. The parameters will be used to

predict the output power of the microgrid.

However, the sensor network also has failure problems. The failures mainly include

nodes failure. For the server node and sensor node in the IoT system, the node failure

problem may be caused by software and hardware problem.

The most widely used way to evaluate the reliability of wireless sensor network (WSN)

is conducting experiments via real WSNs system. The conditions of the real WSNs are

collected for analysis, the reliability also can be analyzed via the data. However, the

time for collecting the data is too long. What’s more, the cost of the devices is also a

challenge. For these reasons, the methods are not very suitable for optimizing the design

of the architecture of the IoT system.

Thus, the researchers provide some methods to evaluate the reliability of WSN by using

simulation method or analytical modeling method[43]. The reliability analysis helps the

designer to optimize the architecture design of WSN. In this way, the cost of maintenance

will be reduced.

The typical widely used method for optimizing the architecture design of WSN are

simulation method and analytical modeling method[11][50]. For the simulation method,

Monte Carlo (MC) method is a popular example[20]. MC can be used to simulate the

experiment about real WSNs reliability analysis. However, MC takes too much time. For

analytical modeling method, the example is Reliability Block Diagram (RBD) method.

RBD is based on math models[33]. RBD also can solve the disadvantages of the simulation

method.

1.2.5 The Evaluation Methods for Microgrid

PV energy systems are widely used in many areas, however, the reliability of PV energy

system is also very important. The failure of PV energy systems will influence the normal

operating of the power system. For these reasons, many researchers focus on the reliability

of PV energy system. The most widely used methods are the Monte Carlos method and

RBD method.
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1.2.6 Some Other Research About Reliability of IoT and Microgrid

In previous research, some researchers also focus on the reliability of the remote repro-

gramming system and IoT system for the PV energy system. In [48] and [47], problematic

model checking is used for model checking the reliability of remote reprogramming system.

However, the remote reprogramming is still an experiment platform and not widely used,

so the meaning of research about its reliability remains to be discussed. In [29], model

checking is used to analyze the reliability of the IoT system in the domestic PV energy

system. However, the structure of it is still an experiment platform, so it is more simple

than the real system. According to [41], the author gives the reliability analysis of a mobile

edge network. However, the case study system was not built for proving the correctness

of the models. What’s more, the failure rate of the components is too high (the failure of

the sensor occurs several days), this does not match reality in real cases.

In this project, I focus on the smart microgrid scenario, the IoT system, and DC

microgrid are widely used in some remote islands and villages. The failure rate of each

component is supported by some reference books, so the reliability analysis contribute to

the real architecture design of smart microgrid. What’s more, the case study system is

built to analyzing the failure process of the smart microgrid. These are the main difference

between my project and previous work.

1.3 Motivation

The overall aim of the project is to investigate the architecture design optimizing of the

smart microgrid, which can help the designer to optimize the design of smart microgrid

in real cases. In this project, the reliability of smart microgrid is also very important.

The failure of it will influence the normal operating of the power system. The reliability

analysis helps the designer to optimize the architecture design of the smart microgrid.

In recent years, some of the researchers also focus on the reliability of microgrid. How-

ever, the research about the reliability of the smart microgrid is still not enough. Most

of the researchers focus on the power quality reliability of the microgrid. However, few of

them concentrate on the structure reliability of smart microgrid system [51][22] [3]. If the

reliability of the smart microgrid system can be simulated to find out the main influencing

factors and optimal architectures. The cost of field testing will be saved. The strategy for

improving the reliability of the smart microgrid will help the designer in real cases.
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1.4 Proposed Solution

The overall aim of the project is to investigate the architecture design optimizing of the

smart microgrid, which can help the designer to optimize the design of smart microgrid

in real cases. In this project, the reliability of smart microgrid is also very important.

The failure of it will influence the normal operating of the power system. The reliability

analysis helps the designer to optimize the architecture design of the smart microgrid.

For this situation, this Mphil research will solve the current problems. In this project,

we will give optimal architectures of the DC microgrid and its IoT system. Then CTMC

models will be built in PRISM to simulate the reliability of the DC microgrid and its moni-

toring system. For the reliability of the IoT system, the comparison between the reliability

of different architectures of the IoT system will be analyzed first. Then the influence of

different influencing factors will be analyzed include (1)impact of the failure rate of smart

sockets and smart meters;(2)impact of smart sockets and smart meters numbers; (3)im-

pact of the failure rate of gateways; (4)impact of gateway numbers. For the reliability

of DC microgrid, the comparison between the reliability of different architectures of DC

microgrid will be analyzed first. Then the influence of different influencing factors will be

analyzed include (1)impact of the failure rate of PV panels;(2)impact of PV panel num-

bers;(3)impact of inverter numbers; (4)impact of the failure rate of inverters. The Monte

Carlo (MC) method and reliability block diagram (RBD) will be used as benchmarks to

ensure the correctness of the CMTC models. For the experiment part, we build similar

architectures to show our architecture is the better one.

1.5 Aim and Specific Objectives

This project aims to use a probabilistic model checking technique with the tool of PRISM to

addresses the performance (reliability) analysis of smart microgrid. The specific objectives

are shown as follows:

• Build CTMC models to model the IoT system and DC microgrid of it.

• Use Continuous Stochastic Logic to analyze the properties of the smart microgrid.

• Use Monte Carlo method and RBD method as benchmarks for the correctness of our

CTMC model.
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• Build case study system to simulate the failure process of the smart microgrid.

1.6 Contribution

Overall, this project makes some contributions:

• CTMC models are used to model the DC microgrid and its IoT system.

• Continuous Stochastic Logic is used to analyze the properties of the smart microgrid.

• Monte Carlo method and the RBD method are used as benchmarks for the correctness

of our CTMC model.

• Case study system is built to simulate the failure process of the smart microgrid.

1.7 Publications

The related publication is shown below:

• Wu S, Zheng K, Huang X. Model Checking PV Energy System with Remote Repro-

gramming Function[C], published by International Conference on Information Tech-

nology in Medicine and Education. IEEE Computer Society, 2016:606-610.

• A Denial of Service Attack Methods For an IoT System, published by 8 th Interna-

tional Conference on IT in Medicine and Education, Fuzhou, 2016.

• Model Checking of IoT System in Microgrid, published by 8 th International Con-

ference on IT in Medicine and Education, Fuzhou, 2016.

• Liang L, Zheng K, Sheng Q, et al. A Denial of Service Attack Method for IoT

System in Photovoltaic Energy System[C], published by International Conference on

Network and System Security. Springer, Cham, 2017:613-622.

• Model Checking PBFT Consensus Mechanism in Healthcare Blockchain Network,

published by 9 th International Conference on Information Technology in Medicine

and Education. IEEE Computer Society, 2018.
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1.8 Organization of The Thesis

The thesis is divided into the following parts. Chapter II will give the theory of reliability

analysis. Chapter III shows the optimal architecture of smart microgrid. Chapter IV gives

the process of model construction for the 2 parts. The benchmarks are shown in chapter

V. In chapter VI, we build case study similar architectures of the smart grid to show our

analysis is correct. In the final part, the conclusion and future work are given.



Chapter 1. Introduction 9

Figure 1.1: DC microgrid.
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Figure 1.2: AC microgrid.
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Figure 1.3: MPPT algorithm.

Figure 1.4: IoT system for DC microgrid.



Chapter 2

Basic Knowledge About

Reliability Analysis

In this chapter, some basic knowledge about reliability analysis and probabilistic model

checking will be shown. The basic knowledge will help us to design CTMC models for the

reliability analysis of smart microgrid. The typical methods for reliability analysis are also

shown in this chapter.

2.1 The Introduction of RBD Method

RBD method is a typical method for evaluating the reliability of variable systems. A

typical example of RBD is shown in Fig.2.1.

Suppose the lifetime of all the components (X1 to X7) is 2000 hours, we want to

calculate the failure rate of the whole system in 100 hours. The process is shown below.

The failure rate of 1 components is shown below.

F0 = 1 - e - λt = 1 - 0.951 = 0.049 (2.1)

Then calculate the failure rate of X1 to X3:

F123 = F0
3 = 0.000118 (2.2)

12
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Then calculate the failure rate of X5 to X6:

F56 = F0 + F0 − F0
2 = 0.0956 (2.3)

Then calculate the failure rate of X4 to X6:

F456 = F4 ∗ F56 = 0.004684 (2.4)

Then calculate the failure rate of whole failure rate:

Fwhole = F123 + F456 − F123 ∗ F456 = 0.0998 (2.5)

2.2 The Introduction of Monte Carlo Method

Monte Carlo Method is also a typical method for evaluating the reliability of variable

systems. A typical example of Monte Carlo method is shown in Fig.2.2.

In Fig.2.2, λ is the failure rate of one component. We do many experiments (for exam-

ple, 1000 times). If the point is behind the curve, we think the system is down. Otherwise,

the system is still ok.”nnth day” is the experiment times for nth day. ”nfail nth day” is the

failure times in nth day.The failure rate of the components in nth days is shown as follows.

Fnth day =
nfail nth day
nnth day

(2.6)

The calculation of the failure rate of the whole system is similar to RBD method.

2.3 Introduction of Probabilistic Model Checking

Probabilistic model checking is a formal verification technique. It can be used for analyzing

and modeling systems which has exhibit probabilistic behavior[25]. The model checking

can be used to verify some properties of the systems. For example, the model checking can

be used to build the models the following systems or procedures[1].

