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General Abstract 

Antiretroviral therapy is challenging due to the drug-drug interactions (DDIs) arising 
from the co-medications administered to treat co-morbidities and opportunistic 
infections. Drugs causing induction/inhibition of enzymes and transporters, or 
displacement from plasma proteins can alter drug pharmacokinetics (PK) and result 
in treatment failure due to elevated toxicities or suboptimal efficacy. Furthermore, 
inter-individual differences conferred by genetic variability responsible for 
modulating antiretroviral PK complicates treatment. Favourable PK is of paramount 
importance for successful treatment of any disease. Excipients are frequently used in 
drug formulations. These excipients not only transform the PK of drugs, but also exert 
biological effects in the body. These properties may be exploitable to modify PK for 
optimal outcomes. Evidently, investigations into the pharmacological properties of 
drugs and excipients are imperative for designing rational formulations and therapies 
to treat HIV. Knowledge about the effect of genetic polymorphisms on drugs will aid 
in vigilance of disparate outcomes and help personalising treatment. 

The NEAT 001 / ANRS 143 was conducted to analyse the efficacy of a novel NRTI-
sparing dual combination of darunavir/ritonavir and raltegravir against a standard-of-
care triple therapy of darunavir/ritonavir and tenofovir/emtricitabine in HIV-infected 
antiretroviral naïve subjects. The single nucleotide polymorphisms (SNPs) that have 
known to have a clinical effect in previous literature were chosen and analysed for 
their influence on the drugs administered in this study, described in Chapter 2 and 3. 
In Chapter 4, the plasma protein binding and displacement of protease inhibitors – 
darunavir, atazanavir, lopinavir and ritonavir – were studied using Rapid Equilibrium 
Dialysis for their putative implications for DDIs. In Chapter 5, the effects of 25 
commonly used excipients were analysed for their effects on P-glycoprotein (P-gp) 
by assessing the change in the cellular accumulation of a P-gp substrate digoxin in 
cells over-expressing P-gp. There is little data on the transport of the anti-tuberculosis 
agent linezolid which is frequently co-administered with antiretroviral drugs. 
Linezolid was assessed for transport by P-gp, MRP and the BCRP in Chapter 6. 

Darunavir and ritonavir plasma levels were significantly lower in patients receiving 
raltegravir compared to those receiving tenofovir/emtricitabine, suggesting DDIs. 
SLCO1B1 521T>C (rs4149056) and SLCO3A1 G>A (rs4294800) were associated 
with higher darunavir and ritonavir plasma concentrations, respectively. It was seen 
that the protease inhibitors bind to both AAG and albumin, suggesting a 
compensatory mechanism between the plasma proteins. P-gp inhibition by excipients 
was demonstrated by the following order of effects: Cremophor EL > Vit-E-PEG > 
Brij 58 > Tween 80 > NaCMC > Tween 20 > CTAB > Solutol HS 15 > AOT. 
Linezolid was found to be a substrate for P-gp, MRP and the BCRP and the results 
suggested involvement of additional transporters in linezolid disposition. 

These findings not only corroborate previously published findings, but also presents 
novel findings that throw light on the mechanism of genetic variability, plasma 
protein displacement and induction/inhibition of transporters giving rise to DDIs.  
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1.1 Human Immunodeficiency Virus 

In the early 1980s, clinical signs and symptoms of severe immunodeficiency were 

first observed in the United States, and then across the world; later to be known as 

Acquired Immunodeficiency Syndrome (AIDS).1,2 This epidemic forced the scientific 

and medical communities world-wide to pool resources and investigate this disease. 

In 1983, French clinicians successfully isolated the human immunodeficiency virus 

(HIV-1) from a patient with AIDS.3 This allowed researchers to gain knowledge about 

the nature of HIV/AIDS and to ultimately develop antiretroviral (ARV) drugs and 

strategies for treatment of individuals infected with HIV.4 

In 2017, there were 36.9 million people living with HIV, with 1.8 million new 

infections; an 11% decline in new infections compared to 2010. A total of 940,000 

deaths due to AIDS-related causes were recorded, representing a 48% decline when 

compared to 2005. These success have been attributed to antiretroviral therapy 

(ART), as well as treatment strategies that complement ART.5 Nevertheless, factors 

such as adherence to ART, ART costs, suboptimal efficacy of ARVs, adverse effects, 

viral resistance to ARVs, and genetic variability between HIV-infected patients pose 

a challenge to the effective management of HIV/AIDS by ART.6  

 

1.2 HIV Structure and Life Cycle 

HIV is a Lentivirus, under the family of Retroviridae, subfamily Orthoretrovirinae. 

They are classified into two types, namely: HIV type 1 (HIV-1) and HIV type 2 (HIV-

2) depending on their viral antigens.7 The HIV virion is round and approximately 100 

nm in size (Figure. 1.1). It has an outer envelope containing spikes of gp120 surface 
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proteins, anchored by gp41 transmembrane proteins.8 The inner core consists of a 

capsid protein p24 containing two copies of a single-stranded genomic ribonucleic 

acid (RNA), reverse transcriptase, protease and integrase enzymes.9 

  

Figure 1.1. Structure of a HIV virion7 containing surface proteins gp41 and gp120 

and a p24 capsid enclosing HIV RNA along with reverse transcriptase, protease and 

integrase enzymes. 

 

As shown in Figure 1.2 HIV targets CD4+ T lymphocytes and macrophages by 

attaching to the CD4 antigen via gp120,10 with the help of co-receptors such as 

CXCR4 and CCR5 (Step 1).11 Once bound to the cell, a series of conformational 

changes take place resulting in detachment of gp120 and exposure of gp41, initiating 

the fusion of CD4+ and HIV (Step 2).9 HIV enters the cell cytoplasm and sheds its 
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outer protein coat, exposing the core contents of the virion.12 HIV-1 reverse 

transcriptase is activated and it transcribes the RNA into a deoxyribonucleic acid 

(DNA) (Step 3).13 The DNA, along with the proteins enter the nuclear membrane of 

the host cell and gets integrated into the cellular genome of the cell with the help of 

integrase (Step 4).14 DNA becomes a provirus by transcription (Step 5). The protease 

enzymes cleaves the Gag and Gag-Pol polyprotein precursors on the provirus to 

produce messenger RNAs (mRNA) of HIV and proteins, that are released into the 

systemic circulation (Step 6).15 

 

 

Figure 1.2. Life Cycle of HIV describing the entry of HIV into the cell, reverse 

transcription, integration into host genome and production of mature HIV virions. The 

steps at which antiretroviral drugs are described.  
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1.3 Opportunistic Infections associated with AIDS 

The decrease in the CD4 cell count dysregulates the immune system and renders the 

body susceptible to opportunistic infections (OI). OIs were the greatest cause of 

morbidity and death in patients suffering from AIDS.16 Most common OIs are 

pneumonia, candidiasis, herpes zoster and tuberculosis (TB). With the development 

of ARVs that have greater efficacy, less toxicity and are well-studied for potential 

drug-drug interactions (DDIs), the burden of OIs have reduced.17 Due to effective 

disease management, more HIV-infected patients currently die from non-AIDS 

related illness than OIs.18  

HIV is the strongest risk factor contributing to the resurgence of TB. The risk of 

developing TB is estimated to be between 16-27 times greater in people infected with 

HIV than among those without HIV infection. In 2015, there were an estimated 10.4 

million cases of TB disease globally, including 1.2 million [11%] among people 

infected with HIV.  A total of 57% of TB cases among people with HIV were not 

diagnosed or treated, resulting in 390,000 TB-related deaths among people living with 

HIV in 2015.19 Bassett et al. showed that nearly 20% of patients starting ART in 

Durban had undiagnosed pulmonary TB.20 Similarly, Antwal et al. demonstrated a 

Positive Predictive Value (PPV) of 78.8% and 80.6% for the detection of HIV in 

patients with TB and herpes zoster, who attended a HIV referral clinic.21 

Treatment of TB along with HIV requires multidrug therapies which increase the risk 

of DDIs. Mesfin et al. demonstrated an increase in the risk of having multidrug 

resistant-TB  (MDR-TB) in patients who are infected with HIV.22 MDR-TB has 

exhausted the inventory of effective drugs, necessitating discovery of novel agents 

and formulations.23  
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1.4 Antiretroviral Drugs 

ARVs have been successful in reducing HIV viral load in the blood and tissue of HIV-

infected patients, by suppressing viral replication. They have not only reduced the 

morbidity and mortality of HIV-infected patients, but have also curbed the spread of 

the virus.24 Reduction in HIV viral load leads to the restoration of CD4+ cell count,  

responsible for restoring immunity in patients.25 Although the treatment of HIV-

infected patients is complicated, extensive research for over two decades has made it 

possible for a HIV-positive individual to have a life expectancy approaching that of 

healthy individuals.26 ARVs are designed on the basis of the HIV life cycle by 

inhibiting processes involved in replication (Figure. 1.2). 

  

1.4.1 Entry Inhibitors 

Entry inhibitors act by blocking the interactions between gp120-CD4, gp120-co-

receptor or gp41-mediated membrane fusion required for the entry of HIV into cells.27 

Enfuvirtide, a synthetic peptide that blocks the fusion of HIV1-gp41, was the first 

entry inhibitor approved for treatment of HIV patients.28 Similarly, maraviroc is a 

CCR5 (co-receptor) antagonist that blocks the entry of HIV and is effective in 

treatment.29 Other integrase inhibitors such as ibalizumab and fostemsavir are under 

investigation for possible use  in ART.30,31  
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1.4.2 Nucleotide Reverse-Transcriptase Inhibitors (NRTIs)   

After entering the host cell, the HIV genome undergoes reverse transcription from 

RNA to DNA which is catalysed by the reverse transcriptase enzyme. NRTIs are 

nucleoside analogues that lack the 3′–hydroxyl moiety that are incorporated into DNA 

by reverse transcriptase. The lack of 3′–hydroxyl moiety prevents the addition of 

further nucleotides, therefore ending chain extension by competitive inhibition.32 

Zidovudine was the first ARV to be approved for treatment in 1987 to treat HIV.33 

NRTIs are overwhelmingly used as a backbone in ART. Due to the low cost and 

efficacy, it is likely that NRTIs will play a significant role in the treatment and 

prevention of HIV.34 However, concerns about cross-resistance and long term safety 

has raised interest in designing NRTI-sparing therapies.35,36  

 

1.4.3 Non-Nucleotide Reverse-Transcriptase Inhibitors (NNRTIs)   

Unlike the NRTIs, NNRTIs non-competitively inhibit HIV reverse transcriptase. The 

HIV reverse transcriptase enzyme is a part of the HIV virion (Figure. 1.1) and is not 

found in host cells, making it an ideal target to inhibit HIV replication without 

affecting other physiological processes.37 The NNRTIs bind to a single position on 

the p66 subunit of the HIV reverse transcriptase called the NNRTI binding pocket. 

This inactivates the reverse transcriptase and inhibits the HIV replication cycle.38 

Based on their propensity for resistance, they are categorised into two generations. 

The first generation NNRTIs, such as nevirapine, delavirdine, and efavirenz, are drugs 

with low genetic barrier to resistance, and a single mutation is enough to render them 

ineffective. In contrast, the second generation NNRTIs, such as etravirine and 
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rilpivirine, have a greater barrier to resistance.39 A new generation of drugs that are 

predicted to have fewer adverse effects and high barrier to resistance are also under 

development.40 

 

1.4.4 Protease Inhibitors (PIs) 

HIV protease plays an important role in the maturation of the HIV virus. It cleaves 

Gag and Gag-Pol polyproteins in the HIV virus at nine processing sites to produce 

mature proteins.41 PIs bind to the protease with high affinity and block the binding of 

substrates needed in the HIV replication cycle.42 Saquinavir was the first PI to be 

approved for treatment of HIV in 1995. The first-generation PIs such as saquinavir, 

fosamprenavir and indinavir had limited efficacy due to low bioavailability and 

resistance. This led to the development of second-generation PIs, such as darunavir 

and atazanavir, which are widely used for treating HIV.43 

Most PIs have unfavourable PK due to short plasma elimination half-lives and 

variable bioavailability. The PK of PIs are enhanced by co-administrating agents, 

such as ritonavir and cobicistat, that inhibit CYP3A enzyme and P-glycoprotein (P-

gp), resulting in increased absorption and reduced elimination.44 

A new class of inhibitors called the maturation inhibitors are currently under 

investigation as a potential strategy to treat HIV.45 These inhibitors act on protease, 

but are distinct from PIs in their mechanism of actions. Maturation inhibitors inhibit 

the final Gag processing step in which p25 is cleaved to p24 and SP1, rendering the 

HIV immature and non-infectious.46 
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1.4.5 Integrase Inhibitors 

Integrase inhibitors block the integration of HIV-DNA into the host genome by 

binding to an enzyme present in the HIV virion called integrase. The integration of 

HIV is a multi-step process and provides opportunities to develop inhibitors with 

multiple mechanisms of action.47 Raltegravir, developed by Merck and Co., was the 

first integrase inhibitor to be approved by Food and Drug Administration (FDA) for 

the treatment of HIV in 2007. Recently, dolutegravir and elvitegravir have been 

approved for their use against HIV.48  

 

1.5 Highly-Active Antiretroviral Therapy (HAART) 

One of the biggest challenges of monotherapy for the treatment of HIV was the 

emergence of resistance to the ARVs, resulting in treatment failure.49 In the early 

1990s, researchers experimented with treatments that included combinations of two 

or more ARVs and it was discovered that this resulted in greater success in inhibiting 

HIV replication, increasing CD4 counts and reducing AIDS-related illnesses, 

compared to treatment by monotherapies.50,51,52 They significantly reduced the 

incidence of resistance and lowered treatment failure.53 This strategy was named 

HAART.  

ARVs that had similar dosing intervals were combined into a single pill to facilitate 

administration; called fixed-dose combinations (FDC). Combivir was the first FDC 

developed by GlaxoSmithKline Ltd in 1997. It contained 300 mg of atazanavir, 150 

mg of lamivudine and 300 mg zidovudine, an approved backbone for treatment of 

HIV popular at that time.54 Since then, the FDA has approved a number FDCs such 
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as Trizivir (abacavir, zidovudine and lamivudine) and Atripla (efavirenz, 

emtricitabine and Tenofovir disoproxil fumarate; TDF) for the treatment of HIV.55 

 

1.6 Pre-Exposure Prophylaxis (PrEP) 

ARVs are not only used to treat individuals infected with HIV, but are also used to 

reduce the spread of the disease in populations. Pre-exposure prophylaxis (PrEP) 

involves the administration of ARVs to non-infected individuals in high-risk 

environments. The ARVs in the body restricts HIV from entering and replicating, and 

does not allow the virus to establish itself within the body.56 The effectiveness of PrEP 

was first demonstrated in the CAPRISA 004 trial in which the likelihood of HIV 

acquisition in women taking tenofovir vaginal gel was 39% lower than women taking 

placebo gel.57 Soon thereafter, various drugs were tested for their efficacy in PrEP. In 

2012, orally administered Truvada® (Tenofovir 300 mg/emtricitabine 200 mg) was 

approved by FDA, and is currently the only FDC available for PrEP.58  

 

1.7 Antiretroviral Pharmacokinetics 

Pharmacokinetics (PK) is defined as “the study of movement of drugs in the body in 

terms of absorption, distribution, metabolism and excretion”.59 ARVs are mostly 

administered orally, except for enfuvirtide, which is administered subcutaneously 

twice daily.60 Drug PK is measured by calculating the Cmax, Cmin and area under the 

curve (AUC), which are derived by measuring the drug concentration in blood plasma 

at specific intervals after dosing.  This is summarised in Figure. 1.3. 
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i. Cmax –  Highest drug concentration observed after oral administration 

ii. Cmin –  Lowest drug concentration observed after oral administration 

iii. AUC – Total area under the curve when drug concentration against time 

 

 

Figure 1.3. An example of a drug’s pharmacokinetic curve, showing the Cmax, Cmin 

and AUC of the drug after oral dosing. 

 

1.7.1 Absorption 

Drug bioavailability is the fraction/percentage of an extravascularly administered 

dose that reaches the systemic circulation via absorption.61 Absorption depends on a 

drugs’ characteristics such as aqueous solubility, membrane permeability and 

stability.62 Moreover, external factors of the gastrointestinal (GI) tract such as GI 

motility, efflux transporters, pH, the presence or absence of food, altered physiology 
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due to disease, as well as first-pass metabolism, each play a role in affecting drug 

bioavailability.63 Apart from TDF, didanosine and efavirenz, most NRTIs and 

NNRTIs have good bioavalability.64 By contrast, PIs have low bioavailability and are 

combined with ritonavir, a P-gp and CYP3A inhibitor, to increase their plasma 

exposure.65  

 

1.7.2 Distribution 

The apparent volume of distribution (VD) of a drug is defined as “the volume of 

plasma needed to account of the total amount of drug present in the body”, and is 

affected by pKa, LogP and the degree of protein binding of the drug. The distribution 

of a drug determines the proportion of drug that reaches the tissues as well as the drug 

half-life.66  

 

1.7.3 Metabolism 

Metabolism is the major route of elimination for most drugs. Liver is the principle 

site for most of the metabolism. However, enzymes are also present in extra-hepatic 

sites such as kidney, lungs, skin, adrenal glands and intestinal mucosa.67 

 Phase I metabolism usually exposes hydrophilic groups on the drug via oxidation, 

reduction or hydrolysis, mostly by cytochrome P450 monooxygenase (CYP) 

enzymes.68 Phase II metabolism involves conjugation reactions via glucuronidation, 

sulfation, acetylation, glutathione conjugation, methylation and amino acid 

conjugation. These are carried out by UDP-glucuronosyltransferases (UGTs), 
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sulfotransferases (SULTs), N-acetyltransferases (NATs), glutathione S-transferases 

(GSTs) and various methyltransferases (mainly thiopurine S-methyl transferase, 

TPMT; and catechol O-methyl transferase, COMT).69 All NNRTIs39, and PIs70, are 

metabolised extensively by CYP enzymes. Integrase inhibitors are metabolised via 

the UGT1A1 pathways, occasionally coupled with CYP.71 

 

1.7.4 Excretion 

Xenobiotics and metabolites are excreted mainly through renal and biliary excretion. 

Small and polar compounds undergo filtration, secretion and reabsorption, and the 

unwanted products are excreted in the urine. The larger, lipophilic compounds are 

excreted through bile.72  

 

1.8 Alternative Routes of Administration 

Oral routes of administration at times can be inconvenient for patients with 

debilitating conditions. For example, a patient infected with oral Candida or suffering 

from esophagitis may have difficulty in swallowing a pill.73 Moreover, oral 

administration has limitations, such as pill burden, first-pass metabolism, interference 

by GI contents, variable bioavailability or GI toxicity. This could lead to lack of 

adherence by patients, exacerbating resistance and contributing to treatment failure.74 

To obviate these shortcomings, novel drug delivery strategies are under investigation.  

Long-acting (LA) formulations of ARVs have gained popularity in the treatment of 

HIV. Their administration is mostly intra-muscular,  sub-cutaneous or via implants 
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such as vaginal rings.75 Topical microbicides such as vaginal gels and rectal douches 

are also being investigated for PrEP.76,77 However, these routes of administration pose 

special challenges due to differences in their PK as compared to oral administration.75 

For example, first pass metabolism is avoided by vaginal and rectal delivery, resulting 

in a higher bioavailability of drugs when compared to oral administration, requiring 

changes in dose administered.78 

 

1.9 Antiretroviral Pharmacodynamics 

AIDS is defined as “the most advanced stage of HIV infection where an infected 

individual’s immune system is damaged and is exposed to OIs. It is characterised by 

either a CD4 count < 200 cells/mm3 or by an AIDS defining illness such as TB, herpes 

zoster, non-Hodgkin lymphoma and Kaposi’s sarcoma.” As per the 2017 World 

Health Organization (WHO) guidelines, all countries are advised to follow the “treat 

all” policy, where any person diagnosed as HIV positive or as having AIDS should 

be initiated on ART within seven days.79 The goals of ART are to reduce viral load 

below detectable levels (< 50 copies/mL) and to increase CD4 cell count in HIV-

infected individuals. Inability to do so leads to treatment failure. (Table 1.1).80 

Numerous factors need to be considered for the successful treatment of a HIV-

infected individual with ART and are discussed below: 
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Table 1.1. Definition of clinical, immunological and virological failure according to 

the WHO80. Refer Table 1.2 for Clinical Staging of HIV 

Type of Failure WHO Definition 

Clinical In adults, new or recurrent Stage 4 clinical event after six 

months of ART  

In children, new or recurrent Stage 3 or 4 clinical event after 

six months of ART 

Immunological In adults, CD4 count falls below baseline or persistently 

<100 cells/mm3 

In children, CD4 levels < 200 cells/mm3 

Virological Plasma viral load above 1000 copies/mL on two consecutive 

measurements after three months 

 

Table 1.2 WHO clinical staging of HIV disease in adults and children 

Stage Adults Children 
1 Asymptomatic Asymptomatic 
2 Moderate Weight Loss Hepatosplenomegaly 
 Respiratory Tract Infections Respiratory Tract Infections 

 Herpes Zoster Herpes Zoster 
3 Severe Weight Loss Malnutrition 
 Chronic Diarrhoea Chronic Diarrhoea 
 Oral Candidiasis Oral Candidiasis 
 Pulmonary Tuberculosis Pulmonary Tuberculosis 

 Severe Bacterial Infections Severe Bacterial Infections 
4 HIV Wasting Syndrome HIV Wasting Syndrome 
 Pneumonia Pneumonia 
 Herpes Simplex Herpes Simplex 
 Oesophageal Candidiasis Oesophageal Candidiasis 

  Extra-pulmonary Tuberculosis Extra-pulmonary Tuberculosis 
  Kaposi Sarcoma Kaposi Sarcoma 
  HIV Encephalopathy HIV Encephalopathy 



 18 

1.9.1 Safety and Toxicity of Antiretroviral Drugs 

Drug toxicity is a major concern for the successful treatment of HIV patients with 

HAART and is one of the most common cause of changing treatment regimens.81 

NRTIs inhibit human DNA polymerases, resulting in the production of dysfunctional 

mitochondria and the generation of reactive oxygen species (ROS). ROS damage 

proteins, lipids and DNA, giving rise to mitochondrial toxicity, which is characterised 

by myopathy, neuropathy, lipoatrophy and lactic acidosis.82 The symptoms can be 

severe, and require change in treatment.83 To avoid these complications, new 

strategies of NRTI-sparing regimens are under investigation.35 NNRTIs have a lower 

incidence of adverse events compared to the NRTIs. They are metabolised by the liver 

and can cause rash, hepatotoxicity and Stevens-Johnson syndrome. Efavirenz is 

associated with CNS toxicities such as mood swings, insomnia and nightmares. 

However, these symptoms can disappear over time.84  

Initiation of treatment with PIs is often accompanied with GI symptoms such as 

abdominal pain, nausea, vomiting and diarrhoea, but often resolve quickly.85,86 Long-

term use of PIs is associated with dyslipidaemia due to increased hepatic secretion of 

very low-density lipoprotein giving rise to insulin resistance87 and cardiovascular 

diseases.88 Entry inhibitors such as enfuvirtide and maraviroc can give rise to 

hypersensitivity reactions and hepatotoxicity; however, incidences are rare.89 No 

severe adverse effects have been reported with the integrase inhibitor raltegravir.86  
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1.9.2 Antiretroviral Resistance 

Antimicrobial resistance is the ability of a microorganism to stop an antimicrobial 

from working against it. It is a growing global threat that necessitates efforts to ensure 

prevention.90 The emergence of HIV resistance to ARVs reduces treatment options 

due to the limited number of ARVs available.91 Drug resistance can either be 

transmitted, where a drug-resistant strain is transmitted from one person to another, 

or acquired by suboptimal treatment. Strong correlations between lack of adherence 

to drugs and resistance have been observed.92 A fall in the drug plasma concentration 

below the minimum effective concentration (MEC) allows the development of a 

resistant virus, which renders the ARV ineffective.93 In some cases, resistance to one 

drug results in resistance to other drugs; a phenomenon known as cross-resistance.94 

For example, the G118R substitution results in a statistically similar resistance to 

dolutegravir, raltegravir and elvitegravir.95 

Resistance to NRTIs can occur either by recognising and differentiating the NRTI 

from dNTP, or by primer unblocking mutations that lead to phosphorylytic excision 

of the NRTI from the viral DNA. The primer unblocking mutations are called 

thymidine analogue mutations (TAMs).96 Mutations in response to NNRTIs have a 

high potential for cross-resistance since the mutation sites encode amino acids that 

are adjacent to each other within the NNRTI-binding pocket. Additionally, the genetic 

barrier to NNRTI resistance is low, and a single mutation is sufficient to confer 

resistance.97 Resistance to PIs occurs due to accumulation of amino acid substitutions 

in the HIV protease that prevent PIs from inhibiting it.98 A significant amount of 

cross-resistance is seen in PIs since they all bind to a similar site on the HIV 

protease.99 Integrase inhibitor resistance occurs due to mutations in the integrase 
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enzyme that make the integrase enzyme less susceptible to inhibition. They are 

characterised by a low genetic barrier and major cross-resistance.100 Enfuvirtide, a 

fusion inhibitor, has a low genetic barrier resulting in rapid onset of mutations 

resulting in resistance.96 

The WHO has developed a global action plan for HIV drug resistance. The strategies 

include interventions for prevention and response to resistance, monitoring and 

surveillance of resistance, research and innovations to minimize drug resistance, 

strengthening laboratory capacities to monitor resistance and ensuring proper 

governance to support action on drug resistance strategies.101  

 

1.9.3 Efficacy of HAART 

The efficacy of ARVs depends on adverse events, adherence to treatment regimens, 

barrier to HIV resistance, cost and the ability to reduce HIV viral load and increase 

CD4 count. These factors are taken into consideration while formulating guidelines 

for HAART.102 

With the approval of zidovudine and didanosine, HIV-infected individuals were 

treated with NRTI-monotherapy, which improved patient survival and halted disease 

progression. Zidovudine monotherapy reduced the risk of maternal-infant HIV 

transmission when given orally during pregnancy.103 Subsequently, it was discovered 

that NRTI-dual therapy had greater benefits to the patients than monotherapy, but 

exhibited greater toxicities. They also failed to halt CD4 decline, rendering patients 

susceptible to OIs.104,105 With the invention of PIs, it was found that a combination of 

PI + 2NRTIs exhibited remarkable benefits in terms of viral load reduction and 
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increase in CD4 count.106,107 Similar treatment success was observed when an NNRTI 

nevirapine was administered with 2 NRTIs.108 A triple NRTI regimen was proposed 

to obviate the additional adverse events of PIs such as insulin resistance and 

hyperlipidaemia; however, this combination was inferior in terms of potency.109 

These findings confirmed a place for 2 NRTIs as a backbone for first-line therapy to 

treat HIV-infected individuals. Recently, attempts to design NRTI-sparing regimens, 

to avoid the toxicities of NRTI have shown success. The clinical trial NEAT001 

confirmed that a NRTI-sparing combination of darunavir boosted with ritonavir along 

with raltegravir, was non-inferior in efficacy compared to ritonavir-boosted darunavir 

with tenofovir and emtricitabine.110 Notwithstanding the low genetic barrier, a first-

line therapy with a NNRTI has been adopted by many countries, and has been 

successful in treating HIV. Etravirine, a second-generation NNRTI devoid of major 

toxicities and cross-resistance, has added to the interest in this class of ARVs.111  

When administered on their own, PIs have a low bioavailability and need to be dosed 

multiple times a day. This gives rise to complications such as food-dependent dosing, 

a high pill burden resulting in lack of adherence, inter- and intra-patient variability, 

high first-pass metabolism, DDIs, variable half-life, high cost and low penetration of 

the PI into HIV sanctuary sites. On co-administration with ritonavir, a P-gp and 

CYP3A4 inhibitor, PIs have higher bioavailability due to increased tissue penetration 

and decreased PI clearance. This lowered the quantity and frequency of doses.112,65 It 

also conferred PIs with a high genetic barrier.113 

Guidelines provided by the FDA and the European Medicines Agency (EMA) suggest 

raltegravir with a tenofovir/emtricitabine backbone as a first-line treatment for HIV-

infected individuals.114 Raltegravir displays good tolerability and limited DDIs due to 
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its metabolism via the UGT1A1 pathway. Elvitegravir and dolutegravir are also 

promising drugs since they have similar properties to raltegravir.115   

Enfuvirtide was the first fusion inhibitor to be approved in 2003 following a Phase III 

trial, which demonstrated effectiveness against HIV when combined with a backbone 

regimen.60 It is an oligopeptide and is administered subcutaneously, but is also 

associated with pain at the site of injection. Since it has a different mechanism of 

action than other ARVs, enfuvirtide is effective against HIV with multiple resistance 

mutations to other classes and is used as a salvage therapy.116 The efficacy of 

maraviroc has been established in the MOTIVATE and MERIT studies.117 Maraviroc 

acts by binding to the CCR5 receptor, blocking HIV entry into the cell. However, 

maraviroc does not block CXCR4, an alternative route for HIV to enter a cell. 

