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Abstract

ROC (receiver operating characteristic) curve analysis is well established for assessing
how well a continuous biomarker is capable to distinguish between healthy and
diseased (event) individuals. The classical ROC curve approach is based on binary
(case/control) disease outcome. However, many disease outcomes are time dependent
as disease status is changing over time. Thus, estimating an ROC curve as a function
of event-time is more appropriate and is a more effective tool in measuring the
diagnostic accuracy of a biomarker.

This thesis develops and applies novel time-dependent ROC curve analysis approaches
for evaluating the diagnostic efficacy of a biomarker at the baseline level. Two major
findings of the comprehensive review undertaken on the time-dependent ROC curve
has motivated the methodological developments of this thesis. Firstly, lack of
parametric approaches to estimate the biomarker efficacy, and secondly, although
biomarkers are often measured with an error due to contamination and variable storage
conditions, the current estimation methods ignores this error. The thesis develops a
parametric time-dependent ROC curve exploring a range of combination of
distributions for event-time and biomarker. The closed form formulae of ROC curve
summaries are derived from the joint distribution of event-time and biomarker
whenever possible, while numerical solutions are implemented otherwise. A joint
modelling approach is proposed to adjust for measurement error of the biomarker.
Individual-level deviations of the baseline biomarker measurement from the
population mean is linked with the event-time within the proposed joint model. A
measurement error adjusted estimator is derived from estimated random effects and
association between baseline biomarker and event-time. The proposed methods are
evaluated through a range of simulation studies, and illustrated using Mayo Clinic
primary biliary cirrhosis (PBC) data. Software is developed in the R language to
implement the methodologies.

The results show that although the closed form formulae for parametric time-
dependent ROC curve cannot be established for many distributional combinations due
to complexity of the joint density, numerical solutions can be readily derived with the
current advances in computing and software. The proposed parametric method
provides equally precise estimates even when the sample size is small. The observed
biomarker measurement could underestimate the true diagnostic effectiveness due to
measurement error and hence useful biomarkers might go unnoticed. The proposed
methodology effectively adjusts for measurement error when evaluating the diagnostic
effectiveness of a biomarker.
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1 Introduction

1.1 Scope of thesis

Research on personalised medicine has rapidly gained recognition in recent years
leading to clinical studies which are aimed to discover potential quantities, collectively
known as “biomarkers” that can signal a specific disease or a condition. The
biomarkers can be predictive biomarker or prognostic biomarker. Predictive biomarker
predicts the event from a treatment while prognostic biomarker are any clinical
measurements or characteristics irrespective the treatment [1]. Among the examples
of such clinical studies are single clinical measures such as epithelial cell percentage
from the S-phase in breast cancer studies [2, 3], CD4 cell counts in AIDS [4], and
EFGR and CK5/6 for breast cancer [5, 6], as well as various predictive and prognostic
scores that can serve as biomarkers. Some examples of the predictive and prognostic
scores include the Framingham risk score used for detecting cardiovascular events in
elderly adults in a population-based observational prospective study [7], and the

Karnofsky score used for predicting mortality among lung cancer patients [8, 9].

The main purpose of evaluating a candidate biomarker is to accurately discriminate
between diseased (referred as “cases”) and healthy (referred as “controls”) individuals
within a period under study. The cases can also be defined based on the response to a
treatment such cases are the individuals that respond to the treatment while controls
are the individuals who do not. Receiver operating characteristics (ROC) curve
analysis is a well-established tool in medical research for assessing how well a
biomarker is capable of effectively discriminating between cases and controls [10].
The standard ROC curve analysis is based on a binary disease outcome of whether or
not the individual has the disease (case) or remains disease free (control). However,
many disease outcomes are time dependent leading to varying event (disease onset)
times between the cases and controls. Healthy individuals may not remain consistently
disease free and may develop the disease at any time over the study’s follow-up period.
In cancer, no apparent symptoms can be identified at an early stage, but it can spread

to other parts of the body in time.

Thus, considering that the disease status change over time, it is more appropriate to

evaluate the discriminant capability of a biomarker. Therefore, a range of time-
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dependent ROC curve analyses has been proposed in the past decade to determine the
accuracy of a biomarker at specific times of interest. For example, time-dependent
ROC curve methodology is used for breast cancer screening to investigate whether the
individual is free of subclinical disease after two years of screening [7]. However, the

standard ROC approach is still increasingly used in diagnostic clinical research.

Although nonparametric approaches to estimate the time-dependent ROC curve have
been extensively proposed in the current literature, parametric approaches may be
more efficient when the sample size is small (usually occurs in clinical biomarker
development studies) and also since the event-time distributions are often highly
skewed [11]. Moreover, clinical biomarkers are usually measured with an error due to
contamination during specimen or sample (e.g. blood, urine) collection or variable
storage conditions. Failing to adjust for measurement error may hinder the explanatory
power of the biomarker causing the ROC curve to be underestimated [12, 13].

1.2 Thesis objectives

The broad aim of this thesis is to explore and extend the methodology for ROC curve
analysis for evaluating the diagnostic efficacy of a biomarker when disease outcome

is time dependent.
The specific objectives of the thesis are to:

1. Conduct a comprehensive review of a time-dependent ROC curve methodology for
various definitions of time dependency in order to explore current approaches,
limitations and use in clinical research.

2. Develop a novel parametric approach to estimate the time-dependent ROC curve
allowing for varying distributions of event-times and small sample sizes.

3. Develop a data-efficient novel methodology of time-dependent ROC curve to
account for the measurement error of clinical biomarkers.

4. lllustrate the existing time-dependent ROC curve methodologies and novel

approaches developed in this thesis in a real clinical application.

The rest of this chapter is organised in the following sections. The background
information on the standard ROC curve analysis is discussed in Section 1.3. Time-

dependent ROC curves include the disease outcome as an event-time, and they use the
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longitudinally repeated biomarker measurements. Therefore, the introduction to event-
time and longitudinal data and relevant analysis methods for the thesis are provided in
Section 1.4 and Section 1.5 respectively. The possible measurement error of a
biomarker is discussed in Section 1.6. Section 1.7 describes the details of a dataset
from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver, which is used
to illustrate methodologies discussed and developed in the thesis. The organisation of

the rest of the thesis is presented in Section 1.8.

1.3 Background on ROC curve analysis

1.3.1 Diagnostic test

A diagnostic test is used to classify individuals as diseased or not diseased. For a test
that produces a binary result (e.g. presence or absence of a specific methylated DNA
sequence in serum [10]), the classification rule is simple; the test is positive if disease
present and it is negative if disease absent. However, for a continuous test, the
classification rule is based on a predefined threshold value [10]. The threshold value
is needed to be defined before classifying an individual as diseased or non-diseased.
Once the continuous diagnostic test results are dichotomised on the threshold value to
define a positive or negative test, the test result is binary. Thus, individuals can be

classified accordingly.

Four possible classification probabilities can be calculated from a diagnostic test.
These guantities can be best described using a two-by-two table of test results and true
disease status as presented in Table 1.1. It illustrates the cross-classification between
the true disease status and the diagnostic test result including the true and false

probabilities.

Table 1.1: Classification of test results by disease status

True disease status
Test Result i i
Diseased Not Diseased
Positive True Positives (TP) False Positives (FP)
Negative False Negatives (FN) True Negatives (TN)




A true positive (TP) result occurs when a diseased individual is correctly classified
with a positive test while a true negative (TN) result occurs when a healthy or non-
diseased individual is correctly classified with a negative test. A false positive (FP)
result occurs when a healthy individual is incorrectly classified with a positive test
while a false negative (FN) result occurs when a diseased individual is incorrectly
classified with a negative test.

A test can have two true probabilities. The True Positive Rate (TPR) is the probability
of an individual with TP among all diseased individuals (TP + FN), i.e. TP /(TP + FN)

and it is also called sensitivity. While the True Negative Rate (TNR) is the probability
of an individual with TN among all the healthy individuals (FP + TN),

i.e. TN/(FP +TN) and it is called specificity.

A test can also have two false probabilities, False Positive Rate (FPR) and False
Negative Rate (FNR). FPR is the probability of an individual with FP among all non-

diseased individuals (FP + TN), i.e. FP/(FP + 1) @d FNR is the probability of an

individual with FN among all the diseased individuals (TP + FN), i.e. F]V/(ﬂD + FN)'

1.3.2 Selecting a threshold

A threshold is a specific value of a continuous biomarker used to indicate the presence
or absence of disease. Practically, a threshold value is decided based on the disease’s
severity and the availability of healthcare resources [10]. A lower threshold value can
be assumed for a disease with a higher level of severity, and if healthcare resources are
limited, it is important to have more sensitive disease detection. This will subsequently

allow individuals who need healthcare assistance to be prioritised.

Usually, a higher biomarker value is considered more indicative of the presence of
disease. For example, higher prostate specific antigen (PSA) level indicates higher risk
of prostate cancer. However, in some studies, it is the opposite; individuals with liver
diseases, for example, tend to have lower albumin levels as a damaged liver that fails
to produce albumin or a lower platelet count is linked to a higher risk of death [8, 14].
Among cystic fibrosis (CF) patients, lower levels on pulmonary function test values

such as forced expiratory volume in one second (FEV1) predicts the progression to
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death [15]. Thus, the background of the disease area and complete understanding of
related biomarkers are needed before a threshold value can be decided. A set of the
possible threshold values is more efficient than just a single value so the variability of
the true positive and true negative rates can be observed across different threshold

values.

1.3.3 Standard ROC curve

The ROC curve is used to investigate the performance of a biomarker. It plots
sensitivity (TPR) as the y-axis and one minus specificity (FPR) as the x-axis, as
presented in Figure 1.1, for all possible threshold values. Plotting TPR versus FPR
produces a curve that essentially describes the relationship between the biomarker’s
performance (correctly or falsely classifying individuals) with the individuals’ true

disease status.
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Figure 1.1: ROC curves

The area under the ROC curve (usually abbreviated as AUC) is used as the summary
index for a biomarker’s performance. AUC estimates the probability of a diseased
individual has a higher biomarker value compared to a healthy individual, and it takes
avalue between 0.5 to 1, with a higher value reflecting a better biomarker performance.
A perfect biomarker will have the highest TPR and lowest FPR that the ROC curve
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passing through the upper quadrant point (0, 1) (blue line with the solid point indicates
the respective optimal threshold in Figure 1.1). A perfect test is able to discriminate
between the healthy and diseased with sensitivity = 1 (or 100%) and specificity = 1. If
the biomarker is useless (or worthless), then TPR=FPR for all possible thresholds,
hence the ROC curve falls on the diagonal line, leading to AUC = 0.5 (red line with
the solid point indicates the respective optimal threshold in Figure 1.1). In this case,
the test results for the healthy and diseased overlap completely, and they include the
point of sensitivity = 0.5 (or 50%) and specificity = 0.5. A good biomarker steepens
the gradient in the (0, 1) quadrant, widening the area under the ROC curve and making
the AUC approach 1 (the green line with the solid point indicates the respective
optimal threshold in Figure 1.1). There is no cut off for AUC value in order to classify
the goodness of the biomarker. If the ROC curve close to the diagonal line (AUC
approaches 0.5), the biomarker is not good in classifying the cases and controls, while
when the ROC curve further from the diagonal line (AUC approaches 1) the biomarker
is assumed as good. The point where the highest TPR and lowest FPR are located on
the ROC curve describes the optimal threshold value where the biomarker powerfully

discriminates between individuals with disease from individuals without disease.

1.4 Event-time data and analysis methods

Event-time is a set of times recorded when individuals have an event. It is called
survival time when the event is death and failure time when it is used to describe the
progression or development of disease [11]. In the standard ROC curve analysis, the
disease is represented by a binary outcome. However, in the time-dependent ROC

analysis, the disease is represented by an event-time outcome.

To investigate the relationship between the event-time and the occurrence of the event
across individuals, the starting time has to be similar for all individuals; it may be the
time when the disease is diagnosed or the starting point of a treatment. From this
starting time until the end of the study, the individuals are observed (also called
followed-up). The time when an event occurs, loss occurs during the follow-up or the
withdrawal from the study will be recorded. When the individuals are lost within the
period of a follow-up or have withdrawn from the study, the exact event-time is

unknown, and only the lost of follow-up or withdrawal time is recorded. Also if the
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study ends before the event has occurred, this latest time is recorded. This is called
right censoring. Only right censoring is assumed throughout the thesis.

Event-time data can be analysed using parametric, semiparametric or nonparametric
modelling approaches. Parametric modelling is when the event-times are assumed to
follow a parametric family distribution such as Weibull, exponential, log-logistic,
lognormal or generalised gamma [11]. The most widely used approaches to analyse
event-time data are the Cox proportional hazard models and Kaplan Meier estimation

of the survival functions.

Following the standard notation, we use T; to denote the observed event-time
where T; = min(7T}, C;), and T; is the true event-time and C; is a potential right
censoring time. The event indicator is denoted by §; and it takes the value of 1 when

the event is observed (T;" < C;) or 0 otherwise.

1.4.1 Cox proportional hazard model

The Cox proportional hazard model is a semiparametric modelling approach of the
event-time data. The event-time distribution and baseline survival function are not
specified; only the regression parameters are known. Thus, this approach is
semiparametric. [11]. The Cox proportional hazard model can be defined by

p

2(6.2) = Aoi(Dexp | ) 8,2,

=1
where A(t, Z) is the hazard of an individual at time t and f3; are the corresponding
regression coefficients of the baseline covariates Z;. The term A,(t) is the baseline
hazard function and the final term is the exponential with the power of the linear
predictor of the p regression covariates. The term, exp(f;) is usually interpreted as the
hazard ratio which refers to the relative risk of an event. For example, if the hazard
ratio is 0.5, the relative risk of having the event in one group is half of the risk of

having the event in the other group.



1.4.2 Kaplan-Meier estimation

Kaplan-Meier survival estimation is a nonparametric approach since it does not require

any distributional assumptions.

The Kaplan-Meier estimate of the survival function can be defined by

0 [10-4

j:T(]')St

where T;;yis the jth ordered event-time in the data, 7; is the number of individuals at
risk of the event and d; is the number of individuals with the event at that time. At

each jth ordered event-time Ty the set of individuals at risk is called the “risk set”.

1.5 Longitudinal data and analysis methods

Longitudinal data comprises repeated measurements of biomarkers at a number of time
points. Most current studies collect repeated biomarker values, but usually, only the
baseline value is considered for the analysis. Despite adding complexity to the methods
of analysing such data, the longitudinal biomarker measurements are preferable in the
time-dependent setting since the information of an individual is updated over time.
The biomarker value that is nearest to the disease onset is assumed to have the most
predictive power about the onset of the disease compared to the baseline value [16].
In this thesis, two models will be considered with the longitudinally recorded
biomarker data; the linear mixed effect (LME) model and the joint model. While the
LME model considers longitudinal biomarker measurements only, the joint model

simultaneously links the longitudinal biomarker measurements and event-times.

1.5.1 Linear mixed effect model

As the linear regression model is commonly used for single time-point data, the linear
mixed effect model is widely used for analysing longitudinal data. The main purpose
of this modelling approach is to capture the unobserved individual heterogeneity. It
models the repeated measurements of the biomarker through a specification in the

regression model [17]. The model consists of both fixed and random effects. Fixed
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effects remain constant across individuals while random effects vary; so that the fixed
effects estimate at the population-level and random effects estimate the individual-

specific variability.

The random effects can be defined by random intercept only or by both random
intercept and random slope. The random intercept only model can be defined by

Xij = Boo + Uoi + €ij,

where X;; is the observed biomarker measurement for individual i at time j and Sy, is
the fixed effect of the intercept estimating the population-level biomarker value at t =
0 (baseline), Uy; is the individual-specific random effect for the intercept and &;; is the

measurement error. The measurement error ¢;; and random effects Uy; are assumed

to be independent, and ;;~N (0, 02) and Uy; ~N(0, a2, ).

The random intercept and random slope model can be defined by
Xij = Boo + Brotij + Uoi + Usitij + &5,

with B, is the fixed effect for the intercept, ,,is the fixed effect for the slope of time
that estimates the rate of change at the population-level, Uy; is the individual-specific
random intercept, Uy; is the individual-specific random slope of time and ¢;; is the
measurement error. The random effect components are distributed as bivariate normal

distribution.

1.5.2 Joint model

A joint model is formulated by two submodels; a longitudinal data submodel and an
event-time data submodel, and the two components are linked together through some
random effects [18]. Longitudinal data is typically modelled by linear mixed effect
models (see Section 1.5.1), while the event-time data are assumed to follow a Cox
proportional hazards model (as introduced in Section 1.4.1) [18]. A typical joint model

takes the form of



Xij = Boo + Protij + Upi + Uyityj + &,

(6, X:(0)) = 20;(©) exp(Wo; (D)),
W (t) =y Wy () where Wy () = Ug; + Uyt.

The parameters for the longitudinal submodel are defined similar to those in Section
1.5.1. Typically, the individual-specific random effects are incorporated through
Wu(tij) = Uy; + Uy;t;;. In this component, the measurement error process &;; is
accounted for and it is assumed that &;; ~ N (0, 02). In the event-time submodel, X;(t)
is the true unknown biomarker value at time t, A,;(t) is an unspecified baseline hazard
as defined in Section 1.4.1. This submodel links the true biomarker value at time ¢t
through the hazard of an event at time ¢ for the ith individual. The event-time process
is assumed to be associated with the longitudinal response through shared random
effects {W,;(t), W,;(t)}. Typically, the joint model includes the proportional
association W,;(t) = y Wy;(t) and y estimates the level of association between the
event-time and longitudinal biomarker processes [19].

1.6 Measurement error

Measurement error is the error induced when measuring a clinical biomarker due to
various sources, including contamination during sample collection or variable storage
conditions [20]. The method of processing the samples and recording of the biomarker
measurements must be standardised to minimise the measurement error. In randomised
controlled trials, the protocols for the length of time and temperature for the samples
are usually written in advance, and the quality is controlled. The maximum storage
duration of the samples is also adhered to avoid variations between the batches of the
samples. Thus, it is essential to take into account the measurement error in order to
accurately estimate the predictive ability of a biomarker. Failing to adjust to such
measurement error in a statistical model may weaken the explanatory power of the

biomarker, and the failure to select important biomarkers can occur [12, 13].
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1.7 Primary Biliary Cirrhosis (PBC) sequential data

The data comes from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the
liver conducted between 1974 and 1984. PBC is a fatal, but rare liver disease. Patients
often present abnormalities in their blood tests, such as elevated serum bilirubin. If
PBC is not treated or reaches an advanced stage, it can lead to several major

complications, including death.

A total of 424 PBC patients was referred to the Mayo Clinic during that ten-year
interval, and met eligibility criteria for the randomised placebo-controlled trial of the
drug D-penicillamine. The first 312 cases in the data set participated in the randomised
trial and contained largely complete data. The additional 112 cases did not participate
in the clinical trial but consented to have their basic measurements recorded and to be
followed to measure their rate of survival. Six of those cases were lost during the
follow-up period shortly after diagnosis, so the data here are based on the remaining
106 cases as well as the 312 randomised participants.

The results of the clinical trial of the 312 patients have been established that the D-
penicillamine drug is not effective in PBC in spite of the immunosuppressive
properties [21, 22]. Although the preliminary results were observed promising which
showed better survival on treated group [23, 24], the treatment caused severe adverse
reactions and even if the treatment was beneficial, the effect is almost certainly small
[25]. Thus, the data from the trial has been used to develop a natural history model to
understand the course of PBC in untreated patients and to provide historical control

information for evaluation of efficacy of new therapeutic interventions.

The data were used to develop a Cox proportional hazards model providing the
historical control information to evaluate the performance of a new intervention by
Fleming and Harrington [21]. Among many biomarkers, bilirubin was the strongest
univariate predictor of survival. When building the model, some biomarkers were log
transformed to create a more significant impact on the prognosis when the values are
small [21], including albumin, bilirubin and prothrombin time. The final model
consists of age, edema, log (bilirubin), log (prothrombin time) and log (albumin).
These variables were found biologically reasonable, and albumin provided an

exchangeable use as the original measurement or the log-transformed measurement in
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biomedical studies. In this thesis, following Heagerty and Zheng [27], the original
albumin measurements are used. In Chapters 3 and 4, a model score derived from five
covariates (age, edema, log (bilirubin), log (prothrombin time) and albumin) [27] is
considered, and in Chapter 5, longitudinal measurements of individual biomarkers
transformed as log (bilirubin), (0.1 x prothrombin time)* and albumin (in original
scale) [28] are used to illustrate the proposed methodologies.

The data are available to be freely downloaded at
http://lib.stat.cmu.edu/datasets/pbcseq and have been described in Fleming and
Harrington [21] and Murtaugh, et al. [26]. Table 1.2 shows the variables for the full

dataset.

Table 1.2: Variables in the PBC data

Variables Description
id Case number
age Age in years
sex 0 for male and 1 for female
it Treatment code; 1 for D-penicillamine, 2 for placebo and NA
for not randomised
) Number of days between registration and the earlier of death,
fime transplantation, or study analysis in July, 1986
status Status at endpoint; O for censored, 1 for transplant and dead
day Number of days between enrolment and visit date
albumin Serum albumin (mg/dl)
alk.phos Alkaline phosphatase (U/litre)
ascites Presence of ascites, 0 for no, 1 for yes
ast Aspartate aminotransferase, once called SGOT (U/ml)
bilirubin Serum bilirubin (mg/dl)
chol Serum cholesterol (mg/dl)
copper Urine copper (ug/day)
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Presence of edema, 0 for no edema and no diuretic therapy
edema for edema, 0.5 for edema present without diuretic, or

resolved by diuretics and 1 = edema despite diuretic therapy

Presence of hepatomegaly or enlarged liver, O for no and 1
hepato
for yes

platelet Platelet count per cubic ml / 1000

prothrombin time | Standardised blood clotting time (seconds)

Blood vessel malformations in the skin, O for no and 1 for

spiders

yes
stage Histologic stage of disease (needs biopsy)
trig Triglycerides (mg/dl)

1.8 Thesis layout

Chapter 2 is aimed at explaining the foundation of this thesis in detail by discussing
the three key definitions of the time-dependent ROC curve analysis. Chapter 3 aims
at providing a comprehensive review of the current time-dependent ROC curve
approaches. The findings of this review motivate the proposed methodological
developments of this thesis. In this chapter, the methods that can be used with the three
time-dependent ROC curve definitions are described. The performance of several
current methodologies and simple extensions to use longitudinally collected biomarker

measurements are illustrated using a widely used prognostic score based on PBC data.

Chapter 4 is aimed at developing a parametric time-dependent ROC curve. Assuming
a range of combinations of parametric distributions for the event-time and biomarker
including exponential, Weibull and normal distributions, the closed form formulae of
cumulative sensitivity, dynamic specificity and the corresponding AUC are derived
from the joint distribution of event-time and biomarker whenever possible. Numerical
approximations are considered when the closed form estimators are not available.

Application to the PBC data is used to illustrate the proposed parametric approach.
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In Chapter 6, a novel data-efficient method is proposed within the joint modelling
framework to adjust for measurement errors when estimating the time-dependent ROC
curve for a continuous biomarker. The methodological review undertaken in Chapter
3 reveals that the current approaches directly use the observed value of the clinical
biomarkers in estimating the time-dependent ROC curve or AUC, ignoring the
measurement error. Therefore, this chapter develops a methodology that takes into
account the measurement error when evaluating the time-dependent performance of a
clinical biomarker. The proposed methodology is illustrated using several sequential

clinical biomarkers from the Mayo Clinic PBC study.

Chapter 5 and Chapter 7 intend to undertake the simulation studies to evaluate the
proposed methodologies in Chapter 4 (parametric approach) and Chapter 5
(measurement error adjusted approach) respectively.

Chapter 8 critically appraises all the findings, discusses the limitations, and suggests

avenues for future research.
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2 Time-dependent ROC curve analysis

2.1 Introduction

This chapter is aimed to construct the foundation of the thesis. In the standard ROC
curve analysis, as discussed in Chapter 1, the individual’s disease status is assumed to
be fixed for the whole study period. However, the study period usually involves a long
follow-up, and during the follow-up, an individual who may not have a disease earlier
may develop the disease during the follow-up period. In contrast to the standard ROC
curve analysis, the disease status of an individual is observed and updated at each time
point in the time-dependent ROC curve analysis. With additional information of the
time of disease onset for each individual, the ROC curve can be constructed at several
time points, and the predictive ability of the biomarker can be compared. Thus, the
time-dependent ROC curve is an efficient tool for measuring the performance of a
candidate’s biomarker given the true disease status of the individuals at certain time
points. In general, the biomarker value at the baseline (t = 0) is used for computing
the predictive ability at a pre-specified time t > 0, but the predictive ability can
become weaker as t gets further from the baseline. In longitudinal studies, the
biomarker is measured at several time points within a fixed follow-up. If a biomarker
measurement has the ability to signify a pending change in the disease status of a
patient, then a time-dependent ROC curve on a time-varying biomarker can be used to

efficiently guide key medical decisions.

In a time-dependent ROC curve analysis, the sensitivity and specificity are defined at
a pre-specified time point t. Each individual is given a different weight that contributes
to the definition of sensitivity and specificity at different time points as a case or as a
control. This contribution of cases and controls depends on the aim of classification,
whether the researcher desires to discriminate between the diseased individuals at or
up to time t and healthy individuals beyond that time or within a fixed follow-up time.
This has been the basis for developing three definitions of time-dependent ROC curve,
namely cumulative/dynamic (abbreviated as C/D), incident/dynamic (I/D) and
incident/static (I/S) [27].

15



The organisation of Chapter 2 is as follows. In Section 2.2, the general notation for the
time-dependent ROC curve is defined. In Sections 2.3-2.5, the definitions of the three

time-dependent ROC curves are discussed.

2.2 General notation for time-dependent ROC curve

As defined in Chapter 1, let T; denote the true time of the event and X; denote the

biomarker value (usually the value at the baseline) for individual i, i = 1, ..., n.

For a given time point t (called “target time”), each individual i is classified as a case
or control. Let D;(t) be the disease status for individual i at time t, taking values 1 if

it is a case or O if it is a control.
Let t* be a fixed follow-up time, and it depends on the definition of time-dependency.

For a given threshold value c, the time-dependent sensitivity and specificity can be

defined respectively by Se(c, t) and Sp(c, t) such that
Se(c,t) =P(X; > c|D;(t) = 1); Sp(c,t) = P(X; < c|D;(t) = 0).

Then, the corresponding time-dependent ROC curve at time t, ROC(t) plots Se(c, t)
against 1 — Sp(c, t) for all possible thresholds ¢ € (—oo,4+00). The area under the
ROC(t) leads to a time-dependent AUC, which can be defined by

AUC(t) = fooSe(c, t)d[1 - Sp(c, t)],

__ 0[1-Sp(c,t)

where [1 — Sp(c, t)] . ldc. The AUC computes the probability that the

diagnostic test results from a randomly selected pair of one diseased and one non-
diseased individuals are correctly ordered with the diseased individual having an
earlier event-time and a higher biomarker value than the non-diseased individual [29,
30].
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2.3 Cumulative sensitivity and dynamic specificity (C/D)

The time-dependency of the C/D definition can be represented by Figure 2.1, with
closed circles indicating individuals who had an event, open circles indicate
individuals who had censored event-times. Under this definition, a case is defined by
an individual experiencing the event between the baseline (when t = 0) and time t
(individuals A, B or E in Figure 2.1) and a control by an individual remaining event-
free at time ¢t (individuals C, D or F in Figure 2.1). The cases and controls change over
time, and each individual may play the role of control at the earlier time (when their
event time is greater than the target time, i.e. T; > t ) but then contributes as a case at

a later times (when the event time is less than or equal to the target time, i.e. T; < t).
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Figure 2.1: lllustration of time-dependency for C/D , I/D and I/S (baseline)

definitions

Under the C/D definition, the cumulative sensitivity is defined by the probability that
an individual has a biomarker value greater than the threshold ¢ among the individuals
who experienced the event before time t (individuals A or B in Figure 2.1). The
dynamic specificity is the probability that an individual has a biomarker value less than
or equal to ¢ among those event-free individuals beyond time t (individuals D or F in

Figure 2.1). The term “cumulative” is used because all the diseased individuals from
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the baseline up to the target time t are considered in the defining cases, while the term

“dynamic” describes the controls that had changed based on ¢t.

Thus, sensitivity and specificity at time t and the resulting AUC(t) can be defined

respectively as

SeC(c,t) = P(X; > c|T; < t), (2.1)
SpP(c,t) = P(X; < c|T; > t), (2.2)
AUCCP(t) = P(X; > X;|T; < t,T; > t),i # j. (2.3)

It is more appropriate to apply the C/D definition when there is a specific time of
interest that is used to discriminate between the individuals experiencing the event and
those who are event-free prior to the specific time. This type of discrimination has
more clinical relevance than the other two definitions of time dependency (Sections
2.4 and 2.5 below), and hence the C/D definition is commonly used by clinical
applications [14, 31]. However, since some individuals may contribute as controls at
an earlier time and then contribute as cases later, this definition uses the redundant

information in separating the cases from the controls [14].

2.4 Incident sensitivity and dynamic specificity (1/D)

The time-dependency of the I/D definition can also be illustrated in Figure 2.1. Under
the I/D definition, a case is defined as an individual with an event at time t (individual
A in Figure 2.1) while a control is an event-free individual at time ¢ (individuals C, D
or F in Figure 2.1). In this definition, there are individuals who are neither a control
nor a case (when the event time is less than the target time, i.e. T; < t, individual B or
E in Figure 2.1). Each individual who had an event may have played the role of a
control at an earlier time (when the event time is greater than target time, i.e. T; > t)
but then contributes as a case at the later incident time (when the event time is the same

as the target time, i.e. T; = t).

The term incident sensitivity is the probability that an individual has a biomarker value
greater than ¢ among the individuals who experience the event at time t (individual

A in Figure 2.1) and the dynamic specificity is the probability that an individual has a
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biomarker value less than or equal to ¢ among the individuals that remain event-free
at time t (individual D or F in Figure 2.1). The term “incident” is used because only
diseased individuals at target time ¢t are considered in defining the cases. As in the C/D
definition, the term “dynamic” describes the situation of as the t changes, the controls

also change.

The sensitivity, specificity and resulting AUC(t) are respectively defined as

Sel(c,t) = P(X; > c|T; = t), (2.4)
SpP(c,t) = P(X; < c|T; > t), (2.5)
AUCYP () =P(X; > Xj|T; = t, T; > t),i #j. (2.6)

The I/D definition is more appropriate when the exact target time t is known, and when
the researcher wants to discriminate between the individuals experiencing the event
and those event-free at a t = T;. For example, Heagerty and Zheng [27] investigated
how well a model-based score discriminates between lung cancer patients who are
likely to die at pre-specified t = 30, 60, 90 and 120 days within the study’s follow-up

period and those who survived beyond these times.

The incident sensitivity and dynamic specificity are defined by dichotomising the risk
set at time t into cases and controls (see definition in Section 1.4.2), and this is a natural
companion to hazard models such as the Cox proportional hazard model (see Chapter
1 Section 1.4.1) [27]. In addition, the definitions above allow an extension to the time-
dependent covariates and time-averaged summaries that are directly related to a
familiar concordance measure C-statistic [27]. This is a special advantage of the I/D
definition, since in many clinical applications, no priori time t is identified or known,
thus a global or concordance accuracy summary is usually desired. The concordance
summary is a weighted average of the area under the time-dependent ROC curve, and

it can be defined by

T
C* =J AUCMP? (H)w* (t)dt
0
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where w*(t) = 2f()S()/W*, W™ = [T 2f(©)S(t)dt =1 —S2(r). W* are the
weights at time ¢t for a fixed follow-up t, f(t) is the density function of the event time
and S(t) is the survival function of the event time. The CT has a slightly different
interpretation from the usual c-statistic and it is the probability that the individual who
experienced the event at an earlier time has a higher biomarker value, given that the

smaller event time occurs in (0, t) Heagerty and Zheng [27].

2.5 Incident sensitivity and static specificity (1/S)

The time-dependency of the I/S definition can be illustrated in Figure 2.1 for a
biomarker value at the baseline. Under the 1I/S definition, a case is defined as an
individual with an event at time t (individual A in Figure 2.1), while a control is an
event-free individual within a fixed follow-up period, (0,t*) (individuals D or F in
Figure 2.1). The term “incident” is used based on the same reason as in the I/D
definition where it considers individuals at the target time only to define cases. The
term “‘static” describes a fix set of healthy individuals (controls) who do not change
throughout the follow-up period. As illustrated in Figure 2.1, the controls are “static”
and do not change (individuals D and F), and each individual only contributes once as

a case or as an event-free individual within the fixed follow-up period (0, t*).

The incident sensitivity and static specificity is usually used when a researcher
attempts to distinguish between individuals who have an event at time t and those who
are ‘long term survivors’ who are event-free after a suitably long follow-up time,
characterised by T; > t*. The rationale of using the fixed follow-up is because the end
point t* is pre-specified and it is considered a long enough time to observe the event.
For example, t* = 2 years is typically used in screening for breast cancer since it is
assumed that the individual is free from subclinical disease if the clinical disease does

not emerge by two years after screening [7].

The sensitivity and specificity can be defined respectively by
Sel(c,t) = P(X; > c|T; = t), 2.7)

Spi(c,t*) = P(X; < c|T; > t*), (2.8)
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AUCY () = P(X; > X,|IT; =, T; > t"). (2.9)

The 1I/S definition can also be used in studies in which individuals are followed up for
a fixed time period with longitudinally repeated biomarker measurements. However,
not all longitudinally measured biomarker values of the individual will be used. Only
a biomarker value at a particular visit time s is used instead of using the biomarker
value at the baseline [7, 16]. Since some studies may not have a regular visit time
schedule, the visit times may differ for each individual. Thus, the time lag between the
visit time and the time of disease onset, i.e. T; — s which is commonly termed as the
“time prior to event”, is the main interest. The 1/S definition with a longitudinally
measured biomarker can be illustrated in Figure 2.2, assuming that a biomarker value
is measured at the visit time s. The sensitivity and specificity are defined based on a

timelagt =T; —s.

biomarker
value t:target time
A A t": fixed follow —up
c: threshold
AD @ s: last visit time
I A = F: individuals in study
B (‘I> P
C O— O
|
c F=-======= arTFEEEEEEEEEEEEEEEEE-
|
D d|> o
ED @
F ¢‘ O
+ } } } } f—> time
0 s s+t s+ t*
| J
I
\ t J
I
t*

Figure 2.2: Illustration of time-dependency for 1/S definition with a longitudinal

biomarker.

In this case, the incident sensitivity is the probability of an individual with the

biomarker value greater than ¢ among individuals having an event at t time units after
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the biomarker is measured at the last visit time s (individual A in Figure 2.2). The
static specificity is the probability that an individual remains event free by t* time

units after the biomarker is measured (individual D or F in Figure 2.2).

If X; is the biomarker value obtained from individual i at s, then the sensitivity and

specificity are defined by
Sel(c,t) =P(X; > c|T;—s=1) (2.10)

Sp3(c, ) = P(X; < c|T; —s > t¥) (2.11)

The above definitions facilitate the use of standard regression approaches for
characterising sensitivity and specificity because the time prior to the event T; — s can

simply be used as a covariate [7].

2.6 Discussion

In this chapter, the foundation of the time-dependent ROC curves was presented along
with the three key definitions. The generic challenge for a time-dependent ROC curve
is the censoring of event-times, as some individuals may be lost during the follow-up
period. If the censored individuals are ignored, and the analysis is based on the
complete cases only, the estimation of the sensitivity and specificity may be biased, as
the information from the individuals prior to the censoring has been ignored, but it had
otherwise contributed to the estimation. The three definitions introduced in this chapter
take the censoring in event-times into consideration when calculating the ROC curve.
Furthermore, consideration of the censored event-times offers more relevant estimates

because the censoring of event-times is inevitable in real practice.

A longitudinally repeated biomarker brings an additional challenge to the time-
dependent ROC curve when the biomarker measurements at a number of visits are
available for each individual. In the 1/S definition, not all the biomarker values are
used but only the most recent, which is assumed to be more reliable for predicting the

disease status [16]. However, many time-dependent ROC curve approaches currently
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proposed for a longitudinal biomarker either assume the non-censored event-times or

ignore the censored individuals’ records [31, 32].

The current time-dependent ROC curve approaches will be discussed in further detail
in Chapter 3.
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3 Review of current time-dependent ROC curve

approaches and applications in medicine

3.1 Introduction

Although the three time-dependent ROC curve definitions (see Chapter 2) were
introduced over a decade ago by Heagerty and Zheng [27], and the superiority of a
time-dependent analysis over the standard ROC curve was evaluated in subsequent
publications [2, 32], these methods are currently underused in clinical research. At the
time of writing up this thesis, only one review on time-dependent ROC curve
methodologies was available, which was conducted by Blanche, P., et al. [31].
However, their review was restricted to the C/D definition.

The main objective of this chapter is to comprehensively review all currently available
ROC curve analysis methodologies under each definition of time dependency. It is
aimed to critically evaluate the pros and cons of each methodology, identify software
that implements the methods, demonstrate their use in clinical research, and highlight

any necessity for the development of further methodologies.

This chapter also extends two current methods to allow for longitudinal measurements
of the biomarker. The implementation of each method incorporates a time-varying
disease status or a time course (longitudinal record) of a biomarker and is illustrated
using the sequential Mayo Clinic PBC data which was introduced in Chapter 1, Section
1.7. The findings of this comprehensive review as at 2016 are published in Kamarudin,
etal. [33].

The rest of the chapter is organised as below: The methods used to conduct the review
are discussed in Section 3.2. Section 3.3 provides the details of current methodologies,
software and proposed extensions. In Section 3.4, results from the review on clinical
application are discussed. Some of the methods and proposed extensions are illustrated
using the PBC data in Section 3.5, followed by the discussion in Section 3.6.
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3.2 Review Methods

The searches for relevant papers for the review have been conducted through
MEDLINE (Ovid), Scopus and the internet. The published papers were restricted to
English language between years 1995 to August 2016 to ensure all the methodology
and clinical application papers of time-dependent ROC curves analysis were included.
The common terms and keywords including ROC, AUC, time-dependent, time-
specific and accuracy have been used in the search. The number of papers identified
for each search is reported in Table 3.1 below after removing duplicates.

At the time of writing up this thesis, a further search has been conducted through
MEDLINE (Ovid) and internet/references only (due to time limitation) restricting the
publications between August 2016 to August 2018. The same keywords are used.
Table 3.1 shows the findings from the updated searches which resulted in an additional
109 papers, of which 9 are methodological and 100 are clinical applications. Only 100
applications from the updated review are discussed in this thesis together with the

current review.

Table 3.1: Number of articles from the searches

Current Updated
review (Jan review (Aug

Search Keyword Limitation oo~ Aug  2016- Aug
2016) 2018)

MEDLINE

(Ovid)

1 ROC and Time-dependent  Abstract 108 81

2 ROC and Time-dependent  Title 0 2

3 ROC and Time-specific Abstract 2 0

4 AUC and Time-dependent  Abstract 208 18

5 AUC and Time-dependent  Title 2 5

5 Accuracy and Time- Title 4 5
dependent

Scopus 8 -

Internet &

References ) !

Total number of articles 341 109
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The title and abstract of each paper are reviewed to decide whether it is related to the
methodology of time-dependent ROC curve or only a clinical application. Eight papers
were found from the Scopus search using the same keywords. The search through the
internet (Google) using the same keywords resulted in five additional papers and four
further papers were found after checking the list of references in each paper. A total of
341 papers were found and 33 of these published papers discussed time-dependent
ROC curve methodologies. The remaining 308 papers included only an application of
the standard or time-dependent ROC curves. If there were any ambiguities or
confusion whether to include the studies or the extracted data, my PhD supervisors
were consulted. There were 17 papers which were excluded beyond the scope of this
review because they did not propose the estimation method of time-dependent ROC
curve but focused on different perspective under the time-dependent ROC curve
context. For each methodology paper (n=16), the following details were extracted: the
definition of sensitivity and specificity (whether C/D, I/D, I/S or other), estimation
method, type of estimation (hon-parametric, semi-parametric or parametric),
limitations and availability of software. Out of the 16 methodology papers, 10 (63%)
discussed methodologies along the lines of the C/D definition. Three papers (19%)
proposed methodologies based on the I/D definition, and only one paper (6%)
proposed methodology along the I/S definition. Two further papers (12%) proposed
other methodologies for longitudinal biomarker measurements. The details of the

review process are described in Figure 3.3.

3.3 Results from the methodological review

Table 3.2 summarises the estimation methods for each definition with their respective
advantages and disadvantages as well as their software tools. The methodologies

proposed under each definition are discussed in detail in the subsequent sub-sections.
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][ Screening ] [Identification J

Eligibility

lists (n=4)

Number of papers identified through
searching from MEDLINE Ovid (n=324),
Scopus (n=8), Internet (n=5), Reference

v

Methodological papers
(n=33)

v

Applications only (n=308)
e Time-dependent ROC*
C/D only (n=69)

I/D only (n=14)

Both C/D and I/D (n=2)
Other (n=2), Unclear (n=5)
e Standard ROC (n=216)

A4

Included in methodological
review (n=16)

Extraction

Y

Excluded (n=17)

Reasons:

e Competing risks (n=4)
Reviews (n=3)

Bayesian (n=2)

Sample size determination
(n=1)

Missing biomarker (n=1)
Discriminant index (n=1)
Diverse censoring (n=1)
Censored predictor (n=1)
Microarray data (n=1)
Others (n=2)

\

|

|

Cumulative/Dynamic
(n=10)

Incident/Dynamic
(n=3)

Other (n=3)

Figure 3.1: CONSORT diagram
* reviewed separately (Other and Unclear: n=7 excluded)
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Table 3.2: Summary of current methods f or each definition

Definition

and Sensitivity
biomarker

time

Specificity

Estimation method
and R software
(when available)

Pros / Cons

SpP(c,t)
= P(Xl < ClTi > t)

C/D SeC(C, t)
=PX;>c|T; < t)

CD1
survivalROC

CD2
survivalROC

CD3
Programme code

CD4
survAUC

CD5
timeROC

CD6
timeROC

CD8, VL Cox
survival

VL Aalen
timereg

VL KM
prodlim

Pro: Clinically relevant since many
clinical experiments aim to discriminate
individuals with disease prior to the
specific time and healthy individual
beyond that time

Con: Use redundant information in
separating cases and controls
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C/D

A
longitudinal
time point

SeC(c,t)
=PYy >c|T; —sy <t)

SpP(c,t*)

=Py <c|Ty — sy > t)

AD4

Pro: Use the most recent biomarker
value prior to prediction time

Con: Just use a biomarker value at a
particular time instead of using all the
serial of biomarker values

Sel(c,t)
= P(Xl > ClTi = t)

SpP(c, t)

=PX; <c|T;>t)

ID1
risksetROC

ID2

ID3
Programme code

Pro: Allow time-averaged summaries
that are directly related to familiar
concordance measures such as Kendall’s
tau or c-index

Con: Require an exact time of interest
which is often just a few individuals
having an event at a particular point

Sel(c,t)
=PY;>c|T;=1t)

Sp3(c, t*)

=P(Y; <c|T; > t")

IS1

Pro: Allow separation of long-term
survivors from a healthy individual
within a fixed follow-up

Con: Require an exact time of interest
with often just a few individuals having
an event at a particular point

1/S

A
longitudinal
time point

Sel(c,t)
=P(Yi > c|T; — sy = 1)

Sp3(c, t*)

=P(Yy <c|T; — sy, > t7)

1S2

Pro: Use the most recent biomarker
value prior to prediction time

Con: Just use the most recent of
biomarker value instead of all biomarker
values
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Pro: Use all biomarker values

Other throughout the visit times in the
All ROC(t,p) = S[ao(Ty) + a1 (Ty)S ™ (p)] AD1 estimation of ROC curve
longitudinal Programme code

Con: Do not incorporate censored

time points
outcomes
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3.3.1 Naive estimator of time-dependent ROC curve analysis

Many studies have used an empirical estimator as a basis for comparison with other
estimation methods. This estimator only considers observed events and, the sensitivity
and specificity are calculated by the observed proportions of true-positives and true-

negatives respectively.

If a dataset does not have any censored events (that is, if all individuals have either
experienced the event or remained event-free over the study follow-up and not left the
study), the sensitivity at time ¢t is estimated as the proportion of the individuals with a
biomarker value greater than threshold c, (i.e. X; > ¢) among individuals who
experienced the event before t. The specificity at time t is given by the proportion of
the individuals with biomarker value that is less than or equal to c, (i.e. X; < ¢) among
event-free individuals beyond time t. When there are censored event-times, the above
estimators are computed by removing all the censored individuals before the time point
t. The sensitivity and specificity and the resulting AUC(t) can be estimated as follows

Z?:l 611 (XL > C, Ti < t)
?:1 §I(T; <t)

Se(c,t) =

=l (X< T >0)

Sp(c,t) = YR I(T > 0)

AUC(t) = ?212?=1 6l (Ti <tT; > t)I(Xi > X))
16 (T; < 1) Z7=11(7} > 1)

where i and j are the indexes of two independent individuals, and I(.) is an indicator
function. However, this estimation is often biased as it ignores the censoring
distribution. The specificity estimate is consistent if censoring is independent of X; and
T;, while the sensitivity and AUC estimates may be biased since T; will usually depend
on X; [31].
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3.3.2 Cumulative sensitivity and dynamic specificity (C/D)

Ten estimation methods have been proposed under C/D definition, and these are

discussed in CD1 — CD8 below. CD8 describes three estimation methods.

3.3.2.1 (CD1) Kaplan-Meier estimator of Heagerty, et al. [2]

Heagerty, et al. [2] used the Kaplan-Meier estimator of the survival function [34] to
estimate the time-dependent sensitivity and specificity. Using Bayes’ Theorem, the

two quantities are defined by

— {1=8@x > O} (1 - Fe(0)
Se(c,t) = =30 ,Sp(c,t)

_ S(t1X; < ©)Fy(0)
B S

where S(t) is the estimated survival function, S(t|X; > c) is the estimated conditional
survival function for the subset defined by X > c¢ and Fy(c) is the empirical
distribution function of the biomarker, X.

However, this estimator yields non-monotone sensitivity and specificity and is not
bounded in [0, 1]. This problem is illustrated by the authors using a hypothetical

dataset and is due to the quadrant probability estimator P(X; > ¢, T; > t) =
S(t|X; > ¢) (1 - FX(c)), not necessarily producing a valid bivariate distribution as

the redistribution to the right of the probability mass is associated with censored
observations that will change as the conditioning set (X > ¢) changes. Another
problem is that it is not robust to biomarker-dependent censoring since the conditional
Kaplan-Meier estimator, S(t|X; > c¢) assumes that the censoring process does not

depend on the biomarker.

Biomarker- dependent censoring is usually occur in epidemiology study which is when
individuals with lower biomarker values tend to be censored earlier. This problem
frequently happens when a prognostic biomarker is available, and the frequency of

follow-up is influenced by the biomarker value measured at baseline. For example, in

32



many AIDS studies, an individual’s censoring status may be related to his or her CD4

cell count, a well-accepted marker for survival [35].

3.3.2.2 (CD2) Nearest neighbour estimator of Heagerty, et al. [2]

The problems of the CD1 estimators motivated Heagerty, et al. [2] to develop an
alternative approach based on a bivariate survival function. This improved
methodology uses the nearest neighbour estimator of the bivariate distribution of
(X,T), introduced by Akritas [36]. As mentioned earlier, CD1 is not robust to
biomarker-dependent censoring; however, censoring often depends on the biomarker.
Thus, the independence of time-to-event and censoring time cannot be assumed and
they are more likely independent conditionally on the biomarker. In this model-based
approach, the probability of each individual is modelled for a case by 1 — S(t|X;) and
for a control by S(t|X;) [31]. Akritas [36] proposed using the following model-based
estimator for the conditional survival probability called the weighted Kaplan-Meier

estimator and it is defined by

51 (t1X5) =

a€Ty,ast

{1 % K, (X5, X)I(T; = a)5j}

YK, (X, X)I(T; = a)
where Kln(Xj,Xi) is a kernel function that depends on a smoothing parameter A,,.
Akritas [36] uses a 0/1 nearest neighbour kernel, K, (X;,X;) = I1(—1, < Fx(X)) —
FX(Xj) < A,) where 24, € (0,1) represents the percentage of individuals that are

included in each neighbourhood (boundaries). The resulting sensitivity and specificity
are defined by

(1-Fx(©)—-$,ct) - _ Sx,(c,t)
S oren=lTe g

Se(c,t) =

where §,1n (t) = fln(—oo, t). The above estimates of the sensitivity and specificity will

produce ROC curve estimates that are invariant to monotone transformations of the
biomarker. Both sensitivity and specificity are monotone and bounded in [0, 1]. In

contrast with CDL1, this nonparametric method is efficient as a semi-parametric method

33



and allows the censoring to depend on the biomarker space [36]. Heagerty, et al. [2]
used bootstrap resampling to estimate the confidence interval for this estimator.
Motivated by the results gained by Akritas [36], Cai, Tianxi, et al. [37], Hung and
Chiang [4] and Hung and Chiang [38] discussed the asymptotic properties of CD2.
They established the usual vn-consistency and asymptotic normality and concluded

that the bootstrap resampling technique can be used to estimate the variances. In

1
practice, it is suggested that the value for 4,,is chosen to be O(n"3) [2].

3.3.2.3 (CD3) Kaplan-Meier like estimator of Chambless and Diao [39]

Chambless and Diao [39] highlighted the problem with the direct estimation of time-
dependent sensitivity, specificity and AUC when the event status is not known at time
t for individuals censored prior to t. They proposed a “Kaplan-Meier like” estimator
that needs recursive computation using the riskset at each ordered event time, and
mimics the Kaplan-Meier estimator. Blanche, P., et al. [31] slightly revised the original
estimation for the ease of computation. Let t,, be the k" observed ordered event time
and t,, be the last observed event time before target time ¢t. The sensitivity and

specificity are defined by

Y I(Xagy > ©){S(tr-1) — St}

Se(e,t) = 1-3(t,)

Fx(c) =Y, I(Xd(k) < C){S‘(tk—ﬂ - S(tk)}
S(tm)

Sp(c,t) =

where d(k) is the index of the individual who experiences an event at time ty,
1(Xg00 > c) estimates P(X; > c|ty—y <T; <t;) and  I(Xgp < c) estimates
P(X; < clte_y < T; < tg). S(t,,) is the Kaplan-Meier survival function at time ¢, and
S(tx_1) — S(t;) estimates P(t,_, < T; < tz).

An advantage of this method is the sensitivity is monotone and bounded in [0, 1]. A
nice property of this nonparametric estimator is that it does not involve any smoothing
parameter, unlike CD2. Chambless and Diao [39] compared CD3 with the c-statistic
gained from the logistic regression model of the baseline values in a simulation study

and apparently it showed little bias. In order to compute variances and confidence
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intervals of this estimator, Chambless and Diao [39] suggested using bootstrap re-

sampling.

3.3.2.4 (CD4) Alternative estimator of Chambless and Diao [39]

CD1 estimates the conditional survival functions S(t|X > c) using the Kaplan-Meier
method under the subset defined by X > c. Thus, for a large threshold value c, the
subset for X > ¢ may be small for estimating the conditional Kaplan-Meier estimate.
However, in clinical applications, this “tail” survival function is often of interest,
which is when the distribution is skewed and only few individuals with higher
biomarker values, for example in presenting 10 year predicted risk of heart disease.
[39]. In order to solve this problem, Chambless and Diao [39] proposed an alternative
estimator, CD4, which is a model-based estimator like CD2, but differs in the way of
estimating the survival function. CD4 estimates the coefficients of the risk factors from
a Cox proportional hazards model and then these coefficients are used to estimate the
survival function while CD2 uses the nearest neighbour estimator of S(t|X > c). The

proposed sensitivity and specificity are defined by

E[(1=SExX))IX; > )] ~ _E[S(tIX)I(X; < 0)]

S0 =" —sexy PO T Ep@n)]

where X here is a score from a survival function. This estimator requires the use of a
score X from a survival function [39] instead of the raw biomarker value or score from
another model. Hence, CD4 is readily available if X is a score produced from a survival
model, however, if X is from an external source, then a survival model can be fitted

to produce the equivalent score [39].

Chambless and Diao [39] suggested estimating the conditional survival function
S(t|X;) under a Cox model and replacing the expected values by sample means.
Therefore, CD4 is immediately available at any given time. Further, CD4 also
produces monotone sensitivity and specificity given the survival function holds the

property that the score is produced from a survival model.

A simulation study by Chambless and Diao [39] showed that CD4 is more efficient
than CD3, as long as the survival model is not misspecified [40]. As with CD2, this
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model-based estimator also allows censoring to depend on the biomarker. The
disadvantage of CD4 is that it is not invariant to an increasing transformation of the
biomarker (as the score X from a survival function) which is a desirable property of
ROC curve estimator [31] and for this reason Blanche, P., et al. [31] choose not to
compare this method to the others and the authors will not compare this method with

other in this thesis either.

3.3.2.5 (CD5) Inverse probability of censoring weighting

CD5 was proposed by Uno, et al. [41] and Hung and Chiang [38] and modified the
naive estimator by adding weights to the observed biomarker values and time of
disease onset in a subsample of uncensored individuals before time t. The weights are
the probabilities of being uncensored when calculating the sensitivity:
I (X >0, T; < 0){6;/nS(T))}

T I(Ti < 0) {8i/nS.(T))}

Se(c,t) =

where $,.(Z;) is the Kaplan-Meier estimator of the survival function of the censoring
time C; at the i" observed event-time T;. As discussed by Blanche, P., et al. [31], the
above estimate of sensitivity is the same as in CD3 although this is not mentioned by
the authors. The specificity remains the same as in the naive estimator as specified
above. CD5 produces monotone sensitivity and specificity and are bounded in [0,1]
[31].

3.3.2.6 (CD6) Conditional IPCW

CD6 is a modified version of IPCW that uses the weights that are the conditional
probability of being uncensored given the biomarker, instead of the marginal
probability of being uncensored [31]. This nonparametric estimator is robust to
biomarker dependent censoring similar to previous model-based estimators CD2 and

CD4. The sensitivity and specificity are estimated by
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Ll (X >, Ti < 0){6;/nS.(T| X))}
YL (T < ) {8:/nS (Ti1 X))}

Se(c,t) =

LI <o T > 0){1/nS. (X))}
YL I(T > ) {1/nS (¢1X)}

Sp(c,t) =

where S.(t|X;) = P(C; > t|X;) is the censoring survival probability that may be
estimated using a Cox model. However, Blanche, P., et al. [31] suggested using the
nonparametric weighted KM estimator as discussed in CD2, in order to estimate the

survival function S.(t|X) which is also monotone and bounded in [0, 1].

3.3.2.7 (CDT7) Weighted AUC (t)

Lambert and Chevret [14] used a similar approach to Heagerty and Zheng [27] and
proposed a time-dependent weighted AUC estimator which is restricted to a fixed time

interval (74, 7,) and defined as:

AVCEP = ———— [T <rer, AUCEP (tD)S(t D) - $(tE-1)]],

Wity §(71)-8(17)

where t® are the ordered distinct failure times for which, if t( > ¢,, it is assumed
that ¢t =,, S(t) is the Kaplan-Meier estimate of the survival function and
AUCCP (t) is a nonparametric estimator of a C/D time-dependent AUC such as CD2
or CD5 or any other estimators. The value 7, can be allocated as the value slightly
below the maximum expected follow-up time if no clinically motivated choice is
specified [42]. Bootstrap resampling is used to compute the confidence intervals of
CD7. Since this weighted AUC is defined under C/D, it is not directly related to
concordance measures, unlike the integrated AUC that will be discussed under I/D
definition. However, the proposed estimator is better understood by physicians and is
also closer to the clinical setting since most clinical studies want to distinguish between
individuals who failed and individuals who survived the disease from the baseline to

any particular time t. It is easy to implement since it can use any C/D estimators.
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3.3.2.8 (CD8) Viallon and Latouche [40] Estimators

Viallon and Latouche [40] proposed several estimators of the time-dependent AUC
relying on different estimators of the conditional absolute risk function. The
conditional absolute risk function is estimated under the standard Cox proportional
hazard model (VL Cox), the Aalen additive model (VL Aalen) or using the conditional
Kaplan-Meier estimator (VL KM). The estimator of the time-dependent AUC is
defined by

TG ORI ACE O P

i=1
AUC,(t) = —=1— .
" ?=1Fn(t; Xi){]- - Z?=1 Fn(t; Xi)}

where n is the number of individuals and X, denotes the k" order statistic attached to
the biomarker X;,X,, ... ,X,,. The conditional absolute risk is defined by F(t; X =
x) = P(T < t|X = x) and its estimator denoted by E,(t; X = x) is estimated as

below.

VL Cox: Consider the Cox model [43] under the conditional hazard rate A(t; X = x) =
Ao(t) exp(ay + ax) where 4, denotes the baseline hazard rate, «, is an intercept and

a is the log hazard ratio pertaining to X = x. The conditional cumulative hazard rate
of T =t given that X is denoted by A(t; X =x) = fot/l(u;X = x)du. Then the

estimator of the conditional absolute risk function for VL Cox is given by

ﬁn,Cox(t;X =x)=1- exP{—/To(t) exp(&, + c?x)}.

VL Cox is very similar to the estimator proposed by Heagerty and Zheng [27] that will
be introduced in method ID1 but it does not involve the computation of the bivariate
expectation [40].

VL Aalen: For the Aalen additive model [44], the conditional hazard rate A(t; X = x)
takes the form B, (t) + B, (t)x. Thus the estimator of the conditional absolute risk

function for VL Aalen is given by

ﬁ'n,Aalen(t;X =x)=1- eXp(—ﬁo(t) - ﬁl(t)x).

VL KM: A nearest-neighbour type estimator of conditional absolute risk function is
used for VL KM and is defined by
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~ . _ B Kln(Xi’x)
Fogm(®X =2x) =1~ 1_[ {zjl(zj > Zi—)Kzn(pr)}

Zist,6;=1

where [,, is the smoothing parameter of the 0/1 symmetric nearest neighbour kernel
K, [36].

VL estimators are straightforward to implement since they just plug-in the estimates
of the conditional absolute risk function into the time-dependent AUC estimator. This
plug-in nature allows their theoretical properties to follow the other established
estimators of the conditional absolute risk function. Moreover, it is advisable to use
CD8 compared to CD2 in the situations where the independence assumption between

the censoring time C, and the pair (T, Z) might be violated [40].

3.3.3 Incident sensitivity and dynamic specificity (1/D)

There are three estimation methods proposed under the I/D definition and these are
discussed in ID1 — ID3 below.

Specific notation: Let R;(t) = I(Z; = t) denote the at-risk indicator. Let R;(t) =
(i: R;(t) = 1) denote the individuals that are in the riskset at time t, in which R} =
(i; T; = t) , are individuals with the event (cases) and RY = (i; T; > t) are individuals
without the event (controls). Let n, = |R?| be the size of the control set at time t and
d; = |R}| the size of the case set at time t. Note that the riskset at time t can be

represented as R, = (Rf U R?).

3.3.3.1 (ID1) Cox Regression

Heagerty and Zheng [27] used the standard Cox regression model to estimate the
sensitivity and specificity by the following three steps:

(i) Fita Cox model A,(t) exp(X;y) where y is the proportional hazard regression
parameter. In order to relax the proportionality assumption, use a regression-
smoothing method to estimate the time-varying coefficient y(t) and use it to estimate
the sensitivity in (ii) instead of y.

(i)  The sensitivity can be evaluated using y(t) from (i) as follows
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Se(c,t) = ) 10X > Om(7(®), 1)

Here m;(y(t),t) = R;(t)exp(X;y(t))/W(t) are the weights under a proportional
hazard model and W (t) = ¥; R;(t) exp(U] B) are the weights with time-invariant
covariates U;.
(ili)  The specificity can be estimated empirically as follow
A RY(t
Sp(c,t) = 1—2 1(X, >0) i ( ).
k

ng

Heagerty and Zheng [27] suggested using flexible semiparametric methods such as
locally weighted maximum partial likelihood (MPL) by Cai, Zongwu and Sun [45] as
the regression-smoothing method in (i), and simple local linear smoothing of the scaled
Schoenfeld residuals [46] for reducing the bias [27].

The sensitivity is consistent for both the proportional and non-proportional hazards
models whenever a consistent estimator of y(t) is used [47]. Since the specificity is
an empirical distribution function calculated over the control set, it is consistent
provided the control set represents an unbiased sample [27]. It is suggested that the
computation of the standard errors and confidence intervals is carried out using the

nonparametric bootstrap based on the resampling of observations (X;, T;, §;) [27].

3.3.3.2 (ID2) Weighted mean rank

ID2 was proposed by Saha-Chaudhuri and Heagerty [3] and is based on the idea of
ranking the individuals in the riskset by their respective scores. The proposed time-
dependent AUC is based on the local rank-based concordance estimation. At any
given time t, an estimator of AUC (t) is defined by

A(t) = ntldt Z Z 1(X; > X)).

iER} j=R?

However, frequently, only a small number of individuals experience the event at
t, and therefore the information on the neighbourhood is needed in order to estimate

the biomarker concordance at t which is defined by

1
WMR(t) = mm;h )A(tj) 3.1)
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where NV (h,) = (t;: |t - tj| < h,) denotes a neighbourhood around t. This is a

nearest-neighbour estimator of the AUC and can be generalized to

AVC(E) = Z Kn,(t = t;). A(t;) (3.2)
j

where K}, is a standardized kernel function such that . ; K, . (t — tj) = 1. Equation
(3.1) is a smoothed version of equation (3.2) and it is based on the local U-statistics
summaries. Saha-Chaudhuri and Heagerty [3] suggested the integrated mean square

error (IMSE) as a potential method to select an optimal bandwidth.

Under certain conditions, Saha-Chaudhuri and Heagerty [3] showed that WMR(t)
follows a normal distribution. It is suggested that this variance estimator for inference
can be used in practice since it is simple and does not require resampling methods.
Saha-Chaudhuri and Heagerty [3] also provided the details of the large sample
properties of this estimator, and then the construction of a confidence interval for
WMR(t) using the asymptotic properties is straightforward. Although it is desirable
to obtain the simultaneous confidence bands for the function WMR(t), the theory may
not be applicable in this case since the limiting process may not possess an independent
increment structure. Instead, a simulation of a Gaussian process while keeping the
estimates of ID2 fixed is needed to approximate the distribution of the Gaussian
process and to estimate the quantiles. ID2 also has the advantage to be potentially

robust since the relative bias remains significantly lower than for the ID1estimator.

3.3.3.3 (ID3) Fractional Polynomial

As the ID2 method is computationally intensive, especially in the selection of the
bandwidth, Shen, et al. [48] proposed a semi-parametric time-dependent AUC
estimator which is easier and more applicable when comparing and screening a large
number of candidate biomarkers. The suggested model uses fractional polynomials
[49], the parameters of which are estimated using a pseudo partial-likelihood function.
Denote n(.) as the link function, e.g. the logistic function. AUC(t) is modelled
directly as a parametric function of time t using the fractional polynomials of the

G degree:

41



G
n(Auc@®) = ) B,t®s (3.3)

where forg = 1,...,G, and

P .
L@g) — tPg if pg #0
In(t) ifp;=0

py < <py are real-valued powers, and f,,...,f, are unknown regression
parameters. The choices of powers are from the set (-2, -1, -1/2, 0, %2, 1, 2) as suggested
by Royston, P. and Altman [49]. Unlike the conventional polynomial, the fractional
polynomial is flexible and can mimic many function shapes in practice [49]. In order
to construct the pseudo partial-likelihood, consider two types of events on each riskset

R(t) derived from the observed data which are defined by
e (X, X, Ti, T;) = {X; > X;|T: = 6,6, = 1,j € R(ty)}

e.(Xi, X, Ti, T;) = {X; < X;|Ti = t;,,6; = 1,j € R(&)}

where event ey (X;, X;, T;, T;) and e,(X;, X;, T;, T;) are respectively called concordant

and discordant events as e, (X;, X;, T;, T; ) occurs if individual j has a smaller biomarker

v J)
value compared to individual i, and e, (XL-,Xj,Ti, Tj) occurs if individual j has greater
biomarker value compared to individual i, given that individual j has longer survival
period. For each event time t,, the counts of the two types of events are given by

m(®) = ) HjiXe > KT = t, 6, = 1,] € R}
J

n,(t) =X 1{j: X < X|T; = &, 6; = 1,j € R(tp)}.

Note that at each time point ¢, conditioned on riskset R (t;,), the count n, (¢;) follows
a distribution with probability equal to AUC(t;). The pseudo partial-likelihood is
constructed by multiplying all the probabilities of observing concordant and discordant

counts over all of the risksets from the observed event times as shown below

L(B)a ’ AUC (ty; BY™M {1 — AUC (ty; )12
k=1

Maximizing this pseudo partial-likelihood yields parameter estimates 3. Then the

time-dependent AUC estimate is obtained from equation (3.3) as a smooth function of
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time t and . In practice, the integrated AUC is always of interest for the 1/D definition
and it can be defined by [’ w (t; )AUC(t; §)dt. When the weight function w(t; 7)is
invariant to time, the integrated AUC can be viewed as the global average of the AUC
curve [48]. One major advantage of this estimator compared to 1D2 is that the proposed
method estimates the entire curve as a function of t and 8 while ID2 just uses a point-
wise approach to estimate AUC. Further, this method is understandable and it is easier
to make inference since it is a “regression-type” method, with covariates being the
functions of time. In estimating the integrated AUC, the ID3 method is more
convenient since it uses an analytical expression while the ID2 computation is more
complex since the kernel-based estimation procedure has to be repeated N times, and
also the selection of bandwidths has to be considered. However, Saha-Chaudhuri and
Heagerty [3] decreased the computational burden by calculating the integrated AUC

as an average of AUC(t) at 10 time points, which can lead to approximation errors.

3.3.4 Incident sensitivity and static specificity (1/S)

There is only one estimation method proposed under the 1/S definition found from

the methodological review and one extended method which will be discussed below.

