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Abstract

This study explores growth accounting under endogenous technological progress.
It is well known that the Solow approach overstates (understates) the contribution of
capital accumulation (technological progress) to economic growth and the Mankiw-
Romer-Weil approach addresses this issue. However, we find that the Mankiw-Romer-
Weil approach is inconsistent (consistent) with the lab-equipment (knowledge-driven)
specification for technological progress. We also examine the importance of capital
accumulation on growth in China under the two approaches.
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1 Introduction

The traditional approach to growth accounting, introduced by Solow (1957), decomposes eco-
nomic growth into the growth rates of factor inputs and technological progress measured by
total factor productivity (TFP); see Barro (1999) for a review. Interpreting these account-
ing relationships as causal relationships however requires an assumption that the growth
rates of factor inputs, e.g., physical capital, are independent from technological progress. An
important result from the seminal Solow growth model is that long-run growth in output
and capital is driven by technological progress. Therefore, interpreting the accounting re-
lationships from the Solow approach as causal relationships may overstate (understate) the
contribution of capital accumulation (technological progress) to growth; see e.g., Aghion and
Howitt (2007) for this critique. An alternative approach to growth accounting, originated
from Mankiw, Romer and Weil (1992),1 addresses this issue by essentially scaling up the im-
portance of technological progress and measuring the contribution of capital by the growth
rate of the capital-output ratio, rather than the growth rate of capital.
This study examines the validity of these two approaches to growth accounting under

endogenous technical change.2 We consider two common specifications for technological
progress: the knowledge-driven and lab-equipment specifications. As Hsieh and Klenow
(2010) write, "in contrast to the well-understood endogeneity of physical capital in the neo-
classical growth model, the determinants of [...] TFP are much less well understood." We find
that the Mankiw-Romer-Weil approach is consistent with the knowledge-driven specification
that features labor as input in innovation. Under this knowledge-driven specification, tech-
nological progress does not require physical capital, so the Mankiw-Romer-Weil approach
that scales down (up) the contribution of capital accumulation (technological progress) is
valid. However, under the lab-equipment specification that features final goods as input in
innovation, the Mankiw-Romer-Weil approach understates the contribution of capital ac-
cumulation to growth because capital accumulation contributes to technological progress.
Intuitively, because innovation indirectly uses research capital, growth is increasing in capi-
tal investment. Finally, we also examine the importance of capital accumulation on growth
in China under the two approaches and discuss their different implications in the conclusion.

2 Review of growth accounting

This section briefly reviews the two approaches to growth accounting. Let’s start with the
following aggregate production function:

Y = Kα(AL)1−α, (1)

where Y denotes output, A denotes technology, K denotes physical capital, and L denotes
effective labor, which includes human capital and raw labor. The parameter α ∈ (0, 1)
determines capital intensity in production. In the following subsections, we present the

1See also Klenow and Rodriguez-Clare (1997), Hall and Jones (1999) and Hayashi and Prescott (2002).
2See also Barro (1999), Aghion and Howitt (2007) and Hsieh and Klenow (2010).
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Solow and Mankiw-Romer-Weil approaches and show their different implications on the
contribution of capital to growth.

2.1 The Solow approach

We take the log of (1) and differentiate it with respect to time to obtain

Ẏ

Y
= (1− α)Ȧ

A
+ α

K̇

K
+ (1− α) L̇

L
, (2)

where ẋ/x denotes the growth rate of variable x ∈ {Y,A,K,L}. In other words, (2) de-
composes the growth rate of output into the growth rates of technology, physical capital
and effective labor. Given that our focus is on the relative importance of technological
progress and capital accumulation, we consider a constant effective labor L for simplicity.3

Under the Solow approach, the share of growth that capital is responsible for is measured by
α(K̇/K)/(Ẏ /Y ). On the balanced growth path, the capital-output ratio is constant, which
implies that capital is responsible for the share α of long-run growth in output.
As an illustration, we consider China’s data to explore the importance of capital accumu-

lation on growth in China. From Brandt, Hsieh and Zhu (2008), the average value of capital
share in China is about 0.5.4 From Zhu (2012), the average growth rates of output and phys-
ical capital have been roughly the same since 1978.5 Therefore, we consider the following
stylized facts for China: α = 1/2, and a constant K/Y since the late 1970’s. Under the
Solow approach to growth accounting, one would conclude that capital accumulation K̇/K
has been responsible for about half of the growth in China. To see this, the contribution of
capital to growth in China under the Solow approach is

Solow approach:
αK̇/K

Ẏ /Y
≈ α ≈ 1

2
.