 

1.10 Drug-Drug Interactions with Antiretroviral Drugs 

DDIs can lead to suboptimal drug exposure, or conversely may increase drug 

exposure, giving rise to toxicity and adverse drug reactions. They can result in 

treatment failure and in some cases elicit significant harm to patients.118,119 A HIV-

infected individual can often present with additional ailments such as TB, malaria, 

hepatitis, or non-communicable indications which require treatment.79 Moreover, 

with the increase in HIV patients over 50 years of age, chronic conditions associated 

with ageing requiring cardiovascular drugs, chemotherapy, antihypertensive and lipid 

lowering drugs are becoming more common.120 Co-administration of drugs required 

for these illnesses increase the likelihood of DDIs with ART. DDIs alter the 

absorption, distribution, metabolism and excretion of drugs.121 The mechanisms 
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giving rise to DDIs involve induction or inhibition of metabolic enzymes, induction 

or inhibition of drug transporters or plasma protein displacement, resulting in altered 

PK.122 Interactions are also shown to happen at the intra-cellular level involving influx 

transporter on the CD4+ cells. For example, Liptrott et al. demonstrated a 39% and 

73% reduction in intra-cellular nevirapine in the presence of tenofovir in CD4+ cells 

and monocyte-derived macrophages. Similarly, nevirapine caused a 57% decrease in 

tenofovir accumulation.123  

These mechanisms are discussed in greater detail below. 

 

1.10.1 Induction/Inhibition of Metabolic Enzymes 

DDIs involving metabolic enzymes occur either due to the inhibition, or induction of 

enzyme expression and activity.124 The discovery of CYPs and their importance in 

metabolism of drugs played an important role in understanding DDIs.125 There are 

more than 50 subtypes of CYP, which collectively metabolise 90 percent of available 

drugs, and are present in liver, lungs, intestine, placenta and kidneys.126  

Inhibition of CYP enzymes can slow the metabolism of substrate drugs, elevating 

serum levels that can result in toxicity and adverse events, especially for drugs with 

narrow therapeutic index. CYP inhibition can either occur reversibly or irreversibly 

(Figure. 1.4).  
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Figure 1.4. Types of enzyme inhibition 

 

Irreversible inhibition occurs via formation of a metabolite complex to a protein or 

heme of the CYP enzyme and the effect is long-lasting. Reversible inhibition can be 

competitive, non-competitive, uncompetitive or mixed (Figure. 1.5).127 In 

competitive reversible inhibition, drugs compete to bind to the same site on the CYP 

enzyme, whereas in non-competitive, the binding site is different. In uncompetitive 

reversible inhibition, the inhibitor binds to the enzyme-substrate complex.124  
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Figure 1.5. Types of reversible enzyme inhibition (B) Competitive Inhibition (C) 

Uncompetitive inhibition (D) Non-competitive inhibition 

 

Induction of CYP enzyme expression, on the other hand, increases the rate of 

metabolism of enzyme substrates, resulting in increased clearance and a suboptimal 

effect of that drug. For example, rifampicin is a potent inducer of CYP3A5 and leads 

to significant decrease in exposure of CYP3A4 substrates.128 Induction is a longer 

process compared to inhibition as it takes time to reach higher steady state enzyme 

levels. The mechanism of CYP enzyme induction can involve aryl hydrocarbon 

receptor (AhR), nuclear receptor pregnane X receptor (PXR) and constitutive 

androstane receptor (CAR).129 AhR is expressed widely in human tissues and 

regulates the expression of the CYP1 and CYP2 family of enzymes. Upon binding to 

an agonist, it localises in the nucleus and forms a AhR/AhR nuclear translocator 

which binds to the DNA.130 PXR is mostly localised in the liver and small intestine 
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and largely affects CYP3A4, with some influence on CYP2A, CYP2B and CYP2C. 

In addition to drugs, PXR is activated by endogenous substances like steroids and bile 

acids and is responsible for variability in CYP3A4. Recent studies have shown that 

miRNAs (microRNAs) such as miRNA-148a influence PXR and CYP3A4.131 CAR 

is expressed in the liver and kidney and is activated by ligand-dependent and ligand-

independent mechanisms. CAR induces CYP2B6, CYP3A4, CYP2Cs, CYP2A6, 

CYP1A1 and CYP1A2, which contribute to the metabolism of 75 percent of all drugs 

prescribed.132 CYPs are responsible for the metabolism of most of the NNRTIs, PIs 

and integrase inhibitors.133 NNRTIs and PIs induce and inhibit certain CYP enzymes. 

For example, darunavir is a substrate of CYP3A4 and is reported to inhibit CYP3A4 

and induce CYP2C9.102 

In addition to metabolism by CYP enzymes, integrase inhibitors dolutegravir and 

elvitegravir are also metabolised by UGT1A1 enzymes. Raltegravir, on the other 

hand, is not metabolised by CYP. Some have argued that this difference in disposition 

compared to other classes of drugs minimises the potential for DDIs and makes 

raltegravir more suitable for combination therapy.134 UGTs are a superfamily of 

enzymes that metabolise endogenous substances (steroids, bilirubin and vitamins) and 

exogenous substances like carcinogens, pollutants and drugs.135 UGT1A1 is induced 

by ritonavir and is inhibited by both atazanavir and efavirenz. However, no dose 

adjustments to integrase inhibitors are necessary when co-administered with the 

UGT1A1 inducers.102,136    
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1.10.2 Induction/Inhibition of Drug Transporters 

The disposition of ARVs involve transporters such as adenosine triphosphate (ATP) 

– binding cassette (ABC) transporters and solute carrier (SLC) transporters. The 

induction or inhibition of these transporters caused by a co-administered drug leads 

to DDIs, and can complicate ART.137 DDIs involving drug transporters occur during 

intestinal absorption, hepatic elimination and/or renal excretion. Transporter DDIs 

can sometimes also affect drug penetration into sanctuary sites such as the CNS, 

genital organs or lymphocytes.138  

The ABC superfamily is the largest and most ubiquitously expressed transporter 

family in the human body and are involved in the transport of substances using ATP 

hydrolysis.139 P-gp (MDR1; ABCB1) is an efflux transporter expressed in the liver, 

kidneys, blood-brain barrier (BBB), blood-placenta barrier and blood-intestinal 

barrier.140 It has a huge number of drug substrates, including chemotherapeutic drugs, 

immunosuppressant drugs, antiepileptic drugs and ARVs. P-gp is responsible for the 

transport of all PIs and other ARVs such as TDF, zidovudine, abacavir, maraviroc, 

raltegravir and dolutegravir.141 It is inhibited by PIs such as ritonavir, lopinavir and 

nelfinavir as well as NNRTIs such as efavirenz and delavirdine. P-gp activity is 

enhanced by long-term exposure to ARVs including ritonavir, lopinavir, atazanavir, 

efavirenz, lamivudine.138 One of the biggest challenges in treating HIV patients co-

infected with TB is the induction of P-gp and CYPs by rifampicin, leading to reduced 

bioavailability of ARVs.142  

The multidrug resistance-associated protein (MRP) family has 13 members, of which 

MRPs 1—9 are involved in drug transport.143 Many PIs such as ritonavir, lopinavir, 

atazanavir and saquinavir, are substrates of MRP1 and MRP2.144,129 in addition to 



 28 

MRP1 and MRP2, tenofovir is also a substrate of MRP4 an MRP5.145 Delavirdine, 

efavirenz and emtricitabine inhibit MRP1-3, while ritonavir and nelfinavir has been 

reported to increase MRP2 expression.141  Breast cancer resistance protein 

(BCRP/ABCG2) is involved with the development of resistance to zidovudine, 

lamivudine, didanosine and stamivudine and is inhibited by atazanavir, ritonavir, 

lopinavir, delavirdine and efavirenz.146,147   

SLC transporters are involved with the influx and efflux of a wide range of nutrients, 

drugs and xenobiotics across biological membranes.148 Organic anion-transporting 

polypeptides (OATPs) - members of the SLC family - are expressed in the liver, 

intestine, kidneys, lungs, testis and brain, and tend to be expressed on the basolateral 

side of cells.149 Many PIs such as saquinavir, lopinavir and darunavir are substrates 

of OATPs. OATPs  are also inhibited by atazanavir, indinavir, saquinavir, ritonavir 

and nelfinavir; induced by nelfinavir and ritonavir.150 Organic anion transporters 

(OATs) and organic cation transporters (OCTs) are expressed mainly in the kidneys 

and liver. OAT4 transports NRTIs, while OAT1 and OAT3 are involved in uptake of 

tenofovir. PIs such as nelfinavir, ritonavir, saquinavir and indinavir inhibit OCT1 and 

OCT2.138 Nucleoside transporters, such as concentrative transporters (CNT) and 

equilibrative transporters (ENT) are involved the transport of nucleoside analogues 

such as zidovudine, lamivudine and didanosine.151 
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1.10.3 Plasma Protein Displacement 

Many drugs when absorbed and upon reaching the systemic circulation bind to 

circulating plasma proteins: mainly a1- acid glycoprotein (AAG; also known as 

orosomucoid) and/or albumin; and to a lesser extent globulins and lipoproteins.152 

The percentage of the drug that remains unbound to plasma proteins is free to exert 

its biological effects or to be cleared from the body, whilst the protein-bound drug 

remains latent (Figure. 1.6). The presence of a concomitantly-administered drug with 

a higher affinity to plasma proteins can cause displacement and an increase in the 

unbound percentage of the victim drug, resulting in a DDI.153 However, there is a 

current lack of consensus regarding the clinical relevance of plasma protein 

displacement.154   

 

 

Figure 1.6. Role of plasma protein binding on drug pharmacokinetics and 

pharmacodynamics 
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1.11 Pharmacoenhancers 

Ritonavir leads to extensive DDIs due to its inhibition of CYP3A4 and P-gp.155 Such 

interactions exhibited by ritonavir have been exploited to reduce the metabolism of 

other PIs and has been termed pharmaco-enhancement or “boosting”. Low-dose 

ritonavir increases absorption and decreases  metabolism of co-administered PIs, 

resulting in a reduction in the required dose, which is beneficial for adherence and the 

barrier to resistance.65 However, it cannot be administered to boost other classes of 

ARVs due to the risk of PI resistance resulting from low dose exposure of ritonavir.156 

Cobicistat (COBI) is another pharmacokinetic enhancer and acts by inhibiting 

CYP3A enzymes, CYP2D6, P-gp, BCRP, OATP1B1 and OATP1B3. It has been 

reported to inhibit the metabolism of elvitegravir, atazanavir and darunavir.157 A FDC 

containing elvitegravir/cobicistat/emtricitabine/TDF was approved by FDA in 2012 

as a once-daily pill.158 Since then, COBI has been approved for FDCs such as Rezolsta 

and Evotaz to boost darunavir and atazanavir, respectively.159   
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1.12 Pharmacogenetics in Antiretroviral Therapy 

Pharmacogenetics is the discipline that analyses the genetic basis for inter-individual 

variation in the PK of drugs.160 Individuals differ in genetic make-up, which affects 

the final products of transcription and translation. Genetic changes such as single 

nucleotide polymorphisms (SNPs), gene deletions and gene duplications may produce 

enzymes, transporters and plasma proteins that can differ in activity. This can 

potentially alters both drug PK and drug pharmacodynamics (PD).161 

More than 2000 mutations have been identified in genes coding for CYP enzymes 

and the most important polymorphic CYPs are 1A2, 2D6, 2C9 and 2C19.162 Similarly, 

polymorphisms in genes coding for transporters and plasma proteins have shown to 

influence the PK of drugs (Table 1.3).  
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Table 1.3. Influence of polymorphisms on protein expression and activity resulting in changes in drug pharmacokinetics 

Protein Polymorphism Change in activity Clinical Implications 

CYP2B6 CYP2B6 516 G>T Reduced expression Higher efavirenz concentrations163 

 CYP2B6 785 A>G Increased expression Higher efavirenz concentrations164 

 CYP2B6 983 T>C Reduced expression Higher efavirenz concentrations164 

CYP3A4 CYP3A4*B1 Reduced expression Higher efavirenz concentrations165 

 CYP3A4*22 Reduced expression Higher lopinavir concentrations166 

CYP3A5 CYP3A5*3 Increased expression Lower atazanavir concentrations167 

UGT1A1 UGT1A1*36 Reduced expression Higher raltegravir concentrations168 

PXR NR1I2 63396 C>T Higher CYP3A4 expression Lower atazanavir concentrations169 

CAR NR1I3 540 C>T Higher CYP3A4 expression Lower efavirenz concentrations170 

ABCB1 ABCB1 3435 C>T Change in substrate specificity Higher efavirenz concentration 

 ABCB1 2677 G>T Decreased expression Lower atazanavir concentrations 

MRP2 ABCB2 24 C>T Decreased activity Higher tenofovir clearance 

MRP4 ABCB4 3463 A>G Decreased activity Higher tenofovir concentrations171 

AAG ORM1*S Increased binding affinity Increased telmisartan AUC172 
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1.13 Thesis Aims 

The overall aim of the thesis was to investigate the DDIs that influence the treatment 

of HIV in vitro and in vivo. ARVs are given in combination, and are often co-

administered with drugs to combat TB, herpes zoster, hepatitis, diabetes as well as 

anti-chemotherapeutic agents, which can each result in DDIs leading to toxicities or 

treatment failure.79 In this thesis, research was focused not only on investigating 

pharmacogenetic associations with PK in a clinical cohort, but also to understand the 

mechanistic basis for potential DDIs.  

Chapter 2 and Chapter 3 describe the effects of genetic variability on drug plasma 

concentrations in patients enrolled in the NEAT001/ANRS143 trial. The primary 

objective of the trial was to test the efficacy of an NRTI-sparing regimen 

(darunavir/ritonavir + raltegravir), in comparison with an established standard-of-care 

regimen (darunavir/ritonavir + TDF + emtricitabine).110 The polymorphisms that have 

been found to have clinically significant effects on other PIs were analysed for their 

effects on darunavir, ritonavir, raltegravir, tenofovir, and emtricitabine PK and DDIs.  

The NEAT001 study showed an unexpected interaction between darunavir and 

raltegravir, which led to a decrease in darunavir plasma concentrations, and was 

associated with treatment failure.110 In theory, the PK of darunavir and raltegravir in 

terms of induction and inhibition of enzymes and transporters are exclusive and a DDI 

was not expected. The possibility of the observed DDI resulting from darunavir 

displacement from plasma proteins when co-administered with raltegravir was 

therefore explored, and is described in Chapter 4.  
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The inertness of excipients has been challenged in recent years and studies have 

shown an impact upon CYP enzyme activity and PK.173 In Chapter 5, the effect of 

25 commonly used excipients on P-gp activity was assessed by measuring the change 

in cellular accumulation of digoxin (a model P-gp substrate) in Madin-Darby Canine 

Kidney transfected with the MDR1 gene (MDCK-MDR1). 

Linezolid, an oxazolidinone antibiotic has been successful in treatment of a wide 

range of illnesses due to infections from organisms such as Enterococcus faecalis, 

Staphylococcus aureus, Chlamydia pneumoniae, Haemophilus influenza, and MDR-

TB.174 Anti-tubercular drugs are often co-administered with ARVs and can lead to 

complications such as DDIs and toxicities. A thorough investigation of the properties 

of ARVs as well as anti-tubercular drugs are necessary to design rational strategies 

for managing HIV and TB and predict treatment outcomes.175 Currently, the 

pharmacokinetic profile of linezolid with regard to its transport is incomplete. 

Substrate recognition by P-gp, BCRP and MRP transporters was studied by 

measuring the transport of linezolid in the presence of P-gp, BCRP and MRP 

inhibitors, as described in Chapter 6. 
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Pharmacogenetics of Ritonavir-

Boosted Darunavir and Ritonavir 

in HIV-infected adults: a sub-

study of NEAT001/ANRS143 
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2.1 Introduction  

Darunavir is a HIV-1 PI and is effectively used for combating HIV in treatment 

experienced and treatment naïve patients.176 Like all PIs, it is extensively metabolized 

in liver and the intestinal lumen by the CYP enzymes and has a high rate of 

elimination by first pass metabolism, resulting in low bioavailability.177 To improve 

the bioavailability, darunavir is co-administered with  pharmacoenhancers such as 

ritonavir or cobicistat.178,179 

Ritonavir, a PI, was initially used in combination with other ARVs to combat HIV. 

However, adverse events such as diarrhoea, nausea, vomiting, abdominal pain and 

rash led to discontinuation of ritonavir for HIV treatment.180 It was noticed that at low 

doses, ritonavir is a highly potent inhibitor of CYP3A4 and P-gp, and improved the 

bioavailability of PIs including darunavir, lopinavir and atazanavir.155 For example, 

on co-administration with ritonavir, the bioavailability of darunavir increases from 

37% to 82%.181 This boosting results in a decrease in pill burden and frequency of 

dosing of PIs and helps to improve adherence.182 

The POWER 1 and 2 studies demonstrated that darunavir/ritonavir 600/100 mg, 

administered twice daily, was most effective in controlling HIV with favourable 

safety, compared to other PIs.183 Soon after, the ARTEMIS trial confirmed the 

efficacy of darunavir/ritonavir 800/100 mg, administered once daily.184 Darunavir is 

well tolerated in pregnant women185 and paediatric patients with HIV186 and has a 

high genetic barrier to resistance.187 These advantages have made darunavir the 

preferred PIs for treatment of  HIV.44 Traditionally, darunavir boosted with ritonavir 

has been administered along with a back-bone of 2 NRTIs.35 However, NRTI-sparing 

regimens are now also being explored to mitigate some associated problems.188,189 
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A recurring challenge for the efficient treatment of HIV with darunavir is the inter-

patient variability resulting in unpredictable plasma concentrations. Some factors 

responsible for the variability such as age, body weight, concomitant medications, 

adherence and plasma protein concentrations change with time. While other factors 

like ethnicity, sex and genetics remain constant,190 SNPs can alter the structure, 

expression and function of enzymes and transporters for which they code and may 

confer variability in the metabolism and distribution of darunavir.191  

Darunavir is metabolized extensively by CYP3A4181 and CYP3A5192, whereas, 

ritonavir is metabolized mainly by CPY3A and by CYP2D6 to a lesser extent.193 

Darunavir is transported by OATP1B1, a member of solute carrier membrane 

transport proteins family, and is coded by SLCO1B1 gene.194 The transport of 

darunavir via OATP3A1 has not been confirmed by in vitro experimentation. 

However, using a pop-PK-model, involvement of OATP3A1 in the transport of 

darunavir has been suggested.190 

PXR and CAR are xenobiotic sensors belonging to the nuclear receptor (NR) family 

and are coded by NR1I2 and NR1I3, respectively. When activated, they control the 

expression of metabolic enzymes and transporters and help in detoxifying 

xenobiotics.195 Darunavir plasma levels are influenced by CYP3A4 and ABCB1, 

which are regulated by the PXR.169 Similarly, CAR has been shown to up-regulate 

the CYP3A4 gene and could potentially affect darunavir concentrations.196 

Polymorphisms in the genes coding for metabolic enzymes and transporters could 

alter drug PK and cause serious adverse events or suboptimal efficacy, both resulting 

in treatment failure.197 Hence, a thorough investigation of effects of SNPs in the genes 

that code for proteins that are involved in darunavir and ritonavir metabolism and 
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disposition is necessary. 

In this study, candidate polymorphisms in CYP3A4, CYP3A5, SLCO3A1, SLCO1B1, 

NR1I2 and NR1I3 were assessed for their impact upon darunavir and ritonavir plasma 

levels. Data were collected from subjects enrolled in the NEAT001/ANRS143 study. 

The NEAT 001 / ANRS 143 is a Phase III, randomized, open labelled trial, conducted 

to analyse the efficacy of a novel NRTI-sparing dual combination of darunavir/r 

(ritonavir boosted) and raltegravir against a standard-of-care triple therapy of 

darunavir/r and TDF/emtricitabine in HIV-infected antiretroviral naïve subjects.110  
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2.2 Methods 

2.2.1 Study Design and Samples Collection 

Patients were a part of a multi-centre, open-label, randomized, two-year trial 

comparing two first-line regimens in HIV-infected antiretroviral naïve subjects: 

darunavir/r + TDF / emtricitabine vs. darunavir/r + raltegravir (ANRS 143/NEAT 

001; ClinicalTrials.gov Identifier: NCT01066962). HIV-infected, treatment-naïve 

patients were recruited between August 2010 and September 2011 from 15 European 

countries (78 clinical sites). Individuals were eligible for enrolment if age ³ 18 years, 

plasma HIV viral load was above 1000 copies/mL, CD4 count <500 cells/µL (except 

patients with symptomatic disease), HIV treatment naïve, and there was no previous 

or current evidence of major resistance mutations. Patients who were asymptomatic 

for any disease and had a CD4 count > 500 cells/µL were excluded from the study. 

Patients suffering from or requiring treatment for active OIs like TB and hepatitis, 

pregnant women, those with abnormal laboratory parameters or those with 

hepatic/renal impairment were not permitted to participate in the study. Ethical 

approval and written informed consent were obtained. A separate consent form for 

pharmacogenetics analysis was obtained. A total of 1.5 ml of full blood was stored in 

one ethylenediaminetetraacetic acid (EDTA) vial and labelled. The sample was then 

frozen and shipped at -80°C to a centralised laboratory for storage.  

Patients were randomised (1:1) to receive ritonavir-boosted darunavir (800/100 mg 

once daily) with either TDF/emtricitabine (245/200 mg once daily) or raltegravir (400 

mg twice daily; NRTI-sparing regimen).110 Random, single blood samples were 

drawn at week 4 and 24 following therapy initiation and plasma was obtained for 

quantification of drug concentrations. Week 4 was chosen to assess the correlation 
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between drug plasma concentrations and adverse events if any. Week 24 was chosen 

to assess the correlation between drug plasma concentrations and treatment failure if 

any. 

The blood samples collected for pharmacogenetics analysis were then shipped to the 

Department of Molecular and Clinical Pharmacology, University of Liverpool, 

United Kingdom (UK) for analysis. For the measurement of drug concentrations, 10 

ml of blood was collected in EDTA tubes at week 4 and 24 and centrifuged to obtain 

plasma, which was stored at -80°C for 1 year until analysis. Thawing of the samples 

was kept to a minimum and done on ice to ensure DNA stability.  

 

2.2.2 DNA Extraction and Genotyping  

Total genomic DNA was extracted from patient blood using the QI Amp DNA mini 

kit (Qiagen, West Sussex, UK) according to manufacturer’s instructions. The quality 

and quantity of DNA in the samples were spectrophotometrically using NanoDrop® 

(Thermo Fisher Scientific Inc., Wilmington, DE, USA). The quality of DNA was 

tested by measuring the ratio of absorbance at 260 nm and 280 nm, with >1.8 to be 

accepted as pure. The DNA concentrations for all samples were above 20 ng/µl and 

stored at -20° C until analysis. Genotyping was performed by allelic discrimination 

real-time polymerase chain reaction (RT-PCR) assay on a DNA Engine Chromo4 

system (Bio-Rad Laboratories, Hercules, CA) as previously described.198 The PCR 

protocol involved an initial denaturation step at 95°C for 15 min, followed by 50 

cycles of amplification at 95°C for 15 seconds and final annealing at 60°C for 1 min. 