• Operating system

• Communication protocols

• Bio-manufacturing procedures
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• Grid World Robot

• Network communication security analysis

Now model checking is widely accepted in industrial practice or software tools exami-

nation. The process of model checking is shown as follows:

1. Use the modeling language to construct the model of the target system or procedures.

Markov model is widely used in probabilistic model checking[9]. Some typical Markov

models include: Discrete-time Markov Chain (DTMC)[28], continuous-time Markov

chain (CTMC)[37], MDP (Markov decision processes)[7]and so on.

2. Construct some properties of the system by using some logic. The logic includes

Probabilistic temporal logics (PCTL) and Continuous Stochastic Logic (CSL). PCTL

is mainly used for DTMC model and MDP model, CSL is mainly used for CTMC

model.

3. Use the models and properties to conduct model checking, the experiment results

can be used for analyzing the properties of the system.

2.4 Markov Chain

A Markov chain is a stochastic model that can be used to describe a sequence of possible

events. The probability of each event depends only on the state attained in the previous

event. In other words, the Markov chain has a property called memorylessness. For the

target system, if its current state is known, then the future states of this target system

will be independent of its past states. Markov chains are widely used in many areas like

embedded system, smart control system in motor vehicles, the customs lines in a railway

station, the exchange rate of currencies, population growth and some storage system. Some

Markov chain models include: discrete-time Markov chains (DTMCs), continuous-time

Markov chains (CTMCs), Markov decision processes (MDPs) and so on.

For the research about the analysis of system performance, in past decades, reliability

block diagram (RBD) and Monte Carlo method are popular. However, the models are not

suitable to describe the reliability of the system. What’s more, the relationship between

time and reliability is not clearly described in previous models. So in recent years, the

research about Markov chain is increasing. The application range of the Markov model is

also increasing.
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2.5 Continuous-time Markov Chain

In this thesis, Continuous-time Markov chain (CTMC) model is used to study smart mi-

crogrid reliability recently. A CTMC is a four-tuple (S, s0, R, L):

• S is the set of states, but it is finite. S = {s0, s1, s2, s3..., sn}

• s0 stands for the initial state.

• R stands for the transition rate matrix |S| × |S|

• L is the function for labeling.

For example, we can suppose an example of IoT system for the microgrid. It has 3 end

devices and 2 gateways, the end devices can upload data to one gateway, another gateway

is a backup gateway. We call the number of working end devices nd (nd=3) and working

gateway ng (ng=2). The example IoT system is shown in Fig.2.3. The failure of end

devices occurs in every 5 days, the failure of end devices occurs in every 30 days.

This example IoT system fails if (1) the number of working sensors is less than one, (2)

all the 2 gateways fail. The failure process of the example IoT system can be modeled by

the CTMC model.

The process is shown in Fig.2.4.

For this example, the CTMC model is shown as follows:

• ES = {es0, es1, es2, es3..., esn}, stands for the set of states.

• es0 is the initial state.

• The transition matrix is shown in Fig.2.5.

• L = Fail,OK is the labeling function.

2.6 Continuous Stochastic Logic

Continuous stochastic logic (CSL) is the extension version of non-probabilistic continuous

temporal logic[4]. CSL can be used to verify the properties of CTMC models. CSL can be

defined by 2 kinds of syntaxes: state formula (F) and path formula (Y). The state formula

is described as follows:
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• True.

• L(si) : is the atomic proposition.

• Φ1 ∧ Φ2: means the Φ1 and Φ2 are true.

• ¬Φ means Φ is not true.

The path formula is used to describe the set of all possible paths starting from the

state. The path formula is described as follows:

• XΦ : means that the next is state formula.

• Φ1∪[a,∞]Φ2 remain in Φ1 until time a, then Φ2 is true.

• P bound [ pathprop ]: it stands for probabilistic operator.

• S bound [prop]: steady state operator.

The logic CSL can be used to verify the reliability of IoT. For CSL, ”P” is the prob-

ability, ”true” means the system is working well. ”U” means ”until”. ”Down” means the

system fails. For example, in this example IoT system. The failure conditions are shown

as follows:

Down = (ng < 1)|(nd < 1) (2.7)

This means that all the gateways and end devices fail.

Some useful properties are shown in TABLE.2.1.
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Figure 2.1: An example of RBD method.

Figure 2.2: An example of Monte Carlo method.

Table 2.1: Properties for evaluating the reliability of IoT system

The Statements of CSL Meaning

P =?[trueU <= 24 ∗ 3600Down] The failure rate of the system within 1 day
P =?[trueU <= 30 ∗ 24 ∗ 3600Down] The failure rate of the system within 30

days
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Figure 2.3: The architecture of example IoT system.
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Figure 2.4: The state transition diagram for the failure process of the example IoT system.

Figure 2.5: The transition matrix for the example IoT system.



Chapter 3

The Optimal Architecture Design

of Smart Microgrid

In this thesis, an optimal architecture of the IoT system in the smart microgrid is proposed.

The IoT system includes 3 layers: data layer, gateway layer, and applications layer. The

optimal architecture of the IoT system is shown in Fig.3.1.

3.1 The Components of The Optimal Architecture

The IoT system includes three layers. The functions of the different layer are shown as

follows:

• Data layer: this layer involves many smart meters and smart sockets. Smart meters

are used to monitor the generated energy of PV panels. Smart sockets are used to

monitor the energy consumption of smart buildings. For each group, the backups are

used in case of failures.

• Gateway layer: the gateway layer has some gateways. The sensors can upload data

to the applications via gateways. In this layer, backup gateways are used in case of

gateway failures.

• Application layer: the application layer contains applications for users to handle

devices in the data layer.

20
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In this experiment, we call the optimal architecture Architecture I. We will use other

typical architectures to show our architecture is better.

3.2 Some Exiting Architectures

For current architectures, some of them use the centralized gateway. They usually do

not have backup gateways. Distributed architectures usually mean one gateway connects

certain sensor groups. Some architectures also use master-slave gateway architecture for

the IoT system [17] and [16]. The architectures are shown in Fig.3.2.

3.2.1 Architecture II, III, and IV

Architecture II is a centralized gateway architecture, which is shown in Fig.3.2a. In Ar-

chitecture II, the number of gateways is 1. All the sensor groups upload the data to the

applications via centralized gateways.

Architecture III is shown in Fig.3.2b, Compared with the first two architectures, this

one is modified in the following aspects:

• Each group has its own gateway. Gateway 1 manages the smart meters, gateway 2

manages smart sockets.

Architecture IV is shown in Fig.3.2c. The differences between Architecture III and

Architecture IV are shown below:

• There are 2 kinds of gateways: a master gateway and a local gateway. Gateway 1 is

the master gateway. Gateway 2 and 3 are local gateways.

• The sensors are divided into 2 groups, local gateway 2 and 3 connect smart meters

and smart sockets respectively.

3.2.2 The Comparison Between the 4 Architectures

The comparison of the 4 architectures is shown in TABLE.3.1.

The difference description is shown below:

• Sensor number: All the four architectures have 2 smart meters and 20 smart sockets.
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• Root gateway: The first three architectures do not have root gateway. Architecture

IV has one root gateway.

• Gateways number: Architecture I and III has 2 gateways, Architecture II has 1

gateway. Architecture IV has 3 gateways.

3.3 The Introduction of Modeling IoT System

Our work focus on how to provide methods to improve the reliability of the IoT. The

IoT system is divided into 3 parts: data layer, gateway layer, and application layer. The

modeling of the 3 architectures is shown below.

3.3.1 Architecture I

The model design of Architecture I is shown as below:

Smart Meters Module: The smart meters module shows the status of the smart

meters. The states of the smart meters module are shown below:

• nm: is the number of workable smart meters.

• nm=2: is the initial state, the number of smart meters is 2.

Smart Sockets Module: The smart sockets module shows the status of the smart

sockets. The states for the smart sockets layer is shown below:

• ns: is the number of workable smart sockets.

• ns = 20: is the initial state, the number of working smart sockets is 20.

Gateway Module: The gateway module shows the status of the gateways. The states

for the gateway layer is shown below:

• ng: is the number of workable gateways.

• ng = 2: is the initial state, the number of the working gateways are 2.

Failure Conditions of DC Microgrid: The failure conditions for the whole system

is shown below:

• nm < 2.



Chapter 3. The Optimal Architecture Design of Smart Microgrid 23

• ns < 15.

• ng < 1.

3.3.2 Architecture II, III, and IV

The model design of Architecture II, III and IV are similar to Architecture I. However,

the 3 architectures are different, so the formal model design of the 3 architectures is also

different. The difference between the formal model design is shown below:

• S: The states of Architecture IV is more than the other 3 architectures. Architecture

II has the minimum states, architecture IV has the maximum states.

• s: The initial state means all the components in the 3 architectures are OK.

3.3.3 The Comparison of Optimal Architecture (Architecture I) and

Other Typical Architectures

For the Optimal Architecture (Architecture I), it has backup gateways in case of failure

of the gateways. If one gateway fails, the backup gateway will replace it and manage the

sensors. In this way, the reliability of the IoT system will be improved. The reliability of

the 4 architectures will be evaluated respectively. The experiment results will show the

strategy to improve the reliability of the IoT system obviously.

3.4 3 Architectures of DC Microgrid

Now the application of the microgrid is increasing. However, how to improve the archi-

tecture design of the microgrid is still a challenge. If the design of the microgrid can be

improved. The reliability of the microgrid will also be further enhanced. In this project,

we will give out how to optimize the architecture design of the microgrid.

In this project, we give the optimal architecture of the microgrid. Then use some

existing architectures for the microgrid. Then the reliability of the microgrid will be

analyzed. According to the experiment results, we will show our designed architecture is

better than the others.

