
Growth: Scale or Market-Size Effects?

Angus C. Chu Guido Cozzi

January 2019

Abstract

Is the supply of researchers or the demand for technologies more important for
innovation? The supply of research labor captures a scale effect, whereas the demand
from production labor for technologies captures a market-size effect. We find that
both the scale effect and the market-size effect are important for innovation and their
relative importance depends on R&D labor intensity. We collect data on R&D labor
intensity and find that it varies significantly across countries.

JEL classification: O30, O40
Keywords: innovation, economic growth, scale effects, market-size effects

Chu: angusccc@fudan.edu.cn. China Center for Economic Studies, School of Economics, Fudan Univer-

sity, Shanghai, China. Shanghai Institute of International Finance and Economics, Shanghai, China. Cozzi:

guido.cozzi@unisg.ch. Department of Economics, University of St. Gallen, St. Gallen, Switzerland. The

authors would like to thank an anonymous referee for his insightful comments and helpful suggestions. The

usual disclaimer applies.

1



1 Introduction

In an influential study, Jones (1995) shows that the R&D-based growth model features a scale
effect, which implies that a larger labor force causes a higher growth rate of technologies.
Intuitively, with a larger labor force, there is more labor for R&D. Acemoglu (2002) shows
that the R&D-based growth model also features a market-size effect under which the growth
rate of technologies is increasing in the amount of labor that uses the technologies. Therefore,
the scale effect and the market-size effect are closely related. Acemoglu (2002) writes, "[s]ince
the scale effect is related to the market size effect [...], one might wonder whether, once we
remove the scale effect, the market size effect will also disappear."
This study disentangles the scale effect and the market-size effect. The supply of research

labor determines the scale effect, whereas the demand from production labor for technologies
determines the market-size effect. In a Schumpeterian growth model that features both lab-
equipment R&D and knowledge-driven R&D, we find that the growth rate of technologies is
generally increasing in both research labor and production labor. Therefore, both the scale
effect and the market-size effect matter to innovation. However, their relative importance
depends on the relative intensity of lab-equipment R&D and knowledge-driven R&D. Under
knowledge-driven R&D that uses research labor as input, only the scale effect matters to
innovation. Under lab-equipment R&D that uses final good as input, only the market-size
effect matters to innovation. In general, the importance of the scale effect relative to the
market-size effect is increasing in R&D labor intensity in the innovation process. Extending
our analysis to a semi-endogenous growth model, we find that the scale effect and the market-
size effect are still present but affect the long-run level of technologies, instead of the long-run
growth rate of technologies. Finally, we collect data on R&D labor intensity and find that
it varies significantly across countries.
This study relates to the literature on innovation and economic growth. Romer (1990)

develops the seminal R&D-based growth model in which new products drive innovation.
Segerstrom et al. (1990), Grossman and Helpman (1991a) and Aghion and Howitt (1992)
develop the Schumpeterian model in which higher-quality products drive innovation. Jones
(1999) shows that these seminal studies feature scale effects and discusses two approaches of
removing them. The semi-endogenous growth model originates from Jones (1995),1 whereas
the second-generation model originates from Smulders and van de Klundert (1995), Peretto
(1998, 1999) and Howitt (1999) in which the market size of firms is of fundamental impor-
tance. Our analysis relates to this literature, which shows how the market-size dynamics at
the firm level is able to eliminate the scale effect at the aggregate level.2 Acemoglu (2002) de-
velops a model of directed technical change and shows that the market-size effect exists even
without the scale effect on growth; however, his formulation maintains the scale effect on
level. Our study complements Acemoglu (2002) by showing the different determinants of the
scale and market-size effects and the importance of the relative intensity of two conventional
R&D specifications.

