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Abstract: Ground-borne vibration excited by railway traffic has attracted much research in very recent 

years and its conventional three-dimensional numerical analysis is known to be tedious and time 

consuming. Advanced numerical models based on a significant model reduction which can simulate this 

problem in an efficient way have been developed only for straight railway lines. To achieve a significant 

reduction of the number of degrees-of-freedom in the determination of dynamic responses of a coupled 

curved track-tunnel-soil system due to moving loads, a curved two-and-a-half-dimensional (2.5D) model 

is presented in this paper. In this model, the track-tunnel-soil system is assumed to be invariant in the 

longitudinal direction. Further, a curved 2.5D finite element method is proposed to model the tunnel-soil 

system and provide an appropriate artificial boundary of the computation domain, while a 2.5D analytical 

method considering the longitudinal, transverse, vertical and rotational motions of the rail is developed to 

model the curved track. By exploiting the force equilibrium and displacement compatibility conditions, 

the curved track with an analytical solution is coupled to the curved tunnel-soil system with a finite element 

solution, leading to the governing equation of motion of the whole curved track-tunnel-soil system. 

Through comparisons with other theoretical models, the proposed model is validated. Numerical examples 

show that the proposed model can efficiently simulate the dynamic responses of the curved track-tunnel-

soil system due to its significant advantage that the discretization and solution are required over only the 

cross section. Some interesting dynamic phenomena of the curved track-tunnel-soil system subjected to 

generalized moving loads acting on the rail are also found through the numerical analyses. 

Keywords: numerical simulation; ground-borne vibration; 2.5D modelling approach; coupled track-

tunnel-soil system; curved section; moving load problem.  

 

1. Introduction 

Traffic-induced ground-borne vibrations, especially those induced by metro traffic, may have 

negative influences on the normal life of the residents, the operations of delicate instruments, and the 

historical buildings along the traffic infrastructures [1–3]. Thus they have become a major concern in urban 

areas around the world. To better understand these vibrations, simulating and analysing the vibration 

responses of the coupled traffic infrastructure and soil system due to dynamic loads produced by various 

modes of transportation are needed.  

Great efforts have been made in quantifying the ground-borne vibrations due to various dynamic  
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Nomenclature 

Roman symbols 

a  distance between the rail centroid and the rail bottom 

b  half width of the rail bottom 

B  strain matrix in the FEM 

jc , '

jc  damping quantities  

PC  P-wave speed of the soil 

SC  S-wave speed of the soil 

boundary

e
C  damping matrix of an artificial boundary element 

g
C  global damping matrix of the whole FE model 

bd  distance between the excitation source and the artificial boundary 

D  constitutive matrix of the viscoelastic medium 

E , 
mE  Young’s moduli 

f  external force of the viscoelastic medium modelled by FEM 

0f  load’s frequency 

ijf , ijpf  reaction forces of the tunnel base to the rails  

f , jf  external force vector of the viscoelastic medium modelled by FEM 

ijF  external force applied on the track 

F  external force vector applied on the track 

e
F  equivalent nodal force vector of a finite element 

g
F  equivalent nodal force vector of the whole FE model 

G , 
mG  shear moduli 

i  unit imaginary number 

dI  torsional constant of the rail 

0I  rail’s polar moment of area about the centroid of the cross-section 

YI  rail’s second moment of area with respect to Y axis  

ZI  rail’s second moment of area with respect to Z axis 

J  FEM Jacobian matrix 

k  wavenumber in the θ  direction 

jk , '

jk  stiffness quantities  
e

K , e

ijK  stiffness matrices of a four-node curved 2.5D finite element  

boundary

e
K  stiffness matrix of an artificial boundary element 

g
K  global stiffness matrix of the whole FE model 

g

ijK  global stiffness matrix corresponding to e

ijK    

boudary

g
K  global stiffness matrix of the whole artificial boundary 

L  differential operation matrix of the strain-displacement relation  

m  mass per unit length of the rail 
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iM ϕ  external moment applied to the rail 

e
M  mass matrix of a finite element   

g
M  global mass matrix of the whole FE model 

N  FEM shape function 

LiP , LijP  time-domain magnitudes of the external force acting on the left rail 

R  radius of the curved tunnel 

iR  radius of the left rail (i=L) or the right rail (i=R) 

iju  displacement of the rail  
b

pju , b

pjiu  displacement quantities of the tunnel base points 

u   displacement vector of the viscoelastic medium modelled by FEM 

e
U  nodal displacement vector of a finite element 

g
U  nodal displacement vector of the whole FE model 

t
U  displacement vector of the track 

v  linear velocity of the moving load 

vθ  angular velocity of the moving load 

Greek symbols 

α  superelevation angle of the curved track 

Nα , 
Tα  modified coefficients for the stiffnesses of the artificial boundary 

Γ  inverse matrix of FEM Jacobian matrix J  

ε  strain tensor 

ζ  local coordinate of the curved 2.5D finite element 

η  local coordinate of the curved 2.5D finite element 

mλ  Lamé coefficient 

mµ  Lamé coefficient 

mν  Poisson’s ratio 

ξ , 
mξ  damping ratios 

ρ , 
mρ  mass densities 

σ  stress tensor 

iϕ  rotational displacement of the rail 

ω  circular frequency 

Other symbols 

ɶ  variable in the wavenumber domain 

ɵ  variable in the frequency domain 
ɶɵ  variable in the wavenumber-frequency domain 

 amplitude of a harmonic variable 

loads representing both the excitation of railway traffic (including metro traffic) and that of roadway traffic 

in the past decades. For the dynamic responses of a uniform (visco-) elastic half-space or a multi-layered 
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viscoelastic half-space subjected to various moving or stationary dynamic loads, analytical or semi-

analytical solutions have been presented by Eason [4], De Barros and Luco [5], Hung and Yang [6], Kausel 

[7] and Cao et al. [8], respectively. Their outstanding works provided a good understanding of the 

concerned problem, but when more complicated problems are considered, these analytical or semi-

analytical methods are not applicable. In such circumstances, numerical simulation methods are usually 

needed. Various numerical two-dimensional (2D) and three-dimensional (3D) models based on different 

methods [9–12] have been developed to determine these ground-borne vibrations, but these conventional 

numerical models still have some drawbacks. Specifically, the 2D models cannot account for wave 

propagation in the longitudinal direction of the traffic infrastructure and will underestimate radiation 

damping of the soil, while the 3D models are inefficient from a computational point of view [13].  

A sensible approach to quantify these ground-borne vibrations is to develop advanced numerical 

models which can overcome the drawbacks of the conventional ones. As a result, there have been two 

kinds of advanced numerical models proposed by several authors. The first kind is the two-and-a-half-

dimensional (2.5D) model, in which the geometry of a system in the longitudinal direction is assumed to 

be invariant and the solution is required over only the cross section. Various 2.5D models have been 

developed in recent years, including the coupled finite element-infinite element (FE-IE) model [14,15], the 

coupled finite element-boundary element (FE-BE) model [16,17], the model based on the coupled integral 

transformation method and finite element method (ITM-FEM) [18,19], the Pipe-in-Pipe (PiP) model [20–

22], the FE model with viscoelastic artificial boundary [23] and the coupled finite element and perfectly 

matched layer (FEM-PML) model [24–26]. The second kind of advanced models is the periodic model, in 

which the geometry of the system in the longitudinal direction is assumed to be periodic and a periodic 

solution is sought. The coupled periodic finite element-boundary element (FE-BE) model [27,28] is the 

main representative of this kind of models. Both kinds of advanced models can bring a significant reduction 

of the number of degrees-of-freedom (DoFs) in the simulation of the problem, hence saving a large amount 

of computational workload. Although there are many advanced models for the ground-borne vibrations 

induced by moving train or other dynamic loads, to the authors’ best knowledge, these models are limited 

to only straight railway lines or loads moving in straight lines.  

When metro traffic is concerned, it can be found that there are plenty of curved metro sections in 

reality due to the existing layout of a city and other restrictions. Taking the metro network of Beijing as an 

example, the mileage of curved sections takes up nearly 30% of its total mileage in 2012 [29]. In this 

circumstance, some buildings which are sensitive to the environmental vibration are inevitably affected by 

these curved metro sections. For instance, it was reported in 2017 that a laboratory with a number of 

delicate instruments in Peking University was affected by a curved section of Beijing metro line 16 [30]. 

When the train negotiates a curved track, much higher complexity occurs in the train-track contact relation 
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and interaction, generating significant asymmetry of loads acting on the internal and external rails [31], 

non-ignorable lateral wheel-rail loads [32] and even short pitch rail corrugation [33]. These factors, 

together with the peculiar moving trajectory of a train (or wheel-rail loads) and peculiar structural 

characteristics of the curved track and tunnel (e.g. the declining tunnel base constructed to satisfy the 

requirement on the track superelevation), make the ground vibration of a curved metro section quite 

different from that of a straight one. Specifically, the train-induced ground vibrations of a curved metro 

section (for those ground points on the inner side of the radius of the curved metro line) were found to be 

usually greater than those of a straight section with similar conditions, and their radial components were 

also found to be much greater than their vertical components in a wide region of the ground surface [29]. 

It is worth noting that the aforementioned understandings on ground vibrations of a curved metro section 

are mainly obtained through the analyses of field measurement data, and further theoretical studies are still 

needed for a comprehensive clarification of the specific dynamic features of a curved metro section. 

There have been a large number of models reported for dynamic behaviours of curved beams and 

curved tracks subjected to various dynamic excitations, varying from non-moving or moving harmonic 

loads to moving train loads. The corresponding literature review can be found in Refs. [34] and [35]. 

However, numerical studies of the ground-borne vibration of a curved metro section are very limited, which 

is mainly due to the higher complexity when ground dynamic behaviour is considered. As far as the 

simulation method of ground-borne vibration of a curved metro section is concerned, it seems that there 

does not exist a very efficient approach for dealing with this problem as mentioned above and only 

computation-expensive 3D FE method (such as the work in [30]) is available. 

Compared with the simulation of the ground-borne vibration of a straight metro section where only 

the out-of-plane behaviour of the track is generally considered, both the out-of-plane and in-plane dynamic 

behaviours of the track should be taken into consideration in the simulation of the ground-borne vibration 

of a curved metro section due to the much more complex loading condition on the curved track. As a direct 

result, the ground vibration characteristics under dynamic loads acting on the rail in its transverse and even 

rotational directions, which have not been given enough attention in the studies of the ground-borne 

vibration of a straight metro section, become important for a better understanding of the ground-borne 

vibration of a curved metro section. On the other hand, the effects of the curvature of the track-tunnel 

system and the track superelevation on the ground vibrations have not been studied yet, also leading to 

poor understandings on the ground-borne vibration of a curved metro section. 