3.3.4.1 (1S1) Marginal regression modelling approach

Cai, Tianxi, et al. [7] proposed an estimation approach using the marginal regression
modelling which was first proposed by Leisenring, et al. [50] that accommodates
censoring. Let the data for analysis be given by ((X;x, U;, Z;, 8, 8i), i = 1,...,n; k =
1, ...,K;) , where U; denotes the vector of covariates associated with X;; and let T;;,
be the time lag between the measurement time and the event time, i.e. Ty, = T; — Six.
Cai, Tianxi, et al. [7] modelled the marginal probability associated with (X;x, Tix, U;)

and the sensitivity and specificity are defined by the marginal probability models,

Se(t, Sik» Ui'C) = P(Xik > ClTl'k =1t, Ui,sik)

= gpinay(t,sy) + BoU; + ho(c)}
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Sp(t*,Sl'k, Ul"C) = P(Xik < C|Tik > t*, Ui,Sik)
=1 - gp{éao(si) + boU; + co(c)}

where g, and gy are specified inverse link functions, h, and c, are baseline functions
of the threshold c that are completely unspecified. These nonparametric baseline
functions of ¢ represent the shape and location of the sensitivity and specificity
functions while the parameters S, and b, quantify the covariate effects on them and
na, and éa, are the time effects. The dependence on time for sensitivity is through
the parametric functions nea, (t,s) = agn(t,s) and éay(sy) = ag é(s) where i and

& are vectors of polynomial or spline basis functions.

Let W, = (Ho(.) = [ho(.),co()], 0y = [ag, Bo, g, by]) denote all  unknown
parameters. Cai, Tianxi, et al. [7] considered the marginal binomial likelihood function

based on the binary variable I(X;, = ¢) and it is defined by

n K
[ ][] ®ucswyeaseo g - p ey e
i=1d dg=1

and the corresponding score equation is solved in order to estimate the nonparametric
baseline functions, H,y(c). Further, 8, is estimated by solving the integration of the
corresponding score equation. Cai, Tianxi, et al. [7] also proposed an approach that

ignores censored observations.

Simulation studies [7] showed that the above method provides reasonably unbiased
estimates of the model’s parameters of sensitivity and specificity. The approach which
includes the censored observations is always more precise than the one that excludes
them.

3.3.4.2 (1S2) Proposed extension to ID1 to allow for the baseline and

longitudinal biomarker measurements

The main difference between I/D and I/S definitions is related to the controls. The
controls in I/D are changing based on the target time whereas in 1/S, the controls are
static survivors beyond a fixed time. Motivated by this difference, the Cox Regression
method ID1 is extended to incorporate a longitudinally repeated biomarker under the

I/S definition. Following the I/S definition, a biomarker value at a particular visit time
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s is considered. Thus, the time prior to disease is calculated and has been used instead
of using the event-time in ID1. The proposed method can readily be used with the
baseline value by using just the event time. However, as I/S is not based on
classification of the riskset at time t like I/D, this extended method cannot be said as
a natural companion to the hazard models. The current software code for ID1 (see
Section 3.3.6) has also been updated by redefining the riskset according to the I/S
definition. The extended software can also be used with the baseline value of the

biomarker.

3.3.5 Additional methods for longitudinal outcomes

Three estimation methods have been proposed for a longitudinal biomarker in addition
to those described above under the I/S definition, although some do not incorporate
censoring. These estimation methods are discussed below. An extension of the C/D

definition for a longitudinally repeated biomarker is suggested as the fourth method.

Specific notation: Let n = np + ny denote the total number of individuals which is
the summation of the where nj, is the total number of cases and njy is the total number
of controls. Let U7, = vec(T;, sy) = Up denotes the vector of covariates associated
with X;,. The total number of longitudinally repeated biomarker values for cases
isNp = Z?D K; . The time prior to an event is defined as the time lag between the
measurement time and the event time: T;;, = T; — s as above. Similarly for controls,
let X;, be the biomarker value obtained from individual j at the [ visit time sj; with
j=np+1,..,np+nsandl=1,..,1L;. Let U], = vec(s;) = Up denote the vector
of covariates associated withY;,. The total number of longitudinally repeated

biomarker values for the controls iSNEZZ;lBLj. Thus, the total number

longitudinally repeated biomarker values in the study is N = Np + Np.

3.3.5.1 (AD1) Linear mixed-effect regression model

Etzioni, et al. [32] proposed the use of a linear random-effect regression model of the
serial biomarker measurements as a function of time prior to the event, which was
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originally proposed by Tosteson, Anna N Angelos and Begg [51] using the ordinal
regression models in order to estimate the time-dependent ROC curve statistics. This
approach involves modelling the biomarker values and using the model parameter

estimates to induce a ROC curve at a particular time. The ROC is defined by

ROC(t,p) = Splao(t) + a1 (6)S5 ' ()] (3.4)

where t is the time prior to the event, p is the false positive rate, Sp is one minus the
cumulative distribution function for cases and Sp is one minus the cumulative
distribution function for controls. Suppose cases and controls are from the same
location-scale family S, up and s, are the mean and standard deviation of X;;, and up

and sp are the mean and standard deviation of ¥;;. Then a,(t) and a, (t) are defined

by
ao(t) _ .UBS_ Up
D
‘.
a () = S—D
D

To estimate a,(t) and a,(t), Zheng, Y. and Heagerty [15] fitted the following linear

mixed effect models for cases and controls :
Case: Xj = bg; + by;Sik + Bo + B1Sik + B2Tik + B3SikTik + €ix (3.5)
Control: X]l = bO] + blijl + ﬁo + ﬁlsjl + Sjl (36)

where &y ~N(0,03) and (Bo, 1, B2, B3)~N[(Bg, BT, B, B3), VP] for cases and
g1 ~N(0,02) and (Bo, B1)~N[(B2,BP), VP] for controls. V2 and VP are variance-
covariance matrices for cases and controls respectively. It should be noted that, only
equation (3.5) includes the time prior to the event (T;;) but not equation (3.6) since the
controls are those individuals who do not experience the event. Parameter estimates
from equations (3.5) and (3.6) are used to induce the ROC estimates in equation (3.4)
using the estimated a,(t) and a,(t). For a given s and t, up, up , spand s are

estimated by

Ap =Up B, fi5 = U B°, $p = /o + Up VP U and 35 =Ja§ +Up V2 U

whereUp=1[1 s t stl,B°=1[8, B B ﬁg]T, Up =[1 slandgP =
By A"
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3.3.5.2 (AD2) Model of ROC as a function of time prior to disease

Pepe, M. S. [52] proposed the use of a regression model for the ROC curve itself, and
similarly, Etzioni, et al. [32] proposed using a ROC model directly as a function of
time prior to event. The model is defined by

ROC(t,p) = P[yo + 197 (p) + at]

where p is the false positive rate, @ is one minus the normal cumulative distribution
function. At each time t, it is assumed that the ROC is of the binormal form as in
equation (3.4) and the ROC curves at different t are related through a linear effect on
the intercept. In terms of (3.4), ay(t) =y, + at and a,(t) = y;. The parameters y,,

y1 and a can be estimated by the following steps

(i)  Construct a dataset of {(Xx, X;1), D = I(Xi = X))}

(i)  Calculate the quantile p in the control population (control observations in each
pair as defined in Step 1 above). It can be estimated by the empirical cumulative
distribution function in the control sample.

(ili)  The indicator I(.) in Step 1 is estimated conditional on p in Step 2. Thus, the
ROC(p) is estimated by fitting a generalized linear model to data 1(.), where the
family is binomial, the link is probit and the covariates are ®~1(p) and Ty.

There are a few advantages of this method compared to the first method in which the
range of setting of this method is much broader [52]; the range of models that allowed
for the ROC curve is broader; the model can include the interactions between p and
U; the distributions of the test result in cases and controls do not need to be derived
from the same family. Indeed, no assumptions are made regarding the distribution of
biomarker for the controls but only on the relationship between the cases and controls

which are made through the ROC curve model.

3.3.5.3 (AD3) Semi-parametric regression quantile estimation

Zheng, Y. and Heagerty [15] proposed a semi-parametric regression quantile approach
which is an extension to the parametric approach by Heagerty and Pepe [53] to
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construct time-dependent ROC curves. The definition of the ROC curve at time ¢t has
the same form as equation (3.4) but since in [15], the positive test is defined as a
biomarker value less than c, thus true positive is defined in terms of the cumulative
distribution function instead of the survival function. The ROC at time t is estimated
by the conditional empirical quantile function of [X;,|U;x], as from a location-scale

family and defined as follow:
ROC(t,p) = Fao(t) + a; ()G~ (p)]

where F and G are the baseline distribution functions of case and control models as
follow
Case: Xy, = up(Uy) + op(Uix)ep(Us)

Control: X]l = MB(UJZ) + o—[_)(Ujl)EB(Ujl)

where up, op, up and oy are the location and scale functions. Instead of using a quasi-
likelihood method to estimate up, op, us and oy [53], Zheng, Y. and Heagerty [15]
used regression splines. In order to estimate the conditional baseline distribution
function F and G, Zheng, Y. and Heagerty [15] proposed using an empirical
distribution function of the standardized residuals if the baseline functions are
independent of covariates, and to consider the symmetrized nearest neighbour (SNN)
estimator [54] if the baseline functions are the smooth functions of covariates. Thus,
this semi-parametric estimation method gives greater flexibility than the parametric
method [32] by allowing separate model choices for each of the key distributional

aspects.

3.3.5.4 (AD4) Proposed extension to CD2 to allow for longitudinal

biomarker measurements

Zheng, Yingye and Heagerty [16] proposed a generalisation of CD1 by Heagerty, et
al. [2] for the longitudinal biomarker measurements. The key idea was similar to the
IS2 method in which the most recent biomarker is used to discriminate between cases
prior to time t from the controls after time t. In contrast with CD1, it is no longer just
use the baseline biomarker or prognostic information but also consider the updated

information. The proposed sensitivity and specificity take the same form of CD1. In
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order to estimate the distribution function Fy(c) (see CD1), Zheng, Yingye and
Heagerty [16] used the semi-parametric regression quantile method for the
longitudinal data [53]. For the bivariate survival function, S(c, t), and the marginal
survival function, S(t), Zheng, Yingye and Heagerty [16] used a partly conditional
hazard model as proposed by Zheng, Yingye and Heagerty [55].

Motivated by the above methodology, CD2 has been extended to incorporate the most
recent biomarker value from the longitudinal biomarker record instead of the baseline
biomarker value. CD2 is chosen rather than CD1 because CD1 produces a non-
monotone sensitivity or specificity. The sensitivity and specificity are defined similar
to CD2. The extended CD2 (denoted as AD4) is assumed to have all the advantages of
CD2 with an extra advantage of using the most recent biomarker value which is more

reliable in depicting the current status of an individual.

3.3.6 Software

The current software for computing the time-dependent ROC curves are available as

R packages. These are briefly described below.

3.3.6.1 survivalROC

The “survivalROC” [56] package estimates both the CD1 and CD2. The R
documentation includes worked examples using the built-in dataset called mayo
(Primary Biliary Cirrhosis (PBC) dataset from Mayo Clinic). The estimators can be
chosen by the type of either the “KM” or “NNE” methods in the function syntax.

3.3.6.2 survAUC

The package [57] provides a variety of functions to estimate the time-dependent
true/false positive rates and AUC for the censored data. The AUC.cd can be used to
calculate CD4 and it is restricted to the Cox regression. The estimates obtained from

this function are valid as long as the Cox model is specified correctly. The values
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returned by this function are AUC, integrated AUC and the times at which the AUC

are evaluated.

3.3.6.3 timeROC

The package [58] provides the functions to compute the confidence intervals of AUC
and tests for comparing the AUC of two biomarkers measured on the same individuals.
Both CD5 and CD6 estimators can be computed using this package. It is also capable

of allowing for competing risks event times.

3.3.6.4 survival, timereg and prodlim

The Basehaz function in the “survival” package [59] in R is used to obtain the VL
Cox estimates which uses the baseline hazard under a Cox model. The Aalen function
in the “timereg” package [60] can be used to estimate the conditional absolute risk
under VL Aalen; it returns the estimated coefficients 5, and ;. The VL KM estimator
can be computed using the “prodlim” package [61]. For the selection of the smoothing

parameter [, a direct plug-in method can be used by setting 1,, to 0.25 n=/5.

3.3.6.5 risksetROC

This “risksetROC” package [62] estimates the time-dependent ROC curves under I/D
definition and produces the accuracy measures for the censored data under

proportional or non-proportional hazard assumption of the ID1 estimator.

3.4 Results from the clinical applications review

Among the three definitions for sensitivity and specificity, C/D has been the most
commonly applied in clinical papers (126/157, 80%). The I/D definitions have been
applied in 29 papers (18.5%) while none was found for the 1/S definitions. Since the
publication by Heagerty and Zheng [27] who introduced the three definitions, the

number of clinical papers that used the I/D methodology has increased (Figure 3.2).
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Lung, breast and liver cancer are the most common areas for the application of C/D
and I/D (Figure 3.3). Some of the applications of C/D and I/D from cancer are

described below.
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Figure 3.2: Year of publication for clinical applications under C/D and 1/D
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Figure 3.3: Disease area for clinical applications under C/D and I/D definitions

51



Lu, etal. [63] aimed to determine a robust prognostic biomarker for tumour recurrence
as 30% of Stage | non-small cell lung cancer (NSCLC) patients will experience the
tumour recurrence after therapy. They used the time-dependent ROC curve analysis to
assess the predictive ability of the gene expression signatures. The recurrence-related
genes were identified by performing a Cox proportional hazards analysis. A 51-gene
expression signature was validated to be highly predictive for recurrence in Stage |
NSCLC with the AUC values greater than 0.85 from the baseline up to 100 months of
follow-up. The highest AUC values have been seen after 60 months to 100 months of
the follow-up with AUC(t) = 0.90, implying that the 51-gene expression signature is
a better biomarker in discriminating between Stage 1 NSCLC patients who will
experience tumour recurrence up to 60 months and patients who will not experience
tumour recurrence beyond 60 months of follow-up. Lu, et al. [63] concluded that this
gene expression signature has important prognostic and therapeutic implications for

the future management of these patients.

Tse, et al. [64] has developed a prognostic risk prediction model for silicosis among
workers exposed to silica in China using a Cox regression analysis to screen the
potential predictors. The score from this model was then developed as a unique score
system which includes 6 covariates: age at entry, mean concentration of respirable
silica, net years of dust exposure, smoking illiteracy and number of jobs. This scoring
system is regarded as accurate in discriminating the workers with silicosis and healthy
workers up to 600 months of follow-up since the AUC values are more than 0.80.
These AUC values seem to decrease from baseline AUC(t = 0) = 0.96 to the end of
follow-up AUC(t = 600) = 0.83 which indicates the discrimination potential of the
baseline score had diminished across the study’s follow-up. This study provides
scientific guidance for the clinicians to identify high-risk workers.

Yue, Yong, et al. [5], Yue, Y., et al. [6] used the pre-treatment 18F-FDG-PET/CT
imaging and combinatorial biomarkers respectively to stratify the risk of TNBC
(Triple-negative breast cancer) patients. TNBC is considered as a high-risk disease
and normally associated with poor survival. A stratification of prognosis of this disease
can help in identifying the patients with good a prognosis for less aggressive therapy.
The event-time outcome of the studies was defined as the time to recurrence of TNBC
disease. The time-dependent ROC curve was used to assess the prognostic value of the
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biomarkers, EFGR and CK5/6 at different cut-off points and the optimal cut-off was
obtained based on the AUC values. The cut-off values were estimated by maximising
both sensitivity and specificity of the event-time outcome. The optimal values of 15%
with AUC=0.675 and 50% with AUC=0.611 for EFGR and CK5/6 were respectively
found. AUC values obtained were used as a basis of a decision rule. By using the
optimal cut-off value, the patients were stratified into two different risk level groups

which helped in selecting the appropriate treatment strategies for patients.

Desmedt, et al. [65] studied the performance of the gene expression index (GGI) in
predicting relapses in postmenopausal women who were treated with tamoxifen (T) or
letrozole (L) within the BIG 1-98 trial. The predictive ability of GGI was estimated
using time-dependent AUC and was plotted as a function of time to characterize
temporal changes in the accuracy of the GGI biomarker. They calculated
AUC(t = 24) = 0.73 which implies that 73% of the patients who relapsed at 24"
month have greater GGI score than patients who relapse after 24™ month. Further,
AUC at t =27 was found to be the highest which indicated that the maximal

discrimination occured near the median follow-up time.

George, et al. [66] aimed to determine the predictive ability of the lesions texture along
with traditional features in order to detect the early tumour response. Texture features
are important in detecting the progression of a tumour among cancer patients, e.g. s
(18) F-fluorodeoxyglucose (FDG) followed by the positron emission tomography
(PET) estimates. The event-time outcome was defined as the time of tumour
progression, which is the distance between the subspaces from the baseline scan and
the follow-up scan. Time-dependent ROC curve was used to obtain the predictive
ability of the weighted subspace-subspace distance from the baseline and the follow-
up scan as a biomarker for predicting early tumour response. In a study of 15 patients
who had metastatic colorectal cancer, the follow-up scan was taken at the first week
after the first dose of the treatment. As a result, a concordance summary of 0.68 is
found from the predictive model using weighted subspace-subspace distance metrics.
This result helps as an added value in using textural information for therapy response

evaluation.

The prognostic role of hepatitis-B virus (HBV) infection in chronic lymphocytic

leukemia (CLL) was studied among a Chinese case cohort by Liang, et al. [67]. Three
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regression models have been proposed consisting of potential factors of CLL in which
Model 1: clinical variables, Model 2: clinical and biological variables and Model 3:
clinical, biological and virological variables. The models were evaluated using the
time-dependent AUC. The differences across AUC were calculated using a
nonparametric approach. Model 3 which was taking account of the HBV status (a
virological variable) were found to be the most significant in predicting CLL. This
finding provided an additional insight into the virological determinant of CLL

prognosis and concluded that the HBV status could be an important risk factor of CLL.

3.5 Hlustrative PBC Application

As introduced in Chapter 1 in Section 1.7, the PBC data is used for illustrative purpose
for the currently proposed estimation methods discussed in the previous sections. In
this chapter, a model score estimated from the Cox model which contained five
covariates: log(bilirubin), aloumin, log(prothrombin time), edema and age [27] is used

as a biomarker.

Table 3.3 shows the estimated AUC from several methods at Year 1, Year 5 and Year
10 based on the baseline value of the biomarker or the most recent value. All methods
show decreasing AUCs as the prediction time is further from the biomarker
measurement time. This indicated the hypothesis that the discriminative power of the
marker becomes weaker with increasing prediction time is proven. The methods
involving longitudinal biomarker measurements assume that the value which is closest
to the prediction time is better in discriminating between the cases and controls. AD4
used the last value prior to each prediction time as it produces higher values of AUC
compared to CD1 which uses the baseline biomarker measurement. This is also true
for 1S2. The methods involving a longitudinal biomarker measurement are usually
interpreted with respect to the time lag between the last visit time and the prediction
time because each individual may have a different set of visit times. Thus, the last
value prior to each prediction time in the estimation. As the time lag gets longer, the
AUC decreases due to the same reason as using the baseline value of a biomarker. The

R software previously described was used to estimate these models.
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Table 3.3: Estimated time-dependent AUC for Year 1, Year 5 and Year 10

— . AUC (SD)
Definitions Marker time Method Year 1 Year 5 Year 10
Naive  0.846 (0.023) 0.885 (0.022) 0.883 (0.030)
CD1 0.922 (0.041) 0.921 (0.021) 0.878 (0.027)
c/D L= 0 CD2 0.895 (0.056) 0.897 (0.024) 0.869 (0.028)
CD3 0.922 (0.042) 0.917 (0.020) 0.898 (0.031)
CD5 0.922 (0.042) 0.915(0.021) 0.866 (0.028)
CD6 0.922 (0.038) 0.915 (0.020) 0.870 (0.030)
Last value AD4
. \p(rg tlo' 0.926 (0.039) 0.918 (0.019) 0.871 (0.027)
- 0.911 (0.019) 0.910(0.021)
Years i i 0.899 (0.022)
Year 10
/D L= 0 ID1 0.845 (0.010) 0.791 (0.028) 0.692 (0.024)
ID3 0.893 (0.048) 0.757 (0.041) 0.716 (0.143)
I/S t=0 IS2 0.939 (0.025) 0.836 (0.028) 0.698 (0.034)
Last value I1S2
prior to:
I/S Year 1 0.968 (0.003) 0.872(0.024) 0.698 (0.043)
Year 5 - 0.957 (0.003) 0.698 (0.031)
Year 10 - - 0.768 (0.038)

The AD1 method (Section 3.3.5.1) uses all available longitudinal biomarker values for
prediction of the time-dependent ROC curves. The parameter estimates from the two
models for the cases and controls are shown in Table 3.4, and the relevant calculations

are given below.

Table 3.4: Parameter estimates from linear mixed effect models for cases and
controls

Effect Coefficient Estimates for Case Estimates for Control
Bo(SE) 1.139 (8.865x 1072) -0.569 (0.043)
_ —4
Fixed B,(SE) fﬁf X0 (419X ) 906 10-* (2,502 10-5)
Effect
2.283%x 10~* (5.696 %
ﬁZ(SE) 10—5)

55



-1.083x 1077(1.605x%
:83(SE) 10—8) (

ome 0593 0.550
Random oyr 3.448 x 107* 2.615%x 10™*
Effect pnevr  -0.378 0.209

Ores  0.203 0.220

SE — Standard error

If the time-dependent ROC curve is estimated at five years prior to death (i.e. T = 5)
for the biomarker measured at visit time which is equal to ten years (i.e. s = 10), the

means and standard deviations for the cases and controls are estimated by

fp = Up BP = 1.1353, ji; = Uy BP = —0.5676,

$p = /o5 +Up VP U}, = 0.6608, where VP =
(0.593)? —7.730 X 10-5] and
—7.730 x 1075 (3.448 x 107%)2

(0.550)? 3.004 x 1075

$5 = |02+ Uy VP UL =0.5924 where VP = :
Sb \/% +Us D 3.004 x 107> (2.615 x 107%)2

The corresponding ROC curves are shown in Figure 3.4 for 0, 1, 3 and 5 years prior to
death at the visit time of 10 years (year 0 implies that the death occurred at 10 years
since the enrolment to the study). Figure 3.4 shows that the discrimination is better

when the biomarker is measured at times closer to death.
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Figure 3.4: Time-dependent ROC curves for 0, 1, 3, 5 years prior to death for
the biomarker measured at visit time at ten years.

3.6 Discussion

Although C/D is the most common method being applied, if a researcher has a specific
time point of interest in order to distinguish between individuals with an event and
individuals without an event at that time point, I/D or I/S is more appropriate. Since
I/S requires a fixed follow-up to observe the clinical outcome of interest, it can be
applied in long follow-up studies with longitudinally measured biomarkers. C/D and
I/D are usually used for a single biomarker value while I/S can include a longitudinal

biomarker. As the disease status of an individual may change during the follow-up, the
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biomarker values may also change, and hence, the most recent biomarker value may
be best related to the current disease status of an individual. Thus, the usage of the
most recent biomarker value prior to a target prediction time t is acceptable for the

proposed extensions in this chapter.

None of the methods discussed earlier used a complete history of a longitudinal
biomarker conditional on the actual event-time. In AD1 method, although all
longitudinal biomarker measurements were used, the event-time for the controls was
ignored. Therefore, an approach considering a more complete record of each
individual when estimating the ROC summaries over time is more appropriate.
Further, most current methodologies use nonparametric modelling to estimate the
ROC curve, however, when data is following a specific distribution, using a parametric
approach is more appropriate and offers more accurate results. Motivated by these
findings, this thesis propose two novel methods to estimate the ROC curve, and these
will be discussed in detail in the next two chapters; Chapter 4 and Chapter 5.

58



4 Parametric approach to estimate the time-dependent
ROC curve

4.1 Introduction

This chapter is aimed to propose a novel methodology for estimating time-dependent
ROC curves based on a parametric approach. In most studies, a nonparametric
modelling approach is preferable compared to a parametric approach to avoid any
strong assumptions of the data. Some ROC curve studies have concluded that a
nonparametric approach has similar performance to a parametric approach [3, 68].
However, in the case when the data is distributed along a specific distribution, treating
and modelling such data using the parametric approach is more appropriate and offers
more accurate results. Thus, although a parametric approach can induce complexity in
terms of model assumptions and specification, exploring possible estimation methods
and understanding the difficulties is worth it because it provides models with specific

distributions and gives more powerful results.

The semiparametric approach uses a combination of nonparametric and parametric
approaches. The parametric part that has been used the most is the linking of these two
distributions which requires assumptions and specifications for the model [3]. As
discussed in Chapter 3, the main disadvantage of the nonparametric approach is the
assumption of independence of the censoring time with the biomarker; the
semiparametric model overcomes this problem [2]. However, a fully parametric model
will always be efficient and allow biomarker-dependent censoring, as long as the time-
to-event model is not misspecified which may lead to dramatic bias [40, 69]. Also
analysing a small size of dataset which follows a specific parametric distribution using
a parametric approach can produce more precise results. A dataset that has more
specifications in terms of the parameter assumptions, provides more useful

information to understand in depth the nature of the data.

As discussed extensively in the methodological review in Chapter 3, a parametric
approach is uncommon in time-dependent ROC curve estimation. There is one study
that has been discussed (AD1) using the most common ROC parametric model which

is the binormal model, where it is assumed both cases and controls are normally
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distributed with different means [32]. They did not assume any joint distribution of the
biomarker value and event time data, and only include the event time term in the model
for cases since it does not apply to controls. No study has proposed using the joint
event-time and biomarker distribution formulated from parametric distributions. In
this chapter, a methodology to estimate the time-dependent ROC curve, specifically
the sensitivity, specificity and AUC that uses a joint distribution of the event-time and
the biomarker to derive these quantities is proposed. The proposed approach is based
on the C/D definition (Section 2.3, Chapter 2) as this is the most commonly used

definition in current methods and the most popular in clinical applications [33].

The general framework of the proposed method is presented in Section 4.2 including
the formulation of the joint distribution of event time and biomarker value and the
derivation of the respective sensitivity, specificity and AUC. The assumptions of the
proposed model is introduced in Section 4.3 together with various parametric
distribution combinations for event-time and biomarker value, and two different link
functions. The formulation of the likelihood function for each combination and link
function is discussed in Section 4.3.2. The step-by-step procedure of formulating the
joint distribution, likelihood function and the parameter estimation for the simplest
distribution combination is shown in Section 4.4 and for the other complex settings
are shown in Section 4.5. The application of the proposed method is illustrated in
Section 4.6 using Mayo Clinic PBC data.

4.2 General Framework

4.2.1 Joint Distribution Formulation

Let T; be the event time and X; be a baseline biomarker value for the ith individual.
Denote §; as the indicator of the event, taking values 1 if the event occurred at time T;,
and 0O if it did not. The data is observed as {X;, T;, 6;}, i = 1, ..., n for the n individuals
in the study dataset.

Both the biomarker values and the event-time data are assumed to follow some

parametric distributions and are linked through a linear relationship of the parameters
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to form a joint distribution. For the simplest setting, we assume all individuals have

the event and no censored observation occurs.

The steps for obtaining the joint distribution of T; and X; are as illustrated in Figure
4.1. First, the parametric marginal distributions function for T; and X; are defined as
f(t,a) and g(x,y) respectively, where a and y are the sets of parameters for each
distribution. Second, these two distributions are linked by modelling X; on the
parameters of T;, such as e = h(x, B) where h(.) is a link function and B is a set of
parameters used in the link function. Third, the conditional distribution of T;given X;,
f(t, h(x, B)) is formed. Finally, the conditional distribution, f(t, h(x,B)) and the
marginal distribution of X;, g(x,y) are multiplied to get the joint density of X; and
T; such that £ (¢, x, v, B) = f(t, h(x, B)) x g(x,¥). This formulated joint distribution

is then used to derive the sensitivity, specificity and AUC under the C/D definition as
in Section 4.2.2 below.

Distribution of T, f(t, @) Distribution of X, g(x,y)

Link the parameters

a = h(x, B)

Joint distribution of T and X
ft,x,v.B) =f(t.h(x,B)) X g(x,7)

Figure 4.1: Steps for formulating the joint distribution of X; and T;
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4.2.2 Derivation of Time-Dependent ROC curves

In Chapter 2, the general C/D time-dependent sensitivity, specificity and AUC have
been defined in equations (2.1-2.3). Here, the general form of the C/D parametric time-
dependent sensitivity, specificity and AUC are derived from the joint distribution of

X; and T; as formulated in Section 4.2.1 which are as follows:

Se(c,t) =PX; >c|T; <t) = fcoo fotf(t’ ~¥.B) dtdx,
Iy J, F(tx,y, B) dtdx

_ S I Xy, B dedx
Sp(c,t) =PX; < c|T; >t) = fooo ftoof(t, 7 B e

AUC(C; T, Y, B) = P(Xl > XZITl < t; TZ > t)
00 00 00 ,t
_ fO fxz ft fO f(tll t21 xl: xZi y, B) dtldtzdxldxz
~ .00 00 0O t .
fO fo ft fO f(tl’ tZ’xlﬂ xZI y; B) dtldtzdxldxz

When no censoring occurs, the disease status for all individuals is equal to one by the
end of the follow up. Thus, in calculating these quantities, the disease status is assessed
at the target time based on the event-time. If the event time is less than the target time,
the individual has the disease while if it greater than the target time, individual still

survives at t.

For a study that includes censoring data, the sensitivity and specificity are calculated
separately between cases and controls. The censored individuals are not ignored in this
methodology because the available information up to t has been considered through

the integration of the joint distribution of X and T at each target time ¢.

In the current estimation of time-dependent ROC curves methodologies, above
quantities are estimated using a bivariate normal distribution (see NNE method in
Chapter 3, Section 3.3.2) and modelled nonparametrically. In this chapter, the joint
parametric distribution of X and T are used to directly derive the time-dependent ROC

curve quantities and these are discussed in detail in the next subsection.
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4.3 Modelling proposed parametric approach

4.3.1 Distributional assumptions

The ROC curve is usually modelled separately for cases and controls using a binormal
model. Since only cases have the event, the event time is modelled only for the case
individuals as a covariate [32]. In the time-dependent approach the bivariate
distribution of X and T is required for estimating the sensitivity, specificity and AUC.
However, most studies in the literature used a bivariate normal distribution or log
normal of event time, followed by a nonparametric approach to estimate the
distribution [2, 27]. The proposed approach is different in that some parametric
distributions of marginal X and T are assumed to form a joint distribution of X and T

and then derive the sensitivity, specificity and AUC.

In event-time or survival data analysis, the event time distribution is usually highly
skewed. In parametric methods, it is a common practice to normalise data, however
some data give a better understanding if the original distribution is retained. In this
chapter, the exponential and Weibull distributions are assumed for event times and the
exponential and normal distributions are assumed for biomarker values. The
combinations of event time and biomarker value distributions respectively are as

follow:

i.  exponential / exponential
ii.  nxponential / normal

iii.  Weibull / normal

For each distribution, the relationship between T and X is varied through the
parameters involved. To illustrate how the distributions are linked, the first case (i)
which assumes both event time and biomarker value are exponentially distributed, is

considered.

Let T ~exp(4) and X ~ exp(u) Two link functions are used. The expected value of T

is 1/4, which is modelled in terms of a given biomarker value X by

A = Bx.
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Thus the ith individual has T; ~ exp(Bx;). In this thesis, it is always assumed there is
a negative relationship between event time and biomarker value, so that higher
biomarker values are more indicative of disease [10]. The second link function is

A= By + Pix.

Thus the ith individual has T; ~exp(B, + B,x;). The most parsimonious linear
relationship is used for simplification, but more complex relationships could be used.
Among all considered parametric distribution combinations, only the closed-form
estimators are available for the Exponential/Exponential case from the first link
function. The other distributions and the second link function has involved more

complicated statistical computations and required numerical solutions.

4.3.2 Likelihood Formulation

If no censoring occurs and all individuals in the study experience the event by the end

of the follow-up, the likelihood function is defined by

n

L(Y! X1, "'lxn) = Hf(XLJY)

i=1

where y is the parameter involved. For a study with censored event outcomes, an
additional survival function is needed in the likelihood formulation. The observed
event-time T; is defined by T; = min(T7}, C;) where T; is the true event-time and C; is
the censoring time for i th individual. Two separate functions are defined which are
f1(x) for the actual events and f, (x) for censored events, with the respective survival

functions, S;(t) and S,(t). Thus, the likelihood function can be defined by
n
L= [theo. 50800, 5,0y -5
i=1

= | [theo. 5.8 x| [tho, sy
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The joint biomarker and event-time distribution, and the likelihood formulation are
as follows:

The joint distribution function is

1-6

o0 ) o0
f(t,X) = {fl(tﬁx)lf SZ(Zi X)dZ} {fZ(t!x)'f SI(Z, X) dZ}

© 1-8 © 1-6
={[f1<t.x)]6,“ sl<z,x>dz] IX{[fl(t,x)]‘S,U sl<z,x>dz] }

Thus, the likelihood can be defined by

L= l_[?=1{[f1 (t;, x)]% [ftoo S, (zi,xi)dz]1_5i} and specifically, in the context of this

chapter

(yr B; tl; ey tn; X1, ---:xn) = ?zlf(tilxi; y'ﬁ)6iS(ti|xi;y' B)l_si'

4.4 Modelling and estimation in the simplest setting

4.4.1 Exponential/Exponential when A = Bx

Adapting the steps that have been discussed in 4.2.1, the joint distribution function is
formulated for the Exponential/Exponential case. The event time and the biomarker
value are assumed to follow exponential distributions with mean A and u respectively.
Let T~exp(A) with marginal distribution f(t) = Ae=** and X~ exp(u) with
marginal distribution g(x) = pe™**. The conditional distribution function can then be
defined as f(t|x) = Bxe P*t. The joint distribution function is obtained by
multiplying the conditional distribution with the marginal distribution of the

biomarker,

f(t,x) = f(t|x) x g(x) = ufx e~ BLrwx,

The joint distribution function f(t,x)is used to determine the closed form of

sensitivity, specificity and AUC functions as follows:
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f:o fot upx e~ BHRX qrdyx
fooo fot pfx e~Bt+wx didyx

_ pouc|q  #A—e)
=e™H [1+Tl,

Se(c,t,u,B) =PX;=c|T; <t) =

foc f:o upx e~ BHRX drdyx
fooo f:o ufx e~ Bt+wx dedx

2u + 3pt
2u + 4pt

Sp(e,t,,B) =P(X; <c|T; > t) =

=1— e Bt+c and AUC(u, B) =

Instead of using the above AUC closed form formula, it also can be determined by
calculating the area under the plotted sensitivity and specificity using the trapezoidal

rule, which is interchangeably used in this thesis.

4.4.2 Estimation of parameters

The parameters for each distribution are estimated using the maximum likelihood
estimation (MLE) procedure. As discussed in Section 4.3.2, the likelihood function
can be formulated when only joint distribution function is available (for uncensored
case) and when it needs an additional survival function (for censored data). The
parameters involved in the joint distribution function of the exponential/exponential
case include the mean of X (u) and the coefficient g from the link model that has been

used to connect the two distributions.

When there is no censored outcomes, the likelihood function can be defined by

n n
L, B X1, vees X by o ) = H(uﬁxie‘(“i”)"i) = (up)" H(xie‘(“”“)xi)-
i=1 i=1
The log-likelihood function is
n
InL(w, B; x4, oo, Xp; t1, o, ty) =nlnp+nln B + Z In(x; + e~ Btitwx),

i=1
and it is simplified as
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InL(u, B; x1, ey X3 t1,y s t) (4.1)

n

= nlnu+nln,8+§n:ln(xi) - (,an: t; +u>2xi
i=1 i=1

i=1

Thus, the MLE estimator of both parameters can be estimated by maximising the
likelihood function in equation (4.1). The log-likelihood function is differentiated with

respect to each of the parameters and equated to zero:

OInL(u, B;xq1, e, Xy tq, e, t no<
(,Ll,B 1 nr b1 n)=__zxi=0and
o H i=1

a lnL(,u, ﬁ' xl; ---:xn; tll ey tTl) _
op B

xiti = 0.

n
i=1

=3

n
I xit;

=)

Thus the MLE for pand B are respectively fi = z"n —= % and
i=1"
For a study including censored data, the likelihood function is defined by

L, B g, ooy 20) = Ty £ (t i3 11, BOiS (ti 15 11, B0

The conditional distribution of event time given the biomarker value, S(t;|x;; 1, B) is

estimated as follow

[0e]

—Bx;

S(tilxi;ﬂlﬂ) =J l = —ye—(ﬁHM)xi,
t

,uﬁxl-e"(ﬁxi”*“xi)du — I
ti

and the likelihood function can be defined by

- . NJ _ \1-8;
L ) = Tl (e P1e050) (o) 5

Since the differentiation of this likelihood is computationally complicated, it is
maximised numerically. An R function is written for this maximisation and attached
in the Appendix A.1.
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4.5 Modelling and estimating in more complex settings

4.5.1 Exponential/Exponential when 4 = B, + B1x

In this case, the exponential/exponential case with A = B, + f;x is considered. In
this case, T~exp (1) with marginal distribution function £ (t) = Ae~*t and X~ exp(u)
with marginal distribution g(x) = ue "*. These two functions are linked using =
Bo + PBix . Thus the ith individual now has T;~exp(f8, + B,x;) with the conditional
distribution function defined as f(t|x) = (By + fyx)e” BotBDt  The joint
distribution function can be obtained by multiplying the conditional distribution with

the marginal distribution of biomarker,

f(t, X) = f(th) X g(X) = ‘u(’BO + [j’lx)e_(ﬂx"'ﬁot"'ﬁlxt)_

The closed form of the time-dependent sensitivity, specificity and AUC functions for
this case are not derived manually but estimated using numerical integrations in R. The

R codes are available in the Appendix A.1.

Estimation of Parameters

The parameters involved in the joint distribution is the parameter for the biomarker
value and the link function coefficients. The likelihood function when there is no

censored outcome can be defined by

L(’u, ﬁOr ﬁl; xl, ey xn; tl' ey t'l’l)
n n
= [ [ 8o + prxpe-tesetotssminitd = (upyyn | (Brxie=tosetutcsmieo
i=1 i=1

Taking the natural log of the likelihood, it becomes

n
InL(w, By By X1, oes X3 1, s ty) = nInp+nln B + Z In (ﬁ1xie_(“xi+30ti+31xiti))
i=1

And can be written as

n
xi+Po ) tit+ By xiti>
=1

n
i=1 i

n
=nlnu+nlnp, +Zln(,81xi) - (u
i=1

n
i=1
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The log likelihood function is then maximised with respect to each parameter. These
steps are shown below.

OINL(w, By By X1 s Xni b, s ty) M =
=—— ) x;=0fory,
f Y =0t
dlnL(u B, Byx Xn; t t) nox
Py P 1y sy Ay L1y ey
=—— > t;=0forfB,and
98, By Z l 0
OInL(i, By B X1, wver Xni 1, wees ) 1 = =
= xX; — x;t; = 0 for ,.

Thus the corresponding ML estimators take the form

1

~ n 1 5 n 5
k= Shax ’_C'BO N and f, = Tty

n
i=1ti

The likelihood function when there exist censored outcomes can be defined by

n
L(‘Ll, :BO' ﬁl; X1y ey xn) = 1_[ f(ti' Xi, U, BO' ﬁl)ai S(ti |xi' U, ﬁO' ﬁl)l_Si
i=1
The survival function is estimated by integrating the joint distribution with respect to
t,
S(tilxi , Bo, B = [, 1(Bo + Byx) e Porhrumixqy,
Thus,

~(Bo+B1x)u—px]”

—(Bo + P1x) £

— 'ue_(ﬁo"'ﬁlx)t_ﬂx,

S(tilxi' 22 ,80' ,81) = .u(,BO + lglx) le

and the likelihood function finally can be defined by

_ 6; _ _ 1-6;
L, B; %1, s Xn) = [Tieq ((Bo + Brx)e ™ (Wr+Bott B0 ) (o= (Bo+Bax)t=px) 8,
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The ML estimation of the parameters is done by using a function written in R and is
attached in the Appendix A.1.

4.5.2 Exponential/Normal

In most studies, the biomarker value is assumed to have a normal distribution
especially when the sample size is large, or if not, it will be transformed to the normal
distribution for simplification during the analysis part. Let T~exp(A4) with marginal
distribution of f(t) = de* and X~N(u, %) with marginal distribution g(x) =

(-w?
m/lﬁ e 202 , When these two distributions are linked through the expected value of

T by A= Bx, thus the ith individual has T; ~exp(Bx;), where the conditional

distribution function can be defined as f(t|x) = (Bx)e~#*t. The joint distribution
function can be obtained by multiplying the conditional distribution with the marginal

distribution of the biomarker,

B _px _ew? g
ftx) = f(tlx) x gx) = =e 27 "7

Considering the second link function, A = B, + B;x leads to the ith individual
having T;~exp(8, + B,x;), where the conditional distribution function can be defined
as f(t|x) = (By + Byx)e~PotF1X)t The joint distribution function is obtained by
multiplying the conditional distribution with the marginal distribution of the

biomarker,

Bo+ Pix ol (g,4p00

f(tx) = f(tlx) x g(x) = .

Estimation of Parameters

There are two parameters from the biomarker value distribution, u and o2 while g
parameters are from the link function. The likelihood function for the first link function

A = Bx is as follow
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n

Bx —(x_”)z—/?xt
L(u,o, ;x,...,x;t,...,t)=1—[ e 202 .
u ﬁ 1 n 1 n L O_m

While the likelihood function for the second link function A = B, + Byxis

n

Bo + Bix Gt pip v

L(,O‘, R ;x,___,x;t,___’t)_ — ¢ 202 oth1x)t.
u ﬁo ﬁl 1 n b1 n L 0'\/%

The corresponding likelihood function for censored outcome for the first link function

is defined by

n
L(w B 21, ooy xp) = nf(ti,xi;ll, 0, B)°iS (t;|x;; 1,0, B0,
i=1

and the survival function, S(t;|x;; u, o, B) can be estimated by

> B e,

S(tilx;,pu,0,B) = e L 207
(lll.u' B) ti O_m

and thus,

n
LGt B, xa) = | | £t 0,15 Ctulis 0, )12
i=1

1-6;

(x_'u)z—ﬁxifi]

= ﬁ( ﬁx e_(xz_o'lé)z_ﬁxt>8i e_[ 202
oV2m oV2m

i=1

For the second link function, the likelihood function takes the form

n
L(ﬂ! g, IBOJ :81; X1y oeey xn) = 1_[ f(ti' Xi, W, 0, ﬁO' 31)6i S(tilxi' U, o, ﬁOr ﬁl)l_si
i=1

where the S(t;|x;, u, o, By, B1) is estimated by
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(0]

(x=p)? (x—w)?
s ) Bo + f1x e_[ 202 +(,80+B1x)u] e | 202 +(/30+ﬁ1x)ti]
tilx;, 1, bo, = =
bt B oVm —(Bo + f1x) ovT

Thus the likelihood function can be defined by

L(u, 0, Bo, B1; X1y e s X t1y eees tr)
1-6;

(x—p)? )
n <ﬁ0+ﬁ1x _(xz_l?z—(.30+ﬁ1x)t>6i 6’_[ 202 +(ﬁ0+B1X)tl]
= e 4 a
I I oV2m o\

i=1

The parameter are estimated using the maximisation numerically procedure and the R

code is attached in the Appendix A.2.

4.5.3 Weibull/Normal

Now, the distribution of event time is considered as having Weibull distribution with
two parameters which are A and k. Let T~Weibull(4, k) with marginal distribution

F(t) = k()" te= and  X~N(u,02) with marginal distribution g(x) =

(x-pw?
“ 202 . Considering the first link function A = Bx, the ith individual has

ovam©
T;~Weibull(Bx;, k) where the conditional distribution function can be defined as

(x—

_ k—1 ——‘Lz)z—(ﬁxt)k . e . .
f(t]x) = Bxk(Bxt) ‘e 2o . The joint distribution function is obtained by

multiplying the conditional distribution with the marginal distribution of biomarker,

Bxk(Bxt)* " e—%—(ﬁxt)"

oV2m

Considering the second link function A= B, + Byx, the ith individual has

ft,x) = f(tlx) x g(x) =

Tl-~Weibull(,Ei0 + B,x;, k) where the conditional distribution function can be defined

as

f(tlx) = (Bo + B1)k[(Bo + ﬁlx)t]k_le‘[(ﬁO*'ﬁlx)t]k.

The joint distribution function is obtained by multiplying the conditional distribution

with the marginal distribution of biomarker,
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(Bo -+ )k + pr)elfte | Tt Barsuro"

oV2an

ft,x) = f(tlx) x g(x) =

Estimation of Parameters

Parameters involved in the joint distribution are u and a2 from the biomarker value
distribution and B which represent the coefficients of the link function. These
parameters are estimated using MLE and the derivation of the likelihood functions are

for the first link function A = Bx is

n
Bxk(Bxt)k~t _G=w?_ 5k
L(,0,B; X1, o) Xy ty, oony t =1_[—e 202 ,
(.u .8 1 nr 1 n) | O'\/E

while the likelihood function for the second link function A = B, + Bxis

L(ﬂ, g, ’80,'81; X1y ey Xn,s tll ey tn)

(x—p)?
1_[(,30+,31x)k[(ﬁo+ﬁ1x)t]k 1|

oV2m

+(Bot+f1 )]

The corresponding likelihood function for censored outcome is defined by

n
L('u' ﬂ' xl’ '"'xn) = l_If(tlt Xi;,u, O-tﬁ)SlS(tllle ‘Ll, O—yﬁ)l_Sii
i=1

and the conditional survival function S(t;|x;; u, o, ) function is estimated by

© Bxk(Bxt)"t w4k
S(ti|xi, w0, B8, k) =j —— ¢ 207 :
ilxi, 0,8 N

For the second link

~[C s ot ety

* k-1,
S(ti|xi, , Bo, P, k) = f (Bo + B1x)k[(Bo + [31960);]2?
¢

The survival functions and the likelihood functions are maximised numerically and the
R code is attached in the Appendix A.3.
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4.6 Application on Mayo Clinic PBC data

For the illustration of the proposed methodology in a real application, the model score
estimated from the Cox model as discussed in Chapter 1 is used as a biomarker. The
distributions of event time and biomarker and their scatter plots for the Mayo Clinic
PBC data are shown in Figure 4.2 and Figure 4.3 respectively. Figure 4.2 shows that
the distributions of the biomarker value and the event time are slightly skewed to the
right with very few individuals have higher biomarker value and higher event time.
Figure 4.3 displays the relationship between the event time and the biomarker value.
A negative relationship is observed between the event time and biomarker value that
indicates individual with higher biomarker value tend to have higher risk of death, and

this parallel with the assumption of this thesis.

The histograms and the scatter plots for all three combination of the distributions
proposed in Section 4.3.1 when the parameters are assumed as close as in Mayo Clinic
PBC data, are displayed in Figure 4.4. Based on Figure 4.4, the scatter plot for the first
case (when u = 6, § = 1 and n=321), is extremely skewed with very few individuals
with higher event time (>250) and higher biomarker value (>0.7). However, it can be
observed that individuals with low biomarker value have lower risk of event (high
event time) while individuals with high biomarker value have higher risk of event (low
event time). The negative relationship is also observed in the second case (when u =
6, f = 1 and n=321) but not in the last case when the biomarker is assumed normal
and when the Weibull event time is assumed. Thus, it may be useful to use a negative
link function for the last case so that the assumption is achieved. Among all cases, the
second case which assumed normal biomarker value and exponential event time has

the closest distribution with the Mayo Clinic PBC data.
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Figure 4.4: Histograms and scatter plots for all distribution combinations
(simulated data)

Although the distribution of the biomarker and the event-time in Mayo Clinic PBC
data isnot similar with any of the distributions assumed, this data is still used for
illustrative purposes of the proposed methodology. The time-dependent AUC is
estimated for Year 1, Year 5 and Year 10 as at the same prediction times used in the
methodological review in Chapter 3 for each combination of distributions and link

functions, and the results are presented in the Table 4.1.
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Table 4.1: Estimated time-dependent AUC for proposed methodology

Distribution | Distribution | Link function AUC(t)
of of A=By+Bx
. Biomarker
Time
B, B, Year 1 Year 5 Year 10
Exponential | Exponential 1 0.7549 0.7244 0.7379
1 1 0.8733 0.9612 0.9782
Exponential | Normal 1 0.6920 0.9937 0.9996
1 1 0.6917 0.9938 0.9999
Weibull Normal 1 0.9992 0.9999 0.9999
1 1 0.9999 0.9999 0.9999

Table 4.1 shows the estimated time-dependent AUC for six different scenarios from
all three distribution combinations for both link functions. When assume the event-
time and biomarker value distributed from an exponential distribution, the AUC values
indicate that the model score is good in discriminating the diseased and healthy
individuals at all different prediction times. There is no obvious pattern observed for
the first link function, but an increasing pattern has shown for the second link function
over prediction time. When the biomarker values assumed normal, the AUC values are
higher for prediction time are Year 5 and Year 10 for both link functions. When event
times are assumed a Weibull distribution and biomarker values are normally

distributed, the diagnostic accuracy of the model score is estimated as almost perfect.

4.7 Discussion

In this chapter, six scenarios considering three parametric distributions (exponential,
Weibull and normal) of event-times and biomarker values, and two link functions were
proposed to estimate the time-dependent ROC curve. The joint distribution and
likelihood formulation for complete (no censoring) and incomplete (censored) data
were outlined for each scenario. However, the closed form formula for sensitivity,

specificity and AUC could only be derived for the simplest scenario
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(exponential/exponential). For other scenarios, the estimation of the time-dependent
ROC curve summaries were derived numerically. The software was written in R
language for the derivations. The proposed method is illustrated using Mayo Clinic
PBC data for all 6 scenarios. All estimates of the time-dependent AUC values are
between 0.7 to 0.9 which describe a good discriminative power of the model score in
discriminating healthy individuals and diseased individuals. Although the underlying
distribution of the Mayo PBC data is different with the assumed distribution, the
diagnostic accuracy of the model score still can be estimated. However, the AUC value
may not indicate the real discriminative power but considering the distribution of the
second case as the closest to the distribution of the PBC data, thus the AUC values

may be acceptable.

Since this parametric approach used a model score from a Cox model, it is suggested
to explore the distribution of other individual biomarkers such as bilirubin, albumin
and prothrombin time. If the distributions of the biomarkers are almost similar with

the distribution assumed thus the diagnostic accuracy may be more relevant.

78



5 Simulation Study I: Parametric approach

5.1 Introduction

This chapter is aimed to demonstrate whether the proposed parametric approach to
estimate the ROC curve analysis in Chapter 4 is an appropriate framework for
estimating the time-dependent accuracies. In Chapter 4, the detailed calculations of
estimating the joint distribution of the parametric event-time and biomarker, and
likelihood formulation and estimation from various combinations of parametric
distributions for censored and uncensored data were proposed. Two aims have been

set for this chapter,

1) To demonstrate the validity of the proposed approach to estimate the time-
dependent AUC for varying sample sizes with complete data (when event-
times are not censored)

2) To estimate the time-dependent AUC with censored event-times (incomplete
data)

The rest of this chapter is organised as below. The first aim of the Chapter is
investigated in Section 5.2. Section 5.3 considers censored event-times. The results are

discussed in Section 5.4.

5.2 Time-dependent AUC for complete data

This simulation is aimed to demonstrate the validity of the proposed approach to
estimate the time-dependent AUC for varying sample sizes when the event-time is not
censored. The biomarker values (X;) and event times (T;) are generated using both
link functions discussed in Chapter 4. The sample sizes n are varied at 30, 50, 100,
150, 200 and 500. The disease status is generated from a binomial distribution with
probability not having the event is set at 0.3. The biomarker values and event times are

generated from 6 scenarios as presented in Table 5.1.
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Table 5.1: Complete event data generation

X~N@u=3,02=1)

T~weibull(X = B, + B1%)

Scenario Distribution of Marker Link function Distribution of event-time Bo B1
Exponential Exponential
1 A= Bix 1
X~exp(p=1) T~ exp(A = f1x)
i Exponential
5 Exponentlal A= B+ pux 1 1
X~exp(u=1) T~ exp(2 = fo+ f1)
Normal Exponential
3 A= pBix 1
X~N(u=3,62=1) T~ exp(1 = B1x)
Normal Exponential
4 A= Lo+ Bix 1 1
X~N@u=3,0%=1) T~exp(d = fo+ P1x)
Normal Weibull
5 A= Pix 1
X~Nu=3,02=1) T~ weibull(1 = B;x)
Normal Weibull
6 A = ﬁo + ,31X 1 1

*Darken cells are not applicable for the scenario.
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The biomarker value is generated from an exponential distribution with mean 1/u or
a normal distribution with u = 3 and o2 = 1 for all sample sizes. For Weibull event
times, K is assumed 2. For each simulated dataset, the time-dependent AUCs are
estimated at four different prediction times t which are different for exponential and
Weibull event time distributions. The parameter values for the exponential, normal and
Weibull distributions are randomly chosen for simple illustrative purposes. Any other
values of i, A, o2, g and K can also be used. The prediction times for both exponential
and Weibull distributions are selected based on the distribution of the most event time
values for each distribution. Prediction times of 0.01, 0.05, 0.07 and 0.10 have been
set for event times generated from the exponential distribution because most of the
event times are greater than these values while the values of 1.0, 1.5, 1.7 and 2.0 are
chosen for event times generated form the Weibull distribution because of the same

reason.

The results from this simulation are presented in Table 5.2-5.7 and in Figure 5.1 —5.3.
Table 5.2-5.7 show the estimated parameters and AUC(t) for each scenario (Scenario
1 to Scenario 6 as described in Table 5.1) for various sample sizes allowing small to
large sample size. The accuracy of all parameters involved in each scenario are
assessed, but only the accuracy of AUC estimates for Scenario 1 is calculated since
the closed form formula is only available for Scenario 1.

For Scenario 1, the model parameters u and S;, and also AUC(t) are estimated close
to the true values with smaller biases and MSEs across all sample sizes and prediction
times. The AUC(t) are estimated fairly high at each prediction time t. It is also
observed that AUC(t) slightly increases as the prediction time increases. Considering
the second link function (Scenario 2), the model parameters u, 8, and 3, are estimated
close to the true values with smaller biases and MSEs across all sample sizes and
prediction times. Figure 5.1 shows the estimates AUC(t) across all sample sizes for

Scenario 1 and 2.

In Scenarios 3, when considering normally distributed biomarker and exponential

event-times, the AUC(t) are estimated close to 0.5, however the model parameters are

estimated close to the true values with smaller biases and MSEs across all sample sizes
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and prediction times. In Scenario 4, not all model parameters are estimated close to
the true values. The diagnostic potential for the scenarios is not discussed in this
chapter but the effect of different sample size on the magnitude of the AUC are
investigated. Figure 5.2 shows the estimates of AUC(t) across all sample sizes for the

two scenarios.

In Scenario 5 and 6, when considering normally distributed biomarker and Weibull
event-times, AUC(t) are estimated close to 1. Similar with Scenario 3 and 4, only the
trend of the AUC(t) across difference sample size is investigated in this simulation.
The model parameters are estimated close to the true values with smaller biases and
MSEs across all sample sizes and prediction times. Figure 5.3 shows the estimates of

AUC(t) across all sample sizes for the two scenarios.

In each scenario (shown in Table 5.2-5.7), it can be observed that, the MSE for the
estimated parameters decrease as the sample size increases. However, the estimated
AUC(t) are not significantly different when the sample size increases, and the
decrease in corresponding SE is also marginal. Figure 5.1 — 5.3 clearly show that any
change in AUC for increasing sample sizes is insignificant. This finding indicates that
the proposed parametric approach can provide accurate AUC(t) even when the sample

size is small.
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Table 5.2: Estimated parameters and AUC(t) for Scenario 1

Parameter | True value | Estimated parameter (SE) | Bias | MSE t | True AUC(t) | Estimated AUC (SE) | Bias | MSE
n=30
" . L0271 (0.1961) 00071 | 0.0392 0.01 0.7512 0.7577 (0.0019) 0.0065 | 0.0000
' ' 0.05 0.7561 0.7631 (0.0013) 0.0070 | 0.0001
8, . 1 0336 (0.1936) 0.0336 | 0.0385 0.07 0.7585 0.7657 (0.0012) 0.0072 | 0.0001
' ' 0.10 0.7619 0.7695 (0.0013) 0.0076 | 0.0001
n=50
p . 0250 (01611) 0.0250 | 0.0266 0.01 0.7512 0.7593 (0.0014) 0.0081 | 0.0001
' ' 0.05 0.7561 0.7646 (0.0008) 0.0085 | 0.0001
8, . L 0155 (0.1431) 0.0155 | 0.0207 0.07 0.7585 0.7672 (0.0007) 0.0087 | 0.0001
' ' 0.10 0.7619 0.7710 (0.0009) 0.0091 | 0.0001
n=100
p . 0057 (0.0964) 0.0057 | 0.0093 0.01 0.7512 0.7601 (0.0008) 0.0089 | 0.0001
' ' 0.05 0.7561 0.7654 (0.0005) 0.0093 | 0.0001
8, . 0124 (0.1058) 00124 | 00113 0.07 0.7585 0.7680 (0.0004) 0.0095 | 0.0001
' ' 0.10 0.7619 0.7718 (0.0005) 0.0099 | 0.0001
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Parameter | True value | Estimated parameter (SE) | Bias MSE t | True AUC(t) | Estimated AUC (SE) | Bias MSE
n=150

. . 0007 (00831 0.0007 | 0.0068 0.01 0.7512 0.7604 (0.0006) | 0.0092 | 0.0001

' ' 0.05 0.7561 0.7656 (0.0004) | 0.0095 | 0.0001

0.07 0.7585 0.7682 (0.0003) | 0.0097 | 0.0001

Fa ! 1.0046 (0.0859) 0.0046 ) 0.0074 0.10 0.7619 0.7720 (0.0003) | 0.0101 | 0.0001
n=200

. . 10083 (00687 0.0083 | 0.0048 0.01 0.7512 0.7605 (0.0006) | 0.0093 | 0.0001

' ' 0.05 0.7561 0.7657 (0.0003) | 0.0096 | 0.0001

0.07 0.7585 0.7683 (0.0003) | 0.0098 | 0.0001

b ' 1.0041(0.0729) 0.0041 1 00059 0.10 0.7619 0.7721(0.0003) | 0.0102 | 0.0001
n=500

. . 0021 (00441 0.0021 | 0.0018 0.01 0.7512 0.7605 (0.0004) | 0.0093 | 0.0001

' ' 0.05 0.7561 0.7658 (0.0003) | 0.0097 | 0.0001

0.07 0.7585 0.7683 (0.0002) | 0.0098 | 0.0001

b . 1.0015(0.0449) 0.0015 1 00020 0.10 0.7619 0.7721(0.0002) | 0.0102 | 0.0001
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Table 5.3: Estimated parameters and AUC(t) for Scenario 2

Parameter True value Estimated parameter (SE) Bias MSE t Estimated AUC (SE)

n=30

y 1 10406 (0.1912) 0.0406 0.0382 0.01 0.6234 (0.0114)

' ' 0.05 0.6271 (0.0121)

Bo 1 1.0594 (0.4052) 0.0594 | 0.1677 | 0.07 0.6289 (0.0124)

B1 1 1.1058 (0.5953) 0.1058 | 0.3656 | 0.10 0.6316 (0.0129)
n=50

" . 1.0273 (0.1464) 00273 | 0022 | O 0.6244 (0.0089)

0.05 0.6281 (0.0094)

Bo 1 1.0248 (0.2964) 0.0248 0.0885 0.07 0.6299 (0.0096)

B1 1 1.0531 (0.4285) 0.0531 0.1864 0.10 0.6326 (0.0100)

n=100

u 1 10162 (0.1062) 0.0182 0.0116 0.01 0.6250 (0.0066)

' ' 0.05 0.6287 (0.0069)

Bo 1 1.0197 (0.2155) 0.0197 0.0468 | 0.07 0.6305 (0.0071)

B1 1 1.0322 (0.3138) 0.0322 0.0995 | 0.10 0.6332 (0.0074)
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Parameter True value Estimated parameter (SE) Bias MSE t Estimated AUC (SE)

n=150

u 1 L0127 (0.0839) 00197 0.0072 0.01 0.6254 (0.0052)

' ' 0.05 0.6291 (0.0055)

Bo 1 1.0179 (0.1695) 0.0179 0.0291 | 0.07 0.6309 (0.0057)

B1 1 1.0101 (0.2338) 0.0101 0.0548 | 0.10 0.6336 (0.0059)
n=200

" 1 10106 (0.0706) 0.0106 0.0051 0.01 0.6254 (0.0044)

' ' 0.05 0.6291 (0.0047)

Bo 1 1.0113 (0.1521) 0.0113 0.0233 | 0.07 0.6309 (0.0048)

B1 1 1.0154 (0.2112) 0.0154 0.0448 | 0.10 0.6336 (0.0049)
n=500

" 1 10023 (0.0450) 0.0023 0.0020 0.01 0.6258 (0.0029)

' ' 0.05 0.6296 (0.0030)

Bo 1 1.0026 (0.0943) 0.0026 0.0089 | 0.07 0.6314 (0.0031)

B1 1 0.9977 (0.1250) -0.0023 | 0.0156 | 0.10 0.6341 (0.0032)
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Table 5.4: Estimated parameters and AUC(t) for Scenario 3

Parameter True value Estimated parameter (SE) Bias MSE t Estimated AUC (SE)
n=30
3 3.0017 (0.1746) 0.0017 0.0305 0.01 0.5671 (0.0039)
o? 1 1.0366 (0.0600) 0.0366 0.0049 0.05 0.5714 (0.0039)
8, . 0851 (0.1359) 0.0851 0.0957 0.07 0.5736(0.0042)
' ' 0.10 0.5769(0.0052)
n=50
3 2.9954 (0.1383) -0.0046 | 0.0191 [ 0.01 0.5674 (0.0039)
2 1 1.0354 (0.0520) 0.0354 | 0.0040 | 0.05 0.5719 (0.0031)
wo | ooy | oo | o [0 | ST 000D
n=100
3 3.0038 (0.0998) 0.0038 0.0100 | 0.01 0.5674 (0.0023)
2 1 1.0230 (0.0354) 0.0230 0.0018 | 0.05 0.5718 (0.0022)
no | P A Ry AR
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Parameter True value Estimated parameter (SE) Bias MSE t Estimated AUC (SE)
n=150
3 2.9961 (0.0834) -0.0039 | 0.0070 | 0.01 0.5676 (0.0019)
2 1 1.0173 (0.0298) 00173 | 0.0012 | 0.05 0.5719 (0.0019)
B4 1 1.0357 (0.0532) 0.0357 0.0041 001 0.5742 (0.0019)
0.10 0.5776 (0.0019)
n=200
3 3.0016 (0.0687) 0.0016 0.0047 | 0.01 0.5675 (0.0016)
2 1 1.0168 (0.0272) 0.0168 0.0010 | 0.05 0.5718 (0.0016)
5, . 1032 (0.0467 0,032 0.0053 0.07 0.5740 (0.0016)
' ' 0.10 0.5774 (0.0015)
n=500
3 3.0015 (0.0454) 0.0015 0.0021 | 0.01 0.5675 (0.0011)
2 1 1.0105 (0.0168) 0.0105 0.0004 | 0.05 0.5718 (0.0010)
0.07 0.5740 (0.0010)
B4 1 1.0177 (0.0274) 0.0177 | 0.0011
0.10 0.5774 (0.0010)
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Table 5.5: Estimated parameters and AUC(t) for Scenario 4

Parameter True value Estimated Parameters (SE) Bias MSE t Estimated AUC (SE)

n=30

3 3.0021 (0.1332) 0.0021 0.0177 0.01 0.5505 (0.0023)

o? 1 0.9752 (0.1333) -0.0248 0.0184 0.05 0.5548 (0.0023)

Bo 1 1.3607 (0.9224) 0.3607 0.9809 0.07 0.5570 (0.0023)

B1 1 0.9542 (0.3701) -0.0458 0.1391 0.10 0.5603 (0.0024)
n=50

3 2.9986 (0.1453) -0.0014 0.0211 0.01 0.5508 (0.0019)

o? 1 0.9880 (0.0969) -0.0120 0.0095 0.05 0.5551 (0.0018)

Bo 1 1.2818 (0.8158) 0.2818 | 0.7449 | 0.07 0.5572 (0.0026)

B1 1 0.9431 (0.3197) -0.0569 0.1054 0.10 0.5607 (0.0019)

n=100

3 3.0018 (0.1022) 0.0018 | 0.0104 [ 0.01 0.5508 (0.0016)

2 1 0.9874 (0.0662) -0.0126 | 0.0045 | 0.05 0.5551 (0.0013)

Bo 1 1.2095 (0.6814) 0.2095 | 0.5082 | 0.07 0.5573 (0.0013)

B1 1 0.9505 (0.2577) -0.0495 | 0.0689 | 0.10 0.5607 (0.0015)
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Parameter True value Estimated Parameters (SE) Bias MSE t Estimated AUC (SE)

n=150

3 2.0934 (0.0812) -0.0066 | 0.0066 | 0.01 0.5509 (0.0012)

g 1 0.9923 (0.0608) -0.0077 | 0.0038 | 0.05 0.5552 (0.0014)

Bo 1 1.1373 (0.5849) 0.1373 | 0.3610 | 0.07 0.5574 (0.0011)

B1 1 0.9722 (0.2243) -0.0278 0.0511 0.10 0.5608 (0.0012)
n=200

3 3.0044 (0.0718) 0.0044 | 0.0052 | 0.01 0.5508 (0.0010)

2 1 0.9938 (0.0484) -0.0062 | 0.0024 | 0.05 0.5550 (0.0012)

Bo 1 1.1587 (0.5753) 0.1587 | 0.3562 | 0.07 0.5573 (0.0011)

B1 1 0.9487 (0.2118) -0.0513 | 0.0475 | 0.10 0.5607 (0.0010)
n=500

3 2.9998 (0.0415) -0.0002 | 0.0017 | 0.01 0.5509 (0.0006)

2 1 0.9954 (0.0306) -0.0046 | 0.0010 | 0.05 0.5551 (0.0006)

Bo 1 1.0796 (0.3900) 00796 | 0.1584 | 0.07 0.5573 (0.0006)

B1 1 0.9765 (0.1483) -0.0235 | 0.0225 | 0.10 0.5608 (0.0005)
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Figure 5.2: Estimates of AUC(t) across various sample sizes for Scenario 3 and 4
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Table 5.6: Estimated parameters and AUC(t) for Scenario 5

Parameter True value Estimated parameter (SE) Bias MSE t Estimated AUC (SE)
n=30
3 2.9957 (0.1812) -0.0043 0.0329 1.0 0.6602 (0.0457)
2 1 0.9697 (0.1256) -0.0303 0.0167 1.5 0.9263 (0.0290)
B1 1 1.0149 (0.0997) 0.0149 0.0102 1.7 0.9669 (0.0341)
K 2 2.0775 (0.3205) 0.0775 0.1087 | 2.0 0.9987 (0.0455)
n=50
3 2.9996 (0.1346) -0.0004 0.0181 1.0 0.6585 (0.0337)
2 1 0.9824 (0.0989) -0.0176 0.0101 1.5 0.9260 (0.0090)
B1 1 1.0025 (0.0711) 0.0025 00051 | 1.7 0.9671 (0.0061)
K 2 2.0612 (0.2325) 0.0612 0.0578 2.0 0.9982 (0.0050)
n=100
3 3.0019 (0.1008) 0.0019 0.0102 1.0 0.6572 (0.0250)
2 1 0.9928 (0.0704) -0.0072 0.0050 1.5 0.9268 (0.0063)
B1 1 1.0028 (0.0539) 0.0028 0.0029 1.7 0.9680 (0.0039)
K 2 2.0227 (0.1615) 0.0227 0.0266 2.0 0.9995 (0.0038)
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Parameter True value Estimated parameter (SE) Bias MSE t Estimated AUC (SE)
n=150
3 3.0027 (0.0763) 0.0027 0.0058 1.0 0.6562 (0.0187)
2 1 0.9946 (0.0598) -0.0054 0.0036 1.5 0.9272 (0.0046)
B4 1 1.0045 (0.0449) 0.0045 0.0020 1.7 0.9682 (0.0028)
K 2 2.0095 (0.1267) 0.0095 0.0161 2.0 0.9998 (0.0025)
n=200
3 2.9986 (0.0664) -0.0014 0.0044 1.0 0.6559 (0.0166)
2 1 0.9963 (0.0463) -0.0037 00022 | 15 0.9276 (0.0041)
B4 1 1.0043 (0.0382) 0.0043 0.0015 1.7 0.9680 (0.0098)
K 2 2.0154 (0.1095) 0.0154 0.0122 2.0 0.9999 (0.0022)
n=500
3 3.0042 (0.0461) 0.0042 0.0021 1.0 0.6552 (0.0113)
2 1 0.9943 (0.0309) -0.0057 0.0010 1.5 0.9273 (0.0027)
B4 1 1.0015 (0.0243) 0.0015 0.0006 1.7 0.9683 (0.0017)
K 2 2.0026 (0.0694) 0.0026 0.00483 2.0 0.9999 (0.0015)
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Table 5.7: Estimated parameters and AUC(t) for Scenario 6

Parameter True value Estimated parameter (SE) Bias MSE Time Estimated AUC (SE)
n=30
3 2.9806 (0.1847) -0.0194 | 0.0345 1.0 0.9844 (0.0049)
2 1 0.9705 (0.1261) -0.0295 | 0.0168 15 0.9958 (0.0046)
Bo 1 1.2074 (0.8688) 0.2074 | 0.7978 17 0.9963 (0.0046)
B1 1 0.9535 (0.3272) -0.0465 | 0.1092
K 2 2.1167 (0.3273) 0.1167 | 0.1207 =0 09965 (0.0047)
n=50
3 3.0013 (0.1443) 0.0013 | 0.0208 1.0 0.9874 (0.0029)
2 1 0.9864 (0.0907) -0.0136 | 0.0084 15 0.9980 (0.0021)
Bo 1 1.1414 (0.6774) 0.1414 | 0.4789 17 0.9983 (0.0021)
B1 1 0.9651 (0.2484) -0.0349 | 0.0629
K 2 2.0814 (0.2348) 0.0814 | 0.0618 20 0.9985 (0.0021)
n=100
3 2.9993 (0.1023) -0.0007 | 0.0105 1.0 0.9887 (0.0020)
2 1 0.9947 (0.0666) -0.0053 | 0.0045 15 0.9991 (0.0006)
Bo 1 1.0809 (0.4707) 0.0809 | 0.2281 17 0.9994 (0.0006)
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Parameter True value Estimated parameter (SE) Bias MSE Time Estimated AUC (SE)
B1 1 0.9839 (0.1796) -0.0161 0.0325
2.0 0.9995 (0.0006)
K 2 2.0464 (0.1640) 0.0464 0.0290
n=150
3 2.9986 (0.0801) -0.0014 0.0064 1.0 0.9890 (0.0014)
2 1 0.9926 (0.0568) -0.0074 0.0033 1.5 0.9993 (0.0004)
Bo 1 1.0563 (0.3552) 0.0563 0.1293 1.7 0.9996 (0.0004)
B1 1 0.9915 (0.1363) -0.0085 0.0186
2.0 0.9997 (0.0004)
K 2 2.0177 (0.1343) 0.0177 0.0183
n=200
3 3.0020 (0.0651) 0.0020 0.0042 1.0 0.9892 (0.0011)
2 1 0.9925 (0.0481) -0.0075 0.0024 1.5 0.9995 (0.0002)
Bo 1 1.0327 (0.2999) 0.0327 0.0910 1.7 0.9997 (0.0002)
B1 1 0.9908 (0.1181) -0.0092 0.0140
2.0 0.9998 (0.0002)
K 2 2.0247 (0.1100) 0.0247 0.0127
n=500
3 3.0013 (0.0448) 0.0013 0.0020 1.0 0.9894 (0.0007)
2 1 0.9950 (0.0320) -0.0050 0.0010 1.5 0.9996 (0.0001)
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Parameter True value Estimated parameter (SE) Bias MSE Time Estimated AUC (SE)
Bo 1 1.0069 (0.1910) 0.0069 0.0365 1.7 0.9998 (0.0001)
B1 1 0.9998 (0.0742) -0.0002 0.0055
2.0 0.9999 (0.0001)
K 2 2.0053 (0.0677) 0.0053 0.0046
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Figure 5.3: Estimates of AUC(t) across various sample sizes for Scenario 5 and 6
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5.3 Time-dependent AUC for incomplete data (censored event-

times)

The data are simulated similarly as in Section 5.1, and here we consider a moderate
sample size of n=50 and 30% censoring of the event-times. The disease status is
generated from a binomial distribution with probability of having the event set at 0.7.

