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1 Introduction

This study develops a Schumpeterian growth model with endogenous entry of heterogeneous
firms to analyze the effects of monetary policy on economic growth. The canonical Schum-
peterian growth model in seminal studies such as Segerstrom et al. (1990), Grossman and
Helpman (1991) and Aghion and Howitt (1992) features an identical step size of quality
improvements across firms. In this study, we consider a Schumpeterian model with random
quality improvements as in Minniti et al. (2013) but with the addition of a fixed entry
cost to generate endogenous entry of firms with heterogeneous step sizes of quality improve-
ments. To incorporate money demand into this growth-theoretic framework, we impose a
cash-in-advance (CIA) constraint on R&D investment. Berentsen et al. (2012), Chu and
Cozzi (2014) and Chu et al. (2015) provide extensive discussion on evidence for the presence
of cash requirements on R&D expenditures.1 We capture these cash requirements using a
CIA constraint on R&D.
In this monetary growth-theoretic framework, we derive the following results. In the

special case of a zero entry cost, an increase in the nominal interest rate decreases R&D,
the arrival rate of innovations and economic growth as in previous studies, such as Chu and
Cozzi (2014) who consider a monetary Schumpeterian growth model with an identical step
size of quality improvements, because the distribution of innovations that are implemented
is exogenous under a zero entry cost despite random quality improvements. However, in the
general case of a positive entry cost, monetary policy affects the distribution of innovations
that are implemented. Specifically, an increase in the nominal interest rate decreases R&D
and the arrival rate of innovations, which increases the present value of future profits. The
resulting higher value of inventions leads to a lower threshold of quality improvements above
which an innovation is implemented generating a positive effect on economic growth due
to more entries. Together with the negative effect on the arrival rate of innovations, an
increase in the nominal interest rate would have an inverted-U effect on economic growth if
the entry cost is suffi ciently large. Because the Fisher equation gives rise to a positive long-
run relationship between the nominal interest rate and the inflation rate that is supported
by empirical studies such as Mishkin (1992) and Booth and Ciner (2001), our result also
implies an inverted-U relationship between inflation and economic growth. This theoretical
prediction on an inverted-U relationship between inflation and economic growth is supported
by empirical studies such as Bick (2010) and López-Villavicencio and Mignon (2011). We
calibrate the model to aggregate data of the US economy to provide a quantitative analysis
and find that the growth-maximizing inflation rate is 2.9%, which is close to the empirical
estimate in López-Villavicencio and Mignon (2011) who identify a threshold inflation rate of
2.7% for industrialized countries.

1For example, early empirical studies such as Hall (1992) and Opler et al. (1999) find a positive and
significant relationship between R&D and cash flows in US firms. More recently, Bates et al. (2009)
document that the average cash-to-assets ratio in US firms increased substantially from 1980 to 2006 and
argue that this is partly driven by their rising R&D expenditures. Brown and Petersen (2011) provide
evidence that firms smooth R&D expenditures by maintaining a buffer stock of liquidity in the form of cash
reserves. Falato and Sim (2014) use firm-level data in the US to show that firms’cash holdings increase
(decrease) significantly in response to a rise (cut) in R&D tax credits. These results suggest that due to
financial frictions, firms need to use cash to finance their R&D investment.
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We also simulate the welfare effects of inflation and find that the relationship between
inflation and social welfare is positive. Intuitively, an increase in the nominal interest rate
reduces the threshold of quality improvement (and equivalently markup) for entries. The
resulting decrease in the overall price level of monopolistic intermediate goods stimulates
the demand for them and increases the production of final good. The increase in output
leads to more consumption, which represents a positive welfare effect, and this positive effect
dominates other welfare effects of inflation under our calibrated parameter values.
Furthermore, we consider two extensions to the benchmark model. Our model with a

Pareto distribution of random quality improvements and a Cobb-Douglas aggregator implies
that some of the monopolistic prices can be arbitrarily large, which is empirically unrealistic.
Therefore, we generalize our benchmark model by imposing an upper bound on equilibrium
prices. In this case, we find that if the upper bound on equilibrium prices is suffi ciently large,
then our model would still feature an inverted-U effect of inflation on growth. As for the
simulated welfare effects of inflation, they remain positive under our calibrated parameter
values. Finally, given that our benchmark model features inelastic labor supply, we consider
another extension by allowing for elastic labor supply and a CIA constraint on consumption.
In this case, we find that the welfare effects of inflation are sensitive to the strength of the
CIA constraint on consumption.
This study relates to the literature on innovation and economic growth. The R&D-

based growth model originates from Romer (1990), who develops a variety-expanding growth
model in which economic growth is driven by the development of new products. Then,
Segerstrom et al. (1990), Grossman and Helpman (1991) and Aghion and Howitt (1992)
develop the Schumpeterian quality-ladder growth model in which economic growth is driven
by the quality improvement of existing products. For simplicity, these studies assume an
identical step size for all quality improvements. A recent study by Minniti et al. (2013)
generalizes the Schumpeterian model by allowing for heterogeneous step sizes of quality
improvements that are randomly drawn from a Pareto distribution. Our study extends the
elegant framework of Minniti et al. (2013) by introducing a fixed entry cost of implementing
a developed invention in order to generate endogenous entries of heterogeneous firms,2 which
turn out to have important implications on the effects of monetary policy. Recently, Iwaisako
and Ohki (2017) also consider a quality-ladder model with random quality improvements,
and they consider a uniform distribution with an upper bound on the profits of monopolistic
firms.
This study also relates to the literature on inflation and innovation. In this literature,

Marquis and Reffett (1994) is the seminal study that analyzes the effects of inflation on
innovation in the Romer variety-expanding growth model. In contrast, we analyze the ef-
fects of inflation in a Schumpeterian quality-ladder model as in Chu and Lai (2013), Chu
and Cozzi (2014), Chu et al. (2015), He and Zou (2016), Huang et al. (2017) and Neto
et al. (2017), whose models however feature an identical step size of quality improvements
across firms. Chu and Ji (2016) and Huang et al. (2015) consider monetary policy in a
Schumpeterian growth model with both variety expansion and (identical) quality accumu-

2See also Baldwin and Robert-Nicoud (2008), Haruyama and Zhao (2008) and Gustafsson and Segerstrom
(2010) who adapt this fixed entry cost into the R&D-based growth model, but they do not consider random
increments on the quality ladder.
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lation across firms. Arawatari et al. (2016) and Hori (2017) consider monetary policy in
the Romer variety-expanding model with heterogeneity in the productivity of R&D entre-
preneurs. As in Marquis and Reffett (1994), these studies predict a monotonic relationship
between inflation and economic growth.3 The present study contributes to this literature by
allowing for the endogenous entry of firms with heterogeneous step sizes of quality improve-
ments, which gives rise to a novel channel through which monetary policy affects innovation
and growth. As a result, the model generates an inverted-U relationship between inflation
and economic growth, which is supported by recent empirical studies.
The rest of this study is organized as follows. Section 2 presents and solves the model.

Section 3 analyzes the growth and welfare effects of monetary policy. Section 4 considers a
number of extensions to the benchmark model. The final section concludes.