Generally speaking, a completely coupled train-track-tunnel-soil model is needed for a 

comprehensive study of the ground-borne vibration of a curved metro section. However, establishing this 

kind of model, especially that with high computational efficiency, is an arduous task and needs a great 

many of intellectual works. This paper only focuses on the efficient simulation of the dynamic responses 
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of a coupled track-tunnel-soil system in a circular curved (in the remainder of this paper, ‘curved’ refers in 

particular to ‘circular curved’) section due to moving loads, which can facilitate the establishment of the 

completely coupled train-track-tunnel-soil model of a curved metro section. Specifically, this paper creates 

a curved 2.5D model which has high computational efficiency to account for this dynamic problem. In this 

model, by assuming the geometry of the track-tunnel-soil system in the longitudinal direction to be 

invariant, a curved 2.5D finite element approach is developed to account for the motion of the tunnel-soil 

system, while a curved 2.5D analytical approach is developed to account for both the out-of-plane and in-

plane motions of the curved track. By introducing the force equilibrium equations and the displacement 

compatibility equations, the track is coupled to the tunnel-soil system and the governing equation of motion 

for the whole system is obtained. For deterministic external loads, this model can simulate the response of 

the coupled curved track-tunnel-soil system in an efficient way, because the discretization and solution are 

required over only the cross section of the system, thus having the same advantage as the conventional 

2.5D models for the straight railway lines or loads moving in straight lines. Based on this model, the effects 

of the curvature of the track-tunnel system and the track superelevation on the ground vibrations due to 

moving harmonic loads are discussed, and the ground vibration characteristics under dynamic loads acting 

on the rail in its different directions are also studied.  

In the remainder of this paper, the formulation of the curved 2.5D model for simulating the dynamic 

responses of the coupled curved track-tunnel-soil system is elaborated in section 2, in which the 2.5D finite 

element model accounting for the curved tunnel-soil system, the motion of the curved track, the coupling 

of the track and the tunnel-soil system, the expressions of external loads and the solution of the whole 

system are discussed. After the validations of the proposed model presented in section 3, some numerical 

examples demonstrating some particular dynamic characteristics of the coupled curved track-tunnel-soil 

system under harmonic moving loads are given in section 4. Finally, the conclusions of the present study 

are summarized in section 5. 

2. Formulation of 2.5D model accounting for coupled curved track-tunnel-soil system 

2.1 Overall description of the model and basic definitions 

When the dynamic responses of a curved track-tunnel-soil system due to moving loads are considered, 

using the conventional three-dimensional models to simulate it incurs a huge computational workload. 

Under the motivation of the computational efficiency, a curved 2.5D model accounting for the coupled 

curved track-tunnel-soil system as shown in Fig. 1 is established in a cylindrical coordinate system by 

following the idea similar to the conventional 2.5D model accounting for moving load problems of 

prismatic structures. In this model, the fixed track where the rails are laid on rail pads on concrete sleepers 

being cast into the tunnel invert is considered, thus the sleepers are included as part of the concrete invert. 

The discrete distribution of the rail pads is neglected, and the track-tunnel-soil system is assumed to be 
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invariant in the longitudinal direction (θ  direction). The tunnel and soil mediums are modelled by the 

four-node curved 2.5D finite elements. The rails are modelled as two curved Euler beams considering the 

vertical, transverse, longitudinal and rotational motions, and a 2.5D analytical method is adopted here to 

account for these motions. The rail pads are modelled as continuously distributed spring-damper elements, 

which transmit the forces generated by all the motions of the rails to the tunnel-soil system. Besides, in 

order to truncate the infinite domain into a finite computation domain and provide an appropriate 

computation boundary, the curved 2.5D consistent viscoelastic boundary elements are also introduced to 

represent the artificial boundaries of the computation domain in the present model. 

In the current work, the dynamic responses of the curved track-tunnel-soil system due to point loads 

moving in the longitudinal direction (θ  direction) are the focus. Since the vertical and transverse (relative 

to the rail) loads acting on the rail head are the main loads generated by the train moving on the curved 

track in the reality, the external loads acting in the vertical and transverse directions of the rail and the 

external rotational moments originating from the aforementioned two kinds of loads due to the fact that 

their action lines do not, or at least do not always, pass through the centroid of the rail are considered in 

the present model. Besides, these loads considered herein are assumed to never stop moving, which means 

that the loads are always moving in circle. However, when the loads complete a circle and return at 

particular points, their positions in the θ  direction are considered to increase by 2π  on the basis of the 

original coordinates. Thus, the limit of the θ  coordinate of the curved track-tunnel-soil system is 

considered to be from −∞  to +∞  and the external loads are assumed to move from θ = −∞  to 

θ = +∞  in the present model. Obviously, this treatment is very appropriate and will not affect the 

simulation accuracy due to the relatively large radius of the railway infrastructure and the fact that the 

external loads will not return to a particular θ  in the reality. More importantly, this treatment makes the 

Fourier transform in the longitudinal direction applicable, which will be very helpful for reducing the 

dimensionality of the problem and establishing the curved 2.5D model.  

As the Fourier transforms with respect to space coordinate θ  and time t and their corresponding 

inverse transforms are required for the establishment of the curved 2.5D model, their definitions in the 

present paper are first given. The Fourier transform with respect to space coordinate θ , which transforms 

a variable concerned in the space domain to that in the wavenumber domain, and its corresponding inverse 

transform are defined as 

i( ) ( )e dku k u θθ θ
+∞

−∞
= ∫ɶ  (1a) 

i1
( ) ( )e d

2π

ku u k kθθ
+∞ −

−∞
= ∫ ɶ  (1b) 

where i is the unit imaginary number, and k is the wavenumber in the θ  direction, which is a 

dimensionless quantity here. The tilde “~” above a variable denotes its representation in the wavenumber 

domain. 
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Simultaneously, the Fourier transform with respect to time t which transforms the variable in the time 

domain to that in the frequency domain and its corresponding inverse transform in the present paper are 

defined as 

iˆ( ) ( )e dtu u t tωω
+∞ −

−∞
= ∫  (2a) 

i1
ˆ( ) ( )e d

2π

tu t u ωω ω
+∞

−∞
= ∫  (2b) 

where ω is the circular frequency. The hat “^” above a variable denotes its representation in the frequency 

domain. 

2.2 Formulation of curved 2.5D FE model for tunnel-soil system 

2.2.1 Four-node curved 2.5D finite element accounting for tunnel and soil mediums 

In the present model, four-node curved 2.5D finite elements as shown in Fig. 2 are adopted to model 

the tunnel and soil mediums. Following the usual steps of the finite element method procedure, namely the 

weak formulation [36], the following frequency-domain equilibrium equation in cylindrical coordinates 

can be derived for the three-dimensional space domain 
eΩ  represented by this kind of element:   

2ˆ ˆ ˆ ˆ[δ ( , , , )] ( , , , )d [δ ( , , , )] ( , , , )d

ˆˆ[δ ( , , , )] ( , , , )d

e e

e

T T

m

T

r z r z r z r z

r z r z

Ω Ω

Γ

θ ω θ ω Ω ω θ ω ρ θ ω Ω

θ ω θ ω Γ

−

=

∫ ∫

∫

ε σ u u

u f
  (3) 

where ˆ ˆ ˆ ˆ[ , , ]T

r zu u uθ=u , ˆ ˆ ˆ ˆ ˆ ˆˆ [ , , , , , ]T

r z z zr rθ θ θε ε ε γ γ γ=ε  and ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , , , , , ]T

r z z zr rθ θ θσ σ σ σ σ σ=σ  are 

respectively the displacement, strain and stress vectors in the frequency domain; ˆδu  and ˆδε  denote the 

virtual displacement and strain vectors, respectively; 
mρ  is the density of the medium; f̂  is the external 

traction acting on the Neumann boundary 
eΓ  of 

eΩ ; the superscript T denotes the matrix transpose. 

Applying the Parseval’s theorem [19,37] in the θ  direction, Eq. (3) can be further elaborated as 

follows: 

2

1
ˆ ˆ[δ ( , , , )] ( , , , ) d d d

2π

ˆ ˆ[δ ( , , , )] ( , , , ) d d d
2π

1 ˆˆ[δ ( , , , )] ( , , , ) d d
2π

T

A

T

m
A

T

s

r k z r k z r r z k

r k z r k z r r z k

r k z r k z r s k

ω ω

ω ω ρ ω

ω ω

+∞

−∞

+∞

−∞

+∞

−∞

−

− −

= −

∫ ∫∫

∫ ∫∫

∫ ∫

ε σ

u u

u f

ɶ ɶ

ɶ ɶ

ɶɶ

 (4) 

where A and s denote the cross section of an element and its circumference over which the area and line 

integrations in Eq. (4) are defined, respectively. The hat “ ɶ̂ ” above a variable denotes its representation in 

the wavenumber-frequency domain. 

The standard finite element discretization procedure can be adopted in Eq. (4) to derive the discretized 

equation of equilibrium. Introducing the shape functions of coordinates, the global coordinates of an 

arbitrary point in the element concerned can be expressed as the interpolation of the global coordinates of 

its four nodes: 



 

9 

 

4

1

i i

i

r N r
=

=∑  (5a) 

4

1

i i

i

z N z
=

=∑  (5b) 

where 
ir  and 

iz  are the global coordinates of node i ( 1,2,3,4i = ) of the element concerned; 
iN  is the 

shape function expressed in terms of the two local element coordinates η  and ζ , whose detailed 

expression is as follows:  

(1 )(1 ) / 4i i iN ηη ζζ= + +  (6) 

in which 
iη  and 

iζ  are the two local element coordinates of node i. 

Thus, the Jacobian matrix which transforms the local element coordinates to the global coordinates 

can be derived as: 

1 131 2 4

2 2

3 331 2 4

4 4

( , )
( , )

( , )

r zNN N N

r zr z

r zNN N N

r z

η η η η
η ζ

η ζ
ζ ζ ζ ζ

 ∂∂ ∂ ∂ 
  ∂ ∂ ∂ ∂∂   = =
 ∂∂ ∂ ∂∂  
  ∂ ∂ ∂ ∂   

J  (7) 

On the other hand, introducing the shape functions shown in Eq. (6) to describe the displacement field 

of the element concerned, ˆ ( , , , )r k z ωuɶ  can be expressed as 

ˆˆ ( , , , ) ( , ) ( , )er k z kω η ζ ω=u N U
ɶɶ  (8) 

where ˆ ( , )e k ωU
ɶ

 is the nodal displacement vector that collects all the displacements of the four nodes of 

the element concerned, and ( , )η ζN is the shape function matrix, which can be expressed as 

1 2 3 4

1 2 3 4

1 2 3 4

0 0 0 0 0 0 0 0

( , ) 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

N N N N

N N N N

N N N N

η ζ
 
 =  
  

N  (9) 

The strain-displacement relations in the wavenumber-frequency domain can be derived by applying 

the two forward Fourier transforms predefined in Eq. (1) to the conventional ones in the space-time domain, 

given as: 

ˆ ˆ( , , , ) ( , , ) ( , , , )r k z r k z r k zω ω=ε L uɶ ɶ  (10) 

where ( , , )r k zL  is the differential operation matrix, whose detailed expression is given below: 