The TaqMan® Genotyping Master Mix and assay numbers enumerated in Table 2.1 

were obtained from Life Technologies Ltd (Paisley, Renfrewshire, UK).  
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 Table 2.1. TaqMan® assays  

 

 

The TaqMan assays contain pre-optimised PCR primers and two probes for allelic 

discrimination. The two TaqMan probes contains a FAM dye and a VIC dye label at 

the 5’ end and minor groove binders and non-fluorescent quenchers at the 3’ end. 

During a PCR, each probe anneals to its complementary sequence and is cleaved by 

the AmpliTaq Gold DNA polymerase. This separates the reporter dye from the 

quencher dye resulting in increased fluorescence of the reporter (Figure 2.1).  

 

 

Gene and SNP 
 

Reference SNP ID 
 

Product ID 

SLCO3A1 G>A rs4294800 
 

C__27008914_10 

SLCO3A1 G>T rs8027174 
 

C__2901316_10 

SLCO1B1 521 T>C rs4149056 
 

C__30633906_10 

NR1I2 (PXR) 63396C>T rs2472677 
 

C__26079845_10 

NR1I3 (CAR) 540G>A rs2307424 
 

C__25746794_20 

CYP3A5 6986A>G rs776746 
 

C__26201809_30 

CYP3A4 522-191C>T rs35599367 
 

C__26201809_30 
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Figure 2.1 Real time PCR using TaqMan assays showing the annealing of probes to 

its complementary sequence resulting in reporter fluorescence.  

 

Post-PCR, the allelic discrimination was analysed using a MiniOpticon System. In 

the amplification chart, a single threshold was manually assigned to all the samples 

as shown in Figure 2.2 (Example of PCR done to assess the rs2307424). Based on 

the FAM and VIC endpoints, the samples were then grouped into wild, heterozygous 

or mutant homozygous (Figure 2.3). 
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Figure 2.2. Analysis of realtime-PCR results for rs2307424. A single threshold is 

assigned to all the samples based on their amplification.  

 

Figure 2.3 Grouping of samples into wild, heterozygous and mutant homozygous 

based on VIC and FAM endpoints. 
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2.2.3 Pharmacokinetic Analysis 

Plasma drug concentrations were quantified at the Laboratory of Clinical 

Pharmacology and Pharmacogenetics, University of Turin (Turin, Italy) by validated 

HPLC-MS/MS methods. Lower limits of quantification (LLQ) were 0.0391 and 

0.0098 mg/L for darunavir and ritonavir respectively.  

 

2.2.4 Statistical Analysis 

Hardy-Weinberg compliance was tested to confirm biological ascertainment using 

methods described by Rodriguez et al. This test was performed to examine the 

‘missingness’ of subjects of a particular genotype, that can arise due to chance, 

genotyping errors or clinical biases.199 The web program 

http://www.oege.org/software/hwe-mr-calc.shtml was used to carry out the tests. 

Figure 2.4 is an example of Hardy Weinberg Equilibrium tested for CYP3A4*22 

(rs35599367) for darunavir at week 4 using the web program.   
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Figure 2.4. Hardy Weinberg Equilibrium test performed for CYP3A4*22 

(rs35599367) for darunavir at week 4.  The x2 0.75 has a P value > 0.05 indicating 

lack of difference between the observed frequency and population frequency. 

 

Normality of the plasma concentrations of darunavir and ritonavir was tested using 

Kolmogorov-Smirnov test. Significance of SNPs on darunavir and ritonavir PK were 

performed separately for week 4 and week 24 sample collection. A univariate analysis 

was performed to identify the variables associated with darunavir and ritonavir 

plasma concentrations. The variables that had an association of P value (p) < 0.15 

were included in the multivariate stepwise regression. A P value of < 0.05 was 

considered statistically significant in the multivariate analysis. Due to changes in drug 

concentrations with time, time post-dose was included in the multivariate analysis a 

priori. All statistical analysis was conducted using IBM SPSS Statistics v. 22.0.  
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2.3 Results 

2.3.1 Patient Characteristics and Genotyping 

Data were collected from 674 patients, of which 332 were randomised to the 

raltegravir arm and 342 were randomised to the TDF / emtricitabine arm of the study. 

Samples were excluded from darunavir and ritonavir analysis due to missing data for 

demographics, recorded time post-dose, genotype or drug plasma concentrations. 

Those with post-dose > 30 hours and drug concentrations below LLQ were also 

omitted from the analysis. Thus, a total of 548 for darunavir at week 4, 520 for 

darunavir at week 24, 554 for ritonavir at week 4 and 527 for ritonavir at week 24 

patients were included in the analysis. All four groups used for analysis had an 

approximately equal number of patients in the raltegravir and TDF/emtricitabine arm, 

with a greater proportion of males to females. Patient demographics and clinical 

characteristics are described in Table 2.2. The allele frequencies for the tested SNPs 

are described in Table 2.3. All genotypes were in Hardy-Weinberg equilibrium 

except for SLCO3A1 G>T (rs8027174) at week 4 and CYP3A5*3 (rs776746) at week 

4 and 24 for the analysis of darunavir and ritonavir. 
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Table 2.2. Clinical characteristics and demographics of patients included in the pharmacogenetic analysis of NEAT001/ANRS143 

pharmacokinetic sub study stratified by study drug and week of sample collection (data expressed in median (range) unless stated otherwise) 

Parameter Darunavir Ritonavir 

 Week 4 Week 24 Week 4 Week 24 
 
Included for analysis (n) 548 520 554 527 

     
Age (years) 37 (18-76) 37 (18-76) 37 (18-76) 37 (18-76) 

     
Sex [n (%)]     
Male 484 (88.3) 464 (89.2) 489 (88.3) 470 (89.2) 
Female 63 (11.5) 55 (10.6) 64 (11.6) 56 (10.6) 
Transgender 1 (0.2) 1 (0.2) 1 (0.2) 1 (0.2) 

     
Weight at randomisation (kg) 71.95 (41-135) 72 (44.3-135) 72 (41-135) 72 (44.3-135) 

     
Height (cm) 176 (149-204) 176 (149-204) 176 (149-204) 176 (149-204) 

     
Randomisation arm [n (%)]     
TDF/Emtricitabine 269 (49.1) 267 (51.3) 273 (49.3) 272 (51.6) 
Raltegravir 279 (50.9) 253 (48.7) 281 (50.7) 255 (48.4) 
     



 49 

Table 2.3. Allele frequencies for SNPs investigated for pharmacogenetic analysis; n 
(%) 

SNP  Darunavir Ritonavir 

  

 
Week 4 Week 24 Week 4 Week 24 

      
Number of patients 548 520 554 527 

      
CYP3A4*22 (rs35599367)     
GG  509 (92.9) 480 (92.3) 514 (92.8) 487 (92.4) 
GA  39 (7.1) 40 (7.7) 40 (7.2) 40 (7.6) 
AA  0 0 0 0 

      
CYP3A5*3 (rs776746)     
CC  402 (73.6) 378 (72.7) 408 (73.6) 383 (72.7) 
CT  108 (19.7) 111 (21.3) 108 (19.5) 112 (21.3) 
TT  38 (6.7) 31 (6) 38 (6.9) 32 (6) 

      
NR1I2 63396C>T (rs2472677)     
TT  178 (32.5) 172 (33.1) 180 (32.5) 173 (32.8) 
CT  262 (47.8) 246 (47.3) 265 (47.8) 251 (47.6) 
CC  108 (19.7) 102 (19.6) 109 (19.7) 103 (19.6) 

      
NR1I3 540G>A (rs2307424)     
GG  266 (48.5) 244 (46.9) 269 (48.6) 248 (47.1) 
GA  224 (40.9) 223 (42.9) 227 (41) 224 (42.5) 
AA  58 (10.6) 53 (10.2) 58 (10.4) 55 (10.5) 

      
SLCO1B1 521T>C (rs4149056)     
TT  393 (71.7) 374 (71.9) 399 (72) 378 (71.7) 
CT  146 (26.6) 135 (26) 146 (8.3) 138 (26.2) 
CC  9 (1.7) 11 (2.1) 9 (1.6) 11 (2.1) 

      
SLCO3A1 G>A (rs4294800)     
GG  264 (48.2) 254 (48.8) 269 (48.6) 256 (48.6) 
GA  229 (41.8) 212 (40.8) 229 (41.3) 216 (41) 
AA  55 (10) 54 (10.4) 56 (10.1) 55 (10.4) 

      
SLCO3A1 G>T (rs8027174)     
GG  460 (83.9) 442 (85) 466 (84.1) 447 (84.8) 
GT  88 (16.1) 78 (15) 88 (15.9) 80 (15.2) 
TT   0 0 0 0 
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2.3.2 Influence of SNPs on Darunavir Plasma Concentrations 

According to the Kolmogorov-Smirnov test, the plasma concentrations of darunavir 

was not normally distributed. Hence, log concentrations of darunavir was used for 

analysis.  

At week 4, a univariate analysis showed sex (p = 0.096), time of post-dose blood 

sample collection (p < 0.0001), ritonavir concentration (p < 0.0001), trial 

randomisation (p = 0.013), and SLCO1B1 521T>C (p = 0.035) had a significant effect 

on the darunavir plasma concentrations (Table 2.4). CYP3A4*22 (p = 0.859), 

CYP3A5*3 (p = 0.814), NR1I2 63396C>T (p = 0.391), NR1I3 540G>A (p = 0.616), 

SLCO3A1 G>A (p = 0.492) and SLCO3A1 G>T (p = 0.225) were not associated with 

darunavir plasma concentrations (Figure 2.5). On performing multivariate linear 

regression, time of the post-dose blood sample collection (p < 0.0001), ritonavir 

concentration (p < 0.0001), trial randomisation (p = 0.008) and SLCO1B1 521T>C (p 

= 0.038) showed statistically significant associations with darunavir plasma 

concentrations. Trial randomisation had a β value of 0.09 indicating darunavir plasma 

concentrations were significantly lower in patients receiving darunavir/r + raltegravir 

(Figure 2.6). Similarly, the β value for SLCO1B1 521T>C was 0.075; a significant 

higher concentration in patients containing the SLCO1B1 521T>C allele (Figure 2.7).  

To further investigate the influence of trial randomisation on darunavir, the darunavir 

plasma concentrations collected between 20-30-hour post dose was analysed in 

patients receiving TDF/FTC against those receiving raltegravir (Figure 2.8). No 

significant differences  (p = 0.239)  were seen in darunavir concentration in the two 

groups.
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Table 2.4. Association of patient characteristics and SNPs in CYP3A4, CYP3A5, NR1I2, NR1I3, SLCO1B1 and SLCO3A1 with log plasma darunavir 

concentrations in patients enrolled in NEAT001/ANRS143. Variables that were significant after univariate analysis (P < 0.15) were considered for multivariate 

regression analysis. 

Variables Week 4 Week 24 

   

Univariate linear 
regression 

Multivariate linear 
regression 

Univariate linear 
regression 

Multivariate linear 
regression 

   β P value β P value β P value β P value 

           
Age   0.018 0.63   -0.039 0.335   
Sex   -0.075 0.096 -0.016 0.663 0.038 0.398   
Weight at randomisation -0.261 0.269   0.059 0.638   
Weight at blood collection 0.238 0.315   0.006 0.961   
Height   0.072 0.152   -0.063 0.216   
Time of post-dose blood collection -0.237 <0.0001 -0.24 <0.0001 -0.303 <0.0001 -0.3 <0.0001 
Ritonavir concentration 0.39 <0.0001 0.382 <0.0001 0.304 <0.0001 0.303 <0.0001 
Trial Randomisation (RAL Vs TDF/FTC) 0.092 0.013 0.09 0.008 0.146 <0.0001 0.14 <0.0001 
CYP3A4*22 (rs35599367) 0.007 0.859   0.001 0.985   
CYP3A5*3 (rs776746) -0.009 0.814   -0.076 0.053 -0.06 0.126 
NR1I2 63396C>T (rs2472677) 0.031 0.391   -0.022 0.56   
NR1I3 540G>A (rs2307424) 0.018 0.616   0.009 0.815   
SLCO1B1 521T>C (rs4149056) 0.078 0.035 0.075 0.038 -0.032 0.401   
SLCO3A1 G>A (rs4294800) -0.026 0.492   -0.014 0.721   
SLCO3A1 G>T (rs8027174) -0.045 0.225     -0.018 0.634     

β is the regression coefficient and represents incremental change in log plasma darunavir concentration (conc.) per unit change in a patient characteristic  
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Figure 2.5. Influence of (A) CYP3A4*22, (B) CYP3A5*3, (C) NR1I2 63396C>T, (D) 

NR1I3 540G>A, (E) SLCO3A1 G>A, (F) SLCO3A1 G>T SNPs on darunavir C0-24 

concentrations at week 4. Solid lines represent mean darunavir plasma concentrations.   

Univariate regressions found no significant associations (p < 0.15) between the SNPs 

and darunavir C0-24 concentrations.
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Figure 2.6. Influence of trial randomisation on C0-24 darunavir concentrations at week 

4. Solid lines represent mean darunavir plasma concentrations. Multivariate 

regression showed lower darunavir C0-24 concentrations in patients receiving DRV/r 

+ RAL (p = 0.008, β = 0.09).  

 

 

 

Figure 2.7. Influence of SLCO1B1 521T>C on darunavir C0-24 concentrations at week 

4. Solid lines represent mean darunavir plasma concentrations. Multivariate 

regression showed higher darunavir C0-24 concentrations in patients with SLCO1B1 

521T>C allele. (p = 0.038, β = 0.075). 
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Figure 2.8. Influence of trial randomisation on darunavir plasma concentrations taken 

between 20-30-hour post-dose. Unpaired t-test showed no significant difference in 

the darunavir concentrations in the two groups. (p = 0.239). 

 

At week 24, univariate analysis confirmed significant associations between darunavir 

plasma concentrations and time of post-dose blood sample collection (p < 0.0001), 

ritonavir concentration (p < 0.0001), trial randomisation (p < 0.0001) and CYP3A5*3 

(p = 0.053). CYP3A4*22 (p = 0.985), NR1I2 63396C>T (p = 0.56), NR1I3 540G>A 

(p = 0.815), SLCO1B1 521T>C (p = 0.401), SLCO3A1 G>A (p = 0.721) and 

SLCO3A1 G>T (p = 0.634) did not affect the darunavir plasma concentrations 

(Figure 2.9). However, on performing multivariate regression, CYP3A5*3 (p = 

0.126) was no longer significantly associated with darunavir plasma concentrations 

(Figure 2.10).  Whereas, post-dose blood sample collection (p < 0.0001), ritonavir 

concentration (p < 0.0001) and trial randomisation arm (p < 0.0001) were strongly 

associated with darunavir plasma concentrations. Trial randomisation had a β value 

of 0.14 indicating darunavir plasma concentrations were significantly lower in 

patients receiving darunavir/r + raltegravir (Figure 2.11).  

RAL

TDF/FTC
2

4

6

8

10

L
og

 d
ar

un
av

ir
 c

on
ce

nt
ra

tio
n 

(n
g/

m
L

)  



 55 

 

 

Figure 2.9. Influence of (A) CYP3A4*22, (B) NR1I2 63396C>T, (C) NR1I3 540G>A, 

(D) SLCO1B1 521T>C (E) SLCO3A1 G>A, (F) SLCO3A1 G>T on darunavir C0-24 

concentrations at week 24. Solid lines represent mean darunavir plasma 

concentrations.   Univariate regressions found no significant associations (p < 0.15) 

between the SNPs and darunavir C0-24 concentrations.
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Figure 2.10. Influence of CYP3A5*3 on darunavir C0-24 concentrations at week 24. 

Solid lines represent mean darunavir plasma concentrations. Multivariate regression 

found no associations (p = 0.126) between CYP3A5*3 and darunavir C0-24 

concentrations 

 

 

Figure 2.11. Influence of trial randomisation on darunavir C0-24 concentrations at 

week 24. Solid lines represent mean darunavir plasma concentrations. Multivariate 

regression showed lower darunavir C0-24 in patients receiving DRV/r + RAL (p < 

0.0001, β = 0.14) 
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2.3.3 Influence of SNPs on Ritonavir Plasma Concentrations 

According to the Kolmogorov-Smirnov test, the plasma concentrations of ritonavir 

was not normally distributed. Hence, log concentrations of ritonavir were used for 

analysis.  

At week 4, a univariate regression showed height (p = 0.006), time of post-dose blood 

collection (p < 0.0001), trial randomisation (p = 0.088) and SLCO3A1 G>A (p = 

0.077) had a significant effect (p < 0.15) on the ritonavir plasma concentrations 

(Table 2.5). CYP3A4*22 (p = 0.458), CYP3A5*3 (p = 0.566), NR1I2 63396C>T (p = 

0.665), NR1I3 540G>A (p = 0.815), SLCO1B1 521T>C (p = 0.803) and SLCO3A1 

G>T (p = 0.299) did not significantly influence ritonavir plasma concentrations 

(Figure 2.12).  On performing multivariate regression, the influence of height (p = 

0.003), time of post-dose blood collection (p < 0.0001) and SLCO3A1 G>A (p = 

0.044) on ritonavir plasma concentrations remained significant. SLCO3A1 G>A had 

a β value of 0.139, indicating higher concentrations of ritonavir in patients carrying 

the SLCO3A1 G>A allele (Figure 2.13). 
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Table 2.5. Association of patient characteristics and SNPs in CYP3A4, CYP3A5, NR1I2, NR1I3, SLCO1B1 and SLCO3A1 with log plasma ritonavir 

concentrations in patients enrolled in NEAT001/ANRS143. Variables that were significant after univariate analysis (P < 0.15) were considered for 

multivariate regression analysis. 

Patient Characteristics Week 4 Week 24 

  
Univariate linear 

regression 
Multivariate linear 

regression 
Univariate linear 

regression 
Multivariate linear 

regression 
  β P value β P value β P value β P value 
          

Age  -0.049 0.22 - - -0.047 0.248 - - 
Sex  0.019 0.682 - - 0.016 0.723 - - 
Weight at randomisation 0.207 0.399 - - 0.301 0.018 -0.001 0.975 
Weight at blood collection -0.178 0.47 - - -0.247 0.052 -0.029 0.452 
Height  -0.143 0.006 -0.112 0.003 -0.116 0.023 -0.008 0.076 
Time of post-dose blood collection -0.459 <0.0001 -0.453 <0.0001 -0.497 <0.0001 -0.492 <0.0001 
Trial Randomisation  
(RAL Vs TDF/FTC) 0.066 0.088 0.066 0.081 0.124 0.001 0.13 <0.0001 
CYP3A4*22 (rs35599367) -0.029 0.458 - - -0.024 0.528 - - 
CYP3A5*3 (rs776746) -0.023 0.566 - - 0.012 0.757 - - 
NR1I2 63396C>T (rs2472677) -0.017 0.665 - - 0.061 0.111 0.071 0.062 
NR1I3 540G>A (rs2307424) -0.027 0.472 - - 0.011 0.765 - - 
SLCO1B1 521T>C (rs4149056) 0.01 0.803 - - 0.081 0.039 0.072 0.058 
SLCO3A1 G>A (rs4294800) 0.069 0.077 0.139 0.044 -0.02 0.608 - - 
SLCO3A1 G>T (rs8027174) -0.041 0.299  -  - -0.013 0.736  -  - 
β is the regression coefficient and represents incremental change in log plasma ritonavir concentration (conc.) per unit change in a patient 
characteristics
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Figure 2.12. Influence of (A) CYP3A4*22, (B) CYP3A5*3, (C) NR1I2 63396C>T, 

(D) NR1I3 540G>A, (E) SLCO1B1 521T>C, (F) SLCO3A1 G>T on ritonavir C0-24 

concentrations at week 4. Solid lines represent mean ritonavir plasma concentrations. 

Univariate regression found no significant associations (p < 0.15) between the SNPs 

and ritonavir C0-24 concentration.
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Figure 2.13. Influence of SLCO3A1 G>A on C0-24 ritonavir concentrations at week 

4. Solid lines represent mean ritonavir plasma concentrations. Multivariate regression 

showed higher ritonavir C0-24 in patients with SLCO3A1 G>A. (p = 0.044, β = 0.139).  

 

On performing a univariate regression at week 24, weight at randomisation (p = 

0.018), weight at the time of blood collection (p = 0.052), height (p = 0.023), time of 

post-dose blood collection (p < 0.0001), trial randomisation (p = 0.001), NR1I2 

63396C>T (p = 0.111) and SLCO1B1 521T>C (p = 0.039) were associated with 

ritonavir plasma concentrations. CYP3A4*22 (p = 0.528), CYP3A5*3 (p = 0.757), 

NR1I3 540G>A (p = 0.765), SLCO3A1 G>A (p = 0.608) and SLCO3A1 G>T (p = 

0.736) did not influence ritonavir plasma concentrations (Figure 2.14).  On 

performing a multivariate regression, time of post-dose blood sample collection (p < 

0.0001) and trial randomisation (p < 0.0001) were the only covariates to be 

significantly associated with ritonavir concentrations. NR1I2 63396C>T (p = 0.062, 

Figure 2.15 (A)) and SLCO1B1 521T>C (p = 0.058, Figure 2.15 (B)) were not 

associated with ritonavir plasma concentrations. The β value of 0.13 indicates a 

significant lower ritonavir concentration in patients receiving darunavir/r + raltegravir 

(Figure 2.16).  
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Figure 2.14. Influence of C0-24 (A) CYP3A4*22, (B) CYP3A5*3, (C) NR1I3 540G>A, 

(D) SLCO3A1 G>A and (E) SLCO3A1 G>T on ritonavir C0-24 concentrations at week 

24. Solid lines represent mean ritonavir plasma concentrations. Univariate regression 

found no significant associations between the SNPs and ritonavir C0-24 concentrations
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Figure 2.15. Influence of (A) NR1I2 63396C>T and (B) SLCO1B1 521T>C on C0-24 

ritonavir concentrations at week 24. Solid lines represent mean ritonavir plasma 

concentrations. Multivariate regression did not show any significant associations 

between NR1I2 63396C>T (p = 0.062) and SLCO1B1 521T>C (p = 0.058) with C0-24 

ritonavir concentrations. 

 

 

 

Figure 2.16. Influence of trial randomisation on C0-24 ritonavir concentrations at week 

24. Solid lines represent mean ritonavir plasma concentrations. Multivariate 

regression showed lower ritonavir C0-24 in patients receiving DRV/r + RAL (p < 

0.0001, β = 0.13). 
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2.4 Discussion   

All genotypes were in Hardy-Weinberg equilibrium except for SLCO3A1 G>T 

(rs8027174) at week 4 and CYP3A5*3 (rs776746) at week 4 and 24 for the analysis 

of darunavir and ritonavir. This indicates missingness of genotypes due to chance, 

genotyping assay errors or clinical biases. The frequency of polymorphisms for the 

two genotypes were not representative of the general population. Hence, the results 

from these genotypes should be interpreted with caution. 

This study is the first to investigate the effects of clinically relevant SNPs on darunavir 

PK in a large population. The plasma concentration of darunavir at week 4 (Figure. 

2.6) and week 24 (Figure 2.11), and the ritonavir plasma concentration at week 24 

(Figure 2.16) was significantly lower in patients receiving darunavir/r + raltegravir 

compared to those receiving darunavir/r + TDF/emtricitabine. This is suggestive of a 

DDI due to co-administration of either raltegravir or TDF or both. Hoetelmans et al. 

demonstrated that although clinically insignificant, there was an increase in the Cmax, 

AUC and Cmin of darunavir by 16%, 21% and 24% in the presence of TDF.200 

The PK of darunavir and raltegravir in terms of known induction/inhibition of 

metabolic enzymes and transporters are exclusive to each other, so a DDI is not 

expected. However, a considerable number of studies have demonstrated a fall in 

darunavir concentrations in the presence of raltegravir.201 Cattaneo et al. have shown 

a 40% reduction in Cmax and a 60% increase in clearance of darunavir.202 Additionally, 

raltegravir has also been shown to decrease the AUC and Cmin of other PIs such as 

atazanavir.203 The  results from the NEAT001/ANRS143 study showed a higher 

percentage of treatment failures in patients receiving raltegravir compared to those 

receiving TDF/emtricitabine, which was correlated to below detectable levels of 
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darunavir.110 Moreover, a significantly large number of viral mutations were seen in 

patients receiving raltegravir compared to no mutations in patients receiving 

TDF/emtrivitabine.204  

DDIs causing a change in ritonavir concentration can impact the PI it boosts. For 

example, increased clearance of ritonavir could lead to loss of pharmaco-

enhancement of PIs resulting in higher rates of metabolism and elimination.205 Since 

ritonavir is a PI and has pharmacokinetic properties similar to darunavir and 

atazanavir, it is possible that low ritonavir concentrations in patients receiving 

raltegravir are a result of the same DDIs seen with other PIs. These findings may 

warrant re-examination of the pharmacokinetic profile of all PIs as well as raltegravir. 

CYP3A4*22 (522-191 C>T; rs35599367) is associated with low expression and 

activity of CYP3A4.206 It was found to be responsible for a 31.7 – 33.6 % reduction 

in midazolam apparent clearance when compared to CYP3A4*1.207 Similarly, a 2.3-

fold higher lopinavir trough concentration was seen in patients homozygous for 

CYP3A4*22 compared to non-carriers.208 The study was conducted in 375 patients 

and the analysis was done using a population pharmacokinetic approach. Our 

findings, using multivariate regression, indicate that CYP3A4*22 did not have a 

significant effect on darunavir and ritonavir plasma levels.  