2 A Schumpeterian model with heterogeneous firms

The Schumpeterian quality-ladder growth model is based on Grossman and Helpman (1991).
We extend their model by (a) introducing money demand via a CIA constraint on R&D to
analyze monetary policy, (b) considering lab-equipment innovation and entry processes that
use final good (instead of labor) as the input, (c) allowing for random quality improvements
as in Minniti et al. (2013), and (d) incorporating a fixed entry cost to generate endogenous
entry of heterogeneous firms as in Melitz (2003). In summary, when a firm invents a higher
quality product, the step size of the quality increment is randomly drawn from a Pareto
distribution. If and only if the quality increment is suffi ciently large, then the firm would
pay the fixed entry cost to implement the invention and enter the market.

2.1 Household

In the economy, there is a representative household which has the following lifetime utility
function:

U =

∫ ∞
0

e−ρt ln ctdt, (1)

where the parameter ρ > 0 is the subjective discount rate and ct denotes consumption of
final good (numeraire) at time t. The household maximizes utility subject to an asset-
accumulation equation (expressed in real terms) given by

ȧt + ṁt = rtat − πtmt + itbt + wt + τ t − ct. (2)

at is the real value of financial assets (in the form of equity shares in monopolistic intermediate
goods firms) owned by the household. rt is the real interest rate. πt is the inflation rate. mt is
the real money balance accumulated by the household. bt is the amount of money borrowed
by R&D entrepreneurs subject to the following constraint: bt ≤ mt. it is the interest rate on
money bt borrowed by R&D entrepreneurs, and it can be shown as a no-arbitrage condition

3The relationship between the two variables is usually found to be monotonically negative, but some of
these studies also find that the relationship can be monotonically positive under some conditions.
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that it must be equal to the nominal interest rate such that it = rt + πt from the Fisher
equation. To earn the wage rate wt, the household inelastically supplies one unit of labor.4

τ t is a lump-sum transfer from the government to the household. From standard dynamic
optimization, the familiar Euler equation is

ċt
ct

= rt − ρ. (3)

2.2 Final good

Final good is produced by perfectly competitive firms that employ labor and a composite of
intermediate goods as inputs. The production function of final good is Yt = LθtK

1−θ
t , where

Lt = 1 is labor input. Kt is a composite of intermediate goods produced with the following
Cobb-Douglas aggregator:

Kt = exp

{∫ 1

0

ln

[∑
j

qt(ω, j)yt(ω, j)

]
dω

}
, (4)

where the integer j in qt(ω, j) denotes the quality vintage of intermediate good ω. Let jω
denotes the highest-quality vintage in industry ω. Firms are indifferent between the highest-
quality vintage and the second-highest-quality vintage if their relative price is

pt(ω, jω)

pt(ω, jω − 1)
=

qt(ω, jω)

qt(ω, jω − 1)
≡ λt(ω), (5)

where λt(ω) > 1 is the quality increment between the two consecutive vintages of interme-
diate good ω at time t. As usual, whenever this equality holds, we focus on the case in
which firms buy the highest-quality intermediate good only. In equilibrium, only the highest
quality intermediate goods are traded. From profit maximization, the conditional demand
function for intermediate good ω is given by

yt(ω, jω) =
(1− θ)Yt
pt(ω, jω)

=
(1− θ)K1−θ

t

pt(ω, jω)
. (6)

Multiplying qt(ω, jω) to both sides of (6) and then aggregating the natural log of the resulting
equation with respect to ω, we derive

Kt = [(1− θ)Qt/Pt]
1/θ , (7)

where Qt ≡ exp
[∫ 1

0
ln qt(ω, jω)dω

]
and Pt ≡ exp

[∫ 1

0
ln pt(ω, jω)dω

]
denote respectively the

aggregate quality index and the aggregate price index of intermediate goods.

4Given that our model is already quite complex, we normalize the aggregate supply of labor to unity in
order to sidestep the issue of scale effects; see for example, Peretto (1998, 2007) and Segerstrom (1998) for
important ways of removing the strong scale effect in the Schumpeterian growth model. In the conclusion,
we discuss implications of scale effects in our model.
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2.3 Intermediate goods

There is a unit continuum of industries ω ∈ [0, 1] producing differentiated intermediate
goods. Each industry is temporarily dominated by a quality leader until the arrival and
implementation of the next higher-quality product. The owner of the new innovation becomes
the next quality leader.5 The current quality leader in industry ω uses one unit of final good
to produce one unit of intermediate good yt(ω, jω), so that the marginal cost of production
is one. From Bertrand competition,6 limit pricing yields the equilibrium price given by

pt(ω, jω) = λt(ω). (8)

Therefore, the amount of monopolistic profit in industry ω is

Πt(ω, jω) = [λt(ω)− 1] yt(ω, jω) =

[
λt(ω)− 1

λt(ω)

]
(1− θ)Yt, (9)

where the second equality uses (6) and (8).

2.4 R&D

R&D is performed by a unit continuum of competitive entrepreneurs. If an R&D entrepre-
neur employs Rt(ω) units of final good to engage in innovation in industry ω, then she is
successful in inventing the next higher-quality product in the industry with an instantaneous
probability given by

φt(ω) = Rt(ω)/αt, (10)

where αt ≡ αQ
(1−θ)/θ
t inversely measures R&D productivity and is proportional to Q(1−θ)/θ

t

to ensure balanced growth. To facilitate the payment of Rt(ω), the entrepreneur needs to
borrow cash from the household, and the cost of borrowing is determined by the nominal
interest rate it. Therefore, the cost of R&D is (1 + it)Rt(ω). Let vet (ω, jω + 1) denotes the
expected value of an innovation before the realization of its quality increment. Then, the
R&D free-entry condition is given by

vet (ω, jω + 1)φt(ω) = (1 + it)Rt(ω)⇔ vet (ω, jω + 1)/αt = 1 + it. (11)

2.5 Random quality improvements

As in Minniti et al. (2013), when an R&D entrepreneur invents a higher-quality product in
industry ω, the quality increment λt(ω) > 1 is drawn from a stationary Pareto distribution
with the following probability density function:

f(λ) =
1

κ
λ−

1+κ
κ , (12)

5This is known as the Arrow replacement effect; see Cozzi (2007) for a discussion of the Arrow effect.
6See Denicolò and Zanchettin (2010) for an analysis of Cournot competition in the Schumpeterian model.
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where the parameter κ ∈ (0, 1) determines the shape of the Pareto distribution. Given
that the expected value of λt(ω) is equal across industries, (9) implies that the expected
value of Πt(ω, jω) is also the same across industries. Therefore, we will follow the standard
treatment in the literature to focus on the symmetric equilibrium in which the arrival rate
of innovations is equal across industries,7 such that φt(ω) = φt for ω ∈ [0, 1].

2.6 Endogenous firm entry

To generate an endogenous distribution of heterogeneous firms, we follow Melitz (2003) and
others to consider a fixed entry cost. The entry cost is given by βt ≡ βQ

(1−θ)/θ
t ,8 which

is proportional to Q(1−θ)/θ
t to ensure balanced growth. Given the entry cost, a firm enters

the market if and only if vt(λ) ≥ βt, where vt (λ) denotes the ex post value of an innovation
(i.e., after the realization of the quality increment λ).9 vt (λ) is monotonically increasing in λ
because Πt(λ) = (1−θ)Yt(λ−1)/λ is increasing in λ. Given that vt(1) = 0 and vt(λ)/Q

(1−θ)/θ
t

is stationary in equilibrium, it can be shown that there exists a stationary threshold value
of λ,10 denoted as λ̃, above which firms implement their innovations and enter the market
generating endogenous entry of firms with heterogeneous quality improvements.