/ 1 / 0 0 / i /

( , , ) 0 i / 0 / 0 / 1 /

0 0 / i / / 0

T
r r z k r

r k z k r z r r

z k r r

∂ ∂ ∂ ∂ − 
 = − ∂ ∂ ∂ ∂ − 
 ∂ ∂ − ∂ ∂ 

L  (11) 

Substituting Eq. (8) into Eq. (10), the strain vector ˆ( , , , )r k z ωεɶ  can be elaborated in terms of the 

nodal displacement vector ˆ ( , )e k ωU
ɶ

: 

ˆˆ( , , , ) ( , , ) ( , )er k z k kω η ζ ω=ε B U
ɶɶ  (12) 

where ( , , ) ( , , ) ( , )k r k zη ζ η ζ=B L N  is the strain matrix, which can be further expressed in the following 

form through some mathematical manipulations: 
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1 2( , , ) ( i )k kη ζ = +B H H R  (13) 

in which  

11 12

21 22

1

21 22

21 22 11 12

11 12

0 0 0 0 0 0 0

0 0 1/ (2 ) 0 0 1/ (2 ) 0 0 1 / (2 )

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 1/ (2 ) 0 0 1/ (2 ) 1 / (2 )

r r r

r r r

Γ Γ

Γ Γ
Γ Γ

Γ Γ Γ Γ
Γ Γ

 
 − 
 

=  
 
 
 

− −  

H , (14) 

2

0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 01

0 0 1 0 0 1 0 0 12

0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 1

r

 
 − − 
 

= ×  − − 
 
 

− −  

H , (15) 

1 2 3 4[ , , , ]=R R R R R , (16) 

with ijΓ  being the corresponding element in matrix Γ  that satisfies the relation 1−=Γ J , and 

/ / 0 0 0 0 0

0 0 0 0 0 / /

0 0 0 / / 0 0

T

i i i i

i i i i i

i i i i

N N N N

N N N N

N N N N

η ζ
η ζ

η ζ

∂ ∂ ∂ ∂ 
 = ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ 

R . (17) 

The stress vector ˆ ( , , , )r k z ωσɶ  can be related to the strain vector ˆ( , , , )r k z ωεɶ  through the constitutive 

relation, resulting in: 

ˆˆ ( , , , ) ( , , ) ( , )er k z k kω η ζ ω=σ DB U
ɶɶ  (18) 

where D  is the constitutive matrix, whose detailed expression can be found elsewhere [36]. It should be 

emphasized that the material damping of the medium can be taken into account through use of the    

complex Lamé coefficients, i.e. * [1 2i sgn( )]m m mλ λ ξ ω= +  and * [1 2i sgn( )]m m mµ µ ξ ω= +  with 
mξ  

being the damping ratio of the medium, in the expression of D . 

Substituting Eq. (8), Eq. (12) and Eq. (18) into Eq. (4) and taking the fact into consideration that the 

virtual displacement field ˆδ ( , )e k ω−U
ɶ

 is arbitrary and non-zero, yields the discretized equation of 

equilibrium of the four-node 2.5D element concerned: 

2ˆ ˆ ˆ( ) ( , ) ( , ) ( , )e e e e ek k k kω ω ω ω− =K U M U F
ɶ ɶ ɶ

 (19) 

where the stiffness matrix ( )e kK  and the mass matrix 
e

M  can be respectively written as 
1 1

1 1
( ) ( , , ) ( , , ) ( , ) | ( , ) |d de Tk k k rη ζ η ζ η ζ η ζ η ζ

− −
= −∫ ∫K B DB J , (20) 

1 1

1 1
( , ) ( , ) ( , ) | ( , ) | d de T

m rρ η ζ η ζ η ζ η ζ η ζ
− −

= ∫ ∫M N N J . (21) 

ˆ ( , )e k ωF
ɶ

 is the equivalent nodal force vector, which can be split into two parts in the present model: one 

part, denoted as 1
ˆ ( , )e k ωF
ɶ

, is generated by the internal stresses between the interfaces of the element 
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concerned and its neighbouring finite elements, and the other part, denoted as 2
ˆ ( , )e k ωF
ɶ

, is related to the 

external loads of the tunnel-soil system modelled by curved 2.5D finite elements. Obviously, 1
ˆ ( , )e k ωF
ɶ

 

will be equilibrated by the equal and opposite nodal forces acting on the neighbouring 2.5D finite elements, 

which will then cancel each other during the assembly of the system equation. Thus only 2
ˆ ( , )e k ωF
ɶ

 needs 

to be considered here. The expression of 2
ˆ ( , )e k ωF
ɶ

 is given as follows: 

2
ˆˆ ( , ) ( , ) ( , ) ( , )e T

j j j j j

j

k k rω η ζ ω η ζ=∑F N f
ɶɶ

 (22) 

in which ˆ ( , )j k ωf
ɶ

 is the external load of the element concerned that is transmitted from the curved rail. 

Obviously, only for the element relating to the rails, ˆ ( , )j k ωf
ɶ

 has a non-zero value.  

Substituting Eq. (13) into Eq. (20), ( )e kK  can be further expressed as a linear combination of four 

sub-matrices which are totally independent of wavenumber k:  

2

11 12 21 22( ) i ie e e e ek k k k= + − +K K K K K  (23) 

where  
1 1

11 1 1
1 1

| |d de T T r η ζ
− −

= ∫ ∫K R H DH R J , (24a) 

1 1

12 1 2
1 1

| |d de T T r η ζ
− −

= ∫ ∫K R H DH R J , (24b) 

1 1

21 12 2 1
1 1

[ ] | |d de e T T T r η ζ
− −

= = ∫ ∫K K R H DH R J , (24c) 

1 1

22 2 2
1 1

| |d de T T r η ζ
− −

= ∫ ∫K R H DH R J . (24d) 

Apparently, with the help of Eq. (23), the numerical performance of the computations of the stiffness 

matrices ( )e kK  with different values of k can be significantly improved. 

Since all the above integrals relating to the discretized equation of equilibrium have been expressed 

in terms of the two local coordinates η  and ζ , they can be easily computed using the 2D Gaussian 

quadrature [36]. 

2.2.2 2.5D consistent viscoelastic artificial boundary element 

When an infinite domain whose dynamic response needs to be solved is represented by a finite domain, 

a virtual artificial boundary condition should be introduced to avoid the significant wave reflection at the 

computation boundary. Here, the verified consistent viscoelastic artificial boundary proposed by Liu et al. 

[38] is adopted. However, this artificial boundary is applicable to only a 3D problem. So it is further 

developed in the present paper to make it applicable to the present curved 2.5D problem. 

The lateral and bottom boundaries of the present model can be artificially set to be perpendicular or 

parallel to the ground surface that is assumed to be horizontal, as shown in Fig. 3. The frequency-domain 

governing equation of motion of a bottom artificial boundary element shown in Fig. 4 can be written as 

ˆˆ ˆ( , , ) i ( , , ) ( , , )b bs s sθ ω ω θ ω θ ω+ =K u C u f  (25) 

where ˆ ( , , )s θ ωu  and ˆ( , , )s θ ωf  are the displacement and external load vectors, respectively; s is the 

global coordinate along the element concerned; 
bK  and 

bC  are respectively the corresponding stiffness 
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and damping matrices, which can be written as  

0 0

0 0

0 0

T

b T

N

k

k

k

 
 =  
  

K  (26) 

0 0

0 0

0 0

T

b T

N

c

c

c

 
 =  
  

C  (27) 

in which 
Nk  and 

Tk  are respectively the normal and tangential stiffnesses of the artificial boundary, 

while 
Nc  and 

Tc  are respectively the normal and tangential dampings of the artificial boundary. They 

can be computed through the following equations according to Ref. [38]: 

/N N s bk G dα= , /T T s bk G dα=  (28) 

N s Pc Cρ= , 
T s Sc Cρ=  (29) 

where 
Nα  and 

Tα  are respectively the modified coefficients for the stiffnesses in the normal and 

tangential directions, whose recommended values 1.33 and 0.67 are used in the present paper; 
sG , 

sρ , 

PC  and 
SC  are the shear modulus, density, P-wave speed and S-wave speed of the corresponding soil 

medium in which the artificial boundary element concerned locates, respectively; 
bd  is the distance 

between the excitation source and the boundary, which takes the approximate value of the perpendicular 

distance from the middle point of tunnel base to the boundary in the present paper. 

To derive the stiffness and damping matrices of this element, Eq. (25) is cast in a weak form by 

considering a virtual displacement field ˆδ ( , , )s θ ωu : 

ˆˆ ˆ ˆ ˆ[δ ( , , )] ( ( , , ) i ( , , ))d [δ ( , , )] ( , , )d
e e

T T

b bs s s s s
Γ Γ

θ ω θ ω ω θ ω Γ θ ω θ ω Γ+ =∫ ∫u K u C u u f  (30) 

where 
eΓ  is the actual boundary area in the 3D space represented by the element concerned. 

Similar to the above derivation, Eq. (30) can be further shown to be using the Parseval’s theorem: 

1
ˆ ˆ ˆ[δ ( , , )] [ ( , , ) i ( , , )] ( )d d

2π

1 ˆˆ[δ ( , , )] ( , , ) ( )d d
2π

T

b b
s

T

s

s k s k s k r s s k

s k s k r s s k

ω ω ω ω

ω ω

+∞

−∞

+∞

−∞

− +

= −

∫ ∫

∫ ∫

u K u C u

u f

ɶ ɶ ɶ

ɶɶ

 (31) 

Introducing the shape functions, the displacement field ˆ ( , , )s k ωuɶ  of the element concerned can be 

expressed as follows using the corresponding nodal displacement vector ˆ ( , )e k ωU
ɶ

: 

ˆˆ ( , , ) ( ) ( , )es k kω η ω=u N U
ɶɶ  (32) 

where η  is the local coordinate, and the shape function matrix ( )ηN  can be written as  

1 0 0 1 0 0
1

( ) 0 1 0 0 1 0
2

0 0 1 0 0 1

η η
η η η

η η

− + 
 = × − + 
 − + 

N  (33) 

Substituting Eq. (32) into Eq. (31) and taking the fact into consideration that the virtual displacement 

field ˆδ ( , )e k ω−U
ɶ

 is arbitrary and non-zero, one can finally obtain the equilibrium equation of the element 

concerned: 
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boundary boundary
ˆ ˆ ˆ( , ) i ( , ) ( , )e e e e ek k kω ω ω ω+ =K U C U F
ɶ ɶ ɶ

 (34) 

where ˆ ( , )e k ωF
ɶ

 is the equivalent nodal force vector, which will then cancel during the assembly of the 

system equation and does not need more attention; boundary

e
K  and boundary

e
C  are respectively the stiffness 

and damping matrices of the element concerned, whose detailed expressions are given below 

1

boundary
1

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

( ) ( ) ( )d
2

(3 ) 0 0 ( ) 0 0

0 (3 ) 0 0 ( ) 0

0 0 (3 ) 0 0 ( )

( ) 0 0 ( 3 ) 0 012

0 ( ) 0 0 ( 3 ) 0

0 0 ( ) 0 0 ( 3 )

e T

b

T T

T T

N N

T T

T T

N N

L
r

r r k r r k

r r k r r k

r r k r r kL

r r k r r k

r r k r r k

r r k r r k

η η η η
−

=

+ + 
 + + 
 + +

= ×  + + 
 + +
 

+ +  

∫K N K N

 (35) 

1

boundary
1

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

( ) ( ) ( )d
2

(3 ) 0 0 ( ) 0 0

0 (3 ) 0 0 ( ) 0

0 0 (3 ) 0 0 ( )

( ) 0 0 ( 3 ) 0 012

0 ( ) 0 0 ( 3 ) 0

0 0 ( ) 0 0 ( 3 )

e T

b

T T

T T

N N

T T

T T

N N

L
r

r r C r r C

r r C r r C

r r C r r CL

r r C r r C

r r C r r C

r r C r r C

η η η η
−

=

+ + 
 + + 
 + +

= ×  + + 
 + +
 

+ +  

∫C N C N

 (36) 

in which L is the length of the element concerned, and 1 2( ) (1 ) / 2 (1 ) / 2r r rη η η= − + + , with 
ir  being the 

global r-coordinate of node i (i=1, 2) of the element concerned. 