The CYP3A5*3 (6986 A>G; rs776746) allele is associated with loss of function of 

CYP3A5 and has been shown to cause a 79% decrease in maraviroc metabolite 

formation compared to wild type CYP3A5*1.209 Similarly, CYP3A5*3 was associated 

with increased tacrolimus concentration in the Chinese population.210 Our study did 

not establish any significance between CYP3A5*3 and darunavir and ritonavir plasma 

concentrations.  
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The SLCO1B1 521T>C (rs4149056) SNP is found in high frequency in Caucasians 

and was demonstrated to be associated with higher lopinavir concentrations in 

patients treated for HIV.194 Similarly, in our study, patients carrying the SLCO1B1 

521T>C had significantly higher (p = 0.038, β = 0.075) concentration of darunavir 

(Figure. 2.7). However, this effect was not observed at week 24. The steady-state of 

darunavir is reached within three days211 and would not be responsible for PK 

differences at week 4 and 24. Alterations in the activity and expression of enzymes, 

transporters and plasma proteins of HIV-infected individuals has been previously 

reported.212,213 With the fall in viral load and rebuilding of immunity due to ART, 

these parameters responsible for pharmacokinetics are restored. This could explain 

the disparity in the influence of SLCO1B1 521T>C on darunavir plasma levels at 

week 4 and week 24. Further investigations are required to investigate this for better 

understanding of the role of SNPs at various stages of HIV treatment. 

The NR1I2 (PXR) 63396C>T (rs2472677) allele increases NRI12 expression and is 

associated with a suboptimal atazanavir Ctrough and 17.2% increase in atazanavir 

clearance. This study was conducted using 323 samples form 182 randomly selected 

patients. The analysis was done using population pharmacokinetic method.169  

Similarly, SNPs in NR1I3 have been associated with significant alteration in drug 

concentrations. For example, it was seen that NR1I3 (CAR) 540G>A (rs2307424) was 

associated with low efavirenz plasma concentrations214 and in some cases treatment 

discontinuation.170 The effects of these polymorphisms, however, were not seen in 

our analysis.  

To our knowledge, the transport of darunavir via OATP3A1 has not been 

demonstrated by in vitro experimentation. A recent Physiologically based 

pharmacokinetic (PBPK) model that investigated darunavir PK in pregnant women 
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has suggested involvement of hepatic transporters in the disposition of darunavir. 

Molto et al. using a pop-PK-model, showed a significant effect of SLCO3A1 G > A 

(rs4294800) and SLCO3A1 G > T (rs8027174) polymorphisms, that code for 

OATP3A1, on darunavir clearance and apparent volume of distribution.190 In our 

study, SLCO3A1 G > A (rs4294800) was associated with higher ritonavir plasma 

concentrations at week 4 (Figure 2.13). These findings necessitate an investigation 

of the role of OATP3A1 in darunavir PK. 

The plasma concentrations of darunavir and ritonavir are inversely proportional to the 

time elapsed since previous dose when blood was collected for measurement of drug 

plasma concentration. Hence, time of post-dose collection was significant for all the 

drug plasma concentrations. Darunavir is boosted by ritonavir and the boosting is 

directly proportional to the ritonavir concentrations. Moreover, as time elapses, the 

plasma concentrations of ritonavir and darunavir reduce. Therefore, ritonavir 

concentrations were significant for darunavir plasma concentrations.  

A limitation of this study is that a multivariate linear regression is not the ideal 

statistical method to analyse drug concentrations which have variable post-dose 

collection times. A nonlinear mixed effect modelling (NONMEM) estimation would 

be more appropriate for analysing the effects of the tested polymorphisms on 

pharmacokinetic parameters such as clearance, AUC, Cmax and Ctrough. These efforts 

are currently under way with the collaboration of clinicians, statisticians and 

pharmacologists involved in the trial. These results should be interpreted with 

precautions since the influence of polymorphisms and trial randomisation was 

significant on plasma concentrations and may not have biological implications. 

Additional investigations are needed to assess the influence of genetic polymorphisms 

on the pharmacodynamic properties of the tested drugs.  
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Our study was the largest, multi-centric study till date to assess the influence of 

genetic polymorphisms on the drugs administered in the study. Any polymorphism 

that showed a statistically significant influence, irrespective of the sample size and 

reproducibility of the results. Moreover, our study assessed the influence on plasma 

concentrations taken at a single time point at week 4 and 24. These differences in the 

number of clinical sites, sample size and methods for measuring drug plasma 

concentrations may be responsible for the discrepancies in the results observed in 

literature and our results. More studies with robust methodologies such as therapeutic 

drug monitoring and next generation sequencing are needed to establish the influence 

of the polymorphisms on the drug plasma concentration.  

In conclusion, a significant reduction in the darunavir and ritonavir concentrations 

was seen when administered with raltegravir. Moreover, it is likely that darunavir is 

a substrate of OATP3A1. A re-investigation of pharmacokinetic properties of 

darunavir, ritonavir, TDF and raltegravir to explain the DDIs is needed. Although 

some of the tested polymorphisms were found to have a significant impact at week 4, 

the influence was not seen at week 24. The clinical significance of the tested 

polymorphisms therefore should be interpreted with caution.
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Chapter 3 

 

Pharmacogenetics of Tenofovir, 

Emtricitabine and Raltegravir in 

HIV-infected Adults: a sub-study 

of NEAT001/ANRS143 
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3.1 Introduction 

In the early years of ART, zidovudine and lamivudine were administered by 

monotherapy to combat HIV.215,216 It was soon discovered that a combination of two 

NRTIs were better at inhibiting HIV replication, increasing CD4 cell counts and 

reducing AIDS-related illnesses.52,51 Multiple trials demonstrated safety and efficacy 

of zidovudine combined with lamivudine, after which this combination was 

considered the backbone for ART for many years.217 However, this combination was 

subsequently replaced by a new backbone comprising of TDF and emtricitabine. 

TDF/emtricitabine as a backbone shows superior viral load suppression and is better 

tolerated than zidovudine/lamivudine.218,219 In 2004, the FDA approved the 

combination of these two drugs as a fixed-dose combination (TruvadaÒ) for once 

daily dosing.220 Recently, TruvadaÒ was also approved by the FDA for the use of 

PrEP.221  

Many NRTIs exhibit issues with safety resulting in low tolerability and treatment 

discontinuation. To obviate these complications, NRTI-sparing regimens are being 

explored for the treatment of HIV.188,189 A Phase III, randomized, open labelled trial 

called NEAT 001 / ANRS 143, was conducted to analyse the efficacy of a novel 

NRTI-sparing dual combination of darunavir/r and raltegravir against a standard-of-

care triple therapy of darunavir/r and TDF/emtricitabine in HIV-infected 

antiretroviral naïve subjects.110 In this chapter, the data collected from patients in this 

trial were used to explore the pharmacokinetic properties of tenofovir, emtricitabine 

and raltegravir. 

TDF, an ester prodrug of NRTI tenofovir, was synthesized to overcome the low 

absorption and bioavailability of tenofovir.222 TDF is hydrolysed to tenofovir 
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intracellularly and phosphorylated to its active metabolite tenofovir diphosphate.223 

There is no involvement of CYP enzymes in the metabolism of tenofovir, hence there 

are no expected DDIs with drugs whose metabolism is CYP-mediated.224 Tenofovir 

is excreted unchanged by the kidneys and this gives rise to renal tubular toxicity and 

renal impairement.225 The exact mechanism of toxicity is unknown. Hall et al. have 

suggested a mitochondrial toxicity exhibited by tenofovir directly, interference with 

tubular function or both could be the reasons for the observed toxicity.226 Tenofovir 

is transported in the proximal tubules by the ABCC4 (MRP4),227 ABCC11 

(MRP8),228 ABCC10 (MRP7),229 OAT1 and OAT3.230 Additionally, polymorphisms 

found in ABCC10 were shown to influence the PK of tenofovir.231 DDIs between 

tenofovir and other ARVs such as ritonavir,232 lopinavir,233 nevirapine and 

efavirenz234 have been reported. These interactions are also shown to happen at the 

intra-cellular level involving influx transporter on the CD4+ cells. For example, 

Liptrott et al. demonstrated a 39% and 73% reduction in intra-cellular nevirapine in 

the presence of tenofovir in CD4+ cells and monocyte-derived macrophages. 

Similarly, nevirapine caused a 57% decrease in tenofovir accumulation.123  

Emtricitabine is a fluorinated derivative of lamivudine and gets incorporated into 

HIV-1 DNA, resulting in chain termination.235 Like tenofovir, there is no involvement 

of CYP enzymes in the metabolism of emtricitabine and it is excreted mostly 

unchanged.236 Emtricitabine is a substrate of the MATE1 transporter by which it is 

excreted with no involvement of other transporters such as OCT1, OCT2, MRP2 that 

are found in renal tubules.237 Toxicities and DDIs with emtricitabine are rare.238,134   

Raltegravir is an integrase inhibitor that inhibits the insertion of HIV-1 

complementary DNA into the host genome. Due to the difference in the mechanism 

of action of raltegravir, it shows good efficacy against multidrug-resistant HIV.239 It 
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is metabolized by the UGT1A1 by glucuronidation with no involvement of CYP 

enzymes.240 Raltegravir is a substrate of OAT1,241 but evidence of involvement of P-

gp and BCRP in its transport is inconsistent.242  

The efficacy of these drugs is to variable degrees dependent on the metabolic enzymes 

and transporters and a change in their structure or function may affect the metabolism 

and distribution of the drugs.191 Polymorphisms in the genes coding for the enzymes 

and transporters can lead to adverse events or suboptimal efficacy, both resulting in 

treatment failure.197 Hence, a thorough investigation of effects of SNPs in the genes 

is necessary. 

In this study, the effects of SNPs found in ABCC2, ABCC10, SLC47A1, SLC22A6 and 

UGT1A1, that are been shown to have a clinically significant impact in other areas, 

on the plasma concentrations of tenofovir, emtricitabine and raltegravir were 

assessed. 
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3.2 Methods 

3.2.1 Study Design and Samples Collection 

The study design and the sample collection for the NEAT001/ANRS143 has been 

described in detail in Chapter 2, Section 2.2.1. 

 

3.2.2 DNA Extraction and Genotyping  

DNA extraction and genotyping were carried out using methods that have been 

described in Chapter 2, Section 2.2.2. The TaqMan® Genotyping assays used for 

analysis of SNPs are enumerated in Table 3.1 

UGT1A1 polymorphisms were genotyped using the Sequenom MassARRAY 

platform and iPLEX Pro UGT1A1-TA assays (Sequenom Laboratories, San Diego, 

CA, USA) according to manufacturer practices. Similar to previous methods, 20 ng 

of genomic DNA was amplified by PCR and then treated with shrimp alkaline 

phosphatase to inactivate unincorporated nucleotides. Using iPLEX Gold Reaction 

Cocktail, single base extension reaction was performed followed by spotting onto 

SpectroCHIP II.243 Data were analysed by MassARRAY TYPER software (v. 4.0.20, 

Sequenom Laboratories). 
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Table 3.1 TaqMan® Assays 

Gene and SNP Reference SNP ID Product ID 

ABCC2 24C>T rs717620 C__2814642_10 

ABCC2 1249 G>A rs2273697 C__22272980_20 

ABCC10 526G>A rs9349256 C__1701942_10 

ABCC10 2843 T>C rs2125739 C__16173668_10 

SLC47A1 G>A rs2289669 C__15882280_10 

SLC22A6 453 G>A rs4149170 Custom Designed 

SLC22A6 728 C>T rs11568626 C__2558602_40 

 

3.2.3 Pharmacokinetic Analysis 

Plasma drug concentrations were quantified at the Laboratory of Clinical 

Pharmacology and Pharmacogenetics, University of Turin (Turin, Italy) by fully 

validated HPLC-MS/MS methods. Lower limits of quantification (LLQ) were 5.6 

µg/mL for tenofovir and 1.17 µg/mL for emtricitabine and raltegravir.  

 

3.2.4 Statistical Analysis 

Hardy-Weinberg compliance was tested using methods described by Rodriguez et 

al.199 Normality of the plasma concentrations of tenofovir, emtricitabine and 

raltegravir was tested using Kolmogorov-Smirnov test. Significance of SNPs for 

tenofovir, emtricitabine and raltegravir PK were performed separately for week 4 and 

week 24 sample collection. A univariate analysis was performed to identify the 

variables associated with tenofovir, emtricitabine and raltegravir plasma 

concentrations. The variables that had an association (P value < 0.15) were included 

in the multivariate stepwise regression. A P value of < 0.05 was considered 
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statistically significant for the multivariate analysis. Due to changes in drug 

concentrations with time, time post-dose was included in the multivariate analysis a 

priori. All statistical analysis was conducted using IBM SPSS Statistics v. 22.0.  
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3.3 Results 

3.3.1 Patient Characteristics and Genotyping 

Data were collected from 674 patients, of which 332 were randomised to the 

raltegravir arm and 342 were randomised to the TDF / emtricitabine arm of the study. 

Samples were excluded from tenofovir, emtricitabine and raltegravir analysis due to 

missing data for demographics, recorded time post-dose, genotype or drug plasma 

concentrations. Those with post-dose > 30 hours and drug concentrations below LLQ 

were also omitted from the analysis. All groups used for analysis had a greater 

proportion of males to females. Patient demographics and clinical characteristics have 

been described in Table 3.2. The allele frequencies for the tested SNPs are described 

in Table 3.3. All genotypes were in Hardy-Weinberg equilibrium except for SLC22A6 

728 C>T (rs11568626) at week 4 and 24 for the analysis of raltegravir. 
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Table 3.2 Clinical characteristics and demographics of patients included in the pharmacogenetic analysis of NEAT001/ANRS143 

pharmacokinetic sub study stratified by study drug and week of sample collection (data expressed in median (range) unless stated otherwise 

 

 

Parameter Tenofovir Emtricitabine Raltegravir 

 

 
Week 4 Week 24 Week 4 Week 24 Week 4 Week 24 

       
Included for analysis (n) 230 254 267  245 217 

       
Age (years) 39 (18-76) 39 (18-76) 39 (18-76) 38 (18-76) 36 (19-70) 36 (19-70) 

       
Sex [n (%)]       
Male 203 (88.3) 225 (88.6) 233 (87.3) 239 (87.5) 217 (88.6) 191 (88) 
Female 27 (11.7) 28 (11) 33 (12.4) 33 (12.1) 28 (11.4) 26 (12) 
Transgender 0 0 1 (4) 1 (4) 0 0 

       
Weight at randomisation 
(kg) 72 (44.3 - 124.5) 72 (44.3 - 124.5) 72 (44.3 - 124.5) 73 (44.3 - 124.5) 71.3 (41-135) 72 (41-135) 

       
Height (cm) 175.5 (154 - 202) 176 (154 - 199) 176 (154-202) 176 (154-202) 176 (153-204) 176 (153-204) 
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Table 3.3. Allele frequencies for SNPs investigated for pharmacogenetic analysis; n 

(%) 

         

 
Week 4 Week 24 

Tenofovir     

 

Number of patients 230 254 

ABCC2 24C>T (rs717620) 
  

CC 162 (70.4) 175 (68.9) 

CT 60 (26.1) 70 (27.6) 

TT 8 (3.5) 9 (3.5) 

ABCC2 1249 G>A (rs2273697) 
  

GG 145 (63) 152 (59.8) 

GA 75 (32.6) 89 (35) 

AA 10 (4.3) 13 (5.1) 

ABCC10 526G>A (rs9349256) 
  

GG 84 (36.5) 90 (35.4) 

GA 102 (44.3) 122 (48) 

AA 44 (19.1) 42 (16.5) 

ABCC10 2843 T>C (rs2125739) 
  

TT 131 (57) 143 (56.3) 

TC 87 (37.8) 96 (37.8) 

CC 12 (5.2) 15 (5.9) 

 

 

Emtricitabine     

 

Number of patients 267 273 

SLC47A1 G>A (rs2289669) 
  

GG 93 (34.8) 86 (31.5) 

AG 137 (51.3) 147 (53.8) 

AA 37 (13.9) 40 (14.7) 
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Raltegravir     

 

Number of patients 245 217 

SLC22A6 453 G>A (rs4149170) 
  

GG 180 (73.5) 156 (71.9) 

AG 57 (23.3) 54 (24.9) 

AA 8 (3.3) 7 (3.2) 

SLC22A6 728 C>T (rs11568626) 
  

CC 239 (97.6) 211 (97.2) 

CT 5 (2) 5 (2.3) 

TT 1 (0.4) 1 (0.5) 

UGT1A1*28 (rs8175347) 
  

*1/*1, *1/*36 (moderate enzyme activity) 102 (41.6) 89 (41) 

*1/*28, *28/*26, *26/*27 (reduced enzyme activity) 106 (43.3) 95 (43.8) 

*28/*28 (low enzyme activity) 37 (15.1) 33 (15.2) 
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3.3.2 Influence of SNPs on Tenofovir Plasma Concentrations 

According to the Kolmogorov-Smirnov test, the plasma concentrations of tenofovir 

were not equally distributed. Hence, log concentrations of tenofovir were used for 

analysis.  

At week 4 (Table 3.4), a univariate analysis showed time of post-dose blood 

collection (p < 0.0001), ABCC2 1249G>A (p = 0.042), ABCC10 526G>A (p = 0.005) 

and ABCC10 2843T>C (p = 0.042) to be statistically significant. ABCC2 24C>T did 

not influence (p = 0.201) tenofovir concentrations (Figure 3.1). However, on 

performing multivariate linear regression, ABCC2 1249G>A (p = 0.272), ABCC10 

526G>A (p = 0.067) and ABCC10 2843T>C (p = 0.236) did not show an influence 

on tenofovir plasma concentrations (Figure 3.2).  

 

 

Figure 3.1. Influence of ABCC2 24C>T on C0-24 tenofovir concentrations at week 4 

for ABCC10 2843T>C. Solid lines represent mean tenofovir plasma concentrations. 

Univariate analysis showed no significant associations between ABCC2 24C>T and 

C0-24 tenofovir concentrations. 
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Figure 3.2. Influence of (A) ABCC2 1249G>A, (B) ABCC10 526G>A, (C) ABCC10 

2843T>C on C0-24 tenofovir concentrations at week 4. Solid lines represent mean 

tenofovir plasma concentrations. Multivariate analysis showed no significant 

associations between ABCC2 1249G>A, ABCC10 526G>A, and ABCC10 2843T>C 

and C0-24 tenofovir concentrations. 
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Table 3.4. Association of patient characteristics and SNPs in ABCC2 and ABCC10 with log plasma tenofovir concentrations in patients enrolled 

in NEAT001/ANRS143. Variables that were significant after univariate analysis (P < 0.15) were considered for multivariate regression analysis. 

Patient Characteristics Week 4 Week 24 

 

Univariate linear 
regression 

Multivariate linear 
regression 

Univariate linear 
regression 

Multivariate linear 
regression 

         

 
β P value β P value β P value β P value 

         
Age 0.091 0.175 - - 0.072 0.246 - - 

Sex -0.032 0.666 - - 0.033 0.63 - - 

Weight at randomisation 0.237 0.573 - - 0.058 0.776 - - 

Weight at blood collection -0.272 0.521 - - -0.106 0.601 - - 

Height -0.088 0.313 - - -0.064 0.421 - - 

Time of post-dose blood collection -0.355 < 0.0001 -0.025 < 0.0001 -0.425 < 0.0001 -0.419 < 0.0001 

ABCC2 24C>T (rs717620) -0.083 0.201 - - 0.046 0.442 - - 

ABCC2 1249G>A (rs2273697) -0.133 0.042 -0.069 0.272 -0.014 0.821 - - 

ABCC10 526G>A (rs9349256) 0.199 0.005 0.116 0.067 0.062 0.342 - - 

ABCC10 2843 T>C (rs2125739) 0.139 0.042 0.074 0.246 0.044 0.482 - - 
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At week 24, time of post-dose blood collection was the only variable that had a 

significant effect on the plasma concentrations of tenofovir (Table 3.4).  The tested 

SNPs, ABCC2 24C>T (p = 0.442), ABCC2 1249G>A (p = 0.821), ABCC10 526G>A 

(p = 0.342) and ABCC10 2843T>C (p = 0.482), did not influence tenofovir 

concentrations (Figure 3.3). 

 

 

 

 

Figure 3.3. Influence of (A) ABCC2 24C>T, (B) ABCC2 1249G>A, (C) ABCC10 

526G>A and (D) ABCC10 2843T>C on C0-24 tenofovir concentrations at week 24. 

Solid lines represent mean tenofovir plasma concentrations. Univariate analysis 

showed no significant associations between SNPs and C0-24 tenofovir concentrations. 
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3.3.3 Influence of SNPs on Emtricitabine Plasma Concentrations 

The Kolmogorov-Smirnov test showed that he emtricitabine concentrations were not 

normally distributed. Hence, log concentrations of emtricitabine was used for 

analysis. 

At week 4, a univariate linear regression showed that the tested variable SLC47A1 

G>A (Figure 3.4) did not have any significant effect (p = 0.502) on emtricitabine 

concentrations (Tabl3 3.5).  

 

 

 

Figure 3.4. Influence of SLC47A1 G>A on C0-24 emtricitabine concentrations at week 

4. Solid lines represent mean emtricitabine plasma concentrations. Univariate 

analysis did not show significant associations between SLC47A1 G>A and C0-24 

emtricitabine concentrations. 
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A univariate linear regression at week 24 showed that weight at the time of blood 

collection (p = 0.053), time of post-dose blood collection (p < 0.0001) and SLC47A1 

G>A (Figure 3.5) were significantly associated with emtricitabine plasma 

concentrations. However, a multivariate linear regression did not confirm any 

significance (Table 3.5).  

 

 

 

 

Figure 3.5. Influence of SLC47A1 G>A on C0-24 emtricitabine concentrations at week 

24. Solid lines represent mean emtricitabine plasma concentrations. Multivariate 

analysis did not show significant associations between SLC47A1 G>A and C0-24 

emtricitabine concentrations (p = 0.07).
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Table 3.5. Association of patient characteristics and SNPs in SLC47A1 G>A with log plasma emtricitabine concentrations in patients enrolled in 

NEAT001/ANRS143. Variables that were significant after univariate analysis (P < 0.15) were considered for multivariate regression analysis. 

Patient Characteristics Week 4 Week 24 

 

 
Univariate linear 

regression 
Multivariate linear 

regression 
Univariate linear 

regression 
Multivariate linear 

regression 

         

 
β P value β P value β P value β P value 

         
Age 0.044 0.344 - - 0.086 0.075 0.054 0.24 

Sex -0.043 0.429 - - 0.023 0.67 - - 

Weight at randomisation 0.013 0.965 - - 0.195 0.21 - - 

Weight at blood collection -0.082 0.784 - - 0.195 0.053 -0.066 0.152 

Height 0.039 0.526 - - 0.058 0.361 - - 

Time of post-dose blood 

collection -0.608 < 0.0001 -0.691 < 0.0001 -0.664 < 0.0001 0.658 < 0.0001 

SLC47A1 G>A (rs2289669) -0.031 0.502 - - -0.091 0.049 -0.083 0.07 
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3.3.4 Influence of SNPs on Raltegravir Plasma Concentrations 

According to the Kolmogorov-Smirnov test, the plasma concentrations of raltegravir 

was not equally distributed. Hence, log concentrations of raltegravir was used for 

analysis. 

At week 4 (Table 3.6), a univariate linear regression found baseline weight (p = 

0.021), weight at the time of blood sample collection (p = 0.006) and time of post-

dose blood sample collection (p < 0.0001) to be significant. The tested 

polymorphisms SLC22A6 453G>A (p = 0.139), SLC22A6 728C>T (p = 0.24) and 

UGT1A1*28 (p = 0.301) had no significant effect on raltegravir plasma 

concentrations (Figure 3.6). Multivariate regression confirmed the effect of baseline 

weight (p = 0.027), weight at the time of blood sample collection (p = 0.008) and time 

of post-dose blood sample collection (p < 0.0001) to have a statistically significant 

effect on the plasma concentrations of raltegravir.  
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Table 3.6. Association of patient characteristics and SNPs in SLC22A6 and UGT1A1 with log plasma raltegravir concentrations in patients enrolled 

in NEAT001/ANRS143. Variables that were significant after univariate analysis (P < 0.15) were considered for multivariate regression analysis. 

Patient Characteristics Week 4 Week 24 

 

Univariate linear 
regression 

Multivariate linear 
regression 

Univariate linear 
regression 

Multivariate linear 
regression 

         

 
β P value β P value β P value β P value 

         
Age -0.056 0.365 - - -0.022 0.726 - - 

Sex -0.049 0.498 - - -0.093 0.926 - - 

Weight at randomisation 0.853 0.021 0.812 0.027 0.241 0.183 - - 

Weight at blood collection -1.01 0.006 -0.985 0.008 -0.318 0.08 -0.073 0.217 

Height 0.011 0.889 - - 0.046 0.57 - - 

Time of post-dose blood 

collection -0.385 < 0.0001 -0.367 < 0.0001 -0.531 < 0.0001 -0.506 < 0.0001 

SLC22A6 453G>A (rs4149170) -0.096 0.139 - - 0.036 0.581 - - 

SLC22A6 728C>T (rs11568626) -0.075 0.24 - - -0.006 0.929 - - 

UGT1A1*28 (rs8175347) 0.062 0.301 - - 0.124 0.038 0.115 0.05 
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Figure 3.6. Influence of (A) SLC22A6 453G>A, (B) SLC22A6 728C>T, (C) 

UGT1A1*28 on C0-24 raltegravir concentrations at week 4. Solid lines represent mean 

raltegravir plasma concentrations. Univariate analysis did not show significant 

associations between the SNPs and C0-24 raltegravir concentrations. 
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At week 24, weight at the time of blood sample collection (p = 0.08), time of post-

dose blood sample collection (p < 0.0001) and UGT1A1*28 (p = 0.038) were 

significant by a univariate linear regression. SLC22A6 453G>A (p = 0.0.581) and 

SLC22A6 728C>T (p = 0.929) did not influence raltegravir plasma concentrations 

(Figure 3.7). On performing a multivariate regression, time of post-dose blood 

sample collection (p < 0.0001) was the only variable to have a statistically significant 

effect on raltegravir plasma concentration. Although not significant, a P value of 0.05 

and β of 0.115 shows a trend of higher raltegravir plasma concentrations in patient in 

with UGT1A1*28 (Figure 3.8).  

 

 

 

 

Figure 3.7. Influence of (A) SLC22A6 453G>A, (B) SLC22A6 728C>T on C0-24 

raltegravir concentrations at week 24. Solid lines represent mean raltegravir plasma 

concentrations. Univariate analysis did not show significant associations between the 

SNPs and C0-24 raltegravir concentrations. 