2.7 Asset prices

The ex-ante value of an innovation (i.e., before the realization of λ) is formally defined as

vet (ω, jω + 1) =

∫ λ̃

1

0 · f(λ)dλ+

∫ ∞
λ̃

[vt(λ)− βt]f(λ)dλ =

∫ ∞
λ̃

vt(λ)f(λ)dλ− Pr(λ ≥ λ̃)βt,

where Pr(λ ≥ λ̃) denotes the probability of the innovation being implementable. In the
symmetric equilibrium with vet (ω, jω + 1) ≡ vet , the no-arbitrage condition for the ex-ante
value of innovation can be derived as11

rt =
Πe
t + v̇et + Pr(λ ≥ λ̃)β̇t − Pr(λ ≥ λ̃)φt

[
vet + Pr(λ ≥ λ̃)βt

]
vet + Pr(λ ≥ λ̃)βt

, (13)

7Cozzi et al. (2007) provide a theoretical justification for the symmetric equilibrium to be the unique
rational-expectation equilibrium in the Schumpeterian model.

8We do not impose a CIA constraint on entry for the following reasons. Unlike R&D investment that
is subject to uncertainty in innovation success, the entry cost is incurred after an innovation is already
developed and patented. Therefore, banks should be available to extend credits to the firm, which can use
the patent as a collateral.

9In a symmetric equilibrium with φt(ω) = φt, the value of innovations does not depend on ω.
10See Appendix A for the proof.
11See Appendix A for the proof. To be more precise, we should refer to (13) as the no-arbitrage condition

for the expected value of an implemented innovation; i.e.,
∫∞
λ̃
vt(λ)f(λ)dλ.
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where φt is the arrival rate of innovation. Pr(λ ≥ λ̃)φt is the instantaneous probability that
an innovation is created and implemented in an industry. The Pareto probability density
function implies that

Pr(λ ≥ λ̃) =

∫ ∞
λ̃

f(λ)dλ = λ̃
−1/κ

. (14)

Substituting (14) into (13) and rearranging terms yield

Πe
t

vet + λ̃
−1/κ

βt

= rt + λ̃
−1/κ

φt −
v̇et + λ̃

−1/κ
β̇t

vet + λ̃
−1/κ

βt

, (15)

where the ex-ante value of monopolistic profits can be shown to be

Πe
t =

[∫ ∞
λ̃

(
λ− 1

λ

)
f(λ)dλ

]
(1− θ)Yt =

[
λ̃− 1/(1 + κ)

λ̃
1+κ
κ

]
(1− θ)Yt. (16)

Similarly, the no-arbitrage condition for the ex-post value of an innovation with λ ≥ λ̃ is

Πt(λ)

vt(λ)
= rt + λ̃

−1/κ
φt −

v̇t(λ)

vt(λ)
, (17)

where the ex-post value of monopolistic profits with λ ≥ λ̃ is given by

Πt(λ) =

(
λ− 1

λ

)
(1− θ)Yt. (18)

2.8 Monetary authority

The monetary policy instrument that we consider is the nominal interest rate it, which is
exogenously set by the monetary authority. Given it, the inflation rate πt is endogenously
determined according to the Fisher equation such that πt = it − rt, where rt is the real
interest rate and determined from the Euler equation in (3). Then, the growth rate of the
nominal money supply is given by µt = πt + ṁt/mt, which becomes µ = i − ρ on the
balanced growth path.12 Finally, the monetary authority returns the seigniorage revenue as
a lump-sum transfer τ t = ṁt + πtmt to the household.

12It is useful to note that in this model, it is the growth rate of the money supply that affects the real
economy in the long run, and a one-time change in the level of money supply has no long-run effect on
the real economy. This is the well-known distinction between the neutrality and superneutrality of money.
Empirical evidence generally favors neutrality and rejects superneutrality, consistent with our model; see
Fisher and Seater (1993) for a discussion on the neutrality and superneutrality of money.
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2.9 Dynamics

This section characterizes the dynamics of the model. Lemma 1 shows that given a constant
nominal interest rate i, the economy immediately jumps to a balanced growth path. On this
balanced growth path, each variable grows at a constant (possibly zero) growth rate.

Lemma 1 The economy jumps to a unique and saddle-point stable balanced growth path.

Proof. See Appendix B.

2.10 Economic growth

Recall that the (log of) aggregate quality index is lnQt ≡
∫ 1

0
ln qt(ω, jω)dω. In industry ω, the

quality qt(ω, jω) jumps to qt(ω, jω+1) = λ(ω)qt(ω, jω) with probability Pr(λ ≥ λ̃)φ = λ̃
−1/κ

φ.
The continuum of industries shares this random process of quality improvements. Therefore,
the time derivative of lnQt is given by

Q̇t

Qt

=

{∫ 1

0

[ln qt(ω, jω + 1)− ln qt(ω, jω)] dω

}
λ̃
−1/κ

φ =

[∫ 1

0

lnλ(ω)dω

]
λ̃
−1/κ

φ. (19)

Using the law of large numbers, we obtain13

Q̇t

Qt

=

[∫ ∞
λ̃

(lnλ) f̃(λ)dλ

]
λ̃
−1/κ

φ = (ln λ̃+ κ)λ̃
−1/κ

φ, (20)

where ln λ̃+κ captures the average step size of implemented quality improvements and f̃(λ)
is defined as

f̃(λ) ≡ f(λ)∫∞
λ̃
f(λ)dλ

= λ̃
1
κf(λ).

Finally, the growth rate of output Yt and consumption ct is equal to

g =
1− θ
θ

Q̇t

Qt

=
1− θ
θ

(ln λ̃+ κ)λ̃
−1/κ

φ. (21)

Equation (21) shows that the equilibrium growth rate depends on two endogenous vari-
ables, the arrival rate φ of innovations and the threshold step size λ̃. We can determine φ
using the R&D condition vet = (1 + i)αQ

(1−θ)/θ
t , where the balanced-growth value of vet is

given by vet = Πe
t/(ρ + λ̃

−1/κ
φ) − λ̃−1/κ

βQ
(1−θ)/θ
t using (15) and the Euler equation. Then,

substituting (16) into the R&D condition, we obtain

(1− θ)
[
λ̃− 1/(1 + κ)

λ̃
1+κ
κ

]
Yt

Q
(1−θ)/θ
t

=
[
(1 + i)α + λ̃

−1/κ
β
]

(ρ+ λ̃
−1/κ

φ). (22)

13Derivations are available in an unpublished appendix; see Appendix C.
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In Appendix B, we show that the production function of final good can be expressed as

Yt =

(
1− θ
λ̃eκ

)(1−θ)/θ

Q
(1−θ)/θ
t . (23)

Similarly, we can determine λ̃ using the entry condition vt(λ̃) = βQ
(1−θ)/θ
t , where the

balanced-growth value of vt(λ̃) is given by vt(λ̃) = Πt(λ̃)/(ρ + λ̃
−1/κ

φ) using (17) and the
Euler equation. Then, substituting (18) into the entry condition, we obtain

(1− θ)
(
λ̃− 1

λ̃

)
Yt

Q
(1−θ)/θ
t

= β(ρ+ λ̃
−1/κ

φ). (24)

Combining (22) and (24), we have the λ̃ condition given by

(λ̃− 1)λ̃
1/κ

=
1

1 + i

β

α

κ

1 + κ
, (25)

where the left-hand side is increasing in λ̃. Therefore, (25) implicitly determines the unique
equilibrium value of λ̃. Using (23)-(25), we obtain the φ condition given by

φ =
λ̃
−1/θ

1 + i

κ

1 + κ

(1− θ)1/θ

αeκ(1−θ)/θ − ρλ̃
1/κ
. (26)

Given λ̃ from (25), equation (26) determines the unique equilibrium value of φ.