The results are shown in Table 5.8 — 5.13 for the same 6 scenarios in Table 5.1.

The estimated AUC(t) shown in Table 5.8 and Table 5.9 are slightly low compared to
the estimates shown in Table 5.2 and Table 5.3 for Scenario 1 and 2 respectively and
have slightly higher MSEs. Results for other scenarios are presented in Table 5.10-
5.13 are also almost similar to the results from non-censored event times in Section
5.1. These results suggest that the proposed parametric method can be applied for
censored event-times and it can provide estimates as accurate as the data with complete

(non-censored) event times.
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Table 5.8: Estimated parameters and AUC(t) for Scenario 1

Parameter | True value | Estimated Parameters (SE) | Bias MSE t A-[Jl;l;?t) Estimated AUC (SE) | Bias MSE
" . 0194 (01522 0.0932 | 0.0236 0.01 0.7512 0.7293 (0.0031) -0.0219 | 0.0005
' ' 0.05 0.7561 0.7338 (0.0038) -0.0223 | 0.0005
8, 1 07208 (0.1234) 02792 | 0.0194 0.07 0.7585 0.7359 (0.0041) -0.0226 | 0.0005
' ' 0.10 0.7619 0.7391 (0.0046) -0.0228 | 0.0005
Table 5.9: Estimated parameters and AUC(t) for Scenario 2
Parameter True value Estimated parameter (SE) Bias MSE t Estimated AUC (SE)
0.01 0.6248 (0.0085)
# 10192 (0.1391) 0.0192 03329 0.05 0.6285 (0.0090)
Bo 0.7295 (0.2456) -0.2705 | 0.1335 | 0.07 0.6304 (0.0092)
B1 0.7320 (0.3333) -0.2680 | 0.1829 | 0.10 0.6331 (0.0096)
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Table 5.10: Estimated parameters and AUC(t) for Scenario 3

Parameter True value Estimated parameter (SE) Bias MSE t Estimated AUC (SE)

u 3 3.0044 (0.1399) 0.0044 0.0196 0.01 0.5674 (0.0031)

o’ 1 0.9881 (0.1004) -0.0119 | 0.0102 | 0.05 0.5717 (0.0031)

g . 05100 (0.1046) 10.4900 0.2510 0.07 0.5739 (0.0031)

' ' 0.10 0.5773 (0.0032)

Table 5.11: Estimated parameters and AUC(t) for Scenario 4

Parameter True value Estimated Parameters (SE) Bias MSE t Estimated AUC (SE)

u 3 2.9972 (0.1443) -0.0028 | 0.0208 | 0.01 0.5508 (0.0018)

o> 1 0.9867 (0.0968) -0.0133 | 0.0096 | 0.05 0.5551 (0.0018)

Bo 1 0.9404 (0.0842) -0.0596 | 0.0106 | 0.07 0.5573 (0.0018)

B1 1 0.6439 (0.3196) -0.3561 | 0.2290 | 0.10 0.5607 (0.0018)
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Table 5.12: Estimated parameters and AUC(t) for Scenario 5

Parameter True value Estimated Parameters (SE) Bias MSE Time Estimated AUC (SE)
u 3 3.0062 (0.1402) 0.0062 0.0197 1.0 0.9602 (0.0058)
o? 1 0.9878 (0.1002) -0.0122 | 0.0102 15 0.9932 (0.0027)
B1 1 0.8428 (0.0746) -0.1572 | 0.0303 17 0.9957 (0.0026)
K 2 2.0715 (0.2787) 00715 | 0.0828 2.0 0.9972 (0.0027)
Table 5.13: Estimated parameters and AUC(t) for Scenario 6
Parameter True value Estimated parameter (SE) Bias MSE t Estimated AUC (SE)
u 3 2.9979 (0.1546) -0.0021 0.0239 1.0 0.9874 (0.0029)
o? 1 0.7582 (0.0886) -0.2418 0.0663 1.5 0.9980 (0.0021)
Bo 1 0.9239 (0.7481) -0.0761 0.5655 1.7 0.9984 (0.0022)
b1 1 0.7270 (0.2945) -0.0273 0.1613 20 0.9986 (0.0022)
K 2 1.5355 (0.5353) -0.4645 0.5023
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5.4 Discussion

This chapter demonstrated the appropriateness of the proposed framework of the
parametric time-dependent ROC curve approach. The performance of the proposed
method is investigated for data complete and incomplete data with censoring. The
estimation of the parameters and AUC(t) are explored for different sample sizes. As
the sample size increases, the parameters are estimated closer to the true parameter
values with decreasing MSE. However, the changes in estimated AUC(t) are marginal.
Thus, AUC(t) are not affected by the sample size when considering the correct
parametric distributions or event times and biomarker. This observation provides a
valuable information especially for biomarker development and evaluation studies
because these studies are usually relying on small sample size to assess the diagnostic

accuracy.

When data are incomplete (includes censored event-times), the AUC(t) are estimated
slightly lower than the complete data, but the difference is marginal. Hence, the
proposed parametric approach to estimate the time-dependent ROC can be applied to
incomplete data by taking account of the censored event-times, but still provides as

accurate estimates of AUC(t) as complete data.

For complete data, when censoring is not occurs, the definition of the individual’s
disease status is defined by the event time. It is assumed that at a particular predict
time, all individuals with event time lower than the predict time (T; < t) are having
the disease, and vice versa. Thus, the number of diseased individuals is depending on
the distribution of event time and the biomarker. To observe the distribution closely,
Figure 5.4 — Figure 5.9 displayed the scatter plots for all scenarios considering all

sample size.

In Figure 5.4 and 5.5, the scatter plots show that most of the individuals with higher
biomarker value have lower event time. A few individuals with higher event time and
at the same time have lower biomarker value. For these scenarios, the true positive
fraction (TPR) is higher than false positive fraction (FPR) which resulted stable and
good discriminating power of the biomarker with AUC values between are 0.6 and
0.77 as shown in Table 5.2 and 5.3.
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The scatter plot for Scenario 3 and 4 are shown in Figure 5.6 and 5.7. The AUC values
computed for these distribution combinations are quite low and approach to 0.5 which
indicates a useless biomarker in predicting the individual’s disease status. Based on
the scatter plots, the negative relationship is observed between the biomarker and the
event time. However, in calculating the TPR and FPR for all possible threshold and all
prediction times, the TPR and FPR are quite low and almost similar with each other
thus resulted in low AUC values. The number of diseased and healthy individuals with
high biomarker values are almost the same for all cases. Thus, it can be said that these

combinations of the distributions or the link functions may not suitable in this study.

For the last distribution combinations, the scatter plots for Scenario 5 and 6 are shown
in Figure 5.8 and 5.9. A positive relationship is obviously seen in the scatter plots
which is deviated from our assumption. Thus, the resulted AUC values can not be used
to interpret the powerfulness of the biomarker in discriminating between healthy and
disease individuals. A negative link function between the event time and biomarker

value is suggested to have a more relevant AUC values in future study.
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6 Time-dependent ROC curve analysis adjusted for
measurement error in the baseline biomarker

6.1 Introduction

Measurement error in a biomarker is the error induced when measuring the biomarker.
It includes the laboratory error and variations during measurement collection or
storage condition, and is a random variation within the true biomarker value that can
be estimated using repeated measurements [70]. All currently proposed methods of
time-dependent ROC curve, as discussed in Chapter 3, directly use the observed value
of a biomarker and ignore the possible measurement error. However, in standard ROC
curve context, the effect of measurement error on estimating the AUC has been
extensively discussed [71-83]. Ignoring the measurement error may underestimate the

AUC and useful biomarkers may be overlooked [19].

Motivated from the findings of the methodological review conducted in Chapter 3, a
novel methodology is proposed to estimate the time-dependent diagnostic accuracy of
a biomarker adjusted for measurement error. In most clinical studies, although
biomarker measurements are collected longitudinally over patients’ follow-up, only
the baseline measurement of the biomarker is used in analyses. Thus, a novel data-
efficient method is proposed that considers all available longitudinal measurements of
the biomarker to adjust for the measurement error when estimating the diagnostic

accuracy at the baseline level.

The organisation of the chapter is as follows. The current measurement error adjusted
methodologies for the standard ROC curve are briefly discussed in Section 6.2.
Adopting regression calibration, a measurement error adjusted time-dependent ROC
curve is proposed in Section 6.3. However, this methodology was found to be
inefficient, and hence, a second method is proposed along the joint modelling
framework in Section 6.4. The proposed joint model, derivation of the likelihood and
estimation based on EM algorithm are discussed in sections 6.4.1 to 6.4.3. The
proposed time-dependent ROC curve approach is discussed in Section 6.4.4, and the

proposed methodology is illustrated using PBC data in Section 6.4.5.
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6.2 Current measurement error adjusted methods for standard
ROC curve

To investigate the degree of biomarker measurement error, validity or reliability
studies can be conducted [20]. A validity study requires the true biomarker
measurements so that the comparison can be made with the observed biomarker
measurements. Since in most cases the true biomarker measurements are unknown,
the reliability study is preferable, in which repeated measurements of biomarkers are
taken from the same individual in a study. The reliability study is commonly used in
biomarker evaluation and considered in this chapter to adjust for measurement error in
biomarkers. Although error can be estimated using resampling methods such bootstrap
in statistical modelling, a resampling method is not appropriate when a biomarker is
measured with an error [80]. Following the methodological review conducted in
Chapter 3, using additional keywords “measurement error” and “ROC curve”, 13
methodological papers were found which discussed the adjustment of measurement
error in the context of standard ROC curve. However, no study was found adjusting

the measurement error in biomarker in the context of time-dependent ROC curve.

The methods discussed in standard ROC curve approach mostly studied the effect of
random measurement error on the confidence interval of AUC. Ignoring the
measurement error may lead to serious misleading results on the effectiveness of the
biomarker and having the coverage less than nominal values [73, 74]. Vexler, et al.
[76] proposed an estimation of ROC curve based on stably distributed biomarkers
subject to measurement error and pooling mixtures. Coffin and Sukhatme [71, 72]
proposed estimation of bias due to measurement error derived from nonparametric and
parametric AUC estimation method respectively. These methodologies require the
distribution function of the true biomarker which is unknown in practice. However,
the distribution function can be estimated based on the observed biomarker distribution
function but may cause a deconvolution problem because it involved reconstructing a
distribution by the distribution of their sums. Therefore, not all distribution functions
can be reconstructed. Prokhorov and Ushakov [84] have solved this problem by using
infinite divisible distributions such as Normal, Cauchy, Exponential or gamma for the

biomarker [76]. Coffin and Sukhatme [72] used kernel density estimation to estimate
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the observed biomarker density with normal kernel functions, and then estimate the
probability distribution function of the true biomarkers by deconvolving the two

densities.

Faraggi [74], Reiser [73], Li, Yanhong, et al. [80], Schisterman, et al. [83] and Rosner,
et al. [82] consider separate distribution functions for cases and controls where
Xi~N(py, 0%) and Xj~N (-, 0)2(*) denote distributions of the true biomarker value for
cases and controls respectively. In situations where the true biomarkers X; and X; are
not directly observable, usingQ,, and Q as the observed biomarker values for the cases
and controls respectively, additive error models were assumed such that @, = X; +
g and Qj = X/ + & where g ~N(0,0%) and &/ ~N(0,02) respectively, and X,
X", € and &*are all assumed independent of each other. The subscripts i and j are the
indexes for individuals in the m cases and n controls respectively. Using the general
definition AUC = ®(8) where § = “X2EX the corrected AUC is defined by
AUC" = (§")

where @ denotes the standard normal cumulative distribution function.

Faraggi [74] assumed the true biomarker follows normal distributions with common

variances 0% = o2. = 2, and common variances of measurement error ¢% = g% =

X
02, such that

X;~N (#x: o2 (1+ 92));X;f~1v (MX*,O'Z (1+ 92)) 6.1)

where 8 = 62.,-/0% is a known measurement error index and AUC” is defined

with 6* = such that AUC™ = & (5*\/ 1+ 92). A confidence interval for 6" and

8
V1+62
thus for AUC™ are obtained following Owen, et al. [85] numerically. Faraggi [74] has
also proposed a method to account for different variances between cases and controls.

By assuming similar parametric distributions for true biomarker value for cases and
control as in equation 6.1, Reiser [73] proposed an interval estimation of AUC which

depends on the availability of repeated measurements from internal experimentation,
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I.e. repeated biomarker values for each individual. Since longitudinal follow-up
exposes to irregular schedule and unequal number of biomarker measurements
between individuals, Reiser [73] provided ANOVA-based approach for equal
replicates while an alternative method following Searle, et al. [86] for unequal
replicates. Two approaches are proposed to estimate var(§) based on Reiser and
Guttman [87] method and the delta method [88]. The confidence interval for §* is

defined by 8" + z /v’é‘r (3) where z,,, denotes the 1 — % quantile of the standard

normal distribution. A simulation study shows that the delta method is preferable
because the coverage probability is close to nominal value [73].

Li, Yanhong, et al. [80] developed an approach which is adjusted for measurement
error using either external (i.e. study conducted alongside the main study) or internal
replicated biomarker measurements based on MOVER (Method Of Variance
Estimates Recovery). Assuming that AUC is a function of normal means and
variances, § is defined by
5 = Ho, — Hoy
\/05)( — o+ aé} - o2

and therefore, inferences for " and AUC"can be conducted using the observed data.
For internal replication, the point estimate of mean and variance are estimated
following Thomas and Hultquist [89], and an asymmetric confidence interval for §” is
obtained by applying MOVER. For external replication, a confidence interval is

obtained using the delta-method.

Schisterman, et al. [83] used an external repeated biomarker measurement to estimate

the variance of measurement error 2. The AUC* is estimated by
v = o (5),

and

*
I

= X-X*
J(SE + S2. — 262)
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where S% and S2. are the sample variances, and X and X~ are sample means for cases
and controls respectively. If the denominator (S)Z( + 55 — 285) is negative, following
Rao [90], suggested replacing the negative S% or S+ by a very small number. The

confidence interval for AUC™ and & are estimated by using the delta method; 5+

Zgsp |var (:S?) and the corresponding interval for AUC” is

{o(5 = 2 Joar (5)) 0 (5 + 2 Jrar (7)) }

Rosner, et al. [82] aims to extend Reiser [73] method for non-normality of the
biomarker by using probit-shift model with a parameter u. The corrected AUC is

estimated approximately by

AUC (1) ~ @ (%)

while the derivation for the confidence interval is discussed in detail in Rosner, et al.
[82].

6.3 Proposed Method 1: Regression calibration to adjust for

measurement error in time-dependent ROC curve

Regression calibration is the most common method used to adjust for error of
covariates in the Cox model [91]. It replaces the true covariate X by its regression on
observed covariate W in the standard analysis to obtain parameter estimates. The true

and observed biomarkers are modelled in an additive error model by

W = X + ¢ where W is the observed value, X is the true value and ¢ is the error
associated with X. The inference of the corresponding g parameter from the Cox

model is based on the likelihood function

n ’ 4
eB Wi
o[l

i=1
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Then when X and ¢ are both normally distributed with mean zero and unknown ¢2 and

known a?Z respectively, the expected value of X conditional on W is given by

EQGIW) = (—2 W, i=1,..,n (6.2)
o, + o

X &

and the o2 can be estimated by substracting the 2 from o2, while o2 can be estimated
from longitudinal measurements of biomarker. Regression calibration improves the
estimation of 8 parameter but still exhibit some bias. Although regression calibration
is easiest to implement and offers improvements, it is not efficient when the error
associated with X is high, and is also sensitive to the normality assumption [91]. Thus
Hu, et al. [91] suggest to use more sophisticated method such as the likelihood based

approaches [91].

This method is adopted to develop a measurement-error adjusted ROC curve under
I/D definition. However, it was found that the regression calibration approach is not
suitable to adjust for the measurement error in estimating the diagnostic accuracy of a
biomarker. For the completeness of this thesis, the relevant findings from the
conducted simulation study is presented below.

The longitudinal data were simulated using the same linear mixed effect model x;(t) =
1 —t + Ug; + Uyt + ;. The variance of measurement error 82 is estimated from the
longitudinal values X; and the adjusted biomarker values Z; can be computed by
equation 5.2.

Z =W, (82/(3% +82))

L2 X=Xl (Wy-Wy) 2 _ 2 2
where o =
€ Zie (k=1

and G = G, — 0= where 62 is the estimated sample

variance of the observed biomarker. The estimated Cox model parameter associated
with the baseline values of true, observed and adjusted biomarker are shown as in
Table 6.1. The bias for the coefficient from the Cox model using the measurement
error adjusted biomarker is lower than the bias for the observed biomarker, hence
regression calibration method improves the coefficient estimates of the observed
biomarker. This is parallel with the hypothesis that the observed biomarker always
underestimates the effect of the covariates in the Cox model [91]. However, the

estimated time-dependent AUC(t) from the adjusted biomarker shows a higher bias
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and MSE than the observed biomarker. Thus, it is concluded that regression calibration
is inefficient to adjust for the measurement error when estimating the diagnostic

accuracy of a biomarker.
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Table 6.1: Estimated p from Cox model and AUC(t=2) from I/D method ID1 for varying error variance

2

o7 | Truep Bw Bias for Bz Bias True | AUCy | Biasfor | MSE | AUC; |Biasfor| MSE
SE 4 for g, | AUC AUC AUC

1.5 0.4149 0.1517 -0.2632 0.4187 | 0.0019 |0.6792 |0.6141 |-0.0651 0.0052 | 0.5596 |-0.1196 | 0.0194
(0.0661) | (0.0365) (0.0429) (0.0278) | (0.0302) (0.0717)

2.0 | 0.4096 0.1246 -0.2850 0.3874 | 0.0021 |0.6770 |0.6111 | 0.0659 0.0050 |0.5351 |-0.1419 |0.0210
(0.0682) | (0.0349) (0.0401) (0.0241) | (0.0251) (0.0288)

2504112 0.1073 -0.3039 0.3661 | 0.0035 |0.6437 |0.5903 |0.0534 0.0037 |0.5287 |-0.1150 |0.0144
(0.0682) | (0.0319) (0.0382) (0.0282) | (0.0286) (0.0336)

*SE - standard error; MSE - mean square error
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6.4 Proposed Method 2: Joint modelling to adjust for

measurement error in time-dependent ROC curve

A novel more data-efficient method within the joint modelling framework [18] is
proposed to adjust for measurement error when estimating the time-dependent ROC

curve.

6.4.1 General formulation of the joint model

A joint model is formulated by two submodels which are; a longitudinal submodel for
x; and an event-time submodel for (T;,6;), and the two components are linked together
through some shared parameters. Longitudinal trajectory is typically modelled by
linear mixed effect models, while the event-time assumes various choice of modelling
approaches through shared latent effects [18]. Following Henderson, et al. [18] a
Gaussian linear model is assumed for biomarker measurement, and proportional

hazards is assumed for event-times:

Xy = By + Byty + Wi(ty) + &
Ai(t1X:(8) = A (£)eWz®,
In longitudinal data submodel, B, and §, are regression coefficients related to intercept
and slope. Individual-specific random effects are incorporated through Wy;(t;;) where
W1(.) is an unobserved zero-mean Gaussian random process. In this component,
measurement error process &;; is accounted for and &;; assumes Gaussian distribution
with mean zero and variance 2. In event-time submodel, X;(t) is the true unknown
biomarker value at time t, Aq;(t) is an unspecified baseline hazard and W,;(t) is a
second unobserved zero-mean Gaussian random process. The event-time process is
associated with the longitudinal response through the shared random effect of W;(t)
and W,;(t). This model links the true biomarker value at time t through the hazard of
event at time ¢ for the ith individual. Further, Wy;(t;;) and the measurement error
process ¢;; are assumed to be mutually independent [18]. Many authors assume
W1i(t) = Uy; + Uq;t in conjunction with a proportionality assumption W, (t) =
y Wq;(t) where Uy; and Uy4; are individual-level random intercept and random slope
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respectively, and (Uy;, U;;) assume a multivariate normal distribution with mean 0 and

2

. ol o
variance %, = ( Ho “g“1> [13].
Up,uq Uul

6.4.2 Proposed joint modelling formulation

It is assumed that biomarker data x; are available for each individual at times ¢;;, i =
1,..,n; j=1,..,m;, and allow the possibility of different numbers and timing of
longitudinal measurements for different individuals. To link the individual-specific
baseline biomarker value (at t = 0) to the risk of event, following joint model is
proposed:
xij=By+ B tij+Up+ Uyt + g
6.3)
Ai(t1X:(®) = Ag;(®) exp(YU,,)

with Wq;(t) = Uy; + Uyt and Wo; = Uy, In this specification, Uy; and Uq; reflect
individual-level deviations of the longitudinal profile from the population mean at
baseline and from the population mean slope at time t respectively, and the random
intercept term alone in the event-time submodel links the risk of event directly on the
true individual-specific value of the biomarker at baseline. The parameter y estimates

the level of association between biomarker value at baseline and hazard for the event.

The model is estimated by maximising the joint likelihood of the observed data via the
EM algorithm, and any integration is performed using the Gauss-Hermite quadrature
[18]. It involves taking expectations with respect to the unobserved latent process
{W (), W}. The EM algorithm iterates between two steps until convergence is
achieved. E-step determines expected values E[U,;] conditional on observed joint
outcome {T;, 6;, x;}. M-step maximises the complete data log-likelihood by W5,

replaced by corresponding expectation. These steps are described in Section 6.4.3.1.
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6.4.3 Joint likelihood formulation

The joint density of observed longitudinal and event-time outcomes derives the joint
likelihood function. Let @ = {B,%,, 02,7, 1,(.)} denote all unknown parameters to be

estimated.

The random effects W;(t) = {W,(t), W (©)} underlie both the longitudinal and
event-time outcome processes [13] and the longitudinal and event-time processes are

assumed to be independent conditional on W; = {W ., Wy;} where Wy;(t) = Uy; +
Ulit and WZi = U()i'

Then, the joint density for any individual i can be conveniently defined by
flx, Ty, 6) = f f G, Ty, ;W) f (W) dW;
WAV AL

where the individual functions in f(x;, T;, ;) can be defined by

1

\ 2mo?

is the standard multivariate normal density of longitudinal data x;; with Z;; = {1, ¢;;},

1
f(xif|wi) = exp {_F(xij — BZij = W) (xij — BZij — Wli)}
&

T;

f(T;, 8:i|Woy) = [flo(Ti)eyWZi]‘si exp {— Ao(v) el’Wzidv}

0

is the usual event-time distribution for {T;,5;}, and

-w'L, W,
2

fwy) = (IZuI)‘l/ZeXD{

is the Gaussian density of W, with zero mean and variance X,,. Thus, the complete
data likelihood can be defined as the product of these quantities over all individuals

ﬁ [f‘” {l_l[ f(xijlwli)}f(Tif6i|W2i)f(Wi)dW1i]
o |41

i=1
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Complication arises in maximising this likelihood because of incomplete information
of W; since the random effects are being unobserved. To solve this problem of missing
random effects, EM algorithm is used. As shown by Wulfsohn and Tsiatis [13], in this
setting EM algorithm gives an efficient method for maximum likelihood estimation.

More details of the EM algorithm is given in section below.

6.4.3.1 EM estimation algorithm

The algorithm is described by Wulfsohn and Tsiatis [13], and the procedure involves
iterating between the following E and M steps until convergence is achieved. E-step
computes the expected log-likelihood of the complete data conditional on the observed
data and the current estimate of the parameters, and M-step computes new parameter

estimates by maximizing this expected log-likelihood.

E-step
Considering W, = {W_.,W,;} as missing data, this step calculates the expected log-

T;, 6;} and the

1
likelihood of the complete data conditional on the observed data {xl.j, tij,
current parameter estimates 6. It estimates conditional expectations of the form
E[h(W)|x

t;;, T, 8;,0] for some h(W;) as required below.

ijr bijy

Let Z = {(x;;, 5, T;,6;),i = 1,...,m; j = 1,...,m;} be the observed biomarker data
which includes the observed longitudinal measurements with recorded measurement

times, and event-time data.

The expected log-likelihood related to longitudinal outcome data:

L(02,B1Z,0) =

1 1 ' g
exp {—ﬁ(xij _ ,BZU _ Wli(tij)) (xij — 'BZU - Wli(tij)) |Z; 9}
€
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and hence

E [log (L(agz, BlZ, 9))] =

n m

- 2(1;82 Z Z E; [(xij —BZij - Wli(tij)) ' (xij —BZ;j — Wli(tij)) |Z, é]

i=1j=1

The expected log-likelihood related to event-time data:

T;
Ao (v) eVWZidv}

0

L(2o(v),v1Z,0) = ]_[[Aom)eywﬂ]si exp {—

and hence

E [log (L()lo, YIZ, @))] =

n n T _
Z §;log[Ao(TH] + Z §1log(YE|W|Z,8]) — z f Ao(v) E;[e"W2i|Z,0]dv
i=1 i=1 =170

The expected log-likelihood related to random effects:

—W1i’2u_1W1i}

n
L(Z,1Z,0) = HlEul"l/zexp{ >
i=1

and hence

11'1=1 Ei [_Wlilzu_lwlilz, é]

E[log L(2,|Z,0)] = >

+ log(|Z,|7™2)

Using transformation H = £,,*, the expected log-likelihood is revised by

L B~ Wa W12, ]
2

EllogL(H|Z,8)] = + log(|H|™?)

Therefore, four specific forms of expectations are required; E;(Wy;(t;)|Z,6),
E;(Wy|Z,0), Ei(e""2|Z,8) and E;[(W;W,")|Z,8].
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The conditional density of W; given the observed data and the current estimates of
the parameters is equal to

PN

f(Wilxi, Ty, £, 63 F (Ti, 8:1W;, Ao, 7)
I FWilx, Ty, £, 82) f (T, 6:1Wi, Ag, 7)

f(w;|z,0) =

Thus, the conditional expectation of any function of W; can be written by

=

f_oooo h(Wi)f(Wilxi' Ti' Eu' 6£)f(Ti' 6i|Wif ;{Of ?)
I fWilx, Ty, 2,82 (T4, 6:\ Wi, A0, 9)

E[h(W)|Z,8] = (6.4)

The conditional distribution function of W; given y, f(W;|x;, T;, £,,62) can be

derived from the joint bivariate normal distribution of W; and x;

()~ | ("o, (51 Pz

and the components of covariance matrix are given by

ZinloyZin, v ZinZyZim,

Bll = +Imi0-z:1

!

ZimiEuZil' R Zimizuzimi

where I, is an identity matrix with dimensions m; X m; as Z,for each individual i,
and
o +0, 4t o + 0o, 4 ti
_< up Uug,ug 12 "t g U, U Lmi)
21 — 2 2 ]
O-uo,ul + O—ultili vy O-u0:ul + O-ultimi
B, = Ble and
By =%y

Using the standard theory of normal distribution and information from above

multivariate distribution, the mean and variance of W; given y, can be define as

B2

E[W;|x;] = E[W;] + Pg
11

[xi - E[xi]] = By,By; xi — BZ; — Wy (D]

Var(W;|x;) = Var(W,)(1 — p?) = By, — By1B11 " 'By,
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where p is the correlation between W; and y, and Z; = {1, t;}. Thus,
WilyiNN(BIZBll_l[xi —BZ,— W1 ()], Bz — By By, 'By, )

and for simplicity we write it as W;|x;~N ('uxi’Bxi) with the distribution function

S 1 '
f(Wilxi) = (ZT[) ZBxi 1/ZeXp {_E(Wll'—luxi) Bxi I(Wll'_luxi)}

where M, and B,, represent the mean and variance of the above transformed variable
which are equal to BBy '[x;—BZ,— Wy (®)] and By, — BBy By,
respectively.

The evaluation of the expectations of the form in (6.4) requires numerical integration.

Wulfsohn and Tsiatis [13] adopts a p-point Gauss Hermite quadrature approximation.

A p-point Gauss-Hermite quadrature formula can be defined by

- p
f e f@)do = g,f(hy) (6.5)
=1

—00

where h;(j =1, ...,p) are tabulated abscissa values for @ and gj(j =1,..,p) are the

associated weights. Equation (6.5) can be define as a distribution function of @ which
follows a normal distribution with mean zero and variance %2. Thus, the parameter @

can be defined in terms of W; as follow
_1
Q; = (Wi - Wxi)(ZBxi) 2

1
where W, is the conditional variable of W; given x; and (2B,,) 2 is the inverted
Cholesky decomposition of 2B, and @; = (@,;, @,;) are independent and normally

distributed. All functions in Equation (6.4) are transformed to the quadrature formula

in Equation (6.5) using the following definition

r 1
Wi = QL(ZBxL) 2 + Wxi'

So, the non-constant term of the numerator in Equation (6.46.) can be write as follow
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foo h(W)) [eVW,Zi]Si exp {— fTixlo(v) eVW,Zidv} X exp {— (@ii + @%i)} do,
e 0

and after the transformation, it becomes

p P 5
Z Z eVWZL exp{ f Ao(v) eVWZLdv} X 9,9,

j=1k=1
where W;and W5; now in the functions of @4; and @,; which respectively take on p
abscissa values h;(j = 1,...,p) and hi(k =1,...,p). With this transformation, the

estimates of all expectations are calculated and ready to be used in the M-step.

M:step

The expected log-likelihood is maximised to compute the parameter estimates 8. Each
function of W, is replaced by its corresponding expectation calculated using
quadrature approximation. This involves setting the first derivative of each expected
log likelihood with respect to the corresponding parameter equal to zero. This would
lead to closed form maximum likelihoods estimates for 8, 62, A, and X,.. However, no
closed form estimate of y can be computed by this step alone, and is estimated
numerically by one-step Newton Raphson algorithm. The maximisation procedure for
each parameter is described below.

The estimated measurement error variance o2:

oF [log (L(Gg.ﬁm @))] _

do?
= ZZ [ 2, = i) (s = 52, - wte) 18] - oL
=0

m;

Z%;grmzz(ag)zi El[(xz, Bz, — Wh(tl,)) (xl] Bz, - Wh(tu))m 9]

i=1j=1

and thus
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(xij —pZ;— Wli(tij)>’ (xij —BZ;— Wli(tij)) |Z, é]

Ximimy

n m;
i=1 Zj:l Ei

™M N

The estimated fixed effect coefficients for the longitudinal submodel £:

oE [log (L(Ug, BIZ, @))]
ap

n m

- 2(0152)2 Z Z Ei [(xif —BZij - Wli(tij)), (xij —BZi; — Wli(tij)) |Z, é]

=1 j=1

and by setting

m;

zn: Z E [(xij —BZ;- Wli(ti}')), (xij —BZ;— Wli(tij)> |Z, @] =0

i=1j=1

then compute

m;

ﬁZij = 22 Ei [(xij - Wli(tij)) |Z' a]
i=1 /=1
B=2;" Z B (v = Wai(e)) 12, 9]
i=1j=1

The estimated baseline hazard Ay(T)):

0E [log (L()lo,y|Z, @))] 5
0o T (T

E;[e"|Z,8] =0

and thus
d;

AO (TL) = El- [eyWZi |Z’ /é]
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The estimated variance covariance matrix for random effects X,,: The revised

expected log-likelihood are differentiated with respect to H.

0E[logL(H|Z,0)] _ 9E [n
oH “0H|2

n
log|H| — %Hz E; [Wli Wli,]] =0

i=1

—H"l . _Z E W,

n 1 ,
5= EZ E[wuw,|=0
i=1

Thus leu = ?=1 Ei [Wliwli,] and

Z?=1Ei [Wliwlil]
n

u

The estimated association parameter y:

OF log (L(20,v1Z,8) )| _ i 5;

— — (T E[e""%|Z,0|E[W|Z,0] = 0
Y &y

Solving the above expression for y leads to a function of A, thus no closed form
estimate of y can be computed. Therefore, to estimate y, one-step Newton Raphson

algorithm is used which will explained in detail in section below.

The following are all closed-form estimators available for parameters except for y.

=2 B3 (e~ W) 2

. 1% o
Xy, =Ein[W1iW1i |Z, 6]
=1

125



=122 Ei (xij —BZ;- Wli(tij)) (xij —BZ;- Wlt(tij)) |Z, 9]
52 =
) =1
n
= 6l X;=v
WO =2 5 E l(l;l/ )Z’éR
L Y0 Ejlexp{lyW 3| Z, 6]R;(v)

where R;(.) is an at risk indicator, taking value 1 when the jth individual is at risk at

v, and 0 otherwise. The baseline hazard 1,(v) is evaluated at each of the ordered event

times, denoted by vy, vy, ..., V) .

One-step Newton-Raphson

The purpose of this numerical method is to find successive values of y using the first

derivative of a function of y. In general, the successive value can be defined by

S S _ f(?initial) (66)

ycurrent = yinitial f,(?initial)
The first derivative of the function f’ measures the instantaneous rate of change of the
function. The second term in Equation (6.6) approximates the difference between these
two successive values. In this case, the difference is approximated by a multiplication
of information and score functions of a parameter, in which at the m th iteration, the y

can be defined by

5 _ 5 —1
Vm =Vma ™t I?m_ls?m_l

-1

y.._, are the score and information at the (m — 1)th iteration value

where S and !
respectively. Score S; and information I;, are determined by taking the first and second

derivatives of the expected log-likelihood with respect to y respectively:

i=1

dE [log (L(Ao,v|Z,® L (P L .
Sy = [Og( gyo d ))] =Z{7_;Ao(vj) Ei[WZieyWZlm'e]}
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0%E [log (L(2,v|Z,@ LI .
e e

To begin the EM algorithm, initial parameters are needed. These parameters can be
estimated from separate maximum likelihood process of longitudinal measurements
on event-time, by ignoring any association exist between them. Separate linear mixed
models are fitted for each longitudinal measure to get estimate for parameters 5, %,
and ¢ using “lme” function in “nlme” package in R. The estimated random effects
obtained from the fitted models (random intercept only for baseline model) are then
included in the Cox proportional hazard model for event-time outcome. The initial
parameter of hazards A, are obtained from the Cox proportional hazards model for

survival outcome using the “coxph” function in “survival” package in R.

6.4.4 Proposed time-dependent ROC curve methodology

A novel, but computationally simple approach is proposed to estimate the time-
dependent ROC curve for a biomarker at baseline level that is subject to measurement
error. The best linear unbiased estimates of the individual-specific deviation U,

related to true biomarker value at baseline is estimated from the above EM algorithm.
The proposed approach includes 4 steps:

Step 1: Using the available longitudinal measurements of the biomarker and event-
times, the joint model specified in (6.3) is fitted, and the measurement error-adjusted
estimator is estimated from the linear predictor
M; =70,

where U, is the estimated deviation of the true biomarker value from the population
mean at baseline for the ith individual, and 7 is the estimated level of association
between true biomarker and hazard for the event value at baseline. Further, exp(y) is
the hazard ratio associated with a unit increase in the value of biomarker at baseline

with respect to the population mean. The validity of M; as the measurement error-
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adjusted estimator in time dependent ROC curve analysis is extensively explored in

our simulation studies.

Step 2: At any time t, (> 0), use the counting process D;(t,) such that each diseased
individual plays a role as control for an early time t;, < T; but then play the role of
case when t, = T;. D;(t) = 1 indicates that ith individual has experienced the event at
time t;, or prior to time t;,. Here, the failure time is represented through the counting
process N (t,) = I(T; < t,), and the corresponding increment is defined by dN (t,) =
N(ty) — N(t, —) in terms of the failure time T; alone. Note this definition is different
from the usual counting process notation N(t,) = I(X; < t,, 8; = 1), and it adopts

the incident/dynamic ROC curve terminology discussed by Heagerty and Zheng [27].

Step 3: Define the set of individuals at risk at time t; (riskset) by at-risk indicator
R;(ty) = I(X; = t). Then, dichotomise the riskset at time ¢, into two mutually
exclusive groups: cases (experienced event at time t;) and controls (survived event

beyond time t},).

For simplicity in the notation, t is used instead of t; in the rest of this section.

Step 4: Based on M, of the individuals in the riskset, the discriminatory potential of
the biomarker at time t conditional on a threshold value c is assessed which determines
the test positive if M, > c and test negative if M;, < c. The sensitivity and specificity

at t are then defined by

sensitivity(c, t): Pr {M; > c| dN(t) = 1}

specificity(c, t): Pr {M; < c| N(t) = 0}

where ¢ € (—oo, +0). Sensitivity (c,t) estimates the fraction of individuals with
M, > c among those who experience the event (disease onset) at t, while
specificity(c, t) estimates the fraction of individuals with M;, < ¢ among those who

survived disease-free beyond time t.
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To estimate the above probabilities of M, conditional on incident/dynamic failure
times defined in Step 3, we can use the proportional hazards properties of the joint
likelihood function related to the event-time submodel in (6.36.). Xu and O'Quigley
[47] has proposed estimating the proportion of variation in the covariate that is
explained by failure times. Xu and O'Quigley [47] estimated the distribution of the
covariate conditional on failure at time t based on the weights m;(t) from the Cox
proportional hazards model, and the same approach was later used by Heagerty and
Zheng [27] to estimate the time-dependent sensitivities and specificities. Following
Heagerty and Zheng [27], for a given threshold value c, we estimate the sensitivity
(TPF) by

sensitivity (¢, t) = Pr(M; > ¢|T; = ¢t) = 2 I (My > c) me(t)
K

where m,(t) = Ry.(t) exp(My) /W(©), with W (t) = Xy Ry (t) exp(My) is the total
weight of the riskset individuals, are the weights under a proportional hazards, and

I(.) is an indicator.

The specificity (1 — FPF) can be calculated empirically by

Yl (Mg < c)RR()
Yk R

where RY(¢) is the set of event-free individuals in the riskset at time ¢t and 3, RY(¢) is

specificity (c,t) = P(M; < c|T; > t) =

the size of that control-set.

Bansal and Heagerty [92] has used the above definition when there exists time-specific
cases of interest at a particular time t. However, this definition is applied to estimate
the diagnostic accuracy at any time t > 0 with no prior information on the predicted
time. The proportional hazard assumption does not require any case to exist at time t
to produce the sensitivity but only will force the FPF equal to zero and specificity equal
to one. Thus, although there is no case exists at time t (which usually happens in

practice), the discriminatory potential of the biomarker can still be estimated at time t¢.

Once the above incident sensitivity (semiparametric) and dynamic specificity

(nonparametric) are defined, the time-dependent ROC curve at time t for all ¢ €
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(—00, 4+00) can be computed by kernel (density) smoothing which follows closely the
details of the original data [93]. The kernel estimate is obtained by smoothing the
corresponding histograms of M, for the cases and controls at time t. Let the smoothed
version of TPF and FPF be S,(t) and S5 (t) respectively. The smoothed time-
dependent ROC function at time t is given by {S(t, c), S5(t,c)} for ¢ € (—o, +0)

or equivalently

ROC(p) =S S5' (1), p € O.1)
where p is the abscissa axis (FPF) and ROC,(p) the ordinate axis (TPF) of the ROC
plot [93].

The AUC(Y) is simply AUC(t) = [ ROC.(p)dp the area under the ROC curve for time
t, and estimates the probability of a random pair of individuals, who experiences the
event at time t has a larger biomarker value than the individual who remains event-

free beyond time t.

In practice, there is no specific time t of interest usually, but restricted to a fixed
follow-up period (0, 7). In that case, a global summary is preferable, and the above
AUC(t) can be modified to provide a survival concordance index (C-index) to account

for finite follow-up by
(= f AUC(HW' (t)dt
0

where w'(t) = 2f(t)S(t)/{1 — 52 (t)}with £(t) is the density function of event time
and S(t) is the survival function of the event time. This defines the probability that the
predictions for the random pair of individuals are concordant with their outcomes,

given that the smaller event time occurs in (0, 7).
6.4.5 Calculation of the 95% confidence intervals for sensitivity and
specificity

In the proposed approach, M; is computed from model parameter estimates, which is
then used as the input to ROC analysis. Hence the 95% confidence intervals (CIs) of

sensitivity and specificity must account for uncertainty due to the estimation processes.
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Therefore, the 95% ClIs for accuracy summaries are estimated by the bootstrap
sampling with replacement [94]. The previously suggested time-dependent ROC
models for censored event based on a single biomarker value were also suggested

bootstrap approaches to estimate the corresponding Cls [2, 27, 39].

6.5 Application

The proposed approach is applied to the PBC sequential data using three selected
biomarkers. The longitudinally recorded serum bilirubin measurements (in mg/dl),
albumin (in mg/dl) and prothrombin time (in seconds) are used in the analysis with the
aim of assessing the predictively accuracy of the initial (baseline). The range of the
longitudinal measurements and timing of the measurements differ between patients.
The bilirubin measurements were log-transformed and the prothrombin time were
transformed by (0.1xprothrombin time)*. Albumin was not transformed and original

value is used in the analysis [28].

Table 6.2 presents the estimates of association parameter 7 and C-index C* at fixed
follow-up (0, 3650 days or 10 years) from the joint model and Cox model for the three
biomarkers. The proposed measurement error adjusted biomarker from the joint model
consistently provides higher association parameter estimates than the baseline
observed biomarker that lead to higher C-Index for all three biomarkers.

Table 6.2: Estimated association parameter and C-Index for the adjusted and
observed baseline biomarkers

Adjusted Observed
Biomarker
Association C-Index Association C-Index
Log (bilirubin) 1.4073 0.7848 1.0674 0.7532
g (0.1508) (0.0212) (0.1040) (0.0195)
(0.1 x Prothrombin 6.4252 0.7613 3.3653 0.6977
Time)* (0.8648) (0.0248) | (0.5343) (0.0258)
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Albumin

4.7720
(0.8037)

0.7910
(0.0247)

1.7126
(0.2453)

0.6727
(0.0221)

Table 6.3 shows the estimated time-dependent AUC, sensitivity and specificity at
prediction times Year 1, Year 5 and Year 10. The proposed measurement error
adjusted biomarker performs well with higher time-dependent AUC estimates than the
observed biomarker at all prediction times and across all three biomarkers. This can
be supported with the graphical presentation of the estimated time-dependent ROC
curve in Figure 6.1-6.3, that show the consistent performance of the adjusted
biomarker. Among the three biomarkers, the time-dependent AUC for log (bilirubin)

biomarker is the highest which means it has the best predictive ability in detecting the

presence of the disease among PBC patients.
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Table 6.3: Estimated time-dependent AUC(t), sensitivity and specificity of the adjusted and observed baseline biomarkers

. Adjusted Observed

Biomarker Predpﬂon —— —— — ——

Time AUC Sensitivity Specificity AUC Sensitivity Specificity
(SE) (SE) (SE) (SE) (SE) (SE)

ear 1 0.8295 0.7692 0.7517 0.7953 0.7275 0.7274

(0.0098) (0.0124) (0.0131) (0.0204) (0.0199) (0.0182)

i 0.7686 0.6011 0.7164 0.7355 0.6600 0.6974

Log (bilirubin) Years (0.0126) (0.0124) (0.0149) (0.0161) (0.0156) (0.0164)

0.6878 0.6393 0.6460 0.6584 0.6037 0.6278

Year 10 (0.0195) (0.0216) (0.0238) (0.0260) (0.0210) (0.0259)

Vear 1 0.8174 0.7526 0.7331 0.7060 0.6593 0.6423

(0.0089) (0.0089) (0.0122) (0.0252) (0.0223) (0.0188)

(0.1 x Prothrombin Ve s 0.7679 0.7018 0.7078 0.6973 0.6458 0.6392

Time)* (0.0116) (0.0134) (0.0133) (0.0229) (0.0182) (0.0190)

e 10 0.6465 0.6160 0.5990 0.6497 0.5980 0.6121

(0.0148) (0.0172) (0.0188) (0.0218) (0.0192) (0.0225)

Vear 1 0.8174 0.7526 0.7331 0.6871 0.6248 0.6420

(0.0089) (0.0089) (0.0122) (0.0220) (0.0161) (0.0185)

Albumin Vear s 0.7679 0.7018 0.7078 0.6644 0.6125 0.6218

(0.0116) (0.0134) (0.0133) (0.0205) (0.0146) (0.0177)

e 10 0.6464 0.6160 0.5990 0.6188 0.6000 0.5707

(0.0148) (0.0172) (0.0188) (0.0165) (0.0167) (0.0158)
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Figure 6.1: Estimated AUC over time for log (bilirubin)
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Figure 6.2: Estimated AUC over time for transformed prothrombin time
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Figure 6.3: Estimated AUC over time for Albumin

Table 6.4 shows the time-dependent AUC of the observed and adjusted values
estimated from several current approaches. It shows that across all approaches, the
proposed measurement error adjusted biomarker performs well at all prediction times
with higher AUC(t).
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Table 6.4: Time-dependent AUC (Standard Error) for current methods

o NNE KMCD IPCW CIPCW FP
. Prediction
Biomarker Ti

Ime Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed
Vear 1 0.9055 0.8557 0.8985 0.8581 0.8985 0.8581 0.8985 0.8520 0.8510 0.7815
e (0.0355) | (0.0386) | (0.0315) | (0.0359) | (0.0315) | (0.0359) | (0.0315) | (0.0565) | (0.0383) | (0.0514)
o Vear 5 0.9066 0.8615 0.8988 0.8586 0.9155 0.8722 0.9132 0.8350 0.7801 0.7305
Log (bilirubin) (0.0201) | (0.0244) | (0.0183) | (0.0232) | (0.0165) | (0.0219) | (0.0169) | (0.0326) | (0.0345) | (0.0397)
Vear 10 0.8333 0.8128 0.7964 0.7854 0.8529 0.8386 0.8407 0.6928 0.6406 0.6078
(0.0318) | (0.0300) | (0.0329) | (0.0341) | (0.0300) | (0.0302) | (0.0312) | (0.0560) | (0.0754) | (0.0842)
Vear 1 0.9213 0.9023 0.9288 0.9052 0.9288 0.9052 0.9288 0.9029 0.9093 0.8524

(0.0430) | (0.0252) | (0.0367) | (0.0228) | (0.0367) | (0.0228) | (0.0367) | (0.0377) | (0.0300) | (0.0384)

Vear s 0.9215 0.7533 0.9143 0.7608 0.9241 0.7552 0.9189 0.6825 0.8377 0.5634
(0.1xProthrombin (0.0181) | (0.0368) | (0.0187) | (0.0350) | (0.0163) | (0.0341) | (0.0167) | (0.0475) | (0.0262) | (0.0439)

Time)™*
Year 10 0.8902 0.7622 0.8536 0.8259 0.9677 0.6664 0.9706 0.4409 0.7795 0.6608
(0.0256) | (0.0314) | (0.0308) | (0.0454) | (0.0126) | (0.0415) | (0.0117) | (0.0484) | (0.0578) | (0.0777)
vear 1 0.9213 0.8356 0.9288 0.8326 0.9288 0.8326 0.9288 0.8258 0.9092 0.7764
(0.0431) | (0.0557) | (0.0367) | (0.0529) | (0.0367) | (0.0529) | (0.0367) | (0.0843) | (0.0300) | (0.0513)
_ Year 5 0.9215 0.7418 0.9143 0.7384 0.9241 0.7507 0.9189 0.7211 0.8377 0.6530
Albumin ear (0.0181) | (0.0386) | (0.0186) | (0.0324) | (0.0163) | (0.0318) | (0.0167) | (0.0414) | (0.0262) | (0.0401)
Year 10 0.8902 0.6922 0.8536 0.6522 0.9677 0.7476 0.9706 0.6864 0.7795 0.4596

(0.0256) | (0.0421) | (0.0308) | (0.0450) | (0.0126) | (0.0376) | (0.0117) | (0.0412) | (0.0578) | (0.0854)
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7 Simulation Study Il: Measurement Error Adjusted ROC
curve Approach

7.1 Introduction

This chapter is aimed to demonstrate whether the proposed joint model (in Section
6.4.2) and the measurement error adjusted time-dependent ROC curve approach (in
Section 6.4.3) that were discussed in Chapter 6 are appropriate frameworks for
estimating the time-dependent diagnostic accuracies of a biomarker at the baseline.
Four simulation studies are conducted. A software is written in R language to estimate
the proposed joint model by modifying the current “joint” function in joineR library,

see Appendix B.

The rest of this chapter is organised as below. The details on generating the simulated
data is discussed in Section 7.2. The accuracy of the estimation of the association
parameter from the proposed joint model is investigated in Section 7.3. In Section 7.4,
how the strength of association between the biomarker and event-time process
modifies the diagnostic accuracy is determined. The accuracy of the proposed time-
dependent ROC curve methodology is evaluated in Section 7.5. The performance of
the proposed measurement error adjusted biomarker is demonstrated further using
several current methods (from Chapter 3) of C/D and I/D definitions of time-

dependency in Section 7.6.

7.2 Simulating the data

The longitudinal values of a biomarker (x) were simulated for 500 individuals under a
linear mixed model with fixed (population-level) intercept and slope with coefficients
Bo =1 and B; = — 1 respectively, random intercept U, and random slope U, terms,
and measurement error &; using x;(t;;) = Bo + Pitij + Up; + Uyitij + ;. The
random intercept U, and random slope U; terms were generated from a bivariate
normal distribution N(0,Z,) with variances 1 and covariance 0.5, and measurement

error &;; was generated from a normal distribution with mean zero and known variance
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N(0,062). The positive variances and covariance in X, and the negative slope B,
induce a negative correlation between random effects U, and U, . This setting simulates
longitudinal trajectories with larger intercepts to have smaller slopes or vice versa.
Hence an individual with a low biomarker value (poor prognosis) at the baseline will
have a more rapid decline in their biomarker profile over time, and vice versa, which
reflects the convention for ROC curve analysis. Longitudinal times were set at 0, 1, 2,
3, 4, 5, so a maximum of 6 longitudinal observations recorded at these time points up
to individual’s event time in the final dataset. The true longitudinal biomarker values

were generated by excluding the measurement error ;; from xl-(tl-j).

Based on the association structure W,(t) = yW,(t) = yU,, event times T; were
generated under Gompertz distribution with scale parameter 6, and shape parameter
6, assuming Cox proportional hazards model A(t) = 1,(t) exp(yU,) (See Bender, et

al. [95] for more details). The event times T; were simulated by

1 0, log(X;)
To=—1 {1 _ —}
Y o8 Ai

where X; is derived from the uniform [0,1] distribution, A; = exp(8, + yU,;) Where
the value of 6, and 6, are set to -3 and 1 respectively. Exponential distribution is

used to control the censoring rate in the simulated data.

The strength of associations were varied at y = {0.25, 0.50, 0.75, 1} to allow weak
(0.25) to strong (1) association between the baseline biomarker value and event-time
outcomes. The % event was varied at 70, 50 and 30 by controlling the exponential
distribution parameter for censoring. Exponential distribution parameter was set at
exp(—2), exp(—1.3) and exp(—0.6) to get the censoring rate approximately at 30%,
50% and 70% respectively. The variance of measurement error were varied o2 = 0.25,
0.5, 1.0, 1.5, 2.0 and 2.5 to allow lower to higher measurement error in biomarker

values to assess the impact of measurement error.
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The true and observed (with measurement error) biomarker values at baseline are
extracted from the simulated longitudinal datasets. The joint model specified in
equation (5.3) in Chapter 5 is fitted to obtain U,; for each individual. Only positive
associations (y > 0) are examined, however, the behaviour for negative associations
with the same strength would be the same, but in opposite direction, and will not

impact on biases and other characteristics.

7.3 Accuracy of the proposed association parameter estimation

This simulation study is aimed to explore the accuracy of estimation of association
parameter y from the proposed joint model (see equation 5.3 in Section 5.4.2) which
is crucial for estimating the correct ROC summaries from the proposed time-dependent
approach. To compare the joint modelling estimate of y with standard approaches, Cox
proportional hazards (PH) model is also fitted including the observed biomarker value
X;o at baseline A;(t) = Ao(t) exp{ax;o}. The Cox PH regression parameter « indicates
the association between risk of the event and baseline value of the biomarker; hence
a is comparable to y in the proposed joint modelling formulation [19]. The linear
mixed effect (LME) model x;; = B, + B, t;; + Ug; + Uyt + &5 is also fitted and used
the estimated random intercept term in place of x;, in the above Cox model (this is
comparable to a two-stage approach rather than a joint model). The bias, mean square

error (MSE) and coverage percentage are calculated from 500 simulated datasets.

Table 7.1 presents the estimated association parameter from the proposed joint model
and the two Cox PH models with their standard error (SE), MSE, bias, and coverage
percentages (Cov) across varying measurement error variances for 30% censorings.
The results for other percentages of censoring are tabulated and presented in Appendix
C (Table C.1-C.2). Figure 7.1-7.3 show the graphical presentations for the estimated
association parameter against the measurement error variance for 30%, 50% and 70%

censoring respectively.

Based on Table 7.1, it can be observed that the proposed joint model provides the most

accurate estimation of the association with smaller MSE and biases, and the coverage
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percentages are closer to 95% for all settings, and this observation is consistent with
the previous simulation study results [19, 96]. Further, proposed joint model estimates
y fairly close to the true value even when the measurement error is high; indicating
that the joint model makes the proper adjustment of measurement error when
estimating the underlying association at the baseline level. The Cox model including
the observed biomarker value underestimates the level of association to a great extent
especially when the true association is fairly strong, and a high measurement error
substantially affects the estimation of association. Figure 7.1-7.3 show the same
patterns across all percentages of censoring that the observed biomarker
underestimates the association parameter as the variance of measurement error
increases. Modelling baseline biomarker value as a covariate in the Cox regression
model is simpler and most current time-dependent ROC curves are based on this

model; however, it fails to account for the measurement error.

The two-stage approach which fits the estimated random intercept term from linear
mixed effect model as a covariate in the Cox regression model improves the estimation
of the association parameter to some extent from the observed value, however it
underestimates the parameter severely especially when the association is stronger.
These simulation results strengthened the case for using the joint modelling framework
for estimating the efficacy of a biomarker at baseline level that is subject to

measurement error.
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Table 7.1: Association parameters for varying measurement error with 30% censoring

True | Proposed joint model Cox regression model with the Cox regression model with estimated
4 observed biomarker random intercept term from LME model
¥, |SE | MSE | Bias | Cov @ |SE |MSE |Bias |Cov @ |SE | MSE | Bias | Cov
Measurement error a2 = 0.25
0 -0.0008 | 0.0569 |0.003 |-0.001 | 95.8 | -0.0002 | 0.0481 | 0.002 | -0.000 | 96.4 |-0.0008 | 0.0570 | 0.003 |-0.001 |95.8
0.25 |0.2507 |0.0602 |0.004 |0.001 |95.6 |0.1997 |0.0496 | 0.005 |-0.050 | 81.2 |0.2494 |0.0591 |0.004 |-0.001 |95.6
0.50 |0.4995 |0.0684 |0.005 |-0.001|94.6 |10.3884 |0.0532|0.015 |-0.112 |43.2 |0.4888 |0.0641 |0.004 |-0.011 |95.2
0.75 |0.7455 |0.0774 |0.006 |-0.005 | 95.2 |0.5609 | 0.0564 |0.039 |-0.189 |9.6 |0.7130 |0.0688 |0.006 |-0.037 |93.2
1 0.9891 | 0.0876 |0.008 |-0.011 | 94.8 ] 0.7166 | 0.0601 | 0.084 |-0.283 | 0.6 ]0.9194 |0.0724 |0.012 |-0.081 |80.2
Measurement error ¢% = 0.5
0 -0.0006 | 0.0598 |0.008 |-0.001 | 95.2 | 0.0002 | 0.0441 | 0.002 | 0.000 |96.0 |-0.0006 | 0.0596 |0.004 |-0.001 |95.2
0.25 ]0.2504 |0.0642 |0.005 |0.000 |95.2 |0.1657 |0.0454 |0.018 |-0.084 | 52.8 | 0.2465 |0.0618 |0.004 |-0.004 |95.4
0.50 |0.4981 |0.0748 |0.006 |-0.002 | 95.4 |0.3171 |0.0481|0.036 |-0.183 |4.6 |0.4775 |0.0671 |0.005 |-0.023 |94.4
0.75 ]0.7430 |0.0872 |0.008 |-0.007 | 95.6 | 0.4499 | 0.0506 | 0.093 |-0.300 | 0.0 ]0.6870 |0.0720 |0.009 |-0.063 |86.8
1 0.9832 |0.1010 |0.011 |-0.017 | 94.8 ] 0.5625 | 0.0536 | 0.194 | -0.438 | 0.0 ]0.8704 |0.0759 |0.023 |-0.130 |56.4
Measurement error ¢% = 1.0
0 -0.0004 | 0.0636 | 0.004 |-0.000 | 95.0 | 0.0006 | 0.0384 | 0.002 | 0.001 |96.0 |-0.0005 | 0.0624 |0.004 |-0.001 |95.2
0.25 ]0.2494 |0.0698 |0.005 |-0.001|96.0 ]0.1238 | 0.0392 | 0.018 |-0.126 | 10.2 | 0.2401 | 0.0648 |0.004 |-0.010 |94.8
0.50 ]0.4943 |0.0829 |0.007 |-0.006 | 95.6 |0.2317 | 0.0404 | 0.074 |-0.268 | 0.0 ]0.4578 |0.0699 |0.007 |-0.042 |91.6
0.75 |0.7364 |0.1006 |0.010 |-0.014 | 94.8 | 0.3222 | 0.0423 |0.185 |-0.428 | 0.0 |0.6482 |0.0764 |0.016 |-0.102 |714
1 0.9669 |0.1223 |0.016 |-0.033 | 95.0 ] 0.3940 | 0.0447 | 0.371 |-0.608 | 0.0 ]0.8018 |0.0818 |0.046 |-0.198 |31.2
Measurement error ¢% = 1.5
0 -0.0003 | 0.0662 | 0.004 |-0.000 | 95.2 | 0.0007 |0.0343 |0.001 |0.001 |95.8 |-0.0003 | 0.0640 |0.004 |-0.000 |95.4
0.25 |[0.2481 |0.0717 |0.005 |-0.002 | 94.6 | 0.0955 |0.0328 |0.025 |-0.155 0.0 |0.2340 |0.0648 |0.004 |-0.016 [94.2
0.50 ]0.4935 |0.0913 |0.008 |-0.007 | 96.2 ]0.1833 | 0.0361|0.102 |-0.317 | 0.0 ]0.4438 |0.0737 |0.009 |-0.056 |87.6
0.75 ]0.7323 |0.1119 |0.013 |-0.018 | 95.6 ] 0.2513 | 0.0371|0.250 |-0.499 | 0.0 ]0.6205 |0.0806 |0.023 |-0.130 |63.8
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True | Proposed joint model Cox regression model with the Cox regression model with estimated
% observed biomarker random intercept term from LME model
Y SE MSE | Bias | Cov a SE MSE | Bias | Cov a SE MSE | Bias Cov
1 0.9605 | 0.1469 |0.023 |-0.040 | 96.0 ] 0.3024 | 0.0389 | 0.488 | -0.698 | 0.0 ]0.7602 |0.0876 |0.065 |-0.240 |21.8
Measurement error a2 = 2.0
0 -0.0002 | 0.0682 |0.005 |0.000 |95.4 |0.0008 |0.0313]0.001 |0.001 |95.6 [-0.0002 |0.0651 |0.004 |-0.000 |95.6
0.25 |0.2480 |0.0760 |0.006 |-0.002 | 90.0 ] 0.0791 | 0.0300|0.030 |-0.171 |0.0 ]0.2296 |0.0671 |0.005 |-0.020 |94.0
0.50 |0.4918 |0.0980 |0.010 |-0.008 | 96.2 |0.1516 |0.0327 | 0.123 |-0.348 | 0.0 ]0.4317 |0.0765 |0.011 |-0.068 |84.6
0.75 10.7175 10.1719 |0.031 |-0.033 [ 96.0 | 0.2061 | 0.0335 | 0.297 |-0.544 | 0.0 ]0.5987 |0.0848 |0.030 |-0.151 |54.6
1 0.9502 | 0.1602 |0.028 | -0.050 | 96.0 ] 0.2466 | 0.0347 | 0.569 |-0.753 | 0.0 ]0.7301 |0.0933 |0.082 |-0.270 |17.6
Measurement error o2 = 2.5
0 -0.0002 | 0.0700 | 0.005 |-0.000 | 95.4 | 0.0008 | 0.0290 | 0.001 |0.001 |95.0 |-0.0001 |0.0660 |0.004 |-0.000 |954
0.25 |0.2418 |0.0825 |0.007 |-0.008 | 94.4 10.0686 |0.0293|0.034 |-0.181 |0.0 ]0.2208 |0.0713 |0.006 |-0.029 |94.0
0.50 10.4900 |0.1044 |0.011 |-0.010 [ 96.4 ]0.1292 | 0.0300 | 0.138 |-0.371 0.0 |0.4215 |0.0793 |0.013 |-0.079 |82.8
0.75 10.7227 |0.1311 |0.018 |-0.027 | 95.6 | 0.1748 | 0.0307 | 0.332 | -0.575 0.0 |0.5816 |0.0893 |0.036 |-0.168 |49.0
1 0.9391 |0.1714 |0.033 |-0.061 | 95.8 ] 0.2083 | 0.0317 | 0.628 |-0.792 | 0.0 ]0.7054 |0.0995 |0.097 |-0.295 | 16.0
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Figure 7.1: Association parameter estimates for 30% censoring. Square indicates the estimate from the proposed joint model, circle the
Cox model with observed biomarker and triangle the Cox model with estimated random intercept from LME model. The horizontal lines
are the true value of the association parameter.
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Figure 7.3: Association parameter estimates for 70% censoring. Square indicates the estimate from the proposed joint model, circle the
Cox model with observed biomarker and triangle the Cox model with estimated random intercept from LME model. The horizontal lines
are the true value of the association parameter.
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7.4 Relationship between association parameter and C-index

This simulation is aimed to explore how the strength of association between the
biomarker and event-time process modifies the diagnostic accuracy of the biomarker.
The C-index for follow-up period of (0, 2) for the proposed measurement error
adjusted biomarker M = U, is compared with the true C-index (based on the “true”
baseline biomarker value x,). To explore further, the C-index of the observed baseline
biomarker x, and the estimated random intercept term from LME model (Ug)ne are
estimated. The estimates of C-index are evaluated by bias, MSE and coverage
percentage, and are calculated from 500 simulated datasets. The “risksetROC” library
in R is used to estimate the C-index for the true, observed and LME values of the
biomarkers. The risksetROC software also uses the corresponding linear predictor of
the Cox PH model to estimate the ROC curve summaries, hence its estimates are

comparable to the proposed approach.