However, how to improve the architecture design is still a challenge. Firstly, how to

build models for the architectures of the microgrid. Secondly, how to figure out the impact
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of different components. Thirdly, how to find out which structure is more reliable. Finally,

how to improve the structures for microgrid by using the analysis results. In this project,

we solve these challenges. These will be illustrated later.

In this project, we will first analyze the influencing factors of the reliability of the

system. Secondly, we will design 3 models for different architectures of the microgrid.

Architecture I is an optimal architecture, Architecture II is a centralized structure, Ar-

chitecture III is a mixed structure. Thirdly, according to the 3 models, we will design 3

CTMC models in PRISM. Fourthly, the reliability of the 3 architectures will be evaluated.

Finally, the impact of each component will be analyzed.

3.4.1 The Optimal Architecture of DC Microgrid

The Architecture I of the microgrid is shown in Fig 3.3. In normal operation of the

microgrid, The PV panels fed an input voltage to the DC/DC converter. Then DC/AC

inverter transfer the DC electricity into AC electricity. In this way, the PV energy system

provides energy to the main grid. We call the optimal architecture Architecture I. The

function of different components is shown below:

• PV panels: provide energy to the load.

• Inverter: transfer the DC electricity to AC electricity.

• Main grid: accept the energy provided by PV panels.

3.4.2 Architecture II

For Architecture II, each PV panel is connected to the centralized inverter. The distributed

microgrid architecture is shown in Fig.3.4. In Architecture II, each converter is controlled

by a single inverter.

3.4.3 Architecture III

The Architecture III is shown in Fig.3.5. For this architecture, the DC/DC converter is

used for adjust the DC voltage.
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3.4.4 Summary of the 3 Architectures

For the 3 architectures, the number of controller and converter are different. Architecture I

has 4 inverters. Architecture II has 1 centralized inverter. Architecture III has 4 converters

and 1 inverters. The Comparison of the 3 architectures is shown in TABLE.3.2.

3.5 The Introduction of Modeling DC Microgrid

Our work focus on how to provide methods to improve the reliability of the DC microgrid.

The DC microgrid is divided into 3 parts: PV panels, inverters, and the main grid. This

is supported by [52] and [8]. The modeling of the 3 architectures is shown below.

3.5.1 Architecture I

The model of Architecture I is shown as below:

PV Layer Module: The PV layer module shows the status of the PV panels. The

states of the PV module is shown below:

• np: is the number of workable PV panels

• np=4: is the initial state, the number of PV panels is 4.

Inverter Layer Module: The inverter layer module shows the status of the inverters.

The states for the inverter layer is shown below:

• ni: is the number of workable inverters

• ni = 4: is the initial state, the number of working inverters is 4.

Failure Conditions of DC Microgrid: The failure conditions for the whole system

is shown below:

• np < 2.

• ni < 2.
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3.5.2 Architecture II and III

The model design of Architecture II, III and IV are similar to Architecture I. However,

the 3 architectures are different, so the formal model design of the 3 architectures is also

different. The difference between the formal model design is shown below:

• S: The states of Architecture III is more than the other 2 architectures. Architecture

II has the minimum states.

• s: The initial state means all the components in the 3 architectures are OK. However,

the devices of different architectures are different.

3.5.3 The Comparison of Optimal Architecture (Architecture I) and

Other Typical Architectures

For the Optimal Architecture (Architecture I), it is a distributed architecture. It has

more distributed inverters than other architectures to improve the reliability of it. The

experiment results will show the distribute architecture improve the reliability of the IoT

system obviously.
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Figure 3.1: The optimal architecture for the IoT system.

Table 3.1: CTMC models comparison (IoT system)

Architecture
I, Fig. 3.1

Architecture
II, Fig. 3.2a

Architecture
III, Fig.
3.2b

Architecture
IV, Fig. 3.2c

Number of smart sockets nodes 20 20 20 20
Number of smart meter nodes 2 2 2 2
Root gateway None None None 1 root gateway
Number of gateways 2 gateways 1 gateway 2 gateways 3 gateways
Gateway sectors 1 gateway sec-

tor
1 gateway sec-
tors

2 gateway sec-
tors

3 gateway sec-
tors

Table 3.2: CTMC models comparison (DC microgrid)

Architecture
I, Fig. 3.3

Architecture
II, Fig. 3.4

Architecture
III, Fig. 3.5

PV 4 4 4
DC/DC con-
verter

0 0 4

Inverter 4 1 1
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(a) Architecture II (b) Architecture III

(c) Architecture IV

Figure 3.2: The typical 3 architectures.
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Figure 3.3: The Architecture I of DC microgrid.
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Figure 3.4: Architecture II of DC microgrid.

Figure 3.5: Architecture III of DC microgrid.



Chapter 4

Model Design of The Smart

Microgrid and Its Analysis

Our work focuses on the network structures of the smart microgrid, we will use CTMC

models to model checking the reliability of the IoT system and DC microgrid respectively.

The chapter will include the following parts:

• Problematic model checking technique and the tool PRISM.

• CMTC model design of the IoT system in smart microgrid

• CMTC model implementation of the IoT system.

• Analysis of the reliability of the IoT system.

• CMTC model design of DC microgrid

• CMTC model implementation of the DC microgrid.

• Analysis of the reliability of the DC microgrid.

4.1 Problematic Model Checking Technique and The Tool

PRISM

In this project, the model checking technique is used for evaluating the reliability of the

smart microgrid. The process for the model checking technique is shown in Fig.4.1

31
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For our model checking technique in my project, according to the structure of smart

microgrid and failure conditions, the probabilistic model and probabilistic temporal logic

specification are built in PRISM. Then the model checker PRISM will use the probabilistic

model and probabilistic temporal logic specification to give out the quantitative results.

PRISM is an open-source and free probabilistic model checker. It also acts as a tool for

formal modeling and analysis of systems which has random or probabilistic behaviour[18].

PRISM has been used to analyze systems from many different areas, including commu-

nication and multimedia protocols[26], network security analysis[39], bio-manufacturing

systems[12], and communication cells and so on.

Some probabilistic models can be modeled and analyzed include:

• Probabilistic Automata (PAs)

• Probabilistic timed automata (PTAs)

• Discrete-time Markov chains (DTMCs)

• Continuous-time Markov chains (CTMCs)

• Markov decision processes (MDPs)

In these models, the cost and rewards can also be calculated and analyzed. In PRISM,

the Models can be described by using the PRISM language. It is a state-based and simple

language. PRISM enables the automated analysis about a wide range of quantitative

properties of these PRISM models, e.g. ”what is the probability of a shutdown causing the

embedded system to shut down in 30 days?

For the property specification language, it helps to construct some temporal logics such

as PCTL, CSL, and LTL. The quantitative specifications for cost and rewards can also be

constructed.

Experiment environment and parameters are described in Table 4.1 for ease of reading.

4.2 CMTC Model Design of The IoT System

4.2.1 Architecture I

For Architecture I, four-tuple (S, s0, R, L) is shown as follows:

• S:S = {s0, s1, s2, s3..., sn} , it stands for the states of the IoT system.
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• s0: initial states, all the components are applicable.

• R: the transition matrix is similar to the example.

• L: Fail means the IoT system fails. OK means the IoT system is OK.

Smart Meter Module: this module represents the number of workable smart meters.

”λm ” is the failure rate of smart meters. For initial state, if 1 smart meter fails, the process

will be shown as:

nm
λm→ nm− 1 (4.1)

Smart Socket Module: this module represents the number of workable smart sockets.

”λs ” is the failure rate of smart sockets. For initial state, if 1 smart meter fails, the process

will be shown as:

ns
λs→ns− 1 (4.2)

Gateway Module: The controller layer has 2 gateways . Both the gateways have

failure rate ”λg”. For initial state, if 1 gateway fails with failure rate ”λg”, the process is

shown as:

ng
λg→ng − 1 (4.3)

The failure conditions of Architecture I are shown as follows:

• nm < 1

• ns < 15

• ng < 1

4.2.2 Architecture II, III and IV

The construction of Architecture II, III and IV are similar to Architecture I. For the model

design, the differences for the 4 architectures are shown in TABLE.4.2. For Architecture

II, the states are less than Architecture I because architecture II just has 1 centralized

gateway. Architecture III has more states because gateways, smart sockets and smart

meters are divided into several sectors.
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4.3 CMTC Model Implementation of The IoT System.

4.3.1 Architecture I

The model of Architecture I is shown as follows. The model includes 3 parts: Smart Meter

Module, Smart Socket Module, and Gateway Module.

Smart Meter Module: ”nm” is the available smart meter numbers, the initial num-

ber of ”nm” is 12. If 1 smart meter fails with failure rate ”lambda m”, ”nm” will minus

1. The code for the data layer is shown below:

nm : [ 0 . . 2 ] i n i t 2 ;

[ ] nm >0 −> nm ∗ lambda m : ( nm’ = nm − 1 ) ;

Smart Socket Module: ”ns” is the available smart meter numbers, the initial number

of ”ns” is 20. If 1 smart meter fails with failure rate ”lambda s”, ”ns” will minus 1. The

code for the data layer is shown below:

ns : [ 0 . . 20 ] i n i t 20 ;

[ ] ns >0 −> ns ∗ lambda s : ( ns ’ = ns − 1 ) ;

Gateway Module: In Architecture I, the number of controllers is 2. ”ng” is the

available controller number. If 1 gateway fails with a failure rate ”lambda g”, ”ng” will

minus 1. The code for the controller layer module is shown below:

ng : [ 0 . . 2 ] i n i t 2 ;

[ ] ng>0 −> ng ∗ lambda g : ( ng ’ = ng − 1 ) ;

The Condition for Failure of The Whole System: If ”nd” is smaller than lower

bound, or ”ng” is smaller than lower bound of gateways, ”ns” is smaller than lower bound

of smart sockets, the system fails. The code for failure conditions is shown as follows:

formula down =(nd<1) | ( ng<1) | ( ns <15) ;

4.3.2 Architecture II, III, and IV

Architecture II, III and IV are also constructed in PRISM. The modeling of other archi-

tectures are similar to Architecture I, the differences are shown in TABLE.4.3.