Similarly, the stiffness and damping matrices of the artificial boundary element on either of the two 

lateral boundaries shown in Fig. 5 can be derived: 

0 0

0 0

0 0

boundary

0 0

0 0

0 0

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 2 0 06

0 0 0 2 0

0 0 0 0 2

N N

T T

T Te

N N

T T

T T

r k r k

r k r k

r k r kL

r k r k

r k r k

r k r k

 
 
 
 

= ×  
 
 
 
  

K  (37) 

0 0

0 0

0 0

boundary

0 0

0 0

0 0

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 2 0 06

0 0 0 2 0

0 0 0 0 2

N N

T T

T Te

N N

T T

T T

r C r C

r C r C

r C r CL

r C r C

r C r C

r C r C

 
 
 
 

= ×  
 
 
 
  

C  (38) 

where 0r  is the global r-coordinate of the lateral artificial boundary. 

2.2.3 Assembly of tunnel-soil model 

Through assembling the stiffness, mass and damping matrices of all the finite elements that represent 
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the whole tunnel-soil system, the governing equation of the whole tunnel-soil system in the wavenumber-

frequency domain can be obtained as 

2 ˆ ˆ[ ( ) i ] ( , ) ( , )g g g g gk k kω ω ω ω+ − =K C M U F
ɶ ɶ

 (39) 

where the superscript g denotes the global FE model; ˆ ( , )g k ωU
ɶ

 and  ˆ ( , )g k ωF
ɶ

 are the displacement and 

external force vectors of the tunnel-soil FE model, respectively; 
g

M , g
C , ( )g kK  are respectively the 

global mass, damping and stiffness matrices. Specially, the artificial boundary elements have no 

contribution to 
g

M , while the tunnel and soil four-node 2.5D elements have no contribution to g
C . In 

addition, ( )g kK  can be further expressed as follows: 
2

11 12 21 22 boudary( ) i ig g g g g gk k k k= + − + +K K K K K K  (40) 

in which g

ijK  is the assembled stiffness matrix from the corresponding element stiffness matrix e

ijK , and 

boudary

g
K  is the stiffness matrix of the whole artificial boundary, which is assembled from the stiffness 

matrices of all the 2.5D consistent viscoelastic artificial boundary elements. 

2.3 Motion of curved track 

In this subsection, the motion of the curved track is discussed. The curved rails are modelled as two 

curved Euler beams, and their vertical, transverse, longitudinal and rotational motions are all taken into 

consideration. The rail pads are modelled as continuously distributed spring-damper elements, neglecting 

the pinned-pinned motion of the track and the longitudinal inhomogeneity of the track dynamic stiffness. 

Specifically, a longitudinal distributed spring-damper element and a transverse (relative to the rail) one 

both located at the middle of the rail bottom, together with two vertical (relative to the rail) ones located at 

the two edges of the rail bottom are introduced to account for the motions of the rail, as shown in Fig. 6 

(for the convenience of expression, the continuously distributed longitudinal and transverse spring-damper 

elements are denoted as an integrated sign in the figure). The superelevation of the curved track which is 

associated with the incline of the tunnel base is also considered in the present model, and the superelevation 

angle is assumed to be α . For the convenience of discussing the motion of the curved track, a local 

coordinate system is introduced to each rail, with θ , Y, Z and ϕ  respectively representing the 

longitudinal, transverse, vertical and rotational directions of the rail. 

Based on the governing equations of motion of the curved Euler beam [39–41], the governing 

equations of the curved track in the wavenumber-frequency domain can be given according to the 

corresponding force analyses shown in Fig. 7: 

(1) Motions of the left rail:   
*2 * *

2 3

2 2 4

i ˆˆ ˆ[ ] [ (i i )]Z
L LY L

L L L

E Ik E A kE A
m u k k u f

R R R
θ θω − − + − = ɶɶ ɶ  (41) 

* ** *
4 2 2

2 4 4 2
ˆ ˆˆ ˆ[ ] [ ]Z Z

L LY LY LY

L L L L

E I E IE A E A
ik u k k m u f F

R R R R
θ ω− − + − = −ɶ ɶɶ ɶ  (42) 
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* ** *
4 2 2 2 2

1 24 4 3 3

ˆiˆ ˆ ˆˆˆ[ ] [ ] +d d LY Y
LZ L LZ LZ LZ

L L L L L

G I G I kf aE I E I
k k m u k k f f F

R R R R R

θω ϕ− − + + + = + −
ɶ

ɶ ɶ ɶɶɶ  (43) 

( )
* ** *

2 2 2

0 1 23 3 2 2
ˆ ˆ ˆ ˆˆˆ[ i ] [ ]d dY Y

LZ L LZ LZ LY L

L L L L

G I G IE I E I
k k u k I bf bf af M

R R R R
ϕρ ω ϕ− − + + − = − − +ɶ ɶ ɶ ɶɶɶ  (44) 

(2) Motions of the right rail: 
*2 * *

2 3

2 2 4

i ˆˆ ˆ[ ] [ (i i )]Z
R RY R

R R R

E Ik E A kE A
m u k k u f

R R R
θ θω − − + − = ɶɶ ɶ  (45) 

* ** *
4 2 2

2 4 4 2
ˆ ˆˆ ˆ[ i ] [ ]Z Z

R RY RY RY

R R R R

E I E IE A E A
k u k k m u f F

R R R R
θ ω− − + − = −ɶ ɶɶ ɶ  (46) 

* ** *
4 2 2 2 2

1 24 4 3 3

ˆiˆ ˆ ˆˆˆ[ ] [ ] +d d RY Y
RZ R RZ RZ RZ

R R R R R

G I G I kf aE I E I
k k m u k k f f F

R R R R R

θω ϕ− − + + + = + −
ɶ

ɶ ɶ ɶɶɶ  (47) 

( )
* ** *

2 2 2

0 1 23 3 2 2
ˆ ˆ ˆ ˆˆˆ[ i ] [ ]d dY Y

RZ R RZ RZ RY R

R R R R

G I G IE I E I
k k u k I bf bf af M

R R R R
ϕρ ω ϕ− − + + − = − − +ɶ ɶ ɶ ɶɶɶ  (48) 

where the shear centre of the cross section of the rail is assumed to coincide with its centroid, and the effect 

of cross-sectional warping is neglected due to the fact that the rail radius is much larger than the dimensions 

of the rail cross section. The meanings of symbols in Eqs. (41)–(48) are as follows: the first subscript L or 

R denotes the left rail or the right rail, while the second subscript denotes the direction in which the 

displacement occurs; ˆ
ijuɶ  (i=L or R; j=θ , X, or Y) is the displacement of left or right rail in the j direction, 

and ˆ
iϕɶ  (i=L or R) is the rotational displacement of left or right rail; 

iR (i=L or R) is the radius of the left 

or right rail, which is equal to the radius R subtracting or adding the half of the track gauge; 

* [1 2i sgn( )]E E ξ ω= +  and * [1 2i sgn( )]G G ξ ω= +  are respectively the complex Young’s modulus and 

shear modulus of the rail considering the material damping, with E , G  and ξ  being respectively the 

real Young’s modulus, real shear modulus and damping ratio of the rail; ρ  is the rail density, A  is the 

cross-sectional area of the rail, and m Aρ=  is the mass per unit length of the rail; 
dI  is the torsional 

constant, 0I  is the rail’s polar moment of area about the centroid of the cross-section, and 
YI  and 

ZI  

are respectively the rail’s second moments of area with respect to Y axis and Z axis; ˆ
if θ
ɶ

, ˆ
iYf
ɶ

, 1
ˆ
iZf
ɶ

 and 

2
ˆ
iZf
ɶ

 (i=L or R) are the reaction forces of the tunnel base to the left or right rail in the corresponding 

direction; ˆ
iYF
ɶ

, ˆ
iZF
ɶ

 and ˆ
iM ϕ
ɶ

 (i=L or R) are the external forces or moment applied to the left or right rail; 

a is the distance between the rail centroid and the rail bottom, and b is the half width of the rail bottom. 

2.4 Coupling of track and tunnel-soil system 

To simplify the coupling of the track and the tunnel-soil system, the longitudinal and transverse 

(relative to the rail) distributed spring-damper elements of each rail are both installed to connect a common 

node of two neighbouring four-node 2.5D finite elements accounting for a small part of the tunnel base. 

Due to the small width of the rail bottom, the two vertical (relative to the rail) distributed spring-damper 

elements located at the two edges of the left or right rail bottom are installed to connect two particular 
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points on the two neighbouring edges of the corresponding two neighbouring elements which have been 

associated with the corresponding longitudinal and transverse spring-damper elements. In brief, the forces 

transmitted to the tunnel-soil system from the left or right rail are all made to act on the two neighbouring 

edges of two particular neighbouring four-node 2.5D finite elements accounting for a small part of the 

tunnel base. The detailed distribution of these forces acting on the tunnel-soil FE model which also 

corresponds to that of the continuously distributed spring-damper elements connecting the rails to the 

tunnel-soil FE model can be seen in Fig. 7.  