3 Growth and welfare effects of monetary policy

In this section, we explore the effects of monetary policy on economic growth and social
welfare. In Section 3.1, we analytically derive the effects of the nominal interest rate on
economic growth. In Section 3.2, we calibrate the model to quantify the relationship between
inflation and growth and the relationship between inflation and welfare.

3.1 Qualitative analysis

Here we first derive the effects of increasing the nominal interest rate i on the innovation-
arrival rate φ and the threshold step size λ̃. Lemma 2 shows that φ is decreasing in i for
a given λ̃. Lemma 3 shows that λ̃ is decreasing in i. The intuition can be explained as
follows. An increase in the nominal interest rate i increases the cost of R&D and reduces the
incentives for innovation; as a result, the innovation rate φ decreases for a given λ̃. From the

balanced-growth version of (15), we have vet = Πe
t/(ρ+λ̃

−1/κ
φ)−λ̃−1/κ

βQ
(1−θ)/θ
t , which shows

that the decrease in φ, by reducing creative destruction, increases the present value of the
profit stream generated by implementing an innovation. This induces the implementation of
innovations associated with smaller profit margins, thereby reducing the threshold markup
λ̃ for entry.
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Lemma 2 For a given λ̃, the innovation rate φ is decreasing in the nominal interest rate i.

Proof. Use (26).

Lemma 3 The threshold step size λ̃ is decreasing in the nominal interest rate i.

Proof. Use (25).

When the entry cost βt is zero, the nominal interest rate has no effect on the distribution
of innovations that are implemented because all firms enter the market regardless of the size
of quality increments. In this case, λ̃ = 1, and g = 1−θ

θ
κφ is monotonically decreasing in i via

φ. This result is the same as in Chu and Cozzi (2014), who consider a Schumpeterian growth
model with an identical step size of quality improvements across firms. However, when the
entry cost βt is positive, the nominal interest rate i affects both λ̃ and φ. In this case,

Pr(λ ≥ λ̃) = λ̃
−1/κ

is increasing in i. In other words, an increase in the nominal interest rate
reduces the threshold value λ̃ for entry and leads to more innovations being implemented.
When the entry cost βt is suffi ciently large, the overall effects of i on the composite innovation

rate λ̃
−1/κ

φ and the equilibrium growth rate g = 1−θ
θ

(ln λ̃+κ)λ̃
−1/κ

φ become non-monotonic.

Specifically, we find that when the nominal interest rate i increases, λ̃
−1/κ

φ and g first increase
and eventually decrease. We summarize these results in Proposition 1.

Proposition 1 If the entry cost is suffi ciently large (small), an increase in the nominal
interest rate has an inverted-U (negative) effect on the composite innovation rate λ̃

−1/κ
φ and

the equilibrium growth rate g

Proof. See the Appendix B.

Before we conclude this section, we explore the relationship between inflation and eco-
nomic growth. The Fisher equation gives rise to a positive long-run relationship between
the inflation rate and the nominal interest rate that is supported by empirical studies such
as Mishkin (1992) and Booth and Ciner (2001). In our model, the inflation rate is given by
the Fisher equation π = i−r = i−g(i)−ρ, where the second equality follows from the Euler
equation. Therefore, so long as ∂g(i)/∂i < 1, we have ∂π/∂i = 1 − ∂g(i)/∂i > 0.14 Given
this positive relationship, inflation and economic growth would also exhibit an inverted-
U relationship. Recent empirical studies such as Bick (2010) and López-Villavicencio and
Mignon (2011) provide evidence that supports an inverted-U relationship between inflation
and economic growth.

14Under our calibrated parameter values, steady-state inflation is increasing in the nominal interest rate.
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3.2 Quantitative analysis

In this section, we calibrate the model to aggregate data of the US economy to provide a
quantitative illustration on the growth and welfare effects of monetary policy. The model
features the following structural parameters {ρ, θ, α, β, κ} and policy variable i. For the
discount rate, we set ρ to a standard value of 0.05. For the labor share, we set θ to a value
of 0.59; see Elsby et al. (2013) who document that the labor share in the US has fallen to
less than 0.60 recently. According to the Conference Board Total Economy Database, the
average growth rate of total factor productivity (TFP) in the US is about 0.6% from 1990 to
2014. We calibrate the R&D cost parameter α by targeting the scenario in which domestic
innovation drives half of the TFP growth in the US (i.e., g = 0.3%).15 For the cost of entry,
we calibrate β by setting the time between arrivals of innovation 1/φ to about 3 years as
in Acemoglu and Akcigit (2012). For the Pareto distribution parameter, we follow Minniti
et al. (2013) to consider κ = 0.21 as our benchmark, but we also explore another value
κ = 0.16 that has interesting implications. Finally, we calibrate the value of i by targeting
the average inflation rate π in the US, which is about 2.5% in the past two decades. The
parameter and variable values are summarized in Table 1.

Table 1: Calibration
Targets r wL/Y g φ π

0.053 0.590 0.003 0.338 0.025
Parameters κ ρ θ α β i

0.210 0.050 0.590 0.0013 1.1249 0.078
0.160 0.050 0.590 0.0023 1.0951 0.078

To explore the welfare effects of monetary policy, we need to derive an expression for
social welfare. Given that the economy is always on a balanced growth path, we impose
balanced growth on (1) to derive the steady-state welfare function as

U =
1

ρ

(
ln c0 +

g

ρ

)
, (27)

where c0 is the balanced-growth level of consumption at time 0.16 We know that final good
Yt is used for consumption ct, production of intermediate goods Xm

t , R&D Xr
t and entry

Xe
t .
17 Using the market-clearing condition Yt = ct + Xm

t + Xr
t + Xe

t and normalizing the
initial quality index Q0 to unity, we derive c0 as

c0 =

[
1− 1− θ

(1 + κ) λ̃

](
1− θ
λ̃eκ

)(1−θ)/θ

− αφ− βφλ̃−1/κ
. (28)

Under our benchmark parameter values, we find that economic growth is an inverted-
U function of the nominal interest rate. In Figures 1a and 2a, we plot the equilibrium