• Firstly, all architectures has 2 sensor sectors(nd1, nd2).
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• Secondly, Architecture I and III have 2 gateway nodes(g=2), architecture II has 1

gateway nodes(g=1).

• Thirdly, Architecture IV has 1 root gateway(g3=1).

4.4 Results Analysis of IoT System in Smart Microgrid

After the CTMC models for the IoT system are built in PRISM, we design different ex-

periments to show our architecture is better than other architectures. What’s more, for

the optimized architecture, the impact of different components are analyzed. fiot is the

failure rate of the IoT system. The experiment is divided into 7 parts:

• Experiment 1: The reliability of different architectures are analyzed to show archi-

tecture I is better.

• Experiment 2: The impact of the number of smart meters in the IoT system is

analyzed.

• Experiment 3: The impact of the failure rate of smart meters in the IoT system is

analyzed.

• Experiment 4: The impact of the number of smart sockets in IoT system is analyzed.

• Experiment 5: The impact of the failure rate of smart sockets in IoT system is

analyzed.

• Experiment 6: The impact of the number of gateways in the IoT system is analyzed.

• Experiment 7: The impact of the failure rate of gateways in the IoT system is

analyzed.

For experiment 1, the parameters for the 4 architectures are shown in TABLE.4.4.

The analysis results will be given later. In this table, ”fm = 1/10” means the failure

of smart meters occurs every 10 years. ”fs = 1/10” means the failure of smart sockets

occurs every 10 years. ”fg = 1/10” means the failure of smart gateway occurs every 10

years. ”nm”,”ns” and ”ng” are the number of smart meters, smart sockets, and gateways

respectively.
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For experiment 2-7, the impact of different components will be analyzed. Architecture

I will be chosen for analysis. The parameters for experiment 2-7 is shown in TABLE. 4.5,

the failure rates of the components are supported by [46]and [42].

Experiment 1: The reliability analysis of the 4 architectures: The 4 CTMC

models are built in PRISM to analyze the reliability of them. The experiment results are

shown in Fig. 4.2 to show the reliability of the 4 architectures.
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Figure 4.1: Model checking technique.

Table 4.1: Experiment environment

Experiment methods CPU RAM Operating system Software

CTMC 3.20GHz (i5-4460) 16G Windows 7, 64-bit PRISM

Table 4.2: The construction of different CTMC models

Architecture
I

Architecture
II

Architecture
III

Architecture
IV

S
S = {s0, s1, s2,
s3..., sn}

S = {s0, s1, s2,
s3..., sn}

S = {s0, s1, s2,
s3..., sn}

S = {s0, s1, s2,
s3..., sn}

s0 all smart sock-
ets, smart me-
ters, and gate-
ways are avail-
able

all smart sock-
ets, smart me-
ters, and gate-
ways are avail-
able

all smart sock-
ets, smart me-
ters, and gate-
ways are avail-
able

all smart
sockets, smart
meters, root
gateway and
local gateways
are available

L OK,Fail; OK,Fail ; OK,Fail OK,Fail
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Table 4.3: The difference between the model code of the 4 architectures

Architecture
I

Architecture
II

Architecture
III

Architecture
IV

Smart meter sectors nm : [0..2] init
2 ;

nm : [0..2] init
2 ;

nm : [0..2] init
2;

nm : [0..2] init
2;

Smart socket sectors ns : [0..20] init
20 ;

ns : [0..20] init
20 ;

ns : [0..20] init
20;

ns : [0..20] init
20;

Number of gateways ng : [0..2] init
2 ;

ng : [0..2] init
2 ;

ng1 : [0..1] init
1 ;ng2 : [0..1]
init 1 ;

ng1 : [0..1] init
1 ;ng2 : [0..1]
init 1 ; ng3 :
[0..1] init 1 ;

Table 4.4: The paremeter of experiment 1

Architecture
I

Architecture
II

Architecture
III

Architecture
IV

Smart meters nm=2,fm=1/10; nm=2,fm=1/10; nm=2,fm=1/10 nm=2,fm=1/10;
Smart sockets ns=20,fs=1/10; ns=20,fs=1/10; ns=20,fs=1/10; ns=20,fs=1/10;
Gateways ng=2,fg=1/10; ng=2,fg=1/10; ng=2,fg=1/10; ng=2,fg=1/10;

(a) The architecture comparison of the 4 architectures
in 3 years .

(b) The architecture comparison of the 4 architectures
in 10 years.

Figure 4.2: Experiment 1: The reliability analysis of the 4 architectures.
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Table 4.5: Premeters for experiment 2 to 7

Smart meters Smart sockets Gateways

Experiment 2 nm =
1, 2, 3, 4; fm =
1/10

ns = 20, fs =
1/10

ng = 2, fg = 1/10

Experiment 3 nm = 2; fm =
1/5, fm =
1/10, fm =
1/15, fm = 1/20;

ns = 20, fs =
1/10

ng = 2, fg = 1/10

Experiment 4 nm = 2; fm =
1/10

ns =
18, 20, 22, 24, fs =
1/10

ng = 2, fg = 1/10

Experiment 5 nm = 2; fm =
1/10

ns = 20, fs =
1/5, fs =
1/10, fs =
1/15, fs = 1/20

ng = 2, fg = 1/10

Experiment 6 nm = 2; fm =
1/10

ns = 20, fs =
1/10

ng =
1, 2, 3, 4, fg =
1/10

Experiment 7 nm = 2; fm =
1/10

ns = 20, fs =
1/5, fs =
1/10, fs =
1/15, fs = 1/20

ng = 2, fg =
1/5, 1/10, 1/15, 1/20
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(a) The failure rate of IoT system in 3 years with dif-
ferent number of smart meters.

(b) The failure rate of IoT system in 10 years with
different number of smart meters.

Figure 4.3: Experiment 2: The impact of nm.

(a) The failure rate of IoT system in 3 years with dif-
ferent failure rate of smart meters.

(b) The failure rate of IoT system in 10 years with
different failure rate of smart meters.

Figure 4.4: Experiment 3: The impact of fm.

Finding 1 (the reliability of the 4 architectures): Architecture I is better than

other architectures. The failure rate of architecture IV is highest.

Experiment 2: The relationship between nm and fiot: In this experiment, nm

in Architecture I is changed to analyze the impact of it. The experiment results are shown

in Fig. 4.3 to show impact of nm.

Finding 2 (The relationship between nm and fiot): fiot is inversely proportional

to nm. However, after nm increase to 3, the impact of nm is not obvious.

Experiment 3: The relationship between fm and fiot: In this experiment, fm

in Architecture I is changed to analyze the impact of it. The experiment results are shown

in Fig.4.4 to show the impact of fm.

Finding 3 (The relationship between fm and fiot): fiot is proportional to fm.

However, after fm increase to 15 years once, the impact of fm is not obvious.
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(a) The failure rate of IoT system in 3 years with dif-
ferent number of smart sockets.

(b) The failure rate of IoT system in 10 years with
different number of smart sockets.

Figure 4.5: Experiment 4: The impact of ns.

(a) The failure rate of IoT system in 3 years with dif-
ferent failure rate of smart sockets.

(b) The failure rate of IoT system in 10 years with
different failure rate of smart sockets.

Figure 4.6: Experiment 5: The impact of fs.

Experiment 4: The relationship between ns and fiot: In this experiment, ns in

Architecture I is changed to analyze the impact of it. The experiment results are shown

in Fig.4.5 to show the impact of ns.

Finding 4 (The relationship between ns and fiot): fiot is inversely proportional

to ns. The impact of fs is very obvious.

Experiment 5: The relationship between fs and fiot: In this experiment, fs in

Architecture I is changed to analyze the impact of it. The experiment results are shown

in Fig.4.6 to show the impact of fs.

Finding 5 (The relationship between fs and fiot): fiot is proportional to fs.

The impact of fs is very obvious.

Experiment 6: The relationship between ng and fiot: In this experiment, ng in

Architecture I is changed to analyze the impact of it. The experiment results are shown



42 Author:Kai Zheng

(a) The failure rate of IoT system in 3 years with dif-
ferent number of gateways.

(b) The failure rate of IoT system in 10 years with
different number of gateways.

Figure 4.7: Experiment 6: The impact of ng.

(a) The failure rate of IoT system in 3 years with dif-
ferent number of gateways.

(b) The failure rate of IoT system in 10 years with
different number of gateways.

Figure 4.8: Experiment 7: The impact of fg.

in Fig.4.7 to show the impact of ng.

Finding 6 (The relationship between ng and fiot): fiot is inversely proportional

to fs. However, if ng increase to 3, the impact of it is not obvious.

Experiment 7: The relationship between fg and fiot: In this experiment, fg in

Architecture I is changed to analyze the impact of it. The experiment results are shown

in Fig.4.8 to show the impact of fg.

Finding 7 (The relationship between fg and fiot): fiot is proportional to fs.