However, this Solow approach may overstate (understate) the contribution of capital
accumulation (technological progress). The reason is that capital accumulation is partly
driven by technological progress. As the seminal Solow growth model shows, long-run growth
in output and capital is driven by technological progress. In the next subsection, we consider
an alternative approach to growth accounting that addresses this issue.

2.2 The Mankiw-Romer-Weil approach

Mankiw, Romer and Weil (1992) consider an alternative approach to growth accounting. In
essence, it involves dividing both sides of (1) by Y α to obtain

Y 1−α = A1−α(K/Y )αL1−α. (3)

3Extending the analysis by allowing for growth in effective labor L would not change our results.
4Given innovation under imperfect competition, capital intensity α differs from capital share, which

however is a reasonable proxy under a small aggregate markup.
5The average annual growth rate of the capital-output ratio K/Y in China from 1978 to 2007 was 0.04%.
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Then, taking the log of (3) and differentiating it with respect to time yield

Ẏ

Y
=
Ȧ

A
+

α

1− α

·
(K/Y )

(K/Y )
, (4)

where we have assumed L̇/L = 0. An interpretation of (4) is that capital accumulation is
driven by technological progress. Therefore, we should scale up the importance of A by a
factor of 1/(1−α). If capital has made an additional contribution to output growth, then K
should have grown at a faster rate than Y in the short run. On the balanced growth path,
the capital-output ratio is constant, so that capital does not contribute to long-run growth.
Using the Mankiw-Romer-Weil approach, Zhu (2012) concludes that economic growth in

China is mainly driven by growth in technology A because K/Y has been roughly constant
since 1978; formally, the contribution of capital to growth in China is

Mankiw-Romer-Weil approach:
α

1− α

·
(K/Y )

(K/Y )

1

Ẏ /Y
≈ 0.

Therefore, according to the Mankiw-Romer-Weil approach, capital has made almost zero
contribution to growth in China, whereas according to the Solow approach, capital has
contributed to as much as half the growth in China. Given the very different implications,
we next examine these two approaches under endogenous technological progress.

3 Growth accounting under endogenous technical change

The previous section reviews that the two approaches to growth accounting have different
implications on the contribution of capital to growth. The reason is that the Solow approach
does not consider the underlying determinant that drives capital accumulation, whereas the
Mankiw-Romer-Weil approach assumes that capital accumulation is driven by technological
progress but not vice versa. In reality, technological progress is an endogenous process. In
this section, we consider two common specifications for technological progress and explore
the validity of the Solow and Mankiw-Romer-Weil approaches under each specification.

3.1 Knowledge-driven technological progress

We now modify the aggregate production function as follows:

Y = Kα(ALY )
1−α, (5)

where LY = (1−sA)L denotes production labor and sA ∈ (0, 1) is the share of labor devoted
to improving technology A. The law of motion for technology is given by

Ȧ = θALR, (6)
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where LR = sAL denotes R&D labor.6 The term θ ≡ θ/L denotes R&D productivity,
where θ > 0 is a productivity parameter and 1/L captures a dilution effect that removes a
counterfactual scale effect from the model.7 The termA on the right hand side of (6) captures
intertemporal knowledge spillovers from existing technologies A to new technology Ȧ as in
the knowledge-driven R&D specification in Romer (1990). Let’s denote the steady-state
growth rate of technology as gA ≡ Ȧ/A = θsA.8

The law of motion for capital accumulation is given by

K̇ = I − δK, (7)

where I denotes capital investment and the parameter δ ∈ (0, 1) denotes the capital depre-
ciation rate. Manipulating (7) yields

K̇

K
=

I

K
− δ. (8)

In the long run, the steady-state capital growth rate gK is constant, which in turn implies
a constant steady-state investment-capital ratio I/K. Together with a constant investment-
output ratio I/Y in the long run, we have established that the steady-state capital-output
ratio K/Y must be constant, which in turn implies that output and capital have the same
steady-state growth rate (i.e., gY = gK).
Taking the log of (5) and differentiating it with respect to time yield

Ẏ

Y
= (1− α)Ȧ

A
+ α

K̇

K
+ (1− α) L̇Y

LY
. (9)

We assume that sA is constant, which in turn implies L̇Y /LY = 0. Finally, we substitute the
long-run condition gY = gK into (9) to obtain

gY = gK = gA = θsA. (10)

Therefore, although technological progress is endogenous in this model, it is independent of
capital accumulation. In contrast, capital accumulation is driven by technological progress.
We now examine the validity of the Solow and Mankiw-Romer-Weil approaches to growth

accounting within the context of this model. Under the Solow approach, we have the follow-
ing condition in the long run:

Ẏ

Y
= (1− α)Ȧ

A
+ α

K̇

K
⇒ gY = (1− α)gA + αgK . (11)

6In Section 3.2, we discuss the potential determinants of sA. In a market economy, resources are channelled
into the R&D sector through the financial sector, where the interest rate plays a fundamental role and
determines the rate of return on financial assets in the form of firm equity.