 

 

 

0 5 10 15 20 25 30
0

2

4

6

8

10

12

Time (h)L
og

 ra
lte

gr
av

ir
 c

on
ce

nt
ra

tio
n 

(n
g/

m
L

)  

AA

AG
GG

(A)

0 5 10 15 20 25 30
0

2

4

6

8

10

12

Time (h)L
og

 ra
lte

gr
av

ir
 c

on
ce

nt
ra

tio
n 

(n
g/

m
L

)  

TT

CC
CT

(B)



 91 

 

 

Figure 3.8. Influence of UGT1A1*28 on C0-24 raltegravir concentrations at week 24. 

Solid lines represent mean raltegravir plasma concentrations. Multivariate analysis 

did not show significant associations between the UGT1A1*28 (p = 0.05) and C0-24 

raltegravir concentrations. 
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3.4 Discussion 

All genotypes were in Hardy-Weinberg equilibrium except for SLC22A6 728 C>T 

(rs11568626) at week 4 and 24 for the analysis of raltegravir. This indicates 

missingness of genotypes due to chance, genotyping assay errors or clinical biases. 

Hence, the results from these genotypes should be interpreted with caution while 

applying to the general populations. 

This is the first study to investigate the effect of clinically relevant SNPs on tenofovir, 

emtricitabine and raltegravir, in a large population. TDF is transported in the proximal 

tubules by the ABCC4 (MRP4),227 ABCC11 (MRP8),228 ABCC10,229 OAT1 and 

OAT3.230 It is excreted unchanged by the kidneys and this gives rise to renal tubular 

toxicity.225 Genetic polymorphisms in the transporters could lead to development or 

exacerbation of tubular toxicity. Although, there is no proof of tenofovir being a 

substrate of ABCC2, the effect of ABCC2 polymorphisms have been demonstrated in 

the past. The ABCC2 24C>T (rs717620) and ABCC2 1249G>A (rs2273697) were 

found to be protective for kidney toxicity in Japanese populations.244 This study, 

however, failed to show a significant effect of 14 SNPs in ABCC4, ABCC10, 

SCL22A6, and ABCB1 genes on tenofovir induced kidney toxicity. It has been 

suggested that endogenous substrates of ABCC2 either exacerbate or compete with 

tenofovir transport by ABCC4. Alternatively, ABCC2 genotype may be in linkage 

disequilibrium with other polymorphisms that code for factors that increase 

toxicity.245 Pushpakom et al. demonstrated the transport of tenofovir by the ABCC10 

(MRP-7) transporter and demonstrated the association of ABCC10 526G>A 

(rs9349256) and ABCC10 2843T>C (rs2125739) with kidney toxicity.229 This was 

demonstrated in vitro using HEK-293-ABCC10 cell lines. 
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We investigated the effect of ABCC2 24C>T and ABCC2 1249G>A polymorphisms 

on tenofovir plasma concentrations and found no significant changes. Similarly, no 

associations of ABCC10 526G>A and ABCC10 2843T>C with tenofovir plasma 

concentrations were evident.  To further investigate the clinical impact of SNPs, it is 

important to analyse the associations of the polymorphisms with adverse events.  

A common limitation in such studies is the lack of investigations into the intracellular 

concentrations of drugs that can influence drug pharmacodynamics.246 Liptrott et al. 

demonstrated  an interaction between tenofovir and nevirapine at the intracellular 

level, that cannot be explained by changes in the plasma concentrations. This 

indicates involvement of factors such as transporters at the cellular site and 

intracellular binding in tenofovir disposition.247 Polymorphisms in these transporters 

and proteins can influence the efficacy and kidney toxicity of tenofovir, warranting 

further investigations. 

Emtricitabine is excreted mostly unchanged236 and is a substrate of the MATE1 

transporter found in the kidney.237 The SCL47A1 G>A (rs2289669) is found to be 

associated with response to treatment and reduction in HbA1C in patients receiving 

metformin.248 It is postulated that SCL47A1 G>A results in reduced function or 

expression  of MATE1.249 Our findings showed no associations between SCL47A1 

G>A and emtricitabine plasma concentrations. 

Raltegravir is metabolized by glucuronidation by the UGT1A1 isoform.240 

Polymorphisms in the UGT1A1 gene have been shown to influence the PK of its 

substrates. For example, UGT1A1*28 and UGT1A1*6 are associated with severe 

toxicities in patients undergoing irinotecan based chemotherapy.250 UGT1A1 is 
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responsible for the conjugation of bilirubin and UGT1A1*28 results in higher 

concentrations of unconjugated bilirubin known as Gilbert syndrome.251 

The investigations of the impact of SNPs in UGT1A1 on raltegravir have given 

variable results. Wenning et al. showed that the plasma concentrations of raltegravir 

were significantly higher in patients with the UGT1A1*28 allele.168 Whereas, Hirano 

et al. did not establish any significant differences in the raltegravir plasma 

concentrations due to UGT1A1 polymorphisms.252 Recently, a study conducted on 

104 HIV infected individuals showed that UGT1A1*28 was associated with 

significantly higher raltegravir plasma concentrations.253 Additionally, the 

UGT1A1*6 polymorphism was also shown to affect raltegravir plasma 

concentrations.254 

Our study did not show associations between UGT1A1*36 and UGT1A1*37 and 

raltegravir plasma concentrations. Multivariate regression analysis did not show 

associations between UGT1A1*28 and raltegravir plasma concentration. However, a 

P value of 0.5 with β of 0.115 indicates that although not statistically significant, 

UGT1A1*28 may result in higher raltegravir plasma concentration.  

Interestingly, at week 4, the weight of the patient at baseline (p = 0.027) and at the 

time of week 4 blood sample collection (p = 0.008) was associated with raltegravir 

plasma concentrations. In the past, raltegravir concentrations shown to be dependent 

on patient’s body weight255 and use of raltegravir may be associated with weight gain 

and lipodystrophy.256 The relationship between raltegravir plasma concentrations and 

body weight need to be explored in more detail as it may give further insight into inter 

and intra patient variability257 that is observed during raltegravir administration. 
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The limitations in Chapter 2 regarding the use of NONMEM as a better analytical 

tool, lack of co-relation with pharmacodynamic data and difference in the 

methodologies in our studies compared to the ones in literature are relevant for this 

study since they both involve the NEAT001/ANRS143 study and a similar 

methodology for analysis. 

In conclusion, the SNPs tested for tenofovir, emtricitabine and raltegravir did not 

influence the plasma concentrations. Although statistically insignificant, UGT1A1*28 

was associated with raltegravir plasma concentrations. Weight of the patients also 

influenced raltegravir plasma concentrations and this relationship needs to be 

explored in more detail. Moreover, an analysis of the SNPs on drug PD and adverse 

events is warranted. 
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4.1 Introduction 

The WHO 2015 guidelines recommend initiation of multidrug ART for all HIV 

infected individuals regardless of the WHO clinical stage or CD4+ T-cell count.258 

ART is often combined with other drugs used to treat OIs or other concomitant 

illnesses, which commonly results in DDIs.259 HIV PIs can either act as perpetrators 

or victims138 and a better understanding of the mechanisms that underpin 

pharmacokinetic DDIs can improve understanding and prediction, which can be 

important for clinical management.  

On reaching the systemic circulation, many drugs bind to circulating plasma proteins, 

such as albumin (present at ~40 mg/mL) and AAG (present at ~0.7 mg/mL),260 and 

to a lesser extent, globulins and lipoproteins.152 Protein-bound drug remains in the 

blood circulation whereas unbound drug distributes into cells and tissues to exert the 

therapeutic effect (Figure 1.7).261 Changes in concentration of plasma proteins and 

the percentage of bound drug can affect PK via an impact upon the clearance 

(particularly for drugs with a low hepatic extraction ratio)262 or by altering the 

distribution into tissues and cells.263 PBPK models depend on accurate predictions of 

volume of distribution and clearance, making plasma protein binding a critical feature 

of the models.264 

Conditions such as myocardial infarction and malignancies,265 liver and kidney 

impairment,266,267 depression,268 pregnancy,269 concomitant administration of 

contraceptive steroids270 as well as surgical procedures271 and age260 have all been 

shown to influence plasma AAG and albumin concentrations. Therefore, any of these 

factors may influence the pharmacokinetic profile of highly bound drugs.  
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When co-administered with another drug that has a higher binding affinity to plasma 

proteins, drugs can be displaced from the protein, causing an increase in the unbound 

percentage. This could result in an increase in Cmax, potentially causing toxicity and 

warranting dose adjustment.272 Moreover, higher unbound concentrations may 

increase the clearance resulting in a drop in Cmin below MEC.273 Therefore, in some 

cases protein binding can be important for treatment response. 

Inconsistent reports have been published with regards to the binding affinity of HIV 

PIs.274,275 These discrepancies warrant further investigation of the affinity and the 

binding characteristics of the HIV PIs to understand their effects on drug distribution 

and PK. In this study, the binding of commonly used PIs to both AAG and albumin 

was assessed using rapid equilibrium dialysis (RED). To better understand the 

consequences, darunavir displacement by model binding displacers was assessed in 

buffer containing AAG and albumin separately and in combination. 
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4.2 Methods 

4.2.1 Reagents 

Darunavir and atazanavir were obtained from Selleckchem (USA). Ritonavir and 

lopinavir were acquired from LGM Pharma (USA). Quinidine, sodium salicylate, 

ibuprofen, sodium valproate, phosphate-buffered saline (PBS), dimethyl sulfoxide 

(DMSO), AAG, albumin, and PBS tablets were obtained from Sigma-Aldrich (USA). 

Acetonitrile (ACN) was obtained from Fluka analytical (South Africa). Pooled human 

plasma was obtained from the National Health Service (NHS, UK). RED plates and 

tube 8 KDa MWCO inserts were obtained from Thermo Fisher Scientific (USA). 

 

4.2.2 Study Design 

The plasma protein binding of darunavir, atazanavir, lopinavir and ritonavir was 

analysed in pooled human plasma. Their displacement from the plasma proteins was 

assessed by measuring the increase in binding percentage in the presence of the 

known AAG276 and albumin displacers277 (Table 4.1). Displacement was also 

measured in the presence of all the displacers (quinidine + sodium salicylate + 

ibuprofen + sodium valproate) to assess the overall impact of displacement from AAG 

and albumin. Similar experiments were conducted to check the displacement of 

darunavir by AAG and albumin displacers in buffer containing AAG and albumin 

separately and in combination.  
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Table 4.1. Known displacers for AAG and albumin plasma proteins 

Plasma Protein Binding Site Displacer 
 
AAG276   Quinidine  
Albumin277 Sudlow I Sodium Salicylate 

 
Sudlow II Ibuprofen 

 
Bilirubin Sodium Valproate 

 

 

4.2.3 Rapid Equilibrium Dialysis (RED) 

Protein binding was assessed using RED. Stock solutions of PIs and displacers were 

made in DMSO. Sodium valproate stocks were prepared in water.  

Dialysis tubes were soaked according to manufacturer’s instructions in 10 % 

isopropyl alcohol (IPA) for 10 minutes to remove the glycerine coating from the dry 

dialysis membrane. The dialysis device was rinsed and soaked in distilled water for a 

further 20 minutes to wash off the IPA and the glycerine residue.  

Human plasma at 37°C was spiked with Cmax concentrations of darunavir (11.86 µM, 

6.5 µg),278 atazanavir (6.24 µM, 4.4 µg),279 lopinavir (22.26 µM, 14 µg)279 and 

ritonavir (20.5 µM, 14.8 µg).280 The spiked plasma was used to prepare aliquots for 

experimentations, containing AAG displacer quinidine (100 µM) and albumin 

displacers sodium salicylate (200 µM), ibuprofen (50 µM) and sodium valproate (500 

µM) (Table 4.2).  
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Table 4.2. Experimental conditions used to analyse the displacement of PIs using AAG and albumin displacers in plasma and buffer containing 
AAG, albumin, and both 

 
Protease 
Inhibitor 

Buffer 
Plasma AAG Albumin AAG + Albumin 

Darunavir Darunavir 
Darunavir + Quinidine 
Darunavir + Sodium Salicylate 
Darunavir + Ibuprofen 
Darunavir + Sodium Valproate 
Darunavir + All displacers 

Darunavir 
Darunavir + Quinidine 
 

Darunavir 
Darunavir + Sodium Salicylate 
Darunavir + Ibuprofen 
Darunavir + Sodium Valproate 

Darunavir 
Darunavir + Quinidine 
Darunavir + Sodium Salicylate 
Darunavir + Ibuprofen 
Darunavir + Sodium Valproate 
Darunavir + All displacers 

Atazanavir Atazanavir 
Atazanavir + Quinidine 
Atazanavir + Sodium Salicylate 
Atazanavir + Ibuprofen 
Atazanavir + Sodium Valproate 
Atazanavir + All displacers 

   

Lopinavir Lopinavir 
Lopinavir + Quinidine 
Lopinavir + Sodium Salicylate 
Lopinavir + Ibuprofen 
Lopinavir + Sodium Valproate 
Lopinavir + All displacers 

   

Ritonavir Ritonavir 
Ritonavir + Quinidine 
Ritonavir + Sodium Salicylate 
Ritonavir + Ibuprofen 
Ritonavir + Sodium Valproate 
Ritonavir + All displacers 
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Additionally, the displacement experiment was repeated for darunavir (11.86 µM) in 

buffer containing AAG (0.7 mg/mL), albumin (40 mg/mL) at levels found in healthy 

humans260 with AAG and albumin displacers (Table 4.2). These experiments were 

performed to confirm that the displacement of PIs in plasma by the displacers were 

specifically from AAG and albumin. Darunavir was chosen for these additional 

experiments as it is the only PI that has not been shown to bind to albumin.275  

A volume of 500 µL plasma from each condition was placed in the donor 

compartment of the RED inserts. An aliquot (750 µL) of PBS was placed in the 

receiver compartment. The average pore size of semi-permeable membrane is less 

than ~2 nm (8000 Da) which prevents the transfer of plasma proteins and drugs bound 

to them (Figure. 4.1 and Figure. 4.2). The unbound drug passes freely through the 

semi-permeable membrane that has a molecular weight cut-off of 8K. The experiment 

was performed in triplicate. The RED plate was covered with paraffin film to prevent 

drying and incubated at 37°C on an orbital shaker at 250 rpm for four hours.  
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Figure 4.1. Rapid Equilibrium dialysis system with plasma proteins and drugs (bound 

+ unbound) in the donor compartment and unbound drugs in receiver compartment 

 

 

Figure 4.2. Rapid equilibrium dialysis plate and inserts. (Image from Fischer 

Scientific website) 
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4.2.4 Drug Extraction 

Post-incubation, an aliquot of 200 µl of PBS was taken from the receiver chamber 

and was diluted with ACN to give a final ratio of PBS:ACN (60:40). A volume of 

200 µl was then transferred to 300 µl chromatography vials for quantification of 

unbound drug concentration.  

From the receiver chamber, an aliquot of 200 µl of plasma was taken and diluted with 

ACN to get a ratio of plasma:ACN (20:80) to induce protein precipitation. These 

samples were thoroughly vortexed and placed on a rotator for 60 min. Following this, 

the samples were centrifuged at 17,000 x g for 30 minutes. The supernatant fraction 

was then transferred to glass vials and dried at 40°C for 4 hours. The drug in the glass 

vials was reconstituted in water containing 40% (v/v) ACN and transferred to 300 µl 

chromatography vials for quantification of total drug concentration. 

 

4.2.5 Drug Quantification  

Darunavir, atazanavir, lopinavir and ritonavir were quantified by HPLC-UV using a 

method conducted in accordance with the FDA guidelines281 in terms of accuracy 

(Mean CV <15%), precision (Mean CV < 15%) and recovery (Mean recovery > 85%) 

(Table 4.3). Method validation was completed separately for quantification from PBS 

buffer (receiver compartment) and plasma (donor compartment). 

Chromatographic separation was performed using a Waters Atlantis T3 (4.6 x 100m, 

3 µm) column (Waters, Elstree, UK) with a 10 x 4 µm Fortis C18 Guard (FortisTM 

Technologies Ltd, Chester, UK). A Dionex P680 HPLC pump, Dionex ASI-100 

automated sampler injector and Dionex UVD170U UV detector (Thermo Fischer Ltd, 
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Hemel-Hempstead, UK) were used. Mobile phases C (25 mM KH2PO4, pH 

3.3/orthophosphoric acid) and D (100% ACN) were used. Elution was carried out at 

room temperature (RT) and the flow rate was set at 1 ml/min. The chromatograms 

were analysed using Chromeleon software (version 6.8, Thermo Fisher Ltd). All 

conditions of separation except the gradient was constant for the tested HIV PIs.  

For darunavir, the step-gradient elution was as follows: 70% C/30% D from 0.0 to 1.5 

min, 35% C/ 65% D from 1.5 to 7.0 min, 20% C/80% D from 7.0 to 9.5 min and 70% 

C/30% D from 9.5 to 12.5 min.  

For atazanavir, the step-gradient elution was as follows: 70% C/ 30% D from 0.0 to 

1.5 min, 52.5% C/47.5% D from 1.5 to 4.0 min, 35% C/65% D from 4.0 to 6.0 min, 

20% C/80% D from 6.0 to 9.5 min and 70% C/30% D from 9.5 to 12.5 min. 

For lopinavir and ritonavir, the step-gradient elution was as follows: 70% C/30% D 

from 0.0 to 1.5 min, 40% C/60% D from 1.5 to 6.0 min, 30% C/70% D from 6.0 to 

6.2 min, 20% C/80% D from 6.2 to 8.2 min and 70% C/30% D from 8.2 to 11.2 min. 
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Table 4.3. Parameters of HPLC-UV method validation for darunavir, atazanavir, 

lopinavir and ritonavir in terms of mean intra- and inter-day accuracy and precision 

and recovery. n = 3.  

 

 

A standard curve using known concentrations of drug (0.156 µM to 20,000 µM) was 

used for each experiment to calculate the drug concentrations in the samples. The 

validated methods for all the drugs meet the criteria of Mean Accuracy < 15%, Mean 

Precision < 15% and Mean Recovery >85%. 

  

Drug  Buffer  
Wavelength 

(nm) 

Intra-day 
(Mean CV %) 

Inter-day 
(Mean CV %) 

Mean 
Recovery 

Accuracy Precision Accuracy Precision (%) 

        
Darunavir PBS 267 1 0.6 3.2 4 98.7 

        
 Plasma 267 9.5 8.8 3.4 14.4 103 
        
 

Atazanavir PBS 267 0.7 2.9 0.6 1.1 91.4 
        
 Plasma 267 4.7 4 1 10.2 100 
        
 

Lopinavir PBS 215 2.4 2.6 3.3 5.1 97.4 
        
 Plasma 215 1.7 1.9 3.6 3.3 95.6 
        
 

Ritonavir PBS 210 4.7 1.5 0.6 5.3 91 
        

 Plasma  210  3.8  5.8  3.5  6  89.4  
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4.2.6 Data Analysis 

The unbound drug percentage was calculated using the following formula: 

 

%	#$%&#$' =
)&$)*$+,-+.&$	.$	,*)*./*,
)&$)*$+,-+.&$	.$	'&$&,

0100 

 

Normality of the data was confirmed by Shapiro-Wilk test and statistical significance 

was assessed using an unpaired t-test with a P value < 0.05 considered to be 

significant. All statistical analyses were conducted using SPSS (Version 6).  
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4.3 Results 

4.3.1 Darunavir Displacement from Plasma Proteins in Plasma  

In pooled human plasma, the unbound percentage of darunavir was 14.2 ± 0.7 % 

(Figure. 4.3). Unbound darunavir was at 17.4 ± 0.7% in the presence of AAG 

displacer quinidine (a difference of 3.2%, p = 0.005) and 18.2 ± 1.2% in the presence 

of albumin displacer sodium valproate (a difference of 4%, p = 0.014). A combination 

of all AAG and albumin displacers resulted in a 27.1 ± 1.8% unbound darunavir (a 

difference of 12.9%, p = 0.003).  

 

 

Figure 4.3. Displacement of darunavir by AAG and albumin displacers in plasma. n 

³ 3. Statistical significance by unpaired t-test. DRV, darunavir; QND, quinidine; SSL, 

sodium salicylate; IBU, ibuprofen; SVP, sodium valproate. P Value: *, < 0.05; **, < 

0.01; ***, < 0.001; ****, £ 0.0001. 
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4.3.2 Atazanavir Displacement from Plasma Proteins in Plasma 

Unbound atazanavir in human pooled plasma was 8.4 ± 0.7% of the total (Figure. 

4.4). There was a statistically significant increase in the unbound atazanavir of 11.6 

± 0.1%, in the presence of the albumin displacer sodium valproate (a difference of 

3.2%, p = 0.014). A combination of all AAG and albumin displacers increased 

unbound atazanavir to 13.8 ± 1.4% (a difference of 5.4%, p = 0.009).  

 

 

 

Figure 4.4. Displacement of atazanavir by AAG and albumin displacers in plasma. n 

³ 3. Statistical significance by unpaired t-test. ATV, atazanavir; QND, quinidine; 

SSL, sodium salicylate; IBU, ibuprofen; SVP, sodium valproate. P Value: *, < 0.05; 

**, < 0.01; ***, < 0.001; ****, £ 0.0001. 
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4.3.3 Lopinavir Displacement from Plasma Proteins in Plasma 

In human pooled plasma, 1.1 ± 0.1% of the total lopinavir was unbound (Figure. 4.5). 

The presence of the albumin displacer sodium valproate increased unbound lopinavir 

to 3.0 ± 0.8% (a difference of 1.9%, p = 0.023). A combination of all AAG and 

albumin displacers resulted in 6.3 ± 0.5% unbound lopinavir (a difference of 5.2%, p 

< 0.0001). 

 

 

Figure 4.5. Displacement of lopinavir by AAG and albumin displacers in plasma. n 

³ 3. Statistical significance by unpaired t-test. LPV, lopinavir; QND, quinidine; SSL, 

sodium salicylate; IBU, ibuprofen; SVP, sodium valproate. P Value: *, < 0.05; **, < 

0.01; ***, < 0.001; ****, £ 0.0001. 
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4.3.4 Ritonavir Displacement from Plasma Proteins in Plasma 

Ritonavir was seen to be 0.7 ± 0.04% unbound in pooled human plasma (Figure. 4.6). 

The albumin displacer sodium valproate increased the unbound ritonavir to 2.3 ± 

0.2% (a difference of 1.6%, p = 0.006). The presence of all AAG and albumin 

displacers resulted in a 3.0 ± 0.3% unbound ritonavir (a difference of 2.3%, p = 

0.004).  

 

 

 

 

Figure 4.6. Displacement of ritonavir by AAG and albumin displacers in plasma. n ³ 

3. Statistical significance by unpaired t-test. RTV, ritonavir; QND, quinidine; SSL, 

sodium salicylate; IBU, ibuprofen; SVP, sodium valproate. P Value: *, < 0.05; **, < 

0.01; ***, < 0.001; ****, £ 0.0001. 
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4.3.5 Darunavir Displacement in Buffer Containing AAG, Albumin and AAG + 

Albumin 

In buffer containing AAG, the unbound percentage of darunavir was 36 ± 0.1 % 

(Figure. 4.7(A)). Unbound darunavir was measured as 45.4 ± 1.2% in the presence 

of the AAG displacer quinidine (a difference of 9.6%, p = 0.005). In buffer containing 

albumin, darunavir was 14.7 ± 1.8% unbound (Figure. 4.7(B)). The presence of the 

albumin displacer sodium valproate resulted in 28.2 ± 0.5% unbound darunavir (a 

difference of 13.5%, p = 0.003). In buffer containing AAG and albumin at 

physiological concentrations, 7.2 ± 0.3% of darunavir was unbound (Figure. 4.7(C)). 

Higher proportions of unbound darunavir (9.7 ± 0.3%) were observed in the presence 

of quinidine (a difference of 2.5%, p = 0.001) and in the presence of sodium valproate 

(17.4 ± 0.7%, a difference of 10.2%, p < 0.0001). A combination of all AAG and 

albumin displacers resulted in 23.6 ± 0.8% unbound darunavir (a difference of 16.4%, 

p < 0.0001).  
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Figure 4.7. Displacement of darunavir in buffer containing AAG (A), albumin (B) 

and AAG + albumin. n = 3. Statistical significance by unpaired t-test. DRV, 

darunavir; QND, quinidine; SSL, sodium salicylate; IBU, ibuprofen; SVP, sodium 

valproate. P Value: *, < 0.05; **, < 0.01; ***, < 0.001; ****, £ 0.0001. 

DRV

DRV + Q
ND

0

10

20

30

40

50

U
nb

ou
nd

 P
er

ce
nt

ag
e 

(%
)

**
(A)

AAG displacer

DRV

DRV + SSL

DRV + IB
U

DRV + SVP
0

10

20

30

40

50

U
nb

ou
nd

 P
er

ce
nt

ag
e 

(%
)

**

(B)

Albumin displacer

DRV

DRV + Q
ND

DRV + SSL

DRV + IB
U

DRV + SVP

DRV + A
ll 

0

10

20

30

40

50

U
nb

ou
nd

 P
er

ce
nt

ag
e 

(%
)

***
****

****

(C)

AAG displacer
Albumin displacer
All displacers



 115 

4.4 Discussion 

In pooled human plasma, unbound darunavir was 14.2% and parallel experiments 

performed in buffer containing AAG, albumin and both indicated darunavir binds to 

both AAG and albumin. These findings differ from the values described in the 

literature of unbound darunavir at 3.5% with binding to AAG, which was analysed 

using the same methodology of RED and quantified using liquid 

chromatography/tandem mass spectrometry (LC-MS/MS).275 Similarly, atazanavir 

was found to be 8.4% unbound, which differs from the 14% calculated in vivo.282 

Importantly, our study utilized plasma from healthy volunteers whereas the previous 

paper used plasma from HIV positive patients. Plasma protein concentration have 

shown to change in individuals infected with HIV.212 Therefore, these inconsistencies 

may represent an important difference between patients and volunteers. Further work 

is required to clarify this issue, since it could impact our understanding of the 

importance of protein binding in the PK of these drugs, in terms of volume of 

distribution, clearance and half-life.  