However, if fg increase to 15 years once, the impact of it is not obvious.
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4.5 CMTC Model Design of the DC Microgrid System

4.5.1 Architecture I

PV Layer Module: this module represents the number of workable sensor nodes. ”λp ”

is the failure rate of PV panels. For initial state, if 1 PV panel fails, the process will be

shown as:

np
λp→np− 1 (4.4)

Inverter Layer Module: The inverter layer has 4 inverters. Both the inverters have

failure rate ”λi”. For initial state, if 1 inverter fails with failure rate ”λi ”, the process is

shown as:

ni
λi→ni− 1 (4.5)

Failure Conditions: The failure conditions of Architecture I are shown as follows:

• ni < 2

• np < 2

4.5.2 Architecture II and III

For architecture II and III, the CTMC models are similar to architecture I. Architecture

II just have 1 centralized inverter, architecture III has DC/DC converters and centralized

inverters.

4.6 CMTC Model Implementation of the DC Microgrid Sys-

tem

4.6.1 Architecture I

PV Layer Module: ”np” is the available PV panel numbers, the initial number of ”np”

is 4. If 1 PV panel fails with failure rate ”lambda p”, ”np” will minus 1. The code for the

PV panel layer is shown below:

np : [ 0 . . 4 ] i n i t 4 ;

[ ] np>0 −> np ∗ lambda p : ( np ’ = np − 1 ) ;
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Inverter Layer Module: ”ni” is the available inverter numbers, the initial number of

”ni” is 4. If 1 inverter fails with failure rate ”lambda i”, ”ni” will minus 1. The code for

the inverter layer is shown below:

n i : [ 0 . . 4 ] i n i t 4 ;

[ ] ni>0 −> ni ∗ lambda i : ( ni ’ = ni − 1 ) ;

The Condition for Failure of The DC Microgrid : If ”np” is smaller than lower

bound, or ”ni” is smaller than lower bound of gateways, the system fails. The code for

failure conditions is shown as follows:

formula down =(np<2) | ( ni<2) ;

4.6.2 Architecture II and III

Architecture II and III are also constructed in PRISM. The modeling of other architectures

are similar to Architecture I, the differences are shown in TABLE.4.6.

• Firstly, all architectures have 4 PV panels (np=4).

• Secondly, Architecture I has 4 inverters (i=2), architecture II has 1 inverter (i=1).

Architecture III has 4 converters(c=4) and 1 inverter(i=1).

4.7 Results Analysis of DC Microgrid

After the CTMC models for DC microgrid are built in PRISM, we design different exper-

iments to show our architecture is better than other architectures. What’s more, for the

optimized architecture, the impact of different components are analyzed. fdc is the failure

rate of the DC microgrid. The experiments are divided into 5 parts:

• Experiment 1: The reliability of different architectures of DC microgrid are analyzed

to show architecture I is better.

• Experiment 2: The impact of PV panels numbers in DC microgrid is analyzed.

• Experiment 3: The impact of the failure rate of PV panels in DC microgrid is ana-

lyzed.

• Experiment 4: The impact of inverter numbers on DC microgrid is analyzed.
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(a) The architecture comparison of the 3 architectures
in 10 years.

(b) The architecture comparison of the 3 architectures
in 30 years.

Figure 4.9: Experiment1: The architecture comparison of the 3 architectures.

• Experiment 5: The impact of the failure rate of inverters on DC microgrid is analyzed.

For experiment 1, the parameters for the 3 architectures are shown in TABLE.4.7. The

failure rate of the components are supported by [45] and [44]. The analysis results will be

given later. In this table, ”fp = 1/20” means the failure of a PV panel occurs every 20

years. ”fi = 1/10” means the failure of inverters occurs every 20 years. ”np” and ”ni” are

the number of PV panels and inverters respectively.

For experiment 2-5, the impact of different components will be analyzed. Architecture

I will be chosen for analysis. The parameters for experiment 2 to 5 is shown in TABLE.

4.8

Experiment 1: The reliability analysis of the 3 architectures: The 3 CTMC

models are built in PRISM to analyze the reliability of them. The experiment results about

the reliability of IoT is shown in Figure.4.9.

Finding 1 (The reliability comparison of the 3 architectures) : Architecture I

is the most reliable one. The failure rate of Architecture III is the highest.

Experiment 2: The relationship between np and fdc: In this experiment, np in

Architecture I is changed to analyze the impact of it. The experiment results are shown

in Fig.4.10.

Finding 2 (The relationship between np and fdc): fdc is inversely proportional

to np. However, if np increase to 6, the impact of it become not obvious.

Experiment 3: The relationship between fp and fdc: In this experiment, fp in

Architecture I is changed to analyze the impact of it. The experiment results are shown

in Fig.4.11.
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(a) The failure rate of DC microgrid in 10 years with
different number of PV panels.

(b) The failure rate of DC microgrid in 30 years with
different number of PV panels.

Figure 4.10: Experiment 2: The impact of np.

(a) The failure rate of DC microgrid in 10 years with
different failure rate of PV panels.

(b) The failure rate of DC microgrid in 30 years with
different failure rate of PV panels.

Figure 4.11: Experiment 3: The impact of fp.

Finding 3 (The relationship between fp and fdc): fdc is inversely proportional

to fp. The impact of fp is not obvious.

Experiment 4: The relationship between ni and fdc: In this experiment, ni in

Architecture I is changed to analyze the impact of it. The experiment results are shown

in Fig.4.12.

Finding 4 (The relationship between ni and fdc): fdc is inversely proportional

to ni. The impact of ni is not obvious.

Experiment 5: The relationship between fi and fdc: In this experiment, fi in

Architecture I is changed to analyze the impact of it. The experiment results are shown

in Fig.4.13.

Finding 5 (The relationship between fi and fdc): fdc is proportional to fi. The

impact of fi is obvious.
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(a) The failure rate of DC microgrid in 10 years with
different failure rate of inverters.

(b) The failure rate of DC microgrid in 30 years with
different failure rate of inverters.

Figure 4.12: Experiment 4: The impact of ni.

(a) The failure rate of DC microgrid in 10 years with
different failure rate of inverters.

(b) The failure rate of DC microgrid in 30 years with
different failure rate of inverters.

Figure 4.13: Experiment 5: The impact of fi.

Table 4.6: The difference between the model code of the 3 architectures

Architecture
I

Architecture
II

Architecture
III

PV panel sector np : [0..4] init
4 ;

np : [0..4] init
4 ;

np : [0..4] init
4;

Inverter sectors ni : [0..4] init 4
;

ni : [0..1] init 1
;

ni : [0..1] init
1;

Converter sectors / / nc : [0..4] init
4 ;
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Table 4.7: The parameters of Experiments 1

Architecture
I

Architecture
II

Architecture III

PV Pannels np=4,fp=1/20; np=4,fp=1/20; np=4,fp=1/20;
Inverters ni=4,fi=1/20; ni=1,fi=1/20; ni=1,fi=1/20;
Converters / / nc=4,fc=1/20;

Table 4.8: Premeters for experiment 2 to 5

PV Pannels Inverters

Experiment 2 np =
4, 5, 6, 7; fp =
1/20;

ni = 4, fi = 1/20;

Experiment 3 np = 4; fp =
1/15, 1/20, 1/25, 1/30;

ni = 4, fi = 1/20;

Experiment 4 np = 4, fp = 1/20; ni = 4, 5, 6, 7; fi =
1/20;

Experiment 5 np = 4; fp = 1/20; ni = 4; fi =
1/15, 1/20, 1/25, 1/30;



Chapter 5

The Benchmarks for The Model

Checking of The Smart Microgrid

After we build CMTC models for the smart microgrid, the benchmarks are needed to verify

the correctness of the CTMC models. In this project, we use RBD method and Monte

Carlo method as benchmarks to show our CTMC models are correct. The RBD models

and Monte Carlo methods are shown as follows:

5.1 Benchmark 1: Reliability Block Diagram Method

Reliability Block Diagram (RBD) is a widely used method for reliability analysis[30]. Based

on RBD, we can evaluate the IoT system failure rate fiot(t) of ArchI to ArchIV by using

RBD algorithms.

5.1.1 The Implementation of RBD Models for IoT System

The algorithm for the RBD model of IoT system is shown as follows:

The RBD models are built in Matlab, the process of RBD model design is shown as

follows:

%% parameters

% the f a i l u r e r a t e o f a s i n g l e smart meter

lambda m = 1/10 ;

% the number o f smart meters

49
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num m = 2 ;

”lamda m” is the failure rate of the smart meter,”num m” is the number of the smart

meters. The smart meters fail with a failure rate of ”lamda m”.

The parameters for the smart meter is shown as follows:

% the f a i l u r e r a t e o f a s i n g l e smart s o c k e t

lambda s = 1/10 ;

% the number o f smart s o c k e t nodes

num s = 20 ;

”lamda s” is the failure rate of the smart socket,”num s” is the number of smart sockets.

The smart sockets fail with a failure rate ”lamda s”.

The parameters for the gateways are shown as follows:

% the f a i l u r e r a t e o f a s i n g l e gateway

lambda g = 1/10 ;

% the number o f gateways

num g = 20 ;

The ”lamda g” is the failure rate of gateways,”num g” is the number of gateways. The

gateways fail with a failure rate of ”lamda g”.

The failure rate of smart meters, smart sockets and gateways are between 0 and 1.