1See also Grossman and Helpman (1991b, p. 75-76) who anticipated the semi-endogenous growth model.
2See Laincz and Peretto (2006) and Peretto (2018) for empirical and theoretical justifications for the

second-generation model.
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2 A Schumpeterian growth model

We consider the Schumpeterian model. Previous studies often assume that the R&D sector
uses either research labor (i.e., knowledge-driven R&D) or final good (i.e., lab-equipment
R&D). We specify a generalized R&D process that uses both research labor and final good.

2.1 Household

The representative household has the following utility function:

U =

∫ ∞
0

e−ρt ln ctdt, (1)

where ct denotes consumption at time t and the parameter ρ > 0 is the discount rate.
The household exogenously supplies m units of manufacturing labor and s units of research
labor. Research labor s is the supply of an input for innovation and captures the scale effect.
Production labor m uses invented technologies and determines the market size of innovation.
The household maximizes utility subject to the following asset-accumulation equation:

ȧt = rtat + wm,tm+ ws,ts− ct. (2)

at is the real value of assets (i.e., the share of monopolistic firms). rt is the real interest rate.
wm,t and ws,t are respectively the real wage rates of m and s. Dynamic optimization yields

ċt
ct

= rt − ρ. (3)

2.2 Final good

Competitive firms produce final good yt using the following Cobb-Douglas aggregator:

yt = exp

(∫ 1

0

lnxt(i)di

)
, (4)

where xt(i) is intermediate good i ∈ [0, 1]. Profit maximization yields the following condi-
tional demand function for xt(i):

xt(i) =
yt
pt(i)

, (5)

where pt(i) is the price of xt(i).
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2.3 Intermediate goods

There is a unit continuum of monopolistic industries producing differentiated intermediate
goods. The production function of the industry leader in industry i ∈ [0, 1] is

xt(i) = zqt(i)mt(i), (6)

where the parameter z > 1 is the quality step size, qt(i) is the number of quality improvements
that have occurred in industry i as of time t, and mt(i) is manufacturing labor employed in
industry i. Given the productivity level zqt(i), the marginal cost of the leader in industry i
is wm,t/zqt(i). The profit-maximizing monopolistic price is

pt(i) = µ
wm,t
zqt(i)

, (7)

where the markup µ ∈ (1, z] is a policy parameter determined by the government.3 The
wage payment is

wm,tmt(i) =
1

µ
pt(i)xt(i) =

1

µ
yt, (8)

and the monopolistic profit is

πt(i) = pt(i)xt(i)− wm,tmt(i) =
µ− 1

µ
yt. (9)

2.4 R&D

Equation (9) shows that πt(i) = πt. Therefore, the value of inventions is the same across
industries such that vt(i) = vt.4 The no-arbitrage condition that determines vt is

rt =
πt + v̇t − λtvt

vt
, (10)

which states that the rate of return on vt is equal to rt. The return on vt is the sum of
monopolistic profit πt, capital gain v̇t and expected capital loss λtvt, where λt is the arrival
rate of innovation.5

Competitive entrepreneurs maximize profit by recruiting research labor st and devoting
Rt units of final good to perform innovation. The arrival rate of innovation is

λt = ϕ(st)
1−α
(
Rt

Zt

)α
, (11)

3Grossman and Helpman (1991a) and Aghion and Howitt (1992) assume that the markup is equal to the
quality step size z, due to limit pricing between current and previous quality leaders. Here we follow Evans
et al. (2003) to consider price regulation under which the regulated markup ratio is µ ∈ (1, z].

4We follow the standard approach in the literature to focus on the symmetric equilibrium. See Cozzi et
al. (2007) for a theoretical justification for the symmetric equilibrium to be the unique rational-expectation
equilibrium in the Schumpeterian model.

5When the next innovation occurs, the previous technology becomes obsolete. This is known as the Arrow
replacement effect; see Cozzi (2007) for a discussion.
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where ϕ > 0 is a productivity parameter and Zt denotes aggregate technology. The parame-
ter α ∈ [0, 1] is the intensity of final good relative to research labor in the innovation process.
Knowledge-driven R&D is captured by α = 0, whereas lab-equipment R&D is captured by
α = 1. The first-order conditions for {st, Rt} are (1− α)λtvt = ws,tst and

αλtvt = Rt ⇔ αϕs1−α
(
Rt

Zt

)α−1
vt
Zt

= 1, (12)

which uses (11) and the resource constraint st = s.