15See Chu (2010) who finds that domestic R&D drives less than half of the TFP growth in the US.
16Here we define time 0 as the instant when the economy jumps to the new balanced growth path as a

result of any policy change.
17See equations (B3)-(B5) for the definitions.
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growth rate g against the inflation rate π, which is monotonically increasing in the nomi-
nal interest rate i. Figure 1a presents our benchmark result and shows that the relation-
ship between economic growth and inflation follows an inverted-U shape. Furthermore, the
growth-maximizing inflation rate is about 2.9%, which is close to the empirical estimate
in López-Villavicencio and Mignon (2011) who find a threshold inflation rate of 2.7% for
industrialized countries. As for the welfare effect of inflation, we find that social welfare is
increasing in the inflation rate. We report this result in Figure 1b, in which the welfare
effects are expressed in the usual equivalent variations in consumption. The intuition can be
explained as follows. An increase in the nominal interest rate decreases the entry threshold λ̃,
which in turn reduces the average markup and the overall price level P = λ̃eκ.18 This lower
price level increases the demand for intermediate goods and the production of final good

Y0 =
[
(1− θ)/(λ̃eκ)

](1−θ)/θ
, which in turn increases the initial level of consumption c0. Al-

though the growth effect is non-monotonic, the positive consumption-level effect dominates
in this case. Therefore, our model with endogenous entry generates a positive relationship
between inflation and welfare over a wide range of parameter values.

Figure 1a: Inflation and economic growth
(κ = 0.21)

Figure 1b: Inflation and social welfare
(κ = 0.21)

In the empirical literature, studies sometime find a monotonically negative effect of in-
flation on economic growth; see for example, Guerrero (2006) and Vaona (2012). Indeed,
we find that our model is flexible enough to deliver a negative relationship between inflation
and economic growth under reasonable parameter values. When we decrease the value of
κ to 0.16 and recalibrate the rest of the parameters, we find that the relationship between
economic growth and inflation becomes monotonically negative. In this case, the smaller
value of κ implies a smaller ratio of β/α, such that the negative growth effect of inflation
dominates the positive growth effect. Although the growth effect of inflation becomes neg-
ative, the welfare effect of inflation remains positive over a wide range of parameter values
due to the increase in the initial level of output and consumption.

18See equation (B1).
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Figure 2a: Inflation and economic growth
(κ = 0.16)

Figure 2b: Inflation and social welfare
(κ = 0.16)

4 Extensions

In this section, we explore two extensions of our benchmark model.19 First, our model
implies that some prices of intermediate goods can be arbitrarily high due to the Pareto
distribution. Therefore, we modify the model by imposing an upper bound on equilibrium
prices. Second, our model features inelastic labor supply, under which inflation does not
cause a consumption-leisure tradeoff that is commonly discussed in monetary growth models.
Therefore, we modify the benchmark model by allowing for elastic labor supply and imposing
also a CIA constraint on consumption.

4.1 Upper bound on monopolistic prices

In this section, we follow Evans et al. (2003) to impose an upper bound µ on the monopolistic
prices of intermediate goods.20 In this case, the prices of intermediate goods are given by

pt(ω, jω) = min{λt(ω), µ}. (29)

In the following derivations, we present the changes caused by the introduction of upper
bound µ and show that our inverted-U relationship between inflation and growth can still
hold. Given µ, monopolistic profits become

Πt(ω, jω) = min

{
λt(ω)− 1

λt(ω)
,
µ− 1

µ

}
(1− θ)Yt. (30)

19We would like to thank the referees for these suggestions.
20Alternatively, one can impose an upper bound on equilibrium prices by following (a) Minniti et al.

(2013) to replace the Cobb-Douglas aggregator in (4) by a CES aggregator or (b) Iwaisako and Ohki (2017)
to impose an upper bound on the support of the distribution. For simplicity, we use the approach in Evans
et al. (2003) to cosider price regulation that imposes an upper bound directly on monopolistic prices.
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Accordingly, the ex-ante and ex-post equilibrium profits in (16) and (18) become21

Πe
t =

[(
λ̃− 1/(1 + κ)

λ̃
1+κ
κ

)
−
(

κ

1 + κ

1

µ
1+κ
κ

)]
(1− θ)Yt (31)

and

Πt (λ) = min

{
λ− 1

λ
,
µ− 1

µ

}
(1− θ)Yt. (32)

We follow the same procedures as in Appendix A to derive the revised λ̃ condition in (25)
as follows:

λ̃
1/κ

(λ̃− 1) =
1

1 + i

κ

1 + κ

β

α

1−
(
λ̃

µ

) 1+κ
κ

 . (33)

Equation (33) uniquely determines the equilibrium value of λ̃ as a function of i. From (7),
(8), (17), (32) and (33), we can derive the revised φ condition in (26) as follows:

φ =
λ̃
−1/θ

1 + i

κ

1 + κ

(1− θ)1/θ

α[eκ(1−θ)/θ]1−(λ̃/µ)
1/κ

1−
(
λ̃

µ

) 1+κ
κ

− ρλ̃1/κ
. (34)

Given the equilibrium value of λ̃ from (33), equation (34) determines the unique equilibrium
value of φ, analogous to (25) and (26).
In the rest of this section, we recalibrate the model to aggregate data of the US economy

to provide a numerical analysis on the growth and welfare effects of inflation. Here we present
results for different values of the upper bound µ = {4, 8, 12}. The calibrated parameter and
variable values are summarized in Table 2. As for social welfare, the steady-state welfare
function is the same as (27). The initial level of consumption c0 is revised as follows in the
presence of the upper bound µ:

c0 =

1− 1− θ
(1 + κ) λ̃

1 + κ

(
λ̃

µ

)(1+κ)/κ


 1− θ

λ̃ (eκ)1−(λ̃/µ)
1/κ

(1−θ)/θ

− αφ− βφλ̃−1/κ
. (35)

Table 2: Calibration (κ = 0.21)
Targets r wL/Y g φ π

0.053 0.590 0.003 0.338 0.025
Parameters µ ρ θ α β i

4 0.050 0.590 0.0012 1.145 0.078
8 0.050 0.590 0.0013 1.126 0.078
12 0.050 0.590 0.0013 1.125 0.078

Under an upper bound of µ = 12, we find that economic growth is an inverted-U function
of inflation and the growth-maximizing inflation rate is about 2.7%, which corresponds to the

21We focus on the case with λ̃t < µ because it can be shown that λ̃t ≥ µ does not hold in equilibrium.
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empirical estimate in López-Villavicencio and Mignon (2011). This result is shown in Figure
3a. We also consider an upper bound of µ = 8, under which the growth effect of inflation
continues to be an inverted-U function. In Figure 4a, we see that the growth-maximizing
inflation rate is lower at 1.2%. As for the case of µ = 4, the result is shown in Figure 5a.
Figure 5a indicates that the relationship between economic growth and inflation becomes
monotonically negative in this case. Therefore, we need a suffi ciently large upper bound µ
to generate an inverted-U relationship between inflation and growth. According to the data
in Barsky et al. (2003), an upper bound of 8 to 12 on the markup is not unreasonable given
that some products do charge quite a sizable markup.22 Finally, we also present the welfare
effects of inflation in Figures 3b, 4b and 5b and find that they are all positive over a wide
range of parameter values. These results show that despite the presence of an upper bound
on prices, social welfare is still increasing in inflation.