Table 7.2 presents the bias, MSE and coverage estimates for C-index at follow-up (0,
2) from the joint model and Cox models for 30% censoring. The results for other
percentages of censoring are tabulated and presented in Appendix C (Table C.3-C.4).
Figure 7.4-7.6 show the graphical presentations for the estimated C-index against the

measurement error variance for 30%, 50% and 70% censoring respectively.

When y = 0, that is when there is no association between the baseline biomarker and
disease process, the C-index is estimated fairly close to the null value of 0.5 (which
indicates biomarker shows no discriminatory potential) across all settings. As strength
of the association becomes stronger (y moves towards 1.0), the estimated C-indexes
are also increased by acceptable margins. It is observed that the proposed measurement
error adjusted biomarker M; from the joint model provides the most accurate C-index
estimation with smaller MSE and biases, and higher coverage probabilities across all
settings. For all biomarkers, as the association parameter becomes stronger, the biases
increase that leads to decreasing value of coverage percentages. As expected, the
observed biomarker dramatically underestimates the discriminatory potential of the
biomarker with the highest bias and coverage percentages close to zero especially

when the association is stronger and measurement error is high. The LME model
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estimate performs better than observed biomarker. As shown in Figure 7.4-7.6, the
same patterns can be observed across all percentages of censoring.
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Table 7.2: C-Index for varying measurement error with 30% censoring

True | True Proposed measurement error adjusted Observed biomarker x LME estimator (Up)ime

y | C-Index | estimator M

(SE) C- SE MSE |Bias |Cov |C- SE MSE |Bias | Cov |C- SE MSE | Bias Cov
Index Index Index

Measurement error g% = 0.25
0 ?(.)53-(:)]-879) 0.5117 | 0.0090 | 0.000 0.000 95.4 |0.5120 | 0.0091 | 0.000 0.000 96.0 | 0.5118 | 0.0570 | 0.000 0.000 95.6
0.25 ?05(?34?8) 0.5649 | 0.0152 | 0.000 -0.005 | 94.0 | 0.5623 | 0.0152 | 0.000 -0.008 | 92.4 ] 0.5646 | 0.0150 | 0.000 -0.005 | 93.8
0.50 ?6631551) 0.6256 | 0.0162 | 0.000 -0.010 | 91.8 | 0.6185 | 0.0157 | 0.001 -0.017 | 80.4 | 0.6235 | 0.0155 | 0.000 -0.012 | 88.6
0.75 ?063558) 0.6788 | 0.0165 | 0.001 -0.014 | 85.6 | 0.6652 | 0.0156 | 0.001 -0.028 | 56.6 | 0.6734 | 0.0155 | 0.001 -0.019 | 73.8
1 (()67511157) 0.7228 | 0.0167 | 0.001 | -0.019 |80.8 |0.7025 | 0.0157 | 0.002 |-0.039 | 324 |07132 | 0.0155 | 0.001 |-0.028 | 53.4
Measurement error o2 =0.5
0 (()05(:)L(:)L£379) 0.5118 | 0.0090 | 0.000 0.000 95.2 | 0.5120 | 0.0092 | 0.000 0.000 95.6 | 0.5117 | 0.0090 | 0.000 -0.001 | 954
0.25 ?0506318) 0.5620 | 0.0155 | 0.000 -0.008 | 92.6 | 0.5567 | 0.0153 | 0.000 -0.013 | 85.0 | 0.5611 | 0.0150 | 0.000 -0.009 | 92.0
0.50 (()065’1531) 0.6203 | 0.0169 | 0.001 -0.015 | 85.8 | 0.6066 | 0.0157 | 0.001 -0.029 | 54.4 ]0.6159 | 0.0155 | 0.001 -0.019 | 74.2
0.75 ?0609]?591) 0.6714 | 0.0176 | 0.001 -0.022 | 74.8 | 0.6471 | 0.0159 | 0.002 -0.046 | 17.4 | 0.6611 | 0.0157 | 0.001 -0.032 | 47.0
1 (()07611157) 0.7141 | 0.0180 | 0.001 -0.028 | 64.4 |0.6785 | 0.0161 | 0.004 -0.063 | 2.2 0.6964 | 0.0157 | 0.002 -0.045 | 17.0
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True | True Proposed measurement error adjusted Observed biomarker x LME estimator (Up)ime
y | C-Index | estimator M

(SE) C- SE MSE | Bias Cov |cC- SE MSE | Bias Cov |cC- SE MSE | Bias Cov

Index Index Index

Measurement error % = 1.0
0 ?fg&gg) 0.5116 | 0.0093 | 0.000 | -0.000 | 95.0 |0.5119 | 0.0094 | 0.000 | 0.000 |958 |05114 | 0.0090 | 0.000 |-0.000 |94.6
0.25 ?65(?318) 0.5584 | 0.0158 | 0.000 |-0.011 |89.2 |0.5490 | 0.0153 | 0.001 | -0.021 |72.4 |05561 | 0.0147 | 0.000 |-0.014 |84.2
0.50 ?66315521) 0.6136 | 0.0176 | 0.001 | -0.022 | 762 |0.5907 | 0.0155 | 0.002 | -0.045 | 16.2 |0.6054 | 0.0152 | 0.001 |-0.030 |49.2
0.75 ?66312591) 0.6621 | 0.0189 | 0.001 |-0.031 |61.6 |0.6236 | 0.0158 | 0.005 |-0069 |12 |0.6445 | 0.0157 | 0.003 | -0.048 | 13.4
1 ?673114?7) 0.7023 | 0.0200 | 0.002 | -0.039 |48.4 |0.6479 | 0.0162 | 0.009 |-0094 |00 |0.6479 |0.0157 | 0.005 |-0.068 | 1.0
Measurement error % = 1.5
0 ?(')50101;9) 0.5115 | 0.0093 | 0.000 | -0.000 | 94.6 |0.5119 | 0.0094 | 0.000 | 0.000 |958 |05112 | 0.0089 | 0.000 |-0.001 |95.0
0.25 (()653359) 0.5556 | 0.0152 | 0.000 |-0.014 |83.8 |0.5423 | 0.0144 | 0.001 |-0027 |53.0 |05523 | 0.0138 | 0.001 |-0.017 |77.6
0.50 ?6635531) 0.6091 | 0.0183 | 0.001 |-0.026 |69.2 | 05804 | 0.0156 | 0.003 |-0055 |64 |05979 |0.0151 | 0.002 |-0.037 | 30.4
0.75 (()663125?1) 0.6560 | 0.0200 | 0.002 | -0.037 |53.0 |0.6087 | 0.0158 | 0.007 |-0.084 |00 |06330 | 00157 | 0.004 |-0.060 | 2.8
1 ?67511157) 0.6952 | 0.0221 | 0.003 | -0.046 |42.8 | 06203 | 0.0162 | 0.013 |-0112 |00 |0.6579 | 0.0157 | 0.007 | -0.084 | 0.0
Measurement error o2 = 2.0
0 ?(')501()1gg) 0.5115 | 0.0094 | 0.000 | -0.000 | 95.4 |0.5119 | 0.0095 | 0.000 | 0.000 |96.2 |05110 | 0.0089 | 0.000 |-0.001 |95.6
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True | True Proposed measurement error adjusted Observed biomarker x LME estimator (Up)ime
y | C-Index | estimator M
(SE) C- SE MSE | Bias Cov |C- SE MSE | Bias Cov |C- SE MSE | Bias Cov
Index Index Index

0.25 (()05(?]?59) 0.5538 | 0.0154 | 0.001 -0.016 | 81.8 | 0.5385 | 0.0145 | 0.001 -0.031 | 42.2 ]0.5496 | 0.0136 | 0.001 -0.020 | 68.6
0.50 (()06(?]%3‘1) 0.6055 | 0.0188 | 0.001 -0.030 | 65.0 | 0.5730 | 0.0155 | 0.004 -0.062 | 2.4 0.5921 | 0.0150 | 0.002 -0.043 | 19.2
0.75 ?06(?1231) 0.6508 | 0.0280 | 0.003 -0.042 | 45.6 ] 0.5981 | 0.0157 | 0.009 -0.095 | 0.0 0.6241 | 0.0158 | 0.005 -0.069 |04
1 (()07(‘)1]:!-56) 0.6892 | 0.0235 | 0.003 -0.052 | 35.8 | 0.6164 | 0.0161 | 0.016 -0.125 | 0.0 0.6465 | 0.0157 | 0.009 -0.095 | 0.0
Measurement error o2 = 2.5
0 (()05(:)%879) 0.5115 | 0.0093 | 0.000 -0.000 | 954 1 0.5119 | 0.0095 | 0.000 0.000 96.6 | 0.5108 | 0.0087 | 0.000 -0.001 | 954
0.25 ?0506]?578) 0.5515 | 0.0169 | 0.001 -0.018 | 81.2 | 0.5363 | 0.0152 | 0.001 -0.033 | 41.2 ]0.5467 | 0.0146 | 0.001 -0.023 | 65.8
0.50 (()063551) 0.6026 | 0.0193 | 0.001 -0.033 | 59.6 2'5677 0.0154 | 0.005 -0.068 | 1.2 0.5874 | 0.0148 | 0.003 -0.048 | 11.0
0.75 ?6631231) 0.6469 | 0.0219 | 0,003 |-0.046 | 41.0 | 05902 | 0.0156 | 0.011 |-0103 | 0.0 |0.6171 |0.0158 | 0.006 |-0.076 | 0.0
1 (()0761]:!'57) 0.6843 | 0.0249 | 0.004 -0.057 | 33.4 |0.6068 | 0.0161 | 0.018 -0.135 | 0.0 0.6374 | 0.0160 | 0.011 -0.104 | 0.0
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Figure 7.4: C-Index estimates for 30% censoring. Square indicates the estimate from the proposed joint model, circle the Cox model with
observed biomarker and triangle the Cox model with estimated random intercept from LME model. The horizontal lines are the true
value of the association parameter.
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Figure 7.5: C-Index estimates for 50% censoring. Square indicates the estimate from the proposed joint model, circle the Cox model with
observed biomarker and triangle the Cox model with estimated random intercept from LME model. The horizontal lines are the true
value of the association parameter.
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Figure 7.6: C-Index estimates for 70% censoring. Square indicates the estimate from the proposed joint model, circle the Cox model with
observed biomarker and triangle the Cox model with estimated random intercept from LME model. The horizontal lines are the true
value of the association parameter.
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7.5 Evaluate the accuracy of the proposed measurement-error
adjusted ROC curve

This simulation is aimed to evaluate the accuracy of the proposed time-dependent ROC
curve methodology by comparing the estimates of AUC(t), and sensitivity(t) and
specificity(t) at the optimal threshold value at t = t;, = 1, 2, 3, 4 for varying settings
of y, 62 and percentage of censoring. The validity of the proposed measurement error-
adjusted estimator M was evaluated by bias, MSE and coverage percentage with
respect to the true summaries at time t, and compared further with the ROC curve
summaries of the observed baseline biomarker value. To estimate the summaries for

the true and observed values, “risksetROC” library in R is used as in Section 7.4.

Table 7.3 - 7.7 present the bias, MSE and coverage percentage (from 500 simulated
datasets) for AUC(t), and sensitivity(t) and specificity(t) at the optimal threshold
value at t=t, =1,2,3,4 for 30% of censoring across varying association
parameters. The results for other percentages of censoring are tabulated and presented
in Appendix C (Table C.5-C.14). Figure 7.7 to 7.9 show the estimated AUC(t)
graphically. The ROC curve summary estimates from the proposed measurement error
adjusted biomarker provides more accurate estimates of AUC(t) with lower MSE and
bias, and higher coverage percentages across most settings of y. When there is no
association between the baseline biomarker and event-time y = 0, the AUC(t) is
estimated fairly close to the null value of 0.5 for both proposed model and the observed
biomarker. As expected, the AUC(t) decreases as the prediction time increases
because of weaker discriminatory potential as departing from the baseline. In some
settings, different pattern of coverage percentages can be observed as the prediction
time increases. However, the coverage percentage as displayed in Table 7.3 — 7.7 may
depend on the bias as higher bias produces narrow confidence interval while lower
bias produces wider confidence interval. It is also noted that, as the association

parameter becomes stronger, the coverage percentages decreases across all settings.
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Table 7.3: Time-dependent AUC, sensitivity, specificity for adjusted and observed biomarkers when y=0 and 30% censoring

t | True Adjusted Observed
AUC AUC(SE) | MSE | Bias Cov | Sensitivity | Specificity | AUC(SE) | MSE | Bias Cov | Sensitivity | Specificity
(SE) (SE) (SE) (SE) (SE)
Measurement error o2 = 0.25
1 0.5114 0.5111 0.0001 | -0.0003 95.2 0.5079 0.5079 0.5112 0.0001 | -0.0002 |94.2 | 0.5079 0.5079
(0.0089) | (0.0086) "~ 1(0.0061) (0.0062) (0.0083) (0.0060) (0.0059)
2 0.5114 0.5111 0.0001 | -0.0003 95.4 0.5079 0.5079 0.5112 0.0001 | -0.0002 |94.2 | 0.5078 0.5080
(0.0089) | (0.0086) " 1(0.0063) (0.0061) (0.0083) (0.0061) (0.0059)
3 0.5113 0.5111 0.0001 | -0.0003 95.0 0.5078 0.5079 0.5111 0.0001 | -0.0002 |94.0 |0.5079 0.5078
(0.0088) | (0.0085) " 1(0.0067) (0.0063) (0.0082) (0.0065) (0.0061)
4 0.5107 0.5106 0.0001 | 0.0000 94.8 0.5022 0.5130 0.5105 0.0001 | -0.0001 | 95.2 | 0.5020 0.5131
(0.0082) | (0.0082) " 1 (0.0175) (0.0139) (0.0078) (0.0173) (0.0141)
Measurement error o2 =0.5
1 0.5114 0.5111 0.0001 | -0.0003 95.0 0.5079 0.5078 0.5112 0.0001 | -0.0002 95.0 0.5079 0.5080
(0.0089) | (0.0087) " 1(0.0062) (0.0062) (0.0082) ' (0.0059) (0.0059)
5 0.5114 0.5111 0.0001 | -0.0003 95.2 0.5079 0.5078 0.5112 0.0001 | -0.0002 |94.8 |0.5079 0.5079
(0.0089) | (0.0087) "~ 1(0.0063) (0.0062) (0.0082) (0.0060) (0.0059)
3 0.5113 0.5111 0.0001 | -0.0003 95.4 0.5078 0.5078 0.5111 0.0001 | -0.0002 | 95.0 | 0.5080 0.5078
(0.0088) | (0.0086) " 1 (0.0067) (0.0064) (0.0082) (0.0064) (0.0060)
4 0.5107 0.5106 0.0001 | 0.0000 95.2 0.5020 0.5132 0.5106 0.0001 | -0.0001 |95.2 | 0.5020 0.5132
(0.0082) | (0.0083) "~ 1 (0.0175) (0.0140) (0.0079) (0.0175) (0.0142)
Measurement error o2 = 1.0
1 0.5114 0.5112 0.0001 | -0.0003 94.8 0.5079 0.5079 0.5113 95.0 0.5080 0.5080
(0.0089) | (0.0088) " |1 (0.0064) (0.0062) (0.0083) 0.0001 | -0.0001 ' (0.0059) (0.0059)
5 0.5114 0.5112 0.0001 | -0.0002 95.2 0.5079 0.5080 0.5113 95.0 0.5079 0.5081
(0.0089) | (0.0088) "~ 1 (0.0064) (0.0063) (0.0082) 0.0001 | -0.0001 ' (0.0060) (0.0059)
3 0.5113 0.5111 0.0001 | -0.0002 95.0 0.5078 0.5080 0.5113 95.2 0.5079 0.5081
(0.0088) | (0.0088) " 1 (0.0070) (0.0065) (0.0082) 0.0001 | -0.0001 ' (0.0063) (0.0063)

155



True Adjusted Observed
AUC AUC(SE) | MSE | Bias Cov | Sensitivity | Specificity | AUC(SE) | MSE | Bias Cov | Sensitivity | Specificity
(SE) (SE) (SE) (SE) (SE)
0.5107 0.5108 0.0001 | 0.0000 95 4 0.5020 0.5133 0.5107 954 0.5021 0.5132
(0.0082) ] (0.0084) ~ 1 (0.0177) (0.0141) (0.0080) 0.0001 | 0.0000 ' (0.0178) (0.0141)
easurement error o2 = 1.5
0.5114 0.5112 0.0001 | -0.0002 95. 0.5080 0.5079 0.5114 0.0001 | 0.0000 950 0.5081 0.5082
(0.0089) ] (0.0088) "~ 1 (0.0064) (0.0062) (0.0083) ' (0.0060) (0.0059)
0.5114 0.5114 0.0001 | 0.0000 95 4 0.5080 0.5081 0.5114 0.0001 | 0.0000 950 0.5080 0.5082
(0.0089) | (0.0089) " 1 (0.0064) (0.0064) (0.0083) ' (0.0060) (0.0060)
0.5113 0.5113 0.0001 | 0.0000 95.2 0.5080 0.5080 0.5114 0.0001 | 0.0000 948 0.5079 0.5082
(0.0088) ] (0.0088) "~ 1(0.0070) (0.0064) (0.0082) ' (0.0063) (0.0063)
0.5107 0.5108 0.0001 | 0.0001 950 0.5022 0.5133 0.5108 0.0001 | 0.0001 958 0.5022 0.5133
(0.0082) ] (0.0085) 1 (0.0178) (0.0141) (0.0080) ' (0.0179) (0.0142)
easurement error o2 = 2.0
0.5114 0.5113 0.0001 | -0.0001 95.4 0.5080 0.5080 0.5115 0.0001 | 0.0001 952 0.5081 0.5082
(0.0089) | (0.0088) " 1(0.0063) (0.0063) (0.0083) ' (0.0060) (0.0059)
0.5114 0.5115 0.0001 | 0.0001 95 4 0.5081 0.5082 0.5115 0.0001 | 0.0001 95 2 0.5081 0.5082
(0.0089) | (0.0089) " 1 (0.0065) (0.0063) (0.0083) ' (0.0061) (0.0060)
0.5113 0.5115 0.0001 | 0.0001 95.2 0.5082 0.5081 0.5115 0.0001 | 0.0001 948 0.5081 0.5081
(0.0088) | (0.0089) "~ 1(0.0071) (0.0064) (0.0083) ' (0.0064) (0.0063)
0.5107 0.5109 0.0001 | 0.0002 946 0.5024 0.5132 0.5109 0.0001 | 0.0002 96.2 0.5023 0.5133
(0.0082) ] (0.0085) 1 (0.0179) (0.0141) (0.0081) ' (0.0179) (0.0142)
easurement error o2 = 2.5
0.5121 0.5115 0.0001 | -0.0006 956 0.5081 0.5081 0.5117 0.0001 | -0.0004 96.4 0.5082 0.5084
(0.0089) | (0.0089) " 1 (0.0064) (0.0063) (0.0086) ' (0.0061) (0.0062)
0.5120 0.5117 0.0001 | -0.0003 94.8 0.5082 0.5083 0.5117 0.0001 | -0.0004 96.2 0.5083 0.5082
(0.0088) | (0.0091) " 1(0.0066) (0.0065) (0.0086) ' (0.0062) (0.0062)
0.5120 0.5118 0.0001 | -0.0003 95 4 0.5082 0.5085 0.5117 0.0001 | -0.0004 96.0 0.5082 0.5083
(0.0088) ] (0.0091) " 1(0.0071) (0.0068) (0.0086) ' (0.0066) (0.0064)
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t | True Adjusted Observed
AUC AUC(SE) | MSE | Bias Cov | Sensitivity | Specificity | AUC(SE) | MSE | Bias Cov | Sensitivity | Specificity
(SE) (SE) (SE) (SE) (SE)

4 0.5115 0.5112 0.0001 | -0.0003 95.0 0.5030 0.5130 0.5110 0.0001 | -0.0005 958 0.5033 0.5125
(0.0088) ] (0.0089) " 1 (0.0179) (0.0145) (0.0084) ' (0.0174) (0.0142)

Table 7.4: Time-dependent AUC, sensitivity, specificity for adjusted and observed biomarkers when y=0.25 and 30% censoring

Predicted True Adjusted —— —— Observed —— ——
Time ¢ (ASLIJE? AUC(SE) | MSE | Bias | Cov (Sgg'“"'ty (sz’é)c'f'c'ty AUC(SE) | MSE |Bias | Cov (Sseg"“"'ty (Sspg'f'c'ty
Measurement error o2 = 0.25
1 0.5701 | 0.5652 0.0002 | -0.0049 | 93.0 | 0.5464 0.5460 0.5630 0.0003 | -0.0071 | 91.4 | 0.5447 0.5446
(0.0146) | (0.0144) (0.0105) | (0.0104) | (0.0141) (0.0102) | (0.0102)
5 0.5694 0.5646 0.0002 | -0.0048 | 93.4 | 0.5461 0.5456 0.5625 0.0002 | -0.0070 | 91.6 | 0.5444 0.5442
(0.0143) | (0.0141) (0.0105) | (0.0103) | (0.0138) (0.0101) | (0.0101)
3 0.5677 | 0.5630 0.0002 | -0.0047 | 92.8 | 0.5450 0.5446 0.5611 0.0002 | -0.0066 | 91.2 | 0.5436 0.5433
(0.0139) | (0.0137) (0.0106) | (0.0104) | (0.0135) (0.0106) | (0.0101)
4 0.5626 0.5581 0.0002 | -0.0045 | 94.4 | 0.5425 0.5410 0.5568 0.0029 | -0.0520 | 93.4 | 0.5408 0.5410
(0.0154) | (0.0147) (0.0189) | (0.0183) | (0.0150) (0.0184) | (0.0192)
Measurement error % = 0.5
1 0.5701 0.5623 0.0003 | -0.0077 | 92.0 | 0.5444 0.5441 0.5574 0.0004 | -0.0126 | 85.2 | 0.5408 0.5407
(0.0146) | (0.0147) (0.0107) | (0.0105) | (0.0141) (0.0102) | (0.0102)
5 0.5694 | 0.5618 0.0003 | -0.0077 | 92.4 | 0.5441 0.5436 0.5571 0.0003 | -0.0124 | 85.4 | 0.5405 0.5404
(0.0143) | (0.0143) (0.0106) | (0.0105) | (0.0138) (0.0100) | (0.0101)
3 0.5677 0.5601 0.0002 | -0.0076 | 92.4 | 0.5430 0.5425 0.5560 0.0003 | -0.0117 | 86.0 | 0.5399 0.5397
(0.0139) | (0.0139) (0.0109) | (0.0204) | (0.0136) (0.0106) | (0.0101)
4 0.5626 | 0.5552 0.0003 | -0.0074 | 93.4 | 0.5402 0.5390 0.5523 0.0003 | -0.0103 | 90.0 | 0.5376 0.5376
(0.0154) | (0.0144) (0.0181) | (0.0187) | (0.0147) (0.0177) | (0.0190)
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Predicted | |TUe | Adlusted — ____| Observed ___ —
Time ¢ é%? AUC(SE) | MSE | Bias | Cov ?Seg'“‘”ty ?Spg'f'c'ty AUC(SE) | MSE |Bias | Cov (Sseg'“‘”ty (Sg’é;:'f'c'ty
Measurement error 03 =1.0
1 0.5701 0.5587 0.0004 | -0.0114 | 87.8 | 0.5417 0.5415 0.5498 0.0006 | -0.0203 | 70.0 | 0.5353 0.5353
(0.0146) | (0.0151) (0.0112) | (0.0107) | (0.0142) (0.0101) | (0.0103)
2 0.5694 0.5583 0.0003 | -0.0111 | 87.6 | 0.5415 0.5412 0.5495 0.0006 | -0.0199 | 70.2 | 0.5352 0.5350
(0.0143) | (0.0148) (0.0109) | (0.0107) | (0.0140) (0.0101) | (0.0102)
3 0.5677 0.5566 0.0003 | -0.0111 | 87.0 | 0.5406 0.5399 0.5487 0.0005 | -0.0190 | 70.6 | 0.5348 0.5344
(0.0139) | (0.0142) (0.0110) | (0.0207) | (0.0137) (0.0184) | (0.0103)
4 0.5626 0.5515 0.0003 | -0.0111 | 88.4 | 0.5374 0.5366 0.5458 0.0005 | -0.0168 | 76.8 | 0.5329 0.5330
(0.0154) | (0.0141) (0.0183) | (0.0177) | (0.0145) (0.0184) | (0.0186)
Measurement error o2 = 1.5
1 0.5701 0.5561 0.0004 | -0.0140 | 83.8 | 0.5400 0.5397 0.5446 0.0009 | -0.0255 | 59.4 | 0.5361 0.5316
(0.0146) | (0.0155) (0.0113) | (0.0111) | (0.0143) (0.0102) | (0.0103)
2 0.5694 0.5561 0.0004 | -0.0133 | 84.8 | 0.5399 0.5397 0.5443 0.0008 | -0.0251 | 59.2 | 0.5315 0.5314
(0.0143) | (0.0152) (0.0112) | (0.0110) | (0.0141) (0.0102) | (0.0102)
3 0.5677 0.5544 0.0004 | -0.0132 | 84.0 | 0.5387 0.5387 0.5437 0.0008 | -0.0239 | 60.8 | 0.5310 0.5311
(0.0139) | (0.0145) (0.0112) | (0.0108) | (0.0139) (0.0103) | (0.0104)
4 0.5626 0.5494 0.0004 | -0.0132 | 84.2 | 0.5364 0.5345 0.5412 0.0007 | -0.0214 | 66.4 | 0.5295 0.5298
(0.0154) | (0.0141) (0.0180) | (0.0176) | (0.0144) (0.0181) | (0.0187)
Measurement error o2 = 2.0
1 0.5701 0.5542 0.0005 | -0.0159 | 81.0 | 0.5386 0.5382 0.5407 0.0011 | -0.0294 | 47.8 | 0.5290 0.5288
(0.0146) | (0.0156) (0.0115) | (0.0111) | (0.0143) (0.0103) | (0.0103)
2 0.5694 0.5545 0.0005 | -0.0150 | 82.4 | 0.5387 0.5386 0.5406 0.0010 | -0.0289 | 49.2 | 0.5288 0.5287
(0.0143) | (0.0154) (0.0114) | (0.0110) | (0.0142) (0.0102) | (0.0103)
3 0.5677 0.5529 0.0004 | -0.0147 | 81.6 | 0.5379 0.5373 0.5401 0.0010 | -0.0276 | 52.0 | 0.5284 0.5285
(0.0139) | (0.0148) (0.0113) | (0.0178) | (0.0140) (0.0106) | (0.0103)
4 0.5626 0.5479 0.0004 | -0.0147 | 79.8 | 0.5349 0.5339 0.5379 0.0008 | -0.0247 | 58.4 | 0.5275 0.5269
(0.0154) | (0.0141) (0.0180) | (0.0178) | (0.0143) (0.0177) | (0.0183)
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Predicted True Adjusted Observed
. AUC . Sensitivity | Specificity . Sensitivity | Specificity

Timet (SE) AUC(SE) | MSE | Bias Cov (SE) (SE) AUC(SE) | MSE | Bias Cov (SE) (SE)

Measurement error 03 =25

1 0.5701 | 0.5525 0.0006 | -0.0175 | 78.8 | 0.5375 0.5370 0.5378 0.0013 | -0.0323 | 38.0 | 0.5269 0.5267
(0.0146) | (0.0158) (0.0116) (0.0111) (0.0144) (0.0103) (0.0103)

9 0.5694 | 0.5531 0.0005 | -0.0163 | 80.2 | 0.5378 0.5376 0.5376 0.0012 | -0.0318 | 39.4 | 0.5268 0.5266
(0.0143) | (0.0157) (0.0116) (0.0112) (0.0143) (0.0103) (0.0102)

3 0.5677 | 0.5517 0.0005 | -0.0159 | 80.4 | 0.5370 0.5366 0.5372 0.0011 | -0.0305 | 41.8 | 0.5268 0.5260
(0.0139) | (0.0150) (0.0115) (0.0111) (0.0140) (0.0104) (0.0104)

4 0.5626 | 0.5467 0.0005 | -0.0159 | 79.0 | 0.5346 0.5325 0.5352 0.0010 | -0.0274 | 50.6 | 0.5264 0.5242
(0.0154) | (0.0141) (0.0176) (0.0180) (0.0143) (0.0180) (0.0179)

Table 7.5: Time-dependent AUC, sensitivity, specificity for adjusted and observed biomarkers when y=0.5 and 30% censoring
Predicted True Adjusted Observed
. AUC . Sensitivity | Specificity . Sensitivity | Specificity

Time t (SE) AUC(SE) | MSE | Bias Cov (SE) (SE) AUC(SE) | MSE | Bias Cov (SE) (SE)

Measurement error g% = 0.25

1 0.6366 | 0.6267 0.0003 | -0.0099 90.2 0.5908 0.5900 0.6194 0.0005 | -0.0172 79.8 0.5853 0.5851
(0.0154) | (0.0154) “1(0.0115) | (0.0117) | (0.0147) *1(0.0110) | (0.0110)

5 0.6324 | 0.6225 0.0003 | -0.0099 89.2 0.5884 0.5865 0.6166 0.0004 | -0.0158 29.4 0.5836 0.5827
(0.0144) | (0.0143) 7 1(0.0113) (0.0110) (0.0138) " 1(0.0108) (0.0105)

3 0.6239 | 0.6143 0.0003 | -0.0096 894 0.5832 0.5802 0.6107 0.0003 | -0.0132 83.4 0.5801 0.5780
(0.0133) | (0.0130) " 1(0.0112) (0.0108) (0.0130) " 1(0.0111) (0.0107)

4 0.6096 | 0.6001 0.0004 | -0.0095 91.2 0.5732 0.5705 0.5996 0.0003 | -0.0100 90.2 0.5726 0.5709
(0.0174) | (0.0164) =1 (0.0183) (0.0198) (0.0143) 1 (0.0186) (0.0200)
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Predicted True Adjusted — —— Observed — ——
Time ¢ é%? AUC(SE) | MSE | Bias | Cov f‘seg'“"'ty ?Spg'f'c'ty AUC(SE) | MSE | Bias Cov (Sseg'“‘”ty ?S'C’é;'f'c'ty
Measurement error 03 =05
1 0.6366 | 0.6214 0.0005 | -0.0152 83.4 0.5869 0.5863 0.6073 0.0011 | -0.0293 488 0.5767 0.5763
(0.0154) | (0.0160) " 1(0.0120) (0.0120) (0.0146) " 1(0.0108) (0.0109)
2 0.6324 ]0.6172 0.0004 | -0.0152 814 0.5843 0.5829 0.6052 0.0009 | -0.0272 514 0.5753 0.5747
(0.0144) | (0.0147) " 1(0.0114) (0.0111) (0.0138) " 1 (0.0105) (0.0105)
3 0.6239 | 0.6088 0.0004 | -0.0151 800 0.5793 0.5761 0.6008 0.0007 | -0.0231 58.0 0.5724 0.5714
(0.0133) | (0.0132) " 1(0.0111) (0.0111) (0.0131) " 1(0.0112) (0.0103)
4 0.6096 | 0.5945 0.0005 | -0.0151 838 0.5694 0.5661 0.5918 0.0006 | -0.0178 80.0 0.5670 0.5653
(0.0174) | (0.0158) " 1(0.0171) (0.0184) (0.0161) "1 (0.0190) (0.0186)
Measurement error o2 = 1.0
1 0.6366 | 0.6147 0.0008 | -0.0220 749 0.5821 0.5814 0.5913 0.0023 | -0.0454 13.0 0.5652 0.5647
(0.0154) | (0.0170) "~ 1(0.0128) (0.0124) (0.0146) " 1(0.0108) (0.0108)
2 0.6324 | 0.6109 0.0007 | -0.0215 71.0 0.5797 0.5785 0.5899 0.0020 | -0.0425 14.6 0.5642 0.5638
(0.0144) | (0.0155) " 1(0.0120) (0.0117) (0.0141) " 1(0.0106) (0.0105)
3 0.6239 | 0.6024 0.0006 | -0.0215 68.4 0.5744 0.5781 0.5870 0.0015 | -0.0369 236 0.5622 0.5617
(0.0133) | (0.0137) " 1(0.0115) (0.0111) (0.0135) " 1(0.0108) (0.0107)
4 0.6096 | 0.5881 0.0007 | -0.0215 68.2 0.5645 0.5618 0.5804 0.0011 | -0.0292 512 0.5591 0.5567
(0.0174) | (0.0152) "~ 1(0.0170) (0.0180) (0.0155) "~ 1(0.0172) (0.0173)
Measurement error oﬁ =15
1 0.6366 | 0.6101 0.0010 | -0.0265 67.0 0.5789 0.5780 0.5808 0.0033 | -0.0558 36 0.5576 0.5573
(0.0154) | (0.0177) " 1(0.0134) (0.0129) (0.0147) ' (0.0108) (0.0107)
5 0.6324 | 0.6071 0.0009 | -0.0254 66.2 0.5771 0.5756 0.5798 0.0030 | -0.0526 48 0.5571 0.5565
(0.0144) | (0.0162) "~ 1(0.0126) (0.0119) (0.0142) ' (0.0106) (0.0105)
3 0.6239 | 0.5988 0.0008 | -0.0251 58.4 0.5717 0.5692 0.5776 0.0023 | -0.0463 8.2 0.5554 0.5551
(0.0133) | (0.0142) " 1(0.0118) (0.0112) (0.0137) ' (0.0107) (0.0108)
4 0.6096 | 0.5845 0.0009 | -0.0251 59.0 0.5617 0.5595 0.5724 0.0016 | -0.0372 334 0.5525 0.5516
(0.0174) ] (0.0150) "1 (0.0178) (0.0174) (0.0152) " | (0.0165) (0.0166)
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Predicted | 1u¢ | Adjusted — ____| Observed ___ —
Time ¢ é%? AUC(SE) | MSE | Bias | Cov f‘seg'“"'ty ?Spg'f'c'ty AUC(SE) | MSE | Bias Cov (Sseg'“‘”ty ?S'C’é;'f'c'ty
Measurement error o2 = 2.0
1 0.6366 0.6064 0.0012 | -0.0302 62.4 0.5764 0.5753 0.5733 0.0042 | -0.0633 10 0.5522 0.5520
(0.0154) | (0.0183) “*1(0.0138) | (0.0133) | (0.0147) ' 1(0.0109) | (0.0106)
2 0.6324 0.6042 0.0011 | -0.0283 614 0.5749 0.5735 0.5726 0.0042 | -0.0633 18 0.5517 0.5514
(0.0144) | (0.0168) *1(0.0128) | (0.0124) | (0.0143) © 1 (0.0107) | (0.0105)
3 0.6239 0.5962 0.0010 | -0.0277 542 0.5699 0.5673 0.5708 0.0038 | -0.0599 26 0.5504 0.5503
(0.0133) | (0.0147) “1(0.0122) | (0.0112) | (0.0138) © | (0.0106) | (0.0108)
4 0.6096 0.5821 0.0010 | -0.0275 526 0.5603 0.5574 0.5664 0.0030 | -0.0531 18.4 0.5480 0.5474
(0.0174) | (0.0150) ©1(0.0180) | (0.0164) | (0.0150) “*1(0.0165) | (0.0168)
Measurement error o2 = 2.5
1 0.6366 0.6033 0.0015 | -0.0333 558 0.5745 0.5727 0.5676 0.0050 | -0.0691 0.2 0.5480 0.5480
(0.0154) | (0.0188) ©1(0.0141) | (0.0136) | (0.0147) “ 1(0.0107) | (0.0107)
2 0.6324 0.6017 0.0012 | -0.0308 58.0 0.5732 0.5717 0.5670 0.0045 | -0.0655 06 0.5476 0.5476
(0.0144) | (0.0173) ' 1(0.0133) | (0.0126) | (0.0144) © ] (0.0106) | (0.0105)
3 0.6239 0.5942 0.0011 | -0.0297 490 0.5685 0.5658 0.5655 0.0036 | -0.0584 0.8 0.5498 0.5464
(0.0133) | (0.0151) 1 (0.0126) | (0.0161) | (0.0139) © 1(0.0107) | (0.0106)
4 0.6096 0.5804 0.0011 | -0.0292 472 0.5588 0.5564 0.5617 0.0025 | -0.0480 11.0 0.5438 0.5447
(0.0174) | (0.0151) 1 (0.0182) | (0.0161) | (0.0148) 1 (0.0167) | (0.0168)
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Table 7.6: Time-dependent AUC, sensitivity, specificity for adjusted and observed biomarkers when y=0.75 and 30% censoring

Predi True Adjusted Observed

redicted AUC

Time t (SE) AUC(SE) | MSE | Bias Cov | Sensitivity | Specificity | AUC(SE) | MSE Bias Cov | Sensitivity | Specificity

Measurement error o2 = 0.25

1 0.6955 | 0.6815 0.0005 | -0.0141 86.2 0.6320 0.6297 0.6673 0.0010 | -0.0282 53.6 0.6211 0.6197
(0.0153) | (0.0161) "~ 1 (0.0125) (0.0129) (0.0149) " 1 (0.0115) (0.0118)

5 0.6839 | 0.6694 0.0004 | -0.0145 83.4 0.6248 0.6195 0.6597 0.0008 | -0.0242 59.0 0.6162 0.6134
(0.0145) | (0.0145) " 1(0.0121) (0.0117) (0.0138) " 1(0.0114) (0.0111)

3 0.6677 | 0.6531 0.0004 | -0.0147 83.0 0.6138 0.6067 0.6487 0.0005 | -0.0190 71.0 0.6085 0.6054
(0.0136) | (0.0134) " 1 (0.0120) (0.0115) (0.0131) "1 (0.0118) (0.0118)

4 0.6468 | 0.6318 0.0005 | -0.0150 85.2 0.5984 0.5913 0.6335 0.0005 | -0.0133 88.8 0.5992 0.5934
(0.0182) | (0.0172) "~ 1 (0.0180) (0.0195) (0.0177) 1 (0.0174) (0.0192)

Measurement error o2 = 0.5

1 0.6955 | 0.6742 0.0007 | -0.0213 76.2 0.6268 0.6243 0.6485 0.0024 | -0.0471 12.0 0.6069 0.6061
(0.0153) | (0.0172) "~ 1 (0.0135) (0.0133) (0.0150) " 1(0.0114) (0.0117)

5 0.6839 | 0.6621 0.0007 | -0.0218 20.4 0.6192 0.6142 0.6429 0.0019 | -0.0410 14.4 0.6035 0.6015
(0.0145) | (0.0152) "1 (0.0125) (0.0120) (0.0139) " 1(0.0108) (0.0112)

3 0.6677 | 0.6454 0.0007 | -0.0223 62.6 0.6085 0.6009 0.6348 0.0013 | -0.0329 316 0.5979 0.5955
(0.0136) | (0.0136) " 1 (0.0121) (0.011) (0.0133) " 1(0.0114) (0.0116)

4 0.6468 | 0.6239 0.0008 | -0.0228 20.6 0.5933 0.5913 0.6231 0.0008 | -0.0236 20.8 0.5902 0.5873
(0.0182) | (0.0165) "1 (0.0174) (0.0179) (0.0167) "1 (0.0167) (0.0186)

Measurement error o2 = 1.0

1 0.6955 | 0.6651 0.0013 | -0.0304 63.0 0.6201 0.6175 0.6244 0.0053 | -0.0711 0.4 0.5893 0.5885
(0.0153) | (0.0189) " | (0.0149) (0.0142) (0.0151) ' (0.0112) (0.0116)

9 0.6839 | 0.6539 0.0012 | -0.0300 56.2 0.6131 0.6081 0.6209 0.0042 | -0.0630 04 0.5870 0.5858
(0.0145) | (0.0164) =1 (0.0133) (0.0126) (0.0142) ' (0.0108) (0.0110)

3 0.6677 | 0.6371 0.0011 | -0.0307 426 0.6020 0.5950 0.6158 0.0029 | -0.0519 4.0 0.5835 0.5822
(0.0136) | (0.0142) " | (0.0125) (0.0117) (0.0136) ' (0.0112) (0.0113)
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Predi True Adjusted Observed

redicted AUC

Time t (SE) AUC(SE) | MSE | Bias Cov | Sensitivity | Specificity | AUC(SE) | MSE Bias Cov | Sensitivity | Specificity

. 0.6468 |0.6154 | 0.0012 | -0.0314 458 0.5865 0.5793 0.6078 | 0.0018 | -0.0389 0.6 0.5791 0.5761
(0.0182) | (0.0156) " | (0.0175) (0.0173) (0.0156) "1 (0.0159) (0.0173)

Measurement error g% = 1.5

1 0.6955 | 0.6589 0.0018 | -0.0366 55 2 0.6158 0.6127 0.6092 0.0077 | -0.0863 0.0 0.5781 0.5776
(0.0153) | (0.0203) "~ 1 (0.0159) (0.0150) (0.0151) ' (0.0112) (0.0114)

5 0.6839 | 0.6489 0.0015 | -0.0350 48.6 0.6094 0.6044 0.6068 0.0062 | -0.0771 0.0 0.5765 0.5758
(0.0145) | (0.0175) " 1(0.0143) (0.0130) (0.0144) ' (0.0109) (0.0109)

3 0.6677 | 0.6324 0.0015 | -0.0353 340 0.5986 0.5917 0.6031 0.0044 | -0.0647 0.6 0.5739 0.5733
(0.0136) | (0.0148) " 1(0.0131) (0.0118) (0.0138) ' (0.0112) (0.0112)

4 0.6468 | 0.6108 0.0015 | -0.0360 359 0.5834 0.5758 0.5970 0.0027 | -0.0497 0.8 0.5706 0.5688
(0.0182) | (0.0154) = 1(0.0172) (0.0170) (0.0151) ' (0.0154) (0.0166)

Measurement error g% = 2.0

1 0.6955 | 0.6540 0.0022 | -0.0416 48.2 0.6125 0.6087 0.5985 0.0096 | -0.0970 0.0 0.5705 0.5699
(0.0153) | (0.0214) "~ 1 (0.0168) (0.0156) (0.0151) ' (0.0112) (0.0112)

9 0.6839 | 0.6451 0.0018 | -0.0388 43.6 0.6067 0.6017 0.5967 0.0078 | -0.0872 0.0 0.5692 0.5686
(0.0145) | (0.0185) " 1 (0.0149) (0.0137) (0.0145) ' (0.0109) (0.0109)

3 0.6677 | 0.6293 0.0017 | -0.0384 99.4 0.5963 0.5893 0.5938 0.0057 | -0.0739 0.0 0.5672 0.5666
(0.0136) | (0.0154) "1 (0.0134) (0.0121) (0.0139) ' (0.0114) (0.0110)

4 0.6468 | 0.6079 0.0017 | -0.0389 98.8 0.5829 0.5721 0.5889 0.0036 | -0.0579 3. 0.5644 0.5631
(0.0182) | (0.0153) "1 (0.0172) (0.0162) (0.0148) ' (0.0147) (0.0155)

Measurement error g% = 2.5

1 0.6955 | 0.6495 0.0026 | -0.0459 44.4 0.6096 0.6052 0.5906 0.0112 | -0.1049 0.0 0.5646 0.5643
(0.0152) | (0.0224) "1 (0.0174) (0.0163) (0.0151) ' (0.0111) (0.0111)

5 0.6839 | 0.6419 0.0021 | -0.0420 38.8 0.6044 0.5991 0.5891 0.0092 | -0.0948 0.0 0.5636 0.5632
(0.0145) | (0.0193) " 1 (0.0155) (0.0140) (0.0145) ' (0.0108) (0.0109)

3 0.6678 | 0.6269 0.0019 | -0.0409 97 4 0.5944 0.5875 0.5868 0.0068 | -0.0810 0.0 0.5620 0.5617
(0.0136) | (0.0159) " | (0.0140) (0.0124) (0.0140) ' (0.0112) (0.0109)
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. True Adjusted Observed
Predicted AUC
Time t (SE) AUC(SE) | MSE | Bias Cov | Sensitivity | Specificity | AUC(SE) | MSE Bias Cov | Sensitivity | Specificity
. 0.6468 | 0.6058 0.0019 | -0.0410 | ,,, 0.5810 0.5710 0.5826 0.0043 | -0.0641 | | 0.5593 0.5591
(0.0182) | (0.0155) 1(0.0179) | (0.0154) | (0.0145) ' 1(0.0144) | (0.0151)

Table 7.7: Time-dependent AUC, sensitivity, specificity for adjusted and observed biomarkers when y=1.0 and 30% censoring

Predi True Adjusted Observed

_redlcted AUC

Time (SE) AUC(SE) | MSE | Bias Cov | Sensitivity | Specificity | AUC(SE) | MSE | Bias Cov | Sensitivity | Specificity

Measurement error g% = 0.25

1 0.7433 | 0.7256 0.0006 | -0.0176 810 0.6676 0.6620 0.7045 0.0017 | -0.0388 274 0.6499 0.6470
(0.0148) | (0.0160) ' (0.0132) (0.0134) (0.0152) " 1(0.0120) (0.0127)

9 0.7230 | 0.7046 0.0005 | -0.0184 758 0.6538 0.6439 0.6915 0.0012 | -0.0315 36.2 0.6413 0.6361
(0.0139) | (0.0143) ' (0.0125) (0.0121) (0.0138) " 1(0.0115) (0.0117)

3 0.7007 | 0.6816 0.0005 | -0.0191 0.6 0.6380 0.6253 0.6767 0.0008 | -0.0240 570 0.6306 0.6248
(0.0139) | (0.0136) ' (0.0128) (0.0122) (0.0135) " 1(0.0122) (0.0128)

4 0.6769 | 0.6570 0.0007 | -0.0199 79.8 0.6202 0.6067 0.6599 0.0006 | -0.0170 84.4 0.6191 0.6123
(0.0195) | (0.0181) ' (0.0190) (0.0184) (0.0185) "~ (0.0173) (0.0201)

Measurement error % = 0.5

1 0.7433 | 0.7171 0.0010 | -0.0262 67.0 0.6609 0.6554 0.6797 0.0043 | -0.0635 18 0.6308 0.6287
(0.0148) | (0.0173) ‘ (0.0142) (0.0139) (0.0154) ' (0.0119) (0.0126)

2 0.7230 | 0.6960 0.0010 | -0.0270 576 0.6471 0.6374 0.6705 0.0030 | -0.0525 44 0.6247 0.6210
(0.0139) | (0.0150) ' (0.0132) (0.0123) (0.0141) ' (0.0114) (0.0115)

3 0.7007 | 0.6726 0.0010 | -0.0281 470 0.6312 0.6187 0.6597 0.0019 | -0.0410 13.2 0.6172 0.6128
(0.0139) | (0.0138) ' (0.0132) (0.0121) (0.0136) "~ 1(0.0120) (0.0122)

4 0.6769 | 0.6475 0.0012 | -0.0294 60.2 0.6125 0.6002 0.6470 0.0012 | -0.0299 58.4 0.6088 0.6035
(0.0195) | (0.0173) ' (0.0182) (0.0171) (0.0172) "~ | (0.0165) (0.0180)
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Predi True Adjusted Observed

redicted AUC

Time (SE) AUC(SE) | MSE | Bias Cov | Sensitivity | Specificity | AUC(SE) | MSE | Bias Cov | Sensitivity | Specificity

Measurement error % = 1.0

1 0.7433 | 0.7062 0.0017 | -0.0370 498 0.6530 0.6470 0.6490 0.0091 | -0.0943 00 0.6076 0.6062
(0.0148) | (0.0192) " 1(0.0158) (0.0149) (0.0157) ' (0.0119) (0.0122)

9 0.7230 | 0.6866 0.0016 | -0.0364 39.0 0.6399 0.6305 0.6434 0.0066 | -0.0796 0.0 0.6037 0.6019
(0.0139) | (0.0165) 1 (0.0143) | (0.0129) | (0.0145) ™~ 1(0.0113) | (0.0115)

3 0.7007 | 0.6633 0.0016 | -0.0374 278 0.6242 0.611 0.6366 0.0043 | -0.0641 04 0.5989 0.5970
(0.0139) | (0.0146) " 1(0.0136) (0.0122) (0.0138) ' (0.0117) (0.0121)

4 0.6769 | 0.6375 0.0018 | -0.0394 352 0.6058 0.5923 0.6281 0.0026 | -0.0488 146 0.5937 0.5909
(0.0195) | (0.0166) ' (0.0174) (0.0164) (0.0158) " | (0.0157) (0.0160)

Measurement error o2 = 1.5

1 0.7433 | 0.6987 0.0024 | -0.0445 43.4 0.6477 0.6408 0.6301 0.0130 | -0.1132 0.0 0.5935 0.5926
(0.0148) | (0.0209) " 1(0.0174) (0.0157) (0.0157) ' (0.0118) (0.0120)

2 0.7230 | 0.6809 0.0021 | -0.0421 304 0.6358 0.6259 0.6262 0.0096 | -0.0968 0.0 0.5910 0.5896
(0.0139) | (0.0178) ™ 1(0.0152) | (0.0136) | (0.0147) ™ 1(0.0113) | (0.0115)

3 0.7007 ] 0.6583 0.0020 | -0.0424 218 0.6203 0.6082 0.6213 0.0065 | -0.0793 0.0 0.5873 0.5863
(0.0139) | (0.0154) © 1(0.0141) | (0.0126) | (0.0140) ~ 1(0.0117) | (0.0117)

4 0.6769 | 0.6324 0.0022 | -0.0445 216 0.6020 0.5886 0.6150 0.0041 | -0.0619 18 0.5840 0.5812
(0.0195) | (0.0164) 1 (0.0177) (0.0157) (0.0152) ' (0.0144) (0.0165)

Measurement error o2 = 2.0

1 0.7433 | 0.6925 0.0031 | -0.0508 35.4 0.6436 0.6357 0.6170 0.0162 | -0.1263 0.0 0.5840 0.5831
(0.0148) | (0.0221) ™ 1(0.0183) | (0.0164) | (0.0157) ~ 1(0.0118) | (0.0117)

2 0.7230 | 0.6764 0.0025 | -0.0466 302 0.6323 0.6226 0.6226 0.0121 | -0.1089 00 0.5819 0.5810
(0.0139) | (0.0188) = 1(0.0159) (0.0141) (0.0141) ' (0.0112) (0.0114)

3 0.7007 | 0.6547 0.0024 | -0.0460 19.4 0.6173 0.6058 0.6058 0.0084 | -0.0904 0.0 0.5791 0.5785
(0.0139) | (0.0161) ™ 1(0.0147) | (0.0127) | (0.0127) ~ 1(0.0115) | (0.0116)

4 0.6770 | 0.6291 0.0026 | -0.0478 16.0 0.6001 0.5859 0.5859 0.0054 | -0.0718 10 0.5763 0.5746
(0.0194) | (0.0164) " 1(0.0179) (0.0152) (0.0152) ' (0.0140) (0.0150)
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Predi True Adjusted Observed

redicted AUC

Time (SE) AUC(SE) | MSE | Bias Cov | Sensitivity | Specificity | AUC(SE) | MSE | Bias Cov | Sensitivity | Specificity

Measurement error g% = 2.5

1 0.7433 10.6971 0.0037 | -0.0562 30.2 0.6397 0.6315 0.6073 0.0187 | -0.1360 0.0 0.5770 0.5762
(0.0148) | (0.0232) ' (0.0193) (0.0170) (0.0157) ' (0.0117) (0.0116)

9 0.7230 | 0.6725 0.0029 | -0.0505 979 0.6297 0.6193 0.6050 0.0142 | -0.1180 0.0 0.5752 0.5745
(0.0139) | (0.0197) ' (0.0167) (0.0146) (0.0149) ' (0.0112) (0.0114)

3 0.7006 | 0.6520 0.0027 | -0.0487 178 0.6154 0.6035 0.6019 0.0100 | -0.0987 0.0 0.5732 0.5722
(0.0141) | (0.0168) ' (0.0154) (0.0128) (0.0143) ' (0.0114) (0.0118)

4 0.6768 | 0.6268 0.0028 | -0.0500 14.0 0.5992 0.5835 0.5976 0.0065 | -0.0792 0.0 0.5704 0.5695
(0.0194) | (0.0164) ' (0.0180) (0.0152) (0.0148) ' (0.0141) (0.0149)
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Figure 7.7: AUC(t) estimates for 30% censoring. Square is the estimate from the proposed approach, and circle is from the Cox model
with observed biomarker. The horizontal lines are the true value of the association parameter.
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Figure 7.8: AUC(t) estimates for 50% censoring. Square is the estimate from the proposed approach, and circle is from the Cox model
with observed biomarker. The horizontal lines are the true value of the association parameter.
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Figure 7.9: AUC(t) estimates for 70% censoring. Square is the estimate from the proposed approach, and circle is from the Cox model
with observed biomarker. The horizontal lines are the true value of the association parameter.
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7.6 Use of the proposed estimator within some current methods

This simulation is aimed to demonstrate the use of proposed time-dependent ROC
curve approach within five time-dependent ROC curve approaches proposed under I/D
and C/D definitions [33], that were presented in Chapter 2 and 3. It is also aimed to
evaluate the implication of measurement error further. AUC(t) under C/D definition
(methods CD2, CD3, CD5, CD6) are estimated using “survivalROC” and“timeROC”
libraries in R and R codes provided by the authors [31, 48]. Under I/D definition
(method 1D3), the R code provided by the authors [48] is used.

Tables 7.8 — 7.12 present the estimated AUC(t) for the above 5 methodologies at t =
t, = 1,2,3,4 based on 500 simulated datasets for 30% censoring across varying y.
The results for other percentages of censoring are presented in Appendix C (Table
C.15-C.24). In each methodology, AUC(t) is estimated for the observed biomarker at
baseline and measurement error adjusted M. Similar to previous simulation results (see
Section 7.4 in Tables 7.3-7.7), the AUC(t) is estimated fairly close to the null value
of 0.5 for both observed and adjusted values of the biomarker when y = 0, and as
strength of the association becomes stronger (y moves towards 1.0), the estimated
AUC(t) are also increased by acceptable margins. As expected, AUC(t) estimated

from the observed value is lower across all settings.
It is observed that the estimated AUC(t) for methods under C/D have been increased

over prediction time as expected. However, that decreases for FP method, since under

I/D definition, the number of cases are defined only at the incident time (t in this case).
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Table 7.8: Time-dependent AUC, sensitivity and specificity for all current method when y=0 with 30% censoring

Predicted NNE KMCD IPCW CIPCW FP
Frecic AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Adjusted | Adjusted | Observed | Adjusted | Observed
Measurement error a2 = 0.25
1 0.4980 0.4995 0.4985 0.4988 0.4988 0.4991 0.4987 0.4990 0.5000 0.4999
(0.0292) | (0.0289) | (0.0461) | (0.0456) |(0.0459) | (0.0455) |(0.0459) |(0.0455) |(0.0358) | (0.0353)
5 0.4986 0.4995 0.4986 0.4990 0.4993 0.4997 0.4992 0.4996 0.5007 0.5015
(0.0208) | (0.0197) |(0.0327) |(0.0307) |(0.0321) |(0.0304) |(0.0321) |(0.0303) |(0.0253) | (0.0242)
3 0.4999 0.5005 0.5009 0.5013 0.5017 0.5021 0.5016 0.5020 0.5011 0.5008
(0.0205) | (0.0190) | (0.0370) |(0.0351) |(0.0316) |(0.0294) |(0.0317) |(0.0295) |(0.0261) | (0.0247)
4 0.4957 0.4952 0.4958 0.4973 0.5031 0.5032 0.5032 0.5034 0.5007 0.5018
(0.0451) (0.0428) (0.1412) (0.1404) (0.0709) (0.0680) (0.0710) (0.0681) (0.0783) (0.0779)
Measurement error a2 = 0.5
1 0.4975 0.4997 0.4992 0.4995 0.4995 0.4999 0.4993 0.4998 0.4999 0.5009
(0.0298) | (0.0293) | (0.0470) | (0.0466) |(0.0467) | (0.0465) |(0.0467) |(0.0465) |(0.0368) | (0.0345)
5 0.4983 0.4997 0.4988 0.4995 0.4996 0.5001 0.4995 0.5000 0.5009 0.5012
(0.0216) | (0.0196) | (0.0340) |(0.0303) |(0.0335) |(0.0302) |(0.0334) |(0.0301) |(0.0265) | (0.0242)
3 0.4998 0.5004 0.5011 0.5018 0.5019 0.5024 0.5018 0.5024 0.5014 0.5014
(0.0218) | (0.0191) | (0.0389) |(0.0351) |(0.0337) |(0.0295) |(0.0338) |(0.0296) |(0.0271) | (0.0255)
4 0.4958 0.4954 0.4960 0.4988 0.5033 0.5037 0.5033 0.5039 0.4981 0.5014
(0.0463) | (0.0435) |(0.1412) |(0.1397) |(0.0732) | (0.0681) |(0.0733) |(0.0681) |(0.0744) | (0.0786)
Measurement error o2 = 1.0
1 0.4967 0.5003 0.4998 0.5001 0.5001 0.5004 0.5000 0.5004 0.4997 0.5019
(0.0302) | (0.0308) |(0.0483) |(0.0479) |(0.0476) |(0.0479) |(0.0476) |(0.0478) |(0.0376) | (0.0351)
5 0.4978 0.4998 0.4992 0.4999 0.5000 0.5004 0.4998 0.5003 0.5016 0.5010
(0.0229) | (0.0197) | (0.0364) |(0.0300) |(0.0355) | (0.0300) |(0.0354) |(0.0299) |(0.0279) | (0.0240)
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Predicted NNE KMCD IPCW CIPCW FP

Time ¢ AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Adjusted | Adjusted | Observed | Adjusted | Observed

3 0.4995 0.5004 0.5012 0.5023 0.5021 0.5028 0.5019 0.5027 0.5009 0.5016
(0.0236) | (0.0193) (0.0420) | (0.0353) (0.0370) | (0.0297) |(0.0372) | (0.0298) (0.0279) | (0.0246)

4 0.4953 0.4949 0.4961 0.5010 0.5037 0.5043 0.5037 0.5044 0.5020 0.5022
(0.0482) | (0.0445) (0.1423) | (0.1390) (0.0772) | (0.0680) | (0.0773) | (0.0680) (0.0771) | (0.0762)

Measurement error ¢% = 1.5

1 0.4966 0.5006 0.5003 0.5005 0.5005 0.5008 0.5004 0.5008 0.5001 0.5016
(0.0302) | (0.0314) (0.0492) | (0.0486) (0.0482) | (0.0485) |(0.0482) | (0.0485) (0.0385) | (0.0352)

2 0.4974 0.5000 0.4994 0.5001 0.5003 0.5006 0.5001 0.5005 0.5014 0.5014
(0.0234) | (0.0197) (0.0382) | (0.0298) (0.0371) | (0.0299) |(0.0370) | (0.0297) (0.0290) | (0.0239)

3 0.4991 0.5006 0.5013 0.5026 0.5022 0.5029 0.5021 0.5029 0.5013 0.5016
(0.0249) | (0.0194) (0.0445) | (0.0355) (0.0396) | (0.0299) |(0.0398) | (0.0300) (0.0297) | (0.0259)

4 0.4952 0.4950 0.4965 0.5026 0.5039 0.5047 0.5038 0.5048 0.4999 0.5026
(0.0503) | (0.0442) (0.1436) | (0.1386) (0.0808) | (0.0682) | (0.0809) | (0.0681) (0.0763) | (0.0759)

Measurement error o2 = 2.0

1 0.4968 0.5009 0.5006 0.5008 0.5009 0.5011 0.5007 0.5010 0.5010 0.5023
(0.0305) | (0.0319) (0.0499) | (0.0491) (0.0487) | (0.0491) |(0.0487) | (0.0490) (0.0393) | (0.0352)

9 0.4972 0.5000 0.4997 0.5003 0.5005 0.5007 0.5003 0.5007 0.5010 0.5010
(0.0239) | (0.0196) (0.0398) | (0.0297) (0.0384) | (0.0298) | (0.0384) | (0.0296) (0.0300) | (0.0240)

3 0.4989 0.5008 0.5015 0.5027 0.5023 0.5030 0.5021 0.5029 0.5015 0.5020
(0.0260) | (0.0197) (0.0468) | (0.0356) (0.0419) | (0.0300) | (0.0421) | (0.0302) (0.0305) | (0.0253)

4 0.4950 0.4956 0.4973 0.5034 0.5041 0.5048 0.5039 0.5050 0.5005 0.5018
(0.0520) | (0.0440) (0.1456) | (0.1385) (0.0843) | (0.0680) | (0.0843) | (0.0679) (0.0752) | (0.0767)

Measurement error ¢% = 2.5

1 0.4968 0.5008 0.5009 0.5002 0.5009 0.5003 0.5011 0.5005 0.5017 0.5009
(0.0317) | (0.0329) (0.0515) | (0.0500) (0.0498) | (0.0499) |(0.0499) | (0.0499) (0.0416) | (0.0381)
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Predicted NNE KMCD IPCW CIPCW FP

Time s AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Adjusted | Adjusted | Observed | Adjusted | Observed

5 0.4976 0.5001 0.5021 0.5008 0.5019 0.5007 0.5020 0.5008 0.5027 0.5000
(0.0234) | (0.0202) | (0.0400) | (0.0308) | (0.0383) | (0.0308) |(0.0383) | (0.0307) |(0.0313) | (0.0247)

3 0.4984 0.4977 0.5036 0.4993 0.5028 0.4985 0.5029 0.4986 0.5010 0.4990
(0.0272) | (0.0205) | (0.0496) | (0.0361) | (0.0456) | (0.0311) |(0.0455) |(0.0311) | (0.0309) | (0.0257)

4 0.4938 0.4908 0.5073 0.5035 0.5025 0.4968 0.5027 0.4967 0.5015 0.4971
(0.0557) | (0.0437) |(0.1505) |(0.1446) |(0.0878) | (0.0664) |(0.0878) | (0.0664) |(0.0742) |(0.0765)

Table 7.9: Time-dependent AUC, sensitivity and specificity for all current method when y=0.25 with 30% censoring

Predicted NNE KMCD IPCW CIPCW FP

Time t AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Adjusted | Adjusted | Observed | Adjusted | Observed

Measurement error a2 = 0.25

1 0.5486 0.5408 0.5790 0.5646 0.5790 0.5649 0.5789 0.5648 0.5760 0.5630
(0.0332) |(0.0323) |(0.0470) | (0.0469) | (0.0469) | (0.0469) |(0.0468) | (0.0468) |(0.0365) |(0.0352)

5 0.5536 0.5451 0.5880 0.5733 0.5884 0.5739 0.5883 0.5738 0.5749 0.5628
(0.0227) | (0.0214) |(0.0326) |(0.0310) |(0.0320) | (0.0305) |(0.0318) |(0.0304) | (0.0240) |(0.0232)

3 0.5674 0.5568 0.6150 0.5959 0.6153 0.5966 0.6152 0.5965 0.5745 0.5623
(0.0206) | (0.0189) | (0.0360) |(0.0337) |(0.0310) |(0.0283) |(0.0310) |(0.0283) |(0.0247) |(0.0244)

4 0.6069 0.5891 0.6956 0.6641 0.6975 0.6662 0.6976 0.6664 0.5726 0.5588
(0.0349) | (0.0336) | (0.1228) | (0.1234) |(0.0576) | (0.0561) | (0.0578) | (0.0563) | (0.0703) | (0.0703)

Measurement error ¢% = 0.5

1 0.5510 0.5377 0.5848 0.5595 0.5844 0.5598 0.5843 0.5597 0.5802 0.5586
(0.0336) | (0.0324) | (0.0475) | (0.0475) |(0.0472) | (0.0474) |(0.0471) | (0.0474) [(0.0366) | (0.0352)
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Predicted NNE KMCD IPCW CIPCW FP

prectc — AUC(SE) — AUCGSE) —AUC(SE) — AUC(SE) — AUCGE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Adjusted | Adjusted | Observed | Adjusted | Observed

Measurement error a2 = 0.25

0.5557 0.5412

0.5928 0.5673

0.5928 0.5680

0.5927 0.5679

0.5780 0.5569

2 (0.0237) (0.0210) (0.0341) (0.0307) (0.0334) (0.0305) (0.0333) (0.0303) (0.0255) (0.0230)
3 0.5704 0.5521 0.6209 0.5881 0.6207 0.5886 0.6207 0.5886 0.5780 0.5574
(0.0220) (0.0187) (0.0378) (0.0335) (0.0331) (0.0283) (0.0331) (0.0283) (0.0260) (0.0249)
4 0.6117 0.5814 0.7049 0.6508 0.7062 0.6528 0.7063 0.6530 0.5754 0.5537
(0.0366) (0.0345) (0.1226) (0.1227) (0.0595) (0.0571) (0.0598) (0.0572) (0.0693) (0.0666)
Measurement error 03 =1.0
1 0.5550 0.5333 0.5935 0.5519 0.5924 0.5522 0.5923 0.5522 0.5862 0.5511
(0.0343) (0.0333) (0.0482) (0.0484) (0.0475) (0.0483) (0.0475) (0.0482) (0.0378) (0.0357)
5 0.5586 0.5359 0.5997 0.5586 0.5990 0.5592 0.5989 0.5591 0.5820 0.5501
(0.0254) (0.0208) (0.0366) (0.0304) (0.0358) (0.0303) (0.0356) (0.0301) (0.0277) (0.0239)
3 0.5739 0.5455 0.6292 0.5770 0.6279 0.5774 0.6279 0.5773 0.5819 0.5489
(0.0238) (0.0187) (0.0410) (0.0334) (0.0369) (0.0286) (0.0369) (0.0286) (0.0273) (0.0248)
4 0.6172 0.5701 0.7182 0.6321 0.7170 0.6333 0.7171 0.6335 0.5803 0.5478
(0.0381) (0.0352) (0.1229) (0.1225) (0.0633) (0.0585) (0.0635) (0.0587) (0.0681) (0.0693)
Measurement error o2 = 1.5
1 0.5588 0.5301 0.6002 0.5467 0.5983 0.5471 0.5982 0.5470 0.5905 0.5462
(0.0349) (0.0334) (0.0490) (0.0487) (0.0481) (0.0487) (0.0480) (0.0486) (0.0383) (0.0352)
5 0.5608 0.5322 0.6051 0.5527 0.6035 0.5532 0.6035 0.5531 0.5851 0.5445
(0.0268) (0.0206) (0.0389) (0.0302) (0.0378) (0.0301) (0.0376) (0.0299) (0.0296) (0.0231)
3 0.5761 0.5410 0.6352 0.5694 0.6328 0.5696 0.6328 0.5696 0.5841 0.5444
(0.0258) (0.0187) (0.0441) (0.0334) (0.0401) (0.0287) (0.0401) (0.0287) (0.0291) (0.0257)
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Predicted NNE KMCD IPCW CIPCW FP

prectc — AUC(SE) — AUCGSE) —AUC(SE) — AUC(SE) — AUCGE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Adjusted | Adjusted | Observed | Adjusted | Observed