2.5 Economic growth

Aggregate technology Zt is defined as

Zt ≡ exp

(∫ 1

0

qt(i)di ln z

)
= exp

(∫ t

0

λωdω ln z

)
, (13)

which uses the law of large numbers. Differentiating the log of Zt with respect to time yields
the growth rate of technology given by

gt ≡
Żt
Zt

= λt ln z. (14)

Substituting (6) into (4) yields the aggregate production function given by

yt = exp

(∫ 1

0

qt(i)di ln z +

∫ 1

0

lnmt(i)di

)
= Ztm. (15)

Thus, the growth rate of output yt is also gt, which is determined by λt as shown in (14).
From (3) and (10), the balanced-growth value of an invention is

vt =
πt

ρ+ λ
=
µ− 1

µ

Ztm

ρ+ λ
, (16)

which uses (9) and (15). Equation (16) shows that vt is increasing in production labor m,
capturing the market-size effect in Acemoglu (2002). Substituting (16) into (12) yields

λ = αϕs1−α
(
Rt

Zt

)α−1
µ− 1

µ
m− ρ. (17)

Substituting the resource constraint st = s into the arrival rate of innovation in (11) yields

λ = ϕs1−α
(
Rt

Zt

)α
, (18)

where Rt is still endogenous. Combining (17) and (18) yields

(ρ+ λ)αλ1−α =

(
α
µ− 1

µ

)α
ϕs1−αmα, (19)

5



which determines the unique steady-state equilibrium λ.
Equation (19) shows that the arrival rate λ of innovation is increasing in production

labor m (i.e., the market-size effect) and research labor s (i.e., the scale effect). Therefore,
the equilibrium growth rate g in (14) is also increasing in m and s. The complementarity
betweenm and s in (19) implies that how country size affects growth depends on the product
of m and s. For example, a large country with a low innovation capacity s (e.g., China in the
early reform period) cannot achieve high growth from innovation by simply having a large
market size m.

Proposition 1 Economic growth is increasing in production labor m (i.e., the market-size
effect) and research labor s (i.e., the scale effect).

Considering a zero discount rate ρ→ 0, we simplify (19) to

lim
ρ→0

λ =

(
α
µ− 1

µ

)α
ϕs1−αmα. (20)

Substituting (20) into (14) yields

lim
ρ→0

g =

(
α
µ− 1

µ

)α
ϕs1−αmα ln z, (21)

which shows that the importance of the market-size effect m relative to the scale effect s
on growth is increasing in the intensity α of final good relative to research labor in the
innovation process. Equation (19) shows that this result is robust to ρ > 0.6 Intuitively, as
α increases, R&D spending Rt becomes more important for innovation relative to research
labor st; consequently, the market-size effect, which determines the value of inventions,
becomes more important relative to the scale effect in determining innovation. Proposition
2 summarizes this result.

Proposition 2 The importance of the market-size effect m relative to the scale effect s on
economic growth is increasing in the intensity α of final good relative to research labor in the
innovation process.

Finally, we consider knowledge-driven R&D given by α = 0 and lab-equipment R&D
given by α = 1. Under knowledge-driven R&D, the arrival rate of innovation is λKD = ϕs
and the growth rate of technology is gKD = ϕs ln z. Therefore, only the scale effect s
matters under knowledge-driven R&D because innovation is solely determined by the supply
of research labor in this case.7 Under lab-equipment R&D, the arrival rate of innovation is
λLE = ϕm(µ−1)/µ−ρ, and the growth rate of technologies is gLE = λLE ln z. Therefore, only

6One can apply the approximation ln(X) ≈ X − 1 to (19) to show that ∂λ/∂m ≈ α and ∂λ/∂s ≈ 1− α.
7This result is robust to allowing s to be allocated between research sr and production sx. For example,

one can modify (6) as xt(i) = zqt(i)[mt(i)]
β [sx,t(i)]

1−β to confirm that gKD is still independent of m.
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the market-size effectmmatters under lab-equipment R&D because innovation is determined
by the demand for technologies in this case.8 Proposition 3 summarizes these results.