7In an online appendix, we sketch out a second-generation R&D-based growth model that provides a
microfoundation for this dilution effect; see Laincz and Peretto (2006) and Ha and Howitt (2007) for empirical
evidence that supports this model.

8Without the dilution effect 1/L, gA would be increasing in L, which is inconsistent with empirical
evidence; see for example Jones (1995). In other words, the dilution effect removes the strong scale effect,
under which a larger population implies a higher growth rate of technology, but not the weak scale effect,
under which a larger population causes a higher level of technology; see the online appendix.
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As we can see, the Solow approach assigns the share α of growth to capital accumulation
gK , which should in fact be assigned to technological progress gA as (10) shows.
Under the Mankiw-Romer-Weil approach, we have the following long-run condition:

Ẏ

Y
=
Ȧ

A
+

α

1− α

·
(K/Y )

(K/Y )
⇒ gY = gA. (12)

Therefore, the Mankiw-Romer-Weil approach correctly assigns the entire long-run growth in
output to technological progress gA. We summarize these results below.

Proposition 1 The Mankiw-Romer-Weil approach to growth accounting is consistent with
the knowledge-driven technological progress under which the Solow approach overstates the
contribution of capital accumulation to economic growth and understates the contribution of
technological progress.

3.2 Lab-equipment technological progress

We now consider another specification for technological progress. The production function
is

Y = Kα(AL)1−α. (13)

The law of motion for technology is modified to capture the lab-equipment R&D specification
in Rivera-Batiz and Romer (1991) as follows:

Ȧ = θR =
θR

L
, (14)

where R = sAY and sA ∈ (0, 1) is now the share of output devoted to improving technology.
Substituting R = sAY and (13) into (14) yields

Ȧ

A
= θsA

(
K

AL

)α
, (15)

which in turn implies that in the case of a constant steady-state growth rate of technology,
the capital-technology ratio K/A must be constant in the long run.
The law of motion for capital is the same as in (7). For simplicity, we define sK ∈ (0, 1)

as the constant share of output devoted to capital accumulation (i.e., capital investment net
of depreciation). Formally,

sKY ≡ K̇ = I − δK, (16)

which in turn implies that
K̇

K
= sK

Y

K
= sK

(
AL

K

)1−α
. (17)
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Therefore, we can combine (15) and (17) to obtain

Ȧ

A
=
K̇

K
⇔ θsA

(
K

AL

)α
= sK

(
AL

K

)1−α
. (18)

Then, we derive the steady-state capital-technology ratio as

K

A
=

sK
θsA

L. (19)

Substituting (19) into (15) yields the steady-state growth rate of technology given by

gA = (θsA)
1−α(sK)

α, (20)

which in turn determines the steady-state growth rate of output and capital as gY = gK = gA.
If we take an approximation of (20), we have9

ln gA = (1− α) ln(θsA) + α ln(sK)⇒ gA ≈ (1− α)(θsA) + αsK . (21)

In this model, technological progress and capital accumulation follow a two-way process:
technological progress drives capital accumulation (i.e., gK = gA) but capital accumulation
also drives technological progress (i.e., gA depends on sK). Therefore, the causal determi-
nants of the long-run growth rate of output and technology in this model are the technology-
investment rate sA and the capital-investment rate sK . Although we have assumed constant
investment rates {sA, sK}, they need not be exogenous. In a market equilibrium, {sA, sK}
are determined by household preference, market structure and government policies, etc.
We now examine the two approaches within the context of this model. Under the Mankiw-

Romer-Weil approach, we have the following long-run condition:

Ẏ

Y
=
Ȧ

A
+

α

1− α

·
(K/Y )

(K/Y )
⇒ gY = gA, (22)

where the technology growth rate gA ≈ (1−α)(θsA)+αsK depends on the capital-investment
rate sK . In other words, capital investment sK contributes to technological progress gA and
output growth gY . Intuitively, because innovation indirectly uses research capital, growth is
increasing in capital investment. However, as (22) shows, all the growth in output is wrongly
attributed to technological progress under the Mankiw-Romer-Weil approach.
Under the Solow approach, we have the following long-run condition:

Ẏ

Y
= (1− α)Ȧ

A
+ α

K̇

K
⇒ gY = (1− α)gA + αgK , (23)

where (1−α)gA+αgK = gA ≈ (1−α)(θsA)+αsK . The Solow approach correctly assigns some
of the growth in output to growth in capital gK , which captures the effect of sK in (21). As
(17) shows, the capital growth rate K̇/K is determined by the capital-investment rate sK for
a given capital-technology ratioK/A. Similarly, the Solow approach correctly assigns some of

9Here we use a first-order approximation ln(1 + x) ≈ x of the Mercator series.
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the growth in output to growth in technology gA, which captures the effect of θsA in (21). As
(15) shows, the technology growth rate Ȧ/A is determined by the technology-investment rate
sA for a given capital-technology ratioK/A. Therefore, under the lab-equipment specification
that features final goods as input in the innovation process, the Solow approach is more
valid than the Mankiw-Romer-Weil approach because the former captures the contribution
of capital investment to technological progress and economic growth via the growth rate of
capital in the aggregate production function.

Proposition 2 Under the lab-equipment technological progress, the Solow approach to growth
accounting is more valid than the Mankiw-Romer-Weil approach, which understates the con-
tribution of capital accumulation to economic growth and overstates the contribution of tech-
nological progress.

4 Conclusion

In this letter, we have explored the validity of two conventional approaches to growth ac-
counting under two common specifications for endogenous technical change. We find that
if the innovation process is captured by the lab-equipment (knowledge-driven) technological
progress, then the Solow (Mankiw-Romer-Weil) approach to growth accounting is more ap-
propriate in which case capital accumulation would have contributed to almost half (none)
of the growth in China. In an earlier version of this study,10 we consider a more general
innovation specification with different degrees of capital intensity in production and innova-
tion. We propose a weighted average of the Solow and Mankiw-Romer-Weil approaches for
growth accounting in which capital intensity in innovation determines the relative weight of
the two approaches.
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Online Appendix

In this appendix, we provide a microfoundation for the dilution effect on R&D produc-
tivity using a variant of the second-generation R&D-based growth model. The aggregate
production function of final goods is given by

Y =

∫ N

0

Kα
Y (i)[A(i)LY (i)]

1−αdi, (A1)

where {A(i), KY (i), LY (i)} are the technology level, capital and labor inputs of intermediate
goods i ∈ [0, N ]. The variable N denotes the number of varieties of these intermediate goods.
The law of motion for technology of intermediate goods i ∈ [0, N ] is given by

Ȧ(i) = θ̃Kβ
R(i)[A(i)LR(i)]

1−β, (A2)

where {KR(i), LR(i)} are the capital and labor inputs devoted to improving the technology
of intermediate goods i ∈ [0, N ] and θ̃ > 0 is a productivity parameter.
We consider a symmetric equilibrium in which LR(i) = sAL/N , LY (i) = (1 − sA)L/N ,

KR(i) = sAK/N , KY (i) = (1− sA)K/N and A(i) = A for all i ∈ [0, N ]. Substituting these
conditions into (A1) and (A2) yields

Y = N

[
(1− sA)K

N

]α [
A(1− sA)L

N

]1−α
= (1− sA)Kα(AL)1−α, (A3)

Ȧ = θ̃

(
sAK

N

)β (
AsAL

N

)1−β
=

θ̃

N
sAK

β(AL)1−β. (A4)

Equation (A4) shows that R&D productivity θ̃/N is diluted by the number of varieties of
intermediate goods. The law of motion for N is given by

Ṅ = φL− δNN , (A5)

where φ > 0 measures the effi ciency of the society in creating new varieties and δN > 0 is
the obsolescence rate of varieties. In the steady state, we have N = φL/δN , which shows
that N is increasing in L. Substituting this condition into (A4), we have

Ȧ =
θ

L
sAK

β(AL)1−β, (A6)

where we have defined θ ≡ δN θ̃/φ. Setting β = 0 in (A6) yields (6). Setting β = α in (A6)
yields (14). Taking the log of (A3) and differentiating the resulting expression with respect
to time yield

Ẏ

Y
= (1− α)Ȧ

A
+ α

K̇

K
. (A7)

The law of motion for capital is given by (16), which in turn implies a constant capital-output
ratio K/Y in the long run. Therefore, the steady-state growth rate of output and capital is
given by gY = gK = gA as before.
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