Measurement error a2 = 0.25

4 0.6205 0.5627 0.7281 0.6195 0.7238 0.6200 0.7239 0.6202 0.5840 0.5421
(0.0412) (0.0351) (0.1240) (0.1227) (0.0665) (0.0595) (0.0668) (0.0596) (0.0688) (0.0697)
Measurement error a2 = 2.0
1 0.5623 0.5277 0.6057 0.5429 0.6030 0.5432 0.6029 0.5432 0.5946 0.5421
(0.0356) (0.0335) (0.0499) (0.0490) (0.0487) (0.0490) (0.0487) (0.0490) (0.0402) (0.0346)
9 0.5625 0.5294 0.6096 0.5483 0.6072 0.5488 0.6071 0.5487 0.5872 0.5408
(0.0280) (0.0205) (0.0410) (0.0300) (0.0397) (0.0300) (0.0395) (0.0298) (0.0310) (0.0228)
3 0.5776 0.5377 0.6400 0.5638 0.6365 0.5639 0.6365 0.5639 0.5856 0.5407
(0.0277) (0.0189) (0.0470) (0.0334) (0.0431) (0.0289) (0.0431) (0.0288) (0.0301) (0.0248)
4 0.6229 0.5579 0.7358 0.6098 0.7286 0.6101 0.7287 0.6103 0.5868 0.5396
(0.0435) (0.0357) (0.1257) (0.1229) (0.0700) (0.0599) (0.0703) (0.0601) (0.0665) (0.0675)
Measurement error o2 = 2.5
1 0.5655 0.5258 0.6104 0.5399 0.6069 0.5402 0.6068 0.5402 0.5973 0.5391
(0.0363) (0.0335) (0.0508) (0.0492) (0.0494) (0.0491) (0.0494) (0.0491) (0.0410) (0.0348)
9 0.5643 0.5273 0.6135 0.5449 0.6103 0.5453 0.6102 0.5453 0.5893 0.5380
(0.0292) (0.0203) (0.0430) (0.0299) (0.0415) (0.0299) (0.0413) (0.0297) (0.0322) (0.0231)
3 0.5790 0.5351 0.6442 0.5593 0.6397 0.5594 0.6396 0.5594 0.5869 0.5374
(0.0293) (0.0190) (0.0497) (0.0334) (0.0459) (0.0289) (0.0458) (0.0289) (0.0315) (0.0252)
4 0.6246 0.5539 0.7427 0.6022 0.7323 0.6024 0.7324 0.6026 0.5887 0.5370
(0.0464) (0.0359) (0.1275) (0.1231) (0.0734) (0.0603) (0.0737) (0.0604) (0.0683) (0.0669)
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Table 7.10: Time-dependent AUC, sensitivity and specificity for all current method when y=0.5 with 30% censoring

Predicted NNE KMCD IPCW CIPCW FP
Frecic AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Adjusted | Adjusted | Observed | Adjusted | Observed
Measurement error a2 = 0.25
1 0.6028 0.5844 0.6557 0.6279 0.6553 0.6281 0.6553 0.6281 0.6483 0.6233
(0.0359) | (0.0345) | (0.0446) |(0.0451) |(0.0444) |(0.0450) |(0.0443) |(0.0449) |(0.0349) | (0.0340)
5 0.6090 0.5905 0.6726 0.6436 0.6726 0.6441 0.6725 0.6440 0.6421 0.6182
(0.0235) | (0.0218) |(0.0304) |(0.0294) |(0.0297) | (0.0288) |(0.0295) |(0.0286) |(0.0229) | (0.0225)
3 0.6256 0.6046 0.7146 0.6775 0.7142 0.6780 0.7142 0.6780 0.6360 0.6109
0.0221) | (0.0204) | (0.0344) |(0.0330) |(0.0289) |(0.0275) |(0.0290) |(0.0276) | (0.0244) | (0.0243)
4 0.6737 0.6434 0.8087 0.7587 0.8097 0.7616 0.8098 0.7617 0.6277 0.5996
(0.0327) (0.0309) (0.0950) (0.0964) (0.0396) (0.0419) (0.0398) (0.0421) (0.0551) (0.0549)
Measurement error a2 = 0.5
1 0.6085 0.5771 0.6657 0.6173 0.6647 0.6175 0.6646 0.6175 0.6551 0.6135
(0.0364) | (0.0339) | (0.0448) | (0.0456) |(0.0444) |(0.0455) |(0.0443) |(0.0454) |(0.0346) | (0.0339)
5 0.6143 0.5826 0.6814 0.6316 0.6806 0.6321 0.6806 0.6321 0.6479 0.6075
0.0242) | (0.0212) |(0.0316) |(0.0294) |(0.0308) |(0.0289) |(0.0307) |(0.0287) |(0.0239) | (0.0223)
3 0.6313 0.5956 0.7252 0.6620 0.7236 0.6624 0.7237 0.6624 0.6432 0.6004
(0.0229) | (0.0199) | (0.0362) |(0.0332) |(0.0310) |(0.0280) |(0.0310) |(0.0281) |(0.0248) | (0.0247)
4 0.6820 0.6310 0.8223 0.7364 0.8214 0.7395 0.8215 0.7397 0.6314 0.5887
(0.0336) | (0.0308) | (0.0937) |(0.0956) |(0.0406) | (0.0442) |(0.0408) |(0.0443) |(0.0549) | (0.0537)
Measurement error o2 = 1.0
1 0.6183 0.5670 0.6812 0.6021 0.6788 0.6023 0.6787 0.6022 0.6658 0.5985
(0.0377) | (0.0337) | (0.0452) |(0.0462) |(0.0446) |(0.0460) |(0.0446) |(0.0460) |(0.0359) | (0.0336)
5 0.6218 0.5717 0.6943 0.6144 0.6919 0.6149 0.6919 0.6148 0.6558 0.5930
(0.0266) | (0.0206) | (0.0344) |(0.0295) |(0.0335) |(0.0290) |(0.0334) |(0.0288) |(0.0262) | (0.0222)
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Predicted NNE KMCD IPCW CIPCW FP

Time ¢ AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Adjusted | Adjusted | Observed | Adjusted | Observed

3 0.6389 0.5832 0.7399 0.6403 0.7360 0.6405 0.7361 0.6405 0.6499 0.5860
(0.0251) | (0.0197) (0.0396) | (0.0334) (0.0351) | (0.0286) |(0.0351) | (0.0287) (0.0268) | (0.0245)

4 0.6932 0.6138 0.8410 0.7054 0.8355 0.7081 0.8357 0.7083 0.6433 0.5742
(0.0367) | (0.0305) (0.0927) | (0.0951) (0.0432) | (0.0471) |(0.0433) | (0.0472) (0.0539) | (0.0559)

Measurement error ¢% = 1.5

1 0.6266 0.5601 0.6933 0.5916 0.6895 0.5918 0.6894 0.5918 0.6741 0.5885
(0.0390) | (0.0333) (0.0463) | (0.0467) (0.0455) | (0.0465) |(0.0455) | (0.0465) (0.0377) | (0.0343)

2 0.6275 0.5643 0.7042 0.6027 0.7002 0.6031 0.7001 0.6030 0.6608 0.5832
(0.0290) | (0.0204) (0.0373) | (0.0295) (0.0363) | (0.0291) |(0.0362) | (0.0289) (0.0287) | (0.0227)

3 0.6440 0.5745 0.7503 0.6255 0.7443 0.6257 0.7443 0.6257 0.6544 0.5760
(0.0276) | (0.0195) (0.0432) | (0.0335) (0.0390) | (0.0290) |(0.0390) | (0.0290) (0.0288) | (0.0245)

4 0.7007 0.6020 0.8539 0.6843 0.8438 0.6866 0.8440 0.6868 0.6494 0.5670
(0.0398) | (0.0307) (0.0928) | (0.0951) (0.0461) | (0.0488) | (0.0463) | (0.0489) (0.0538) | (0.0550)

Measurement error o2 = 2.0

1 0.6342 0.5550 0.7028 0.5838 0.6977 0.5841 0.6976 0.5840 0.6808 0.5815
(0.0405) | (0.0333) (0.0476) | (0.0469) (0.0467) | (0.0468) | (0.0467) | (0.0468) (0.0393) | (0.0343)

9 0.6323 0.5588 0.7121 0.5940 0.7065 0.5944 0.7065 0.5943 0.6647 0.5757
(0.0314) | (0.0203) (0.0403) | (0.0296) (0.0392) | (0.0291) |(0.0390) | (0.0289) (0.0311) | (0.0225)

3 0.6480 0.5683 0.7584 0.6146 0.7502 0.6148 0.7502 0.6147 0.6572 0.5691
(0.0301) | (0.0196) (0.0468) | (0.0335) (0.0427) | (0.0291) |(0.0427) | (0.0291) (0.0307) | (0.0250)

4 0.7063 0.5937 0.8639 0.6685 0.8491 0.6707 0.8493 0.6708 0.6519 0.5604
(0.0433) | (0.0310) (0.0935) | (0.0951) (0.0494) | (0.0499) | (0.0495) | (0.0500) (0.0545) | (0.0536)

Measurement error ¢% = 2.5

1 0.6407 0.5509 0.7103 0.5778 0.7041 0.5781 0.7039 0.5780 0.6860 0.5747
(0.0422) | (0.0331) (0.0492) | (0.0471) (0.0482) | (0.0470) 1(0.0483) | (0.0470) (0.0406) | (0.0342)
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Predicted NNE KMCD IPCW CIPCW FP

Time ¢ AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Adjusted | Adjusted | Observed | Adjusted | Observed

5 0.6362 0.5545 0.7186 0.5872 0.7115 0.5875 0.7114 0.5875 0.6677 0.5704
(0.0339) | (0.0201) (0.0432) | (0.0296) (0.0420) | (0.0292) | (0.0418) | (0.0290) (0.0339) | (0.0228)

3 0.6509 0.5633 0.7648 0.6061 0.7544 0.6062 0.7544 0.6062 0.6591 0.5637
(0.0328) | (0.0197) (0.0502) | (0.0336) (0.0462) | (0.0293) | (0.0462) | (0.0293) (0.0339) | (0.0254)

4 0.7104 0.5870 0.8723 0.6561 0.8524 0.6582 0.8526 0.6584 0.6551 0.5561
(0.0474) | (0.0309) (0.0945) | (0.0952) (0.0526) | (0.0507) | (0.0528) | (0.0508) (0.0545) | (0.0532)

Table 7.11: Time-dependent AUC, sensitivity and specificity for all current method when y=0.75 with 30% censoring

Predicted NNE KMCD IPCW CIPCW FP

Time ¢ AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Adjusted | Adjusted | Observed | Adjusted | Observed

Measurement error a2 = 0.25

1 0.6609 0.6305 0.7282 0.6893 0.7276 0.6894 0.7275 0.6894 0.7112 0.6765
(0.0370) | (0.0349) (0.0394) | (0.0403) (0.0392) | (0.0401) |(0.0391) | (0.0400) (0.0298) | (0.0302)

5 0.6600 0.6311 0.7463 0.7043 0.7458 0.7048 0.7458 0.7047 0.6978 0.6622
(0.0250) | (0.0227) (0.0279) | (0.0274) (0.0266) | (0.0261) | (0.0266) | (0.0261) (0.0216) | (0.0209)

3 0.6706 0.6404 0.7905 0.7391 0.7893 0.7394 0.7894 0.7395 0.6856 0.6468
(0.0243) | (0.0220) (0.0320) | (0.0314) (0.0260) | (0.0256) | (0.0260) | (0.0257) (0.0223) | (0.0231)

4 0.7125 0.6725 0.8682 0.8077 0.8673 0.8098 0.8675 0.8100 0.6693 0.6284
(0.0307) | (0.0285) (0.0689) | (0.0710) (0.0276) | (0.0325) | (0.0276) | (0.0326) (0.0405) | (0.0433)

Measurement error ¢% = 0.5

1 0.6707 0.6184 0.7409 0.6735 0.7393 0.6736 0.7393 0.6736 0.7212 0.6609
(0.0384) | (0.0341) (0.0397) | (0.0410) (0.0393) | (0.0408) |(0.0393) | (0.0408) (0.0316) | (0.0303)
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Predicted NNE KMCD IPCW CIPCW FP
Time ¢ AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Adjusted | Adjusted | Observed | Adjusted | Observed
5 0.6687 0.6192 0.7581 0.6866 0.7564 0.6872 0.7565 0.6871 0.7055 0.6470
(0.0263) | (0.0218) (0.0295) | (0.0281) (0.0282) | (0.0269) | (0.0281) | (0.0268) (0.0233) | (0.0214)
3 0.6794 0.6280 0.8041 0.7174 0.8011 0.7177 0.8012 0.7178 0.6943 0.6321
(0.0252) | (0.0212) (0.0332) | (0.0320) (0.0276) | (0.0266) | (0.0276) | (0.0267) (0.0238) | (0.0235)
4 0.7245 0.6568 0.8835 0.7808 0.8797 0.7830 0.8798 0.7832 0.6825 0.6088
(0.0322) | (0.0282) (0.0679) | (0.0716) (0.0281) | (0.0358) | (0.0281) | (0.0358) (0.0413) | (0.0429)
Measurement error ¢% = 1.0
1 0.6867 0.6021 0.7600 0.6507 0.7566 0.6509 0.7566 0.6509 0.7345 0.6406
(0.0408) | (0.0336) (0.0407) | (0.0419) (0.0402) | (0.0418) | (0.0402) | (0.0418) (0.0332) | (0.0309)
5 0.6815 0.6030 0.7749 0.6616 0.7708 0.6621 0.7709 0.6621 0.7159 0.6255
(0.0289) | (0.0212) (0.0326) | (0.0287) (0.0313) | (0.0277) ](0.0312) | (0.0277) (0.0253) | (0.0218)
3 0.6917 0.6109 0.8223 0.6874 0.8157 0.6877 0.8158 0.6877 0.7044 0.6114
(0.0272) | (0.0208) (0.0358) | (0.0327) (0.0307) | (0.0278) | (0.0307) | (0.0278) (0.0254) | (0.0241)
4 0.7416 0.6359 0.9039 0.7432 0.8937 0.7454 0.8938 0.7456 0.6948 0.5919
(0.0356) | (0.0282) (0.0669) | (0.0727) (0.0293) | (0.0396) | (0.0293) | (0.0396) (0.0407) | (0.0428)
Measurement error ¢% = 1.5
1 0.6995 0.5910 0.7746 0.7746 0.6353 0.7695 0.7694 0.6353 0.7446 0.6263
(0.0428) | (0.0330) (0.0421) | (0.0421) (0.0424) | (0.0416) | (0.0416) | (0.0424) (0.0351) | (0.0313)
5 0.6908 0.5920 0.7875 0.7875 0.6451 0.7812 0.7812 0.6450 0.7226 0.6119
(0.0316) | (0.0212) (0.0356) | (0.0356) (0.0283) | (0.0343) |(0.0342) | (0.0282) (0.0280) | (0.0220)
3 0.6997 0.5993 0.8348 0.8348 0.6674 0.8248 0.8249 0.6675 0.7101 0.5973
(0.0293) | (0.0206) (0.0384) | (0.0384) (0.0284) | (0.0338) | (0.0337) | (0.0284) (0.0272) | (0.0244)
4 0.7531 0.6218 0.9176 0.9176 0.7198 0.9013 0.9015 0.7200 0.7019 0.5819
(0.0388) | (0.0286) (0.0665) | (0.0665) (0.0418) | (0.0315) | (0.0314) | (0.0418) (0.0422) | (0.0428)
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Predicted
Time t

NNE

KMCD

IPCW

CIPCW

FP

AUC(SE)

AUC(SE)

AUC(SE)

AUC(SE)

AUC(SE)

Adjusted | Observed

Adjusted | Observed

Adjusted | Adjusted

Adjusted | Observed

Adjusted | Observed

Measureme

nterror g% =2.0

1 0.7102 0.5828 0.7858 0.6236 0.7792 0.6238 0.7791 0.6237 0.7527 0.6153
(0.0451) | (0.0329) |(0.0440) |(0.0430) |(0.0434) |(0.0429) |(0.0434) |(0.0429) |(0.0372) | (0.0316)
5 0.6982 0.5839 0.7974 0.6321 0.7890 0.6325 0.7890 0.6325 0.7275 0.6019
(0.0344) | (0.0211) |(0.0387) |(0.0295) |(0.0373) |(0.0287) |(0.0371) |(0.0286) |(0.0311) | (0.0224)
3 0.7058 0.5909 0.8443 0.6524 0.8312 0.6526 0.8313 0.6526 0.7139 0.5882
(0.0316) | (0.0206) |(0.0414) |(0.0334) |(0.0369) |(0.0288) |(0.0369) |(0.0288) | (0.0303) | (0.0250)
4 0.7616 0.6116 0.9280 0.6990 0.9060 0.7008 0.9061 0.7009 0.7057 0.5733
(0.0419) | (0.0288) |(0.0670) |(0.0742) |(0.0343) |(0.0432) |(0.0342) |(0.0432) |(0.0439) | (0.0429)
Measurement error g2 = 2.5
1 0.7183 0.5764 0.7941 0.6145 0.7862 0.6147 0.7861 0.6146 0.7585 0.6063
(0.0472) |(0.0329) | (0.0458) | (0.0433) |(0.0453) |(0.0433) |(0.0452) |(0.0433) |[(0.0394) | (0.0317)
5 0.7039 0.5774 0.8049 0.6222 0.7945 0.6226 0.7945 0.6226 0.7309 0.5943
(0.0371) | (0.0210) | (0.0415) | (0.0297) |(0.0401) | (0.0289) |(0.0399) | (0.0288) | (0.0333) | (0.0217)
3 0.7102 0.5842 0.8513 0.6409 0.8353 0.6411 0.8354 0.6411 0.7159 0.5814
(0.0340) | (0.0206) | (0.0443) |(0.0336) | (0.0400) | (0.0291) |(0.0399) | (0.0291) | (0.0329) | (0.0253)
4 0.7676 0.6037 0.9363 0.6845 0.9086 0.6862 0.9087 0.6863 0.7097 0.5658
(0.0453) | (0.0288) | (0.0676) | (0.0745) |(0.0371) | (0.0441) |(0.0371) | (0.0441) |(0.0471) | (0.0434)
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Table 7.12: Time-dependent AUC, sensitivity and specificity for all current method when y=1.0 with 30% censoring

Predicted NNE KMCD IPCW CIPCW FP
Frecic AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Adjusted | Adjusted | Observed | Adjusted | Observed
Measurement error a2 = 0.25
1 0.7132 0.6719 0.7897 0.7420 0.7887 0.7421 0.7887 0.7420 0.7626 0.7185
(0.0351) | (0.0329) |(0.0335) |(0.0350) |(0.0333) |(0.0348) |(0.0333) |(0.0347) |(0.0257) | (0.0256)
5 0.7020 0.6640 0.8067 0.7538 0.8058 0.7542 0.8058 0.7542 0.7414 0.6945
(0.0268) | (0.0245) | (0.0258) | (0.0260) |(0.0247) | (0.0249) |(0.0246) |(0.0248) |(0.0206) | (0.0203)
3 0.7057 0.6673 0.8462 0.7844 0.8444 0.7848 0.8445 0.7848 0.7238 0.6728
(0.0254) | (0.0232) | (0.0292) |(0.0298) |(0.0227) |(0.0238) |(0.0227) |(0.0238) |(0.0225) | (0.0226)
4 0.7391 0.6917 0.9036 0.8370 0.9016 0.8391 0.9017 0.8393 0.7063 0.6494
(0.0306) (0.0280) (0.0546) (0.0583) (0.0221) (0.0287) (0.0220) (0.0286) (0.0325) (0.0348)
Measurement error a2 = 0.5
1 0.7267 0.6558 0.8039 0.7220 0.8018 0.7221 0.8018 0.7221 0.7735 0.7000
(0.0370) | (0.0328) | (0.0343) |(0.0363) |(0.0340) |(0.0362) |(0.0340) |(0.0361) |(0.0266) | (0.0265)
2 0.7136 0.6487 0.8204 0.7313 0.8178 0.7318 0.8178 0.7318 0.7509 0.6743
0.0278) | (0.0234) | (0.0273) | (0.0269) |(0.0262) |(0.0259) |(0.0261) |(0.0259) | (0.0218) | (0.0210)
3 0.7170 0.6519 0.8611 0.7582 0.8567 0.7585 0.8569 0.7586 0.7348 0.6525
0.0262) | (0.0222) | (0.0209) |(0.0306) |(0.0237) |(0.0252) |(0.0237) |(0.0253) |(0.0228) | (0.0235)
4 0.7534 0.6735 0.9193 0.8070 0.9131 0.8093 0.9132 0.8095 0.7195 0.6307
(0.0315) | (0.0274) | (0.0532) |(0.0591) |(0.0221) |(0.0322) |(0.0221) |(0.0321) |(0.0322) | (0.0344)
Measurement error o2 = 1.0
1 0.7479 0.6339 0.8249 0.6931 0.8207 0.6932 0.8207 0.6932 0.7885 0.6730
(0.0396) | (0.0325) | (0.0361) |(0.0381) |(0.0358) |(0.0380) |(0.0357) |(0.0379) |(0.0284) | (0.0273)
5 0.7306 0.6280 0.8393 0.6999 0.8335 0.7003 0.8335 0.7003 0.7624 0.6486
(0.0298) | (0.0226) | (0.0302) |(0.0280) |(0.0200) | (0.0271) |(0.0289) |(0.0270) | (0.0244) | (0.0214)
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Predicted NNE KMCD IPCW CIPCW FP

Time ¢ AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Adjusted | Adjusted | Observed | Adjusted | Observed

3 0.7323 0.6314 0.8803 0.7220 0.8711 0.7223 0.8712 0.7223 0.7464 0.6264
(0.0276) | (0.0216) (0.0315) | (0.0316) (0.0258) | (0.0267) |(0.0258) | (0.0267) (0.0239) | (0.0235)

4 0.7735 0.6498 0.9393 0.7652 0.9254 0.7675 0.9256 0.7676 0.7354 0.6058
(0.0334) | (0.0271) (0.0516) | (0.0602) (0.0225) | (0.0361) | (0.0225) | (0.0360) (0.0317) | (0.0357)

Measurement error ¢% = 1.5

1 0.7632 0.6187 0.8398 0.6732 0.8338 0.6733 0.8338 0.6732 0.7993 0.6549
(0.0416) | (0.0325) (0.0378) | (0.0392) (0.0375) | (0.0392) |(0.0374) | (0.0391) (0.0312) | (0.0284)

2 0.7423 0.6140 0.8524 0.6786 0.8439 0.6790 0.8439 0.6790 0.7694 0.6314
(0.0322) | (0.0220) (0.0330) | (0.0286) (0.0316) | (0.0279) |(0.0315) | (0.0278) (0.0269) | (0.0221)

3 0.7420 0.6175 0.8927 0.6979 0.8791 0.6981 0.8793 0.6981 0.7521 0.6109
(0.0293) | (0.0213) (0.0338) | (0.0322) (0.0285) | (0.0276) |(0.0284) | (0.0276) (0.0274) | (0.0243)

4 0.7862 0.6339 0.9521 0.7371 0.9314 0.7391 0.9316 0.7393 0.7427 0.5919
(0.0355) | (0.0270) (0.0516) | (0.0610) (0.0248) | (0.0382) |(0.0248) | (0.0381) (0.0362) | (0.0362)

Measurement error o2 = 2.0

1 0.7742 0.6074 0.8502 0.6580 0.8429 0.6581 0.8428 0.6580 0.8073 0.6408
(0.0430) | (0.0323) (0.0394) | (0.0396) (0.0391) | (0.0395) |(0.0390) | (0.0395) (0.0333) | (0.0285)

9 0.7508 0.6037 0.8620 0.6627 0.8510 0.6631 0.8510 0.6631 0.7742 0.6192
(0.0341) | (0.0215) (0.0354) | (0.0288) (0.0339) | (0.0281) |(0.0337) | (0.0280) (0.0294) | (0.0219)

3 0.7488 0.6073 0.9014 0.6800 0.8841 0.6801 0.8842 0.6802 0.7551 0.5998
(0.0308) | (0.0211) (0.0358) | (0.0327) (0.0306) | (0.0281) | (0.0305) | (0.0281) (0.0296) | (0.0246)

4 0.7950 0.6225 0.9616 0.7162 0.9347 0.7180 0.9349 0.7182 0.7475 0.5816
(0.0375) | (0.0269) (0.0520) | (0.0615) (0.0271) | (0.0395) | (0.0270) | (0.0393) (0.0393) | (0.0366)

Measurement error ¢% = 2.5

1 0.7825 0.5991 0.8580 0.6467 0.8496 0.6468 0.8495 0.6467 0.8132 0.6304
(0.0449) | (0.0325) (0.0410) | (0.0400) (0.0409) | (0.0401) |(0.0408) | (0.0400) (0.0356) | (0.0293)
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Predicted NNE KMCD IPCW CIPCW FP
T'irr‘;e"fe AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Adjusted | Adjusted | Observed | Adjusted | Observed
5 0.7573 0.5958 0.8693 0.6508 0.8562 0.6512 0.8562 0.6512 0.7777 0.6102
(0.0362) | (0.0214) (0.0375) | (0.0291) (0.0360) | (0.0285) | (0.0358) | (0.0284) (0.0316) | (0.0222)
3 0.7534 0.5994 0.9078 0.6665 0.8873 0.6666 0.8874 0.6666 0.7571 0.5913
(0.0323) | (0.0210) (0.0377) | (0.0331) (0.0326) | (0.0287) | (0.0325) | (0.0286) (0.0318) | (0.0248)
4 0.8012 0.6137 0.9689 0.6998 0.9366 0.7018 0.9367 0.7019 0.7488 0.5740
(0.0396) | (0.0268) (0.0526) | (0.0622) (0.0290) | (0.0403) | (0.0290) | (0.0402) (0.0424) | (0.0371)
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7.7 Discussion

This chapter demonstrated the appropriateness and performance of the proposed
measurement error adjusted time-dependent ROC curve approach. The proposed joint
model estimated the true association parameter accurately with lower biases and MSE,
and higher coverage percentages across different settings of the association,
measurement error variance and percentage of censoring. It is clearly observed that as
the variance of measurement error increases, the bias increases dramatically for

association parameters if the Cox model is used.

A strong association (higher association parameter) between biomarker value and
event time implies high diagnostic accuracy, and this is observed in the above
simulation results. The proposed measurement error adjusted biomarker is consistently
powerful in discriminating between diseased individuals and healthy individuals.
Although the estimated standard error of the proposed approach is high, the diagnostic
accuracy estimates are the closest to the true values. The proposed time-dependent
ROC curve decreases over the prediction time as expected as discrimination power is
weaker as the prediction time is far from baseline. In other words, as the prediction
time increases, the potential of the baseline value of the biomarker becomes weaker in
describing the current true status (diseased or not) of the individual. This is consistent
with other studies that investigate the performance of the biomarker with respect to the
prediction time [33]. However, this is not always true for the methods under C/D
definition. These results evidenced that the proposed joint model approach can
properly adjust the possible measurement error of a biomarker when estimating the
time-dependent ROC curve.
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8 Conclusion and Future Work

8.1 Introduction

In this thesis, methodologies and software have been developed and extended for the
estimation of the time-dependent ROC curve. The methods have been assessed through
simulation and application to a real clinical dataset. This chapter is aimed to summarise
the thesis by highlighting the original contributions and discuss the implication of the
research and suggest future research. Section 8.2 provides a summary of thesis
chapters, outlining the original contributions to the current research, while section 8.3
describes the limitations of proposed approaches and possible future extensions. This

chapter is concluded by making final remarks in Section 8.4.

8.2 Summary of thesis

The work presented in this thesis focused on the development, application and
assessment of the time-dependent ROC curve. It comprised four main objectives as

described in Chapter 1, and made several contributions to the current literature.

As the foundation of thesis, the background of time-dependent ROC curve analysis
was extensively given in Chapter 2 describing three key definitions of time-

dependency providing illustrations to enhance understanding.

The first objective was achieved in Chapter 3 in which a comprehensive review of the
methodology for estimating the time-dependent ROC curve was conducted. The
definitions, advantages and limitations of each methods whenever available, were
given. Most of the methodologies discussed in the current literature were restricted to
a single baseline biomarker value. One method considered longitudinally recorded
biomarker values but ignored the censored event-time data (AD1 in Chapter 3).
Motivated by the limited methodology in the current literature to allow the longitudinal
values of a biomarker, two current methods had been extended in this chapter (1S2 and
AD4). From the review of clinical applications, the number publications on time-
dependent ROC curve analysis are increasing by year, while the cumulative/dynamic

(C/D) definition has mostly been used. This definition is more relevant in clinical
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practice since most studies aimed at discriminating between the diseased individual up
to a particular time and healthy individuals beyond that time. The chapter has provided
the software and illustrated the calculations of the ROC curve summaries for most
methods across all 3 definitions. Overall, the findings of this review highlighted two
main points which had motivated the work of this thesis; firstly the lack of parametric
ROC curve approaches and secondly, ignorance of the measurement error of a

biomarker in assessing the diagnostic accuracy.

A novel parametric approach to estimate the time-dependent ROC curve was proposed
in Chapter 4. Parametric approaches can be valuable when the sample size is small.
The development studies of biomarkers rely on small sample sizes to evaluate the
diagnostic accuracy, especially when the biomarkers are more expensive. The chapter
has considered six possible scenarios and derived closed-form formula for the ROC
curve summaries whenever possible, otherwise derived numerically. The simulation
study conducted in Chapter 6 concluded that the time-dependent estimate of AUC is
not essentially affected by sample size, and is estimated accurately for smaller sample
sizes such as 30. Although not all the scenarios provided realistic estimates of AUC as
expected, the proposed methodology initiated a valuable platform for the potential
future development of parametric approaches. The proposed approaches could be
improved to have more stable estimates of AUC by considering other forms of

parametric distributions and link functions driven by real data.

The third objective was achieved in Chapter 5 in which a measurement error adjusted
time-dependent ROC curve analysis was proposed within the joint longitudinal data
and event-time modelling framework. A joint model has been derived to provide an
estimate at the baseline level, and a novel time-dependent ROC curve approach was
proposed along the incident/dynamic (1/D) definition. As concluded from the
simulation studies conducted in Chapter 7, the proposed measurement error adjusted
estimate for the biomarker at baseline level accurately performed in the context of
ROC curve by estimating AUC at its nominal level when there is no association
between the biomarker and event, and as the strength of association increases, the
estimated AUC also increases by the acceptable margins. The proposed measurement
error adjusted estimator of the baseline biomarker consistently performed more

accurately than the observed biomarker and the two-stage estimator. Ignoring the
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measurement error severely underestimates the true association between the biomarker
and event, and hence misleading results and conclusions can be drawn on the
performance of a biomarker. The proposed joint model and the ROC curve approach

are currently being developed to be included in the joineR library in R.

Most current approaches and both the proposed approaches were illustrated using real
data in order to enhance the application of the time-dependent ROC curve rather than

the standard ROC curve in main stream clinical research.

8.3 Limitations and Future Works

In developing the parametric approach, a limited number of parametric distributions
were considered in this thesis, with two link functions across several scenarios. Not all
the scenarios derived close-form estimators of ROC curve summaries, and hence
numerical integration was required which resulted in computational difficulties
including convergence issues. More flexible approaches allowing a wide range of
parametric distributions and the link functions which derive closed-form estimators

would be useful in clinical research.

This thesis is restricted to single right-censored event-times. However, in practice,
many other events can affect the occurrence of the primary event which are called
competing risks, with other forms of censoring. In addition, the current research on
these aspects has been relatively limited. Jacgmin-Gadda, et al. [97] proposed a
methodology to allow for semicompeting risks with interval censored data. However,
they found that this approach is less efficient than the current IPCW method (CD5 in
Chapter 3). Li, Shanshan [98] proposed nonparametric and semiparametric
methodologies with left truncation, but the ROC curve was estimated under prevalent
sampling (consists of individuals who have experienced the initial events but not the
failure events). A more recent study has adapted the time-dependent ROC curve
analysis within a multi-state competing risk framework [99]. The authors have
assessed the prognostic ability of the multistate structured additive regression (STAR)
model at each transition. In this approach, the time-dependent ROC curve provides a

common scale to compare the risk scores at different transitions although the
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measuring unit of the biomarkers is different. This is a unique application of the time-
dependent ROC curve.

Further, the joint model with competing risks event-time has been studied by many
researchers [100-102], and the proposed time-dependent ROC curve approach can be
readily applied to account for the measurement error when the primary event is
affected by competing risks or informative censoring. It can also be extended along
the multiple biomarkers following the methodological developments in multivariate
joint models [103] and software [28].

8.4 Conclusion

In conclusion, this thesis has presented the development and applications of time-
dependent ROC curve analysis approach in medical research. The significance of using
time-dependent ROC curve approach over standard approach has been discussed and
findings from clinical application evidenced the appropriateness. The proposed
methodologies in this thesis suggest that measurement error associated with a
biomarker could lead to misleading conclusions of the diagnostic performance
summaries, and parametric approaches are particularly useful when the sample size is
restricted. Overall, the research presented in this thesis is of great value in enhancing

the research area of time-dependent ROC curve.
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Appendix A R code for parametric approach

Appendix A.1  Exponential/Exponential

##First link

library(cubature)
##Multiplication of two functions
Multiply=function(a,b){

force(a)

force(b)

function(x){a(x)*b(x)}
}

Paral <- function(marker,time,param.t2,pt){

ft <- function (t){(1/mean(time))*exp(-(1/mean(time))*t)}

gx <- function (x){(1/mean(marker))*exp(-(1/mean(marker))*x[2])}
ftx<-function(x){param.t2*x[2]*exp(-param.t2*x[2]*x[1])}

##Define the joint distribution
IG <- Multiply(ftx,gx)

000 <- order(time)

t <- time[o00]

X <- marker[000]

cut.values <- unique(x)
cut.values <- cut.values[order(cut.values)]
ncuts <- length(cut.values)

roc.matrix <- matrix(NA, ncuts, 2)
roc.matrix[ncuts, 1] <- 0
roc.matrix[ncuts, 2] <- 1

for (i in 1:(ncuts - 1)) {
Limit <- ¢(0,cut.values][i],pt,10)
Sel <- adaptIntegrate(1G,lowerLimit=c(Limit[1],Limit[2]),
upperLimit=c(Limit[3],Limit[4]))
Se2 <- adaptintegrate(1G,lowerLimit=c(Limit[1],Limit[1]),
upperLimit=c(Limit[3],Limit[4]))
Se <- Sel$integral/Se2$integral

Spl <- adaptintegrate(IG, lowerLimit = c(Limit[3],Limit[1]),
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upperLimit = c(Limit[4],Limit[2]))
Sp2 <-adaptintegrate(1G, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4], Limit[4]))
Sp <- Sp18$integral/Sp2$integral

roc.matrix[i, 1] <- Se
roc.matrix[i, 2] <-Sp }

##Calculation of Area under the ROC curve for each time point

sensitivity = roc.matrix[, 1]

specificity = roc.matrix[, 2]

x <- 1 - ¢(0,specificity)

y <- c¢(1,sensitivity)

n <- length(x)

dx <- x[-n] - x[-1]

mid.y <- (y[-n] + y[-1])/2

area <- sum(dx * mid.y)

list(cut.values = c(-Inf, cut.values), TP =y, FP = x, predict.time = pt,AUC = area)}

##second link
library(cubature)

##Multiplication of two functions
Multiply=function(a,b){

force(a)

force(b)

function(x){a(x)*b(x)}

#explexp

Parall <- function(marker,time,param.t2,param.t3,pt){

ft <- function (t){(1/mean(time))*exp(-(1/mean(time))*t)}
gx <- function (x){(1/mean(marker))*exp(-(1/mean(marker))*x[2])}
ftx<-function(x){(param.t2+param.t3*x[2])*
exp(-(param.t2+param.t3*x[2])*x[1])}

predict.time <- pt

IG <- Multiply(ftx,gx)

000 <- order(time)

t <- time[o00]

X <- marker[o00]

cut.values <- unique(x)

cut.values <- cut.values[order(cut.values)]

ncuts <- length(cut.values)
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roc.matrix <- matrix(NA, ncuts, 2)
roc.matrix[ncuts, 1] <- 0
roc.matrix[ncuts, 2] <- 1

for (i in 1:(ncuts - 1)) {

Limit <- ¢(0,cut.values[i],pt,500)

Sel <- adaptintegrate(1G,lowerLimit=c(Limit[1],Limit[2]),
upperLimit=c(Limit[3],Limit[4]))

Se2 <- adaptintegrate(1G,lowerLimit=c(Limit[1],Limit[1]),
upperLimit=c(Limit[3],Limit[4]))

Se <- Sel$integral/Se2$integral

Spl <- adaptintegrate(IG, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4],Limit[2]))

Sp2 <-adaptintegrate(1G, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4], Limit[4]))

Sp <- Spl8$integral/Sp2$integral

roc.matrix([i, 1] <- Se
roc.matrix[i, 2] <- Sp}

##Calculation of Area under the ROC curve for each time point
sensitivity = roc.matrix|[, 1]

specificity = roc.matrix[, 2]

x <- 1 - ¢(0,specificity)

y <- ¢(1,sensitivity)

n <- length(x)

dx <- x[-n] - x[-1]

mid.y <- (y[-n] + y[-1])/2

area <- sum(dx * mid.y)

list(cut.values = c(-Inf, cut.values), TP =y, FP = X,
predict.time = pt,AUC = area)}
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Appendix A.2  Exponential/Normal

#HFirst link
library(cubature)

##Multiplication of two functions
Multiply=function(a,b){

force(a)

force(b)

function(x){a(x)*b(x)}

}

Para2 <- function(marker,time,param.t2,pt){

ft <- function (t){(1/mean(time))*exp(-(1/mean(time))*t)}

gx <- function (x){(1/(sd(marker)*(sqrt(2*pi))))*(exp(-((x[2]-
mean(marker))"2))/(2*sd(marker)"2))}
ftx<-function(x){param.t2*x[2]*exp(-param.t2*x[2]*x[1]) }

IG <- Multiply(ftx,gx)
000 <- order(time)

t <- time[o00]

X <- marker[000]

cut.values <- unique(x)
cut.values <- cut.values[order(cut.values)]
ncuts <- length(cut.values)

roc.matrix <- matrix(NA, ncuts, 2)
roc.matrix[ncuts, 1] <- 0
roc.matrix[ncuts, 2] <- 1

for (i in 1:(ncuts - 1)) {

Limit <- ¢(0,cut.values]i],pt,500)

Sel <- adaptintegrate(1G,lowerLimit=c(Limit[1],Limit[2]),
upperLimit=c(Limit[3],Limit[4]))

Se2 <- adaptintegrate(1G,lowerLimit=c(Limit[1],Limit[1]),
upperLimit=c(Limit[3],Limit[4]))

Se <- Sel$integral/Se2$integral

Sp1l <- adaptintegrate(1G, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4],Limit[2]))

Sp2 <-adaptintegrate(1G, lowerLimit = c(Limit[3],Limit[1]),

203



upperLimit = c(Limit[4], Limit[4]))
Sp <- Sp18integral/Sp2$integral

roc.matrix([i, 1] <- Se
roc.matrix([i, 2] <- Sp

¥

##Calculation of Area under the ROC curve for each time point

sensitivity = roc.matrix[, 1]

specificity = roc.matrix[, 2]

x <- 1 - ¢(0,specificity)

y <- c¢(1,sensitivity)

n <- length(x)

dx <- x[-n] - x[-1]

mid.y <- (y[-n] + y[-1])/2

area <- sum(dx * mid.y)

list(cut.values = c(-Inf, cut.values), TP =y, FP = x, predict.time = pt, AUC = area)

ks

##Parameter estimation
#Define the joint pdf
ftx <- function(t,x,param.t,param.x1,param.x2)
{param.t*x/(param.x2*sqrt(2*pi))*exp(-(x-param.x1)"2/(2*(param.x2)"2)-
param.t*x*t)}
load("observations.dat™)
LL <- function(param.t,param.x1,param.x2) {
R =(ftx(data[,1],data[,2],param.t,param.x1,param.x2))
#print(c(param.t,param.x1,param.x2,R))

-sum(log(R))}

library(stats4)

LH<-mle(LL, start = list(param.t = 1, param.x1=1, param.x2=1),
method = "L-BFGS-B", lower = ¢(1,1,1),
upper = c(Inf, Inf,Inf))

Parameters<-matrix(LH@coef,1,3)
save( Parameters, file="resultsParameterLH.dat" )

##second link
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library(cubature)

##Multiplication of two functions
Multiply=function(a,b){

force(a)

force(b)

function(x){a(x)*b(x)}
}

##texp/normal

Para22 <- function(marker,time,param.t2,param.t3,pt){

ft <- function (t){(1/mean(time))*exp(-(1/mean(time))*t)}

gx <- function (x){(1/(sd(marker)*(sqrt(2*pi))))*(exp(-((x[2]-
mean(marker))"2))/(2*sd(marker)"2))}

ftx<- function(x){(param.t2+param.t3*x[2])*
exp(-(param.t2+param.t3*x[2])*x[1])}

predict.time <- pt

IG <- Multiply(ftx,gx)
000 <- order(time)

t <- time[o00]

X <- marker[000]

cut.values <- unique(x)
cut.values <- cut.values[order(cut.values)]
ncuts <- length(cut.values)

roc.matrix <- matrix(NA, ncuts, 2)
roc.matrix[ncuts, 1] <- 0
roc.matrix[ncuts, 2] <- 1

for (iin 1:(ncuts - 1)) {
Limit <- ¢(0,cut.values[i],pt,500)

Sel <- adaptIntegrate(1G,lowerLimit=c(Limit[1],Limit[2]),
upperLimit=c(Limit[3],Limit[4]))

Se2 <- adaptintegrate(1G,lowerLimit=c(Limit[1],Limit[1]),
upperLimit=c(Limit[3],Limit[4]))

Se <- Sel$integral/Se2$integral

Spl <- adaptintegrate(IG, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4],Limit[2]))
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Sp2 <-adaptintegrate(1G, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4], Limit[4]))

Sp <- Sp18$integral/Sp2$integral

roc.matrix([i, 1] <- Se

roc.matrix[i, 2] <- Sp}

##Calculation of Area under the ROC curve for each time point
sensitivity = roc.matrix[, 1]

specificity = roc.matrix[, 2]

x <- 1 - ¢(0,specificity)

y <- c¢(1,sensitivity)

n <- length(x)

dx <- x[-n] - X[-1]

mid.y <- (y[-n] + y[-1])/2

area <- sum(dx * mid.y)

list(cut.values = c(-Inf, cut.values), TP =y, FP =X,
predict.time = pt, AUC = area)}

##Parameter estimation

#Define the joint pdf

ftx <- function(t,x,param.t1,param.t2,param.x1,param.x2)
{(param.tl+param.t2*x)/(param.x2*sqrt(2*pi))*exp(-(x-
param.x1)"2/(2*(param.x2)"2)-(param.t1+param.t2*x)*t)}

load("observations.dat™)

LL <- function(param.t1,param.t2,param.x1,param.x2) {
R =(ftx(data[,1],data[,2],param.t1,param.t2,param.x1,param.x2))
#print(c(param.t1,param.t2,param.x1,param.x2,R))
-sum(log(R))}

library(stats4)

LH<-mle(LL, start = list(param.tl = 1, param.t2=1, param.x1=1, param.x2=0.25),
method = "L-BFGS-B", lower = ¢(0.5,0.5,0.5,0.5),

upper = c(Inf, Inf,Inf,Inf))
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Appendix A.3  Weibull/Normal

#HFirst link
library(cubature)

##Multiplication of two functions
Multiply=function(a,b){

force(a)

force(b)

function(x){a(x)*b(x)}}

Para3 <- function(marker,time,param.t3,predt){

ft <- function (t){sqrt(1/mean(time))*2*(sqrt(1/mean(marker))*t)(2-1)*exp(-
sgrt(1/mean(marker))*t)*2}

gx <- function (x){(1/(sd(marker)*(sqrt(2*pi))))*(exp(-((x[2]-
mean(marker))"2))/(2*sd(marker)"2))}

ftx <- function(x){ (param.t3*x[2]*2)*((param.t3*x[2]*x[1])"(2-1))*
exp(-(param.t3*x[2]*x[1])"2)}

IG <- Multiply(ftx,gx)
000 <- order(time)

t <- time[o00]

X <- marker[000]

cut.values <- unique(x)
cut.values <- cut.values[order(cut.values)]
ncuts <- length(cut.values)

roc.matrix <- matrix(NA, ncuts, 2)
roc.matrix[ncuts, 1] <- 0
roc.matrix[ncuts, 2] <- 1

for (i'in L:(ncuts - 1)) {

Limit <- ¢(0,cut.values][i],predt,100)

Sel <- adaptintegrate(1G,lowerLimit=c(Limit[1],Limit[2]),
upperLimit=c(Limit[3],Limit[4]))

Se2 <- adaptIntegrate(1G,lowerLimit=c(Limit[1],Limit[1]),
upperLimit=c(Limit[3],Limit[4]))

Se <- Sel$integral/Se2$integral

Sp1l <- adaptintegrate(IG, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4],Limit[2]))
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Sp2 <-adaptintegrate(lG, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4], Limit[4]))
Sp <- Sp1$integral/Sp2$integral

roc.matrix([i, 1] <- Se
roc.matrix[i, 2] <- Sp}

##Calculation of Area under the ROC curve for each time point

sensitivity = roc.matrix[, 1]

specificity = roc.matrix[, 2]

x <- 1 - ¢(0,specificity)

y <- c¢(1,sensitivity)

n <- length(x)

dx <- x[-n] - X[-1]

mid.y <- (y[-n] + y[-1])/2

area <- sum(dx * mid.y)

list(cut.values = c(-Inf, cut.values), TP =y, FP =X,
predict.time = predt, AUC = area) }

##Parameter estimation
load("observations.dat™)

#Define the joint pdf

ftx <- function(t,x,param.t1,param.t2,param.x1,param.x2)
{(param.t1*x*param.t2*(param.t1*x*t)"(param.t2-1))/
(param.x2*sqrt(2*pi))*
exp(-((x-param.x1)"2/(2*param.x2/2))-(param.t1*x*t) param.t2)}

LL <- function(param.t1,param.t2,param.x1,param.x2) {
R =ftx(data[,1],data[,2],param.t1,param.t2,param.x1,param.x2)

-sum(log(R))}

library(stats4)

LH<-mle(LL, start = list(param.t1 = 0.1, param.t2=1,param.x1=1, param.x2=0.5),
method = "L-BFGS-B", lower =¢(0.1,1,1,0.5),
upper = c(Inf, Inf,Inf,Inf))

Parameters<-matrix(LH@coef,1,4)
save( Parameters, file="resultsParameterLH.dat™ )
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##tsecond link
library(cubature)

##Multiplication of two functions
Multiply=function(a,b){

force(a)

force(b)

function(x){a(x)*b(x)}
}

#weibull/normal
Para33 <- function(marker,time,param.t3,param.t4,predt)
{ ft <- function (t){sqrt(1/mean(time))*2*(sqrt(1/mean(time))*t)*(2-1)*exp(-
sgrt(1/mean(time))*t)"2}
gx <- function (x){(1/(sd(marker)*sqgrt(2*pi)))*(exp(-((x[2]-
mean(marker))”"2))/(2*(sd(marker))*2)) }
ftx <- function(x){ ((param.t3+param.t4*x[2])*2)*
(((param.t3+param.t4*x[2])*x[1])"(2-1))*
exp(-((param.t3+param.t4*x[2])*x[1])"2)}

predict.time <- predt

IG <- Multiply(ftx,gx)
000 <- order(time)

t <- time[o00]

X <- marker[000]

cut.values <- unique(x)
cut.values <- cut.values[order(cut.values)]
ncuts <- length(cut.values)

roc.matrix <- matrix(NA, ncuts, 2)
roc.matrix[ncuts, 1] <- 0
roc.matrix[ncuts, 2] <- 1

for (i in 1:(ncuts - 1)) {
Limit <- ¢(0,cut.values[i],predt,100)
Sel <- adaptIntegrate(1G,lowerLimit=c(Limit[1],Limit[2]),
upperLimit=c(Limit[3],Limit[4]))
Se2 <- adaptintegrate(1G,lowerLimit=c(Limit[1],Limit[1]),
upperLimit=c(Limit[3],Limit[4]))
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Se <- Sel$integral/Se23integral

Spl <- adaptintegrate(IG, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4],Limit[2]))

Sp2 <-adaptintegrate(I1G, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4], Limit[4]))

Sp <- Sp18$integral/Sp2$integral

roc.matrix[i, 1] <- Se
roc.matrix([i, 2] <- Sp }

##Calculation of Area under the ROC curve for each time point

sensitivity = roc.matrix|[, 1]

specificity = roc.matrix[, 2]

x <- 1 - ¢(0,specificity)

y <- ¢(1,sensitivity)

n <- length(x)

dx <- x[-n] - x[-1]

mid.y <- (y[-n] + y[-1])/2

area <- sum(dx * mid.y)

list(cut.values = c(-Inf, cut.values), TP =y, FP = x,
predict.time = predt, AUC = area)

¥

##Parameter estimation

load("observations.dat™)
#Define the joint pdf
ftx <- function(t,x,param.t1,param.t2,param.t3,param.x1,param.x2) {
(((param.tl+param.t2*x)*param.t3))*(((param.tl+param.t2*x)*t)"(param.t3-1))*
(exp(-((x-param.x1)"2)/(2*param.x22)-((param.t1+param.t2*x)*t)param.t3))/
(param.x2*sqrt(2*pi))}
LL <- function(param.tl,param.t2,param.t3,param.x1,param.x2) {
R =(ftx(data[,1],data[,2],param.t1,param.t2,param.t3,param.x1,param.x2))
#print(c(param.tl,param.t2,param.t3,param.x1,param.x2,R))

-sum(log(R))}

library(stats4)
LH<-mle(LL, start = list(param.t1 = 0.1, param.t2=0.1, param.t3=1,
param.x1=1, param.x2=0.5),
method = "L-BFGS-B", lower =¢(0.1,0.1,1,1,0.5),
upper = c(Inf, Inf,Inf,Inf,Inf))
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Parameters<-matrix(LH@coef,1,5)
save( Parameters, file="resultsParameterLH.dat" )

Appendix A.4  Exponential/Exponential- censored outcome

#HFirst link
library(cubature)

##Multiplication of two functions
Multiply=function(a,b){

force(a)

force(b)

function(x){a(x)*b(x)}
}

Paralcens <- function(marker,time,status,param.t2,pt){

ft <- function (t){(1/mean(time))*exp(-(1/mean(time))*t)}

gx <- function (x){(1/mean(marker))*exp(-(1/mean(marker))*x[2])}
ftx<-function(x){param.t2*x[2]*exp(-param.t2*x[2]*x[1])}

IG <- Multiply(ftx,gx)
000 <- order(time)

t <- time[o00]

X <- marker[o00]

d<- status[o00]

data<- cbind(x,t,d)
censored=ifelse(data[,2]<=pt&data[,3]==0,1,0)
data<-cbind(data,censored)

data <- subset(data,censored==0)

cut.values <- unique(x)
cut.values <- cut.values[order(cut.values)]
ncuts <- length(cut.values)

roc.matrix <- matrix(NA, ncuts, 2)
roc.matrix[ncuts, 1] <- 0
roc.matrix[ncuts, 2] <- 1
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for (i in 1:(ncuts - 1)) {
Limit <- ¢(0,cut.values[i],pt,12)
Sel <- adaptintegrate(1G,lowerLimit=c(Limit[1],Limit[2]),
upperLimit=c(Limit[3],Limit[4]))
Se2 <- adaptintegrate(1G,lowerLimit=c(Limit[1],Limit[1]),
upperLimit=c(Limit[3],Limit[4]))
Se <- Sel$integral/Se2$integral

Sp1l <- adaptintegrate(IG, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4],Limit[2]))
Sp2 <-adaptintegrate(1G, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4], Limit[4]))
Sp <- Sp18$integral/Sp2$integral

roc.matrix[i, 1] <- Se
roc.matrix[i, 2] <- Sp

ks

##Calculation of Area under the ROC curve for each time point
sensitivity = roc.matrix|[, 1]

specificity = roc.matrix[, 2]

x <- 1 - ¢(0,specificity)

y <- c¢(1,sensitivity)

n <- length(x)

dx <- x[-n] - x[-1]

mid.y <- (y[-n] + y[-1])/2

area <- sum(dx * mid.y)

list(cut.values = c(-Inf, cut.values), TP =y, FP = X,
predict.time = pt, AUC = area)

}

##Parameter estimation

load("observations.dat™)

ftx <- function(t,x,param.t,param.x)
{param.x*param.t*x*exp(-(param.t*x*t+param.x*x))}
#Define the survival function

st <- function(t,x,param.t,param.x)
{param.x*exp(-(param.t*x*t+param.x*x))}

LL <- function(param.t,param.x) {
#param.x = log (param.x)
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R
=(ftx(data[,1],data[,2],param.t,param.x)*(data[,3]))*(st(data[,1] data[,2]param.t,pa
ram.x)"(1-data[,3]))

-sum(log(R))}

library(stats4)
LH<- mle(LL, start = list(param.t = 1, param.x=1), method = "L-BFGS-B", lower
=¢(0.5, 0.5), upper = c(Inf, Inf))

Parameters<-matrix(LH@coef,1,2)
save( Parameters, file="resultsParameterLH.dat" )

##Second link
library(cubature)

##Multiplication of two functions
Multiply=function(a,b){
force(a)
force(b)
function(x){a(x)*b(x)}
}
#Second link
Parallcens<- function(marker,time,status,param.t2,param.t3,pt){
ft <- function (t){(1/mean(time))*exp(-(1/mean(time))*t)}
gx <- function (x){(1/mean(marker))*exp(-(1/mean(marker))*x[2])}
ftx<-function(x){(param.t2+param.t3*x[2])*
exp(-(param.t2+param.t3*x[2])*x[1])}
IG <- Multiply(ftx,gx)
000 <- order(time)
t <- time[o00]
X <- marker[000]
d<- status[000]

data<- cbind(x,t,d)
censored=ifelse(data[,2]<=pt&data[,3]==0,1,0)
data<-cbind(data,censored)

data <- subset(data,censored==0)
library(cubature)

cut.values <- unique(x)

cut.values <- cut.values[order(cut.values)]
ncuts <- length(cut.values)

roc.matrix <- matrix(NA, ncuts, 2)
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roc.matrix[ncuts, 1] <- 0
roc.matrix[ncuts, 2] <- 1

for (i in 1:(ncuts - 1)) {

Limit <- ¢(0,cut.values][i],pt,12)

Sel <- adaptIntegrate(1G,lowerLimit=c(Limit[1],Limit[2]),
upperLimit=c(Limit[3],Limit[4]))

Se2 <- adaptIntegrate(1G,lowerLimit=c(Limit[1],Limit[1]),
upperLimit=c(Limit[3],Limit[4]))

Se <- Sel$integral/Se2$integral

Spl <- adaptintegrate(IG, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4],Limit[2]))

Sp2 <-adaptintegrate(lG, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4], Limit[4]))

Sp <- Sp1$integral/Sp2$integral

roc.matrix[i, 1] <- Se
roc.matrix[i, 2] <- Sp}

##Calculation of Area under the ROC curve for each time point
sensitivity = roc.matrix|[, 1]

specificity = roc.matrix[, 2]

x <- 1 - ¢(0,specificity)

y <- ¢(1,sensitivity)

n <- length(x)

dx <- x[-n] - X[-1]

mid.y <- (y[-n] + y[-1])/2

area <- sum(dx * mid.y)

list(cut.values = c(-Inf, cut.values), TP =y, FP = x,
predict.time = pt,AUC = area)}

##Parameter estimation
load("observations.dat™)
ftx <- function(t,x,param.t1,param.t2,param.x)
{param.x*(param.t1l+param.t2*x)*exp(-((param.tl+param.t2*x)*t+param.x*x))}
#Define the survival function
st <- function(t,x,param.t1,param.t2,param.x)
{param.x*exp(-((param.t1l+param.t2*x)*t+param.x*x))}
LL <- function(param.tl,param.t2,param.x) {

#param.x = log (param.x)
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R =(ftx(data[,1],data[,2],param.t1,param.t2,param.x)”(data[,3]))*
(st(data[,1],data[,2],param.t1,param.t2,param.x)"(1-data[,3]))
print(c(param.t1,param.t2,param.x))

-sum(log(R))}

library(stats4)
LH<-mle(LL, start = list(param.tl = 1, param.t2=1, param.x=1), method = "L-
BFGS-B", lower = ¢(0.1, 0.1,0.1),upper = c(Inf, Inf, Inf))

Parameters<-matrix(LH@coef,1,3)
save( Parameters, file="resultsParameterLH.dat" )

Appendix A.5 Exponential/Normal- censored outcome

##First link
library(cubature)

##Multiplication of two functions
Multiply=function(a,b){

force(a)

force(b)

function(x){a(x)*b(x)}
}

Para2cens <- function(marker,time,status,param.t2,pt){

ft <- function (t){(1/mean(time))*exp(-(1/mean(time))*t)}

gx <- function (x){(1/(sd(marker)*(sqrt(2*pi))))* (exp(-((x[2]-
mean(marker))"2))/(2*sd(marker)*2))}
ftx<-function(x){param.t2*x[2]*exp(-param.t2*x[2]*x[1])}

IG <- Multiply(ftx,gx)
000 <- order(time)

t <- time[000]

X <- marker[000]

d<- status[000]

data<- cbind(x,t,d)
censored=ifelse(data[,2]<=pt&data[,3]==0,1,0)
data<-cbind(data,censored)

data <- subset(data,censored==0)
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cut.values <- unique(x)
cut.values <- cut.values[order(cut.values)]
ncuts <- length(cut.values)

roc.matrix <- matrix(NA, ncuts, 2)
roc.matrix[ncuts, 1] <- 0
roc.matrix[ncuts, 2] <- 1

for (i in 1:(ncuts - 1)) {

Limit <- ¢(0,cut.values[i],pt,15)

Sel <- adaptintegrate(1G,lowerLimit=c(Limit[1],Limit[2]),
upperLimit=c(Limit[3],Limit[4]))

Se2 <- adaptintegrate(1G,lowerLimit=c(Limit[1],Limit[1]),
upperLimit=c(Limit[3],Limit[4]))

Se <- Sel$integral/Se2$integral

Sp1l <- adaptintegrate(1G, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4],Limit[2]))

Sp2 <-adaptintegrate(lG, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4], Limit[4]))

Sp <- Sp18$integral/Sp2$integral

roc.matrix([i, 1] <- Se
roc.matrix([i, 2] <- Sp

by

##Calculation of Area under the ROC curve for each time point

sensitivity = roc.matrix|[, 1]

specificity = roc.matrix[, 2]

x <- 1 - ¢(0,specificity)

y <- c¢(1,sensitivity)

n <- length(x)

dx <- x[-n] - X[-1]

mid.y <- (y[-n] + y[-1])/2

area <- sum(dx * mid.y)

list(cut.values = c(-Inf, cut.values), TP =y, FP = X, predict.time = pt,AUC = area)

¥

##Parameter estimation
load(""observations.dat™)
ftx <- function(t,x,param.t,param.x1,param.x2)
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{param.t*x/(param.x2*sqrt(2*pi))*exp(-(x-param.x1)"2/(2*(param.x2)"2)-
param.t*x*t)}

#Define the survival function
st <- function(t,x,param.t,param.x1,param.x2)
{exp(-(x-param.x1)"2/(2*(param.x2)"2)-param.t*x*t)/(param.x2*sqrt(2*pi)) }

LL <- function(param.t,param.x1,param.x2) {
R =(ftx(data[,1],data[,2],param.t,param.x1,param.x2)"(data[,3]))*
(st(data[,1],data[,2],param.t,param.x1,param.x2)(1-data[,3]))

-sum(log(R))}

library(stats4)
LH<-mle(LL, start = list(param.t = 1, param.x1=1, param.x2=0.25),
method = "L-BFGS-B", lower = ¢(0.1,0.1,0.1),upper = c(Inf, Inf,Inf))

Parameters<-matrix(LH@coef,1,3)
save( Parameters, file="resultsParameterLH.dat" )

##Second link
library(cubature)

##Multiplication of two functions
Multiply=function(a,b){
force(a)
force(b)
function(x){a(x)*b(x)}}

Para22cens<- function(marker,time,status,param.t2,param.t3,pt){
ft <- function (t){(1/mean(time))*exp(-(1/mean(time))*t)}

gx <- function (x){1/(sd(marker)*sqrt(2*pi))*exp(-(x[2]-
mean(marker))~2)/2*(sd(marker)"2)}

ftx<- function(x){(param.t2+param.t3*x[2])*
exp(-(param.t2+param.t3*x[2])*x[1])}

predict.time <- pt

IG <- Multiply(ftx,gx)
000 <- order(time)

t <- time[o00]

X <- marker[000]
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d<- status[o00]

data<- cbind(x,t,d)
censored=ifelse(data[,2]<=pt&data[,3]==0,1,0)
data<-cbind(data,censored)

data <- subset(data,censored==0)

library(cubature)

cut.values <- unique(x)

cut.values <- cut.values[order(cut.values)]
ncuts <- length(cut.values)

roc.matrix <- matrix(NA, ncuts, 2)
roc.matrix[ncuts, 1] <- 0
roc.matrix[ncuts, 2] <- 1

for (iin 1:(ncuts - 1)) {

Limit <- ¢(0,cut.values][i],pt,15)

Sel <- adaptIntegrate(1G,lowerLimit=c(Limit[1],Limit[2]),
upperLimit=c(Limit[3],Limit[4]))

Se2 <- adaptintegrate(1G,lowerLimit=c(Limit[1],Limit[1]),
upperLimit=c(Limit[3],Limit[4]))

Se <- Sel$integral/Se2$integral

Spl <- adaptintegrate(IG, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4],Limit[2]))

Sp2 <-adaptintegrate(lG, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4], Limit[4]))

Sp <- Sp1$integral/Sp2$integral

roc.matrix([i, 1] <- Se
roc.matrix[i, 2] <- Sp}

##Calculation of Area under the ROC curve for each time point
sensitivity = roc.matrix[, 1]

specificity = roc.matrix[, 2]

x <- 1 - c¢(0,specificity)

y <- ¢(1,sensitivity)

n <- length(x)

dx <- x[-n] - X[-1]

mid.y <- (y[-n] + y[-1])/2

area <- sum(dx * mid.y)

list(cut.values = c(-Inf, cut.values), TP =y, FP =X,
predict.time = pt,AUC = area)}
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##Parameter estimation

#Define the joint pdf

ftx <- function(t,x,param.t1,param.t2,param.x1,param.x2)
{(param.t1l+param.t2*x)/(param.x2*sqrt(2*pi))*exp(-(x-
param.x1)"2/(2*(param.x2)"2)-(param.t1+param.t2*x)*t)}

#Define the survival function

st <- function(t,x,param.t1,param.t2,param.x1,param.x2)
{exp(-(x-param.x1)"2/(2*(param.x2)"2)-
(param.tl+param.t2*x)*t)/(param.x2*sqrt(2*pi))}

load("observations.dat™)
LL <- function(param.t1,param.t2,param.x1,param.x2) {
R =(ftx(data[,1],data[,2],param.t1,param.t2,param.x1,param.x2)"(data[,3]))*
(st(data[,1],data[,2],param.t1,param.t2,param.x1,param.x2)"(1-data[,3]))
print(c(param.tl,param.t2,param.x1,param.x2,R))

-sum(log(R))}

library(stats4)

LH<-mle(LL, start = list(param.t1 = 0.1, param.t2=0.1, param.x1=1,
param.x2=0.25), method ="L-BFGS-B", lower =¢(0.1,0.1,0.1,0.1),
upper = c(Inf, Inf,Inf,Inf))

Parameters<-matrix(LH@coef,1,4)
save( Parameters, file="resultsParameterLH.dat" )

Appendix A.6  Weibull/Normal- censored outcome

##First link
library(cubature)

##Multiplication of two functions
Multiply=function(a,b){

force(a)

force(b)

function(x){a(x)*b(x)}
}
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#weibull/normal
Para3cens<- function(marker,time,status,param.t3,predt){

ft <- function (t){sqrt(1/mean(time))*2*(sqrt(1/mean(marker))*t)"(2-1)*exp(-
sgrt(1/mean(marker))*t)"2}

gx <- function (x){(1/(sd(marker)*(sqrt(2*pi))))*(exp(-((x[2]-
mean(marker))"2))/(2*sd(marker)"2))}

ftx <- function(x){ (param.t3*x[2]*2)*((param.t3*x[2]*x[1])*(2-1))*

exp(-(param.t3*x[2]*x[1])"2)}

IG <- Multiply(ftx,gx)
000 <- order(time)

t <- time[o00]

X <- marker[000]

d<- status[o00]

data<- cbind(x,t,d)
censored=ifelse(data[,2]<=predt&data[,3]==0,1,0)
data<-cbind(data,censored)

data <- subset(data,censored==0)

library(cubature)

cut.values <- unique(x)
cut.values <- cut.values[order(cut.values)]
ncuts <- length(cut.values)

roc.matrix <- matrix(NA, ncuts, 2)
roc.matrix[ncuts, 1] <- 0
roc.matrix[ncuts, 2] <- 1

for (i in 1:(ncuts - 1)) {

Limit <- ¢(0,cut.values[i],predt,15)

Sel <- adaptintegrate(1G,lowerLimit=c(Limit[1],Limit[2]),
upperLimit=c(Limit[3],Limit[4]))