We found lopinavir and ritonavir to bind to plasma proteins at 1.1% and 0.7% 

respectively. Small displacements to a highly bound drug by a potent displacer or 

fluctuations in the amount of plasma proteins could lead to large increases in unbound 

drug and have a profound effect in vivo.283 For example, co-administration of an AAG 

displacer clindamycin in humans led to an increase in the intracellular concentration 

of imatinib, an oncogenic fusion protein highly bound to AAG. Within 5-10 in of 

bolus clindamycin administration to patients, the plasma concentrations increased 

from 2.6 – 4.7 fold. This was confirmed by in vitro experiments where imatinib 

intracellular concentrations reduced by 10-fold in the presence of AAG and this was 

reversed when incubated by clindamycin.284 
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Quinidine is highly bound to AAG285 and sodium valproate is highly bound to 

albumin.286 An increase in the unbound drug concentration of PIs can safely be 

attributed to displacement from AAG and albumin by quinidine and sodium 

valproate, respectively. Atazanavir,282 lopinavir261 and ritonavir261 have been shown 

to bind to both AAG and albumin. However, in our study, AAG displacer quinidine 

failed to influence the proportion of unbound drug. A possible explanation is 

quinidine has a weaker affinity to AAG than atazanavir, lopinavir and ritonavir. An 

inhibitor with a stronger affinity for AAG could influence the binding of these PIs. 

A combination of all AAG and albumin displacers resulted in higher displacement of 

all the PIs compared to the displacement by AAG and albumin displacers alone, 

which suggests that a compensatory mechanism was in operation. This observation 

was confirmed by darunavir displacement experiments in buffer containing AAG and 

albumin (Figure. 4.7). These experiments were performed to confirm that AAG and 

albumin are the plasma proteins responsible for the binding profile of the protease 

inhibitors, without involvement of any trace plasma proteins. Additionally, these 

experiments provided a confirmation that the displacers are displacing the protease 

inhibitors from the assigned plasma protein and not the other.  

In the absence of albumin, binding to AAG was seen with 35.9 ± 0.1 % unbound. In 

the absence of AAG, albumin binding resulted in 14.6 ± 1.7% unbound darunavir and 

was similar to the unbound percentage of darunavir in plasma. Similar findings were 

reported by Mackichan and Zola where an AAG displacer caused 31% increase in the 

unbound carbamazepine in buffer containing AAG and only 12% in plasma. This 

difference was attributed to the presence of albumin in plasma available for 

binding.287 This may represent an evolutionary mechanism to prevent high unbound 
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concentrations of substances that could result in toxicity, and may explain why protein 

binding displacement seldom causes significant clinical DDIs.154 Although rare, these 

DDIs could have clinical implications when coupled with conditions where AAG and 

albumin levels in the body are altered. For example, Wu et al. demonstrated the 

decrease in total RO4929097, a g-secretase inhibitor, in the presence of vismodegib 

in patients with breast cancer.288 

A limitation of this work is that the data cannot be used directly to predict DDIs 

between the tested drugs in a clinical environment. Since the study was aimed to 

analyse the binding affinity of the PIs, the concentrations of the displacers – quinidine, 

sodium salicylate, ibuprofen, and sodium valproate – were much higher than the 

concentrations found in vivo. However, the data improve our understanding of the 

protein binding for PIs and this may be useful to support more accurate modelling 

and simulation in future work. Additionally, the pooled plasma used for this study 

was derived in 2 batches from healthy patients. The plasma protein concentration was 

not measured and was assumed to be the average found in healthy individuals. 

Changes in AAG and albumin have shown to differ in HIV-infected individuals 

compared to healthy individuals and may give rise to discrepancies in the findings.212  

The displacement of protease inhibitors depends on the concentration and the 

equilibrium dissociation constant (KD) of the displacers. Similar studies using 

multiple displacers at variable concentrations are needed to corroborate the findings 

and provide a better understanding of the displacement. 

In conclusion, the protein binding percentage of darunavir and atazanavir were found 

to differ from values that have been stated previously within the literature. All the PIs 

were displaced by sodium valproate and none by sodium salicylate and ibuprofen. 
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This shows the tested PIs bind to the bilirubin site on albumin. The plasma protein 

binding profile of drugs to plasma proteins depends on multiple variables such as 

physiology, co-morbidities and binding affinity of host drug as well as co-

administered drug. This warrants a case by case investigation on the effects of plasma 

protein binding of drugs on PK in relation to DDIs. 

 
  



 119 

 
 

 

 

Chapter 5 

 

 

Inhibitory Effects of Commonly 

Used Excipients on P-

glycoprotein in vitro 

 

 

  



 120 

Contents 

5.1 Introduction 

5.2 Methods 

5.2.1  Materials 

5.2.2  Study Design 

5.2.3  Excipients 

5.2.4  Culture of MDCK-MDR1 cells 

5.2.5 Cell Counting and Viability 

5.2.6  Cytotoxicity Assay  

5.2.7  Determination of Cellular Accumulation of Digoxin  

5.2.8  Data Analysis 

5.3 Results  

5.3.1  Cytotoxicity of Excipients on MDCK-MDR1 

5.3.2  Change in Cellular Accumulation of Digoxin in MDCK-MDR1 due 

to Excipients 

5.4 Discussion  

 

 

 



 121 

 

 
An abstract graphic showing the inhibition of efflux transporter P-gp by excipients. 

The efflux of P-gp substrate digoxin is inhibited.   
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5.1 Introduction 

The International Pharmaceutical Excipients Council (IPEC) defines excipients as 

“substances other than the active pharmaceutical ingredient (API), which have been 

appropriately evaluated for safety and are intentionally included in a drug delivery 

system. They can aid in processing of the drug delivery system during its 

manufacture, protect, support or enhance stability, bioavailability and patient 

acceptability, assist in product identification, or enhance any other attribute of the 

overall safety, effectiveness or delivery of the drug during storage or use.”289 

Excipients are used to bring about changes in the pharmacological activity of the drug 

by altering solubility, dissolution, permeability and bioavailability.290,291  

Excipients were initially believed to be inert, with no biological activity of their own. 

However, several recent studies have demonstrated changes in the transporter-

mediated absorption of substrates292,293,294 and CYP enzyme-mediated metabolism in 

vitro.295,296,297 The clinical impact of these biological effects has also been 

demonstrated. For example, poly(ethylene glycol) 400 was shown to significantly 

increase the bioavailability of ranitidine by inhibiting P-gp.298 Interestingly, this 

inhibition was seen only in males and was hypothesised to be due to the lower activity 

and expression of P-gp in females compared to males.299 Moreover, toxicity exhibited 

by some excipients has been a major concern for manufacturers.300,301 For example, 

propylene glycol has been associated with central nervous system toxicity, cardiac 

arrhythmias, seizures, and lactic acidosis.302 The need to study the potential 

pharmacological benefits and toxicological liabilities is therefore becoming 

increasingly apparent. 
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P-gp is an efflux transporter and belongs to the ABC family. This transporter is found 

in liver, kidneys, GI tract, placenta, and blood brain barrier in humans,303 providing a 

protective mechanism against xenobiotics and toxins by restricting uptake and 

facilitating clearance via hepatocytes and renal tubules.304 P-gp is also over-expressed 

in cancer cells leading to multidrug resistance.305,306 A change in its activity through 

inhibition or induction can cause significant changes in the disposition and PK of 

substrate drugs which are the basis of DDIs. Although DDIs often lead to a negative 

impact on therapy, they can also be exploited in drug regimens to facilitate the 

absorption of drugs and increase their bioavailability.307,308  

In previous studies, excipients such as Vit-E-PEG (TPGS) and Pluronic have been 

shown to inhibit P-gp activity in MDCK-MDR1 and Caco-2 cells respectively.309,310 

The clinical relevance of P-gp inhibition in the presence of excipients has been shown 

previously as Vit-E-PEG increased the oral absorption of paclitaxel and cyclosporine 

in vivo.311,312 These changes in substrate bioavailability illustrate the importance of 

characterising the biological effects of excipients and their overall clinical impact.  

In this study, the effect of 25 commonly-used pharmaceutical excipients on P-gp 

activity in MDCK-MDR1 cells was investigated. MDCK-MDR1 cells overexpress P-

gp and their use to study P-gp circumvents the problems of complex cross-interactions 

between multiple transporters in non-transfected cell systems.313 The MDCK-MDR1 

cells were selected in accordance with the International Transporter Consortium for 

investigating the role of membrane transporters in drug development.314 The findings 

of this study not only corroborate the previously reported effects of excipients on P-

gp but also present novel effects of some excipients not previously reported.  
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5.2 Materials and Methods 

5.2.1 Materials  

Tritiated [3H]-digoxin (250 µCi/mmol) was purchased from Perkin Elmer (USA). 

Digoxin, verapamil, PVPP (Poly(vinylpolypyrrolidone)), magnesium stearate and 

Kollicoat were purchased from Sigma Aldrich (UK). Sisterna 16 (sucrose palmitate) 

was gifted from Sisterna (Netherlands). The remaining excipients were obtained from 

Sigma Aldrich (UK). MDCK-MDR1 cells were purchased from American Type 

Culture Collection (ATCC). Scintillation cocktail was obtained from Meridian 

Biotechnologies (UK) and the CellTiter-Glo® Luminescent Cell Viability Assay was 

purchased from Promega (UK).  

 

5.2.2 Study Design 

The toxicity of the drugs and excipients exhibited on MDCK-MDR1 cells were 

analysed. The cellular accumulation of digoxin in MDCK-MDR1 cells was first tested 

in the presence of 10 µM and 200 µM of each excipient. Excipient concentrations 

were chosen to span the range of excipient concentrations previously used for 

investigating activities in vitro. Molar concentrations were used to measure the effect 

of excipients on the accumulation of digoxin. Since PVPP is a cross-linked chain the 

determination of molecular weight was not possible. Hence, experiments for PVPP 

were performed by weight (µg/mL) concentrations. Excipients that showed a 

significant effect on accumulation of digoxin in MDCK-MDR1 at either of the tested 

concentrations were further studied for their concentration-dependent effect on P-gp. 

Logarithmic concentrations ranging from 0.33 - 1000 µM were used for Brij 58, Vit-
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E-PEG, AOT, Tween80, Tween20 and Cremophor EL. The log concentrations used 

for Solutol HS 15 ranged from 1- 3333 µM to ensure the inclusion of higher 

concentrations necessary for accurate 50% inhibitory concentration (IC50) 

determination. Due to high molecular weight of NaCMC, the maximum soluble 

concentration was at 250 µM, resulting in a log concentration range of 0.33- 250 µM.  

Stocks of digoxin and verapamil were made in DMSO. The effect of the vehicle 

DMSO on the ATP assays and cellular accumulation assays were assessed to ensure 

lack of interference.  

 

5.2.3 Excipients 

A total of 25 excipients were chosen based on the previous use of these excipients by 

the investigators in the manufacture of solid drug nanoparticles.315,316,317 During this 

manufacturing process these excipients are either used as polymers or as surfactants 

and these have been listed as follows: 

 

Surfactants: Sodium deoxycholate (NaDC, MW = 414 g/mol), sodium caprylate 

(NaCap, MW = 166 g/mol), D-α-tocopherol poly- (ethylene glycol) succinate (Vit-E-

PEG, MW = 1000 g/mol), sucrose stearate (Sisterna 11, MW = 608 g/mol), sucrose 

palmitate (Sisterna 16, MW = 580 g/mol), sodium 1,4-bis (2- ethylhexoxy)-1,4-

dioxobutane-2-sulfonate (AOT, MW= 444 g/ mol), poly(ethylene oxide)35 modified 

castor oil (Cremophor EL, MW = 2500 g/mol), polyethylene glycol15-hydroxystearate 

(Solutol HS 15, MW = 345 g/mol), poly (ethylene oxide)20 sorbitan monolaurate 

(Tween 20, MW = 1230 g/mol), poly (ethylene oxide)20 sorbitan monooleate (Tween 

80, MW = 1300 g/mol), poly (ethylene glycol) hexadecyl ether (Brij 58, MW = 1124 
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g/mol), alkyl (C12−16) dimethylbenzylammonium chloride (Hyamine, MW = 448 

g/mol), cetyltrimethyl- ammonium bromide (CTAB, MW = 364 g/mol), magnesium 

stearate (MW= 591.27 g/mol).  

 

Polymers: Hydroxypropyl cellulose (HPC, MW = 80000 g/mol), 

hydroxypropylmethyl cellulose (HPMC, MW = 10000 g/mol), hydrolysed gelatin 

(HG, MW = 1980 g/mol), sodium carboxymethylcellulose (NaCMC, MW = 90000 

g/mol), poly(ethylene glycol) (PEG, MW = 1000 g/mol), poly (ethylene oxide)80-

block-poly (propylene oxide)27-block-poly (ethylene oxide)80 (Pluronic F68, MW = 

8400 g/mol), poly (ethylene oxide)101-block- poly (propylene oxide)56-block-poly 

(ethylene oxide)101 (Pluronic F127, MW = 12600 g/mol), poly (vinyl alcohol)-graft-

poly (ethylene glycol) copolymer (Kollicoat, MW = 45000 g/mol), poly (vinyl 

alcohol) (80% hydrolysed PVA, MW = 9500 g/mol), poly (vinyl pyrrolidone) (PVP 

K30, MW = 40000 g/ mol), Poly (vinylpolypyrrolidone) (PVPP). 

 

Stocks of excipients were freshly prepared in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% Foetal Bovine Serum (FBS).  

 

5.2.4 Culture of MDCK-MDR1 cells 

MDCK-MDR1 cells were grown in DMEM supplemented with 10% FBS. The cells 

were seeded in a T175 flask and incubated in a humidified incubator (37°C, 5% CO2). 

Media was changed every 48 hours. They were sub-cultured by standard 

trypsinisation and centrifugation and passaged at 80% confluency. Cells were 

discarded beyond passage 20. Differences in the experimentation due to variation of 
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passages were monitored by ensuring lack of significant changes in the positive and 

negative controls in the experiments. 

 

5.2.5 Cell Counting and Viability 

The cell numbers and viability of Caco-2, MDCK and MDCK-MDR1 cells were 

calculated using the Chemometec NucleoCounter® NC-100TM (Chemometec, 

Denmark). A volume of 150 µl of cell suspension was added to a fresh Eppendorf 

tube for total dead cells count, 50 µl of reagent A and B were added to 50 µl of cell 

suspension in a separate Eppendorf tube for total cell count. A cell viability of > 95% 

was considered acceptable for the experiments.  

Cell viability was calculated using the following equation: 

Cell	viability	(%)

= 100 − (
Dead	cells	count	

Total	cells	count	(Reagent	A + B)	x	3	(dilution	factor)
) 

 

5.2.6 Cytotoxicity Assay  

The cytotoxicity of excipients and drugs used in the experiment were assessed by 

measuring the cell viability of MDCK-MDR1 after exposure, using the CellTiter-

Glo® Luminescent Cell Viability Assay.317 This assay measures the number of 

metabolically active cells by quantifying the amount of ATP present.318 The assay 

was performed in quadruplicates. MDCK-MDR1 cells were seeded in a 96-well plate 

at 20,000 cells/well in 100 µl of DMEM with 10% FBS overnight to allow for 

adherence to the culture plate. A row of cells without treatment with drugs or 
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excipients was included as negative controls and wells containing media without cells 

were included to normalise for background luminescence. After 24 hours, media was 

removed and the cells were exposed to drugs and excipients at concentrations ranging 

from 0.97 - 1000 µM (0.97 – 1000 µg/mL for PVPP) (diluted in media) and incubated 

in a humidified incubator (37°C, 5% CO2) for 1 hour to ensure complete P-gp 

inhibition and equilibrium between the intracellular and extracellular digoxin.  Post-

incubation, the plate was equilibrated to room RT for 30 minutes. A volume of 100 

µl of CellTiter-Glo® Reagent was added to each well and mixed on an orbital shaker 

for 2 minutes to induce lysis. The plate was incubated at RT for 10 minutes to ensure 

stabilisation of the luminescent signal. The luminescence was then measured using a 

GENios Tecan microplate reader (Germany). The background luminescence was 

subtracted and the viability was calculated as a percentage of untreated cells assuming 

100% viability.  

 

5.2.7 Determination of Cellular Accumulation of Digoxin  

MDCK-MDR1 cells were seeded in 4 wells of a 6-well plates at 1 x 106 cells/mL and 

incubated for 24 hours in a humidified incubator (37°C, 5% CO2). Digoxin (10 µM) 

was used as a P-gp substrate and verapamil (10 µM), a P-gp inhibitor was used as 

positive control in accordance to the FDA guidelines 2006.319,320 Aliquots were 

prepared with media containing digoxin alone or in the presence of verapamil or 

excipients. [3H]-digoxin at 0.1 µCi/mL was added to the aliquots along with non-

radiolabelled digoxin. The cells were then exposed to these aliquots and incubated for 

1 hour in a humidified incubator (37°C, 5% CO2). After incubation, 100 µl of the 

supernatant fraction was taken and transferred to a scintillation vial to determine the 
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extracellular substrate concentration. The cells were then washed 3 times with cold 

HBSS to remove the remaining culture media. Cells were removed from the culture 

plate by trypsinisation with 1mL of trypsin-EDTA per well and incubation for 10 

minutes in a humidified incubator (37°C, 5% CO2). After incubation, the cells were 

agitated for detachment and transferred to scintillation vials for measurement of 

intracellular substrate concentrations. A volume of 4 mL of scintillation cocktail was 

added to the vials and the radioactivity count was measured by a Packard Tri-Carb 

3100 TA Liquid Scintillation Counter (Perkin-Elmer, Cambridge, UK).  

 

5.2.8 Data Analysis 

Cytotoxicity of drugs were calculated as percentage of cells alive after exposure to 

varying concentrations of drugs and excipients compared to cells in the control group. 

The background luminescence was subtracted from the luminescence given by cells 

exposed and in the control group. Cell viability was then calculated using the formula: 

Cell	Viability	% =	
Luminiscence	of	cells	after	exposure
Luminiscence	of	cells	in	control

	× 	100 

Cellular accumulation ratio for digoxin was calculated using the following formula 

(where DPM = disintegrations per minute): 

UVW =
(.$+,-)*XX#X-,YZ[ +&+-X⁄ )*XX	/&X#]*)

(*^+,-)*XX#X-,YZ[ *^+,-)*XX#X-,⁄ /&X#]*)
 

Cellular volumes were determined using the ScepterTM cell counter 2.0 (Merck 

Millipore, Billerica USA). Cell volumes were taken from a mean of 3 replicates, 

MDCK-MDR1 volume 3.7 pl. 
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Normality of the data was tested using a Shapiro-Wilk test after which statistical 

significance was assessed using an unpaired t-test using SPSS 22.0. The difference in 

cellular accumulation of digoxin alone (0%) and in the presence of verapamil (100%) 

was used to calculate the percentage increase in accumulation of digoxin due to 

excipients. IC50 for the excipients that were tested for concentration-dependent 

inhibition of P-gp was calculated using Graph-pad Prism (Version 6).  
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5.3 Results  

5.3.1 Cytotoxicity of Excipients on MDCK-MDR1 

Digoxin, verapamil, Vit-E-PEG, HPC, Solutol HS 15, Cremophor EL, PVA, PVP 

K30, PEG, Pluronic F68, Pluronic F127, HPMC, HG, NaCap, Sisterna 11, Kollicoat, 

Tween 20, Tween 80, PVPP and magnesium stearate did not exhibit any cytotoxicity 

at the tested concentrations (>80% viability). Cytotoxicity was observed with NaDC, 

AOT, Brij 58, Hyamine, CTAB, NaCMC and Sisterna 16 (Figure. 5.1). 

 

 

 

 

Figure 5.1. Toxicity exhibited by (a) NaDC, (b) AOT, (c) Brij 58, (d) Hyamine on 

MDCK-MDR1 cells measured by CellTiter-Glo® assay. Data are presented as mean 

± standard deviation. n = 4. 
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Figure 5.1. continued. Toxicity exhibited by (e) CTAB, (f) NaCMC, (g) Sisterna 16 

on MDCK-MDR1 cells measured by CellTiter-Glo® assay. Data are presented as 

mean ± standard deviation. n = 4.  
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5.3.2 Change in Cellular Accumulation of Digoxin in MDCK-MDR1 due to 

Excipients 

At 10 µM a significant increase in the cellular accumulation of digoxin (Figure. 5.2a) 

was seen in the presence of Vit-E-PEG (290.8 ± 60.9 % increase, p = 0.002), Tween 

80 (110.6 ± 23.3% increase, p = 0.001), CTAB (22.2 ± 8.3% increase, p = 0.021), 

Cremophor EL (37.2 ± 15.6% increase, p = 0.01), Solutol HS 15 (27.6 ± 10% increase, 

p = 0.006) and Brij 58 (38.1 ± 8.9% increase, p = 0.001).  

 

Figure 5.2 (a). Percentage change in the accumulation of digoxin caused by 

excipients at 10 µM (or 10 µg/mL for PVPP) compared to the change in accumulation 

of digoxin due to verapamil in MDCK-MDR1 cells. Data are presented as mean ± 

standard deviation. n = 4. Statistical significance was tested using an unpaired t-test. 

P Value: *, < 0.05; **, < 0.01; ***, < 0.001; ****, £ 0.0001. 
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At 200 µM, Vit-E-PEG (306.8 ± 34% increase, p < 0.0001), AOT (206.4% ± 34.3 

increase, p < 0.0001), Tween 80 (314.7 ± 48.5% increase, p < 0.0001), CTAB 

(511.9% ± 135.4% increase, p = 0.004), Tween 20 (485.5 ± 35.3% increase, p <  

0.0001), Cremophor EL (215.4 ± 35.8% increase, p < 0.0001 ), Solutol HS 15(373.6 

± 33.9% increase, p < 0.0001), Brij 58 (619.3 ± 55.7% increase, p < 0.0001) and 

NaCMC (182 ± 65.3% increase, p = 0.006) significantly increased the cellular 

accumulation of digoxin in MDCK-MDR1 cells (Figure 5.2b).  

 

 

Figure 5.2 (b). Percentage change in the accumulation of digoxin caused by 

excipients at 200 µM (or 200 µg/mL for PVPP) compared to the change in 

accumulation of digoxin due to verapamil in MDCK-MDR1 cells. Data are presented 

as mean ± standard deviation. n = 4. Statistical significance was tested using an 

unpaired t-test. P Value: *, < 0.05; **, < 0.01; ***, < 0.001; ****, £ 0.0001. 
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A concentration-dependent increase in the intracellular digoxin was seen (Figure. 

5.3) with Vit-E-PEG (IC50 = 12.48 µM), AOT (IC50 = 192.5 µM), Tween 80 (IC50 

= 45.29 µM), CTAB (IC50 = 96.67 µM), Tween 20 (IC50 = 74.15 µM), Cremophor 

EL (IC50 = 11.92 µM), Solutol HS 15 (IC50 = 179.8 µM), Brij 58 (IC50 = 25.22 µM) 

and NaCMC (IC50 = 46.69 µM). 
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Figure 5.3. Concentration-dependent increase in digoxin accumulation in MDCK-

MDR1 cells by (a) Vit-E-PEG, (b) AOT, (c) Tween 80, (d) CTAB, (e) Tween 20, (f) 

Cremophor EL. Data are presented as mean ± standard deviation. n = 4. Shaded area 

represents the concentrations at which excipients exhibited cytotoxicity towards 

MDCK-MDR1 cells. 
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Figure 5.3 continued. Concentration-dependent increase in digoxin accumulation in 

MDCK-MDR1 cells by (g) Solutol HS 15, (h) Brij 58, and (i) NaCMC. Data are 

presented as mean ± standard deviation. n = 4. Shaded area represents the 

concentrations at which excipients exhibited cytotoxicity towards MDCK-MDR1 

cells. 
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5.4 Discussion  

MDCK-MDR1 cells overexpress P-gp and are a useful cellular model for identifying 

substrates and inhibitors of P-gp. The effect of other transporters that would 

potentially mask any interactions with P-gp transport in a non-transfected cell system 

is comparatively low. Therefore, an increase in the cellular accumulation of digoxin 

can be safely attributed to the inhibition of P-gp activity.  

At 10 µM, NaCAP, AOT, HPMC, PVP K30, Hyamine, HPC and magnesium stearate 

led to a decrease in digoxin accumulation. Similarly, at 200 µM, NaCAP, Pluronic 

F127, Pluronic F68, PVA, Hyamine, Kollicoat, Sisterna 16 and magnesium stearate 

decreased digoxin accumulation. These changes however were not statistically 

significant and might be a result of variability seen in experimentation due to the use 

of individual wells.  

In this study, the concentration-dependent inhibition of the efflux transporter P-gp by 

commonly-used pharmaceutical excipients was clearly demonstrated by the following 

order of effects: Cremophor EL > Vit-E-PEG > Brij 58 > Tween 80 > NaCMC > 

Tween 20 > CTAB > Solutol HS 15 > AOT. 

Surfactants are extensively used in formulations as emulsifying agents to dissolve 

drugs with poor solubility and enhance their bioavailability.321 The have been shown 

to affect the P-gp’s ATPase activity through a concentration dependant alteration in 

the fluidity of the lipid bilayers of cell surface membranes.322 When exposed to 

MDCK-MDR1 cells, this modulation in fluidity can inhibit the efflux of P-gp 

substrates like digoxin and result in an increase in their cellular accumulation. An 

alternative mechanism has been proposed where excipients inhibit P-gp by inhibiting 

protein kinase C, which plays a role in the functioning of the P-gp transporter.323   
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Vit-E-PEG is an esterified Vitamin E derivative, widely used as a solubilising and 

emulsifying agent.324 The in vivo effects of Vit-E-PEG on P-gp substrates have been 

demonstrated in previous studies. For example, TPGS was seen to increase the AUC 

and reduce oral clearance of cyclosporine in healthy patients.312 Since the inclusion 

of Vit-E-PEG in the list of GRAS (Generally Recognised As Safe) substances by 

FDA, there has been an attempt to include it in formulations to increase the 

bioavailability of drugs by inhibiting P-gp.325,326 In our study, Vit-E-PEG had a low 

IC50 (12.48 µM) for inhibition of P-gp suggesting higher possibilities of interactions 

even at lower concentrations. Interestingly, the results published by Collnot et al. 

suggest that Vit-E-PEG inhibits P-gp by either blocking the binding of a substrate to 

the transporter or by allosteric modification of P-gp, rather than changing membrane 

fluidity of cells.327 These discrepancies indicate the need for case-by-case 

investigations of surfactants to elucidate their mechanism of P-gp inhibition.  