Figure 3a: Inflation and economic growth
(µ = 12)

Figure 3b: Inflation and social welfare
(µ = 12)

Figure 4a: Inflation and economic growth
(µ = 8)

Figure 4b: Inflation and social welfare
(µ = 8)

22Furthermore, it is well known that markups in the pharmaceutical industry, which is an important
innovative sector, are very high.
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Figure 5a: Inflation and economic growth
(µ = 4)

Figure 5b: Inflation and social welfare
(µ = 4)

4.2 Elastic labor supply and CIA constraint on consumption

For simplicity, we now relax the upper bound on prices to µ → ∞ as in the benchmark
model. In this section, we explore the general case with elastic labor supply and impose a
CIA constraint on consumption in addition to the CIA constraint on R&D. To consider this
case, we generalize the utility function to

U =

∫ ∞
0

e−ρt[ln ct + η ln(1− lt)]dt,

where lt is the supply of labor and η determines the disutility of labor supply. Furthermore,
we generalize the CIA constraint to bt +ψct ≤ mt, where ψ ∈ [0, 1] measures the strength of
the CIA constraint on consumption.
From standard dynamic optimization, the optimality condition for labor supply is

wt(1− lt) = ηct(1 + ψit), (36)

where it = rt+πt. From the profit maximization of final-good firms, the conditional demand
functions for labor and intermediate goods are respectively23

wt = θYt/lt, (37)

Kt = lt [(1− θ)Qt/Pt]
1/θ . (38)

Using (38), we express the aggregate production function of final good as

Yt = lt

(
1− θ
λ̃eκ

)(1−θ)/θ

Q
(1−θ)/θ
t . (39)

23It is helpful to note that we set Lt = lt so that the production function of final good becomes Yt = lθtK
1−θ
t .
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Combining (24), (25) and (39), the φ condition in (26) can be revised as follows:

φ =
λ̃
−1/θ

1 + i

κ

1 + κ

(1− θ)1/θ

αeκ(1−θ)/θ l − ρλ̃
1/κ
, (40)

whereas the λ̃ condition in (25) remains unchanged.
We substitute (37) into (36) to derive θY (1− l)/l = η(1+ψi)c. Combining this condition

with the resource constraint Y = c+Xm +Xr +Xe and (39), we obtain

θ

(
1− θ
λ̃eκ

)(1−θ)/θ

(1− l) = η (1 + ψi)

{[
1− 1− θ

(1 + κ) λ̃

](
1− θ
λ̃eκ

)(1−θ)/θ

l − αφ− βφλ̃−1/κ

}
.

(41)
Therefore, we can solve the three endogenous variables {λ̃, φ, l} using (25), (40) and (41).
In the rest of this section, we calibrate the model to aggregate data of the US economy

in order to provide a numerical analysis on the growth and welfare effects of inflation. Here
we explore the implications of different degrees ψ of the CIA constraint on consumption. We
calibrate the parameter η by setting the supply of labor l to a standard value of 0.33. The
parameter and variable values are summarized in Table 3. As for social welfare, we make
use of an analogous derivation as before to obtain

U =
1

ρ

[
ln c0 +

g

ρ
+ η ln (1− l)

]
, (42)

where

c0 =

[
1− 1− θ

(1 + κ) λ̃

](
1− θ
λ̃eκ

)(1−θ)/θ

l − αφ− βφλ̃−1/κ
. (43)

Table 3: Calibration (κ = 0.21)
Targets r wL/Y g φ l π

0.053 0.590 0.003 0.338 0.330 0.025
Parameters ψ ρ θ α β η i

0.00 0.050 0.590 0.0004 0.371 1.410 0.078
0.05 0.050 0.590 0.0004 0.371 1.405 0.078
0.13 0.050 0.590 0.0004 0.371 1.396 0.078
1.00 0.050 0.590 0.0004 0.371 1.308 0.078

First, we consider the implications of elastic labor supply without the CIA constraint
on consumption (i.e., ψ = 0) in Figure 6. In this case, the growth effect becomes positive
because equilibrium labor l is increasing in the nominal interest rate i. The intuition can
be explained as follows. Although the initial level of consumption is increasing in i, the
consumption-output ratio c/Y is decreasing in i, which in turn implies that labor is increasing
in i because equilibrium labor is given by θ(1− l)/l = ηc/Y . The increase in l represents an
additional positive effect on the innovation-arrival rate φ as (40) shows; therefore, the overall
growth effect of inflation becomes positive. Furthermore, the increase in l also represents
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an additional positive effect on the level of output Y0 as (39) shows; therefore, the overall
welfare effect of inflation remains positive and becomes quantitatively stronger than before.

Figure 6a: Inflation and economic growth
(ψ= 0)

Figure 6b: Inflation and social welfare
(ψ= 0)

We now explore the implications of the CIA constraint on consumption. We begin by
considering a small value of ψ = 0.05 in Figure 7. In this case, the growth effect becomes
negative because equilibrium labor l is now decreasing in the nominal interest rate i. To
see this, when ψ > 0, equilibrium labor is given by θ(1 − l)/l = η(1 + ψi)c/Y , where ψi
exerts a negative effect on l through the consumption-leisure tradeoff. The decrease in l
now represents a negative effect on the innovation-arrival rate φ as (40) shows; therefore,
the overall growth effect of inflation becomes negative. Furthermore, the decrease in l also
represents a negative effect on the level of output Y0 as (39) shows; however, the overall
welfare effect of inflation remains positive but becomes quantitatively weaker than before.

Figure 7a: Inflation and economic growth
(ψ= 0.05)

Figure 7b: Inflation and social welfare
(ψ= 0.05)

We now increase the strength of the CIA constraint on consumption by raising ψ to 0.13
in Figure 8. In this case, the growth effect of inflation continues to be negative but the
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welfare effect of inflation becomes an inverted-U function. The reason is that the negative
effect of i on labor l, which in turn exerts a negative effect on output Y0, becomes stronger.
In this case, the welfare effect of inflation eventually becomes negative when the inflation
rate is suffi ciently high.

Figure 8a: Inflation and economic growth
(ψ= 0.13)

Figure 8b: Inflation and social welfare
(ψ= 0.13)

Finally, we consider the maximum strength of the CIA constraint on consumption by
raising ψ to 1 in Figure 9. In this case, the negative effect of i on labor becomes stronger
and causes the welfare effect of inflation to become monotonically negative. Furthermore,
the negative welfare effect of inflation becomes very significant.