Se2 <- adaptintegrate(1G,lowerLimit=c(Limit[1],Limit[1]),
upperLimit=c(Limit[3],Limit[4]))

Se <- Sel$integral/Se2$integral

Sp1l <- adaptintegrate(IG, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4],Limit[2]))
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Sp2 <-adaptintegrate(1G, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4], Limit[4]))
Sp <- Sp18$integral/Sp2%integral

roc.matrix([i, 1] <- Se
roc.matrix([i, 2] <- Sp

ks

##Calculation of Area under the ROC curve for each time point

sensitivity = roc.matrix[, 1]

specificity = roc.matrix[, 2]

x <- 1 - ¢(0,specificity)

y <- c¢(1,sensitivity)

n <- length(x)

dx <- x[-n] - x[-1]

mid.y <- (y[-n] + y[-1])/2

area <- sum(dx * mid.y)

list(cut.values = c(-Inf, cut.values), TP =y, FP = x,
predict.time = predt,AUC = area)}

##Parameter estimation

load("observations.dat™)

#Define the joint pdf

ftx <- function(t,x,param.t1,param.t2,param.x1,param.x2)
{param.t1*x*param.t2*(param.t1*x*t)"(param.t2-1)*
exp(-(x-param.x1)"2/2*param.x2/2-(param.t1*x*t)" param.t2)/
(param.x2*sqrt(2*pi))}

#Define the survival function

st <- function(t,x,param.t1,param.t2,param.x1,param.x2)
{(exp(-(param.t1*x*t)"param.t2-
(x-param.x1)"2/2*param.x2”2))/(param.x2*sqrt(2*pi))}

LL <- function(param.t1,param.t2,param.x1,param.x2) {

R =(ftx(data[,1],data[,2],param.t1,param.t2,param.x1,param.x2)"(data[,3]))*
(st(data[,1],data[,2],param.t1,param.t2,param.x1,param.x2)"(1-data[,3]))
-sum(log(R))}

library(stats4)
LH<- mle(LL, start = list(param.tl = 0.1, param.t2=1,param.x1=1,
param.x2=0.5), method = "L-BFGS-B", lower = ¢(0.1,1,1,1),
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upper = c(Inf, Inf,Inf,Inf))

Parameters<-matrix(LH@coef,1,5)
save( Parameters, file="resultsParameterLH.dat" )

##Second link
library(cubature)

##Multiplication of two functions
Multiply=function(a,b){
force(a)
force(b)
function(x){a(x)*b(x)}}

Para33cens <- function(marker,time,status,param.t3,param.t4,predt)
{ft <- function (t){sqrt(1/mean(time))*2*(sqrt(1/mean(time))*t)"(2-1)*exp(-
sgrt(1/mean(time))*t)"2}

gx <- function (x){1/(sd(marker)*sqrt(2*pi))*exp(-(x[2]-
mean(marker))”"2)/2*(sd(marker)"2)}

ftx <- function(x){ ((param.t3+param.t4*x[2])*2)*
(((param.t3+param.t4*x[2])*x[1])(2-1))*
exp(-((param.t3+param.t4*x[2])*x[1])"2)}

IG <- Multiply(ftx,gx)
000 <- order(time)

t <- time[o00]

X <- marker[000]

d<- status[000]

data<- cbind(x,t,d)
censored=ifelse(data[,2]<=predt&data[,3]==0,1,0)
data<-cbind(data,censored)

data <- subset(data,censored==0)

library(cubature)
cut.values <- unique(x)
cut.values <- cut.values[order(cut.values)]

ncuts <- length(cut.values)

roc.matrix <- matrix(NA, ncuts, 2)
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roc.matrix[ncuts, 1] <- 0
roc.matrix[ncuts, 2] <- 1

for (i in 1:(ncuts - 1)) {

Limit <- ¢(0,cut.values[i],predt,100)

Sel <- adaptintegrate(1G,lowerLimit=c(Limit[1],Limit[2]),
upperLimit=c(Limit[3],Limit[4]))

Se2 <- adaptIntegrate(1G,lowerLimit=c(Limit[1],Limit[1]),
upperLimit=c(Limit[3],Limit[4]))

Se <- Sel$integral/Se2$integral

Spl <- adaptintegrate(IG, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4],Limit[2]))

Sp2 <-adaptintegrate(IG, lowerLimit = c(Limit[3],Limit[1]),
upperLimit = c(Limit[4], Limit[4]))

Sp <- Sp1$integral/Sp2$integral

roc.matrix[i, 1] <- Se
roc.matrix[i, 2] <- Sp

}

##Calculation of Area under the ROC curve for each time point
sensitivity = roc.matrix|[,1]

specificity = roc.matrix[,2]

x <- 1 - ¢(0,specificity)

y <- ¢(1,sensitivity)

n <- length(x)

dx <- x[-n] - x[-1]

mid.y <- (y[-n] + y[-1])/2

area <- sum(dx * mid.y)

list(cut.values = c(-Inf, cut.values), TP =y, FP = x,
predict.time = predt, AUC = area)

ky

##Parameter estimation

#Define the joint pdf

ftx <- function(t,x,param.t1,param.t2,param.x1,param.x2)
{param.tl*x*param.t2*(param.t1*x*t)*(param.t2-1)*
exp(-(x-param.x1)"2/2*param.x2"2-(param.t1*x*t)"param.t2)/
(param.x2*sqrt(2*pi))}

#Define the survival function
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st <- function(t,x,param.t1,param.t2,param.x1,param.x2)
{(exp(-(param.t1*x*t)"param.t2-
(x-param.x1)"2/2*param.x2"2))/(param.x2*sqrt(2*pi))}

LL <- function(param.tl,param.t2,param.x1,param.x2) {

R =(ftx(data[,1],data[,2],param.t1,param.t2,param.x1,param.x2)"(data[,3]))*
(st(data[,1],data[,2],param.t1,param.t2,param.x1,param.x2)"(1-data[,3]))
-sum(log(R))}

library(stats4)

LH<- mle(LL, start = list(param.tl = 0.1, param.t2=1,param.x1=1,
param.x2=0.5), method = "L-BFGS-B", lower = ¢(0.1,1,1,1), upper = c(Inf,
Inf, Inf,Inf))

Parameters<-matrix(LH@coef,1,5)
save( Parameters, file="resultsParameterLH.dat" )
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Appendix B R code for proposed joint function

WA R R
#This is simdat2 function that has been edited from the simdat function.

simdat2 <- function(n, model, sepassoc, ntms, ran, b1, b2, gamma, sigu,
vare, theta0, thetal, censoring, censlam, truncation,
trunctime, gridstep) {

ctsx <- rnorm(n)
binx <- rbinom(n, 1, 0.5)
X2 <- chind(ctsx, binx)
id<-1:n
idl <- rep(id, each = ntms)
ctsxl <- rep(ctsx, each = ntms)
binxl <- rep(binx, each = ntms)
time <- rep(0:(ntms-1), length = n*ntms)
X1 <- chind(intercept = 1, ctsxI, binxl, ltime = time)
U <- MASS::mvrnorm(n, mu = rep(0, ran), Sigma = sigu)
Ul <- U[rep(1:n, each = ntms), ]
D <- getD(ran, time)
DU <-t(D) * Ul
Y1 <- (X1 %*% bl) + rowSums(DU) + sqrt(vare) * rnorm(n*ntms)
Y2 <- (X1 %*% bl) + rowSums(DU)
uo <- U[, 1]
if (model == "intslope") {

ul <-U[, 2]
}else {

ul <-rep(0, n)
}
b2x <- X2 %*% b2
#b2x <- matrix(0,nrow=n)
cens <- rep(1, n)
if (sepassoc) {

gamma <- rep(gamma[1], ran)
}
if (model !="quad") {

if (model =="int") {

gamma <- c(gamma[1], 0)

uu <- runif(n)
if (model =="int") {
survtime <- -log(uu) / exp(theta0O + b2x + gamma[1]*u0)
}else {
ii <- ((thetal + gamma[2]*ul) < 0) & (uu < exp(exp(theta0 + b2x + gamma[1]*u0) /
(thetal + gamma[2]*ul)))
survtime <- rep(0, n)
survtime[ii] <- Inf
survtime[!ii] <- log(1 - (thetal + gamma[2]*ul[!ii]) * log(uu[!ii]) /
exp(thetaO + b2x[!ii] + gamma[1]*uO[!ii])) / (thetal +
gamma[2]*ul[lii])
}
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}else {

tau <- trunctime

tgrid <- seq(runif(1, 0, gridstep), tau, gridstep)
lamO <- exp(theta0 + thetal * tgrid)

hazt <- gridstep * exp(b2x) %*% lamO

gD2 <- gamma * getD(ran, tgrid)

hmat <- exp(U %*% gD2) * hazt

uu <- matrix(runif(length(hmat)), n, length(tgrid))
tmat <- matrix(tgrid, n, length(tgrid), byrow = TRUE)
tmat[hmat < uu] <- tau

survtime <- apply(tmat, 1, min)

cens[survtime ==tau] <- 0

}

if (censoring) {
censtime <- -log(runif(n)) / censlam

}else {

censtime <- rep(Inf, n)
}
if (model !="quad") {
if (truncation) {
censtime <- pmin(censtime, trunctime)

}
}
ii <- (censtime < survtime)
survtime[ii] <- censtime[ii]
cengJii] <- 0
Is <- rep(survtime, each = ntms)
Y1 <-Y1[ls > time]
Y2 <- Y2[ls > time]
X1 <- X1[ls > time, ]
idl <-idl[ls > time]
time <- time[ls > time]
cat(pasteO(round(100 * sum(cens) / n, 1), "% experienced event\n'))

list(longdat = data.frame(id = idl, Y1, Y2, time, X1),
survdat = data.frame(id, survtime, cens, X2),
c=round(100 * sum(cens) / n, 1))

R e e R e ety
#
##simjoint
simjoint2<-function(n = 500, model = c("intslope”, "int", "quad"), sepassoc = FALSE,
ntms =5, bl =c¢(1, 0, 0, -1), b2 = ¢(1, 1), gamma = c(1,
0.1), sigu, vare = 0.01, thetaO = -3, thetal = 1, censoring = TRUE,
censlam = exp(-3), truncation = FALSE, trunctime = max(ntms),
gridstep = 0.01)
{

model <- match.arg(model)

226




if (model !="intslope" && model !="int" && model !'="quad") {
stop(paste("Unknown model:", model))

ran <- 2
if (model =="int") {
ran<-1

}

else if (model == "quad") {
ran <- 3

}

lat <- ran
if (sepassoc) {
lat <-1

}
if (length(gamma) != lat) {

warning("Number of association parameters do not match model choice\n™)
}

gamma <- rep(gamma, length = ran)

if (missing(sigu)) {
sigu <- diag(ran)

}
if (length(sigu) !'=ran"2) {
warning("Dimension of covariance matrix does not match chosen model\n")
if (Iength(sigu) > ran”2) {
sigu <- sigu[1:ran, 1:ran]
}
else {
sigu <- diag(ran) * sigu[1]

}
if (model =="int") {
if (sigu < 0) {
stop("Variance must be positive™)
}
}
else {
if (YisSymmetric(sigu)) {
stop("'Covariance matrix is not symmetric")
}
if (any(eigen(sigu)$values < 0) || (det(sigu) <= 0)) {
stop(""Covariance matrix must be positive semi-definite™)

¥

sim <- simdat2(n, model, sepassoc, ntms, ran, b1, b2, gamma,
sigu, vare, theta0, thetal, censoring, censlam, truncation,
trunctime, gridstep)

list(longitudinal = sim$longdat, survival = sim$survdat,c=sim$c)

HEHH R

##edit the predefined longst function in joineR (longst2)
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longst2<-function (longdat, long.formula, model, longdat2)

if (model =="int") {
rf <- as.formula(paste("~1", colnames(longdat)[1], sep = "|"))
Yelse if (model == "intslope™) {
rf <- as.formula(paste(paste0("~", colnames(longdat)[3]),
colnames(longdat)[1], sep ="|"))
}else if (model == "baseline”) {
rf <- as.formula(paste(paste0("~", colnames(longdat)[3]),
colnames(longdat)[1], sep ="|"))
Yelse {
tsq <- pasteO(paste0("1(", paste(colnames(longdat)[3],
"2, sep =), ")")
rf <- as.formula(paste(paste0("~", paste(colnames(longdat)[3],
tsq, sep = "+")), colnames(longdat)[1], sep ="|"))
}

long.start <- nlme::Ime(long.formula, random = rf, method = "ML",
data = data.frame(longdat2), na.action = na.omit, control = ImeControl(maxIter =
100,
msMaxlIter = 100, opt = "optim"))
q <- dim(nlme::VarCorr(long.start))[1] - 1
sigma.u <- as.matrix(nlme::getVarCov(long.start))
rownames(sigma.u) <- paste("U_", 0:(q - 1), sep ="")
colnames(sigma.u) <- paste("U_", 0:(q - 1), sep="")
if (model == "intslope™) {
corr <- as.numeric(nlme::VarCorr(long.start)[2, 3])
}else if (model == "baseline"){
corr <- as.numeric(nlme::VarCorr(long.start)[2, 3])
Yelse if (model == "int") {
corr <- NA
}else if (model == "quad") {
corr <- as.numeric(nlme::VarCorr(long.start)[2:3, 3])
}
sigma.z <- long.start$sigma”2
Il <- long.start$logLik
b1 <- nlme::fixef(long.start)
list(b1 = data.frame(b1), sigma.z = sigma.z, sigma.u = sigma.u,
corr = corr, log.like = 11)
}

A
#
#i#emUpdate#t#
emUpdate.b <- function(longdat, survdat, model, ran, lat, sepassoc,
paraests, gpt, max.it, tol, loglik, verbose) {

id <- longdat[, 1]

Y <- longdat[, 2]

tt <- longdat[, 3]

X1 <- as.matrix(longdat[, 4:dim(longdat)[2]])
n <- length(survdat[, 2])

s <- survdat[, 2]

cen <- survdat][, 3]

pl <- dim(longdat)[2] - 3
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p2 <- dim(survdat)[2] - 3
X2<-0
if (p2>0){

X2 <- as.matrix(survdat[, 4:dim(survdat)[2]])
}else {

b2x <- matrix(0, n, 1)
}
bl <- paraests$bl[, 1]
sigma.u <- paraests$sigma.u
tsigu <- t(sigma.u)
sigma.z <- paraests$sigma.z
if (loglik) {

b2 <- paraests$h2[, 1]

}else {
b2 <- c(paraests$h2, rep(0, lat))

}
haz <- paraests$haz
sf <- paraests$sf
rs <- paraests$rs
nev <- paraests$nev
nn <- diff(match(unique(id), id))
nn <- ¢(nn, length(id) - sum(nn))
N <- sum(nn)
g <- statmod::gauss.quad.prob(gpt, "normal”, sigma = sqrt(0.5))
ab <- g$nodes
w <- g$weights * sqrt(pi)
gmat <- matrix(0, gpt~ran, ran)
gmat[, 1] <- rep(ab, each = gpt”*(ran - 1))
if (model !="int") {
gmat[, 2] <- rep(ab, gpt)
w <- as.vector(w %x% w)
}
if (model =="quad") {
gmat[, 3] <- rep(ab, each = gpt)
w <- as.vector(w %x% g$weights * sqrt(pi))
}
EU <- matrix(0, n, ran)
EUU <- matrix(0, n, sum(1:ran))
EexpU <- matrix(0, n, length(haz))
EUexpU <- matrix(0, n, ran)
EUUexpU <- matrix(0, n, sum(1:ran))
r<-Y -X1%*% bl
Dtt <- getD(ran, tt)
Dtt2 <- t(Dtt)
if (model !="int") {
Dttc <- t(getD(sum(1:ran) - ran, tt)) * tt
}
Ds <- getD(ran, )
Dst <- t(Ds)
Dsf <- getD(ran, sf)
Dsf2 <- Dsf?2
Dsfc <- t(t(Dsf) * sf)
Dnsf <- matrix(1, ran, length(sf))
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sl <-rep(1:(ran - 1), (ran - 1):1)
s2 <- sequence((ran - 1):1) + rep(1:(ran - 1), (ran - 1):1)
cnn <- ¢(0, cumsum(nn))
Inn <- diag(max(nn))
conv <- FALSE
if (loglik) {
1<-0
2<-0
}

# main loop over EM iterations begins here
for (it in L:max.it) {

if (02> 0) {
b2x <- X2 %*% b2[1:p2]

}

eb2x <- exp(b2x)

sigma.zi <- sigma.z * Inn

cov <- sigma.u %*% Dtt

tcov <- Dtt2 %*% sigma.u

DH <- Dnsf * rep(haz, each = ran)

# main loop over subjects begins here
for (iinl:n){

rv <-r[(cnn[i] + 1):cnn[i + 1]]
ttv <- Dtt2[(cnn[i] + 1):cnn[i + 1], ]
W21 <- cov[, (cnn[i] + 1):cnn[i + 1]]
W12 <- tcov[(cnnl[i] + 1):cnn[i + 1], ]
if (model =="int") {
W11 <- terossprod(ttv, W21) + sigma.zi[1:nn[i], 1:nn[i]]

Yelse {

W11 <- ttv %*% W21 + sigma.zi[1:nn[i], 1:nn][i]]
}
if (nn[i]==1) {

W3 <- W12 / as.vector(W11)
if (model =="int") {
cvch <- sgrt((sigma.u - tcrossprod(W21, W3)) * 2)

}else {
cvch <- chol((sigma.u - tcrossprod(W21, W3)) * 2)
}
cm <- matrix(W3 * rv, gpt™ran, ran, byrow = TRUE)
}else {

W3 <- solve(W11, W12)
if (model =="int") {
cvch <- sgrt((sigma.u - W21 %*% W3) * 2)
}else {
cvch <- chol((sigma.u - W21 %*% W3) * 2)
}
cm <- matrix(rv %*% W3, gpt~ran, ran, byrow = TRUE)
}
newu <- gmat %*% cvch + cm
newuz2 <- newu’*2
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if (model I="int") {
newu?2 <- chind(newu2, newul, s1] * newul, s2])

}
egDUs <-1
if (cen[i]==1) {
egDUs <- exp(newu %*% (Dst[i, ] * b2[(p2 + 1):(p2 + lat)]) +
b2x[i, 1) * haz[rs[i]]

}

egDUsf <- exp(newu %*% (Dsf[, L:rs[i]] * b2[(p2 + 1):(p2 + lat)]))
ess <- exp(-(eb2x[i, ] * egDUsf) %*% haz[1:rs[i]])

f<-egDUs * ess * w

den <- sum(f)

EUII, L:ran] <- f[, 1] %*% newu / den
EUUII, 1:sum(L:ran)] <- f[, 1] %*% newu2 / den
C <- egDUSA, L:rs[i]]
EexpUl[i, L:rs[i]] <- f[, 1] %*% C / den
if (model =="int") {
EUexpU[i, 1] <- sum(f[, 1] %*% (newu[, 1] * C) * haz[1:rs[i]]) / den
EUUexpU[i, 1] <- sum(f[, 1] %*% (newu[, 1]*2 * C) * haz[1:rs[i]]) / den
Telse {
EUexpUli, 1:ran] <- rowSums(crossprod(newu * f[, 1], C) *
Dsf[, 1:rs[i]] * DH[, 1:rs[i]]) / den
EUUexpU[i, 1:ran] <- rowSums(crossprod(newu?2[, 1:ran] * f[, 1], C) *
Dsf2[, 1:rs[i]] * DHI, L:rs[i]]) / den
if (model == "intslope" ){
EUUexpU[i, ran + 1] <- 2 * sum(f[, 1] %*% (newu2[, ran + 1] * C) *
haz[1:rs[i]] * sf[1:rs[i]]) / den
} else if( model == "baseline'){
EUUexpU[i, ran + 1] <- 2 * sum(f[, 1] %*% (newu2[, ran + 1] * C) *
haz[1:rs[i]] * sf[1:rs[i]]) / den

Yelse {
EUUexpU[i, (ran + 1):sum(1:ran)] <- 2 *
rowSums(crossprod(newu2[, (ran + 1):sum(1:ran)] * f[, 1], C) *
Dsfc], L:rs[i]] * DHI, L:rs[i]]) / den
}

¥

# calculate the log-likelihood
if (loglik) {
if (den>0) {
12 <- 12 + log(den)
}
11 <-11 - nn[i] * 0.5 * log(2 * pi) - 0.5 * log(det(W11)) -
0.5 * sum(rv * solve(W11, rv))
}

} # end loop over subjects

parac <- data.frame(c(b1, b2, sigma.z, sigma.u))
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EexpUi <- colSums(t(EexpU) * haz)
haz <- nev / colSums(EexpU * eb2x], 1])
EUmat <- apply(EU, 2, rep, nn)
EUUmat <- apply(EUU, 2, rep, nn)
Ut <- rowSums(EUmat * Dtt2)
UULt <- rowSums(EUUmat], 1:ran] * Dtt2"\2)
uut2<-0
if (model !="int") {
UUt2 <- rowSums(EUUmat[, (ran + 1):sum(1:ran)] * Dttc)
}
b1 <- solve(crossprod(X1), crossprod(X1, Y - Ut))
r<-Y -X1%*% bl
sigma.z <-sum(r*2 -2 *r*Ut+ UUt +2* UUt2) / N
diag(sigma.u) <- colMeans(EUU)[1:ran]
if (model !="int") {
sigma.u[lower.tri(sigma.u)] <- colMeans(EUU)[-(1:ran)]
sigma.ufupper.tri(sigma.u)] <- t(sigma.u)[upper.tri(sigma.u)]
}
fd <- vector("numeric", p2 + ran)
sd <- matrix(0, p2 + ran, p2 + ran)
fd[(p2 + 1):(p2 + ran)] <- colSums(cen * (EU * t(Ds))) -
colSums(eb2x[, 1] * EUexpU)
if (model !="int") {
indsl <- (p2 + 1):(p2 + ran)
inds2 <- upper.tri(sd[(p2 + 1):(p2 + ran), inds1])
sd[inds1, inds1][inds2] <- -colSums(eb2x[, 1] * 0.5 * EUUexpU)[(ran +
1):sum(Z1:ran)]
}
if (p2>0){
fd[1:p2] <- c(colSums((cen * X2) - (X2 * eb2x[, 1] * EexpUi)))
sd[(1:p2), (p2 + 1):(p2 + ran)] <- -t(X2) %*% (eb2x[, 1] * EUexpU)
sd <-sd + t(sd)
for (iin 1:p2) {
for (j in 1:p2) {
sd[i, j] <- -(sum(X2[, i] * X2[, j] * eb2x[, 1] * EexpUi))

}
}
if (model =="int") {
sd[(p2 + 1), (p2 + 1)] <- -colSums(eb2x[, 1] * EUUexpU)[1:ran]
Yelse {
diag(sd[(p2 + 1):(p2 + ran), (p2 + 1):(p2 + ran)]) <-
-colSums(eb2x[, 1] * EUUexpU)[1:ran]
}
if (sepassoc) {
if (model =="int") {
fd <- fd
sd <-sd
Yelse {
fd[p2 + 1] <- sum(fd[(p2 + 1):(p2 + ran)])
fd <- fd[1:(p2 + 1)]
if (p2>1){
sd[1:p2, p2 + 1] <- rowSums(sd[(1:p2), (p2 + 1):(p2 + ran)])

232




}else {
sd[1:p2, p2 + 1] <- sum(sd[(1:p2), (p2 + 1):(p2 + ran)])

}
sd[p2 + 1, 1:p2] <-sd[1:p2, p2 + 1]
sd[p2 + 1, p2 + 1] <- sum(sd[(p2 + 1):(p2 + ran), (p2 + 1):(p2 + ran)])
sd <-sd[1:(p2 + 1), 1:(p2 + 1)]
}
}

if (model=="baseline"){
fd <- fd[-length(fd)]
sd <- sd[-nrow(sd),-ncol(sd)]
b2 <- b2[-length(b2)]
b2 <- b2 - solve(sd, fd)
b2<-c(b2,0)
} else{b2 <- b2 - solve(sd, fd)}

para <- data.frame(c(bl, b2, sigma.z, sigma.u))
if (verbose) {

print(paste("lIter:", it))

print(as.numeric(c(bl, b2, sigma.z, sigma.u)))
}

dd <- abs(parac - para)

if (max(dd) < tol) {
conv <- TRUE
break

¥

}

if ((conv !'= TRUE) & !loglik) {
print("Not converged ")

}
if (loglik) {
ll<-11+12-0.5*ran*n™* log(pi)
list("log.like" = II,
"longlog.like" =11,
"survlog.like" =1l - 1)
}else {

list("b1" = data.frame(bl),
"b2" = data.frame(b2),
"sigma.z" = sigma.z,
"sigma.u™ = sigma.u,
"haz" = haz,
"random" = EU,
"conv" = conv,
“iters" = it)
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HHHH

joint.b <- function (data, long.formula, surv.formula, model = c("intslope",
"int", "quad", "baseline™), sepassoc = FALSE, longsep = FALSE, survsep = FALSE,
gpt, Igpt, max.it, tol, verbose = FALSE)
{
if (Yinherits(data, "jointdata™)) {
stop("Data must be of class 'jointdata’\n")
}
id <- data$subj.col
time.long <- data$time.col
if (missing(gpt)) {
gpt <-3

}

if (missing(lgpt)) {
Igpt <- 10

}

if (missing(max.it)) {
max.it <- 200

}
if (missing(tol)) {
tol <- 0.001

Call <- match.call()
if (any(sapply(data$baseline, "class") == "factor")) {
data$baseline <- droplevels(data$baseline)
}
IdatList <- joineR:::prepLongData(long.formula, data, id, time.long)
longdat <- ldatList$longdat
long.data <- ldatList$long.data
sdatL.ist <- joineR:::prepSurvData(surv.formula, data, id, time.long)
survdat <- sdatList$survdat
survdat2 <- sdatL ist$survdat2
p2 <- sdatList$p2
compRisk <- sdatListScompRisk
sort.dat <- function(longdat, survdat) {
longid <- longdat[, 1]
nn <- diff(match(unique(longid), longid))
nn[length(nn) + 1] <- length(longid) - sum(nn)
svec <- rep(survdatl[, 2], nn)
sort.long <- longdat[order(svec), ]
0s <- order(survdat][, 2])
sort.surv <- survdat[os, ]
list(long.s = data.frame(sort.long), surv.s = data.frame(sort.surv))
}
sort <- sort.dat(longdat, survdat)
longdat <- sort$long.s
survdat <- sort$surv.s
model <- match.arg(model)
if ((model =="int" || model == "quad" || model == "baseline") && compRisk) {
warning("Competing risks models are only fitted with model = "intslope™)
model <- "intslope"
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if (model !="intslope" && model !="int" && model !'="quad" && model !=
"baseline") {
stop(paste("Unknown model:", model))
}
ran <- 2
if (model =="int") {
ran<-1
}
if (model =="quad") {
ran <- 3
}
lat <- ran
if (sepassoc && compRisk) {
warning(*"'Competing risks models are only fitted with sepassoc = FALSE")
sepassoc <- FALSE
}
if (sepassoc) {
lat <-1
}

Idaests <- longst2(longdat, long.formula, model, long.data)
if (lcompRisk) {
survests <- joineR:::survst(survdat, surv.formula, survdat2)
paraests <- c(ldaests, survests)
Yelse {
survests.a <- joineR:::survstCR(survdat, surv.formula, survdat2,
event = 1)
survests.b <- joineR:::survstCR(survdat, surv.formula, survdat2,
event = 2)
paraests <- c(ldaests, survests.a, survests.b)

}
if (lcompRisk) {
sep.ll <- Idaests$log.like + survests$log.like[2]
sep.loglik <- list(seplhood = sep.ll, sepy = Idaests$log.like,
sepn = survests$log.like[2])
Yelse {
sep.ll <- Idaests$log.like + survests.a$log.like[2] +
survests.b$log.like[2]
sep.loglik <- list(seplhood = sep.ll, sepy = Idaests$log.like,
sepn = survests.a$log.like[2] + survests.b$log.like[2])
}

if (lcompRisk) {
jointfit <- emUpdate.b(longdat = longdat, survdat = survdat,
model = model, ran = ran, lat = lat, sepassoc = sepassoc,
paraests = paraests, gpt = gpt, max.it = max.it,
tol = tol, loglik = FALSE, verbose = verbose)
Yelse {
jointfit <- joineR:::emUpdateCR(longdat = longdat, survdat = survdat,
paraests = paraests, gpt = gpt, max.it = max.it,
tol = tol, loglik = FALSE, verbose = verbose)

}
bl <- jointfit$h1l
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rownames(b1) <- rownames(paraests$b1l)
random <- jointfitSrandom
colnames(random) <- paste0("U_", O:(ran - 1))
rownames(random) <- survdat[, 1]
sigma.u <- jointfit$sigma.u
rownames(sigma.u) <- colnames(sigma.u) <- rownames(ldaests$sigma.u)
if (lcompRisk) {
hazard <- jointfit$haz
likeests <- c(jointfit, list(rs = survests$rs, sf = survests$sf))
if (p2>0){
b2 <- jointfit$h2[1:p2, ]
names(b2) <- names(paraests$b2)

Yelse {
b2 <- NULL

fixed <- list(longitudinal = b1, survival = b2)
latent <- jointfit$b2[(p2 + 1):(p2 + lat), ]
names(latent) <- paste0("gamma_", 0:(lat - 1))
Yelse {
hazard <- list(haz.a = jointfit$haz.a, haz.b = jointfit$haz.b)
likeests <- c(jointfit, list(s.dist.a = survests.a$s.dist.a,
id.a = survests.a$id.a, s.dist.b = survests.b$s.dist.b,
id.b = survests.b$id.b))
if (p2>0){
b2.a <- jointfit$b2.a[1:p2, ]
b2.b <- jointfit$h2.b[1:p2, ]
names(b2.a) <- names(b2.b) <- names(paraests$b2.a[1:p2])

Yelse {
b2.a <-b2.b <- NULL

fixed <- list(longitudinal = b1, survivall = b2.a, survival2 = b2.b)
latent <- with(jointfit, c(b2.a[(p2 + 1), ], b2.b[(p2 +
0, 1)

names(latent) <- paste0O("gamma_", 1:2)

coefficients <- list(fixed = fixed, random = random, latent = latent)
if (lcompRisk) {
jointll <- emUpdate.b(longdat = longdat, survdat = survdat,
model = model, ran = ran, lat = lat, sepassoc = sepassoc,
paraests = likeests, gpt = Igpt, max.it = 1, tol = tol,
loglik = TRUE, verbose = FALSE)
Yelse {
jointll <- joineR:::emUpdateCR(longdat = longdat, survdat = survdat,
paraests = likeests, gpt = Igpt, max.it = 1, tol = tol,
loglik = TRUE, verbose = FALSE)
}
loglik <- list(jointlhood = jointlI$log.like, jointy = jointli$longlog.like,
jointn = jointlI$survlog.like)
if (lcompRisk) {
sepests <- list(longests = sep(ldaests, longsep), survests = sep(survests,
survsep))

Yelse {

sepests <- list(longests = sep(ldaests, longsep), survestsl = sep(survests.a,
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survsep), survests2 = sep(survests.b, survsep))

results <- list(coefficients = coefficients, sigma.z = jointfit$sigma.z,
sigma.u = sigma.u, hazard = hazard, loglik = loglik,
numlter = jointfit$iters, convergence = jointfit$conv,
model = model, sepassoc = sepassoc, sepests = sepests,
compRisk = compRisk, sep.loglik = sep.loglik, formulae = list(Iformula =
long.formula,
sformula = surv.formula), data = data, call = Call)
class(results) <- "joint"
return(results)

¥
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Appendix C  Additional simulation results for measurement error approach

Table C. 1: Association parameter for varying measurement error with 50% censoring

True Pronosed ioint model Cox regression model with the observed Cox regression model with estimated
association P ] biomarker random intercept term from LME model
parameter = - — . = N

7. |SE | MSE |Bias Cov| @ |SE |MSE |Bias Cov| @ |[SE [MSE |Bias | Cov
Measurement error ¢% = 0.25
0 ~0.0025 | 0.0713 | 0.0051 | -0.0025 | 94.2 [ -0.0018 | 0.0605 | 0.0037 | -0.0018 | 95.0 [ -0.0025 | 0.0713 | 0.0051 | -0.0025 | 94.2
0.25 0.2483 | 0.0677 10.0046 | 0017 |94.6|0.1969 |0.0551 |0.0059 | o531 |84.2]0.2473 |0.0668 | 0.0045 | 0027 | 94.8
0.50 0.4963 | 0.0736 | 0.0054 | 50037 | 94.8|0.3869 |0:0575|0.0161 | 91131 |50.2]0.4876 |0:0699|0.0050 | 0124 | 94.6
0.75 0.7414 |0.0840 | 0.0071 | noogs | 95.4 | 0.5634 |0.0624 | 0.0387 | 51866 | 16.4|0.7236 | 0-0755 | 0.0070 | 90364 | 90.2
1 0.9838 | 0.0989 | 0.0100 | -0.0162 | 95.2 | 0.7243 | 0.0705 | 0.0810 | -0.2757 | 3.2 | 0.9231 | 0.0835 | 0.0129 | -0.0769 | 83.6
Measurement error a2 = 0.5
0 -0.0027 ]0.0738 | 0.0054 | -0.0027 | 94.6 [ -0.0015 | 0.0550 | 0.0030 | -0.0015 | 94.6 [ -0.0026 | 0.0732 | 0.0054 | 0026 | 94.6
0.25 0.2477 | 0.0718 1 0.0052 | 5 0p23 | 94.8|0.1628 |0.0499 | 0.0101 | 50g72 | 56.2 | 0.2440 | 0-0696 | 0.0049 | 9000 | 94.6
0.50 0.4941 |0.0806 | 0.0065 | 0o59 | 95203156 |0.0921 |0.0367 | 51844 |64 |04759 |0.0733|0.0060 | 0241 | 93.6
0.75 0.7362 | 0.0952 1 0.0093 | 50138 |93.4| 04518 |0.0564 | 0.0921 | 52982 |00 |0.6859 |0.0795|0.0104 | 0pa1 | 85.4
1 0.9736 | 0.1136 | 0.0136 | -0.0264 | 94.6 [ 0.5705 |0.0631 | 0.1884 | -0.4295 | 0.0 [0.8723 |0.0871 [ 0.0239 | 1277 | 676
Measurement error % = 1.0
0 ~0.0028 | 0.0773 | 0.0060 | -0.0028 | 94.4 | -0.0011 | 0.0472 | 0.0022 | -0.0011 | 95.0 [ -0.0027 | 0.0754 | 0.0057 | -0.0027 | 94.4
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True_ _ Proposed joint model C_ox regression model with the observed Cox regr_ession model with estimated
association biomarker random intercept term from LME model
parameter Ve SE MSE | Bias Cov a SE MSE | Bias Cov a SE MSE | Bias Cov
0.25 0.2466 | 00788 | 00062 | -0.0034 | 95.4 | 0.1208 | 0.0431 | 0.0185 | -0.1292 | 15.8 | 0.2374 | 0.0737 | 0.0056 | -0.0126 | 93.4
0.50 0.4911 | 90920 | 00085 | -0.0089 | 95.2]0.2307 |0.0449 | 0.0745 | -0.2693 | 0.0 |0.4565 | 0.0788 | 0.0081 | -0.0435 | 90.8
0.75 0.7300 | 91137 10,0133 | -0.0200 | 95.2]0.3240 |0.0480 | 0.1837 |-0.4260 | 0.0 |0.6465 | 0.0866 | 0.0182 | -0.1035 | 77.8
1 0.9614 | 0.1400 | 0.0211 | -0.0386 | 95.4 | 0.4023 | 0.0530 | 0.3601 | -0.5977 | 0.0 | 0.8067 | 0.0938 | 0.0462 | -0.1933 | 43.6
Measurement error % = 1.5

0 -0.0028 | 0.0802 | 0.0064 | -0.0028 | 94.2 [ -0.0008 | 0.0420 | 0.0018 | -0.0008 | 94.8 | -0.0027 | 0.0768 | 0.0059 | . 0027 | 94.6
0.25 0.2459 | 0.0847 10.0072 | 90041 | 94.4]0.0960 |00386 |0.0252 | 1540 |20 |o0.2316 |0-0768 | 0.0062 | 0184 | 93.0
0.50 0.4890 |0.1014 10.0104 | 90110 |95.2]0.1817 |00401 | 0.1029 | 53183 |0.0 |0.4413 |0.08320.0104 | 0587 | 88.8
0.75 0.7264 | 01289 1 00172 | 90236 | 94.4]0.2527 |00425 02491 | 94973 |0.0 |o0.6186 |0:0929|0.0259 | 1314 | 69.6
1 0.9514 |0.1594 | 0.0278 | -0.0486 |94.0 [0.3117 | 0.0463 | 0.4759 | -0.6883 | 0.0 |0.7634 |0.1002 | 0.0660 | (2366 | 32.8
Measurement error ¢ = 2.0

0 -0.0028 | 0.0827 1 0.0068 | _g0028 | 95.0|-0.0007 | 00381 | 0.0015 | 90007 |94.8|-0.0026 | 0-0779 | 0.0061 | 90026 | 94.4
0.25 0.2453 | 0.0895 1 0.0080 | 00047 | 94.4]0.0797 | 0035300303 | 91703 |02 |o0.2267 |0.0794|0.0068 | 0233 | 92.4
0.50 0.4864 |0.1088 1 0.0120 | 9136 |95.2]0.1499 | 0036501239 | 3501 |0.0 |o0.4289 |0.0870|0.0126 | 0711 | 86.4
0.75 0.7291 | 01485 10.0225 | 90209 | 954 ]0.2115 |00380 |0.2914 | 5385 |0.0 |0.6036 |0-1042|0.0323 | 1464 | 70.2
1 0.9567 | 01876 | 0.0371 | 00433 | 94.0|0.2572 | 00397 | 05533 | 07428 |0.0 |o0.7421 | 01156 | 0.0799 | 2579 | 33.0
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True Proposed ioint model Cox regression model with the observed Cox regression model with estimated
association P ] biomarker random intercept term from LME model
parameter — - — - — -

Ve \SE \MSE ‘BI&S Cov a \SE \MSE \Blas Cov a \SE \MSE \Blas Cov
Measurement error gz = 2.5
0 -0.0028 | 0.0850 | 0.0072 | 028 | 94.6 |-0.0006 |0.0352 |0.0012 | 5ooos | 94.2 |-0.0025 | 0-0791 | 0.0063 | 90025 | 94.8
0.25 0.2448 | 0.0935 | 0.0088 | np52 | 94.6 | 0.0680 |0.0328 | 0.0342 | 51820 | 0.0 |0.2226 |0.0816 |0.0074 | 0274 | 92.6
0.50 04839 |0.1153 1 0.0136 | o161 |94.8]|0.1276 |0.0338 | 0.1399 | 53704 |00 |04187 |0.0907 | 0.0149 | 0813 | 84.4
0.75 0.7200 |0.1484 10.0229 | 50300 | 94.8|0.1780 | 00358 | 0.3285 | 5720 | 0.0 |0.5820 | 01028 |0.0388 | 1680 | 60.8
1 0.9331 |0.1882 1 0.0399 | g9 | 94.6|0.2137 |0.0368 | 0.6196 | 57863 | 0.0 |0.7005 |0-1199 | 0.0988 | 2905 | 27.6

Table C. 2: Association parameter for varying measurement error with 70% censoring

True Proposed ioint model Cox regression model with the observed Cox regression model with estimated
association P ] biomarker random intercept term from LME model
parameter - — - — -

9. |SE  |MSE |Bias |cov] @ [SE |MSE |Bias cov| @ |SE |MSE [Bias |cCov
Measurement error g% = 0.25
0 ~0.0040 | 0.0850 | 0.0072 | -0.0040 | 95.2 | -0.0028 | 0.0714 | 0.0051 | -0.0028 | 94.4 | -0.0040 | 0.0852 | 0.0073 | -0.0040 | 95.2
0.25 0.2477 | 0.0986 | 0.0097 | 0023 | 94.4 | 0.2014 |0.0814 | 0.0090 | o486 |91.4 (02472 |0.097710.0095 | 00028 | 95.0
0.50 0.4944 | 0.1027 |0.0106 | 9 0os6 | 95.6 | 0.3920 | 0-0808 | 0.0182 | 1080 | 72.6|0.4884 | 00990 | 0.0099 | 0116 | 95.4
0.75 0.7408 | 01119 [0.0126 | 0092 | 94.4 | 0.5754 | 0.0846 | 0.0376 | 1746 |41.8|0.7201 |0-1035|0.0116 | 0299 | 93.8
1 0.9837 | 0.1195 | 0.0145 | -0.0163 | 94.2 | 0.7491 | 0.0844 | 0.0701 | -0.2509 | 16.6 | 0.9382 | 0.1051 | 0.0149 | -0.0618 | 90.6
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True Proposed ioint model Cox regression model with the observed Cox regression model with estimated
association P ] biomarker random intercept term from LME model
parameter — - = - = -

Ve \ SE \ MSE \ Bias Cov a \ SE \ MSE Bias Cov a \ SE \ MSE \ Bias Cov
Measurement error 62 = 0.5
0 -0.0036 | 0.0893 | 0.0080 | -0.0036 | 95.2 [ -0.0019 | 0.0657 [ 0.0043 | -0.0019 | 94.8 [-0.0036 | 0.0884 | 0.0078 | (0036 | 95.4
0.25 0.2458 | 0.1047 |1 0.0110 | 00042 | 94.4 | 0.1669 |0-0739 | 0.0124 | 0g31 | g80.8|0.2418 | 0-1016 | 0.0104 | 0082 | 94.0
0.50 0.4914 | 0.1129 [0.0128 | 0oge | 95.8 | 0.3226 | 00739 | 0.0369 | 1774 |32.8|0.4753 |0.1044 1 0.0115 | (0247 | 94.0
0.75 0.7349 | 0.1255 [ 0.0160 | 90151 | 94.8 | 0.4655 |0.0768 | 0.0868 | og45 |46 |0.6913 |0.1084 | 0.0152 | o587 | 92.0
1 0.9730 | 0.1384 |0.0199 | -0.0270 | 94.0 [ 0.5987 |0.0754 | 0.1667 |-0.4013 | 0.2 [0.8886 |0.1103 | 0.0246 | 51114 | 828
Measurement error % = 1.0
0 0.0061 | 0.1047 | 0.0110 | 0.0061 | 92.8]0.0012 | 0.0612 | 0.0037 | 0.0012 |94.0|0.0057 |0.1008 | 0.0102 | 0.0057 ]| 93.0
0.25 0.2430 | 01138 | 00130 | -0.0070 | 94.4 | 0.1244 | 0.0636 | 0.0198 | -0.1256 |48.8 | 0.2322 |0.1065 | 0.0117 | -0.0178 | 93.4
0.50 0.4857 | 01276 | 00165 | -0.0143 | 95.2 | 0.2384 | 0.0637 | 0.0725 |-0.2616 |2.2 |0.4523 |0.1105 | 0.0145 | -0.0477 | 92.4
0.75 0.7247 | 01428 | 00210 | -0.0253 | 95.2 | 0.3394 | 0.0625 | 0.1725 | -0.4106 | 0.0 |0.6501 |0.1130 | 0.0228 | -0.0999 | 86.6
1 0.9563 | 0.1685 | 0.0303 | -0.0437 | 94.0 | 0.4286 | 0.0638 | 0.3306 | -0.5714 | 0.0 | 0.8200 | 0.1196 | 0.0467 | -0.1800 | 67.4
Measurement error g2 = 1.5
0 0.0066 |0.1108 | 0.0123 | 0.0066 | 93.2]0.0009 | 0.0549 [ 0.0030 |0.0009 | 94.4]0.0060 | 0.1043 [ 0.0109 | g 0050 | 94.2
0.25 0.2410 | 01212 | 0.0148 | 40090 | 95.0 | 0.0992 | 0.0566 | 0.0260 | 1508 | 24.6 | 0.2246 | 0-1100 | 0.0128 | 9254 | 932
0.50 0.4807 | 0.1428 | 0.0208 | 193 | 952 | 0.1866 | 00598 |0.1018 | 3134 |00 |0.4336 |0-1188 | 0.0185| 0pes | 91.8
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True_ _ Proposed joint model C_ox regression model with the observed Cox regr_ession model with estimated
association biomarker random intercept term from LME model
parameter Y: SE MSE | Bias Cov a SE MSE Bias Cov a SE MSE | Bias Cov
0.75 0.7149 | 0.1669 | 0.0741 | -0.0351 | g4 ¢ | 02631 | 0.0547 | 0.2401 | -0.4869 | o |0.6148 | 0.1259 | 0.0341 | -0.1352 | 79 g
1 0.9316 |0.2011 |0.0451 | -0.0684 | 88.6 [ 0.3309 |0.0595 | 0.4513 |-0.6691 | 0.0 |0.7650 |0.1259 | 0.0711 | -0.2350 | 57 »
Measurement error ¢ = 2.0

0 0.0018 | 01148 |0.0132 ] o018 | 95.6 | 0.0004 | 0-0489 | 0.0024 | 90004 |95.4|0.0016 |0-1067|0.0114 150016 | 96.4
0.25 0.2380 | 01231 1 0.0153 | 90120 | 94.8 | 0.0810 |0-0900 | 0.0311 | 1690 |84 |0.2176 |0.1096 |0.0131 | 0324 | 942
0.50 0.4787 | 01434 |0.0210 | 50213 | 94.2| 0.1567 | 0-0493 | 0.1203 | 53433 | 0.0 |0.4219 |0.1148|0.0193 | 0781 | 90.8
0.75 0.7122 | 0.1808 | 0.0341 | 0378 | 95.0 | 0.2198 | 0-0505 | 0.2837 | 55302 | 0.0 |0.5983 |0-1296|0.0398 | 1517 | 77.4
1 0.9270 |0:2231 1 0.0551 | 90730 | 95.6 | 0.2701 |0-0935|0.5357 | 97299 | 0.0 |[0.7397 |0-1429 |0.0882 | 2603 | 50.4
Measurement error g2 = 2.5

0 -0.0047 | 01197 1 0.0143 | .0.0047 | 95.6 | -0.0021 | 0-0468 | 0.0022 | 50021 | 94.0 |-0.0046 |0-1086 | 0.0118 | 90046 | 96.4
0.25 0.2360 | 01235 | 0.0154 | 50140 | 95.2 | 0.0703 | 0-0450 | 0.0343 | 1797 |16 |0.2120 |0-1059 |0.0126 | 50371 | 04.2
0.50 0.4726 | 0.1531 | 0.0242 | -0.0274 | g4 | 0.1314 | 0.0473 [ 0.1381 | -0.3686 | |0.4094 |0.1236 | 0.0235 | -0.0906 | o g
0.75 0.7020 | 0-1945 | 0.0401 | 50480 | 95.4 | 0.1847 | 0-0489 | 0.3219 | 5653 | 0.0 |0.5778 | 01416 | 0.0497 | 1722 | 77.2
1 0.9162 | 0-2332 | 0.0614 | 0838 | 93.2 | 0.2315 | 0-0462 | 0.5928 | 7685 |0.0 |0.7094 | 0-1465|0.1059 | 52906 | 46.4
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Table C. 3: C-Index for varying measurement error with 50% censoring

Proposed measurement error adjusted

LME model random intercept term estimator

True o~ i i
estimator (UO)adj Observed biomarker x, @o),...

Y | C-Index

(SE) . C- . .
C-Index | SE MSE Bias Cov Index SE MSE Bias Cov | C-Index | SE MSE Bias Cov

Measurement error o2 = 0.25

0 ?6535?5) 05146 | 00114 100001 | 0003 | 948 | 05150 | 00116 | 0.0001 | g o001 | 95.8 | 0.5146 | 0-0114 | 0.0001 | 50003 | 948
0.5694 0.0172 | 0.0003 | _ 0.0170 | 0.0004 | - 0.0170 | 0.0003 | _

0.25 (0.0176) 0.5641 0.0053 | 93.6 | 0.5614 0.0080 | 914 | 0-5639 0.0055 | 93.2
0.6352 0.0176 | 0.0004 | _ 0.0170 | 0.0006 | - 0.0170 | 0.0004 | _

0.50 0.0173) 0.6247 0.0105 | 91.2 | 0.6181 00171 | 822 [ 06231 0.0121 | 88.4
0.6930 0.0179 | 0.0006 | _ 0.0172 | 0.0010 | - 0.0170 | 0.0007 | _

0.75 (0.0169) 0.6776 0.0154 | 85.6 | 0.6659 00271 | 626 [ 06732 0.0198 | 78.8
0.7412 0.0187 | 0.0007 | _ 0.0183 | 0.0017 | - 0.0176 | 0.0011 | _

1 (0.0169) 0.7215 0.0197 | 81.6 |0.7044 0.0368 | 484 | 0.7136 0.0276 | 65.8

Measurement error ¢ = 0.5

0 ?6501?35) 05143 | 00114 100001 | 50006 | 952 | 05150 | 00115 | 0.0001 | g o001 | 95.0 | 0.5142 | 00113 | 0.0001 | 0007 | 952
0.5694 0.0174 | 0.0004 | _ 0.0169 | 0.0005 | - 0.0169 | 0.0004 | _

0.25 (0.0176) 0.5612 0.0082 | 920 | 0.5557 0.0137 | 87-2 | 05603 0.0091 | 90.8
0.6352 0.0182 | 0.0006 | _ 0.0170 | 0.0011 | - 0.0170 | 0.0007 | _

0.50 0.0173) 0.6191 0.0161 | 85.0 | 0.6061 00201 | 590 [ 06152 0.0200 | 78.0
0.6930 0.0190 | 0.0009 | _ 0.0174 | 0.0023 | - 0.0172 |0.0013 | _

0.75 (0.0169) 0.6697 0.0233 | 77.2 | 0.6478 0.0452 | 280 [ 06605 0.0325 | 52.8
0.7412 0.0200 | 0.0013 | _ 0.0188 | 0.0040 | - 10.8 | 0.6962 | 0.0177 | 0.0023 | _

1 (0.0169) 0.7118 0.0294 | 68.4 | 0.6809 0.0603 0.0450 | 28.0
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Proposed measurement error adjusted

LME model random intercept term estimator

True —~ i ~
estimator (UO)adj Observed biomarker x, @o),...
Y | C-Index
(SE) . C- . .
C-Index | SE MSE Bias Cov Index SE MSE Bias Cov | C-Index | SE MSE Bias Cov
Measurement error % = 1.0
0 ?6501;?5) 05140 | 00113 100001 | 50009 |96.0 | 05149 | 00114 10.0001 | gooop | 954 | 0.5137 | 00109 |0.0001 | ¢no12 |96.0
0.5694 0.0178 | 0.0005 | _ 0.0169 | 0.0008 | - 0.0167 | 0.0005 | _
0.25 (0.0176) 0.5574 0.0120 | 89.6 | 0.5479 0.0215 | 758 | 05552 0.0142 | 86.2
0.6352 0.0192 | 0.0009 | _ 0.0171 | 0.0023 | - 0.0169 | 0.0012 | _
0.50 (0.0173) 0.6120 0.0232 | 76.8 | 0.5902 0.0450 | 26:8 | 06043 0.0309 | 55.0
0.6930 0.0207 | 0.0015 | _ 0.0176 | 0.0050 | - 0.0172 | 0.0028 | _
0.75 (0.0169) 0.6598 0.0332 | 63.0 |0.6244 00686 | 34 | 06434 0.0496 | 19.0
0.7412 0.0223 | 0.0022 | _ 0.0191 | 0.0084 | - 0.0178 | 0.0050 | _
1 (0.0169) 0.6999 0.0413 |53.4 |0.6514 0.089g | 04 | 06730 0.0682 | 3.6
Measurement error 2 = 1.5
0.5149 0.0112 | 0.0001 | _ 0.0113 | 0.0001 | - 0.0106 | 0.0001 | _
0 (0.0115) 0.5139 0.0010 | 96.2 | 0.5148 0.000 | 954 | 05134 0.0015 | 96.4
0.5694 0.0181 | 0.0005 | _ 0.0170 | 0.0010 | - 0.0165 | 0.0006 | _
0.25 (0.0176) 0.5549 0.0145 | 87.6 | 0.5426 0.0268 | 648 | 05515 0.0179 | 81.0
0.6352 0.0199 | 0.0012 | _ 0.0172 | 0.0034 | - 0.0167 | 0.0018 | _
0.50 (0.0173) 0.6071 0.0281 |70.4 | 05798 0.0554 | 10-6 | 0.5966 0.0386 | 38.0
0.6930 0.0221 | 0.0021 | _ 0.0177 | 0.0073 | - 0.0172 | 0.0041 | _
0.75 (0.0169) 0.6532 0.0398 |55.4 | 0.6094 0.0s3g | 04 | 06315 0.0615 | 3.8
0.7412 0.0240 | 0.0030 | _ 0.0191 | 0.0121 | - 0.0 |06571 |0.0177 |0.0074 | _
1 (0.0169) 0.6918 0.0494 | 44.0 | 0.6330 0.1082 0.0841 | 0.4
Measurement error ¢2 = 2.0
0.5149 0.0112 | 0.0001 | _ 0.0113 | 0.0001 | - 0.0104 | 0.0001 | _
0 (0.0115) 0.5138 0.0011 | 96.2 | 0.5147 0.0002 | 952 | 05131 0.0018 | 97.0
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Proposed measurement error adjusted

LME model random intercept term estimator

True —~ i ~
estimator (UO)adj Observed biomarker x, @o),...
Y | C-Index
SE -
(SE) C-Index | SE MSE Bias Cov ICndex SE MSE Bias Cov | C-Index | SE MSE Bias Cov
0.5694 0.0183 | 0.0006 | _ 0.0170 | 0.0012 | - 0.0163 | 0.0007 | _
0.25 (0.0176) 0.5529 0.0165 | 85.2 | 0.5387 0.0307 | 542 | 05486 0.0208 | 75.6
0.6352 0.0204 | 0.0014 | _ 0.0173 | 0.0043 | - 0.0166 | 0.0023 | _
0.50 0.0173) 0.6032 0.0320 | 64.0 | 0.5723 0.0609 | 56 | 05905 0.0447 | 24.6
0.6938 0.0231 | 0.0026 | _ 0.0176 | 0.0090 | - 0.0174 | 0.0053 | _
0.75 (0.0164) 0.6486 0.0452 | 49.4 | 0.6008 0.0930 | 00 | 06232 0.0706 | 2.4
0.7412 0.0253 | 0.0036 | _ 0.0179 | 0.0148 | - 0.0 |06461 |0.0181 |0.0094 | _
1 (0.0156) 0.6864 0.0548 | 40.0 | 0.6209 0.1203 0.0951 | 0.0
Measurement error 2 = 2.5
0.5149
0.0112 | 0.0001 0.0114 | 0.0001 | - 0.0102 | 0.0001
0 (0.0115) 0.5137 -0.0012 | 96.4 | 0.5146 0.0003 | 954 | 05129 -0.0020 | 96.8
0.5694 .
0.25 | (0.0176) 05512 | 00184 |0.0007 | 50182 |836 | 05358 | 0-0169 | 0.0014 0536 46.0 | 05463 | 0.0161 | 0.0008 | (50231 | 722
0.6352 i
050 | (0.0173) | 05999 | 00209 | 0.0017 | 00353 |28 |o05666 | 00173 | 0.0050 00686 | 02 | 05856 0.0165 10.0027 | 0496 |0.0
0.6937
0.0244 | 0.0030 0.0182 | 0.0107 | - 0.0181 | 0.0063
0.75 | (0.0167) 0.6447 -0.0490 | 46.6 | 0.5918 01019 | 00 | 06163 -0.0774 | 1.0
0.7412
0.0266 | 0.0045 0.0180 | 0.0178 | - 0.0175 | 0.0114
1 (0.0158) 0.6798 -0.0614 | 34.8 | 0.6092 0.1300 | 00 | 06357 -0.1055 | 0.0
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Table C. 4: C-Index for varying measurement error with 70% censoring

Proposed measurement error adjusted . LME model random intercept

True - "

Association estimator (Ug),q; Observed biomarker xo term estimator (Ug)ime

parameter C-Index
(SE) c- SE MSE |Bias |Cov|< SE MSE |Bias |cCov | SE MSE | Bias | Cov

Index Index Index

Measurement error o2 = 0.25
0.5180 0.5173 0.0136 | 0.0002 | - 0.5176 | 0.0138 | 0.0002 | - 0.5174 | 0.0136 | 0.0002 | -

0 (0.0138) 0.0007 9%.0 0.0004 9.4 0.0006 %.0
0.5075 0.5640 | 0.0246 | 0.0006 | - 0.5628 | 0.0245 | 0.0007 | - 0.5639 | 0.0245 | 0.0006 | -

0.25 (0.0245) 0.0065 930 0.0077 93.0 0.0066 93.2
0.6351 0.6239 | 0.0240 | 0.0007 | - 0.6194 | 0.0236 | 0.0008 | - 0.6229 | 0.0235 | 0.0007 | -

0.50 (0.0229) 0.0112 920 0.0157 89.6 0.0122 910
0.6937 0.6768 0.0234 | 0.0008 | - 0.6690 | 0.0229 | 0.0011 | - 0.6740 | 0.0227 | 0.0009 | -

0.75 (0.0221) 0.0169 892 0.0247 832 0.0197 87.0
0.7419 0.7206 0.0206 | 0.0009 | - 0.7099 | 0.0201 | 0.0014 | - 0.7157 | 0.0199 | 0.0011 | -

! (0.0190) 0.0213 826 0.0320 65.4 0.0262 746

Measurement error o2 = 0.5
0.5180 0.5173 0.0136 | 0.0002 | - 0.5178 | 0.0138 | 0.0002 | - 0.5172 | 0.0134 | 0.0002 | -

0 (0.0138) 0.0007 %6 0.0002 94.8 0.0008 %8
0.5075 0.5609 0.0248 | 0.0007 | - 0.5573 | 0.0243 | 0.0008 | - 0.5599 | 0.0242 | 0.0007 | -

0.25 (0.0245) 0.0096 918 0.0132 910 0.0106 918
0.6351 0.6180 | 0.0248 | 0.0009 | - 0.6082 | 0.0239 | 0.0013 | - 0.6147 | 0.0235 | 0.0010 | -

0.50 (0.0229) 0.0171 | 890 0.0269 | 84 0.0204 | 84
0.6937 0.6684 0.0247 | 0.0013 | - 0.6519 | 0.0234 | 0.0023 | - 0.6608 | 0.0228 | 0.0016 | -

0.75 (0.0221) 0.0253 834 0.0418 56.4 0.0329 4.0

1 0.7419 0.7103 0.0222 | 0.0015 | - 796 0.6882 | 0.0209 | 0.0033 | - 27.4 | 0.6983 | 0.0202 | 0.0023 | - 442
(0.0190) 0.0316 ' 0.0537 0.0436 '
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Proposed measurement error adjusted

LME model random intercept

True I i o~
Association estimator (Uy).gj Observed biomarker x term estimator (Ug)ime
parameter C-Index
SB) | € SE | MSE |Bias |Cov|< SE | MSE |Bias |cCov|& SE | MSE |Bias | Cov
Index Index Index
Measurement error o2 = 1.0
0.5186 0.5187 0.0155 | 0.0002 | 0.0001 0.5187 | 0.0154 | 0.0002 | 0.0001 0.5181 | 0.0148 | 0.0002 | -
0 (0.0145) 94.6 95.0 00005 | 952
0.5075 0.5568 0.0251 | 0.0008 | - 0.5499 | 0.0236 | 0.0010 | - 0.5542 | 0.0237 | 0.0008 | -
0.25 (0.0245) 0.0137 %06 0.0206 86.0 0.0163 89.0
0.6351 0.6100 0.0259 | 0.0013 | - 0.5930 | 0.0241 | 0.0024 | - 0.6028 | 0.0233 | 0.0016 | -
0.50 (0.0229) 0.0251 | 40 0.0421 | 294 0.0323 | %0
0.6574 0.0251 | 0.0019 | - 0.6299 | 0.0229 | 0.0046 | - 0.6432 | 0.0218 | 0.0030 | -
0.75 0.6934 0.0360 70.6 0.0635 22.6 0.0502 34.8
1 0.7419 0.6969 0.0248 | 0.0026 | - 568 0.6598 | 0.0217 | 0.0072 | - 38 0.6740 | 0.0205 | 0.0050 | - 8.2
(0.0190) 0.0450 ' 0.0821 ' 0.0679 '
Measurement error ¢% = 1.5
05186 | 0.5188 | 0.0157 | 0.0002 | 0.0002 0.5189 | 0.0153 | 0.0002 | 0.0003 0.5178 | 0.0146 | 0.0002 | -
0 (0.0145) 94.0 9.0 0.0008 | °*
0.5075 0.5540 0.0254 | 0.0009 | - 0.5451 | 0.0228 | 0.0012 | - 0.5503 | 0.0233 | 0.0010 | -
0.25 (0.0245) 0.0165 89.6 0.0254 78.0 0.0202 86.0
0.6364 0.6044 0.0284 | 0.0018 | - 0.5823 | 0.0260 | 0.0036 | - 0.5943 | 0.0245 -
0.0024
0.50 (0.0253) 0.0320 | 810 0.0541 | o4 0.0421 | 04
0.6922 0.6489 0.0271 | 0.0026 | - 0.6136 | 0.0224 | 0.0067 | - 0.6295 | 0.0223 | 0.0044 | -
0.75 (0.0210) 0.0433 | 64.8 0.0786 | 6.8 0.0627 | 20.8
0.6866 0.0279 | 0.0039 | - 0.6398 | 0.0232 | 0.0111 | - 0.6569 | 0.0214 | 0.0078 | -
1 0.7424 44.4 1.0 3.0
(0.0194) 0.0558 . 0.1026 0.0855 .
Measurement error % = 2.0
0.5199 0.5194 0.0150 | 0.0002 | - 0.5187 | 0.0146 | 0.0002 | - 0.5181 | 0.0138 | 0.0002 | -
0 (0.0157) 0.0005 96 0.0012 9.5 0.0018 9.4
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Proposed measurement error adjusted

LME model random intercept

True N ; o~

Association estimator (Uy).gj Observed biomarker x term estimator (Ug)ime

parameter C-Index
SB) | € SE | MSE |Bias |Cov|< SE | MSE |Bias |cCov|& SE | MSE |Bias | Cov

Index Index Index

0.5693 | 0.5511 | 0.0242 [ 0.0010 | - 0.5405 | 0.0223 [ 0.0014 | - 0.5467 | 0.0216 | 0.0010 | -

0.25 (0.0245) 0.0194 | 64 0.0300 | /22 0.0238 | 188
0.6347 | 0.5997 | 0.0253 | 0.0019 | - 0.5755 | 0.0233 | 0.0041 | - 0.5879 | 0.0211 | 0.0026 | -

0.50 (0.0218) 0.0350 | 882 0.0592 | 248 0.0468 | 32
0.6935 | 0.6435 | 0.0280 | 0.0033 | - 0.6045 | 0.0234 | 0.0085 | - 0.6213 | 0.0218 | 0.0057 | -

0.75 (0.0207) 0.0500 | >>* 0.0890 | >* 0.0722 | 8

1 0.7419 | 0.6799 | 0.0310 | 0.0048 | - 474 | 06270 | 0.0241 | 0.0138 | - 0.0 | 0.6448 | 0.0230 | 0.0100 | - 12
(0.0205) 0.0620 ' 0.1149 0.0971 |

Measurement error ¢% = 2.5
0.5194 | 05193 | 0.0148 | 0.0002 | - 0.5199 | 0.0143 | 0.0002 | 0.0000 0.5178 | 0.0134 | 0.0002 | -

0 (0.0146) 0.0006 | 96.8 94.2 0.0021 | 97.4
0.5686 | 0.5488 | 0.0233 | 0.0010 | - 0.5380 | 0.0216 | 0.0015 | - 66.6 | 0-5440 [ 0.0203 | 0.0011 | -

0.25 (0.0225) 0.0217 | 87.0 0.0325 ' 0.0265 | 75.8
0.6354 | 0.5955 | 0.0270 | 0.0023 | - 0.5686 | 0.0241 | 0.0050 | - 0.5823 | 0.0220 | 0.0033 | -

0.50 (0.0234) 0.0399 | 69.4 0.0668 | 20.4 0.0531 | 32.0
0.6937 | 0.6375 | 0.0296 | 0.0040 | - 0.5953 | 0.0244 | 0.0103 | - 0.6128 | 0.0225 | 0.0071 | -

0.75 (0.0221) 0.0562 | 52.8 0.0984 | 1.8 0.0809 | 5.2
0.7409 | 0.6735 | 0.0316 | 0.0055 | - 0.6176 | 0.0219 | 0.0157 | - 0.6343 | 0.0224 | 0.0119 | -

1 (0.0203) 0.0674 | 40.2 0.1233 | 0.0 0.1066 | 0.4
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Table C. 5: Time-dependent AUC, sensitivity, specificity for adjusted and observed biomarkers when y=0 and 50% censoring

Adjust
Predicted | True djusted Observed
Time AUC AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) (SE) MSE | Bias | Cov (SE) (SE) (SE) MSE | Bias | Cov (SE) (SE)
Measurement error g% = 0.25
0.5138 | 0.5134 - 0.5094 0.5095 0.5133 - 0.5095 0.5094
1 (0.0104) | (0.0107) 0.0001 | hoos5 | 946 (0.0743) (0.0076) (0.0102) 0.0001 5 505 | 956 (0.0073) (0.0073)
0.5138 | 0.5134 . 0.5094 0.5096 0.5133 : 0.5094 0.5095
2 (0.0103) | (0.0107) 000011 504 | 90 (0.0079) (0.0075) (0.0102) 0.0001 15 505 | 956 (0.0073) (0.0074)
05137 05133 | o000 ]- 0.5094 0.5094 05133 | 00 |- o5 g | 0-5094 0.5094
3 (0.0103) |(0.0105) |~ 0.0004 | 95.2 | (0.0088) (0.0077) (0.0102) | 0.0004 | 7~ | (0.0087) (0.0074)
0.5126 | 0.5123 . 0.4936 0.5242 0.5121 : 0.4935 0.5241
4 (0.0097) | (0.0102) 00001 1 o3 | 90 (0.0298) (0.0264) (0.0098) 0-0001 15 0904 | 946 (0.0297) (0.0263)
Measurement error g% = 0.5
0.5140 | 0.5136 - 0.5097 0.5096 0.5134 - 0.5095 0.5095
! 0.0103) | 0.0105) | %% | 00004 | %4 | (0.0742) | (0.0074) | ©.0100) | %P9 | 0.0006 | %O | (0.0071) | (0.0072)
0.5130 | 0.5136 - 0.5096 0.5096 0.5134 - 0.5094 0.5095
2 0.0102) | ©0.0104) | %% | 00004 | %4 (0.0075) | (0.0075) | 0.0100) | %P9 | 0.0006 | %0 | (0.0073) | (0.0073)
0.5135 - 0.5094 0.5097 0.5133 - 0.5092 0.5098
3 0.5139 0.0001 95.6 0.0001 95.6
(0.0102) | (0.0103) 0.0004 (0.0083) (0.0080) (0.0100) 0.0006 (0.0084) (0.0075)
0.5128 | 0.5125 - 0.4936 0.5245 0.5122 - 0.4933 0.5244
4 (0.0098) | (0.0098) 0.0001 1 ho3 | 954 (0.0299) (0.0264) (0.0097) 0.0001 1 506 | 946 (0.0299) (0.0263)
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Predicted | True Adjusted Observed