Cremophor EL, a modified castor oil, is widely used as emulsifying agents to stabilize 

microemulsions.328 Out of all the excipients tested in this study, Cremophor EL was 

the most potent inhibitor (IC50 = 11.92 µM) of P-gp. The in vitro and in vivo inhibition 

of P-gp by Cremophor EL has been well-characterised in the past and has been 

suggested for use in formulations.329,328 For example Taxol is routinely used for 

chemotherapy and contains 6 mg paclitaxel with 527 mg of purified Cremophor EL 

and 49.7% (v/v) dehydrated alcohol. However, toxicity and hypersensitivity reactions 

have made the formulation unpopular, driving manufacturers to look for alternatives 

to Cremophor EL.330,331 

Solutol HS 15 has been studied for its P-gp inhibitory effects in vitro and in vivo and 

is extensively used to improve bioavailability of drugs.310,332 Micelles made from 
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Solutol HS 15 have been shown to increase the bioavailability and the antitumor 

efficacy of paclitaxel due to its P-gp inhibitory activity.333 In our study, Solutol HS 

15 significantly inhibited P-gp with an IC50 of 179.8 µM.  

Tween 20 and Tween 80 are polysorbates (fatty acid esters of sorbitol) that inhibit P-

gp and their effects on the PK of drugs that are substrates of P-gp have been 

demonstrated in vitro and in vivo.310,334,335,336 These findings are corroborated by our 

results where Tween 20 and Tween 80 inhibited P-gp with IC50’s of 74.15 µM and 

45.29 µM, respectively.  

Brij molecules such as Brij 30337 and Brij 35338 have been shown to inhibit efflux 

transporters resulting in enhanced absorption of drugs. Inhibition of P-gp along with 

depletion of ATP due to Brij 78 has also been established.339 However, there is 

currently limited data on the effects of Brij 58 on P-gp. Tang et al. have reported 

increased efficacy of paclitaxel when combined with Brij 58 which led to an anti-

proliferation effect and inhibition of cell growth in H460/taxR cells that overexpress 

P-gp.340 To our knowledge, no other studies have measured the effect of Brij 58 on 

P-gp. In our study, we have shown Brij 58 to be a strong inhibitor of P-gp with an 

IC50 of 25.22 µM. 

Previously, AOT had been shown to inhibit P-gp in bovine brain microvessel 

endothelial cells that overexpress P-gp. The use of AOT-alginate nanoparticles has 

resulted in increased cellular delivery of drugs resulting in enhanced efficacy.341,342 

For example, methylene blue AOT-alginate particles showed enhanced 

photodynamic activity in MDC-7 cells.343 Similarly, our results show inhibition of P-

gp by AOT with an IC50 of 192.5 µM.  
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Nanoparticles of CTAB have shown to increase the intracellular concentrations of P-

gp substrates and when combined with a known P-gp inhibitor, which led to complete 

reversal of multidrug resistance in cancer cells.344,345 Singh et al. showed an increase 

in intracellular rhodamine-123 (R-123) by CTAB nanoparticles in glioblastoma and 

gliosarcoma cells and this effect was attributed to evasion of efflux transporters.332 

Similarly, our results show that CTAB inhibits P-gp with an IC50 of 96.67 µM.  

The surfactants: NaDC, NaCap, Sisterna 11, Sisterna 16, Hyamine and magnesium 

stearate, did not have any significant effect on the digoxin cellular accumulation. To 

our knowledge, there are no studies that demonstrate the effects of these excipients 

on P-gp.  

Polymers comprise of a varied group of substances that are synthesised as well as 

derived from natural products. Depending on their molecular weight, they have a wide 

range of physiochemical properties346 and are used in formulating drugs for all routes 

of administrations.347 P-gp inhibition by polymers has been demonstrated in the past. 

Polymers such as Pluronic P85 and PEG 400 show emulsifying and solubilising 

properties and are used as surfactants in formulations.348,349 They have shown to 

inhibit P-gp by modulating the membrane fluidity, similar to the surfactants described 

above.350 Furthermore, thiolated polymers have also demonstrated P-gp inhibition by 

entering the channels of P-gp transporter and forming disulphide bonds with the 

cysteine subunits, rendering P-gp inactive.351 

Sodium carboxymethylcellulose (NaCMC/CMC) is a binding agent that is not only 

used in pharmaceutical formulations but also in everyday foods. It is used for its 

viscosity increasing properties and to suspend powders for oral and parenteral 

administration.352 Additionally, it is used to stabilise emulsions.353 Docetaxel is a 
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chemotherapy drug used in the treatment of breast, prostate and lung cancers. One of 

the major hurdles of this treatment is tumour resistance, which is attributed to 

upregulation of P-gp causing efflux of chemotherapy drugs from target tumour 

cells.354 Using NaCMC and PEG, a polymer conjugate Cellax was developed. Cellax 

was successful not only in improving the efficacy of docetaxel, but also 

circumventing resistance developed by the tumour cells in cell and mouse 

models.355,356,357 To our knowledge, the inhibitory effect of NaCMC on the 

accumulation of a P-gp substrate in P-gp overexpressing cells has been demonstrated 

for the first time in this study. This P-gp inhibiting characteristic could be a factor 

contributing to the success of Cellax in treating cancer.  

The polymers tested (HPC, HPMC, HG, PEG 1000, Kollicoat, PVA, PVP, Pluronic 

F68, Pluronic F127 and PVPP) in this study did not show any significant P-gp 

inhibition. To our knowledge, there are no published studies that state otherwise. 

Although, PEG 300 and PEG 400 have been shown to have an inhibitory effect on P-

gp, our results did not show any inhibition by PEG 1000.358,359 This was in agreement 

with a study by Collnot et al. where PEG 1000 did not have any effect on the apparent 

permeability of R-123 in Caco-2 monolayers.324 HPMC has been reported to reduce 

MDR1 expression in LS174T cells.296 However, no other studies have shown changes 

in P-gp substrate caused by HPMC.  

Changes in the PK of P-gp substrates were seen in the presence of Pluronic F68 and 

F127 and was attributed to the inhibition of P-gp. For example, F68 increased the 

AUC0-t in rats and increased the permeability of celiprolol in Caco-2 cell 

monolayers.360,173 Pluronic F127 was also seen to increase intracellular concentrations 

of R-123 in Caco-2 cells in a dose-dependent manner.361 However, in vitro studies 

carried out to assess the effect of Pluronic F68 and Pluronic F127 on MDCK-MR1 
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cells showed no effect on the transport of a P-gp substrate.362,363 Similarly, in our 

study, Pluronic F68 and Pluronic F127 did not affect the cellular accumulation of 

digoxin in MDCK-MDR1 cells. It appears that Pluronic F68 and F127 showed 

inhibition of P-gp in Caco-2 cells, but not in P-gp overexpressing MDCK-MDR1 

cells. Further investigations are needed to pin-point the exact cause of this 

discrepancy. 

P-gp in the gastrointestinal tract plays a major role in the bioavailability of orally 

administered drugs.308 Additionally, P-gp is over-expressed in cancer cells and is 

responsible for MDR-related drug resistance.305 The IC50 calculated in our study is an 

important measure to compare the P-gp inhibiting potency of different excipients. The 

IC50 calculated cannot be linked to in vivo concentrations since the concentration of 

excipients cannot be measured in the gut after administration. However, knowledge 

about the P-gp inhibiting properties of excipients will enable manufacturers to choose 

appropriate excipients to either exploit the P-gp inhibition for increasing the drug 

bioavailability or ovoid DDIs. 

There are a few limitations in our study. There is the potential for binding by the 

excipients to the proteins contained within the culture medium; this could render a 

significant amount of the excipient unavailable for P-gp inhibition. Moreover, our 

study was carried out in one lot of MDCK-MDR1 cell lines and the results could vary 

with different lots of MDCK-MDR1 or different types of cells overexpressing P-gp. 

Similar experiments are required to establish reproducibility using different lots of 

cells are needed to corroborate our findings and strengthen meaningful extrapolations.   

ATP assay was chosen as it is simple, cost-effective and sensitive compared to other 

assays. However, a limitation while using this assay is that the ATP assay used to 
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assess the toxicity of excipients can be affected by the presence of surfactants and 

detergents since they modulate the ATPase in cells.322 Therefore, the toxicity of the 

excipients needs to be confirmed using additional methods.  

In conclusion, most surfactants (Vit-E-PEG, AOT, Tween 80, CTAB, Tween 20, 

Cremophor EL, Solutol HS 15 and Brij 58) and the polymer NaCMC inhibited P-gp 

in MDCK-MDR1; demonstrated by the significant increase in intra-cellular digoxin. 

This disproves the inertness of excipients and ascertain the possibility of P-gp 

mediated DDIs due to excipients. Our findings, corroborated with published 

literature, suggest that excipients with surfactant properties have a greater propensity 

to inhibit P-gp. The biological effects of excipients on other transporters and drug 

metabolising enzymes need to be determined to understand the implications of APIs 

on the PK of drugs. This will help the manufacturers to choose the adequate excipient 

in formulations to bring about favourable drug pharmacokinetics. 
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6.1 Introduction 

In this era of antibiotic resistance, efficient management to deliver quantity and 

quality of life is increasingly challenging.364 MDR is eroding available 

pharmacological strategies to effectively control infections.365 In 2016, the WHO 

estimated that 3.9% (95% CI 2.7-5.1%) of previously untreated and 21% (95% CI 15 

- 28%) of previously treated TB cases worldwide were MDR-TB.19 The demand for 

newer antibiotics with favourable pharmacokinetic and pharmacodynamic 

characteristics to replenish the exhausted inventory of drugs for the treatment of 

infections is evident.366 

TB is now the most common OI amongst patients infected with HIV due to which 

ART is often co-administered with anti-tubercular treatment (ATT).367 Both ART and 

ATT comprise multi-drug combinations, resulting in higher potential for DDIs. Drugs 

used as part of ART and ATT exhibit toxicities and when co-administered could add 

to the severity of adverse events. This could worsen the patients’ condition and lead 

to treatment discontinuation, increasing the risk of loss MDR.368 Moreover, patients 

infected with HIV have been shown to have a higher rate of MDR-TB compared to 

patients without HIV, which is partly attributed to DDIs and treatment 

discontinuation.22 This highlights the need to characterise the metabolic profile of the 

drugs used in ART and ATT. 

Linezolid, an oxazolidinone, acts on Gram-positive bacteria by inhibiting formation 

of the 70S initiation complex by binding to the 23S ribosomal RNA (rRNA) of the 

bacterial 50S ribosomal unit.369 Since its approval by FDA in 2000,  linezolid has 

been adopted for treatment of a wide range infections caused by organisms such as  

Enterococcus faecalis, Staphylococcus aureus, Chlamydia pneumoniae, 
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Haemophilus influenza, and MDR-TB.174,370 The lack of cross resistance with other 

antibiotics makes linezolid an extremely favourable option.371 Although linezolid has 

been used considerably for several pathogens, incidences of resistance have remained 

low. The LEADER surveillance program that analysed linezolid activity from 2011 

to 2015 showed a modest <1% resistance to linezolid.372  

Notwithstanding the advantages, linezolid has a low therapeutic index that makes 

treatment vulnerable to DDIs. A suboptimal exposure of the drug could result in 

resistance and treatment discontinuation.373 An emergence of linezolid-resistant 

enterococci due to mutations in the 23S rRNA has been observed and has been 

correlated to prior use of linezolid.374 Additionally, DDIs could lead to higher plasma 

levels of linezolid, resulting in adverse events and treatment discontinuation.375 

Treatment with linezolid is often associated with adverse events such as neuropathy, 

thrombocytopenia, anaemia and hyperlactatemia via a mitochondrial effect.376 

Careful monitoring of these adverse events, especially in children is therefore 

recommended.377 

ABC and SLC transporters consist of more than 400 types of transmembrane proteins 

responsible for drug transport and DDIs.378 Linezolid is not metabolised by CYP 

enzymes and is cleared via renal (35%) and non-renal mechanisms.379 Linezolid is 

suspected to be a P-gp substrate, but no data currently exist to show substrate affinity 

for P-gp or other ABC transporters that mediate DDIs.380 More drug transporter data 

are therefore needed to inform DDI prediction and management. Accordingly, the 

purpose of this study was to investigate substrate recognition by P-gp, BCRP and 

MRP transporters. Transporter substrate properties of linezolid were assessed across 

Caco-2 monolayers with or without P-gp, MRP and the BCRP inhibitors using 

verapamil381, MK-571382 and fumitremorgin C (FUMC),383 respectively. 
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6.2 Methods 

6.2.1 Materials 

Linezolid was purchased from Stratech Scientific Ltd (UK). [3H]-Digoxin (250 

µCi/mmol) and [14C]-Mannitol (60 µCi/mmol) was purchased from Perkin Elmer 

(UK). MDCK, MDCK-MDR1 and Caco-2 cells were purchsed from ATCC 

(American Type Culture Collection). Transwell plates were purchased from Corning 

technologies (USA). The CellTiter-Glo® Luminescent Cell Viability Assay was 

purchased from Promega (UK). The scintillation cocktail fluid used was obtained 

from Meridian Biotechnologies (UK). All other reagents were obtained from Sigma 

Aldrich (UK). 

 

6.2.2 Study Design 

Toxicity of drugs used in all the experiments were analysed. The substrate properties 

of linezolid were investigated by analysing the effect of transporter inhibitors on the 

transport of linezolid across Caco-2 cells in trans-well plates. Verapamil, FUMC and 

MK-571 were used as inhibitors for P-gp, BCRP and MRP transporters, respectively. 

To further corroborate the effect of verapamil, the accumulation of linezolid in 

MDCK and MDCK-MDR1 cells was measured in the presence and absence of 

verapamil. 
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6.2.3 Cell Culture and Maintenance 

Cells were maintained in DMEM supplemented with 15% sterile filtered FBS for 

Caco-2 cells and 10% of sterile filtered FBS for MDCK and MDCK-MDR1 cells. 

The cells were seeded in a T175 flask and incubated in a humidified incubator (37°C, 

5% CO2). The media was changed every 48 hours. Cells were sub-cultured by 

standard trypsinisation and centrifugation method when they reached approximately 

80% confluency. 

 

6.2.4 Cell Counting and Viability 

The cell numbers and viability of Caco-2, MDCK and MDCK-MDR1 cells were 

calculated using the Chemometec NucleoCounter® NC-100TM (Chemometec, 

Denmark). A volume of 150 µl of cell suspension was added to a fresh Eppendorf 

tube for total dead cells count, while 50 µl of reagent A and B were added to 50 µl of 

cell suspension in a separate Eppendorf tube for total cell count. A viability of > 95% 

was considered ideal for the experiments. Cell viability was calculated using the 

following equation: 

 

Cell	viability	(%)

= 100 − (
Dead	cells	count	

Total	cells	count	(Reagent	A + B)	x	3	(dilution	factor)
) 
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6.2.5 Cytotoxicity Assay 

Cytotoxicity was assessed in Caco-2, MDCK and MDCK-MDR1 cells using the 

CellTiter-Glo® Luminescent Cell Viability Assay as previously described.317 This 

assay measures the number of metabolically active cells by quantifying the amount 

of ATP present.318 The assay was performed in quadruplicates. A total of 2 x 104 cells 

of Caco-2, MDCK and MDCK-MDR1 cells in 100 µl of media were plated in a flat 

96-well plate and kept in a humidified incubator (37°C, 5% CO2) to allow the cells to 

adhere. After 24 hours, the media from the plates were removed and new media 

containing serial dilutions of linezolid (1.95 µg/mL - 1000 µg/mL), digoxin (0.15 

µg/mL  - 78.01 µg/mL), verapamil (0.08 µg/mL  - 45.5 µg/mL), FUMC (0.08 µg/mL  

- 40 µg/mL) and MK-571 (0.1 µg/mL  - 50 µg/mL) were added. One row contained 

no cells and was used to normalize for background luminescence. A row containing 

cells to which no drugs were added was used as a control. The plates were incubated 

in a humidified incubator (37°C, 5% CO2) for 72 hours.  

Post-incubation, the plates were removed and allowed to equilibrate at RT for 30 

minutes. A volume of 100 µl of CellTiter-Glo® reagent was added to each well. The 

contents were mixed on an orbital shaker for 2 min to induce lysis of the cells. The 

plate was then allowed to incubate at RT for 10 minutes to stabilize the luminescent 

signal. This luminescence was recorded by Tecan GENios microplate reader 

(Germany). The background luminescence was subtracted and the viability was 

calculated as a percentage of untreated cells assuming 100% viability.  
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6.2.6 Transcellular Permeation of Linezolid Across Caco-2 cells 

Transwell plates were seeded with Caco-2 cells at 40,000 cells/well and incubated in 

a humidified incubator (37°C, 5% CO2). Media was changed every other day for 21 

days. On the day of the experiment, media was removed and replaced with HBSS 

containing 14 µg/mL linezolid alone or in combination with verapamil (P-gp 

inhibitor; 11.4 µg/ml; 25 µM), FUMC (BCRP inhibitor; 30 µg/mL; 79.06 µM) or 

MK-571 (MRP inhibitor; 20 µg/mL; 37.2 µM). HBSS containing the drugs were 

added to the apical (250 µl) or basolateral (550 µl) compartment and the receiver 

compartment contained HBSS. The plates were incubated in a humidified incubator 

(37°C, 5% CO2). After 1 hour, aliquots of 150 µl were taken from the receiver 

compartment and sent for analysis in Cape Town as described below. Post-

experiment, the integrity of the transwell was analysed by an assessment of the 

transepithelial electrical resistance (TEER). Additionally, [14C]-Mannitol was used 

to check the integrity of cells. Buffer from apical and basolateral chambers and 

washed 3 times with HBSS. A volume of 550 µl was added to the basolateral 

compartment, followed by 100 µl of [14C]-Mannitol solution to the apical 

compartment of the transwell (0.1 µCi/µL of mannitol in buffer). The plates were then 

incubated in a humidified incubator (37°C, 5% CO2). After 1 hour, 100 µL of sample 

was taken from basolateral compartment and added to a vial containing 4mL of 

scintillation fluid. The radioactivity was measured by Packard Tri-Carb 3100 TA 

Liquid Scintillation Counter (Perkin-Elmer, Cambridge, UK).  
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6.2.7 Linezolid Cellular Accumulation in MDCK and MDCK-MDR1 cells 

MDCK and MDCK-MDR1 cells were seeded in 4 wells of a 6-well plate at 1 x 106 

cells/well for 24 hours in a humidified incubator (37oC, 5% CO2). Media were then 

replaced with DMEM containing 10% FBS with linezolid at 6 µg/mL, 14 µg/mL or 

21 µg/mL with or without verapamil (4.5 µg/mL; 10 µM; P-gp inhibitor) and 

incubated for 1 hour (37oC, 5% CO2).320 Post-incubation, the media was collected to 

determine extracellular linezolid concentration. Subsequently, cells were washed 3 

times with cold HBSS to remove remaining culture media. Cells were removed from 

the culture plate by trypsinisation with 1mL of trypsin-EDTA per well and incubation 

for 10 minutes in a humidified incubator (37°C, 5% CO2). After incubation, the cells 

were agitated for detachment and transferred to vials to be sent for the measurement 

of intracellular substrate concentrations. 

 

6.2.8 Digoxin Cellular Accumulation in MDCK and MDCK-MDR1 cells 

Parallel accumulation experiments with digoxin were conducted in MDCK and 

MDCK-MDR1 cells to confirm the over-expression of P-gp in MDCK-MDR1 cells 

as compared to MDCK cells. The cells were seeded in 4 wells of a 6-well plate at 1 x 

106 cells/well for 24 hours in a humidified incubator (37oC, 5% CO2). Media were 

then replaced with DMEM containing 10% FBS with digoxin (7.8 µg/mL; 10 µM) 

with or without verapamil (4.5 µg/mL; 10 µM; P-gp inhibitor). Radioactive [3H]-

digoxin was added along with digoxin at a concentration of 0.1 µCi/mL. The cells 

were then incubated for 1 hour (37oC, 5% CO2). After incubation, 100 µl of the 

supernatant fraction was taken and transferred to a scintillation vial to determine the 
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extracellular substrate concentration. The cells were then washed 3 times with cold 

HBSS to remove the remaining culture media. Cells were removed from the culture 

plate by trypsinisation with 1mL of trypsin-EDTA per well and incubation for 10 

minutes in a humidified incubator (37°C, 5% CO2). After incubation, the cells were 

agitated for detachment and transferred to scintillation vials for measurement of 

intracellular substrate concentrations. A volume of 4 mL of scintillation cocktail was 

added to the vials and the radioactivity count was measured by a Packard Tri-Carb 

3100 TA Liquid Scintillation Counter (Perkin-Elmer, Cambridge, UK).  

 

6.2.9 Linezolid Bioanalysis 

Linezolid concentrations were quantitatively determined using LC/MS/MS at the 

Division of Clinical Pharmacology, University of Cape Town. 

Linezolid was extracted from a 100 µL sample using 200 µL of ACN containing a 

stable isotopic labelled internal standard (Linezolid-D3, 1 µg/mL). Samples contained 

Madin-Darby canine kidney epithelial cells (MDCK) or MDCK-MDR1 cells 

overexpressing P-gp transporters, both in DMEM containing 10% FBS.   The 

extraction tubes were vortexed for 1 min, and centrifuged at 5590 g for 5 min.  Two 

hundred microliters of the supernatant were removed and transferred to 96-well 

plates.  

Chromatographic separation was performed on an Agilent 1200 High Performance 

Liquid Chromatography (HPLC) system comprising a binary pump, degasser, column 

compartment and an auto sampler (Agilent, Little Falls, Wilmington, USA). A 

reversed-phase HPLC column (Gemini NX C18 2.6 µm, 50 mm x 2.1 mm, 
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Phenomenex) was used with a pre-column filter (0.2 µm, Supelco). Mobile phases 

consisted of water containing 0.1% formic acid in line A and ACN containing 0.1% 

formic acid in line B. The mobile phases were delivered with a gradient of 5% ACN 

over 0.1 min, increased to 95% ACN over 1.9 min, held at 95% ACN for 1 min, 

dropped to 5% ACN in 0.6 min and held at 5% for 2.4 min for equilibration, with a 

flow rate of 0.5 mL/min for a total run time of 6 min.  The column was kept at 20°C. 

Samples were cooled to 4°C whilst awaiting injection, and 5 µL was injected onto the 

analytical column. 

Electrospray ionization was used in the positive ionization mode at unit resolution. 

The following multiple reaction monitoring transitions were monitored and the 

transition of the protonated precursor ions m/z 337.3 and m/z 340.5 to the product 

ions m/z 296.1 and m/z 297.3 were recorded for linezolid and linezolid-D3, 

respectively. The ion spray voltage was set at 4500 V. The source temperature was 

set at 300°C. The nebulizer gas, curtain gas and auxiliary gas pressures were set at 

30, 55 and 45 arbitrary units, respectively.  

Data acquisition and analysis were performed using Analyst 1.6.2 software.  The 

calibration range was between 5 and 20,000 ng/mL.  The accuracy (%Nom) and 

precision (%CV) statistics of the low, medium, and high quality controls (n=3) were 

between 97.8 and 112.3%, and below 15%, respectively. 
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6.2.10 Data Analysis 

Cytotoxicity of drugs were calculated as percentage of cells alive after exposure to 

varying concentrations of drugs compared to cells in control group. The background 

luminescence was subtracted from the luminescence given out by cells exposed to 

drugs and in control group. Cell viability was then calculated using the formula: 

Cell	Viability	% =	
Luminiscence	of	cells	after	exposure	to	drugs

Luminiscence	of	cells	in	control
	× 	100 

 

Apical to basolateral (A®B) and basolateral to apical (B®A) apparent permeability 

(Papp) was calculated using the formula: 

Papp = (_` _a)⁄

(bc	d	e)
 

Where dQ/dt is the rate of drug permeation, C0 is the drug concentration in the donor 

compartment at time 0, and A is the area of the monolayer. 

 

Cellular accumulation ratio for linezolid and digoxin was calculated using the 

following formula (where DPM = disintegrations per minute): 

UVW =
(.$+,-)*XX#X-,YZ[ +&+-X⁄ )*XX	/&X#]*)

(*^+,-)*XX#X-,YZ[ *^+,-)*XX#X-,⁄ /&X#]*)
 

Cellular volumes were determined using the ScepterTM cell counter 2.0 (Merck 

Millipore, Billerica USA). Cell volumes were taken from a mean of 3 replicates, 

MDCK-MDR1 volume 3.7 pl. 
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Normality of data was assessed using a Shapiro-Wilk test. If data were not normal, 

log values were calculated and used to calculate statistical significance. An unpaired 

t-test was performed to assess statistical significance using SPSS 22.0. Statistical 

significance was defined as P<0.05. Figures were made using Graph-pad Prism 

(Version 6) 
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6.3 Results 

6.3.1 Drug Toxicity 

The drugs used in the study did not exhibit any cytotoxicity in MDCK (Figure 

6.1(A)), MDCK-MDR1 (Figure. 6.1(B)) and Caco-2 (Figure 6.1(C)) cells. Cell 

viability was above 80% at all tested concentrations.  