Proposition 3 Under knowledge-driven R&D, only the scale effect s matters to innovation.
Under lab-equipment R&D, only the market-size effect m matters to innovation.

3 A scale-invariant Schumpeterian growth model

In this section, we allow for population growth and convert the model into a semi-endogenous
growth model to examine its implications. In this case, we assume that research labor is
st ≡ sLt and production labor is mt ≡ mLt, where s+m ≤ 1 and population Lt increases at
an exogenous growth rate n > 0. Then, we modify the innovation process in (11) as follows:

λt =
ϕ(st)

1−α

Zφ
t

(
Rt

Zt

)α
, (22)

where the parameter φ > 0 and the new term Zφ
t capture an increasing-diffi culty effect of

R&D similar to Segerstrom (1998). The rest of the model is the same as in Section 2. We will
show that Rt/Zt is proportional to mt and increases at the rate n in the long run. Therefore,
(st)

1−α(Rt/Zt)
α also increases at the rate n. Then, a steady-state arrival rate λ of innovation

requires that Zφ
t also grows at the rate n in the long run. Therefore, the long-run growth

rate of aggregate technology Zt is g = n/φ, and the steady-state arrival rate of innovation is
λ = g/ ln z = n/(φ ln z).9

Substituting (16) into αλtvt = Rt yields

Rt

Zt
=
µ− 1

µ

αλ

ρ+ λ
mt, (23)

which shows that Rt/Zt is proportional to mt in the long run. Substituting (23) into (22)
yields the long-run level of technology (per capita) as follows:

Zφ
t

Lt
=
ϕ(st)

1−α(mt)
α

λLt

(
µ− 1

µ

αλ

ρ+ λ

)α
=
ϕs1−αmα

λ

(
µ− 1

µ

αλ

ρ+ λ

)α
, (24)

where λ = n/(φ ln z) is determined by exogenous parameters. Equation (24) shows that
the long-run level of technology is increasing in the market-size effect m and the scale effect
s. Furthermore, the relative importance of the market-size effect m and the scale effect s

8If we assume that s can be allocated to production sx and specify xt(i) = zqt(i)[mt(i)]
β [sx,t(i)]

1−β , then
gLE = [ϕmβs1−β(µ−1)/µ−ρ] ln z. Although innovation is also determined by s in this case, its effect works
through the market size (i.e., the demand from production labor sx = s for technologies).

9Alternatively, one can achieve long-run endogenous growth despite population growth by replacing Zφt
in (22) with Lt, which captures a dilution effect in the spirit of the second-generation model; see Laincz and
Peretto (2006). In this case, (19) remains the same except that s1−αmα is given by (st/Lt)1−α(mt/Lt)

α. In
Appendix A, we show that a second-generation version of our model also yields (19).
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on innovation is determined by the relative intensity α of final good and research labor in
innovation. Under knowledge-driven R&D (i.e., α = 0), only the scale effect s matters to
innovation. Under lab-equipment R&D (i.e., α = 1), only the market-size effectmmatters to
innovation. All these results are the same as before, except the effect on innovation is reflected
in the long-run level of technology instead of the long-run growth rate of technology.10

3.1 Labor allocation

In this section, we extend the semi-endogenous growth model by allowing for labor allocation
in s to ensure the robustness of our results when s can be allocated between research sr and
production sx. Specifically, we modify (6) as follows:

xt(i) = zqt(i)[mt(i)]
β[sx,t(i)]