Figure 9a: Inflation and economic growth
(ψ= 1)

Figure 9b: Inflation and social welfare
(ψ= 1)

5 Conclusion

In this study, we have developed a monetary Schumpeterian growth model with endogenous
entry of firms and random quality improvements. Given this monetary growth-theoretic
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framework, we explore the effects of monetary policy on economic growth and find that
inflation could have an inverted-U effect on economic growth. Furthermore, we calibrate the
model to aggregate data of the US economy to provide a quantitative investigation. Under
our benchmark parameter values, we find that the growth-maximizing inflation rate is about
2.9%, which is consistent with recent empirical estimates. However, given that we have a
stylized model, the quantitative analysis should be viewed as an illustrative exercise. We
have also explored the welfare effects of inflation and considered a number of extensions to
the benchmark model.
In this study, we have sidestepped the issue of scale effects by normalizing the supply of

labor to unity in the case of inelastic labor supply. As for the case of elastic labor supply,
the scale of the economy becomes endogenous and exerts an influence on the relationship
between inflation and growth. One can remove scale effects by endogenizing the market
structure of the economy as in Chu and Ji (2016) and Huang et al. (2015), whose models are
in turn based on the second-generation Schumpeterian model in Peretto (1998, 2007). Chu
and Ji (2016) show that the growth effect of the nominal interest rate via the CIA constraint
on consumption disappears under endogenous market structure because the market structure
endogenously responds to the scale of the economy, measured by equilibrium labor, through
which the nominal interest rate affects economic growth. Huang et al. (2015) show that the
growth effect of the nominal interest rate via the CIA constraint on R&D continues to be
present under endogenous market structure because the nominal interest rate directly affects
the incentives for R&D (rather than through the scale of the economy) as in our benchmark
model with inelastic labor supply. Finally, due to its complexity, we leave the development
of a second-generation Schumpeterian model with random quality improvements to future
research.
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Appendix A: The stationary quality threshold

In the symmetric equilibrium vet (ω, jω + 1) ≡ vet , the ex-ante value of an innovation is
given by

vet =

∫ λ̃t

1

0 · f(λ)dλ+

∫ ∞
λ̃t

[vt(λ)− βt]f(λ)dλ =

∫ ∞
λ̃t

vt(λ)f(λ)dλ− Pr(λ ≥ λ̃t)βt. (A1)

Substituting the no-arbitrage condition for the ex-post innovation value rtvt (λ) = Πt (λ) +
v̇t (λ)− Pr(λ ≥ λ̃t)φtvt (λ) into (A1) yields

rtv
e
t = Πe

t+

∫ ∞
λ̃t

v̇t(λ)f(λ)dλ−Pr(λ ≥ λ̃t)φt

∫ ∞
λ̃t

[vt(λ)− βt] f(λ)dλ−
[
Pr(λ ≥ λ̃t)φt + rt

]
Pr(λ ≥ λ̃t)βt.

(A2)
Combining (A1) and the R&D condition (11) and also using (14), we obtain∫ ∞

λ̃t

vt(λ)f(λ)dλ = (1 + it)αt + λ̃
−1/κ

t βt, (A3)

where it is chosen exogenously by the monetary authority. Differentiating (A3) with respect
to t, we use the Leibniz integral rule to derive∫ ∞

λ̃t

v̇t(λ)f(λ)dλ− vt(λ̃t)f(λ̃t)
·
λ̃t = (1 + i) α̇t + λ̃

−1/κ

t β̇t −
1

κ
λ̃
− 1+κ

κ

t

·
λ̃tβt. (A4)

We substitute (12) and the entry condition vt(λ̃t) = βt into (A4) to obtain∫ ∞
λ̃t

v̇t(λ)f(λ)dλ = (1 + i) α̇t + λ̃
−1/κ

t β̇t. (A5)

Substituting (A5) into (A2), the ex-ante no-arbitrage condition for an innovation can be
expressed as

rt =
Πe
t +
[
v̇et + λ̃

−1/κ

t β̇t

]
− λ̃−1/κ

t φt

[
vet + λ̃

−1/κ

t βt

]
vet + λ̃

−1/κ

t βt

, (A6)

which uses (14) and the R&D condition (11) again. Moreover, we make use of the R&D
condition (11), αt = αQ

(1−θ)/θ
t and βt = βQ

(1−θ)/θ
t to derive

v̇et + λ̃
−1/κ

t β̇t

vet + λ̃
−1/κ

t βt

=

(
1− θ
θ

)
Q̇t

Qt

.

With this expression, (A6) becomes

rt =
Πe
t

vet + λ̃
−1/κ

t βt

+

(
1− θ
θ

)
Q̇t

Qt

− λ̃−1/κ

t φt. (A7)
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Meanwhile, the no-arbitrage condition for the ex-post value of the innovation with threshold
quality (i.e., λ = λ̃t) can be written as

rt =
Πt(λ̃t)

vt(λ̃t)
+

(
1− θ
θ

)
Q̇t

Qt

− λ̃−1/κ

t φt. (A8)

By the R&D condition (11), the entry condition vt(λ̃t) = βt, αt = αQ
(1−θ)/θ
t and βt =

βQ
(1−θ)/θ
t , (A7) and (A8) imply

Πe
t

(1 + i)α + λ̃
−1/κ

t β
=

Πt(λ̃t)

β
. (A9)

Given (16) and (18), (A9) can be rearranged as

(λ̃t − 1)λ̃
1/κ

t =
1

1 + i

β

α

κ

1 + κ
. (A10)

Equation (A10) shows that λ̃t is always stationary.
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Appendix B: Proofs

Proof of Lemma 1. Using (8), we can express the aggregate price index of intermediate
goods as24

Pt = exp

[∫ 1

0

lnλt(ω)dω

]
= exp

[∫ ∞
λ̃

(lnλ)f̃(λ)dλ

]
= λ̃eκ, (B1)

where f̃(λ) is defined as

f̃(λ) ≡ f(λ)∫∞
λ̃
f(λ)dλ

= λ̃
1
κf(λ). (B2)

Here we introduce a modified density function f̃(λ) in summing λ on [λ̃,∞] because the
distribution of λ in equilibrium is not on the original domain [1,∞), but instead on [λ̃,∞),
due to endogenous entry. Note that

∫∞
λ̃
f̃(λ)dλ = 1. By (7) and (B1), we obtain Kt =[

(1− θ)Qt/(λ̃e
κ)
]1/θ

. Incorporating this condition into the production function Yt = LθtK
1−θ
t ,

we obtain

Yt =

[
(1− θ)Qt

λ̃eκ

](1−θ)/θ

, (B3)

noting Lt = 1. Recall that final goods are used for consumption, production of intermediate
goods, R&D and entry. Consumption is given by ct. By (6) and (8), the amount of final
goods used for the production of intermediate goods is

Xm
t =

∫ 1

0

yt(ω, jω)dω =

∫ 1

0

(1− θ)Yt
λt(ω)

dω = (1− θ)Yt
∫ ∞
λ̃

1

λ
f̃(λ)dλ =

(1− θ)Yt
(1 + κ) λ̃

. (B4)

Final goods for innovation and entry are given by

Xr
t =

∫ 1

0

Rt(ω)dω = αtφt and X
e
t =

∫
ω∈Ωt

βtdω = βtλ̃
−1/κ

φt, (B5)

where Ωt is the set of industries in which innovations take place and are implemented at
date t. Finally, we substitute (B3), (B4) and (B5) into the market-clearing condition Yt =
ct +Xm

t +Xr
t +Xe

t to derive

φt =
1

α + βλ̃
−1/κ

[(
1− θ
λ̃eκ

)(1−θ)/θ (
1− 1− θ

(1 + κ) λ̃

)
− Ct

]
, (B6)

where Ct ≡ ct/Q
(1−θ)/θ
t is a transformed variable that is stationary. We substitute (16) and

the R&D condition (11) into (A7) to derive

rt =
(1− θ)Yt

(1 + i)αt + λ̃
−1/κ

βt

[
λ̃− 1/(1 + κ)