Time (ASLé)C éLé)c MSE | Bias | Cov (Ssegiitivity (SSpEe;:ificity gLé(): MSE | Bias | Cov (S;.\E;itivity (SSpEe;:ificity
Measurement error % = 1.0

: 00109 | 00109 | %% 00003 |0 | @orizy | 0007 | 00099 | %% | 000s | B4 | ooy | w007y
2 00102 | 00109 | %% | 0002 | %54 | @oorr) | 00o7e) | 00100) | %% | 0000 | B¢ | oor) | w007y
3 05135 | 0oi0m | 090 [Go00s |54 @ooezy | 00070y | 000se) | %% | 0006 | 2| ook | 0007
! oo09) |00102) | O | o000z | %8 | oozeny | 0ozssy | (00095) | O | nooos |58 | (ooase) | 00260
Measurement error g% =1.5

: 00109 | 00108 | %% | 00008 |50 | @orss) | 0007y | 00100) | %9 | 00003 | %0 | @oors) | coory
2 00108 | 00100 | %% | 00008 | %58 | @oosey | 0007y | 00099 | %% | 00003 | B4 | @oorty | 0007
3 05142 | w00 | %% | oooos | %8| @oosey | 000z | 00099 | %% | 0003 | %0 | ooen) | 00076)
: 00097 | 00109 | %% | 00008 |90 | @ozse) | 0s6) | 00093 | %% | 0000s | %0 | ozee) | o0256)
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Predicted | True Adjusted Observed
Time AUC AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) (SE) MSE | Bias | Cov (SE) (SE) (SE) MSE | Bias | Cov (SE) (SE)
Measurement error g% = 2.0
0.5142 0.5137 - 0.5097 0.5096 0.5142 0.5101 0.5100
! (0.0111) | (0.0111) 0.0001 0.0005 9.0 (0.0706) (0.0079) (0.0105) 0.0001 1 0.0001 | 95.2 (0.0076) (0.0074)
0.5141 0.5139 - 0.5098 0.5098 0.5142 0.5100 0.5101
2 (0.0111) | (0.0113) 0.0001 0.0002 9.0 (0.0082) (0.0080) (0.0105) 0.0001 1 0.0001 | 95.2 (0.0075) (0.0077)
0.5137 - 0.5094 0.5101 0.5140 0.5098 0.5101
0.5139
3 (0.0108) (0.0111) 0.0001 0.0002 94.6 (0.0092) (0.0081) (0.0103) 0.0001 1 0.0001 | 95.2 (0.0082) (0.0081)
0.5128 0.5126 - 0.4942 0.5241 0.5130 0.4947 0.5241
4 (0.0105) | (0.0106) 0.0001 14 hoop | 948 (0.0298) (0.0257) (0.0103) 0.0001 | 0.0002 | 95.4 (0.0288) (0.0257)
Measurement error g% =2.5
0.5138 0.5135 - 0.5096 0.5095 0.5137 - 0.5097 0.5097
! (0.0104) | (0.0105) 0.0001 | 4 5og3 | 948 (0.0696) (0.0074) (0.0102) 0.0001 | 4 5oy | 66 (0.0073) (0.0073)
0.5137 0.5138 0.5096 0.5100 0.5146 - 0.5096 0.5097
2 (0.0104) | (0.0107) | 00001 | 00001 4948} 5079y | 00077y | 00102) | %9 | 0.0001 | %68 | (0.0074) | (0.0073)
0.5136 0.5138 0.5094 0.5102 0.5135 - 0.5093 0.5098
3 00103 | (©0108) | 200000051942 1 g 0089) | (0.0079) | (0.0099) | PO | 00001 | %O | 0.0081) | (0.0077)
0.5123 0.5126 0.4931 0.5253 0.5122 - 0.4925 0.5251
4 (0.0096) | (0.0099) 0.0001 | 0.0003 | 94.2 (0.0319) (0.0253) (0.0095) 0.0001 0.0002 9.6 (0.0310) (0.0288)
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Table C. 6: Time-dependent AUC, sensitivity, specificity for adjusted and obsrved biomarkers when y=0.25 and 50% censoring

Predicted | True Adjusted Observed

Time (AéLé(): éLé(): MSE | Bias | cov (SSeE;itivity (Sgg:ificity AUC(SE) | MSE | Bias | Cov (Ssegitivity (Sspg:ificity
Measurement error g% = 0.25

1 ©00176) | 00172 | %% | 0o0s2 | 86| sz | oty | Gorry | %% |oooeo | 4| o1z | o1z
: o7y | 00170) | %% | o001 | B8 | oz | o1z | Gowsey | 19 |ozee | 4| oorzy | o1z
; oot67) | 0016n | %% | oo0ss | B8 | orzn | o1z | Gotss | %% |ooora | 22| ootz | @01z
4 00179) | 00167 | %% | oo0ss | 94| ozoe) | ozen | Gowse) | %% | oooes | %6 | oozmy | (026
Measurement error g% = 0.5

: ©00176) | 0078 | %% | o000 | 20| sz | otz | Gowss | %% |oosar | %58 | ootz | @oiz
2 o7y | 00172 | %% | ooore |6 | orze | o1z | Gowsn) | %% |oosas | 56| ooty | otz
3 ooten | oot |°%% | aoora| %2 | ooz | ootz | oowse |°%% | oowzs| 2| oorzn | @ora0
! ©00179) | (00163 | %% | 00077 | 80| ozey | ozen | Gows | %% |oo1so | O8] oozee | (@026
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Predicted | True Adjusted Observed

Time (AéLé(): ,éLg: MSE | Bias | Cov (Ssegitivity (Sspg:ificity AUC(SE) | MSE | Bias | Cov ?glg;itivity ?Spé)cificity
Measurement error o; = 1.0

: 00176) | 0079 | 2% | 00117 | 92 | oorz0) | ootz | ootse) | °%% | noass| 50| ooren | (o122
2 o017 | 007 |00 o011z | 98 | oom | ootz | ootse) |©10% | ozee| 06| ooren | o122
3 oot6n | oot |20 aouz| 8 | oorze) | ootz | oowe |°% | aoxo| 77 |00tz | ootz
! 00179) | (00160) | %% 00112 | 390 | ozen | oze | Gotsey | %% | oo17a | 86| oze0) | oz
Measurement error g% =1.5

: ©0176) | 0ot |°%% | aoua| 2| ooy | ooy | orro) |°%10 | noxse| 0| 0or20) | (orz
2 oo | Oote |°%% | ao1sa | 52| ooy | oot | ose) |°%10 | noxsa| 0| 00r20) | (o124
3 oot6n | 007 |°%% | a01za| 72 | oorsa | oorz) | o0ws) |°0% | noxso| 2 | 00res | (0129
© o |00 | %% ooz | 4| Gz |0z | 00w | % |ozr7 | %4 ooosny | 02se
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Predicted | True Adjusted Observed

Time (AéLé(): ,éLg: MSE | Bias | Cov (Ssegitivity (Sspg:ificity AUC(SE) | MSE | Bias | Cov ?glg;itivity ?Spé)cificity
Measurement error o; = 2.0

: 00176) | 0016y |°%% | aoisa| 4| oorsy | ooz | 0wy |°%12 | aomr | 528 | oor20) | (012
2 o017 | ©otey |00 | aoiso| 4| oormn | ootz |oose |°%12 | nomr | 52 | oore2) | otz
3 oot6n | 0017 |20 | aous| 2 | oo | ootz | oows | OO noxer | 0| oores) | 0129
4 00179) | 00161 | %% | o01as | 8| oz | oz | Goiss) | %% | 0ozae | 42| 0ozs0) | (h0zed
Measurement error g% =2.5

: 00176) | 0018 |°% | aomer | %0 | oorms | ooran | oows) |°%H | ooxs| 8 | 0or20) | 0122
2 o017 | 0ot |°%% | ooiss| %8 | ooz | 0oty | oown | O noxo| 8 | 0os20) | (o121
3 ooten | ©ore |°%% | aoi0| 4| oorm) | 0ot | oomss | O3 | ooms | 0 | ooras | 001z
© oo |0y | %% oo |8 G |0z | ooty | %0 | ozra | | Goasny | 0028
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Table C. 7: Time-dependent AUC, sensitivity, specificity for adjusted and observed biomarkers when y=0.5 and 50% censoring

Adjust
Predicted | True djusted Observed
Time AUC AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) (SE) MSE | Bias Cov (SE) (SE) (SE) MSE | Bias Cov (SE) (SE)
Measurement error g% = 0.25
0.6356 | 0.6253 - 0.5897 0.5894 0.6182 - 0.5845 0.5843
1 (0.0174) | (0.0178) 0.0004 1 9103 | 912 (0.0135) (0.0133) (0.0171) 0.0006 | 1174 | 822 (0.0128) (0.0130)
0.6315 [ 0.6213 - 0.5872 0.5860 0.6155 - 0.5827 0.5822
2 (0.0166) | (0.0168) 0.0004 1 102 | 906 (0.0131) (0.0128) (0.0165) 0.01841 ) 1347 | 830 (0.0128) (0.0127)
06223 [0612L | 00,1 0.5812 0.5782 0.6088 | 004 | - g5 4 | 05786 0.5771
3 (0.0160) |(00157) |~ 0.0102 | 90.8 | (0.0131) (0.0135) (0.0158) | 0.0135 | " | (0.0134) (0.0139)
0.6062 | 0.5966 - 0.5739 0.5668 0.5959 - 0.5720 0.5673
4 0.0208) | (0.0193) | %99 | 0.0095 | %2* | (0.0268) (0.0286) 0.0201) | %999 | 50102 | 91 | (0.0269) (0.0272)
Measurement error g% = 0.5
0.6356 | 0.6200 - 0.5856 0.5858 0.6062 - 0.5758 0.5756
! ©0.0174) | 0.0185) | %% | 00156 | 88 | (0.0139) | (0.0138) | ©0171) | ©P9%? | 0.0204 | %92 | (0.0126) | (0.0129)
0.6315 | 0.6159 - 0.5832 0.5823 0.6042 - 0.5744 0.5741
2 0.0166) | 0.0173) | %999 | 00155 | 8 | (0.0136) | (0.0129) | 0.0166) | 08| 0.1347 | 820 | (0.0127) | 0.0126)
0.6065 - 0.5774 0.5749 0.5989 - 0.5714 0.5700
0.6223
3 0o160) | ©0158) | *% 00188 | 9| 00135 | (0.0134) | (00158 | OO 0ooaa | %07 | 0.0120) | (0.0132)
0.6062 | 0.5912 - 0.5697 0.5629 0.5883 - 0.5666 0.5619
4 0.0208) | 0.0187) | %% | 0.0150 | &0 | (0.0267) (0.0276) 0.0195) | %9997 | 50178 | 84€ | (0.0264 (0.0274)
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Predicted | True Adjusted Observed

Time (ASLé)C éLé)c MSE | Bias | Cov (Ssegiitivity (SSpEe;:ificity gLé(): MSE | Bias | Cov (S;.\E;itivity (SSpEe;:ificity
Measurement error % = 1.0

: o7y |0096) |09 | 00226 | 8 | ooue) | 00wy |01 |02 oomss | 24| oowze) | 0orzn)
2 00166 | 0018 | %% |00zt | 74| Gorery | oz |otsn | 0% | 0aaer | B @oizy | ooz
3 00160, | 00168 | %% | 00220 | 20| Go1zry | oonzey | 00180 | %% ooz | 58| @oran | worze)
! 00208) |00mn) |08 | 0001z | 772 | (osey | 0oy |(00ten |O%12 | noase | 50| (onasey | 0026y
Measurement error g% =1.5

: w01 |00 | %% |00zrs 994 Gotsey | oowe) | 00173 | °9%% | oosse |98 | @owz | w0z
2 ?6?311656) ?6?85970) 0.0010 | 5o | 774 ?:gffg) ?6?(??3?7) ?fgfgg) 0.0184 | 1547 | 128 ?6?(?5214) ?(.)?(2:)536)
3 00160, | (00169 | %% | 00257 | 20| Gosssy | ootz | ootsd | %92 | ooae | V6| orzey | oor)
: 0020 | 00180, | %% |00z12 | 72| @ozsey | 0ozr0y | 00se) | % | ooaes | 474 | ozss) | ooas2)
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Predicted | True Adjusted Observed

Time (ASLé)C éLé)c MSE | Bias | Cov (Ssegiitivity (SSpEe;:ificity gLé(): MSE | Bias | Cov (S;.\E;itivity (SSpEe;:ificity
Measurement error g% = 2.0

: o017 | 00209 | %% | 00ass |92 | Gowsey | oois | 00173 | %9 | oosa |58 | @iz | corzn
2 00166 | 00199 | %2 |00ze0 |78 | Gowsey | 00masy | (00169) | %0 01347 |98 | otz | ooz
3 00160, | 0017 | °% | 00ze2 | 92| Gowaey | oowze) | 0016 | %9 | oosao | 104 @orze) | ooize)
! 00208) | 00180y | O | 00070 | 72 | (osny | 0oese) | 00re) |02 | noze | 34| (onszy | o
Measurement error g% =2.5

: oot |02 | % |0eso 920 Gowsey | oosey |00ty | 9% | oose |26 | @owon) | ooton)
2 00166 | 00200 | %% | 00ass |54 @otssy | 00wy | 00170) | *0% 01347 |32 | owoe) | (0010)
3 00160, | 0017 | %2 |00a0n |94 @orer) | oo |00ty | %9 | oose2 |56 | @owon) | c0106)
: o020 | 0018 | %% |0ozes |94 @ozsry | 0oer0y | 0017) | %% | 0aro | 24| oren) | ootse)
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Table C. 8: Time-dependent AUC, sensitivity, specificity for adjusted and observed biomarkers when y=0.75 and 50% censoring

Pre dicted | Trye Adjusted Observed

Time AUC gLIg: MSE | Bias Cov (S;Sitivity (Sspé;:ificity glg: MSE | Bias Cov (Ssegitivity (SSpé;:ificity
Measurement error g% = 0.25

1 00176) | 00sen | %9 | oorso |4 | oo |00 |07 | O noora | 38| ooz | 00m0)
z 00159 | 00164 | %% |oo1ss | %59 | ooize) | oorm) | (0otsy | US| 00882 882 iovzny | oony
3 ?6?514:1) ?6?35565) 0.0005 6.0153 82.0 ?6%113}9) ?6?(?37) (()dééfg?) 0.0006 6.0181 7.0 ?6?81752) ?6?85472)
4 00222) | 00205 | *9% | 00uaz |90 | oozezy | (0024 |(00216) |°%% | nonsa | % | (onase) | 0.025)
Measurement error g% = 0.5

: 0017 | o158 | %% | nozzs | 902 | oonzs) | 0otss) | 01 | %% | ooass | 78| vz | ooz
2 00150) | 0072 | °%% | 00o0a | 2 | o0raz | (0ora) |(ooten |04 00852 | 320 | (o | (ony
3 00161 | @015 | %% 00zze | 572 | oowzy | oorme) | ©01s | *% | ooaa | 74| @owan) | G0z
! 00222) | 00197 | °9% | 0210|795 | oozse) |00z |(00208) | 0% | nooss | #40 | (onasty | 002se)
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Pre dicted | True Adjusted Observed

Time AUC (AéLé(): MSE | Bias Cov (S;:E;itivity (SSpEe)cificity gLIg: MSE | Bias Cov ?glg;itivity (SSpEe;:ificity
Measurement error % = 1.0

: 00176 | 00218 | %5 | ozzr | %88 | ooise) |00ty | 001y | %02 00702 |32 | oray | oot
2 00159 | @01 | %3 | ozs | %24 | ooisz) |00ty | 0oty | OO0 | 00882 |48 | ooy | Goray
3 00161 | @016y | %2 | oozz |58 | oowe) |00 | 0015 | %927 | ooase | 10F | @oray | w0z
! 00222) | 00190) | *%% | om0z | 628 | o023y |00z |0oten | O | nossa |92 | (onozey | oezo)
Measurement error g% =1.5

: 00170) | 0020 | %2 |ozer | 902 | oorrny |0y | ot | %978 | ooesa |94 | @owz | coraa
2 00150 | 00200 | %V |ozse | 578 | ooteyy | oosse) | (oot | 000 | 00882 |08 | vy | Gy
3 (()6(.3514(?1) ?6%5722) 0.0016 |  1a57 | 468 (()65.53154?9) ?6.551937) ?6(.3812569) 0.0041 | 1ero | 26 ?c')?gfefs) ?6?(?123?2)
: 00222 | @016 | %8 | osar |58 | ooaaey | 00226) | (00190 | %% | oass | 04| ozze) | o0015)
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Pre dicted | True Adjusted Observed

Time AUC (AéLé(): MSE | Bias Cov (S;:E;itivity (SSpEe)cificity gLIg: MSE | Bias Cov ?glg;itivity (SSpEe;:ificity
Measurement error g% = 2.0

: 00176 | 00240 | % | noasz |8 | oouse) | 007 |01 | 9% | 0oe7 |90 | @orz) | oorze)
2 00159 | 00209 | %2 | noaos |58 | oomse) | 00ts0) | (oozeey | 9058 | 00708 |02 | iy | ity
3 00161 | 0079 | %9 sz |59 | ooss) |00y | oty | %0 | ooraa |10 | @oran | ooy
! 00222) | 00203 | 9% | oass | 518 | oooeny | 0ooan  |(00tse) | O noser | 208 (onaary | 00ez0)
Measurement error g% =2.5

: 00170 | ©0266) | % | nouss | 478 | oose) |00ty | oze | *OE | oaame |90 | vz | ooz
2 00150 | 00216 | %% |ouze |82 | oowrsy | ootse | o1 | %% | oosas |92 | @orz | oorze
3 00161 | ©otee | % oous |08 | ooise) | oosse) | 0oten | 0% | oores |92 | @owzey | oorze)
4 00222 | 00199 | %9 | ozes |68 | ooy | 00228 | 0o1e) | %9 | oosor |98 | ozt | oo
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Table C. 9: Time-dependent AUC, sensitivity, specificity for adjusted and observed biomarkers when y=1.0 and 50% censoring

Adjust
Predicted | True djusted Observed
Time AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) AUC (SE) | MSE | Bias | Cov (SE) (SE) (SE) MSE | Bias | Cov (SE) (SE)
Measurement error g% = 0.25
0.7429 |0.7239 - 0.6658 0.6614 0.7053 - 0.6506 0.6476
1 0.0169) | 0.0185) | %9907 | 00101 | 824 | (0.0869) | (0.0153) | (0.0176) | “O9t7 | 0.0377 | #3® | (0.0141) | (0.0145)
0.7216 |0.7023 - 0.6519 0.6424 0.6916 - 0.6409 0.6367
2 0.0155) | 0.0159) | °%9% | 00193 | 04| (0.0140) | (0.0134) | (0.0158) | °0%%? | 00300 | °1® | (0.0131) | (0.0135)
0.6982 | 06779 - 0.6349 0.6230 0.6758 - 0.6304 0.6240
3 (0.0163) | (0:0155) 0000715 0202 | 756 | (0.0142) | 0.0146) | 0.0156) | %907 | 0.0224 | 14| 00145 | (0.0150)
0.6743 | 0.6547 - 0.6201 0.6052 0.6591 - 0.6200 0.6120
4 0.0239) | 0.0213) | %0998 | 00196 | 848 | (0.0235) | (0.0232) | (0.0228) | %0%%8 | 00152 | 908 | (0.0234) | (0.0258)
Measurement error g% = 0.5
0.7429 |0.7148 - 0.6588 0.6546 0.6811 - 0.6316 0.6299
! 0.0169) | 002000 | %992 | 00281 | %92 | (0.0869) | 0.0164) | (0.0179) | %% | 00618 | °® | (0.0140) | (0.0143)
0.7216 |0.6935 - 0.6450 0.6360 0.6713 - 0.6251 0.6218
2 0.0155) | 0.0170) | %99 | 00281 | 892 | (0.0147) | (00139) | (0.0162) | ©9%% | 00504 | 12| 0.0132) | (0.0132)
0.6982 | 0.6688 - 0.6276 0.6164 0.6597 - 0.6173 0.6130
3 0.0163) | 0.0158) | %9 | 0.0204 | %28 (0.0145) | 00145 | (0.0153) | %9 | 0.0385 | 220 | 00145 | (0.0142)
0.6743 | 0.6450 - 0.6130 0.5980 0.6468 - 0.6107 0.6031
4 0.0239) | 0.020) | %0913 | 00203 | 80| (0.0232) | (0.0231) | (0.0217) | %092 | 00275 | 742 | (0.0223) | (0.0252)
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Predicted | True Adjusted Observed
Time AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) AUC (SE) | MSE | Bias | Cov (SE) (SE) (SE) MSE | Bias | Cov (SE) (SE)
Measurement error % = 1.0
0.7429 | 0.7034 - 0.6503 0.6457 0.6508 - 0.6087 0.6077
! (0.0169) | (0.0224) 0.0021 0.0395 576 (0.0869) (0.0174) (0.0181) 0.0088 0.0921 02 (0.0139) (0.0139)
0.7216 | 0.6840 - 0.6376 0.6290 0.6447 - 0.6047 0.6029
2 (0.0155) | (0.0189) 0.0018 0.0376 472 (0.0160) (0.0149) (0.0165) 0.0062 0.0769 06 (0.0131) (0.0132)
0.6982 0.6595 - 0.6205 0.6097 0.6374 - 0.6000 0.5974
3 (0.0163) | (0.0166) 0.0018 0.0387 250 (0.0154) (0.0149) (0.0154) 0.0039 0.0608 22 (0.0135) (0.0139)
0.6743 0.6350 - 0.6054 0.5909 0.6285 - 0.5958 0.5910
4 (0.0239) | (0.0197) 0.0019 1§ h393 | 486 (0.0235) (0.0216) (0.0200) 0.0025 | 4 p45g | 382 (0.0218) (0.0233)
Measurement error g% =1.5
0.7429 | 0.6956 - 0.6477 0.6394 0.6320 - 0.5946 0.5942
! (0.0169) | (0.0241) 0.0028 | 5 5473 | 494 (0.0871) (0.0183) (0.0180) 0.0126 | 5 1109 | 00 (0.0136) (0.0137)
0.7216 | 0.6783 - 0.6334 0.6247 0.6277 - 0.5919 0.5908
2 0.0155) | 0.0203) | %9923 | 00433 | 12| (0.0171) | ©o0157) | (0.0167) | 2% | 0.0939 | %0 | (00131) | (0.0130)
0.6982 | 0.6546 - 0.6167 0.6063 0.6225 - 0.5889 0.5866
3 0.0163) | 0.0175) | %9922 | 0036 | 304 | (0.0159) | 00151) | (0.0155) | 2% | 00757 | OO | 0.0136) | (0.0133)
0.6743 | 0.6299 - 0.6018 0.5871 0.6156 - 0.5840 0.5817
4 (0.0239) | (0.0196) 0.0024 0.0445 38.2 (0.0243) (0.0202) (0.0191) 0.0038 0.0588 134 (0.0144) (0.0215)
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Predicted | True Adjusted Observed
Time AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) AUC (SE) | MSE | Bias | Cov (SE) (SE) (SE) MSE | Bias | Cov (SE) (SE)
Measurement error g% = 2.0
0.7429 | 0.6902 - 0.6410 0.6351 0.6210 - 0.5870 0.5859
! (0.0169) | (0.0259) 0.0035 0.0534 46.2 (0.0212) (0.0194) (0.0181) 0.0154 0.1226 00 (0.0136) (0.0134)
0.7216 | 0.6767 - 0.6309 0.6218 0.6177 - 0.5845 0.5838
2 (0.0155) | (0.0218) 0.0028 0.0481 416 (0.0186) (0.0161) (0.0170) 0.0113 0.1051 00 (0.0132) (0.0130)
0.6982 0.6532 - 0.6155 0.6057 0.6135 - 0.5815 0.5809
3 (0.0163) | (0.0187) 0.0025 0.0468 320 (0.0171) (0.0152) (0.0165) 0.0078 0.0866 00 (0.0142) (0.0139)
0.6743 0.6270 - 0.5995 0.5844 0.6069 - 0.5789 0.5756
4 (0.0239) | (0.0209) 0.00271 § 0477 | 352 (0.0238) (0.0220) (0.0188) 0.0050 | 4 pg7g | 00 (0.0211) (0.0212)
Measurement error g% =2.5
0.7429 | 0.6836 - 0.6364 0.6297 0.6093 - 0.5780 0.5778
! (0.0169) | (0.0275) 0.0042 | 4 o589 | 416 (0.0222) (0.0205) (0.0182) 0.0181 | 5 1333 | 00 (0.0134) (0.0135)
0.7216 | 0.6703 - 0.6277 0.6184 0.6068 - 0.5763 0.5759
2 0.0155) | 0.0231) | %9932 | 00512 | 378 | (0.0193) | 0173 | (0.0172) | %9%3® | 01148 | 20 | 00132 | (0.0130)
0.6982 | 0.6489 - 0.6127 0.6018 0.6035 - 0.5744 0.5734
3 0.0163) | 0.0195) | %9928 | 00493 | 24| (0.0172) | (0159) | (0.0162) | %9%% | 00948 | OO | (00135 | (0.0133)
0.6743 | 0.6248 - 0.5983 0.5832 0.5986 - 0.5723 0.5703
4 (0.0239) | (0.0203) 0.0029 0.0502 312 (0.0243) (0.0202) (0.0183) 0.0062 0.0764 10 (0.0191) (0.0206)
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Table C. 10: Time-dependent AUC, sensitivity, specificity for adjusted and observed biomarkers when y=0 and 70% censoring

Predicted | True Adjusted Observed
Time AUC AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) (SE) MSE | Bias | Cov (SE) (SE) (SE) MSE | Bias | Cov (SE) (SE)
Measurement error o2 = 0.25
0.5180 | 0.5175 - 0.5124 0.5124 0.5178 - 0.5126 0.5126
1 (0.0139) | (0.0135) 0.0002 1 ho0s | 964 (0.0097) (0.0096) (0.0138) 0.0002 1 502 | 956 (0.0099) (0.0099)
05178 | 05174 - 0.5122 0.5124 0.5176 - 0.5123 0.5123
2 (0.0136) | (0.0132) 0.0002 1 ho04 | 954 (0.0099) (0.0096) (0.0135) 0.0002 1 502 | 956 (0.0101) (0.0098)
05174 | 05171 - 0.5107 0.5136 0.5172 - 0.5110 0.5110
3 (0.0133) | (0.0131) 0.0002 1 4 404 | 95.0 (0.0137) (0.0117) (0.0133) 0.0002 1 4 o2 | 90 (0.0132) (0.0119)
0.5126 | 0.5123 - 0.4554 0.5641 0.5124 - 0.4556 0.5641
4 ©0.0119) | ©00110) | %% | 00003 | %44 | (0.0732) | (0.0708) | @o0111) | %P9 | 0.0002 | %0 | (0.0726) | (0.0708)
Measurement error g% = 0.5
05180 |[0.5174 - 0.5122 0.5125 0.5179 0.5126 0.5128
! (0.0139) | (0.0136) 0.0002| 4 5og5 | 9@ (0.0096) (0.0099) (0.0138) 0.0002) 0.0000 | 94.6 (0.0099) (0.0099)
05178 | 05173 - 0.5122 0.5123 0.5178 0.5124 0.5128
2 0.0136) | 0.0134) | ©%%%? | 00005 | %0 | (0.0009) | (0.0099) | (0.0135) | 00002 {00000 19441 6100y | (0.0098)
05174 | 0.5170 - 0.5108 0.5133 0.5174 - 0.5114 0.5133
3 0.0133) | 00133) | %% | 00004 | %0 | (0.0130) | (00115) | (00133 | %P9 00001 | ®0| (0.0133) | (0.0117)
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Predicted | True Adjusted Observed
Time AUC AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) (SE) MSE | Bias Cov (SE) (SE) (SE) MSE | Bias Cov (SE) (SE)
0.5126 0.5123 - 0.4555 0.5641 0.5125 - 0.4558 0.5641
4 0.0119) | ©o0111) | %% | 00003 | %44 | (0.0728) | (0.0708) | @o0111) | %P9 | 0.0001 | %8| (0.0720) | (0.0708)
Measurement error ¢2 =1.0
0.5190 0.5188 - 0.5133 0.5133 0.5187 - 0.5133 0.5132
! 0.0148) | 0.0148) | °%%%? | 00003 | %0 | (0.0106) | (0.0107) | 0.0145) | %P%%? ] 0.0004 | %O | (0.0104) | (0.0103)
0.5188 0.5187 - 0.5131 0.5135 0.5185 - 0.5130 0.5132
2 0.0145) | 00125 | %999 00001 | %0 | (00107 | (0.0106) | ©0141) | %P%%? | 0.0003 | ®*| (0.0104) | (0.0104)
0.5185 0.5183 - 0.5124 0.5136 0.5180 - 0.5124 0.5132
3 0.0141) | ©0141) | %999 00002 | %8| (0.0145 | (0.0118) | (00138 |%%%%?|0.0005 | ®>? | (0.0136) | (0.0116)
0.5130 0.5130 0.4558 0.5648 0.5131 0.4559 0.5648
4 (0.0119) | (0.0118) | 0001 | 00000 19441 5 5753y | (00707) | (0.0121) | OO0 | Q0001 19601 6709y | (0.0707)
Measurement error o2 =1.5
0.5201 0.5192 - 0.5134 0.5138 0.5184 - 0.5132 0.5129
! 0.0160) | 0.0148) | °%%%? | 0.0009 | %0 | (0.0105) | (0.0106) | 0.0143) | %%%%? | 0.0016 | %O | (0.0102) | (0.0103)
0.5197 0.5193 - 0.5136 0.5138 0.5182 - 0.5129 0.5129
2 0.0157) | 0.0146) | 2%%%? | 0.0004 | 4 | 0.0109) | 00107 | (0140) | %% | 00015 | %O | (0.0102) | (0.0204)
0.5193 0.5189 - 0.5124 0.5144 0.5178 - 0.5121 0.5132
3 0.0151) | 0.0141) | 29992 | 00005 | 8 | 0.0149) | 00123 | (0136) | %% | 00016 | 2°* | (0.0140) | (0.0113)
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Predicted | True Adjusted Observed
Time AUC AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) (SE) MSE | Bias | Cov (SE) (SE) (SE) MSE | Bias | Cov (SE) (SE)
0.5139 0.5133 - 0.4562 0.5647 0.5128 - 0.4554 0.5647
4 (0.0133) | (0.0119) 0.0001 | 4 5ogg | 2>© (0.0735) (0.0706) (0.0119) 0.0001 | 4 5p12 | 960 (0.0731) (0.0706)
Measurement error ¢ = 2.0
0.5197 0.5189 - 0.5133 0.5134 0.5182 - 0.5130 0.5128
! (0.0160) | (0.0146) 0.0002 0.0008 9.4 (0.0105) (0.0104) (0.0142) 0.0002 0.0015 9.4 (0.0102) (0.0101)
0.5194 0.5192 - 0.5135 0.5138 0.5181 - 0.5126 0.5130
2 (0.0156) | (0.0146) 0.0002 0.0001 9.2 (0.0107) (0.0108) (0.0139) 0.0002 0.0013 9.2 (0.0102) (0.0104)
0.5189 0.5188 - 0.5125 0.5143 0.5176 - 0.5117 0.5133
3 (0.0149) | (0.0141) 0.0002 | 5oo1 | 94 (0.0140) (0.0122) (0.0134) 0.0002 | 4 5og3 | 94 (0.0137) (0.0114)
0.5135 0.5132 - 0.4577 0.5629 0.5127 - 0.4572 0.5629
4 ©0.0128) | ©00121) | %% | 00003 | %4C | (0.0735) | (0.0702) | ©0119) | %P9 | 0.0008 | %40 | (0.0730) | 0.0702)
Measurement error g% =2.5
0.5194 0.5190 - 0.5135 0.5134 0.5188 - 0.5133 0.5133
! (0.0153) | (0.0151) 0.0002 1 hop4 | 9€ (0.0108) (0.0108) (0.0147) 0.0002 1 506 | 962 (0.0105) (0.0105)
0.5191 0.5195 0.5138 0.5140 0.5186 - 0.5130 0.5134
2 (0.0149) | (0.0153) 0.0002 | 0.0005 | 94.4 (0.0114) (0.0111) (0.0144) 0.0002 1 505 | 98 (0.0104) (0.0108)
0.5187 0.5192 0.5126 0.5147 0.5181 - 0.5120 0.5138
3 (0.0145) | (0.0149) 0.0002) 0.0004 | 94.8 (0.0146) (0.0127) (0.0139) 0.0002 | 4 506 | 90 (0.0138) (0.0120)
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Predicted | True Adjusted Observed

Time AUC AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) (SE) MSE | Bias | Cov (SE) (SE) (SE) MSE | Bias | Cov (SE) (SE)
0.5132 0.5135 0.4557 0.5656 0.5134 0.4555 0.5656

4 (0.0125) | (0.0126) | 0002 | 00003 19441 5 57aey | (0.07120) | (0.0129) | 00002 | 00002 19641 0736y | (0.0710)

Table C. 11: Time-dependent AUC, sensitivity, specificity for adjusted and observed biomarkers when y=0.25 and 70% censoring

Predicted True Adjusted Observed
Time AUC AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) MSE Bias Cov (SE) (SE) (SE) MSE Bias Cov (SE) (SE)
Measurement error ¢% = 0.25
0.5695 0.5640 - 0.5456 0.5453 0.5621 - 0.5442 0.5440
1 (0.0224) | (00222) | %% | 00055 | %% | (00160) | (0.0160) | (0.0225) | %% |0.0074 | **¥ | (0.0162) | (0.0161)
0.5686 0.5633 - 0.5451 0.5449 0.5615 - 0.5436 0.5439
2 0.0219) | (00216) | %%9% | 00054 | #*0 | (00159) | (0.0159) [ (0.0220) | %% | 00071 | P | (00163 | (0.0161)
0.5663 0.5610 - 0.5445 0.5425 0.5594 - 0.5427 0.5420
3 (0.0219) | (0.0211) 0.0005 | 5 5o54 | 946 (0.0181) (0.0183) (0.0215) 0.0005 1 5opg | 932 (0.0185) (0.0180)
0.5476 0.5444 - 0.5079 0.5618 0.5436 - 0.5074 0.5612
4 (0.0256) | (0.0238) 0.0006 |  hoz1 | 972 (0.0803) (0.0683) (0.0245) 0.0006 | hogg | 974 (0.0799) (0.0686)

Measurement error o2 =0.5
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Predicted True Adjusted Observed
Time AUC AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) MSE | Bias Cov (SE) (SE) (SE) MSE Bias Cov (SE) (SE)
0.5695 0.5612 - 0.5436 0.5433 0.5567 - 0.5404 0.5402
! (0.0224) | (0.0224) 0.0006 | hog3 | 934 (0.0163) (0.0161) (0.0226) 0.0007 | 4 9107 | 934 (0.0163) (0.0162)
0.5686 0.5604 - 0.5428 0.5431 0.5562 - 0.5398 0.5401
2 (0.0219) | (0.0218) 0.0005 0.0082 910 (0.0160) (0.0162) (0.0222) 0.0006 0.0124 93.6 (0.0163) (0.0162)
0.5663 0.5580 - 0.5418 0.5410 0.5544 - 0.5390 0.5386
3 (0.0219) | (0.0211) 0.0005 0.0083 916 (0.0182) (0.0181) (0.0215) 0.0006 0.0120 3.2 (0.0181) (0.0183)
0.5476 0.5422 - 0.5042 0.5618 0.5403 - 0.5025 0.5606
4 (0.0256) | (0.0229) 0.0006 0.0054 %8 (0.0797) (0.0683) (0.0236) 0.0006 0.0073 9.4 (0.0791) (0.0682)
Measurement error ¢2 =1.0
0.5695 0.5572 - 0.5408 0.5405 0.5493 - 0.5350 0.5350
! (0.0224) | (0.0229) 0.0007 0.0122 920 (0.0166) (0.0165) (0.0226) 0.0009 0.0202 84.8 (0.0163) (0.0162)
0.5686 0.5570 - 0.5406 0.5404 0.5489 - 0.5349 0.5346
2 (0.0219) | (0.0224) 0.0006 0.0116 924 (0.0167) (0.0163) (0.0223) 0.0009 0.0197 84.6 (0.0163) (0.0162)
0.5663 0.5545 - 0.5396 0.5384 0.5474 - 0.5336 0.5340
3 (0.0219) | (0.0214) 0.0006 0.0118 0.8 (0.0186) (0.0176) (0.0214) 0.0008 0.0190 84.8 (0.0188) (0.0169)
0.5476 0.5394 - 0.5007 0.5606 0.5354 - 0.4950 0.5604
4 (0.0256) | (0.0219) 0.0005 | hogp | 948 (0.0796) (0.0681) (0.0223) 0.0006 | 19y | 944 (0.0777) (0.0682)
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Predicted True Adjusted Observed
Time AUC AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) MSE | Bias Cov (SE) (SE) (SE) MSE Bias Cov (SE) (SE)
Measurement error g% = 1.5
0.5695 0.5544 - 0.5388 0.5384 0.5444 - 0.5316 0.5314
! (0.0224) | (0.0233) 0.0008 0.0151 0.8 (0.0168) (0.0167) (0.0225) 0.0011 0.0251 7.6 (0.0161) (0.0161)
0.5686 0.5547 - 0.5389 0.5390 0.5441 - 0.5313 0.5313
2 (0.0219) | (0.0230) 0.0007 0.0139 910 (0.0170) (0.0168) (0.0222) 0.0011 0.0245 76.8 (0.0162) (0.0161)
0.5663 0.5525 - 0.5371 0.5379 0.5427 - 0.5304 0.5306
3 (0.0219) | (0.0219) 0.0007 0.0139 0.0 (0.0186) (0.0182) (0.0213) 0.0010 0.0237 4 (0.0184) (0.0169)
0.5476 0.5378 - 0.4987 0.5601 0.5320 - 0.4904 0.5595
4 (0.0256) | (0.0217) 0.0006 |  5ogg | 9+0 (0.0796) (0.0681) (0.0215) 0.0007 1 0155 | 912 (0.0774) (0.0679)
Measurement error o2 = 2.0
0.5700 0.5518 - - 0.5286 0.5286
1 (0.0246) | (0.0246) 0.0009 0.0182 87.0 | 0.0014 -0.0296 0.0014 0.0014 0.0296 70.8 (0.0162) (0.0161)
0.5688 0.5528 - - 0.5284 0.5285
2 0.0237) | (0.0246) 0.0009 | o1q0 | 87:6 | 0.0013 -0.0287 0.0013 0.0013 | ) 1pg7 | 712 (0.0162) (0.0163)
0.5656 0.5504 - - 0.5276 0.5280
3 (0.0223) | (0.0235) 0.0008 0.0152 88.6 | 0.0012 -0.0266 0.0012 0.0012 0.0266 73.2 (0.0182) (0.0177)
0.5479 0.5362 - - 0.4869 0.5585
4 (0.0254) | (0.0226) 0.0006 0.0117 94.0 | 0.0008 -0.0187 0.0008 0.0008 0.0187 84.8 (0.0759) (0.0666)

269



Predicted True Adjusted Observed
Time AUC AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) MSE | Bias Cov (SE) (SE) (SE) MSE Bias Cov (SE) (SE)
Measurement error ¢% =2.5
0.5694 0.5499 - 0.5366 0.5353 0.5381 - 0.5270 0.5270
! (0.0224) | (0.0237) 0.0009 0.0195 86.8 (0.0172) (0.0168) (0.0218) 0.0015 0.0313 65.8 (0.0156) (0.0156)
0.5685 0.5512 - 0.5364 0.5365 0.5379 - 0.5270 0.5268
2 (0.0219) | (0.0239) 0.0009 0.0173 88.8 (0.0180) (0.0170) (0.0215) 0.0014 0.0307 66.4 (0.0158) (0.0155)
0.5663 0.5494 - 0.5349 0.5358 0.5367 - 0.5259 0.5266
3 (0.0219) | (0.0228) 0.0008 0.0169 88.2 (0.0193) (0.0191) (0.0206) 0.0013 0.0296 65.4 (0.0180) (0.0166)
0.5475 0.5357 - 0.4955 0.5599 0.5276 - 0.4836 0.5593
4 (0.0257) | (0.0214) 0.0006 | 5 5115 | 928 (0.0796) (0.0681) (0.0201) 0.0008 |, 5200 | 810 (0.0758) (0.0680)
Table C. 12: Time-dependent AUC, sensitivity, specificity for adjusted and observed biomarkers when y=0.5 and 70% censoring
Predicted True Adjusted Observed
Time AUC AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) MSE | Bias Cov (SE) (SE) (SE) MSE | Bias Cov (SE) (SE)
Measurement error g% = 0.25
0.6362 0.6247 - 0.5892 0.5891 0.6196 - 0.5856 0.5853
1 0.0239) | 00247y | %0907 | 00116 | 92| (0.0181) | (00183) | (0.0238) | %P9 | 00166 [390 | (0.0177) | (0.0179)
0.6315 0.6202 - 0.5869 0.5851 0.6164 - 0.5833 0.5832
2 (0.0224) | (0.0225) 0.0006 1 513 | 916 (0.0174) (0.0174) (0.0227) 000071 h150 | 892 (0.0172) (0.0178)
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Predicted True Adjusted Observed
Time AUC AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) MSE | Bias Cov (SE) (SE) (SE) MSE | Bias Cov (SE) (SE)
0.6091 - 0.5805 0.5764 0.6076 - 0.5796 0.5752
0.6199
3 (0.0223) | (0.0215) 0.0006 | 4 5107 | 93.8 (0.0203) (0.0192) (0.0223) 0.0008 | 5 5129 | 912 (0.0210) (0.0198)
0.5912 0.5829 - 0.5600 0.5683 0.5832 - 0.5596 0.5690
4 (0.0342) | (0.0325) 0.0011 | 5 5ogs | 948 (0.0726) (0.0604) (0.0339) 0.0012 ) 5ogo | 944 (0.0749) (0.0609)
Measurement error o2 =0.5
0.6362 0.6190 - 0.5851 0.5850 0.6079 - 0.5770 0.5769
! (0.0239) | (0.0251) 0.0009 | 4 517, | 892 (0.0186) (0.0188) (0.0239) 0.0014 | o283 | 80 (0.0176) (0.0177)
0.6315 0.6147 - 0.5825 0.5815 0.6055 - 0.5758 0.5749
2 (0.0224) | (0.0232) 0.0008 | 5 5165 | 888 (0.0178) (0.0178) (0.0231) 0.0012 ), 5259 | 794 (0.0172) (0.0178)
0.6199 0.6036 - 0.5764 0.5724 0.5985 - 0.5720 0.5695
3 (0.0223) | (0.0215) 0.0007 | 4 5163 | 890 (0.0206) (0.0187) (0.0223) 0.0010 | 5 5914 | 848 (0.0209) (0.0192)
0.5912 0.5784 - 0.5534 0.5676 0.5772 - 0.5542 0.5649
4 (0.0342) | (0.0317) 0.0012 | 5 510 | 932 (0.0716) (0.0603) (0.0326) 0.0013 | 5140 | 926 (0.0751) (0.0595)
Measurement error % = 1.0
0.6362 0.6113 - 0.5798 0.5791 0.5922 - 0.5656 0.5657
! (0.0239) | (0.0262) 00013 1 o5 | 834 (0.0194) (0.0193) (0.0241) 00025 | 440 | 72 (0.0177) (0.0176)
0.6315 0.6082 - 0.5777 0.5768 0.5906 - 0.5646 0.5645
2 (0.0224) | (0.0245) 0.0011 1 o33 | 842 (0.0185) (0.0185) (0.0235) 0.0022 1 ha0g | 610 (0.0169) (0.0183)
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Predicted True Adjusted Observed
Time AUC AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) MSE | Bias Cov (SE) (SE) (SE) MSE | Bias Cov (SE) (SE)
0.6199 0.5974 - 0.5722 0.5676 0.5855 - 0.5628 0.5598
3 (0.0223) | (0.0222) 0.0010 | 5 5904 | 842 (0.0210) (0.0188) (0.0225) 0.0017 | 0343 | 664 (0.0196) (0.0195)
0.5912 0.5736 - 0.5500 0.5628 0.5682 - 0.5438 0.5611
4 (0.0342) | (0.0306) 0.0012 | 4 5176 | 924 (0.0715) (0.0578) (0.0305) 0.0015 | 5 5909 | 870 (0.0732) (0.0578)
Measurement error ¢2 =1.5
0.6361 0.6094 - 0.5784 0.5778 0.5889 - 0.5633 0.5632
! (0.0239) | (0.0267) 0.0014 0.0267 83.0 (0.0197) (0.0197) (0.0249) 0.0029 0.0473 52.6 (0.0181) (0.0181)
0.6315 0.6069 - 0.5768 0.5758 0.5874 - 0.5624 0.5622
2 (0.0224) | (0.0250) 0.0012 | 5 5246 | 842 (0.0189) (0.0190) (0.0242) 0.0025 | 5 gaaq | 572 (0.0178) (0.0183)
0.6199 0.5964 - 0.5715 0.5669 0.5827 - 0.5604 0.5580
3 (0.0223) | (0.0228) 0.0011 | 5 5p35 | 836 (0.0217) (0.0192) (0.0231) 0.0019 | h37, | 648 (0.0203) (0.0202)
0.5913 0.5726 - 0.5488 0.5625 0.5660 - 0.5415 0.5599
4 (0.0342) | (0.0305) 0.0013 | 4 5186 | 918 (0.0713) (0.0579) (0.0301) 0.0015 | 5 595, | 862 (0.0730) (0.0573)
Measurement error g% = 2.0
0.6348 0.6005 - 0.5722 0.5712 0.5748 - 0.5533 0.5531
! (0.0218) | (0.0263) 0.0019 1 o343 | 748 (0.0195) (0.0190) (0.0240) 0.0042 1 599 | 280 (0.0175) (0.0173)
0.6304 0.5999 - 0.5721 0.5706 0.5739 - 0.5529 0.5523
2 (0.0211) | (0.0253) 0.0016 | o305 | 770 (0.0197) (0.0184) (0.0237) 0.0038 | 565 | 336 (0.0177) (0.0174)
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Predicted True Adjusted Observed
Time AUC AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) MSE | Bias Cov (SE) (SE) (SE) MSE | Bias Cov (SE) (SE)
0.6209 0.5917 - 0.5670 0.5648 0.5703 - 0.5508 0.5504
3 (0.0213) | (0.0232) 0.0014 | 4 5pgp | 70 (0.0211) (0.0196) (0.0226) 0.0030 | 5503 | 392 (0.0199) (0.0190)
0.5877 0.5665 - 0.5452 0.5570 0.5567 - 0.5319 0.5548
4 (0.0359) | (0.0286) 0.0013 | 5 5917 | 866 (0.0690) (0.0584) (0.0272) 0.0017 ) 5 0310 | 704 (0.0693) (0.0574)
Measurement error o2 = 2.5
0.6360 0.5967 - 0.5694 0.5685 0.5684 - 0.5486 0.5485
! (0.0241) | (0.0280) 0.0023 0.0393 69.4 (0.0206) (0.0202) (0.0244) 0.0052 0.0676 20.4 (0.0176) (0.0176)
0.6312 0.5974 - 0.5701 0.5688 0.5676 - 0.5478 0.5483
2 (0.0225) | (0.0269) 0.0019 | 5 5339 | 746 (0.0202) (0.0201) (0.0239) 0.0046 |, hg36 | 228 (0.0172) (0.0180)
0.6196 0.5889 - 0.5644 0.5629 0.5647 - 0.5461 0.5463
3 (0.0223) | (0.0244) 0.0015 | 5308 | 70 (0.0216) (0.0200) (0.0228) 0.0035 | h549 | 308 (0.0194) (0.0189)
0.5911 0.5679 - 0.5419 0.5620 0.5529 - 0.5227 0.5583
4 (0.0344) | (0.0299) 0.0014 | 4 5p3p | 860 (0.0708) (0.0583) (0.0270) 0.0022 |, h3gp | 668 (0.0695) (0.0569)
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Table C. 13: Time-dependent AUC, sensitivity, specificity for adjusted and observed biomarkers when y=0.75 and 70% censoring

Predicted | True Adjusted Observed
Time AUC AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) (SE) MSE | Bias Cov (SE) (SE) (SE) MSE | Bias Cov (SE) (SE)
Measurement error o2 = 0.25
0.6949 | 0.6789 - 0.6305 0.6277 0.6700 - 0.6231 0.6221
1 (0.0213) | (0.0229) 0.0008 | h161 | 900 (0.0178) (0.0179) (0.0222) 00011 1 249 | 780 (0.0169) (0.0174)
0.6825 | 0.6665 - 0.6227 0.6178 0.6617 - 0.6180 0.6153
2 (0.0208) | (0.0211) 0.0007 1 160 | 870 (0.0177) (0.0169) (0.0214) 00009 1 ho0g | 828 (0.0175) (0.0172)
0.6478 - 0.6113 0.6031 0.6476 - 0.6089 0.6047
0.6640 0.0007 0.0008 88.8
3 (0.0228) | (0.0219) 0.0162 | 89.4 | (0.0223) (0.0217) (0.0221) 0.0164 (0.0216) (0.0219)
0.6266 | 0.6143 - 0.5932 0.5802 0.6198 - 0.5965 0.5854
4 (0.0408) | (0.0385) 0.0016 1 h19p | 934 (0.0652) (0.0582) (0.0401) 000171 0oes | 940 (0.0663) (0.0594)
Measurement error g% = 0.5
0.6949 | 0.6710 - 0.6243 0.6224 0.6528 - 0.6103 0.6093
! (0.0213) | (0.0242) 000121 139 | 826 (0.0187) (0.0186) (0.0227) 00023 1 a1 | 28 (0.0169) (0.0176)
0.6825 | 0.6588 - 0.6168 0.6124 0.6467 - 0.6065 0.6043
2 (0.0208) | (0.0218) 0.0010 1 137 | 820 (0.0182) (0.0174) (0.0219) 0.0018 | 35 | 640 (0.0175) (0.0174)
0.6640 | 0.6401 - 0.6057 0.5976 0.6355 - 0.5991 0.5966
3 (0.0228) | (0.0219) 0.0010 1 5 5pgg | 804 (0.0211) (0.0213) (0.0220) 0.0013 |, gog5 | 748 (0.0208) (0.0217)
0.6266 | 0.6076 - 0.5891 0.5739 0.6124 - 0.5887 0.5822
4 ©0.0208) | 0.0362) | %% | 0.0100 | %94 | 0.0631) | 00577) | (0.0373) | %90 | 00142 | 94 | (0.0633) | (0.0598)
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Predicted | True Adjusted Observed

Time gté? (ASLéc): MSE | Bias | Cov (Sé)g;itivity (Sspg:ificity (Astéc): MSE | Bias | Cov (s;:g;itivity (SSpEe;:ificity
Measurement error % = 1.0

: 003 0026 | %% | 00aua | 22| 00200 | o1 | 00231 |°%8 |aosso | 24| Goury | 0orry
: 00208) | 00251) | %% | 00sa | 72| ooreny | ot |00z2n | O |aosss | 290 | Gourny | oorra
3 00220) | G0z2) | O35 | 00zz0 | 980 ozrey | 0ozt |00e20) | 0% | oouss |8 | oozon) | oz00
‘ 00008) | 00338 | °%18 | 00z65 | %80 | sz | 0ossy) | 00337 | % | 0ozes | 8 | 00608 | (0577
Measurement error o2 =1.5

: ooy |00mn | %% 005 | 70| ozte) | 0029|0024 |°%™ aoree |9 | Gowre | (oote0
: 00205) | 00255 | %2 | 00ae7 | 74| 00203 | oisn | 0023 |°0 |aor0e | 40| Gowrey | oore0
3 00229) | G0z |00 o057z |98 | oz | 0ozn  |00eze) | %% | osts | 74 | 0ozo0) | oz
‘ 00392 | 003z | O%1° | ozer | %€ st | 005y |00320) | %% | 0oaes | 4 | (00610) | (0560

275



Predicted | True Adjusted Observed

Time gté? (ASLéc): MSE | Bias | Cov (Sé)g;itivity (Sspg:ificity (Astéc): MSE | Bias | Cov (s;:g;itivity (SSpEe;:ificity
Measurement error % = 2.0

1 oo | 0022 | %% ooas | 50| o) | 002y |00z | O aoert |28 | Gowrey | o1
: 00200y | 0028) | %% 001 | 50| 0005 | 00108 |00228) |°%™ |agses |5 | Gowrey | orry
3 00229 | G0z | O%% | aoser | 02| 0oz | 0ozt |00229) | 0% | ooees | 99| 00208 | oz
‘ 00a0) | 00319 | O%% | aozzs | B30 0osae | 0ossy  |000n) | %% | o0azs | 84 | 00z | (05a9)
Measurement error ¢2 = 2.5

: 00233 | 00307 | 0% 0053|558 00z | 00220 |(0028) |°%% aoses | M4 | Goire) | (ore0
: oony | 0020 | %% | ooaes | 24| 0ome) | 0022|0038 | O |aoses |28 | Gowre | (orer)
3 0023 | Goz60) | O%% |07 |98 0oz | 0029 |00228) | 0% |ooran | %8 | 000z | Gorse
‘ 0033 | 0033 | °%% |00z | B¢ 0osz0 | 00539 |00301) | % | 00500 | 48 | 00600) | (0511
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Table C. 14:

Time-dependent AUC, sensitivity, specificity for adjusted and observed biomarkers when y=1.0 and 70% censoring

Predicted | True Adjusted Observed
Time AUC . Sensitivity | Specificity | AUC . Sensitivity | Specificity
(SE) AUC (SE) | MSE | Bias | Cov (SE) (SE) (SE) MSE | Bias | Cov (SE) (SE)
Measurement error o2 = 0.25
0.7431 |0.7228 - 0.6650 0.6608 0.7100 - 0.6544 0.6513
1 (0.0214) | (0.0236) 0.0010 1 103 | 864 (0.0194) (0.0192) (0.0227) 0.0016 | ) 1330 | 698 (0.0184) (0.0184)
0.7209 | 0.7004 - 0.6507 0.6413 0.6950 - 0.6444 0.6389
2 (0.0204) | (0.0207) 0.0009 | )6 | 838 (0.0182) (0.0176) (0.0206) 0.0011 1 0260 | 764 (0.0173) (0.0178)
0.6739 - 0.6337 0.6198 0.6757 - 0.6324 0.6235
0.6942 0.0009 0.0009 88.2
3 (0.0240) | (0.0228) 0.0203 | 85.6 | (0.0226) (0.0232) (0.0234) 0.0185 (0.0230) (0.0235)
0.6581 | 0.6412 - 0.6180 0.5951 0.6486 - 0.6202 0.6042
4 ©0.0392) | 00371) | 9% | 00169 | 4| 00573) | (0.0509) | (0.0404) | %% | 0.0005 | ®4O | (0.0501) | (0.0558)
Measurement error g% = 0.5
0.7431 |0.7133 - 0.6577 0.6536 0.6877 - 0.6366 0.6349
! (0.0214) | (0.0254) 000151 ) g | 790 (0.0207) (0.0204) (0.0233) 0.0036 | 554 | 312 (0.0182) (0.0185)
0.7209 | 0.6914 - 0.6437 0.6346 0.6765 - 0.6292 0.6259
2 (0.0204) | (0.0218) 0.0013 1 g5 | 736 (0.0188) (0.0180) (0.0209) 000241 haas | 432 (0.0176) (0.0171)
0.6942 | 0.6650 - 0.6257 0.6141 0.6619 - 0.6204 0.6145
3 (0.0240) | (0.0227) 0.0014 | 5 52gp | 70 (0.0225) (0.0225) (0.0227) 0.0016 | 5 5304 | 700 (0.0222) (0.0219)
0.6581 | 0.6329 - 0.6095 0.5903 0.6391 - 0.6104 0.5992
4 (0.0394) | (0.0354) 000191 o5 | 900 (0.0560) (0.0493) (0.0389) 0.0019 1 5 5190 | 930 (0.0582) (0.0529)
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Predicted | True Adjusted Observed

Time (AéLé(): AUC (SE) | MSE | Bias | Cov (S;:E;itivity (Sspg:ificity éLg: MSE | Bias | Cov ?Segitivity ?Spé)cificity
Measurement error % = 1.0

: ©00205) | 00265 | %% | 00azz | 54| oz | @ozon | 00221) | O%5 | oossa| 98 | 0otz | 00179
: ©00200) | 0021 | %2 | 00a0s | 88| oroe | Gowsey | 0028 | O%%2 | ooes7 | 4| oorrs) | (00179
: ©002) | 00z |92 0002 | %56 | 002mn) | Gozy | 0ozzs) | %% | oossr | 2| Gomy | ozt
‘ ooun) |00y | 0% ooz | 94| Gosay | Gos1) | Goss | °%P | osis | %4©| osee) | (00509
Measurement error o2 =1.5

: ©o210) |00y | O 00516 | B8 | oz | 0oz | Gozse |°%H0 01020 |10 | o1y | 0018
: 00203 | 00257 | %% | o0uer | 76| ozny | ooy | (00222) | O%7° | ooese | *® |00ty | 00172
3 00 |00 | 0% ooust | 4| Gozay | G0z | Gozzey | © | osra | 150 ozts) | 0ozts
‘ o007 | 003z | O%% | 00373 |86 | Gosay | Gosos) | Goszey | °%02 | ooaen | 8| oszs) | 00509
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Predicted | True Adjusted Observed

Time (AéLé(): AUC (SE) | MSE | Bias | Cov (S;:E;itivity (Sspg:ificity éLg: MSE | Bias | Cov ?Segitivity ?Spé)cificity
Measurement error % = 2.0

: o) 00320 | 0% | 00sas | 56| ozse) | Gozen | 02n | OO | 017 | %% oo | 0018
: 00207 | 00279 | %% | 0sis | 00| ozzn | @ozy | 00226 | OO | o0a7s | °® | 0orrs) | 00179
: o02a) | 00269 | O | 00ars |8 |00z | G0z | 0oz | %% oommt | 2 | G0z | (02t
‘ ooi2d) | 003z | 0% ooie | 30| Gosey | Goaen | @03z | ©%8 | oszo | 58| oare) | 0048
Measurement error ¢2 = 2.5

: ©00209) | 00335 | %% | 00aae | 82| ozee) | Gozsy | 0020y | OO2 | 01210 | °° |00rre) | (0017
: ooron 00276 | %% | 0osie | 02| oz | Gz | 0025 | °OH° | 0a0ss| ¢ |00y | 00179
3 o0 | 0oz | O%% | aosoz |58 | Gozsey | Gozey | 0oz | OB |oosr2 |30 | on | 00z
‘ 0039 | G035y | O%% | ouss | 38| Gossy | Goasry | Gosory | °7 |osis | 0% | oasy | 00are
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Table C. 15: Time-dependent AUC(SE) for current methods when y=0 and 50% censoring

Predicted NNE KMCD IPCW CIPCW FP

Time AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed

Measurement error o; = 0.25

1 0.4977 0.4996 0.4984 0.4980 0.4987 0.4984 0.4987 0.4983 0.4975 0.4973
(0.0342) (0.0346) (0.0542) (0.0535) (0.0532) (0.0531) (0.0531) (0.0531) (0.0437) (0.0405)

9 0.4987 0.4998 0.5004 0.4999 0.5002 0.4996 0.5001 0.4995 0.5013 0.5004
(0.0221) (0.0209) (0.0371) (0.0344) (0.0357) (0.0327) (0.0356) (0.0326) (0.0325) (0.0298)

3 0.4979 0.4969 0.4997 0.4981 0.5002 0.4983 0.5003 0.4984 0.4996 0.4994
(0.0279) (0.0251) (0.0506) (0.0460) (0.0452) (0.0402) (0.0447) (0.0396) (0.0334) (0.0304)

4 0.4860 0.4854 0.5017 0.5002 0.5013 0.4996 0.5010 0.4993 0.5045 0.5001
(0.0587) (0.0541) (0.2517) (0.2513) (0.0902) (0.0836) (0.0902) (0.0831) (0.1119) (0.1189)

Measurement error % = 0.5

1 0.4972 0.4994 0.4988 0.4984 0.4989 0.4986 0.4988 0.4983 0.4973 0.4973
(0.0341) (0.0340) (0.0544) (0.0521) (0.0534) (0.0489) (0.0532) (0.0517) (0.0450) (0.0407)

9 0.4990 0.4995 0.5002 0.4997 0.5003 0.5001 0.5003 0.4997 0.5012 0.5003
(0.0240) (0.0214) (0.0404) (0.0345) (0.0390) (0.0340) (0.0388) (0.0331) (0.0326) (0.0300)

3 0.4979 0.4968 0.4996 0.4980 0.5003 0.5000 0.5001 0.4987 0.5005 0.5003
(0.0294) (0.0251) (0.0531) (0.0464) (0.0479) (0.0406) (0.0473) (0.0400) (0.0338) (0.0297)

4 0.4888 0.4867 0.5026 0.4983 0.5043 0.5039 0.5039 0.5024 0.5077 0.5008
(0.0635) (0.0560) (0.2479) (0.2457) (0.0994) (0.0902) (0.0993) (0.0870) (0.1160) (0.1112)

Measurement error % = 1.0

1 0.4961 0.4998 0.4994 0.4993 0.4996 0.4995 0.4997 0.4995 0.4974 0.4996
(0.0336) (0.0346) (0.0540) (0.0527) (0.0526) (0.0472) (0.0526) (0.0525) (0.0437) (0.0402)

5 0.4982 0.4992 0.5008 0.4998 0.5005 0.5004 0.5006 0.4998 0.5014 0.5005
(0.0235) (0.0213) (0.0399) (0.0345) (0.0388) (0.0324) (0.0385) (0.0329) (0.0330) (0.0301)

3 0.4973 0.4955 0.4996 0.4968 0.4990 0.4989 0.4991 0.4968 0.5002 0.4995
(0.0291) (0.0243) (0.0537) (0.0461) (0.0489) (0.0397) (0.0481) (0.0394) (0.0356) (0.0309)
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. NNE KMCD IPCW CIPCW FP
_F;irreno('e'“ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted Observed
4 0.4910 0.4859 0.5123 0.5023 0.5043 0.5041 0.5042 0.4996 0.5047 0.5009
(0.0628) (0.0550) (0.2533) (0.2498) (0.0993) (0.0877) (0.0995) (0.0844) (0.1108) (0.0191)
Measurement error % = 1.5
1 0.4968 0.5008 0.5013 0.5009 0.5013 0.5010 0.5013 0.5009 0.5004 0.4995
(0.0334) | (0.0338) (0.0546) | (0.0514) (0.0524) | (0.0512) (0.0524) | (0.0512) | (0.0458) (0.0403)
5 0.4982 0.4988 0.5013 0.4996 0.5012 0.4995 0.5012 0.4994 0.5017 0.4996
(0.0250) | (0.0217) (0.0434) | (0.0345) (0.0411) | (0.0332) (0.0409) | (0.0327) | (0.0348) (0.0291)
3 0.4987 0.4964 0.5018 0.4981 0.5025 0.4991 0.5024 0.4992 0.5019 0.4998
(0.0308) | (0.0246) (0.0584) | (0.0470) (0.0521) | (0.0400) (0.0517) | (0.0396) | (0.0370) (0.0316)
4 0.4911 0.4850 0.4977 0.4907 0.5056 0.5007 0.5053 0.5005 0.4986 0.4979
(0.0666) (0.0572) (0.2541) (0.2478) (0.1055) (0.0865) (0.1056) (0.0860) (0.1127) (0.1148)
Measurement error a2 = 2.0
1 0.4993 0.4986 0.4984 0.4973 0.4994 0.4981 0.4992 0.4981 0.5001 0.4982
(0.0329) | (0.0334) (0.0558) | (0.0512) (0.0535) | (0.0513) (0.0533) | (0.0511) | (0.0481) (0.0435)
2 0.4964 0.4991 0.4998 0.4987 0.5006 0.4995 0.5004 0.4993 0.5010 0.5008
(0.0279) | (0.0229) (0.0482) | (0.0364) (0.0460) | (0.0361) (0.0457) | (0.0357) | (0.0353) (0.0296)
3 0.4964 0.4975 0.4976 0.4964 0.4994 0.4978 0.4990 0.4977 0.5003 0.4994
(0.0307) | (0.0243) (0.0578) | (0.0453) (0.0518) | (0.0388) (0.0512) | (0.0384) | (0.0370) (0.0317)
4 0.4876 0.4869 0.4962 0.4920 0.5028 0.4993 0.5028 0.4989 0.5120 0.5013
(0.0678) | (0.0577) (0.2321) | (0.2267) (0.1113) | (0.0893) (0.1107) | (0.0889) | (0.1098) (0.1143)
Measurement error o2 = 2.5
1 0.4971 0.5014 0.5010 0.5012 0.5013 0.5017 0.5013 0.5016 0.5006 0.5017
(0.0345) | (0.0342) (0.0576) | (0.0525) (0.0545) | (0.0524) (0.0546) | (0.0523) | (0.0474) (0.0406)
5 0.4969 0.4997 0.4994 0.4997 0.5002 0.5006 0.5001 0.5004 0.5002 0.5004
(0.0275) | (0.0223) (0.0496) | (0.0345) (0.0467) | (0.0339) (0.0465) | (0.0338) | (0.0364) (0.0270)
3 0.4975 0.4997 0.5008 0.5013 0.5014 0.5031 0.5014 0.5030 0.5011 0.5020
(0.0314) | (0.0228) (0.0619) | (0.0441) (0.0533) | (0.0361) (0.0535) | (0.0359) | (0.0378) (0.0314)
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. NNE KMCD IPCW CIPCW FP
_F;irreno('e'“ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted Observed
4 0.4888 0.4868 0.4998 0.4946 0.5013 0.4994 0.5013 0.4996 0.5005 0.4971
(0.0720) | (0.0587) | (0.2472) | (0.2335) | (0.1160) | (0.0898) | (0.1165) | (0.0898) | (0.1114) (0.1137)
Table C. 16: Time-dependent AUC(SE) for current methods when y=0.25 and 50% censoring