1−β, (25)

where β ∈ (0, 1). In Appendix B, we derive the long-run level of technology as

Zφ
t

Lt
=
ϕ(sr,t)

1−α(sx,t)
α(1−β)(mt)

αβ

λLt

(
µ− 1

µ

αλ

ρ+ λ

)α
=
ϕs1−αβmαβ

λ
Ω, (26)

where λ = n/(φ ln z) and the composite parameter Ω is defined as

Ω ≡

(
α
µ

)α (
1−α
1−β

)1−α
λ(µ−1)
ρ+λ[

1 + 1−α
1−β

λ(µ−1)
ρ+λ

]1−αβ .
Equation (26) shows that technology Zφ/Lt is increasing in the market-size effect m and the
scale effect s. The importance of m relative to s is increasing in α. The exponent on s is
1−αβ = 1−α+α(1−β), where 1−α captures the scale effect from sr and α(1−β) captures
the market-size effect from sx. Under knowledge-driven R&D (i.e., α = 0), only the scale
effect s matters to technology because the market-size effect m does not affect R&D labor
sr. Under lab-equipment R&D (i.e., α = 1), only the market-size effect mβs1−β matters,
where s1−β captures the demand from production labor (sx)

1−β for technologies.

4 Does R&D labor intensity vary across countries?

If we assume that R&D labor st and production labor mt are mobile between the two sectors
subject to st + mt = lt ≤ Lt where lt denotes labor force, then the wage rate is equalized
between the two types of labor such that ws,t = wm,t = wt. In this case, we can construct

10In an earlier version, we also consider a hybrid model that features both endogenous growth and semi-
endogenous growth as in Cozzi (2017); see Chu and Cozzi (2018).
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R&D labor intensity 1− α from data as follows:11

1− α =
wtst

wtst +Rt

=

R&D share of labor︷ ︸︸ ︷
(st/lt)

(wtst +Rt)/yt︸ ︷︷ ︸
R&D share of GDP

labor income/GDP︷ ︸︸ ︷
(wtlt/yt) . (27)

Figure 1 shows that R&D labor intensity varies significantly even across OECD countries.
For example, the US has a relatively low R&D labor intensity suggesting that the market-size
effect is more vital for its innovation than the scale effect, compared to a country like the
UK which has a relatively high R&D labor intensity.

Figure 1: Average R&D labor intensity from 1996 to 2014

5 Conclusion

In this study, we find that both the supply of research labor that determines the scale effect
and the demand from production labor for technologies that determines the market-size effect
matter to innovation. Interestingly, the relative importance of these supply and demand
factors depends on the relative intensity of lab-equipment R&D and knowledge-driven R&D
in the innovation process. Therefore, this structural parameter has important empirical
implications. For example, it determines whether an education policy that increases research
labor at the expense of production labor stimulates or stifles economic growth. If the intensity
of lab-equipment R&D is high relative to knowledge-driven R&D, then a policy that promotes
apprenticeships, such as the European Alliance for Apprenticeships, may be more effective
in stimulating economic growth.

11Data sources: OECD.Stat, UIS.Stat, and World Development Indicators.
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Appendix A: Second-generation model (not for publication)

In this appendix, we show that the dilution effect mentioned in footnote 9 can be micro-
founded in a second-generation model with both quality improvement and variety expansion.
We modify the production function in (4) as

yt = Nt exp

(
1

Nt

∫ Nt

0

lnxt(i)di

)
, (A1)

where Nt is the endogenous mass of differentiated intermediate goods. Following Howitt
(2000), we specify the law of motion for Nt as