They are shown as follows:

fp m = zeros (1 , durat ion ) ;

f p s = zeros (1 , durat ion ) ;

f p g = zeros (1 , durat ion ) ;

f a i l u r e i o t = zeros (1 , durat ion ) ;

The simulation time is 10 years, which is shown as follows:

% t o t a l s i m u l a t i o n time

durat ion = 10 ;

day = ( 1 : durat ion ) ;

The failure rate of the whole system is calculated as follows:

for t = 1 : durat ion

% f a i l u r e p r o b a b i l i t y o f smart meter l a y e r on each day
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fp m ( t ) = (1−exp(−lambda m∗ t ) ) ˆnum m;

% f a i l u r e p r o b a b i l i t y o f smart s o c k e t l a y e r on each day

f p s ( t ) = (1−exp(− lambda s∗ t ) ) ˆnum s ;

% f a i l u r e p r o b a b i l i t y o f gateway l a y e r on each day

f p g ( t ) = (1−exp(− lambda g∗ t ) ) ˆnum g ;

f a i l u r e i o t ( t ) = fp m ( t ) + f p s ( t )+ fp g ( t ) − fp m ( t ) ∗ f p s ( t

)−fp m ( t ) ∗ f p g ( t )− f p s ( t ) ∗ f p g ( t )+fp m ( t ) ∗ f p s ( t ) ∗ f p g ( t )

;

end

plot ( day , f a i l u r e i o t ) ;

After the failure rate of the whole system is calculated, then Matlab will plot it. Ac-

cording to the 7 experiments about reliability analysis of IoT system, we can modify the

parameters to get the experiment results. For the reliability analysis of another 3 archi-

tectures, the RBD models are similar.

5.1.2 The Experiments Results of RBD for IoT System

According to the 7 experiments about reliability analysis of IoT system. The experiment

results of RBD models are shown as below as benchmarks. The experiment results are

shown in Fig. 5.2 to Fig. 5.8.

For experiment 1 to 7, we can see that the experiment results are similar to our CMTC

models.

5.1.3 The Implementation of RBD Models for DC Microgrid

The RBD models are built in Matlab, the process of RBD model design is shown as follows.

The PV panel module is shown below.

%% parameters

% the f a i l u r e r a t e o f a s i n g l e PV pannel

lambda p = 1/20 ;

% the number o f PV panne ls
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num p = 4 ;

”lamda p” is the failure rate of one PV panel,”num p” is the number of PV panels. The

PV panels fail with a failure rate ”lamda p”.

The inverter module is shown below.

%% parameters

% the f a i l u r e r a t e o f a s i n g l e i n v e r t e r

lambda i = 1/20 ;

% the number o f i n v e r t e r

num i = 4 ;

”lamda i” is the failure rate of one inverter,”num i” is the number of inverters. The

inverters fail with a failure rate of ”lamda i”.

The failure rate of PV panel and inverter are between 0 and 1. They are shown as

follows:

fp p = zeros (1 , durat ion ) ;

f p i = zeros (1 , durat ion ) ;

f a i l u r e d c = zeros (1 , durat ion ) ;

The simulation time is 10 years, which is shown as follows:

% t o t a l s i m u l a t i o n time

durat ion = 10 ;

day = ( 1 : durat ion ) ;

The failure rate of the DC microgrid in tth day is shown as follows:

for t = 1 : durat ion

% f a i l u r e p r o b a b i l i t y o f PV pane l l a y e r on each day

fp p ( t ) = (1−exp(−lambda p∗ t ) ) ˆnum p ;

% f a i l u r e p r o b a b i l i t y o f i n v e r t e r l a y e r on each day

f p i ( t ) = (1−exp(− lambda i ∗ t ) ) ˆnum i ;

f a i l u r e d c ( t ) = fp p ( t ) + f p i ( t )− fp p ( t ) ∗ f p i ( t ) ;

end

plot ( day , f a i l u r e d c ) ;
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After the failure rate of the whole DC microgrid is calculated, then Matlab will plot

it. According to the 5 experiments about reliability analysis of IoT system, we can modify

the parameters to get the experiment results. For the reliability analysis of another 2

architectures, the RBD models are similar.

According to the 5 experiments about reliability analysis of DC microgrid system. The

experiment results of RBD models are shown below as benchmarks. The experiment results

are shown in Fig. 5.10 to Fig.5.14.
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Figure 5.1: The RBD algorithm for the IoT system(Architecture I).

(a) The reliability analysis of the 4 architectures in 3
years (RBD)

(b) The reliability analysis of the 4 architectures in 10
years (RBD)

Figure 5.2: Experiment 1: The reliability analysis of the 4 architectures (RBD method).

(a) The failure rate of IoT system in 3 years with
different number of smart meters (RBD).

(b) The failure rate of IoT system in 10 years with
different number of smart meters (RBD).

Figure 5.3: Experiment 2: The impact of nm (RBD method)
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(a) The failure rate of IoT system in 3 years with
different failure rate of smart meters(RBD).

(b) The failure rate of IoT system in 10 years with
different failure rate of smart meters(RBD).

Figure 5.4: Experiment 3: The impact of fm (RBD method).

(a) The failure rate of IoT system in 3 years with
different number of smart sockets (RBD).

(b) The failure rate of IoT system in 10 years with
different number of smart sockets (RBD).

Figure 5.5: Experiment 4: The impact of ns (RBD method).

(a) The failure rate of IoT system in 3 years with
different failure rate of smart sockets (RBD).

(b) The failure rate of IoT system in 10 years with
different failure rate of smart sockets (RBD).

Figure 5.6: Experiment 5: The impact of fs (RBD method).
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(a) The failure rate of IoT system in 3 years with
different number of gateways (RBD)

(b) The failure rate of IoT system in 10 years with
different number of gateways (RBD)

Figure 5.7: Experiment 6: The impact of ng (RBD method).

(a) The failure rate of IoT system in 3 years with
different failure rate of gateways (RBD)

(b) The failure rate of IoT system in 10 years with
different failure rate of gateways (RBD)

Figure 5.8: Experiment 7: The impact of fg (RBD method).

Figure 5.9: The RBD algorithm for the DC microgrid(Architecture I).
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(a) The reliability analysis of the 3 architectures in 3
years (RBD)

(b) The reliability analysis of the 3 architectures in 10
years (RBD)

Figure 5.10: Experiment 1: The reliability analysis of the 3 architectures of DC microgrid
(RBD method).

(a) The failure rate of DC microgrid system in 3 years
with different number of PV panels

(b) The failure rate of DC microgrid system in 10 years
with different number of PV panels

Figure 5.11: Experiment 2: The impact of np (RBD method).

(a) The failure rate of DC microgrid system in 10 years
with different failure rate of PV panels

(b) The failure rate of DC microgrid in 30 years with
different failure rate of PV panels

Figure 5.12: Experiment 3: The impact of fp (RBD method).
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(a) The failure rate of DC microgrid in 10 years with
different number of inverters

(b) The failure rate of DC microgrid in 30 years with
different number of inverters

Figure 5.13: Experiment 4: The impact of ni (RBD method).

(a) The failure rate of DC microgrid in 10 years with
different failure rate of inverters

(b) The failure rate of DC microgrid in 30 years with
different failure rate of inverters

Figure 5.14: Experiment 5: The impact of fi (RBD method).

5.2 Benchmark 2: Monte Carlo Method

Monte Carlo method is also a widely used reliability analysis method. Based on MC, we

can compute the failure rate of the smart microgrid; Monte Carlo method is also used

as a benchmark to show our CMTC model is correct. The model implementation and

experiment result analysis are shown below.

5.2.1 The Implementation of Monte Carlo Models for IoT System

Monte Carlos method is also a widely used method for the reliability analysis of IoT system.
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The implementation o f the Monte Carlo models i s shown as f o l l o w s .

The parameters for the smart meters are shown as f o l l o w s .

\begin { l s t l i s t i n g }
%% parameters

% the f a i l u r e r a t e o f smart meters

lambda m = 1/10 ;

% the number o f smart meters

num m= 2 ;

The ”lamda m” is the failure rate of smart meters,”num s” is the number of smart

meters. The smart meters fail with a failure rate of ”lamda s”. The failure of the smart

meters occurs once in 10 years.

The parameters about the smart sockets are shown as below:

%% parameters

% the f a i l u r e r a t e o f smart s o c k e t s

lambda s = 1/10 ;

% the number o f smart s o c k e t s

num s= 20 ;

The ”lamda s” is the failure rate of the smart socket,”num s” is the number of smart

sockets. The smart sockets fail with a failure rate of ”lamda s”. The failure of the smart

sockets occurs once in 10 years.

The parameters about the gateways are shown as below:

%% parameters

% the f a i l u r e r a t e o f gateways

lambda g = 1/10 ;

% the number o f smart gateways

num g= 2 ;

The ”lamda g” is the failure rate of gateways,”num g” is the number of gateways. The

smart gateways fail with a failure rate of ”lamda g”. The failure of the gateways occurs

once in 10 years.

The duration of the simulation time is shown as follows:

% t o t a l s i m u l a t i o n time

durat ion = 10 ;



60 Author:Kai Zheng

day = ( 1 : durat ion ) ;

The simulation times each day is also shown as follows. In this experiment, the simu-

lation time is 10000.