λ̃
1+κ
κ

]
− λ̃−1/κ

φt +
1− θ
θ

Q̇t

Qt

. (B7)

24We achieve this by applying integration by parts to∫ ∞
λ̃

(lnλ)f̃(λ)dλ =
λ̃
1/κ

κ

∫ ∞
λ̃

(lnλ)

(
d

dλ

λ1−
1+κ
κ

1− 1+κ
κ

)
dλ.
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Finally, substituting (B3) and (B7) into (3) yields

Ċt
Ct

= rt− ρ−
1− θ
θ

Q̇t

Qt

=
(1− θ)1/θ

[(1 + i)α + λ̃
−1/κ

β]eκ(1−θ)/θ

[
λ̃− 1/(1 + κ)

λ̃
(1/θ)+(1/κ)

]
− λ̃−1/κ

φt− ρ, (B8)

noting the definitions Ct ≡ ct/Q
(1−θ)/θ
t and αt ≡ αQ

(1−θ)/θ
t . Substituting (B6) into (B8), we

have an one-dimensional differential equation in Ct.25 Given that φt decreases with Ct in
(B6), the right-hand side of (B8) is increasing in Ct, so the dynamics of Ct is characterized
by saddle-point stability, such that Ct must jump to its interior steady-state value. Given a
stationary value of Ct, (B6) implies that φt is also stationary.

Proof of Proposition 1. In this proof, we first show that the relationship between i and

λ̃
−1/κ

φ is either inverted U-shaped or negative. Combining (25) and (26), we have

λ̃
−1/κ

φ =
(1− θ)1/θ

βeκ(1−θ)/θ

(
λ̃− 1

λ̃
1/θ

)
− ρ. (B9)

By differentiating the right-hand side of (B9) with respect to λ̃, we can easily show that

d(λ̃
−1/κ

φ)/dλ̃ > (<) 0 if λ̃ < (>) 1/(1 − θ), implying an inverted-U relationship between

λ̃ and λ̃
−1/κ

φ. In identifying the relationship with respect to i, we naturally focus on a

non-trivial range of λ̃, i.e., (λ, λ), where λ̃
−1/κ

φ > 0 holds.26 Given that λ̃ monotonically
decreases with i (Lemma 3), i ≥ 0 provides another natural upper bound of λ̃, say λi, which
is defined by

(λi − 1)λ
1/κ
i =

β

α

κ

1 + κ
. (B10)

When λi is large enough (exceeding 1/(1 − θ)), the relationship between i and λ̃
−1/κ

φ is
inverted U-shaped on the non-trivial range (λ, λi); see Figure 10a. When λi is small enough

(falling below 1/(1− θ)), λ̃−1/κ
φ is monotonically decreasing in i on (λ, λi); see Figure 10b.

Note that, by (B10), λi increases with β and, by (B9), λ decreases with β. This implies that
for a larger (smaller) entry cost β, accompanied by a larger (smaller) λi, the relationship

between i and λ̃
−1/κ

φ becomes inverted-U (negative).

25Although λ̃ is an endogenous variable, it is stationary and a function of parameters as shown in (A10).
26The formal definition of (λ, λ) is given by incorporating λ̃

−1/κ
φ = 0 into (B9): λ and λ are equal to x

such that (x− 1) /x1/θ = ρβeκ(1−θ)/θ/(1− θ)1/θ. This has the two solutions such as x = λ and λ if and only

if ρβ < θ (1− θ)
2−θ
θ /eκ(1−θ)/θ. Otherwise, λ̃

−1/κ
φ cannot be positive.
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In the rest of this proof, we characterize the relationship between i and g. For λ̃ <

1/(1− θ), it holds d(λ̃
−1/κ

φ)/dλ̃ > 0 as shown above. Given that (ln λ̃+κ) is also increasing
in λ̃, this implies dg/dλ̃ > 0 for λ̃ < 1/(1 − θ), by noting (21). To see the case where
1/(1− θ) < λ̃, using (21) and (B9), we can obtain

dg

dλ̃
=

1− θ
θλ̃

1+1/θ


[

(1− θ)1/θ

βeκ(1−θ)/θ

(
λ̃− 1

)
− ρλ̃1/θ

]
︸ ︷︷ ︸

ζ(λ̃): uni-modal and concave in λ̃

− (ln λ̃+ κ)
(1− θ)1/θ

βeκ(1−θ)/θ
1− θ
θ

(
λ̃− 1

1− θ

)
︸ ︷︷ ︸

ξ(λ̃): increasing and convex in λ̃

 .

Note the following properties: (a) ζ(1/(1 − θ)) > 0 and ξ(1/(1 − θ)) = 0; (b) ζ(λ̃) is an
uni-modal function27 and ξ(λ̃) is a strictly increasing function; (c) ζ(λ) = ζ(λ) = 0; and (d)
ζ(λ̃) is strictly concave and ξ(λ̃) is strictly convex.

Using these properties, we can graphically show that ξ(λ̃) intersects ζ(λ̃) from below only
once at some point in λ̃ ∈ (1/(1− θ), λ), below (above) which dg/dλ̃ > (<) 0. This implies
an inverted-U relation between λ̃ and g on (λ, λ). The rest of Proposition 1 straightforwardly
follows, noting that λi is increasing in β.

27It is useful to note that ζ(λ̃) is upward sloping at λ̃ = 1/(1− θ).
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Appendix C: Not for publication

Equation (20): Recall that the equilibrium distribution of λ is given by f̃(λ), which is
defined by (B2) in Appendix B. Then we calculate∫ 1

0

lnλ(ω)dω =

∫ ∞
λ̃

(lnλ) f̃(λ)dλ =
λ̃

1/κ

κ

∫ ∞
λ̃

(lnλ)λ−
1+κ
κ dλ,

where the second equality uses (12) and (B2). Given that

λ−
1+κ
κ =

d

dλ

λ1− 1+κ
κ

1− 1+κ
κ

,

we have ∫ 1

0

lnλ(ω)dω =
λ̃

1/κ

κ

∫ ∞
λ̃

(lnλ)

[
d

dλ

(
λ1− 1+κ

κ

1− 1+κ
κ

)]
dλ.

Applying integration by parts, we calculate

λ̃
1/κ

κ

∫ ∞
λ̃

(lnλ)

[
d

dλ

(
λ1− 1+κ

κ

1− 1+κ
κ

)]
dλ =

λ̃
1/κ

κ

{∣∣∣∣∣ λ1− 1+κ
κ

1− 1+κ
κ

lnλ

∣∣∣∣∣
∞

λ̃

−
∫ ∞
λ̃

λ−
1+κ
κ

1− 1+κ
κ

dλ

}
.

From ∣∣∣∣∣ λ1− 1+κ
κ

1− 1+κ
κ

lnλ

∣∣∣∣∣
∞

λ̃

= κλ̃
− 1
κ ln λ̃ and

∫ ∞
λ̃

λ−
1+κ
κ

1− 1+κ
κ

dλ = −κ2λ̃
− 1
κ ,

we have
∫ 1

0
lnλ(ω)dω = ln λ̃+ κ.
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