Ṅt = ξLt, (A2)

where ξ > 0 is an exogenous parameter. A stationary Ṅt/Nt on the balanced growth path
implies a stationary ratio Lt/Nt, which in turn implies that the long-run growth rate of Nt

is also n. Therefore, Nt is proportional to Lt in the long run, such that Nt = ξLt/n. If we
use the parameter normalization ξ = n, then Nt = Lt.
As for the rest of the model, yt in (5), (8) and (9) is replaced by yt/Nt. Furthermore, the

resource constraints on production labor and research labor become∫ Nt

0

mt(i)di = mLt ⇒ mt(i) =
mLt
Nt

= m, (A3)∫ Nt

0

st(i)di = sLt ⇒ st(i) =
sLt
Nt

= s, (A4)

where the second set of equations in (A3) and (A4) applies symmetry and uses the long-run
condition Nt = Lt. Aggregate technology in (13) becomes

Zt ≡ exp

(
1

Nt

∫ Nt

0

qt(i)di ln z

)
= exp

(∫ t

0

λωdω ln z

)
, (A5)

and the growth rate of Zt is gt = λt ln z. Aggregate production function in (15) becomes

yt = Nt exp

(
1

Nt

∫ Nt

0

qt(i)di ln z +
1

Nt

∫ Nt

0

lnmt(i)di

)
= ZtmLt, (A6)

where the last equality uses Nt = Lt. Therefore, the growth rate of yt is g + n = λ ln z + n.
Substituting πt(i) = [(µ − 1)/µ]yt/Nt into (10) yields (16).12 Finally, (17) and (18) are the
same as before and give rise to the same steady-state equilibrium λ in (19), where m and s
are now production labor and research labor per variety.

References

[1] Howitt, P., 2000. Endogenous growth and cross-country income differences. American
Economic Review, 90, 829-846.

12To obtain (16) in the second-generation model, we redefine utility in (1) such that the real interest rate
rt in (3) is determined by the growth rate of per capita consumption, instead of aggregate consumption.
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Appendix B: Labor allocation (not for publication)

In this appendix, we generalize the production function in (6) as follows:

xt(i) = zqt(i)[mt(i)]
β[sx,t(i)]

1−β. (B1)

From cost minimization, the marginal cost of production for the leader in industry i is

MCt(i) =
1

zqt(i)

(
wm,t
β

)β (
ws,t

1− β

)1−β
. (B2)

Given pt(i) = µMCt(i), the monopolistic profit and wage payments are respectively

πt(i) =
µ− 1

µ
pt(i)xt(i) =

µ− 1

µ
yt, (B3)

wm,tmt(i) =
β

µ
pt(i)xt(i) =

β

µ
yt, (B4)

ws,tsx,t(i) =
1− β
µ

pt(i)xt(i) =
1− β
µ

yt. (B5)

The arrival rate λt of innovation is given by (22) with st replaced by sr,t. The first-order
conditions for {sr,t, Rt} are

(1− α)λtvt = ws,tsr,t, (B6)

αλtvt = Rt. (B7)

Substituting (B1) into (4) yields

yt = Zt(mt)
β(sx,t)

1−β. (B8)

From (3) and (10), the balanced-growth value of an invention is

vt =
πt

ρ+ λ
=
µ− 1

µ

Zt(mt)
β(sx,t)

1−β

ρ+ λ
, (B9)

where the second equality uses (B3) and (B8). Substituting (B9) into (B7) yields

Rt

Zt
=

αλ

ρ+ λ

µ− 1

µ
(mt)

β(sx,t)
1−β. (B10)

Substituting (B5) and (B9) into (B6) yields

sr,t
sx,t

=
1− α
1− β

λ(µ− 1)

ρ+ λ
. (B11)

Substituting (B10) and (B11) into (22) yields

λ =
ϕ(sx,t)

1−αβ(mt)
αβ

Zφ
t

(
α

µ

)α(
1− α
1− β

)1−α
λ(µ− 1)

ρ+ λ
, (B12)

which shows that a steady-state equilibrium λ requires Zφ
t to grow at the rate n. Substituting

(B11) into sx,t + sr,t = st yields

st =

[
1 +

1− α
1− β

λ(µ− 1)

ρ+ λ

]
sx,t. (B13)

Substituting (B13) into (B12) yields (26).
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