Predicted NNE KMCD IPCW CIPCW FP

e AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed

Measurement error oz = 0.25

1 0.5489 0.5407 0.5785 0.5638 0.5784 0.5641 0.5784 0.5641 0.5742 0.5616
(0.0350) (0.0338) (0.0494) (0.0487) | (0.0492) | (0.0488) | (0.0491) | (0.0487) | (0.0401) (0.0398)

2 0.5524 0.5434 0.5877 0.5722 0.5871 0.5721 0.5871 0.5721 0.5746 0.5618
(0.0239) (0.0222) (0.0370) (0.0350) | (0.0365) | (0.0346) |(0.0361) | (0.0342) | (0.0301) (0.0288)

3 0.5651 0.5531 0.6146 0.5937 0.6140 0.5941 0.6142 0.5943 0.5732 0.5599
(0.0268) (0.0249) (0.0487) (0.0463) | (0.0413) | (0.0385) | (0.0412) | (0.0384) | (0.0320) (0.0305)

4 0.5969 0.5783 0.6966 0.6605 0.6923 0.6600 0.6924 0.6697 0.5705 0.5593
(0.0476) (0.0478) (0.1968) (0.1956) | (0.0749) | (0.0757) | (0.0748) | (0.0739) | (0.0977) (0.1020)

Measurement error % = 0.5

] 0.5513 0.5374 0.5845 0.5587 0.5836 0.5588 0.5837 0.5588 0.5785 0.5563
(0.0355) | (0.0336) | (0.0499) | (0.0488) |(0.0492) | (0.0487) |(0.0492) |(0.0486) | (0.0413) (0.0397)

2 0.5549 0.5394 0.5928 0.5659 0.5912 0.5657 0.5915 0.5657 0.5776 0.5558
(0.0253) (0.0225) (0.0388) (0.0349) | (0.0378) | (0.0345) |(0.0375) | (0.0341) | (0.0315) (0.0288)

3 0.5684 0.5484 0.6209 0.5851 0.6195 0.5856 0.6196 0.5857 0.5763 0.5552
(0.0283) (0.0247) (0.0515) (0.0467) | (0.0439) | (0.0388) | (0.0438) | (0.0387) | (0.0332) (0.0305)

4 0.6026 0.5702 0.7059 0.6441 0.7003 0.6452 0.7003 0.6453 0.5755 0.5487
(0.489) (0.479) (0.2015) (0.1983) | (0.0768) | (0.0770) | (0.0767) | (0.0771) | (0.1009) (0.1030)
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. NNE KMCD IPCW CIPCW FP
_F;irreno('e'“ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed
Measurement error % = 1.0
1 0.5550 0.5325 0.5933 0.5514 0.5913 0.5516 0.5913 0.5515 0.5843 0.5489
(0.0365) | (0.0339) | (0.0461) | (0.0492) | (0.0498) |(0.0490) |(0.0498) |(0.0490) | (0.0419) (0.0396)
2 0.5580 0.5338 0.5990 0.5572 0.5974 0.5570 0.5976 0.5570 0.5815 0.5484
0.0272) | (0.0228) | (0.0397) | (0.0351) |(0.0403) | (0.0344) | (0.0401) | (0.0340) | (0.0336) (0.0296)
3 0.5718 0.5413 0.6312 0.5732 0.6264 0.5738 0.6266 0.5738 0.5807 0.5464
0.0304) | (0.0249) | (0.0482) | (0.0471) |(0.0480) |(0.0392) |(0.0480) |(0.0391) | (0.0353) (0.0308)
4 0.6091 0.5583 0.7223 0.6217 0.7108 0.6246 0.7107 0.6246 0.5756 0.5447
00516) | (0.0493) | (0.0807) | (0.2010) | (0.0807) | (0.0788) | (0.0807) | (0.0789) | (0.1001) (0.1028)
Measurement error o2 = 1.5
1 0.5582 0.5292 0.6009 0.5463 0.5971 0.5464 0.5971 0.5464 0.5892 0.5444
(0.0375) | (0.0343) | (0.0529) | (0.0494) | (0.0508) |(0.0492) |(0.0509) |(0.0492) | (0.0431) (0.0400)
5 0.5598 0.5301 0.6062 0.5512 0.6017 0.5510 0.6017 0.5510 0.5839 0.5428
(0.0286) | (0.0230) | (0.0447) | (0.0351) | (0.0426) | (0.0344) | (0.0424) | (0.0339) | (0.0353) (0.0298)
3 0.5737 0.5366 0.6365 0.5653 0.6310 0.5659 0.6310 0.5659 0.5833 0.5414
(0.0320) | (0.0250) | (0.0588) | (0.0472) | (0.0514) |(0.0393) |(0.0513) |(0.0392) | (0.0357) (0.0295)
4 0.6125 0.5508 0.7319 0.6071 0.7170 0.6108 0.7170 0.6108 0.5756 0.5383
(0.0535) | (0.0492) | (0.2078) | (0.2025) | (0.0844) | (0.0801) | (0.0846) | (0.0802) | (0.0979) (0.1038)
Measurement error o2 = 2.0
1 0.5615 0.5268 0.6069 0.5426 0.6016 0.5426 0.6017 0.5426 0.5936 0.5410
(00386) | (0.0279) | (0.0544) | (0.0496) |(0.0518) |(0.0494) |(0.0519) |(0.0493) | (0.0445) (0.0405)
2 0.5615 0.5276 0.6112 0.5468 0.6052 0.5467 0.6054 0.5466 0.5856 0.5388
(0.0300) | (0.0208) | (0.0473) | (0.0351) | (0.0446) | (0.0344) |(0.0444) |(0.0339) | (0.0372) (0.0294)
3 0.5749 0.5333 0.6419 0.5596 0.6345 0.5601 0.6347 0.5602 0.5851 0.5381
(00336) | (0.0236) | (0.0620) | (0.0472) |(0.0543) |(0.0393) |(0.0542) |(0.0392) | (0.0377) (0.0303)
4 0.6147 0.5451 0.7416 0.5964 0.7215 0.6008 0.7214 0.6006 0.5792 0.5323
(0.0565) | (0.0457) | (0.2100) | (0.2031) | (0.0880) | (0.0810) |(0.0882) | (0.0811) | (0.0992) (0.1024)
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. NNE KMCD IPCW CIPCW FP

_F;irrende'“ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed

Measurement error oz = 2.5

1 0.5644 0.5252 0.6119 0.5397 0.6053 0.5397 0.6053 0.5397 0.5960 0.5378
(0.0394) | (0.0346) | (0.0559) | (0.0498) | (0.0526) | (0.0495) |(0.0528) | (0.0494) | (0.0463) (0.0404)

2 0.5628 0.5257 0.6153 0.5435 0.6080 0.5433 0.6081 0.5433 0.5873 0.5362
(00312) | (0.0231) | (0.0497) | (0.0351) | (0.0465) | (0.0343) | (0.0463) | (0.0339) | (0.0382) (0.0292)

3 0.5757 0.5307 0.6463 0.5552 0.6371 0.5558 0.6372 0.5558 0.5867 0.5345
0.0350) | (0.0250) | (0.0647) | (0.0471) | (0.0568) | (0.0394) |(0.0567) |(0.0393) | (0.0390) (0.0310)

4 0.6160 0.5405 0.7489 0.5882 0.7244 0.5931 0.7243 0.5929 0.5748 0.5335
(00595) | (0.0497) | (0.2118) | (0.2034) | (0.0913) | (0.0815 | (0.0916) | (0.0816) | (0.0975) (0.1024)

Table C. 17: Time-dependent AUC(SE) for current methods when y=0.5 and 50% censoring

Predicted NNE KMCD IPCW CIPCW FP

ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed

Measurement error ¢2 = 0.25

1 0.6046 0.5852 0.6567 0.6286 0.6561 0.6289 0.6562 0.6289 0.6455 0.6198
(0.0363) | (0.0338) [ (0.0456) | (0.0454) | (0.0453) | (0.0453) |(0.0453) | (0.0453) [(0.0377) | (0.0367)

5 0.6070 0.5869 0.6700 0.6397 0.6689 0.6397 0.6690 0.6398 0.6409 0.6167
00262) | (00237) | (0.0360) | (0.0348) |(0.0352) |(0.0341) |(0.0348) |(0.0337) | (0.0293) (0.0281)

3 0.6250 0.6022 0.7155 0.6762 0.7142 0.6769 0.7144 0.6771 0.6366 0.6108
(00269) | (0.0245) | (0.0444) | (0.0428) |(0.0369) |(0.0353) |(0.0367) |(0.0350) | (0.0314) (0.0311)

4 0.6669 0.6349 0.8120 0.7570 0.8032 0.7530 0.8032 0.7530 0.6242 0.5930
0.0396) | (0.0387) | (01413) | (0.1430) |(0.0519) |(00576) |(0.0520) |(0.0575 | (0.0809) (0.0868)
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. NNE KMCD IPCW CIPCW FP
_F;irreno('e'“ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed
Measurement error a5 = 0.5
1 0.6108 0.5777 0.6670 0.6179 0.6651 0.6181 0.6652 0.6181 0.6533 0.6104
(0.0380) | (0.0337) | (0.0466) | (0.0460) | (0.0459) | (0.0458) |(0.0459) | (0.0459) | (0.0382) (0.0375)
2 0.6128 0.5788 0.6793 0.6272 0.6768 0.6272 0.6770 0.6272 0.6463 0.6052
00279) | (0.0233) | (0.0380) | (0.0353) | (0.0368) | (0.0345) | (0.0365) | (0.0341) | (0.0297) (0.0283)
3 0.6316 0.5931 0.7268 0.6600 0.7237 0.6607 0.7239 0.6609 0.6426 0.5997
0.0282) | (0.0241) | (0.0465) | (0.0431) |(0.0393) |(0.0360) |(0.0390) |(0.0357) | (0.0316) (0.0313)
4 0.6763 0.6216 0.8261 0.7318 0.8142 0.7295 0.8141 0.7294 0.6312 0.5842
(0.0411) (0.0385) (0.1423) (0.1445) (0.0525) (0.0611) (0.0527) (0.0612) (0.0837) (0.0860)
Measurement error ¢2 =1.0
1 0.6204 0.5670 0.6833 0.6028 0.6788 0.6029 0.6789 0.6029 0.6637 0.5959
(0.0405) | (0.0342) | (0.0486) | (0.0472) | (0.0473) |(0.0469) |(0.0473) |(0.0470) | (0.0403) (0.0387)
5 0.6200 0.5672 0.6933 0.6098 0.6878 0.6098 0.6880 0.6098 0.6540 0.5908
(0.0303) | (0.0235) | (0.0417) | (0.0358) | (0.0400) | (0.0349) | (0.0397) | (0.0344) | (0.0326) (0.0286)
3 0.6387 0.5799 0.7429 0.6375 0.7355 0.6383 0.7358 0.6384 0.6488 0.5847
0.0301) | (0.0242) | (0.0502) | (0.0435) | (0.0429) |(0.0370) |(0.0426) | (0.0366) | (0.0330) (0.0315)
4 0.6873 0.6027 0.8471 0.6974 0.8278 0.6969 0.8277 0.6967 0.6400 0.5701
0.0444) | (0.0394) | (0.1443) | (0.1468) | (0.0546) | (0.0651) | (0.0549) | (0.0652) | (0.0813) (0.0874)
Measurement error % = 1.5
1 0.6285 0.5600 0.6960 0.5923 0.6890 0.5924 0.6891 0.5923 0.6719 0.5863
(0.0428) | (0.0348) | (0.0506) | (0.0479) | (0.0487) | (0.0476) | (0.0487) | (0.0477) [(0.0421) | (0.0390)
, 0.6249 0.5597 0.7041 0.5979 0.6958 0.5979 0.6960 0.5978 0.6589 0.5804
00328) | (0.0235) | (0.0451) | (0.0359) | (0.0428) |(0.0350) |(0.0425) |(0.0346) | (0.0344) (0.0288)
3 0.6429 0.5712 0.7543 0.6225 0.7431 0.6233 0.7433 0.6234 0.6526 0.5754
(00324) | (00243) |(0.0537) | (0.0438) |(0.0464) |(0.0375) |(0.0461) |(0.0370) | (0.0360) (0.0323)
4 0.6936 0.5906 0.8621 0.6745 0.8353 0.6750 0.8352 0.6747 0.6460 0.5591
(0.0482) | (0.0400) | (0.1458) | (0.1485) | (0.0571) | (0.0676) |(0.0574) |(0.0678) | (0.0780) (0.0915)
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. NNE KMCD IPCW CIPCW FP
_F;irreno('e'“ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed
Measurement error oz = 2.0
1 0.6352 0.5549 0.7059 0.5846 0.6966 0.5846 0.6966 0.5846 0.6788 0.5789
(0.0448) | (0.0352) | (0.0522) | (0.0485) | (0.0499) |(0.0481) |(0.0499) |(0.0482) | (0.0429) (0.0392)
2 0.6287 0.5542 0.7126 0.5892 0.7016 0.5892 0.7017 0.5892 0.6617 0.5734
(0.0350) | (0.0236) | (0.0482) | (0.0360) | (0.0454) | (0.0351) | (0.0451) | (0.0346) | (0.0373) (0.0287)
3 0.6453 0.5648 0.7630 0.6116 0.7479 0.6125 0.7481 0.6125 0.6551 0.5679
(0.0346) | (0.0243) | (0.0572) | (0.0440) | (0.0496) |(0.0378) |(0.0493) |(0.0373) | (0.0379) (0.0313)
4 0.6970 0.5818 0.8742 0.6577 0.8394 0.6592 0.8393 0.6588 0.6512 0.5562
(0.0517) (0.0401) (0.1476) (0.1495) (0.0601) (0.0692) (0.0605) (0.0693) (0.0807) (0.0894)
Measurement error o2 = 2.5
1 0.6407 0.5511 0.7138 0.5786 0.7023 0.5786 0.7023 0.5786 0.6835 0.5735
(0.0463) | (0.0354) | (0.0536) | (0.0488) | (0.0510) | (0.0485) | (0.0511) | (0.0485) | (0.0453) (0.0396)
5 0.6317 0.5501 0.7196 0.5825 0.7060 0.5826 0.7060 0.5825 0.6645 0.5677
(0.0372) | (0.0235) | (0.0512) | (0.0360) | (0.0479) |(0.0351) |(0.0477) |(0.0347) | (0.0395) (0.0285)
3 0.6471 0.5598 0.7701 0.6032 0.7513 0.6041 0.7515 0.6042 0.6563 0.5627
(0.0367) | (0.0245) | (0.0608) | (0.0440) | (0.0529) | (0.0380) | (0.0526) | (0.0375) | (0.0402) (0.0318)
4 0.6991 0.5748 0.8847 0.6448 0.8413 0.6469 0.8412 0.6464 0.6473 0.5508
(0.0556) | (0.0411) | (0.1498) | (0.1502) | (0.0642) | (0.0702) | (0.0645) | (0.0704) | (0.0801) (0.0906)
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Table C. 18: Time-dependent AUC(SE) for current methods when y=0.75 and 50% censoring

Predicted NNE KMCD IPCW CIPCW FP

Time AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed

Measurement error o; = 0.25

1 0.6605 0.6285 0.7266 0.6871 0.7255 0.6873 0.7256 0.6873 0.7086 0.6873
(0.0376) (0.0346) (0.0415) (0.0419) (0.0409) (0.0415) (0.0409) (0.0416) (0.0334) (0.0338)

9 0.6589 0.6285 0.7448 0.7017 0.7430 0.7016 0.7432 0.7017 0.6968 0.6608
(0.0268) (0.0239) (0.0329) (0.0321) (0.0315) (0.0308) (0.0312) (0.0306) (0.0278) (0.0262)

3 0.6710 0.6390 0.7922 0.7386 0.7897 0.7391 0.7900 0.7393 0.6861 0.6462
(0.0266) (0.0238) (0.0401) (0.0398) (0.0321) (0.0315) (0.0318) (0.0311) (0.0297) (0.0306)

4 0.7101 0.6689 0.8723 0.8084 0.8644 0.8060 0.8646 0.8063 0.6632 0.6221
(0.0349) (0.0336) (0.1056) (0.1094) (0.0363) (0.0443) (0.0365) (0.0446) (0.0692) (0.0752)

Measurement error % = 0.5

1 0.6707 0.6163 0.7399 0.6713 0.7371 0.6714 0.7371 0.6714 0.7190 0.6593
(0.0398) (0.0344) (0.0423) (0.0427) (0.0416) (0.0423) (0.0416) (0.0424) (0.0343) (0.0344)

9 0.6677 0.6167 0.7574 0.6839 0.7534 0.6838 0.7536 0.6838 0.7045 0.6454
(0.0284) (0.0236) (0.0353) (0.0329) (0.0334) (0.0316) (0.0332) (0.0313) (0.0285) (0.0268)

3 0.6801 0.6265 0.8071 0.7165 0.8015 0.7170 0.8018 0.7172 0.6934 0.6289
(0.0279) (0.0235) (0.0419) (0.0406) (0.0339) (0.0326) (0.0336) (0.0322) (0.0300) (0.0304)

4 0.7221 0.6526 0.8887 0.7796 0.8759 0.7781 0.8761 0.7784 0.6769 0.6070
(0.0367) (0.0333) (0.1061) (0.1116) (0.0356) (0.0484) (0.0363) (0.0487) (0.0652) (0.0743)

Measurement error % = 1.0

1 0.6863 0.5995 0.7606 0.6490 0.7544 0.6491 0.7545 0.6491 0.7328 0.6380
(0.0433) (0.0345) (0.0442) (0.0439) (0.0431) (0.0436) (0.0430) (0.0436) (0.0366) (0.0356)

5 0.6795 0.5999 0.7759 0.6591 0.7676 0.6589 0.7678 0.6590 0.7144 0.6243
(0.0319) (0.0236) (0.0394) (0.0337) (0.0369) (0.0323) (0.0367) (0.0321) (0.0312) (0.0274)

3 0.6910 0.6087 0.8276 0.6861 0.8157 0.6866 0.8161 0.6868 0.7029 0.6093
(0.0301) (0.0235) (0.0454) (0.0415) (0.0371) (0.0341) (0.0368) (0.0336) (0.0320) (0.0312)
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. NNE KMCD IPCW CIPCW FP
_F;irreno('e'“ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted Observed Adjusted Observed | Adjusted | Observed | Adjusted | Observed | Adjusted Observed
4 0.7371 0.6297 0.9118 0.7396 0.8891 0.7394 0.8893 0.7397 0.6921 0.5847
(0.0405) (0.0338) (0.1070) (0.1143) (0.0370) (0.0530) (0.0371) (0.0533) (0.0654) (0.0698)
Measurement error % = 1.5
1 0.6990 0.5884 0.7765 0.6337 0.7673 0.6337 0.7673 0.6337 0.7433 0.6241
(0.0466) (0.0347) (0.0465) (0.0446) (0.0451) | (0.0443) | (0.0450) | (0.0443) | (0.0396) (0.0363)
2 0.6879 0.5887 0.7899 0.6421 0.7776 0.6420 0.7777 0.6419 0.7206 0.6101
(0.0354) (0.0238) (0.0432) (0.0340) | (0.0401) | (0.0326) | (0.0400) | (0.0324) | (0.0337) (0.0277)
3 0.6976 0.5968 0.8420 0.6657 0.8243 0.6662 0.8246 0.6664 0.7077 0.5958
(0.0326) (0.0234) (0.0489) (0.0421) (0.0401) | (0.0349) | (0.0399) | (0.0344) | (0.0347) (0.0313)
4 0.7463 0.6150 0.9284 0.7129 0.8961 0.7134 0.8963 0.7136 0.6979 0.5757
(0.0442) (0.0342) (0.2077) (0.1163) (0.0388) (0.0561) (0.0388) (0.0563) (0.0655) (0.0702)
Measurement error a2 = 2.0
1 0.7104 0.5829 0.7911 0.6241 0.7791 0.6244 0.7791 0.6244 0.7528 0.6151
(0.0515) (0.0345) (0.0502) (0.0453) | (0.0491) | (0.0455) | (0.0491) | (0.0455) | (0.0422) (0.0352)
2 0.6943 0.5835 0.8028 0.6320 0.7868 0.6326 0.7870 0.6326 0.7258 0.6024
(0.0385) (0.0230) (0.0463) (0.0334) | (0.0437) | (0.0326) | (0.0436) | (0.0324) | (0.0369) (0.0260)
3 0.6997 0.5907 0.8533 0.6532 0.8289 0.6541 0.8291 0.6543 0.7127 0.5887
(0.0345) (0.0232) (0.0547) (0.0421) | (0.0442) | (0.0337) | (0.0442) | (0.0334) | (0.0372) (0.0305)
4 0.7525 0.6075 0.9487 0.7004 0.9014 0.6981 0.9017 0.6986 0.7043 0.5714
(0.0502) (0.0340) (0.1143) (0.1152) (0.0443) | (0.0577) | (0.0440) | (0.0572) | (0.0640) (0.0726)
Measurement error o2 = 2.5
1 0.7159 0.5740 0.7966 0.6129 0.7822 0.7082 0.7821 0.6128 0.7558 0.6929
(0.0515) (0.0348) (0.0503) (0.0460) | (0.0487) | (0.0405) | (0.0487) | (0.0458) | (0.0437) (0.0314)
2 0.6981 0.5742 0.8081 0.6197 0.7887 0.7253 0.7886 0.6195 0.7274 0.6821
(0.0415) (0.0236) (0.0499) (0.0341) | (0.0458) | (0.0287) | (0.0458) | (0.0326) | (0.0393) (0.0256)
3 0.7040 0.5815 0.8598 0.6398 0.8318 0.7693 0.8321 0.6406 0.7106 0.6710
(0.0377) (0.0233) (0.0561) (0.0429) (0.0464) | (0.0300) | (0.0463) | (0.0354) | (0.0398) (0.0289)
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. NNE KMCD IPCW CIPCW FP
_F;irreno('e'“ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted Observed Adjusted Observed | Adjusted | Observed | Adjusted | Observed | Adjusted Observed
4 0.7555 0.5958 0.9505 0.6779 0.9005 0.8450 0.9007 0.6804 0.7004 0.6467
(0.0519) | (0.0350) (0.1119) (0.1178) | (0.0456) | (0.0374) | (0.0457) | (0.0594) | (0.0696) (0.0700)
Table C. 19: Time-dependent AUC(SE) for current methods when y=1.0 and 50% censoring
dicted NNE KMCD IPCW CIPCW FP
?irﬁ]e'“e AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed
Measurement error ¢2 = 0.25
1 0.7134 0.6702 0.7880 0.7398 0.7865 0.7399 0.7866 0.7400 0.7611 0.7173
(0.0361) | (0.0339) (0.0366) 0.0377) | (0.0361) | (0.0374) | (0.0360) | (0.0374) | (0.0288) (0.0294)
2 0.7018 0.6625 0.8061 0.7522 0.8037 0.7522 0.8039 0.7523 0.7406 0.6933
(0.0275) | (0.0249) (0.0306) (0.0306) | (0.0292) | (0.0294) | (0.0290) | (0.0293) | (0.0256) (0.0252)
3 0.7061 0.6663 0.8474 0.7834 0.8438 0.7838 0.8441 0.7841 0.7231 0.6708
(0.0256) | (0.0231) (0.0357) (0.0368) | (0.0265) | (0.0276) | (0.0264) | (0.0273) | (0.0276) (0.0285)
4 0.7363 0.6879 0.9058 0.8356 0.8983 0.8346 0.8985 0.8350 0.7025 0.6471
(0.0317) (0.0303) (0.0795) (0.0845) | (0.0275) | (0.0367) | (0.0276) | (0.0369) | (0.0557) (0.0586)
Measurement error g2 = 0.5
1 0.7274 0.6538 0.8030 0.7669 0.7993 0.7196 0.7994 0.7197 0.7725 0.6978
(0.0381) | (0.0339) (0.0374) (0.0369) | (0.0368) | (0.0385) | (0.0367) | (0.0385) | (0.0301) (0.0303)
2 0.7135 0.6471 0.8209 0.7833 0.8155 0.7296 0.8157 0.7296 0.7500 0.6739
(0.0291) | (0.0246) (0.0326) (0.0276) | (0.0310) | (0.0306) | (0.0308) | (0.0305) | (0.0273) (0.0264)
3 0.7175 0.6510 0.8642 0.8206 0.8562 0.7574 0.8565 0.7576 0.7332 0.6495
(0.0266) | (0.0227) (0.0371) (0.0347) | (0.0281) | (0.0294) | (0.0280) | (0.0291) | (0.0287) (0.0309)
4 0.7505 0.6692 0.9233 0.8825 0.9095 0.8039 0.9097 0.8043 0.7157 0.6252
(0.0333) (0.0299) (0.0793) (0.0804) | (0.0272) | (0.0414) |(0.0273) | (0.0417) | (0.0554) (0.0600)
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. NNE KMCD IPCW CIPCW FP
_F;irreno('e'“ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed
Measurement error % = 1.0
1 0.7488 0.6306 0.8256 0.6908 0.8182 0.6909 0.8183 0.6909 0.7874 0.6717
(0.0413) | (0.0336) | (0.0395) | (0.0402) |(0.0386) |(0.0400) |(0.0384) |(0.0400) | (0.0328) (0.0320)
2 0.7296 0.6256 0.8418 0.6980 0.8310 0.6981 0.8312 0.6981 0.7611 0.6471
(00319) | (0.0243) | (0.0364) | (0.0329) |(0.0340) | (0.0318) |(0.0337) | (0.0317) | (0.0300) (0.0270)
3 0.7317 0.6297 0.8865 0.7205 0.8703 0.7212 0.8706 0.7214 0.7441 0.6247
00282) | (00222) | (0.0402) | (0.0392) |(0.0309) |(0.0319) |(0.0308) |(0.0314) | (0.0305) (0.0302)
4 0.7686 0.6440 0.9469 0.7599 0.9216 0.7613 0.9218 0.7616 0.7303 0.5995
00355) | (0.0302) |(0.0798) | (0.0896) |(0.0272) |(0.0471) |(0.0272) | (0.0473) | (0.0520) (0.0601)
Measurement error o2 = 1.5
1 0.7640 0.6152 0.8419 0.6707 0.8314 0.6707 0.8314 0.6707 0.7982 0.6538
(0.0439) | (0.0335) | (0.0416) | (0.0409) | (0.0405) | (0.0409) |(0.0403) |(0.0408) | (0.0358) (0.0334)
5 0.7407 0.6112 0.8570 0.6764 0.8412 0.6766 0.8413 0.6766 0.7687 0.6291
(0.0345) | (0.0245) | (0.0397) | (0.0334) | (0.0365) | (0.0323) | (0.0364) | (0.0321) | (0.0326) (0.0275)
3 0.7402 0.6155 0.9021 0.6963 0.8785 0.6970 0.8787 0.6970 0.7511 0.6085
0.0296) | (0.0221) | (0.0432) | (0.0399) | (0.0330) |(0.0333) |(0.0329) |(0.0327) | (0.0327) (0.0311)
4 0.7799 0.6279 0.9642 0.7310 0.9281 0.7330 0.9283 0.7330 0.7397 0.5912
(0.0370) | (0.0305) | (0.0805) | (0.0915) | (0.0280) | (0.0502) | (0.0280) | (0.0503) | (0.0517) (0.0619)
Measurement error o2 = 2.0
1 0.7754 0.6071 0.8565 0.6578 0.8432 0.6581 0.8433 0.6581 0.8090 0.6412
(00490) | (0.0337) | (0.0448) | (0.0417) |(0.0441) |(0.0418) |(0.0441) |(0.0418) | (0.0387) (0.0324)
2 0.7474 0.6031 0.8703 0.6627 0.8499 0.6632 0.8501 0.6633 0.7736 0.6197
(0.0380) | (0.0231) | (0.0431) | (0.0327) | (0.0394) | (0.0316) |(0.0394) |(0.0314) | (0.0349) (0.0262)
3 0.7424 0.6072 0.9147 0.6808 0.8826 0.6813 0.8828 0.6816 0.7551 0.6008
(00328) | (00232) |(0.0494) | (0.0411) |(0.0360) |(0.0321) |(0.0360) |(0.0319) | (0.0358) (0.0307)
4 0.7871 0.6205 0.9868 0.7202 0.9329 0.7172 0.9331 0.7175 0.7500 0.5830
(0.0422) | (0.0313) | (0.0883) | (0.0932) | (0.0325) |(0.0512) |(0.0324) |(0.0504) | (0.0547) (0.0592)
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. NNE KMCD IPCW CIPCW FP
_F;irreno('e'“ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed
Measurement error oz = 2.5
1 0.7841 0.5967 0.8629 0.6454 0.8476 0.6455 0.8475 0.6454 0.8123 0.6303
(0.0502) | (0.0338) | (0.0461) | (0.0429) | (0.0454) |(0.0429) |(0.0453) |(0.0429) | (0.0407) (0.0339)
2 0.7547 0.5933 0.8769 0.6493 0.8530 0.6497 0.8530 0.6495 0.7772 0.6087
(0.0403) | (0.0244) | (0.0455) | (0.0343) | (0.0418) |(0.0331) | (0.0417) | (0.0330) | (0.0391) (0.0284)
3 0.7488 0.5975 0.9217 0.6653 0.8857 0.6669 0.8859 0.6668 0.7553 0.5895
0.0334) | (00220) | (0.0492) | (0.0406) |(0.0383) |(0.0349) |(0.0383) |(0.0341) | (0.0389) (0.0330)
4 0.7915 0.6075 0.9878 0.6923 0.9326 0.6969 0.9328 0.6968 0.7398 0.5720
(0.0415) | (0.0313) | (0.0832) | (0.0936) | (0.0329) | (0.0541) | (0.0329) | (0.0541) | (0.0562) (0.0598)
Table C. 20: Time-dependent AUC(SE) for current methods when y=0 and 70% censoring
Predicted NNE KMCD IPCW CIPCW FP
ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Adjusted | Adjusted | Observed | Adjusted | Observed
Measurement error ¢2 = 0.25
1 0.4981 0.4993 0.4975 0.4978 0.4987 0.4990 0.4984 0.4986 0.4966 0.4974
(0.0347) | (0.0341) | (0.0564) | (0.0545) | (0.0559) | (0.0544) | (0.0556) | (0.0542) | (0.0500) | (0.0483)
, 0.4980 0.4984 0.4970 0.4974 0.4982 0.4987 0.4976 0.4981 0.5009 0.5013
0.0292) | (0.0277) | (0.0478) | (0.0441) | (0.0468) | (0.0440) |(0.0462) | (0.0433) | (0.0431) | (0.0416)
3 0.4979 0.4984 0.4995 0.4991 0.5022 0.5029 0.5019 0.5026 0.4978 0.4986
(0.0352) | (0.0328) | (0.0725) | (0.0689) | (0.0573) | (0.0539) |(0.0576) |(0.0541) | (0.0501) | (0.0503)
. 0.4641 0.4628 0.4840 0.4792 0.4938 0.4913 0.4940 0.4913 0.4893 0.4931
0.0927) | (0.0902) |©4077) |©3960) |1500) |0.1477) |(0.1526) | (0.1493) | (0.2146) | (0.2249)

Measurement error % = 0.5
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. NNE KMCD IPCW CIPCW FP
_F;irreno('e'“ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted Observed | Adjusted Observed | Adjusted Adjusted | Adjusted Observed | Adjusted Observed
1 0.4986 0.5009 0.5003 0.5007 0.5011 0.5016 0.5009 0.5013 0.4979 0.4992
(0.0360) (0.0348) (0.0586) (0.0553) (0.0575) (0.0553) (0.0573) (0.0552) (0.0512) (0.0485)
2 0.4983 0.4992 0.4982 0.4988 0.4987 0.4996 0.4983 0.4991 0.5006 0.5004
(0.0300) (0.0275) (0.0503) (0.0443) (0.0481) (0.0434) (0.0478) (0.0429) (0.0424) (0.0389)
3 0.4990 0.4991 0.5027 0.5018 0.5039 0.5041 0.5039 0.5041 0.5030 0.5021
(0.0358) (0.0319) (0.0756) (0.0688) (0.0584) (0.0526) (0.0590) (0.0527) (0.0533) (0.0494)
4 0.4681 0.4648 0.4987 0.4908 0.4977 0.4946 0.4983 0.4949 0.4917 0.5022

(0.0950) | (0.0917)

(0.4201) | (0.3993)

(0.1545) | (0.1502)

(0.1570) | (0.1516)

(0.2111) | (0.2197)

Measurement error ¢2 =1.0

] 0.4984 0.5019 0.5014 0.5016 0.5018 0.5022 0.5018 0.5022 0.5009 0.5002
(0.0385) | (0.0368) | (0.0643) | (0.0578) | (0.0612) | (0.0571) | (0.0612) | (0.0571) | (0.0557) | (0.0496)
) 0.4980 0.4994 0.4989 0.4996 0.4999 0.5005 0.4999 0.5005 0.5012 0.5025
(0.0309) | (0.0276) | (0.0546) | (0.0432) | (0.0521) |(0.0433) |(0.0516) | (0.0426) | (0.0453) | (0.0391)
2 0.4988 0.4988 0.5025 0.5029 0.5039 0.5044 0.5039 0.5045 0.5009 0.5014
(0.0384) | (0.0333) | (0.0813) | (0.0674) | (0.0650) | (0.0544) | (0.0650) | (0.0543) | (0.0557) | (0.0497)
. 0.4652 0.4629 0.4808 0.4915 0.4899 0.4927 0.4899 0.4923 0.5109 0.4992

(0.1018) | (0.0931)

(0.4358) | (0.4142)

(0.1620) | (0.1493)

(0.1639) | (0.1502)

(0.2084) | (0.2138)

Measurement error % = 1.5

] 0.4975 0.5017 0.5014 0.5023 0.5011 0.5023 0.5012 0.5022 0.4994 0.4995
(0.0401) | (0.0380) | (0.0683) | (0.0590) | (0.0636) | (0.0584) | (0.0637) | (0.0584) | (0.0588) | (0.0501)
5 0.4977 0.4993 0.4994 0.5004 0.4998 0.5008 0.4998 0.5006 0.5006 0.5026
(0.0333) | (0.0277) | (0.0610) | (0.0434) | (0.0571) |(0.0433) |(0.0567) | (0.0426) | (0.0482) | (0.0397)
3 0.4979 0.4984 0.5033 0.5029 0.5030 0.5039 0.5031 0.5041 0.5025 0.5014
(0.0400) | (0.0344) | (0.0864) | (0.0720) | (0.0684) | (0.0566) | (0.0684) | (0.0565) | (0.0546) | (0.0528)
A 0.4705 0.4656 0.4930 0.4924 0.4907 0.4955 0.4898 0.4950 0.4987 0.4916

(0.1056) | (0.0916)

(0.4345) | (0.4191)

(0.1691) | (0.1469)

(0.1707) | (0.1479)

(0.2019) | (0.2205)

Measurement error a2 = 2.0
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. NNE KMCD IPCW CIPCW FP
_F;irreno('e'“ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted Observed | Adjusted Observed | Adjusted Adjusted | Adjusted Observed | Adjusted Observed
1 0.4980 0.5018 0.5025 0.5027 0.5019 0.5026 0.5020 0.5026 0.5011 0.5012
(0.0403) | (0.0374) (0.0705) | (0.0579) (0.0645) | (0.0573) | (0.0646) | (0.0572) (0.0609) | (0.0505)
2 0.4981 0.4997 0.5008 0.5013 0.5012 0.5018 0.5012 0.5015 0.5015 0.5029
(0.0341) | (0.0275) (0.0644) | (0.0432) (0.0596) | (0.0436) | (0.0593) | (0.0429) (0.0497) | (0.0394)
3 0.4983 0.4979 0.5036 0.5020 0.5043 0.5045 0.5042 0.5044 0.5028 0.5007
(0.0407) | (0.0349) (0.0893) | (0.0700) (0.0713) | (0.0573) | (0.0712) | (0.0575) (0.0553) | (0.0496)
4 0.4756 0.4668 0.4905 0.4942 0.4933 0.4967 0.4925 0.4959 0.5010 0.4998
(0.1056) | (0.0919) (0.4452) | (0.4159) 0.1731) | (0.1503) | (0.1741) | (0.1513) (0.2076) | (0.2174)
Measurement error o; = 2.5
1 0.4977 0.5028 0.5021 0.5027 0.5024 0.5032 0.5024 0.5030 0.5004 0.5012
(0.0433) | (0.0387) (0.0757) | (0.0591) (0.0687) | (0.0582) | (0.0690) | (0.0583) (0.0624) | (0.0492)
5 0.4965 0.4992 0.4985 0.5001 0.4994 0.5010 0.4993 0.5008 0.4995 0.5024
(0.0348) | (0.0274) (0.0669) | (0.0433) (0.0612) | (0.0436) | (0.0608) | (0.0429) (0.0522) | (0.0385)
3 0.4979 0.4985 0.5024 0.5036 0.5030 0.5047 0.5031 0.5050 0.5023 0.5014
(0.0433) | (0.0332) (0.0946) | (0.0670) (0.0769) | (0.0557) | (0.0768) | (0.0553) (0.0598) | (0.0517)
4 0.4697 0.4639 0.4870 0.5002 0.4915 0.4947 0.4910 0.4942 0.5106 0.4946
(0.1119) | (0.0937) (0.4484) | (0.4194) (0.1778) | (0.1495) | (0.1794) | (0.1505) (0.2022) | (0.2152)
Table C. 21: Time-dependent AUC(SE) for current methods when y=0.25 and 70% censoring
. NNE KMCD IPCW CIPCW FP
?ir;de"‘ted AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed
Measurement error a2 = 0.25
] 0.5486 0.5408 0.5790 0.5646 0.5790 0.5649 0.5789 0.5648 0.5760 0.5630
(0.0332) (0.0323) (0.0470) (0.0469) | (0.0469) | (0.0469) | (0.0468) | (0.0468) | (0.0365) (0.0352)
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. NNE KMCD IPCW CIPCW FP
_F;irreno('e'“ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted Observed Adjusted Observed | Adjusted | Observed | Adjusted | Observed | Adjusted Observed
5 0.5536 0.5451 0.5880 0.5733 0.5884 0.5739 0.5883 0.5738 0.5749 0.5628
(0.0227) (0.0214) (0.0326) (0.0310) (0.0320) (0.0305) (0.0318) (0.0304) (0.0240) (0.0232)
3 0.5674 0.5568 0.6150 0.5959 0.6153 0.5966 0.6152 0.5965 0.5745 0.5623
(0.0206) (0.0189) (0.0360) (0.0337) (0.0310) (0.0283) (0.0310) (0.0283) (0.0247) (0.0244)
4 0.6069 0.5891 0.6956 0.6641 0.6975 0.6662 0.6976 0.6664 0.5726 0.5588
(0.0349) (0.0336) (0.1228) (0.1234) (0.0576) (0.0561) (0.0578) (0.0563) (0.0703) (0.0703)
Measurement error % = 0.5
1 0.5522 0.5379 0.5854 0.5590 0.5841 0.5597 0.5839 0.5595 0.5799 0.5582
(0.0399) (0.0368) (0.0582) (0.0545) (0.0571) (0.0547) (0.0568) (0.0544) (0.0541) (0.0501)
5 0.5546 0.5404 0.5934 0.5669 0.5914 0.5674 0.5909 0.5669 0.5771 0.5573
(0.0330) (0.0284) (0.0509) (0.0446) (0.0496) (0.0437) (0.0493) (0.0434) (0.0418) (0.0395)
3 0.5669 0.5493 0.6230 0.5884 0.6217 0.5905 0.6220 0.5905 0.5791 0.5571
(0.0354) (0.0317) (0.0736) (0.0666) (0.0573) (0.0510) (0.0575) (0.0511) (0.0502) (0.0493)
4 0.5904 0.5589 0.7104 0.6521 0.6988 0.6458 0.7000 0.6462 0.5703 0.5447
(0.0834) (0.0784) (0.3775) (0.3582) (0.1325) (0.1353) (0.1340) (0.1375) (0.2024) (0.2071)
Measurement error % = 1.0
1 0.5560 0.5336 0.5951 0.5516 0.5913 0.5522 0.5912 0.5520 0.5858 0.5516
(0.0430) (0.0379) (0.0624) (0.0553) (0.0599) (0.0555) (0.0596) (0.0552) (0.0556) (0.0497)
9 0.5571 0.5353 0.6013 0.5584 0.5967 0.5588 0.5964 0.5584 0.5800 0.5491
(0.0353) (0.0284) (0.0559) (0.0444) (0.0535) (0.0438) (0.0531) (0.0434) (0.0439) (0.0384)
3 0.5696 0.5428 0.6326 0.5777 0.6277 0.5794 0.6281 0.5794 0.5818 0.5499
(0.0379) (0.0315) (0.0787) (0.0666) (0.0622) (0.0512) (0.0625) (0.0511) (0.0524) (0.0502)
4 0.5965 0.5461 0.7261 0.6355 0.7065 0.6263 0.7079 0.6264 0.5845 0.5428
(0.0871) (0.0801) (0.3836) (0.3586) (0.1355) (0.1380) (0.1363) (0.1402) (0.1961) (0.2071)
Measurement error o2 = 1.5
1 0.5591 0.5307 0.6029 0.5465 0.5964 0.5471 0.5964 0.5469 0.5892 0.5462
(0.0452) (0.0383) (0.0661) (0.0558) (0.0622) (0.0558) (0.0620) (0.0555) (0.0594) (0.0490)
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. NNE KMCD IPCW CIPCW FP
_F;irreno('e'“ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted Observed Adjusted Observed | Adjusted | Observed | Adjusted | Observed | Adjusted Observed
5 0.5582 0.5319 0.6074 0.5526 0.6002 0.5529 0.5999 0.5525 0.5822 0.5447
(0.0372) (0.0283) (0.0603) (0.0442) (0.0568) (0.0436) (0.0564) (0.0431) (0.0460) (0.0388)
3 0.5700 0.5386 0.6394 0.5703 0.6309 0.5717 0.6314 0.5717 0.5835 0.5430
(0.0399) (0.0313) (0.0834) (0.0666) (0.0667) (0.0514) (0.0670) (0.0513) (0.0536) (0.0494)
4 0.5972 0.5375 0.7385 0.6230 0.7105 0.6128 0.7121 0.6127 0.5754 0.5428
(0.0885) (0.0811) (0.3863) (0.3595) (0.1390) (0.1393) (0.1394) (0.1416) (0.1996) (0.2066)
Measurement error a2 = 2.0
1 0.5613 0.5271 0.6091 0.5426 0.5996 0.5424 0.5995 0.5422 0.5925 0.5413
(0.0461) (0.0366) (0.0679) (0.0535) (0.0622) (0.0536) (0.0623) (0.0535) (0.0588) (0.0473)
5 0.5589 0.5280 0.6122 0.5465 0.6035 0.5473 0.6034 0.5472 0.5849 0.5408
(0.0390) (0.0286) (0.0657) (0.0451) (0.0603) (0.0440) (0.0602) (0.0434) (0.0507) (0.0424)
3 0.5694 0.5337 0.6429 0.5617 0.6308 0.5633 0.6306 0.5631 0.5826 0.5368
(0.0445) (0.0363) (0.0954) (0.0739) (0.0759) (0.0594) (0.0758) (0.0597) (0.0585) (0.0474)
4 0.5929 0.5275 0.7350 0.5920 0.7004 0.5930 0.7001 0.5925 0.5719 0.5367
(0.0965) (0.0832) (0.3880) (0.3895) (0.1467) (0.1412) (0.1479) (0.1431) (0.1950) (0.2092)
Measurement error g% = 2.5
1 0.5646 0.5262 0.6147 0.5394 0.6039 0.5402 0.6039 0.5400 0.5963 0.5394
(0.0499) (0.0385) (0.0729) (0.0563) (0.0669) (0.0563) (0.0667) (0.0559) (0.0624) (0.0479)
5 0.5601 0.5269 0.6167 0.5446 0.6051 0.5448 0.6049 0.5446 0.5840 0.5372
(0.0411) (0.0283) (0.0678) (0.0439) (0.0624) (0.0435) (0.0619) (0.0430) (0.0506) (0.0383)
3 0.5708 0.5326 0.6499 0.5603 0.6354 0.5613 0.6359 0.5613 0.5859 0.5371
(0.0443) (0.0315) (0.0920) (0.0666) (0.0746) (0.0517) (0.0749) (0.0514) (0.0576) (0.0507)
4 0.5986 0.5274 0.7586 0.6063 0.7149 0.5955 0.7168 0.5950 0.5939 0.5342
(0.0936) (0.0819) (0.3898) (0.3619) (0.1467) (0.1405) (0.1466) (0.1429) (0.1864) (0.2009)
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Table C. 22: Time-dependent AUC(SE) for current methods when y=0.5 and 70% censoring

Predicted NNE KMCD IPCW CIPCW FP

Time AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed

Measurement error o; = 0.25

1 0.6052 0.5851 0.6577 0.6288 0.6561 0.6287 0.6562 0.6287 0.6470 0.6218
(0.0403) (0.0370) (0.0519) (0.0501) (0.0509) (0.0498) (0.0508) (0.0496) (0.0456) (0.0451)

5 0.6070 0.5869 0.6718 0.6406 0.6705 0.6411 0.6708 0.6413 0.6424 0.6179
(0.0302) (0.0277) (0.0437) (0.0414) (0.0437) (0.0416) (0.0430) (0.0408) (0.0416) (0.0393)

3 0.6234 0.6004 0.7173 0.6772 0.7140 0.6772 0.7140 0.6772 0.6372 0.6107
(0.0347) (0.0321) (0.0691) (0.0658) (0.0537) (0.0514) (0.0540) (0.0520) (0.0491) (0.0467)

4 0.6551 0.6209 0.8217 0.7613 0.7948 0.7470 0.7946 0.7465 0.6067 0.5795
(0.0632) (0.0640) (0.2932) (0.3003) (0.0956) (0.1030) (0.0970) (0.1058) (0.1875) (0.1943)

Measurement error % = 0.5

1 0.6114 0.5776 0.6687 0.6179 0.6650 0.6179 0.6651 0.6179 0.6547 0.6110
(0.0424) (0.0368) (0.0539) (0.0503) (0.0521) (0.0500) (0.0520) (0.0499) (0.0480) (0.0450)

9 0.6122 0.5786 0.6817 0.6277 0.6779 0.6283 0.6782 0.6284 0.6468 0.6076
(0.0324) (0.0278) (0.0470) (0.0422) (0.0461) (0.0424) (0.0455) (0.0416) (0.0421) (0.0407)

3 0.6293 0.5910 0.7293 0.6606 0.7229 0.6612 0.7230 0.6611 0.6426 0.5987
(0.0366) (0.0322) (0.0720) (0.0664) (0.0564) (0.0526) (0.0567) (0.0533) (0.0483) (0.0472)

4 0.6651 0.6071 0.8359 0.7332 0.8036 0.7232 0.8033 0.7227 0.6236 0.5710
(0.0665) (0.0655) (0.2888) (0.2956) (0.0950) (0.1080) (0.0961) (0.1111) (0.1842) (0.1892)

Measurement error % = 1.0

1 0.6209 0.5667 0.6861 0.6026 0.6778 0.6026 0.6780 0.6026 0.6655 0.5970
(0.0463) (0.0368) (0.0577) (0.0509) (0.0545) (0.0506) (0.0544) (0.0506) (0.0509) (0.0450)

5 0.6178 0.5670 0.6964 0.6099 0.6877 0.6104 0.6879 0.6103 0.6528 0.5919
(0.0355) (0.0283) (0.0527) (0.0430) (0.0501) (0.0429) (0.0495) (0.0422) (0.0444) (0.0413)

3 0.6339 0.5776 0.7455 0.6377 0.7327 0.6388 0.7329 0.6387 0.6479 0.5846
(0.0392) (0.0336) (0.0767) (0.0671) (0.0605) (0.0543) (0.0605) (0.0548) (0.0499) (0.0472)
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. NNE KMCD IPCW CIPCW FP
_F;irreno('e'“ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted Observed Adjusted Observed | Adjusted | Observed | Adjusted | Observed | Adjusted Observed
4 0.6731 0.5874 0.8569 0.6957 0.8133 0.6906 0.8132 0.6899 0.6355 0.5620
(0.0719) (0.0688) (0.2861) (0.2933) (0.0978) (0.1140) (0.0985) (0.1171) (0.1749) (0.1975)
Measurement error % = 1.5
1 0.6232 0.5647 0.6904 0.5994 0.6806 0.5992 0.6806 0.5992 0.6671 0.5932
(0.0480) (0.0377) (0.0601) (0.0519) (0.0561) (0.0519) (0.0561) (0.0519) (0.0520) (0.0455)
) 0.6186 0.5645 0.6997 0.6060 0.6896 0.6066 0.6896 0.6066 0.6536 0.5888
(0.0367) (0.0286) (0.0546) (0.0438) (0.0516) (0.0437) (0.0516) (0.0437) (0.0460) (0.0421)
0.6344 0.5752 0.7491 0.6330 0.7344 0.6347 0.7344 0.6347 0.6499 0.5830
3 (0.0396) (0.0341) (0.0778) (0.0673) (0.0618) (0.0555) (0.0618) (0.0555) (0.0521) (0.0486)
4 0.6744 0.5842 0.8629 0.6874 0.8155 0.6847 0.8155 0.6847 0.6308 0.5634
(0.0731) (0.0699) (0.2888) (0.2936) (0.0994) (0.1160) (0.0994) (0.1160) (0.1765) (0.1970)
Measurement error a2 = 2.0
1 0.6324 0.5544 0.7086 0.5828 0.6929 0.5835 0.6930 0.5834 0.6785 0.5803
(0.0549) (0.0375) (0.0665) (0.0528) (0.0619) (0.0520) (0.0619) (0.0520) (0.0568) (0.0455)
5 0.6240 0.5571 0.7178 0.5932 0.6992 0.5937 0.6992 0.5934 0.6578 0.5751
(0.0425) (0.0283) (0.0612) (0.0428) (0.0575) (0.0429) (0.0569) (0.0420) (0.0479) (0.0393)
3 0.6349 0.5649 0.7666 0.6143 0.7392 0.6148 0.7399 0.6149 0.6531 0.5708
(0.0426) (0.0320) (0.0833) (0.0646) (0.0664) (0.0535) (0.0668) (0.0531) (0.0555) (0.0495)
4 0.6832 0.5750 0.9059 0.6862 0.8310 0.6674 0.8321 0.6679 0.6444 0.5519
(0.0783) (0.0686) (0.3081) (0.3005) (0.0967) (0.1217) (0.0969) (0.1230) (0.1695) (0.1914)
Measurement error g% = 2.5
1 0.6392 0.5503 0.7188 0.5776 0.6989 0.5776 0.6989 0.5774 0.6830 0.5725
(0.0559) (0.0381) (0.0683) (0.0525) (0.0619) (0.0523) (0.0620) (0.0522) (0.0583) (0.0465)
5 0.6259 0.5497 0.7243 0.5819 0.7023 0.5829 0.7022 0.5826 0.6606 0.5701
(0.0442) (0.0280) (0.0669) (0.0436) (0.0598) (0.0434) (0.0593) (0.0427) (0.0530) (0.0422)
3 0.6370 0.5582 0.7754 0.6030 0.7442 0.6056 0.7443 0.6053 0.6546 0.5653
(0.0464) (0.0348) (0.0907) (0.0677) (0.0719) (0.0567) (0.0717) (0.0567) (0.0585) (0.0487)
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. NNE KMCD IPCW CIPCW FP

_F;irreno('e'“ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted Observed Adjusted Observed | Adjusted | Observed | Adjusted | Observed | Adjusted Observed

4 0.6792 0.5617 0.9064 0.6400 0.8212 0.6426 0.8216 0.6415 0.6426 0.5312
(0.0853) | (0.0716) (0.2930) (0.2936) | (0.1124) | (0.1221) | (0.1125) | (0.1244) | (0.1757) (0.1930)

Table C. 23: Time-dependent AUC(SE) for current methods when y=0.75 and 70% censoring

Predicted NNE KMCD IPCW CIPCW FP

i AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed

Measurement error ¢2 = 0.25

1 0.6587 0.6281 0.7277 0.6874 0.7261 0.6880 0.7261 0.6879 0.7099 0.6751
(0.0429) | (0.0393) (0.0478) (0.0469) | (0.0472) | (0.0466) | (0.0472) | (0.0466) | (0.0424) (0.0414)

5 0.6573 0.6293 0.7472 0.7035 0.7447 0.7041 0.7445 0.7038 0.6978 0.6630
(0.0322) | (0.0290) (0.0406) (0.0385) | (0.0391) | (0.0367) | (0.0388) | (0.0363) | (0.0381) (0.0371)

3 0.6683 0.6385 0.7958 0.7416 0.7897 0.7407 0.7900 0.7408 0.6894 0.6487
(0.0332) | (0.0312) (0.0644) (0.0628) | (0.0449) | (0.0462) | (0.0450) | (0.0461) | (0.0484) (0.0483)

4 0.7050 0.6640 0.8915 0.8272 0.8622 0.8058 0.8628 0.8069 0.6551 0.6087
(0.0520) | (0.0534) (0.2235) 0.2191) | (0.0642) | (0.0798) | (0.0651) | (0.0801) | (0.1681) (0.1737)

Measurement error o2 = 0.5

1 0.6687 0.6163 0.7421 0.6717 0.7376 0.6724 0.7376 0.6724 0.7200 0.6609
(0.0465) | (0.0388) (0.0504) (0.0480) | (0.0494) | (0.0478) | (0.0495) | (0.0478) | (0.0444) (0.0423)

2 0.6649 0.6178 0.7607 0.6861 0.7546 0.6866 0.7545 0.6863 0.7041 0.6472
(0.0344) | (0.0287) (0.0437) (0.0395) | (0.0419) | (0.0381) | (0.0416) | (0.0375 | (0.0386) (0.0382)

3 0.6755 0.6257 0.8116 0.7197 0.8003 0.7190 0.8007 0.7190 0.6961 0.6323
(0.0341) | (0.0310) (0.0666) (0.0635) | (0.0462) | (0.0475) | (0.0463) | (0.0475) | (0.0460) (0.0472)

4 0.7161 0.6473 0.9108 0.8000 0.8736 0.7805 0.8742 0.7818 0.6752 0.6055
(0.0545) | (0.0546) (0.2265) (0.2213) | (0.0627) | (0.0874) | (0.0634) | (0.0873) | (0.1654) (0.1786)
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. NNE KMCD IPCW CIPCW FP
_F;irreno('e'“ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed
Measurement error % = 1.0
1 0.6848 0.6005 0.7646 0.6493 0.7544 0.6499 0.7544 0.6499 0.7331 0.6397
(00519) | (0.0386) | (0.0549) | (0.0493) |(0.0529) |(0.0492) |(0.0531) |(0.0492) | (0.0470) (0.0428)
2 0.6750 0.6019 0.7807 0.6613 0.7671 0.6617 0.7671 0.6614 0.7125 0.6262
(0.0384) | (0.0283) | (0.0495) | (0.0406) | (0.0464) | (0.0394) | (0.0461) | (0.0387) | (0.0412) (0.0385)
3 0.6837 0.6083 0.8338 0.6895 0.8124 0.6889 0.8126 0.6889 0.7045 0.6125
(00368) | (0.0316) | (0.0709) | (0.0640) |(0.0493) |(0.0492) |(0.0496) |(0.0490) | (0.0487) (0.0488)
4 0.7297 0.6250 0.9368 0.7622 0.8851 0.7441 0.8856 0.7455 0.6908 0.5838
(0.0603) | (0.0563) | (0.2306) | (0.2239) | (0.0625) | (0.0948) |(0.0632) | (0.0944) | (0.1474) (0.1687)
Measurement error o2 = 1.5
1 0.6979 0.5894 0.7812 0.6340 0.7657 0.6342 0.7660 0.6342 0.7441 0.6262
(0.0556) | (0.0372) | (0.0591) | (0.0489) |(0.0560) |(0.0484) |(0.0561) |(0.0484) | (0.0510) (0.0430)
5 0.6824 0.5901 0.7959 0.6440 0.7744 0.6437 0.7748 0.6437 0.7169 0.6111
(0.0426) | (0.0287) | (0.0564) | (0.0424) | (0.0522) | (0.0412) |(0.0518) | (0.0405) | (0.0465) (0.0407)
3 0.6871 0.5957 0.8496 0.6689 0.8161 0.6669 0.8165 0.6671 0.7063 0.5973
(00406) | (0.0321) |(0.0768) | (0.0672) |(0.0564) |(0.0516) |(0.066) |(0.0517) | (0.0526) (0.0483)
4 0.7321 0.6064 0.9612 0.7316 0.8853 0.7150 0.8856 0.7162 0.6891 0.5849
(0.0670) | (0.0566) | (0.2263) | (0.2181) | (0.0674) | (0.0998) | (0.0681) | (0.1006) | (0.1570) (0.1790)
Measurement error o2 = 2.0
1 0.7070 0.5818 0.7948 0.6226 0.7746 0.6232 0.7746 0.6232 0.7502 0.6155
(0.0605) | (0.0379) | (0.0624) | (0.0505) | (0.0589) | (0.0503) | (0.0592) | (0.0503) | (0.0532) (0.0430)
5 0.6861 0.5828 0.8076 0.6317 0.7804 0.6322 0.7804 0.6320 0.7196 0.6006
(0.0463) | (0.0283) | (0.0601) | (0.0417) |(0.0547) | (0.0405) |(0.0545) | (0.0397) | (0.0482) (0.0386)
3 0.6889 0.5885 0.8619 0.6543 0.8212 0.6542 0.8215 0.6542 0.7092 0.5893
(0.0425) | (0.0320) | (0.0805) | (0.0646) |(0.0575) | (0.0505) |(0.0581) | (0.0501) | (0.0554) (0.0488)
4 0.7366 0.5990 0.9749 0.7149 0.8897 0.7006 0.8802 0.7019 0.6960 0.5798
(0.0699) (0.0581) (0.2369) (0.2262) (0.0691) | (0.1031) (0.0696) | (0.1027) (0.1461) (0.1755)

299



. NNE KMCD IPCW CIPCW FP

_F;irrende'“ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed

Measurement error oz = 2.5

1 0.7153 0.5738 0.8040 0.6128 0.7792 0.6127 0.7792 0.6125 0.7557 0.6048
(0.0625) | (0.0372) | (0.0645) | (0.0496) | (0.0598) | (0.0492) |(0.0599) | (0.0491) | (0.0548) (0.0445)

2 0.6901 0.5741 0.8158 0.6206 0.7835 0.6210 0.7836 0.6209 0.7223 0.5947
(00492) | (0.0284) | (0.0664) | (0.0435) | (0.0575) | (0.0421) | (0.0574) | (0.0417) | (0.0517) (0.0429)

3 0.6909 0.5798 0.8716 0.6405 0.8230 0.6425 0.8235 0.6425 0.7050 0.5824
(0.0463) | (0.0328) | (0.0843) | (0.0658) | (0.0640) | (0.0555) | (0.0640) | (0.0548) | (0.0585) (0.0523)

4 0.7358 0.5826 0.9844 0.6721 0.8824 0.6741 0.8826 0.6739 0.6854 0.5502
0.0761) | (0.0626) | (0.2323) | (0.2379) | (0.0823) | (0.1071) | (0.0826) | (0.1095) | (0.1545) (0.1804)

Table C. 24: Time-dependent AUC(SE) for current methods when y=1.0 and 70% censoring
dicted NNE KMCD IPCW CIPCW FP

?ir:}]e'“e AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed | Adjusted | Observed

Measurement error ¢2 = 0.25

1 0.7130 0.6697 0.7892 0.7397 0.7862 0.7395 0.7864 0.7396 0.7620 0.7167
(0.0399) | (0.0366) | (0.0415) | (0.0412) | (0.0403) | (0.0405) |(0.0402) |(0.0405 | (0.0358) (0.0372)

2 0.7013 0.6624 0.8092 0.7536 0.8049 0.7535 0.8053 0.7537 0.7416 0.6956
(00315) | (0.0291) | (0.0406) | (0.0401) |(0.0372) |(00371) |(0.0370) |(0.0371) | (0.0371) (0.0381)

3 0.7053 0.6659 0.8531 0.7874 0.8449 0.7865 0.8451 0.7865 0.7260 0.6755
0.0316) | (0.0291) | (0.0576) | (0.0585) | (0.0380) | (0.0409) |(0.0381) |(0.0409) | (0.0465) (0.0482)

4 0.7304 0.6804 0.9168 0.8406 0.8913 0.8284 0.8915 0.8288 0.6917 0.6262
(00469) | (00478) |(0.1622) | (0.1684) |(0.0487) |(0.0655) |(0.0489) | (0.0663) | (0.1474) (0.1641)

Measurement error o2 = 0.5
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. NNE KMCD IPCW CIPCW FP
_F;irreno('e'“ed AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted Observed Adjusted Observed | Adjusted | Observed | Adjusted | Observed | Adjusted Observed
1 0.7273 0.6534 0.8059 0.7196 0.7993 0.7194 0.7995 0.7194 0.7731 0.6982
(0.0428) (0.0366) (0.0437) (0.0422) (0.0419) (0.0418) (0.0418) (0.0417) (0.0385) (0.0379)
9 0.7120 0.6472 0.8255 0.7309 0.8163 0.7310 0.8168 0.7311 0.7501 0.6755
(0.0339) (0.0293) (0.0431) (0.0411) (0.0393) (0.0385) (0.0391) (0.0385) (0.0386) (0.0386)
3 0.7152 0.6503 0.8712 0.7603 0.8565 0.7601 0.8567 0.7601 0.7368 0.6523
(0.0329) (0.0290) (0.0590) (0.0593) (0.0393) (0.0437) (0.0393) (0.0436) (0.0458) (0.0478)
4 0.7441 0.6615 0.9357 0.8061 0.9023 0.7979 0.9025 0.7982 0.7102 0.6063
(0.0482) (0.0496) (0.1594) (0.1678) (0.0470) (0.0740) (0.0472) (0.0752) (0.1396) (0.1629)
Measurement error ¢2 =1.0
1 0.7447 0.6324 0.8305 0.6915 0.8183 0.6922 0.8183 0.6921 0.7885 0.6729
(0.0499) (0.0367) (0.0484) (0.0439) (0.0466) (0.0440) (0.0467) (0.0439) (0.0411) (0.0378)
5 0.7225 0.6262 0.8472 0.6984 0.8294 0.6990 0.8296 0.6989 0.7593 0.6479
(0.0375) (0.0282) (0.0466) (0.0396) (0.0413) (0.0378) (0.0411) (0.0370) (0.0388) (0.0388)
3 0.7230 0.6289 0.8960 0.7231 0.8684 0.7229 0.8687 0.7230 0.7468 0.6276
(0.0353) (0.0311) (0.0654) (0.0606) (0.0409) (0.0463) (0.0411) (0.0462) (0.0471) (0.0511)
4 0.7611 0.6432 0.9698 0.7759 0.9194 0.7682 0.9198 0.7691 0.7252 0.6034
(0.0525) (0.0500) (0.1600) (0.1634) (0.0452) (0.0796) (0.0454) (0.0789) (0.1346) (0.1606)
Measurement error % = 1.5
1 0.7632 0.6172 0.8484 0.6731 0.8309 0.6740 0.8309 0.6738 0.7989 0.6550
(0.0513) (0.0356) (0.0499) (0.0428) (0.0476) (0.0431) (0.0474) (0.0428) (0.0455) (0.0412)
5 0.7340 0.6124 0.8632 0.6777 0.8376 0.6797 0.8376 0.6795 0.7640 0.6315
(0.0422) (0.0285) (0.0530) (0.0401) (0.0473) (0.0391) (0.0468) (0.0383) (0.0461) (0.0394)
3 0.7290 0.6146 0.9106 0.6970 0.8709 0.6984 0.8713 0.6985 0.7469 0.6111
(0.0362) (0.0310) (0.0676) (0.0614) (0.0474) (0.0499) (0.0469) (0.0494) (0.0527) (0.0502)
4 0.7697 0.6258 0.9959 0.7392 0.9212 0.7396 0.9214 0.7402 0.7296 0.5815
(0.0586) (0.0515) (0.1700) (0.1768) (0.0502) (0.0866) (0.0508) (0.0872) (0.1306) (0.1684)

Measurement error a2 = 2.0
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. NNE KMCD IPCW CIPCW FP
_F;irren‘i'e":ted AUC(SE) AUC(SE) AUC(SE) AUC(SE) AUC(SE)
Adjusted Observed Adjusted Observed | Adjusted | Observed | Adjusted | Observed | Adjusted Observed
1 0.7710 0.6059 0.8363 0.6571 0.8363 0.6571 0.8363 0.6568 0.8057 0.6421
(0.0580) (0.0366) (0.0545) (0.0456) (0.0521) (0.0460) (0.0521) (0.0458) (0.0478) (0.0414)
9 0.7384 0.6019 0.8431 0.6639 0.8431 0.6639 0.8431 0.6635 0.7680 0.6185
(0.0448) (0.0295) (0.0555) (0.0437) (0.0487) (0.0415) (0.0486) (0.0413) (0.0473) (0.0421)
3 0.7290 0.6037 0.8731 0.6818 0.8731 0.6818 0.8733 0.6817 0.7473 0.6005
(0.0389) (0.0309) (0.0701) (0.0626) (0.0491) (0.0513) (0.0490) (0.0509) (0.0557) (0.0529)
4 0.7686 0.6128 0.9177 0.7140 0.9177 0.7140 0.9182 0.7148 0.7286 0.5829
(0.0611) (0.0547) (0.1587) (0.1656) (0.0575) (0.0952) (0.0579) (0.0968) (0.1267) (0.1612)
Measurement error o2 = 2.5
1 0.7815 0.5955 0.8698 0.6452 0.8439 0.6449 0.8439 0.6449 0.8116 0.6288
(0.0588) (0.0358) (0.0556) (0.0451) (0.0529) (0.0451) (0.0529) (0.0451) (0.0486) (0.0401)
9 0.7447 0.5925 0.8867 0.6495 0.8481 0.6508 0.8481 0.6508 0.7715 0.6086
(0.0466) (0.0281) (0.0584) (0.0420) (0.0495) (0.0393) (0.0495) (0.0393) (0.0492) (0.0413)
3 0.7319 0.5958 0.9343 0.6664 0.8761 0.6684 0.8761 0.6684 0.7474 0.5946
(0.0393) (0.0301) (0.0750) (0.0610) (0.0499) (0.0522) (0.0499) (0.0522) (0.0575) (0.0527)
4 0.7722 0.6006 1.0182 0.6969 0.9206 0.6954 0.9206 0.6954 0.7253 0.5698
(0.0602) (0.0560) (0.1667) (0.1707) (0.0567) (0.0934) (0.0567) (0.0934) (0.1296) (0.1666)
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