% s i m u l a t i o n t imes each year

n = 10000;

The parameters for the random number of smart meter, smart sockets and gateways

are shown below.

rand m = zeros (1 ,num m) ;

normal num m = zeros (1 ,num m) ;

c r i t i c a l v a l u e m = 1 ;

rand s = zeros (1 , num s ) ;

normal num s = zeros (1 , num s ) ;

c r i t i c a l v a l u e s = 15 ;

rand g = zeros (1 , num g) ;

normal num g = zeros (1 , num g) ;

c r i t i c a l v a l u e g = 1 ;

f a i l u r e i o t = zeros (1 , durat ion ) ;

The failure rate of smart meter layer is shown as follows:

for i = 1 : durat ion

count = 0 ;

for j = 1 : n

rand m = rand (1 ,num m) ;

for k = 1 : num m

i f ( rand m ( k ) < 1−exp(−lambda m∗ i ) )

% kth smart meter f a i l s

normal num m ( k ) = 0 ;

else

% kth smart meter does not f a i l
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normal num m ( k ) = 1 ;

end

end

i f ( normal num m ∗ normal num m ’ < c r i t i c a l v a l u e m )

f lag m = 0 ;

else

f lag m = 1 ;

end

The failure rate of the smart socket layer is shown as follows:

rand s = rand (1 , num s ) ;

for k = 1 : num s

i f ( rand s ( k ) < 1−exp(− lambda s∗ i ) )

% kth smart s o c k e t f a i l s

normal num s ( k ) = 0 ;

else

% kth smart s o c k e t does not f a i l

normal num s ( k ) = 1 ;

end

end

i f ( normal num s ∗ normal num s ’ < c r i t i c a l v a l u e s )

f l a g s = 0 ;

else

f l a g s = 1 ;

end

The failure rate of the gateway layer is shown as follows:

rand g = rand (1 , num g) ;

for k = 1 : num g

i f ( rand g ( k ) < 1−exp(− lambda g∗ i ) )

% gateway f a i l s

normal num g ( k ) = 0 ;

else

% gateway does not f a i l

normal num g ( k ) = 1 ;
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end

end

i f ( normal num g ∗ normal num g ’ < c r i t i c a l v a l u e g )

f l a g g = 0 ;

else

f l a g g = 1 ;

end

The failure rate of the IoT system is calculated as follows:

i f ( f lag m==1 && f l a g s==1 && f l a g g==1 )

count = count + 0 ;

else

count = count + 1 ;

end

f a i l u r e i o t ( t ) = count /n ;

After the failure rate of the IoT system in t days is calculated, Matlab will plot the

failure rate of the IoT system each day.

5.2.2 The Experiments Results of Monte Carlo Method for IoT System

According to the 7 experiments about reliability analysis of IoT system. The experiment

results of Monte Carlo models are shown as below as benchmarks. The experiment results

are shown in Fig. 5.16 to Fig.5.22.
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Figure 5.15: The Monte Carlo algorithm for the IoT system(Architecture I).
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(a) The reliability analysis of the 4 architectures in 3
years (Monte Carlo)

(b) The reliability analysis of the 4 architectures in 10
years (Monte Carlo)

Figure 5.16: Experiment1: The reliability analysis of the 4 architectures (Monte Carlo
method).

(a) The failure rate of IoT system in 3 years with
different number of smart meters

(b) The failure rate of IoT system in 10 years with
different number of smart meters

Figure 5.17: Experiment2: The impact of nm (Monte Carlo method).

(a) The failure rate of IoT system in 3 years with
different failure rate of smart meters

(b) The failure rate of IoT system in 10 years with
different failure rate of smart meters

Figure 5.18: Experiment3: The impact of fm (Monte Carlo method).
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(a) The failure rate of IoT system in 3 years with
different number of smart sockets

(b) The failure rate of IoT system in 10 years with
different number of smart sockets

Figure 5.19: Experiment4: The impact of ns (Monte Carlo method).
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(a) The failure rate of IoT system in 3 years with
different failure rate of smart sockets

(b) The failure rate of IoT system in 10 years with
different failure rate of smart sockets

Figure 5.20: Experiment5: The impact of fs (Monte Carlo method).

(a) The failure rate of IoT system in 3 years with
different number of gateways

(b) The failure rate of IoT system in 10 years with
different number of gateways

Figure 5.21: Experiment6: The impact of ng (Monte Carlo method).

(a) The failure rate of IoT system in 3 years with
different failure rate of gateways

(b) The failure rate of IoT system in 10 years with
different failure rate of gateways

Figure 5.22: Experiment7: The impact of fg (Monte Carlo method).
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The experiments show that the results are similar to RBD models and our CTMC

models are correct. We can see that our CTMC models are correct.

5.2.3 The Implementation of Monte Carlo Models for DC Microgrid

In this project, Monte Carlo models are also benchmarks for the reliability analysis of the

DC microgrid.

The parameters for the PV pane l s are shown as f o l l o w s .

\begin { l s t l i s t i n g }
%% parameters

% the f a i l u r e r a t e o f PV p ane l s

lambda p = 1/20 ;

% the number o f PV p ane l s

num p= 4 ;

The ”lamda p” is the failure rate of PV panels,”num p” is the number of PV panels.

The PV panels fail with a failure rate of ”lamda p”. The failure of the PV panels occurs

once in 10 years.

The parameters for the inverters are shown as follows:

%% parameters

% the f a i l u r e r a t e o f i n v e r t e r s

lambda i = 1/20 ;

% the number o f i n v e r t e r s

num i= 4 ;

The duration of the simulation time is shown as follows:

% t o t a l s i m u l a t i o n time

durat ion = 10 ;

day = ( 1 : durat ion ) ;

The simulation times each day is also shown as follows. In this experiment, the simu-

lation time is 10000.

% s i m u l a t i o n t imes each year

n = 10000;
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The parameters for the random number of PV panels, inverters are shown below.

rand p = zeros (1 , num p) ;

normal num p = zeros (1 , num p) ;

c r i t i c a l v a l u e p = 1 ;

r and i = zeros (1 , num i ) ;

normal num i = zeros (1 , num i ) ;

c r i t i c a l v a l u e i = 1 ;

f a i l u r e d c = zeros (1 , durat ion ) ;

The failure rate of PV panel layer is shown as follows:

for i = 1 : durat ion

count = 0 ;

for j = 1 : n

rand p = rand (1 , num p) ;

for k = 1 : num p

i f ( rand p ( k ) < 1−exp(−lambda p∗ i ) )

% kth PV pane l f a i l s

normal num p ( k ) = 0 ;

else

% kth PV pane l does not f a i l

normal num p ( k ) = 1 ;

end

end

i f ( normal num p ∗ normal num p ’ < c r i t i c a l v a l u e p )

f l a g p = 0 ;

else

f l a g p= 1 ;

end

The failure rate of the inverter layer is shown as follows:

for i = 1 : durat ion

count = 0 ;
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for j = 1 : n

rand i = rand (1 , num i ) ;

for k = 1 : num i

i f ( r and i ( k ) < 1−exp(− lambda i ∗ i ) )

% kth i n v e r t e r f a i l s

normal num i ( k ) = 0 ;

else

% kth i n v e r t e r does not f a i l

normal num i ( k ) = 1 ;

end

end

i f ( normal num i ∗ normal num i ’ < c r i t i c a l v a l u e i )

f l a g i = 0 ;

else

f l a g i= 1 ;

end

The failure rate of the IoT system is calculated as follows:

i f ( f l a g p==1 && f l a g i==1 )

count = count + 0 ;

else

count = count + 1 ;

end

f a i l u r e i o t ( t ) = count /n ;

After the failure rate of DC microgrid in t days is calculated, Matlab will plot the

failure rate of DC microgrid on each day.

5.2.4 The Experiment Results of Monte Carlo Models for DC Microgrid

According to the 5 experiments about reliability analysis of IoT system. The experiment

results of Monte Carlo models are shown below as benchmarks. The experiment results

are shown in Fig. 5.24 to Fig.5.28.
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The experiment results show that the results are similar to CTMC models, so our

CTMC models are correct.

5.2.5 The Comparison Between Our CTMC models and Other Methods

The comparison of our CTMC models and other methods (IoT system) are shown in

TABLE. 5.1. The experiment results in this table shows that the time for our CTMC

models is shorter than other methods,so our CTMC models are more efficiency than the

other methods. The comparison of our CTMC models and other methods (DC microgrid

system) are shown in TABLE. 5.2. The experiment results in this table shows that the

time for our CTMC models is shorter than other methods,so our CTMC models are more

efficiency than the other methods.

CTMC, RBD, and Monte Carlo method is used in reliability analysis of the network.

For smart microgrid, the architecture of it is similar to networks, especially for IoT system.

For CTMC, the efficiency of it is faster than other methods. What’s more, CTMC is easier

to build more complex models for more complex networkit is easier to connect the different

modules and set the failure conditions. For other methodthe equations for a more complex

model will be very complex and easy to cause errors. So CTMC is suitable for current

research and further research about complex networks. For the smart grid, the structure

of it is more complex than smart microgrid, so our CTMC is suitable for evaluating the

reliability of the smart grid in further research.
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Figure 5.23: The Monte Carlo algorithm for the DC microgrid (Architecture I).
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(a) The reliability analysis of the 4 architectures in 10
years (Monte Carlo)

(b) The reliability analysis of the 4 architectures in 30
years (Monte Carlo)

Figure 5.24: Experiment1: The reliability analysis of the 3 architectures (Monte Carlo
method).

(a) The failure rate of DC microgrid in 10 years with
different number of PV panels

(b) The failure rate of DC microgrid in 30 years with
different number of PV panels

Figure 5.25: Experiment2: The impact of np (Monte Carlo method).

(a) The failure rate of DC microgrid in 10 years with
different failure rate of PV panels

(b) The failure rate of DC microgrid in 30 years with
different failure rate of PV panels

Figure 5.26: Experiment3: The impact of fp (Monte Carlo method).
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(a) The failure rate of DC microgrid in 10 years with
different number of inverters(Monte Carlo method)

(b) The failure rate of DC microgrid in 30 years with
different number of inverters (Monte Carlo method)

Figure 5.27: Experiment4: The impact of ni (Monte Carlo method).