With the node numbers of the three nodes of the two neighbouring edges in the tunnel-soil FE model 

corresponding to the left and right rails respectivley denoted as 
Lp , 

Lq  and 
Lw , and 

Rp , 
Rq  and 

Rw  

for the right rail (as shown in Fig. 7), the forces transmitted to the tunnel-soil system from the rails (or the 

reaction forces of the tunnel base to the rails) can be expressed as  

3 1
ˆ ˆˆ( i )( )

L

g

L L qf k c u Uθ θ θ θω −= + −ɶ ɶɶ , (49a) 

3 3 2
ˆ ˆ ˆˆˆ( i )( )

L L

g g

LY Y Y LY L q qf k c u a U Uω ϕ α −= + + − −ɶ ɶ ɶɶɶ , (49b) 

{ }
1 1 1

1 3 1 3 1 3 2 1 3 2

ˆ ˆˆ ˆ ˆ( i )( )

ˆ ˆ ˆ ˆˆˆ( i ) [(1 ) ] [(1 ) ] ,
L L L L

b b

LZ Z Z LZ L Lz Lr

g g g g

Z Z LZ L L p L q L p L q

f k c u b u u

k c u b U U U U

ω ϕ α

ω ϕ β β β β α− −

= + − − +

= + − − − + + − +

ɶ ɶɶ ɶ ɶ

ɶ ɶ ɶ ɶɶɶ
 (49c) 

{ }
2 2 2

2 3 2 3 2 3 2 2 3 2

ˆ ˆˆ ˆ ˆ( i )( )

ˆ ˆ ˆ ˆˆˆ( i ) [(1 ) ] [(1 ) ] ,
L L L L

b b

LZ Z Z LZ L Lz Lr

g g g g

Z Z LZ L L q L w L q L w

f k c u b u u

k c u b U U U U

ω ϕ α

ω ϕ β β β β α− −

= + + − +

= + + − − + + − +

ɶ ɶɶ ɶ ɶ

ɶ ɶ ɶ ɶɶɶ
 (49d) 

3 1
ˆ ˆˆ( i )( )

R

g

R R qf k c u Uθ θ θ θω −= + −ɶ ɶɶ , (49e) 

3 3 2
ˆ ˆ ˆˆˆ( i )( )

R R

g g

RY Y Y RY R q qf k c u a U Uω ϕ α −= + + − −ɶ ɶ ɶɶɶ , (49f) 

{ }
1 1 1

1 3 1 3 1 3 2 1 3 2

ˆ ˆˆ ˆ ˆ( i )( )

ˆ ˆ ˆ ˆˆˆ( i ) [(1 ) ] [(1 ) ] ,
R R R R

b b

RZ Z Z RZ R Rz Rr

g g g g

Z Z RZ R R p R q R p R q

f k c u b u u

k c u b U U U U

ω ϕ α

ω ϕ β β β β α− −

= + − − +

= + − − − + + − +

ɶ ɶɶ ɶ ɶ

ɶ ɶ ɶ ɶɶɶ
 (49g) 

{ }
2 2 2

2 3 2 3 2 3 2 2 3 2

ˆ ˆˆ ˆ ˆ( i )( )

ˆ ˆ ˆ ˆˆˆ( i ) [(1 ) ] [(1 ) ] .
R R R R

b b

RZ Z Z RZ R Rz Rr

g g g g

Z Z RZ R R q R w R q R w

f k c u b u u

k c u b U U U U

ω ϕ α

ω ϕ β β β β α− −

= + + − +

= + + − − + + − +

ɶ ɶɶ ɶ ɶ

ɶ ɶ ɶ ɶɶɶ
 (49h) 

where jk  and jc  ( = , , , j Y Zθ ϕ ) are the stiffness and damping of the spring-damper element in the 

corresponding direction, respectively; ˆb

pjiuɶ  is the j-direction ( = , j r z ) displacement of the tunnel base 

points connected by the i-th (i=1,2) vertical (relative to the rail) spring-damper element of the left (p=L) or 

right rail (p=R); 1 11 /L Lb Lβ = − , 2 2/L Lb Lβ = , 1 11 /R Rb Lβ = − , and 2 2/R Rb Lβ = ; 1LL , 2LL , 1RL  

and 2RL  are respectively the distances between nodes Lp  and Lq , Lq  and Lw , Rp  and Rq , and 

Rq  and Rw , as shown in Fig. 7; ˆ g

jU
ɶ

 is the j-th element of the displacement vector ˆ gU
ɶ

 of the tunnel-

soil FE model.  

Substituting Eq. (49) into Eqs. (41)–(48), yields the following equation: 
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[ ]11 12

ˆ
ˆ

ˆ

t

g

 
  =
 
 

U
A A F

U

ɶ
ɶ

ɶ
 (50) 

where ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ[ , , , , , , , ]t T

L LY LZ L R RY RZ Ru u u u u uθ θϕ ϕ=U
ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ ɶ  and ˆ ˆ ˆ ˆ ˆ ˆ ˆ[0, , , , 0, , , ]T

LY LZ L RY RZ RF F M F F Mϕ ϕ=F
ɶ ɶ ɶ ɶ ɶ ɶ ɶ

 are the 

track displacement vector and the external load vector acting on the track, respectively; 11A  with the 

order 8 8×  and 12A  with the order 8 N× (in which N is the total number of DoFs of the 2.5D tunnel-

soil FE model) are the known coefficient matrices.  

On the other hand, according to the forces transmitted to the tunnel-soil system from the track, the 

equivalent nodal external forces at nodes Lp , Lq , Lw , Rp , Rq  and Rw  in the global coordinate 

system (r-θ -z coordinate system) of the 2.5D tunnel-soil FE model can be derived using Eq. (22) and 

corresponding coordinate transformation. Specifically, their expressions can be written as:  

3 2 1 1
ˆˆ ( )(1 )

L

g

p L L LZF R b fβ α− = − − − ɶɶ
, (51a) 

3 1
ˆ 0

L

g

pF − =ɶ
, (51b) 

3 1 1
ˆˆ ( )(1 )

L

g

p L L LZF R b fβ= − − ɶɶ
, (51c) 

3 2 1 1 2 2
ˆ ˆ ˆˆ [( ) ( )(1 ) ]

L

g

q L LY L L LZ L L LZF R f R b f R b fβ β α− = − − + + −ɶ ɶ ɶɶ
, (51d) 

3 1
ˆˆ

L

g

q L LF R f θ− = ɶɶ
, (51e) 

3 1 1 2 2
ˆ ˆ ˆˆ [( ) ( )(1 ) ]

L

g

q L L LZ L L LZ L LYF R b f R b f R fβ β α= − + + − +ɶ ɶ ɶɶ
, (51f) 

3 2 2 2
ˆˆ ( )

L

g

w L L LZF R b fβ α− = − + ɶɶ
, (51g) 

3 1
ˆ 0

L

g

wF − =ɶ
, (51h) 

3 2 2
ˆˆ ( )

L

g

w L L LZF R b fβ= + ɶɶ
, (51i) 

3 2 1 1
ˆˆ ( )(1 )

R

g

p R R RZF R b fβ α− = − − − ɶɶ
, (51j) 

3 1
ˆ 0

R

g

pF − =ɶ
, (51k) 

3 1 1
ˆˆ ( )(1 )

R

g

p R R RZF R b fβ= − − ɶɶ
, (51l) 

3 2 1 1 2 2
ˆ ˆ ˆˆ [( ) ( )(1 ) ]

R

g

q R RY R R RZ R R RZF R f R b f R b fβ β α− = − − + + −ɶ ɶ ɶɶ
, (51m) 

3 1
ˆˆ

R

g

q R RF R f θ− = ɶɶ
, (51n) 

3 1 1 2 2
ˆ ˆ ˆˆ [( ) ( )(1 ) ]

R

g

q R R RZ R R RZ R RYF R b f R b f R fβ β α= − + + − +ɶ ɶ ɶɶ
, (51o) 

3 2 2 2
ˆˆ ( )

R

g

w R R RZF R b fβ α− = − + ɶɶ
, (51p) 

3 1
ˆ 0

R

g

wF − =ɶ
, (51q) 

3 2 2
ˆˆ ( )

R

g

w R R RZF R b fβ= + ɶɶ
. (51r) 

where ˆ g

jF
ɶ

 is the j-th element of the external force vector ˆ ( , )g k ωF
ɶ

 of the tunnel-soil FE model. 

Substituting Eq. (49) into Eq. (51), then substituting the resultant equations into Eq. (39), the 

following equation can be derived after some rearrangements: 
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[ ]21 22

ˆ

ˆ

t

g

 
  =
 
 

U
A A 0

U

ɶ

ɶ
 (52) 

where 0  is a zero vector with the order 1N × , and 21A  with the order 8N ×  and 22A  with the order 

N N×  are the known coefficient matrices. 

When Eq. (50) and Eq. (52) are combined, the governing equation of the coupled track-tunnel-soil 

model can be obtained: 

11 12

21 22

ˆ ˆ

ˆ

t

g

    
  =   
      

A A U F

A A 0U

ɶ ɶ

ɶ
 (53) 

2.5 Expressions of external loads and solution of coupled track-tunnel-soil system 

The external moving loads acting on the left rail can be expressed in the space-time domain as 

1

( ) ( )
n

LY LYj L L L j

j

F P t R R v t Rθδ θ θ
=

= − −∑  (54a) 

1

( ) ( )
n

LZ LZj L L L j

j

F P t R R v t Rθδ θ θ
=

= − −∑  (54b) 

1

( ) ( )
n

L L j L L L j

j

M P t R R v t Rϕ ϕ θδ θ θ
=

= − −∑  (54c) 

where vθ  is the angular velocity of the moving loads; LijP  (i=Y, Z and ϕ ) is the time-domain magnitude 

of the j-th external load acting in the i direction; jθ  is the initial θ  coordinate of the j-th external load 

with the time-domain magnitude LijP  at the initial time t=0 s; n is the number of the external loads acting 

in the corresponding direction. Because all of the external loads acting on the rail in different directions 

correspond to the train axles in reality, the load series in different directions are assumed to have the same 

space distribution and speed in Eq. (54). 

Based on Eq. (54), the expressions of the external loads acting on the left rail in the wavenumber-

frequency domain can then be written as: 

i

1

1ˆ ˆ ( )e j

n
k

LY LYj

jL

F P kv
R

θ
θω

=

= −∑
ɶ

 (55a) 

i

1

1ˆ ˆ ( )e j

n
k

LZ LZj

jL

F P kv
R

θ
θω

=

= −∑
ɶ

 (55b) 

i

1

1ˆ ˆ ( )e j

n
k

L L j

jL

M P kv
R

θ
ϕ ϕ θω

=

= −∑
ɶ

 (55c) 

Since the expressions of the external loads acting on the right rail and the left rail are similar, those 

corresponding to the right rail are omitted here for brevity. Substituting Eq. (55) and the corresponding 

external loads acting on the right rail into Eq. (53), the displacement responses of the coupled track-tunnel-

soil system can be solved: 

1 1

11 12 22 21
ˆ ˆ( )t − −= −U A A A A F
ɶ ɶ

 (56) 
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1 1 1

22 21 11 12 22 21
ˆ ˆ( )g − − −= − −U A A A A A A F
ɶ ɶ

 (57) 

Applying the inverse Fourier transform with respect to wavenumber k to the above two equations, the 

corresponding displacement responses in the space-frequency domain can then be obtained: 

1 1 i

11 12 22 21

1ˆ ˆ( ) e d
2π

t k kθ+∞ − − −

−∞
= −∫U A A A A F

ɶ
 (58) 

1 1 1 i

22 21 11 12 22 21

1ˆ ˆ( ) e d
2π

g k kθ+∞ − − − −

−∞

−= −∫U A A A A A A F
ɶ

 (59) 

Similarly, the displacement responses of the curved track-tunnel-soil system in the space-time domain 

can be derived through the double inverse Fourier transform:  

1 1 i i

11 12 22 212

1 ˆ( ) e e d d
(2π)

t k t kθ ω ω
+∞ +∞ − − −

−∞ −∞
= −∫ ∫U A A A A F

ɶ
 (60) 

1 1 1 i i

22 21 11 12 22 212

1 ˆ( ) e e d d
(2π)

g k t kθ ω ω
+∞ +∞ − − − −

−∞ −∞

−= −∫ ∫U A A A A A A F
ɶ

 (61) 

Further, the corresponding velocity and acceleration responses of the curved track-tunnel-soil system 

can also be easily obtained according to the derived displacement responses.  