 

 

 

Figure 6.1 (A). Toxicity of linezolid (1000 µg/mL – 1.95 µg/mL), digoxin (78.01 

µg/mL – 0.15 µg/mL) and verapamil (45.5 µg/mL – 0.08 µg/mL) on MDCK cells. 

n = 4. 
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Figure 6.1 (B). Toxicity of linezolid (1000 µg/mL – 1.95 µg/mL), digoxin (78.01 

µg/mL – 0.15 µg/mL) and verapamil (45.5 µg/mL – 0.08 µg/mL) on MDCK-

MDR1 cells. n = 4. 
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Figure 6.1 (C). Toxicity of linezolid (1000 µg/mL – 1.95 µg/mL), verapamil (45.5 

µg/mL – 0.08 µg/mL), FUMC (50 µg/mL – 0.1 µg/mL) and MK-571 (40 µg/mL 

– 0.08 µg/mL) on Caco-2 cells. n = 4. 
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6.3.2 Transport of Linezolid Across Caco-2 Monolayers 

At 1 hour, a significant decrease in A®B transport of linezolid (Table 6.1) was seen 

in the presence of verapamil (7.13 x 10-6; p = 0.007) as compared to control (9.48 x 

10-6). There was a significant increase in A®B transport of linezolid when co-

incubated with FUMC (12.62 x 10-6; p = 0.009) and MK-571 (15.9 x 10-6; p = 0.0002).  

Verapamil did not have any statistically significant effect on the B®A movement of 

linezolid (19.16 x 10-6; p = 0.067). The presence of FUMC (31.12 x 10-6; p = 0.001) 

and MK-571 (37.51 x 10-6; p = <0.001) led to an increase in B®A movement of 

linezolid compared to control (23.88 x 10-6).  

A significant reduction in the efflux ratio (p = 0.022) of linezolid was seen in the 

presence of MK-571. Verapamil and FUMC did not have any significant effect on the 

efflux ratio of linezolid. 

 
  



 162 

Table 6.1. Change in the Papp A®B and Papp B®A transport of 14 µg/mL of linezolid at 1 hour in the presence of verapamil, FUMC and MK-      

571 across Caco-2 monolayers. Statistical significance by unpaired t-test. n = 4. 

Inhibitor Transporter Papp A®B 
(x10-6) 

ST. Dev 
(x10-6) 

P Value Papp B®A 
(x10-6) 

ST. Dev 
(x10-6) 

P  Value Efflux 
Ratio 

P Value 

Linezolid Control 9.48 0.33 N/A 23.88 1.25 N/A 2.51 N/A 

Linezolid + 
verapamil 

P-gp 
(ABCB1) 7.13 0.86 0.007 19.16 3.48 0.067 2.68 0.336 

Linezolid   
+    FUMC 

BCRP 
(ABCG2) 12.62 1.17 0.009 31.12 1.81 0.001 2.47 0.468 

Linezolid + 
MK-571 

MRP 
(ABCC) 15.90 0.88 0.0002 37.51 1.65 <0.0001 2.36 0.022 
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6.3.3 Cellular Accumulation of Linezolid with and without P-gp Inhibitor 

Verapamil 

Verapamil did not influence the cellular accumulation of linezolid in MDCK cells 

(Figure 6.2(A)) at the tested concentrations of 6 µg/mL (p = 0.391), 14 µg/mL (p = 

0.454) and 21 µg/mL (p = 0.323). Similarly, verapamil did not change the cellular 

accumulation of linezolid in MDCK-MDR1 cells (Figure 6.2(B)) at 6 µg/mL (p = 

0.717) and 14 µg/mL (p = 0.114). However, a significantly higher cellular 

accumulation of linezolid at 21 µg/mL (p = 0.035) in MDCK-MDR1 cells was 

observed (Figure 6.2(B)).  

 

 

 

Figure 6.2. Cellular accumulation of linezolid at varying concentrations in MDCK 

(A) and MDCK-MDR1 cells (B) in the absence and presence of verapamil. Unpaired 

t-test used to establish significance for differences in linezolid accumulation. n = 4. P 

Value: *, < 0.05; **, < 0.01; ***, < 0.001; ****, £ 0.0001 
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6.3.4 Cellular accumulation of digoxin in the absence and presence of P-gp 

inhibitor verapamil 

Cellular accumulation of digoxin (10 µM) in the presence and absence of verapamil 

(10 µM) were analysed (Figure. 6.3). It was seen that the cellular accumulation of 

digoxin was lower in MDCK-MDR1 cells compared to MDCK cells in the absence 

(p = 0.0008) and presence (p ≤ 0.0001) of verapamil.   

 

 

 

Figure 6.3. Cellular accumulation of digoxin (10 µM) in MDCK and MDCK-MDR1 

cells in the absence and presence of known P-gp inhibitor verapamil (10 µM). 

Unpaired t-test used to establish statistical significance. P Value: *, < 0.05; **, < 0.01; 

***, < 0.001; ****, £ 0.0001 
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6.4 Discussion 

DDIs with linezolid have not been extensively studied, but case studies have 

described treatment failure on co-administration of rifampin384 and selective 

serotonin reuptake inhibitors.385 Bolhuis et al. have demonstrated an increase in 

linezolid exposure in the presence of clarithromycin, a potent P-gp inhibitor.386 These 

findings warrant an investigation of the interaction of linezolid with transporters.  

In the present study, verapamil decreased linezolid transport from A®B (Table 6.1), 

which is counterintuitive of an effect mediated by apically expressed P-gp, where an 

increase in A®B permeation would be expected. However, verapamil is known to 

inhibit a wide range of apical influx and basolateral efflux transporters such as such 

as OATP1A2387 and OCT1388 in Caco-2 cells.389 This observation may indicate that 

linezolid is a substrate for additional transporters not investigated in this study. Due 

to these observations, the interaction of linezolid with P-gp was further investigated 

by assessing cellular accumulation in MDCK and MDCK-MDR1 cells. MDCK-

MDR1 cells overexpress P-gp and this circumvents the problems of cross-interactions 

between multiple transporters in a non-transfected cell system.313 A change in cellular 

accumulation of linezolid can be attributed to the change in activity of P-gp. 

The over-expression of P-gp in MDCK-MDR1 cells was confirmed by cellular 

accumulation experiments using digoxin as a substrate. In MDCK-MDR1 cells, a 

significantly lower accumulation of digoxin with and without verapamil was seen 

compared to digoxin accumulation in MDCK cells, confirming the proper functioning 

of MDCK-MDR1 cells. At all concentrations tested, the accumulation of linezolid 

was lower in MDCK-MDR1 cells than in the parental MDCK cells (Figure 6.2). In 

MDCK-MDR1 cells, verapamil significantly inhibited linezolid efflux at 21 µg/mL 
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(p = 0.035), but not at 6 µg/mL (p = 0.717) and 14 µg/mL (p = 0.114). This may again 

be explained by interference of other canine transporters within these cells that 

transport linezolid that may masking the influence of verapamil at lower 

concentrations. Nonetheless, the results demonstrate the influence of verapamil on 

linezolid, confirming that linezolid is a P-gp substrate. 

The increase of linezolid transport from A®B in the presence of FUMC (p = 0.009) 

and MK-571 (p = 0.0002) can be attributed to the inhibition of BCRP and MRP efflux 

transporters, respectively, which are both situated on the apical surface of Caco-2 

monolayers.382 

Interestingly, the presence of FUMC (p = 0.001) and MK-571 (p ≤ 0.001) also led to 

an increase in basolateral to apical (B®A) linezolid permeability.  The integrity of 

the monolayers were assessed using an assessment of the TEER and [14C]-Mannitol 

and demonstrated to be within acceptable limits. It cannot be ruled out that these 

inhibitors also impact other transporters. FUMC has been shown to impact 

transporters other than BCRP,390 and MK-571 is relatively non-specific to MRP 

isoforms391 some of which are basolaterally expressed.392 Nonethless, MK-571 

significantly reduced the efflux ratio (2.36, p = 0.022) of linezolid compared to the 

control (2.51). 

The International Transporter Consortium states that a molecule is potentially a P-gp 

or BCRP substrate if the if the efflux ratio is ³ 2 in a cell system that expresses both 

the transporters. Moreover, if P-gp and BCRP inhibitors do not reduce the efflux ratio 

by 50%, other transporters maybe involved in the observed net flux.314 Our findings 

show that the linezolid efflux was 2.51 indicating that it is a potential substrate of P-

gp and BCRP. Moreover, the P-gp and BCRP inhibitors failed to reduce the efflux 
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ratio significantly indicating the involvement of other transporters affecting linezolid 

transport. These findings indicate that although linezolid is a substrate of P-gp and 

BCRP, involvement of other transporter may mean that these two transporters are less 

important in vivo. 

A limitation of this study is that the tested transporter inhibitors are non-specific and 

can make it difficult to pin-point the exact transporter involved in the drug disposition. 

This was the first study done to assess the influence of P-gp, MRP and BCRP 

transporters on linezolid transport. The findings suggest the tested inhibitors influence 

the disposition of linezolid and provides a rationale for studies to assess linezolid 

transport by use of cells that are transfected and over-express a certain transporter, 

similar to the MDCK-MDR1 cells. Additionally, studies that determine the Vmax and 

Km of linezolid are required to determine the affinity of linezolid to a transporter. 

In conclusion, this study showed that the BCRP inhibitor FUMC and MRP inhibitor 

MK-571 had a significant effect on the permeability of linezolid across Caco-2 cell 

monolayers. The demonstration that linezolid is a P-gp substrate may explain the low 

serum concentrations of this drug when co-administered with rifampicin; a P-gp 

inducer that facilitates the clearance of P-gp substrates.384 Further studies are would 

be required to pin-point the mechanisms involved in the transport of linezolid by other 

transporters. 
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Chapter 7 

 

General Discussion 
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Although there is currently no cure for HIV, remarkable strides in the past couple of 

decades have reduced the spread of the disease. Strategies such as raising awareness 

about HIV, prompting HIV testing and counselling of patients have played an 

important role in curbing the spread of infection.393 However, the benefits of 

pharmacological interventions on limiting new HIV infections as well as improving 

the morbidity and mortality of individuals infected with HIV are unparalleled.394 

HAART reduces the viral load in infected individuals, preventing damage to CD4+ 

cells and loss of immunity.395 Early initiation of HAART is also associated with 

decreased transmission of HIV on exposure,396,397 and a significant reduction in 

AIDS-defining and non-AIDS-defining illnesses.398 As a result of these findings, the 

WHO 2015 guidelines recommend initiation of multidrug ART for all HIV infected 

individuals regardless of the WHO clinical stage or CD4+ T-cell count.258 

Additionally, use of HAART for PrEP for the reduction of HIV transmission in high-

risk populations is promising.399 

Notwithstanding the advantages, treatment with HAART is not without challenges. 

Individuals infected with HAART must adhere to a strict HAART regimen 

throughout their lives for effective treatment, and missed doses can give rise to 

resistance to the ARVs thereby limiting the options for subsequent treatment.92 Long 

term ARV administration is costly,400 requiring permanent changes in lifestyle401 and 

can lead to debilitating conditions due to drug toxicities.86  

The pharmacokinetics and pharmacodynamics of drugs depend on a host of factors 

(Figure 7.1). ART is often combined with other drugs used to treat OIs and 

concomitant illnesses. Presence of an inducer/inhibitor of metabolic enzymes and 

transporters, or plasma protein displacers, can commonly result in DDIs.259 The 

excipients used in formulations have also shown to exert biological effects on drugs 
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and are being exploited to achieve favourable drug PK. Furthermore, genetic 

variability in patients affecting the drug metabolism and disposition can affect drug 

PK, affecting treatment outcomes.165 Understanding these influence on drug PK are 

paramount for designing rational therapies.  

 

Figure. 7.1 Graphical representation of the factors contributing to the 

pharmacokinetics and pharmacodynamics of a drug 

 

The use of 2 NRTIs as a backbone along with a third agent from a different class has 

been recommended in many guidelines for the treatment of HIV.80,102 However, some 

of the most important concerns faced when administering NRTIs are toxicity and 

cross resistance. For example, zidovudine is associated with anaemia, hepatotoxicity 

and cardiomyopathy and is associated with cross resistance.402 Similarly, tenofovir is 

associated with mitochondrial toxicity affecting glomerular filtration, creatinine 
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secretion and bone density.226 With the development of superior ARVs, such as 

second-class PIs and integrase inhibitors, regimens without NRTIs are currently being 

tested for the treatment of HIV. A Phase III, randomized, open labelled trial called 

NEAT 001 / ANRS 143, was conducted to analyse the efficacy of a novel NRTI-

sparing dual combination of darunavir/r and raltegravir against a standard-of-care 

triple therapy of darunavir/r and TDF/emtricitabine in HIV-infected antiretroviral 

naïve subjects. One objective of this study was to investigate the effect of SNPs on 

the drugs administered in this clinical trial; described in Chapters 2 and 3. This study 

contains the largest sample size of participants to date, in which specific SNPs have 

been tested and shown to have a clinically-significant association with darunavir, 

ritonavir, tenofovir, emtricitabine and raltegravir plasma concentrations. 

The pharmacokinetic profile of darunavir and raltegravir are exclusive to each other, 

suggesting a lack of DDIs between the two when co-administered. However, 

darunavir concentrations were lower in patients receiving darunavir/r with raltegravir 

compared to darunavir/r with tenofovir and emtricitabine. An interaction between 

darunavir and tenofovir has been suggested by Hoetelmans et al. who demonstrated 

an increase in the Cmax, AUC and Cmin of darunavir by 16%, 21% and 24% 

respectively, in the presence of TDF.200 The mechanism of this interaction is 

unknown. Conversely, an interaction between darunavir and raltegravir was reported 

in multiple studies in the past.201,202 Similarly, ritonavir concentrations were seen to 

be significantly lower in patients receiving darunavir/r with raltegravir compared to 

darunavir/r with tenofovir and emtricitabine. Since ritonavir and darunavir are PIs and 

share similar pharmacokinetic properties, the mechanisms causing DDIs with 

darunavir may also be responsible for DDIs with ritonavir. The exact mechanism of 

this DDIs cannot be hypothesised from the current data on the pharmacokinetics of 
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protease inhibitors and raltegravir. Additional studies are needed to characterise the 

profile of these drugs. 

The  results from the NEAT001/ANRS143 study showed a higher percentage of 

treatment failure in the patients receiving raltegravir compared to those receiving 

TDF/emtricitabine and is correlated to below detectable levels of darunavir.110 

Moreover, a significantly higher number of mutations were seen in patients receiving 

raltegravir compared to no mutations in patients receiving TDF/emtricitabine.204  

With the exception of SLCO1B1 521T>C (rs4149056) and SLCO3A1 G>A 

(rs4294800), none of the tested polymorphisms were found to significantly affect the 

drug plasma concentrations. SLCO1B1 521T>C resulted in significantly higher (p = 

0.038, β = 0.075) concentration of darunavir at week 4. Similarly, SLCO3A1 G > A 

(rs4294800) was associated with higher ritonavir plasma concentrations at week 4. 

This polymorphism was chosen from a Physiologically based pharmacokinetic 

(PBPK) model that investigated darunavir PK in pregnant women has suggested 

involvement of hepatic transporters in the disposition of darunavir. Molto et al. using 

a pop-PK-model, showed a significant effect of SLCO3A1 G > A (rs4294800) and 

SLCO3A1 G > T (rs8027174) polymorphisms, that code for OATP3A1, on darunavir 

clearance and apparent volume of distribution.190 To our knowledge, the transport of 

darunavir via OATP3A1 has not been demonstrated by in vitro experimentation. 

Robust experiments that confirm the substrate recognition of darunavir by the 

OATP3A1 transporter.  

Multivariate regression analysis did not show associations between UGT1A1*28 and 

raltegravir plasma concentration. However, a P value of 0.5 with β of 0.115 indicates 

a trend towards higher raltegravir plasma concentrations in the presence of 
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UGT1A1*28 allele. Raltegravir has high intra-patient variability and a single time 

point collection was taken at week 4 and week 24 will not be precise to evaluate the 

influence of genetic polymorphisms. A co-relation between the pharmacodynamic 

properties of raltegravir such as treatment efficacy and adverse events will be more 

accurate to describe the influence of UGT1A1*28. 

Although these findings are observed in clinical samples, they do not reflect the effect 

of SNPs on treatment. The results of the NEAT 001/ ANRS 143 show that darunavir/r 

+ raltegravir was non-inferior to darunavir/r + tenofovir + emtricitabine.110 An 

analysis of the influence of SNPs on not only the PK, but also the adverse events are 

warranted for an accurate representation of the effects of genetic polymorphisms. A 

precaution to be taken while interpreting these results is that due to strict inclusion 

and exclusion criteria, the participants in the study may not be fully representative of 

patients in a clinical setting. Management of HIV is complicated and involves 

variables such as co-morbidities, co-medications and altered physiologies. Moreover, 

NEAT 001/ANRS 143 being a multi-centre study, it is possible that factors that could 

cause a significant impact on drug PK and is restricted to an environment have not 

been included in the analysis. For example, the herbal preparations included in the 

Indian medicine ‘Ayurveda’ may result in significant DDIs with ARVs, influencing 

ART. Hence, these findings though informative, may not be universally applicable. 

Investigations into the genetic variability provide an important tool to personalise 

medicine as it helps predict the efficacy of a treatment and the adverse effects in 

patients.403 Recently, data on genetic variability is being incorporated into designing 

clinical trials to assess the efficacy of drugs on translation from bench-to-bedside. 

Adding genetic genotypes into the selection criteria helps assessing the influence on 

different groups based on their genotype.404 For example, the trial investigating the 
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effects of a 5-lipooxygenase-activating protein inhibitor on biomarkers of myocardial 

infarction enrolled patients containing the at-risk variants in the FLAP gene.405 

There are thousands of polymorphisms that are found in genes that code for proteins 

responsible for drug metabolism and disposition and most of them do not have any 

significant changes on the drug PK. However, some polymorphisms have a significant 

impact warranting dose adjustment. For example, the presence of CYP2B6*6 allele, 

commonly found in black populations, is responsible for increased plasma 

concentration of efavirenz and adverse events. Vigilance during administration of 

efavirenz to black populations and dose-adjustments for people carrying this allele is 

recommended.406   

The effects of induction and inhibition of metabolic enzymes and transporters on 

DDIs have been well-established. However, there is a lack of consensus on the role 

of plasma protein binding and displacement on DDIs.154 Displacement of a drug from 

the plasma protein will increase the unbound fraction and could result in an increase 

in Cmax, potentially causing toxicity and therefore requiring dose adjustment.272 

Additionally, higher unbound concentrations increase the clearance of the drug 

resulting in a drop in Cmin below MEC.273 These changes may result in treatment 

failure. Although the displacement from plasma proteins have been demonstrated in 

vitro, their clinical significance is routinely questioned.283 In chapter 4, the level of 

plasma protein binding of darunavir, atazanavir, ritonavir and lopinavir was measured 

along with their displacement using known AAG and albumin displacers. This data 

will improve clarity in the evaluation of the clinical significance of plasma protein 

binding measurements. 
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The findings showed that darunavir (14.2%) and atazanavir (8.4%) unbound 

percentages differ from the values stated in previous literature (3.5% and 14% for 

darunavir and atazanavir respectively).275,282 These corrected values will help in 

accurate representations of the pharmacokinetic profiles such as clearance and 

volume of distribution, for darunavir and atazanavir. It will also help in precise 

predictions of drug effects in future PBPK modelling efforts. Lopinavir and ritonavir 

are unbound at 1.1% and 0.7% respectively, which is similar to the values reported in 

previous literature. We also found that all the PIs bind to both AAG and albumin at 

the bilirubin site.  

When both AAG and albumin displacers were combined, a greater increase in the 

unbound percentage was seen. This may represent an evolutionary mechanism to 

prevent high unbound concentrations of substances that could result in toxicity, and 

may explain why protein binding displacement rarely causes significant clinical 

DDIs.154 However, it is possible that in cases of co-morbidities or altered physiologies 

that cause changes in AAG and albumin concentrations, displacement from plasma 

proteins could result in clinical significant DDIs. Vigilance over displacement DDIs 

in individual cases may therefore be required. 

Our study used HIV non-infected plasma compared to the HIV-infected individuals 

in previous studies which might explain the discrepancies in the results. A thorough 

investigation into the changes of plasma protein binding due to HIV infection and its 

impact on protein binding is warranted. Furthermore, the reproducibility of these 

results with different displacers need to be assessed.  

This data assist pharmacologists in designing drugs that are less susceptible to DDIs. 

For example, drugs with low protein binding and bind to both AAG and albumin, 
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when displaced, will have a low impact on the unbound fraction and drug 

pharmacology. A well-characterised profile of the plasma protein binding of drugs 

will also help PBPK modelling as it is an important variable to predict volume of 

distribution and clearance.407  

The inertness of excipients was disproved by studies that demonstrated changes in the 

transporter-mediated absorption of substrates292,294 and alterations in CYP enzyme 

activity.295,296 This adds new modalities for potential DDIs. P-gp is an efflux 

transporter303 and a change in its activity through inhibition or induction by excipients 

can cause significant changes in the disposition and PK of substrate drugs. A thorough 

investigation of the effects of excipients on P-gp is beneficial to predict changes in 

the PK of drugs. Importantly, these properties can be exploited to design rational 

formulations by which the excipients can be used as pharmacoenhancers. For 

example, Vit-E-PEG is increasingly used in formulations to increase the 

bioavailability of drugs by inhibiting P-gp.325,326 In Chapter 5, we analysed the 

concentration-dependent inhibitory effects of 25 commonly used excipients on P-gp 

by measuring the accumulation of P-gp probe substrate digoxin in MDCK-MDR1 

cells in the presence of the excipients. 

The inhibition of P-gp by commonly-used pharmaceutical excipients was 

demonstrated by the following order of effects: Cremophor EL > Vit-E-PEG > Brij 

58 > Tween 80 > NaCMC > Tween 20 > CTAB > Solutol HS 15 > AOT. The P-gp 

inhibition by Vit-E-PEG,326 Cremophor EL,408 AOT,342 Tween 20, 334 Tween 80,336 

CTAB344 and Solutol HS 15332 have been described in the past and were confirmed 

in this thesis. Moreover, the presented data represent the first-time P-gp inhibitory 

effects of Brij 58 and NaCMC have been demonstrated in vitro. No inhibition of P-

gp was observed with NaCap, NaDC, PEG, PVA, HPMC, HG, PVP K30, Sisterna 
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11, Sisterna 16, Hyamine, HPC, Kollicoat, PVPP and magnesium stearate. To our 

knowledge, there are no published studies to date that state otherwise. It must be noted 

that cytotoxicity was observed with NaDC, AOT, Brij 58, Hyamine, CTAB, NaCMC 

and Sisterna 16.  

The biological effects of the excipients can be exploited to boost the pharmacokinetic 

properties of drugs. Such characterisations will aid the manufacturers in the choice of 

excipients in while designing formulations. The effect so these excipients on other 

transporters needs to be explored. 

The decrease in the CD4+ cell count weakens the immune system and renders the 

body helpless against OIs such as TB and therefore needing treatment. ART and ATT 

consists of multiple drugs that cross-interact resulting in DDIs. These drugs are highly 

toxic and the DDIs observed have been co-related to low adherence, treatment 

discontinuation and MDR-TB.22 It is important to have a well-defined profile of drugs 

present in both ART and ATT. Linezolid, an oxazolidinone, is found to be active 

against Enterococcus faecalis, Staphylococcus aureus, Chlamydia pneumoniae, 

Haemophilus influenza and TB.174,370 It has good bioavailability, no cross 

resistance371 and a high genetic barrier to resistance372  making it popular against 

MDR-TB. To ensure efficient use, it is important to explore all the pharmacological 

properties of linezolid. Linezolid is suspected to be a P-gp substrate, but no data 

currently exist to show substrate affinity for P-gp or other ABC transporters that 

mediate DDIs and resistance.380 More drug transporter data are therefore needed to 

inform DDI prediction and management. Accordingly, in Chapter 6, the substrate 

recognition by P-gp, BCRP and MRP transporters was investigated. The transporter 

substrate properties of linezolid was assessed across Caco-2 monolayers in the 

presence or absence of P-gp, MRP and BCRP inhibitors verapamil381, MK-571382 and 
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FUMC,383 respectively. To further corroborate these results, linezolid accumulation 

was measured in MDCK-MDR1 cells. 

Verapamil, MK-571 and FUMC all influenced either A®B or B®A transport of 

linezolid across Caco-2 membranes. However, this effect was not in line with the 

expected effects of inhibiting P-gp, MCRP and MRP. To futher explore this, linezolid 

accumulaton in the presence of verapmail was tested in MDCK-MDR1 cells. A 

significant increase in intracellular concentrations confirmed that linezolid was a 

substrate of P-gp. We hypothesise that this variation is due to the infidelity in 

transpoter inhibition shown by verapamil, MK-571 and FUMC. Verapamil is known 

to inhibit a wide range of apical influx and basolateral efflux transporters such as such 

as OATP1A2387 and OCT1388 in Caco-2 cells.389 Similarly, FUMC has been shown 

to impact transporters other than BCRP,390 and MK-571 is relatively non-specific to 

MRP isoforms391 some of which are basolaterally expressed.392  

These findings show that linezolid transport is affected by verapamil, MK-571 and 

FUMC, however, the exact transporter involved remains unclear. Additional studies 

are required to confirm transport in the presence of an inhibitor that is specific to a 

transporter, or cells lines that over-express the specific transporters. This will help 

design superior anti-tubercular therapies and help predict DDIs when co-administered 

with other drugs.  

In conclusion, SLCO1B1 521T>C (rs4149056) and SLCO3A1 G>A (rs4294800) is 

associated with a significant increase in the darunavir and ritonavir plasma 

concentrations respectively. Darunavir and ritonavir seem to interact with either 

tenofovir or raltegravir and the pharmacokinetic properties of these drugs need further 

exploration. PIs bind to both AAG and albumin and when co-administered with 
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concomitant drugs could give rise to DDIs in special populations. Cremophor EL, 

Vit-E-PEG, Brij 58, Tween 80, NaCMC, Tween 20, CTAB, Solutol HS 15 and AOT 

inhibit P-gp and this needs to be considered while choosing excipients. Verapamil, 

MK-571 and FUMC influenced linezolid permeability and further studies are required 

to narrow down the transporters responsible for it. These findings will assist 

development of treatment strategies to ensure optimal treatment outcomes. 
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