(a) The failure rate of DC microgrid in 10 years with
different failure rate of inverters (Monte Carlo)

(b) The failure rate of DC microgrid in 30 years with
different failure rate of inverters (Monte Carlo)

Figure 5.28: Experiment5: The impact of fi (Monte Carlo method).
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Table 5.1: The method comparison of the 4 architectures for IoT system

CTMC RBD Monte Carlo

Experiment 1(3 years) 0.004s; 0.078s; 8.338s;
Experiment 1(10 years) 0.006s; 0.082s; 19.585s;
Experiment 2(3 years) 0.002s; 0.065s; 6.326s;
Experiment 2(10 years) 0.004s; 0.056s; 17.576s;
Experiment 3(3 years) 0.002s; 0.061s; 6.238s;
Experiment 3(10 years) 0.005s; 0.059s; 16.355s;
Experiment 4(3 years) 0.002s; 0.061s; 6.138s;
Experiment 4(10 years) 0.004s; 0.059s; 17.585s;
Experiment 5(3 years) 0.002s; 0.063s; 6.338s;
Experiment 5(10 years) 0.005s; 0.054s; 17.556s;
Experiment 6(3 years) 0.002s; 0.061s; 6.325s;
Experiment 6(10 years) 0.004s; 0.064s; 17.284s;
Experiment 7(3 years) 0.002s; 0.061s; 6.326s;
Experiment 7(10 years) 0.004s; 0.059s; 17.282s;

Table 5.2: The method comparison of the 4 architectures for DC microgrid system

CTMC RBD Monte Carlo

Experiment 1(3 years) 0.002s; 0.045s; 6.318s;
Experiment 1(10 years) 0.003s; 0.036s; 17.565s;
Experiment 2(3 years) 0.001s; 0.032s; 6.317s;
Experiment 2(10 years) 0.001s; 0.038s; 13.573s;
Experiment 3(3 years) 0.001s; 0.036s; 6.288s;
Experiment 3(10 years) 0.001s; 0.038s; 16.325s;
Experiment 4(3 years) 0.001s; 0.042s; 6.158s;
Experiment 4(10 years) 0.001s; 0.037s; 14.575s;
Experiment 5(3 years) 0.001s; 0.031s; 6.318s;
Experiment 5(10 years) 0.001s; 0.042s; 14.536s;
Experiment 6(3 years) 0.001s; 0.032s; 6.336s;
Experiment 6(10 years) 0.001s; 0.034s; 14.214s;
Experiment 7(3 years) 0.001s; 0.035s; 6.827s;
Experiment 7(10 years) 0.001s; 0.032s; 14.272s;
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The Case Study for Reliability

Analysis

In my Mphil project, I also design case study system to simulate the failure process of the

IoT and DC microgrid.

6.1 Case Study IoT System for Reliability Analysis

In this project, we also build the case study platform to test the reliability of the 4 Archi-

tectures of IoT system. The case study IoT system for photovoltaic (PV) system includes

the following components:

• Server: Get the data from 2 gateways.

• Gateway: get the data from 2 smart meters and 20 smart sockets.

• Sensors: the sensors are used to monitor the operation of PV energy system, we

divided them into 2 groups: smart sockets and smart meters.

The schematic diagram of the platform for the IoT system is shown in Fig.6.1. The 4

architectures are similar with the previous architectures for IoT system. The figure for the

case study IoT platform is shown in Fig.6.2. In this platform, another 18 smart sockets

are not shown in this figure.

The server can monitor the operation of gateways, smart sockets, and smart meters.

The monitoring results are shown in Fig.6.3. If one gateway fails, the monitoring results

75
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(a) Architecture I (b) Architecture II

(c) Architecture III (d) Architecture IV

Figure 6.1: The case study IoT system.

will be different,which is shown in Fig.6.4.

For the smart sockets and smart meters, the failure rate of them is realized by setting

the sleep rate of the Arduino. In order to get more data to calculate the failure rate of the
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system to match the simulation results of CTMC models, we use 10 minutes to stand for

10 years. For example, the failure of smart sockets occurs in 10 years. In this experiment,

the sleep rate of Arduino is set by using a random number. Get the random number from 1

to 120 every 5 seconds, if the random number equals to 1, the Arduino-based smart sockets

entry sleep mode. For the failure rate of the gateway, the method is similar. For example,

the failure of the gateway occurs in 10 years. The random number is also used to simulate

the failure of the gateway. In the Python program of the gateway (virtual machine), get

a random number from 1 to 120 every 5 seconds. If the random number equals to 1, the

Python program exits, so the server can not get the data.

In order to check the state of smart sockets, smart meters, and gateways. Jmeter (a

software) is used to send HTTP requests to the smart socks, smart meters, and gateways

because each component is able to answer HTTP requests. The interface of Jmeter is

shown in Fig.6.5.

The interface of HTTP requests are shown in Fig.6.6. In order to check the failure of

the smart meters and smart sockets, the gateways(virtual machines)are also used to get

the data of Arduino-based smart sockets and smart meters. The information is shown in

Fig.6.7 and Fig.6.8.

I use JMeter to send HTTP requests to each component. According to the failure

record of each component, we can judge when the system is down. After the system is

down, this experiment finishes once. We conduct 300 experiments and calculate the failure

rate on each year and plot it.

For the architecture comparison of the case study IoT system is also shown in Fig.6.9

and Table.6.1, the simulation results of the case study IoT system is similar with the

CTMC models. We can also prove that our CTMC model is correct.

6.2 Case Study PV Energy System for Reliability Analysis

We also use sensors and virtual machine to simulate the failure process of the smart DC

microgrid. The architecture of the case study PV system for simulating the failure process

of the DC microgrid is shown in Fig.6.10.

The comparison of the results of the case study PV system and our CTMC models are

shown in Fig.6.11 and Table6.2. The results show that the simulation results of the case

study PV system is similar to CTMC models, so our CTMC models are correct.
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6.3 Limitation of The Case Study System and Further Re-

search

In this project, the reliability of domestic smart microgrid is evaluated by building case

study systems. However, the scale of the case study IoT system and DC microgrid is small

due to the limitation of time. In further research, the scale of the smart microgrid should

be intended to make the research more meaningful. What’s is more, in this project, the

case study just simulate the failure process of 2 experiments. Due to the time limitation

of the project, some other experiments are not conducted to match the results of CTMC

models. These will be included in future research.
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Figure 6.2: The case study IoT platform for Architecture I.

Table 6.1: Difference between case study system simulation and CTMC results (IoT sys-
tem)

Time(years) CTMC Case Study sys-
tem

CTMC-Case s-
tudy system

1 0.1213 0.1045 0.0168
2 0.3283 0.3048 0.0235
3 0.5793 0.5964 0.0171
4 0.8152 0.8012 0.014
5 0.9291 0.9361 −0.0007
6 0.9663 0.9713 −0.0005
7 0.9929 1 0.0007
8 0.997 1 0.0003
9 0.9995 1 0.0005
10 0.9999 1 0.0001
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Figure 6.3: The monitoring results on the server.

Figure 6.4: The monitoring results on the server (failure).
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Figure 6.5: The interface of JMeter.

Figure 6.6: The HTTP requests.
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Figure 6.7: Monitoring information of smart sockets and smart meters (gateway 1).
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Figure 6.8: Monitoring information of smart sockets and smart meters (gateway 2).
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(a) Case study IoT system (b) CTMC model (IoT system)

Figure 6.9: The comparison between simulation results of case study IoT system and
CTMC models (IoT system).

Figure 6.10: The simulated DC microgrid system.
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(a) Case study PV system (b) CTMC model(DC microgrid)

Figure 6.11: The comparison between simulation results of case study system and CTMC
models (DC microgrid).

Table 6.2: Difference between case study system simulation and CTMC results (DC mi-
crogrid)

Time(years) CTMC Case study sys-
tem

CTMC-Case s-
tudy system

1 0.0001 0 0.0001
2 0.0064 0 0.0064
3 0.0193 0.0298 −0.0105
4 0.0408 0.0304 0.0104
5 0.0709 0.0609 0.0100
6 0.1091 0.0853 0.0238
7 0.1540 0.1433 0.0107
8 0.2041 0.2146 −0.0105
9 0.2580 0.2686 −0.0106
10 0.3140 0.3350 −0.0210
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Conclusion and Future Work

7.1 Conclusion

In this Mphil project, we analyze and propose an optimized architecture for the smart

microgrid. The CTMC models are built in PRISM to analyze the reliability of it. The

experiments are divided into 2 parts: reliability of IoT system and DC microgrid. The op-

timized architecture of IoT system and DC microgrid are analyzed respectively to show our

architecture is better than the other typical architectures. Then the influence of different

components of the IoT system and DC microgrid are analyzed.

In order to show our CMTC models are correct, RBD method and Monte Carlo method

are used to as benchmarks. The RBD models and Monte Carlo models are built in Matlab

to analyze the reliability of the smart microgrid. The experiment results are similar to the

CMTC models, so our CTMC models are correct.

What’s more, the case study IoT platform is built in our lab to verify the reliability of

different architectures. The experiment results also show that our architecture is the most

reliable one.

7.2 Future Work

In this project, I focus on the reliability analysis of the smart microgrid. For the model

checking part, in the real case, some of the components are reparable. However, for the

CTMC models in this project, the reparable nodes are not considered. The architectures

should be extended to meet the demand of smart grid. The reparable nodes bring more

86
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states, the CTMC models and Matlab models still should be improved. What’s more, for

IoT system and DC microgrid, there are also some other failure types, these will also be

included in further research.
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