3. Model validations 

A MATLAB program is created for the present model. Using this program, the validations of the 

present model are carried out in this section. A special case of a half-space subjected to a load moving 

along a straight line and a curved track-tunnel-soil system subjected to a dynamic load exhibiting a 

rotational symmetry are respectively considered, followed by comprehensive comparisons between the 

simulated results computed by the present model and the corresponding benchmark solutions.  

3.1 A half-space subjected to a load moving along a straight line 

In the first validation, a uniform viscoelastic half-space subjected to a vertical (in the z direction) unit 

harmonic point load 0i(2π )
( )= e

f t
f t −  moving along a straight line on the surface of the half-space is 

considered. The load is assumed to be at 0 radθ =  at the initial time 0 st = , and it is assumed to move 

at 60 km/hv = . The viscoelastic half-space considered has a modulus of elasticity 175 MPamE = , mass 

density 31940 kg/mmρ = , Poisson’s ratio 0.439mυ =  and material damping ratio 0.04mξ = . The 

present method and the analytical approach presented by Hung and Yang [6] are respectively adopted to 

compute this dynamic problem.  

In the simulation of this dynamic problem using the present method, the track model is excluded and 

the radius of the load’s moving trajectory R is set to be large enough ( 10000 mR =  is used here) so that 

the problem described by the present model can be approximately regarded as a typical dynamic problem 

where the load moves along a straight line. Based on this consideration, a curved 2.5D model with a width 

of 80 m (the distances from the loading point to the left and right boundaries in the r direction are both 40 

m) and a depth of 60 m is established to simulate this problem. The sizes of the considered domain 
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mentioned above are made sufficiently large to ensure the computational accuracy of the core range in the 

middle of the considered domain, considering that the viscoelastic boundaries adopted in the present model 

cannot completely eliminate the wave reflections at the FE mesh borders. The element sizes of this FE 

model are also made to be small enough for accurate simulation results.  

The vertical and longitudinal displacements of the point 2 m beneath the load trajectory and 160 m 

from the load’s initial position in the longitudinal direction computed by both the present model and the 

reference solution are depicted in Fig. 8. Two excitation frequencies of the load which are 0 Hz and 10 Hz 

are considered herein. As can be seen, the results obtained by the present approach are in good agreement 

with those obtained by the analytical solution. Actually, it can be found that the responses of an arbitrary 

point at a distance no smaller than 20 m to any artificial boundary computed by the established 2.5D model 

have very good accuracy. Thus, in the following analyses using the present 2.5D model, only the responses 

of the points at a distance no smaller than 20 m to any artificial boundary are considered.  

3.2 A curved track-tunnel-soil system subjected to a distributed dynamic load 

For a further validation of the present model, a curved track-tunnel-soil system subjected to a vertical 

stationary load 0i(2π )
( , )= cos( )e

f t

LZF t nθ θ−  acting on the left rail is also considered. In this validation, the 

considered tunnel with a buried depth of 17 m is assumed to be a circular one and embedded in a 

homogeneous viscoelastic half-space. Its external and internal radii are respectively assumed to be 3 m and 

2.7 m. The parameters of the tunnel-soil system are listed in Table 1. The horizontal radii of the curved 

track and the curved tunnel are both 300 m. The superelevation of the outer rail relative to the inner rail is 

12 cm. The track with DTVI2 fasteners which is the most commonly used track in Chinese metro is 

considered herein, and its parameters for the present model are listed in Table 2 according to the 

corresponding values reported in Ref. [41]. The present method, and a reference solution based on a 3D 

FE model combined with an assessment of the motion of a curved rail are respectively used to simulate the 

dynamic responses of the considered problem. The comparisons of the simulated results computed by these 

two methods are made for four loading conditions: (a) n=0, f0=10 Hz; (b) n=60, f0=10 Hz; (c) n=0, f0=25 

Hz and (d) n=60, f0=25 Hz. 

Since only the vertical (relative to the rail) loading condition is considered and the dynamic 

characteristics of a curved rail with a large radius and a straight rail are similar [35], the motion of the left 

rail in the reference solution is assessed using the curved rail model presented in Ref. [42]. Considering 

the continuous support of the curved rail, the motion of the left rail can be written as follows: 

0

4 2
i(2π )* ' '

4 4 2
cos( )e ( ) ( )

f t b bLZ LZ
Y Z LZ LZ Z LZ LZ

L

u u
E I m n k u u c u u

R t
θ

θ
∂ ∂+ = − − − − −

∂ ∂
ɺ ɺ  (62) 

where the rail pads are modelled as a continuously distributed spring-damper element with a stiffness '

Zk

and a damping '

Zc . Obviously, the values of '

Zk  and '

Zc  should be set to be two times those of 
Zk  and 
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Zc  adopted in the corresponding curved 2.5D model which will be established soon for a direct 

comparison. b

LZu  is the displacement response in the vertical direction of the rail at the tunnel base points 

connected by the distributed spring-damper element. The meanings of the other symbols in Eq. (62) are 

same as those in the curved track model presented in section 2.3. 

Because the load acting on the rail is harmonic with respect to the θ -coordinate, the resulting 
LZu , 

b

LZu  and displacement response of an observation point of the tunnel-soil system 
Ou  are also harmonic: 

0i(2π )
cos( )e

f t

LZ LZu u nθ=  (63) 

0i(2π )
cos( )e

f tb b

LZ LZu u nθ=  (64) 

0i(2π )
cos( )e

f t

O Ou u nθ=  (65) 

where 
LZu , b

LZu  and 
Ou  are the corresponding amplitudes. 

Substituting Eqs. (63)–(65) into Eq. (62), yields: 
4

* 2 ' ' ' '

0 0 04
[ (2π ) i (2π )] [ i (2π )] 1b

Y Z Z LZ Z Z LZ

L

n
E I m f k c f u k c f u

R
− + + − + =  (66) 

On the other hand, the amplitude of the load transmitted to the tunnel base from the curved rail can 

be expressed as:   
' '

0[ i (2π )]( )b

LZ Z Z LZ LZf k c f u u= + −  (67) 

Based on 
LZf , b

LZu  and 
Ou  can be further expressed as: 

0

b b

LZ LZ LZu f u=  (68) 

0O LZ Ou f u=  (69) 

where 
0

b

LZu  and 
0Ou  are respectively the displacement response amplitude of the tunnel base points 

connected by the spring-damper element and that of the observation point due to the unit distributed load 

0i(2π )
( , )= cos( )e

f t
f t nθ θ−  in the vertical direction of the rail directly acting on these tunnel base points 

connected by the distributed spring-damper element. 

A 3D FE model employing the rotational symmetry condition of the concerned problem shown in Fig. 

9 is established to compute 
0

b

LZu  and 
0Ou . The ranges of this 3D FE model in the r, z and θ  directions 

are from 240 m to 360 m (the distances from the tunnel centre line to the left and right boundaries are both 

60 m), from –60 m to 0 m, and from 0 rad to π/15 rad , respectively. It should be emphasized that the size 

of the 3D FE model in the θ  direction is equal to two times the periodic length of the external load in the 

same (θ ) direction when n is set to 60. The left, right and bottom boundaries are modelled as lumped 

viscoelastic boundaries, and the stiffness or damping of the spring-damper element in a particular direction 

at any boundary node is set to be the product of the corresponding parameter of the consistent viscoelastic 

boundary adopted in the proposed curved 2.5D model and the area of the boundary region corresponding 

to the node concerned. The front and back boundaries which are normal to the θ  direction are modelled 

as rotational symmetry boundaries. After 
0

b

LZu  and 
0Ou  are computed, through Eq. (65) to Eq. (69), the 

desired response 
Ou  can be derived.  

In the simulation of this dynamic problem using the proposed 2.5D method, a curved 2.5D model 
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with the same cross section of the above 3D FE model is established. Similar to the solution of the curved 

track-tunnel-soil system under a moving load, the responses of the curved track-tunnel-soil system under 

the distributed stationary load can be directly solved after substitution of the expression of the external 

load in the wavenumber-frequency domain into Eqs. (56)–(61). 

The dynamic responses of ground surface points V1 and V2 (shown in Fig. 9) that are on the cross 

section plane π/30 radθ =  and have a distance 40 m from the tunnel centre line on both the inner and 

outer sides of the curved tunnel are investigated. Fig. 10 depicts the real parts of the vertical displacements 

of these two observation points obtained by both the present model and the reference solution. It can be 

found that the results obtained by the present approach are in good agreement with those obtained by the 

reference solution for all the loading conditions. The slight differences between the corresponding results 

obtained by these two methods are mainly attributed to the different track models and boundary models 

adopted in them. Thus, the proposed curved 2.5D model is well verified.  

4. Numerical examples  

In this section, some numerical examples of the proposed model are given and the differences between 

the dynamic features of the straight and curved track-tunnel-soil systems are discussed. To investigate and 

clarify the effects of the curvature of the track-tunnel system and the track superelevation on the ground 

vibrations, three coupled track-tunnel-soil systems with different curvatures and superelevations are 

considered herein. They are a curved track-tunnel-soil system with a horizontal radius 400 mR =  and a 

superelevation angle 0.084 radα =  (the corresponding superelevation of the outer rail relative to the 

inner rail is 12 cm), a straight track-tunnel-soil system with no superelevation, and a straight track-tunnel-

soil system but with a superelevation angle 0.084 radα =  (same as that in the curved case) which is taken 

as a transition case between the other two cases. The tunnels in the three cases are assumed to have the 

same circular cross-section with an internal radius of 2.7 m and a wall thickness of 0.3 m. Meanwhile, the 

tunnel base in the second case is assumed to have the same shape as those in the other two cases, and the 

only difference between them is a rotation angle around the circular tunnel centre. The other structural 

configurations in the three cases not mentioned above are also set to be the same in the present work. 

Specifically, in each case, the buried depth of the tunnel is assumed to be 15.6 m, and the ground is assumed 

to be comprised of three soil layers which are respectively the fill material, silty clay, and pebbles and 

gravels, as shown in Fig. 11. The parameters of each soil layer are listed in Table 3, while the parameters 

of the tunnel base, tunnel lining and track in the considered three structural configuration cases are the 

same as those listed in Table 1 and Table 2. The harmonic point loads 0( ) cos(2π )LjP t f t= −  in j (j=Y, Z 

and ϕ ) direction with a moving speed of 60 km/h ( 0.0417 rad/svθ = ) equal to the normal operation speed 

of metro trains in China acting on the left rail are considered in each case, serving as the dynamic 

excitations in the following numerical examples. 
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All of the three structural configuration cases are simulated using the present model. In particular, the 

simulation of the two straight cases using the present model is achieved by setting the radius R to be 10000 

m which is large enough for an appropriate approximation of the straight case. To ensure the accuracy of 

simulation results below 80 Hz, three curved 2.5D FE models are respectively established for these 

considered cases according to the rule of thumb that a minimum of six elements per wavelength is 

necessary for an accurate finite element solution. These FE models are all designed to have a width of 160 

m (the distances from the tunnel centre line to the left and right boundaries in the r direction are both 80 

m, i.e. the r coordinates of the left and right boundaries are respectively R-80 and R+80) and a depth of 70 

m. This considered domain is selected based on the research presented in Section 3.1, and such a selection 

aims at ensuring the computational accuracy of the ground surface points in the range [ 60, 60]r R R∈ − + . 

Fig. 12 shows the mesh of the established 2.5D FE model accounting for the curved case and the straight 

case with a superelevation angle 0.084 radα =  (the same FE mesh is used to analyse these two cases). 

The FE mesh for the straight case with no superelevation is similar to that shown in Fig. 12, thus its 

schematic diagram is omitted here. In the following simulations, the initial positions of the moving loads 

at 0 st =  are all assumed to be at 0 radθ = , and the responses of the ground surface points on the cross 

section plane 250 / Rθ =  are investigated. On the concerned cross section plane, the symbols “I-j” and 

“O-n” are respectively introduced to represent the points inside and outside radius R of the tunnel, as shown 

in Fig. 11. Numbers j and n denote the distances between the concerned points and the ground surface 

point I-0 (or O-0) just above the tunnel centre. For convenience, the points inside or outside radius R are 

called inner side points or outer side points in the present paper. In the following analyses, 4097 sampling 

frequency points uniformly distributed in the frequency range 0–80 Hz are calculated for each considered 

case (i.e. a particular structural configuration case subjected to a particular dynamic excitation). It is worth 

noting that the computation times of all the considered cases for each sampling frequency on average only 

need about 7 s using a PC with 16 GB RAM and four 3.50 GHz processors, even though large FE models 

(more than 110000 DoFs) are considered here. It is thus clear that the proposed model can efficiently 

simulate the dynamic track-tunnel-soil interaction in the curved section. 

Figs. 13 and 14 depict the ground surface vertical acceleration spectrums of the considered three 

structural configuration cases due to the unit harmonic moving load 
0( ) cos(2π )LZP t f t= −  with excitation 

frequencies of 
0 20 Hzf =  and 

0 40 Hzf = , respectively. The responses of points I-10, I-60, O-10 and 

O-60 are shown in these figures. It can be clearly seen from Figs. 13 and 14 that the frequency-domain 

acceleration responses of the ground surface due to the harmonic moving load acting on the rail concentrate 

in a narrow frequency band around the excitation frequency 
0f . Specifically, it is found that the frequency 

range of the ground vibration is mainly controlled by the S-wave speed of the second soil layer where the 

moving excitation source locates in the present case, given in the form 0 _2 0 _2[ / (1 / ), / (1 / )]S Sf v C f v C+ −
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(in which _2SC  is the S-wave speed of the second soil layer), i.e. [19.0 Hz, 21.1 Hz] for 
0 20 Hzf =  and 

[38.0 Hz, 42.3 Hz] for 
0 40 Hzf = , attributed to the Doppler effect present within the time duration when 

the load moves towards and recedes from the cross section containing the observation points [8]. 

Additionally, multiple peaks occur in the spectrums, and the peaks in different structural configuration 

cases under the same excitation load have favourable corresponding relationships. Based on the existing 

studies on the straight moving load problem [8], it can be easily deduced that these peaks occurring in the 

spectrums for all the curved and straight cases are attributed to the Doppler effects of different waves (P-

waves, S-waves and R-waves) present in the multi-layer soils when the load moves towards and recedes 

from the cross section containing the observation points.  

By comparing the responses of the two straight cases under the same excitation load in Figs. 13 and 

14, it is found that the superelevation only influences the magnitude of the spectrum and its setting won’t 

change the trend and the peak locations of the spectrum. However, the curvature of the track-tunnel system 

influences both the magnitude and the peak locations of the spectrum. In particular, an identifiable shift 

tendency of the peak location can be found in the spectrums of the curved case compared with the 

corresponding spectrums of the straight case with a superelevation angle 0.084 radα = which is the same 

as that in the curved case, especially in the spectrums of points I-60 and O-60 which are far away from the 

excitation source. Specifically, the shift directions of the spectrum peaks for an inner side point and an 

outer side point in the curved case are opposite: for the former one, the spectrum peaks will have a tendency 

to move towards the excitation frequency, whereas for the latter one, the spectrum peaks will have a 

tendency to move away from the excitation frequency. Obviously, this phenomenon can be attributed to 

the discrepancy between the trajectory of the moving load in the curved case and that in the straight case. 

Compared with the straight case, when the load moves towards or recedes from the concerned cross section, 

the instantaneous speed of the moving load relative to an inner side observation point at any time becomes 

smaller while that relative to an outer side observation point becomes greater. Hence, the spectrum peaks 

due to the Doppler effect in the curved case will have such tendencies relative to those in the corresponding 

straight case. It can be further noted that such tendencies of the curved case relative to the corresponding 

straight case are not obvious in the spectrums of points I-10 and O-10 which are near the tunnel.  

This phenomenon can be explained as follows: for an observation point near the tunnel, only when 

the load moves into a small region in the longitudinal direction near the observation point can it have a 

decisive influence on the response of the observation point; however, the differences between the spatial 

positions of a straight track-tunnel system and a curved one in this small region are relatively small.  

The influences of the curvature of the track-tunnel system on the ground-borne vibrations can also be 

found from Figs. 15 and 16, where the running root mean square values (RMS-values) of the vertical 

accelerations of the ground surface points I-60 and O-60 in the curved case and the straight case with the 
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same superelevation due to 
0( ) cos(2π )LZP t f t= −  with 

0 40 Hzf =  and 
0 20 Hzf =  are respectively 

depicted. The running RMS-values shown in these two figures are calculated through the following 

equation:  

/ 2
2

RMS
/2

1
( ) [ ( )] d

t T

t T
a t a t t

T

+

−
= ∫  (70) 

where 
RMS ( )a t  is the running RMS-value, ( )a t  is the acceleration time history, and T is the length of 

the running average window. Here 0.5 sT =  is used in order to ensure the readability of the related figures. 

The dynamic behaviour caused by the load that moves towards and recedes from the cross section 

containing the observation points is clearly exhibited in Figs. 15 and 16. The time-domain responses of a 

ground point far away from the tunnel centre line in the curved case and the same ground point in the 

corresponding straight case have similar trends. The major differences between them occur in the periods 

of time before and after the load reaches the concerned cross section containing the observation points 

( 15 st = ), which directly reflects the differences between the spatial locations of the load’s moving 

trajectories in the curved and straight cases. Generally speaking, compared with the corresponding straight 

case, the time-domain response waveform of an inner side point in the curved case is just like to be 

stretched, while that of an outer side point is just like to be compressed. 

Figs. 17–19 show the RMS-values of the ground surface time-domain accelerations in the considered 

three structural configuration cases due to the unit harmonic moving loads 0( ) cos(2π )LjP t f t= −  with 

0 20 Hzf =  versus the distance from the tunnel centre line. It should be noted that the RMS-values 

depicted in these figures are computed according to the time-domain accelerations in the time range 0–32 

s where the significant responses concentrate, thus they are presented just as a measure of the total signal 

energy. The loads acting in the vertical, transverse and rotational directions of the rail are all considered 

herein, and those values at points I-60, I-55, …, I-5, I-0 (or O-0), O-5, …, O-55 and O-60 are depicted in 

each figure. 

The effects of the curvature of the track-tunnel system and the track superelevation on the ground 

vibrations are clearly visible in Figs. 17–19. The track superelevation has a certain degree of influence on 

the ground responses in the near filed of the excitation source, but such an influence decreases with the 

increase of the distance from the tunnel centre line in general. Conversely, the curvature of the track-tunnel 

system has a certain degree of influence on the far-field ground responses, whereas its influence on the 

near-field ground responses is usually small and sometimes can even be neglected, just as discussed above. 

As expected, the curvature of the track-tunnel system will generally increase the RMS magnitudes of 

accelerations at ground surface points on the inner side of the tunnel horizontal radius, but decrease those 

on the outer side of the tunnel horizontal radius. For instance, under the transverse load 

0( ) cos(2π )LYP t f t= −  with 
0 20 Hzf =  acting on the rail, the radial, longitudinal and vertical acceleration 

RMS-values of the point I-55 in the curved case respectively increase by 6.0%, 14.6% and 9.1% compared 
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with the straight case with the same superelevation angle 0.084 radα = , while those of the point O-55 

respectively decrease by 5.7%, 9.1% and 7.6%. Compared with the radial and vertical responses, the 

influences of the curvature of the track-tunnel system on the longitudinal response are relatively more 

significant from an overall perspective.   

Due to the much more complex loading condition on the curved track in reality, the ground vibration 

characteristics under dynamic loads acting on the rail in its vertical and transverse directions, and even its 

rotational direction are all significant for the propagation of the train-induced ground vibration from a 

curved railway tunnel. Thus, the vibration characteristics of the considered coupled curved track-tunnel-

soil system (the curved case) due to the unit point moving loads acting on the rail in its different directions 

are further studied.  

Fig. 20 gives the attenuation curves of the acceleration RMS-values in the curved case along the 

ground surface under the harmonic moving loads 0( ) cos(2π )LjP t f t= −  with excitation frequencies 

0 20 Hzf =  and 
0 40 Hzf = . The acceleration responses in the three normal directions of the cylindrical 

coordinates at the same ground surface points as considered in Figs. 17–19 are all depicted herein. It should 

be noted again that the corresponding RMS-values depicted in this figure are also computed according to 

the time-domain accelerations in the time range 0–32 s and presented just as a measure of the total signal 

energy. The attenuation mechanisms of vibrations in different directions can be easily found from Fig. 20. 

Under the harmonic moving load acting in the transverse (Y) or rotational (ϕ ) direction of the rail, the 

ground surface vertical and longitudinal vibrations show a general trend of first increase and then decrease 

with the increase of the distance from the tunnel centre line, while the ground surface radial vibration 

shows a general trend of decrease with the increase of the distance from the tunnel centre line. However, 

under the harmonic moving load acting in the vertical (Z) direction of the rail, the opposite phenomena can 

be observed. It should be emphasized that there still exist some fluctuations in these overall trends stated 

above due to the natures of wave propagation. 

By carefully observing Fig. 20, the following interesting vibration characteristics can also be seen: 

the magnitudes of the ground vibration responses induced by the unit harmonic moving moment acting on 

the rail in its rotational (ϕ ) direction are comparable with those induced by the unit harmonic moving 

loads acting on the rail in its vertical (Z) and transverse (Y) directions; under the harmonic moving load 

with some specific excitation frequencies acting on the rail in its transverse (Y) or rotational (ϕ ) direction, 

the radial acceleration responses can be significantly greater than the longitudinal and vertical ones at most 

points in a wide region of the ground surface. Actually, the second vibration characteristic is related to the 

excitation frequency of the load. Through further analyses, it is found that as long as the excitation 

frequency of the load is high enough (e.g. 20 Hz and 40 Hz are already high enough for the vertical load 

and rotational moment acting on the rail, respectively), this vibration phenomenon will occur. It should be 
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noted that this vibration characteristic is also suspected to be related to the phenomenon that the train-

induced radial ground-borne vibrations from a curved underground metro are far larger than those in the 

vertical direction in a wide region of the ground surface reported in Ref. [29]. Of course, this speculation 

still needs further verifications. 

5. Conclusions 

A curved 2.5D model for simulating the dynamic responses of a coupled track-tunnel-soil system in 

a curved section due to moving loads is presented. By assuming the curved track-tunnel-soil system to be 

invariant in the longitudinal direction, the curved 2.5D finite element method and the curved 2.5D 

analytical method are respectively proposed to model the motions of the tunnel-soil system and the track. 

The formulations of the four-node curved 2.5D finite elements and the curved 2.5D consistent viscoelastic 

boundary elements which are respectively used to model the tunnel and soil mediums and the computation 

boundaries are derived in detail. By accounting for the force balance and displacement compatibility 

conditions, the curved track with an analytical solution is coupled to the curved tunnel-soil system with a 

finite element solution, leading to the governing equation of motion of the whole curved track-tunnel-soil 

system. This proposed model is well validated through the comparisons of its simulation results with the 

corresponding reference results computed by other theoretical models. Numerical examples show that the 

proposed model can efficiently simulate the dynamic responses of the coupled track-tunnel-soil system in 

the curved section, which can be attributed to its significant reduction of the number of degrees-of-freedom 

for the concerned dynamic problem relative to a conventional 3D FE model. Through the analyses, the 

following conclusions are obtained:  

1) The track superelevation has a certain degree of influence on the ground responses in the near field 

of the excitation source, but such an influence decreases with the increase of the distance from the tunnel 

centre line in general.  

2) Under the same harmonic moving load acting on the rail, the locations of the peaks in the 

acceleration spectrums of an inner side ground point and an outer side ground point in a curved track-

tunnel-soil system will respectively have tendencies to move towards and move away from the excitation 

frequency of the load, compared with those of the same points in the corresponding straight track-tunnel-

soil system. This phenomenon is particularly prominent for the far-field ground points. 

3) The curvature of the track-tunnel system generally increases the RMS magnitudes of accelerations 

at the inner side ground points but decreases those at the outer side ground points. 

4) Under the harmonic moving load with a high enough excitation frequency acting on the rail in its 

transverse or rotational direction, the radial ground vibrations from a curved railway tunnel can be 

significantly greater than the longitudinal and vertical ones at most points in a wide region of the ground 
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surface.  

The proposed curved 2.5D model is now only applicable to the deterministic external loads, but it can 

be extended to simulate the train-induced ground-borne vibrations from the curved underground metros by 

considering the dynamic train-track interaction. This effort is of great significance for the further 

understandings of the vibration characteristics of the curved underground metro section, and the 

corresponding studies are our next works. 
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Fig. 1. 2.5D model representing the coupled curved track-tunnel-soil system. 
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(a) (b) 

 

 

(c) 

  

Fig. 2. Four-node curved 2.5D finite element and actual three-dimensional space represented by it: (a) 

the element in the global coordinate system; (b) the element in the local coordinate system; (c) the 

actual three-dimensional space represented by this element. 
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Fig. 3. 2.5D consistent viscoelastic artificial boundaries. 
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Fig. 4. Curved 2.5D consistent viscoelastic artificial boundary element at the bottom of the computation 

domain. 
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Fig. 5. Curved 2.5D consistent viscoelastic artificial boundary elements on the (a) left and (b) right 

lateral boundaries of the computation domain. 
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Fig. 6. Curved track model: (a) plane schematic diagram; (b) three dimensional schematic diagram. 
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Fig. 7. Forces acting on the rails and the tunnel base. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y
Z

θ

φ

r

z

θ

FLY

FLZ

M
Lφ

f LZ1

f LZ2f LY

f Lθ

f LZ1

f LZ2f LY

f Lθ

b

FRY

FRZ

M
Rφ

f RZ1

f RZ2f RY

f Rθ

f RZ1

f RZ2f RY

f Rθ

b b

pL

qL

wL

pR

qR

wR

LL1

LL2

b b

LR1

LR2

α

a



 

39 

 

6 7 8 9 10 11 12 13
-15

-12

-9

-6

-3

0

 RM

×10−10

 PM

 

v
er

ti
ca

l 
d
is

p
la

ce
m

en
t 

(m
)

time (s)

6 7 8 9 10 11 12 13
-3

-2

-1

0

1

2

3
×10−10

 

lo
n

g
it

u
d

in
al

 d
is

p
la

ce
m

en
t 

(m
)

time (s)

 PM
 RM

6 7 8 9 10 11 12 13
-15

-10

-5

0

5

10

15
×10−10

 

v
er

ti
ca

l 
d

is
p

la
ce

m
en

t 
(m

)

time (s)

 PM
 RM

6 7 8 9 10 11 12 13
-3

-2

-1

0

1

2

3
×10−10

 

lo
n

g
it

u
d

in
al

 d
is

p
la

ce
m

en
t 

(m
)

time (s)

 PM
 RM

Fig. 8. Comparisons of the time-domain displacement responses of the uniform viscoelastic half-space 

induced by the moving point load 0i(2π )
( )= e− f t

f t  computed by the present method (PM) and the 

reference method (RM): (a) vertical displacements under the excitation frequency f0=0 Hz; (b) 

longitudinal displacements under the excitation frequency f0=0 Hz; (c) vertical displacements under 

the excitation frequency f0=10 Hz; (d) longitudinal displacements under the excitation frequency f0=10 
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Fig. 9. 3D FE model established for the model validation. 
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Fig. 11. Cross-sectional drawing of the track-tunnel-soil system. 
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(a)  

 

 

Fig. 12. Curved 2.5D FE mesh for the coupled tunnel-soil system in the curved case and that in the straight 

case but with a non-zero superelevation: (a) overall view of the mesh; (b) detail of the mesh. 
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Fig. 13. Vertical acceleration spectrums of ground surface points (a) I-10, (b) O-10, (c) I-60 and (d) O-60 in 

the three considered structural configuration cases due to the load 0( ) cos(2π )= −LZP t f t  with an excitation 

frequency of 0 20 Hz=f . 
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Fig. 14. Vertical acceleration spectrums of ground surface points (a) I-10, (b) O-10, (c) I-60 and (d) O-60 in 

the three considered structural configuration cases due to the load 
0( ) cos(2π )= −LZP t f t  with an excitation 

frequency of 
0 40 Hz=f . 
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Fig. 15. Vertical acceleration running RMS-values of ground surface points (a) I-60 and (b) O-60 in the 

curved case and the straight case with 0 radα ≠  due to the load 0( ) cos(2π )= −LZP t f t  with an excitation 

frequency of 0 20 Hz=f . 
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Fig. 16. Vertical acceleration running RMS-values of ground surface points (a) I-60 and (b) O-60 in the 

curved case and the straight case with 0 radα ≠  due to the load 0( ) cos(2π )= −LZP t f t  with an excitation 

frequency of 0 40 Hz=f . 
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Fig. 17. RMS-values of ground surface accelerations in the (a) transverse, (b) longitudinal, and (c) vertical 

directions due to the load 0( ) cos(2π )= −LZP t f t  with 0 20 Hz=f  versus the distance from the tunnel 

centre line. 
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Fig. 18. RMS-values of ground surface accelerations in the (a) transverse, (b) longitudinal, and (c) vertical 

directions due to the load 
0( ) cos(2π )= −LYP t f t  with 

0 20 Hz=f  versus the distance from the tunnel 

centre line. 
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Fig. 19. RMS-values of ground surface accelerations in the (a) transverse, (b) longitudinal, and (c) vertical 

directions due to the load 0( ) cos(2π )ϕ = −LP t f t  with 
0 20 Hz=f  versus the distance from the tunnel 

centre line. 
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Fig. 20. Attenuation curves of the acceleration RMS-values in the curved case along the ground surface 

under the harmonic moving load (a) ( ) cos(2π 20 )= − × ×LZP t t , (b) ( ) cos(2π 40 )= − × ×LZP t t , (c) 

( ) cos(2π 20 )= − × ×LYP t t , (d) ( ) cos(2π 40 )= − × ×LYP t t , (e) ( ) cos(2π 20 )ϕ = − × ×LP t t  and (f) 

( ) cos(2π 40 )ϕ = − × ×LP t t . 
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Table 1. Physical parameters of the tunnel-soil system considered in the model validation. 

medium 
S-wave 

speed (m/s) 

P-wave 

speed (m/s) 

dynamic elastic 

modulus (MPa) 

Poisson’s 

ratio 

density  

(kg/m3) 

damping 

ratio 

soil 310.6 576.9 515 0.296 2060 0.04 

tunnel base 2179.4 3559.0 28500 0.2 2500 0.02 

tunnel lining  2366.4 4098.8 35000 0.25 2500 0.02 
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Table 2. Track parameters. 

rail density ρ  37830 kg/m  cross-sectional area of rail A  3 27.745 10 m−×  

Young’s modulus of rail E  112.059 10 Pa×  shear modulus of rail G  107.919 10 Pa×  

Damping ratio of rail ξ  0.005  torsional constant 
dI  6 42.151 10 m−×  

sectional inertia moment 
YI  5 43.217 10 m−×  sectional inertia moment 

ZI  6 45.28 10 m−×  

sectional inertia moment 
0I  5 43.745 10 m−×  distance between rail centroid and bottom a 0.081 m  

half width of rail bottom b  0.075 m  rail pad stiffness 
Yk    7 24.1667 10 N/m×  

rail pad damping 
Yc  4 22.7833 10 N s/m×  rail pad stiffness θk  7 24.1667 10 N/m×  

rail pad damping θc  4 22.7833 10 N s/m×  rail pad stiffness 
Zk  7 23.3333 10 N/m×  

rail pad damping 
Zc  4 22.5 10 N s/m×    
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Table 3. Physical parameters of the soil layers considered in the numerical examples. 

soil layer 
layer 

thickness (m) 

S-wave 

speed (m/s) 

P-wave 

speed (m/s) 

dynamic elastic 

modulus (MPa) 

Poisson’s 

ratio 

density 

(kg/m3) 

damping 

ratio 

fill material 4 180.7 351.3 138 0.32 1600 0.05 

silty clay 21 310.6 576.9 515 0.296 2060 0.04 

pebbles and gravels +∞  358.8 642.0 698 0.273 2130 0.03 

 

 

 

 

 

 

 

 

 

 

 

 


