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ABSTRACT 

The Evolution of Body Shape and Locomotion in Archosauria 

Sophie Macaulay 

 
Locomotion is essential to the survival of all organisms. Extant animals display a broad range 
of adaptations to a wide range of locomotor behaviours. Locomotion can be observed 
directly in living animals, but this is not the case for fossil taxa which are known from only 
skeletal material. An indirect route is therefore required to access this information on 
locomotor capabilities. Centre of mass is a key biomechanical parameter which effectively 
summarises body shape. Body shape influences, and is influenced by, the locomotor 
capabilities of an organism. Due to these close links, centre of mass has considerable 
potential value as an indirect route to information on locomotion in extinct species. One 
group of particular interest is Archosauria, which contains a host of unusual animals such as 
Diplodocus, Pterodactylus and Tyrannosaurus. 

However, there are several obstacles which currently prevent centre of mass being 
used to its full potential in investigations of fossil taxa. Firstly, existing methods for estimating 
centre of mass position in fossils are limited either by substantial subjectivity, or by a lack of 
data on extant archosaurs. Additionally, the interpretation of any resulting predictions of 
centre of mass is hindered by a poor understanding of the links between centre of mass and 
specific locomotor behaviours, especially in volant organisms. It is therefore recognised that 
in order for the field to progress, more data are required on extant archosaurs. 

This thesis seeks to address this issue by collecting a series of novel datasets on living 
archosaurs which are used as the foundation for improved predictions and interpretations 
of centre of mass data in extinct archosaurs. Three commonly used methods for centre of 
mass estimation in physical specimens were assessed in order to determine their absolute 
accuracies. The scales and digital methods were found to have high levels of accuracy and 
repeatability. Due to method specific limitations when applied to biological specimens, I 
concluded that the digital method is the preferred solution for this thesis. One benefit of 
digital modelling is the ease of alteration; small details can be added to models, but this is a 
time consuming process. This thesis examined the impact of different levels of model detail 
on whole body centre of mass. For example, air cavities (included as standard in current 
models), were found to exert less influence on centre of mass than a feathered integument 
(which has never before been quantified), calling standard modelling practices into question. 
Using digital models of 27 bird species, links were explored between centre of mass position 
and locomotor type. Species using volant behaviours were found to have more ventral 
centres of mass than their terrestrial counterparts; though this difference was not significant 
after accounting for phylogeny. This would provide greater manoeuvrability in flight. Finally, 
a new method for centre of mass estimation in fossils was developed and applied to fossil 
taxa. Compared to previous work, this method produced different centres of mass, with 
greater error margins. This is despite the fact that this new method benefits from greater 
objectivity and a quantitative grounding based on data from extant archosaurs. This suggests 
that previous studies have underestimated the biological variation present and their results 
should therefore be interpreted with caution. 
This thesis provides the foundation for further work to continue to build towards better 
methods for centre of mass estimation in extinct taxa, and more confident biological 
interpretations of the resulting predictions. 
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LAY ABSTRACT 

The Evolution of Body Shape and Locomotion in Archosauria 

Sophie Macaulay 

 
Locomotion is essential to the survival of all organisms. Living animals display a variety of 
locomotor behaviours, from swimming to running and flying. Locomotion can be observed 
directly in living animals, but this is not the case for extinct species which are only known 
from fossilised skeletons. An alternative route to information on their locomotion is 
therefore required. Many extinct animals are unlike anything alive today and, as such, they 
capture the imagination of scientists and the general public alike. One group of particular 
interest is Archosauria, which contains a host of unusual animals such as Diplodocus, 
Pterodactylus and Tyrannosaurus. Centre of mass is a key biomechanical parameter which 
summarises body shape. Body shape influences, and is influenced by, the locomotor 
capabilities of an organism. Due to these close links, centre of mass has considerable 
potential value as an indirect route to information on locomotion in extinct species. 

However, there are several obstacles which currently prevent centre of mass being 
used to its full potential in investigations of extinct species. Firstly, existing methods for 
estimating centre of mass position in fossils are limited either by substantial subjectivity, or 
by a lack of data on their living relatives. Additionally, the interpretation of any resulting 
predictions of centre of mass is hindered by a poor understanding of the links between 
centre of mass and specific locomotor behaviours, especially in flying organisms. It is 
therefore recognised that in order for the field to progress, more information is required on 
living archosaurs (crocodylians and birds). 

This thesis seeks to address this issue by collecting a series of novel datasets on living 
archosaurs which are then used as the foundation for improved predictions and 
interpretations of centre of mass data in extinct archosaurs. Three commonly used methods 
for centre of mass estimation in physical specimens were assessed in order to determine 
their absolute accuracies. The scales and digital methods were found to have high levels of 
accuracy and repeatability. Due to method specific limitations when applied to biological 
specimens, I concluded that the digital method is the best solution for this thesis. One benefit 
of digital modelling is the ease of alteration; small details can be added to models, but this is 
a time consuming process. This thesis examined the impact of different levels of model detail 
on whole body centre of mass. For example, air cavities (included as standard in current 
models), were found to exert less influence on centre of mass than the feathers of birds 
(which has never before been included). This calls standard modelling practices into 
question. Using digital models of 27 bird species, links were explored between centre of mass 
position and locomotor type. Species reliant on flight were found to have centres of mass 
which are closer to the spine than to the breast bone, in comparison to their terrestrial 
counterparts. This would provide greater manoeuvrability in flight. Finally, a new method for 
centre of mass estimation was developed and applied to extinct species. Compared to 
previous work, this method produced different centres of mass, with greater error margins. 
This is despite the fact that this new method benefits from greater objectivity and a host of 
data on living archosaurs. This suggests that previous studies have underestimated the 
biological variation present and their results should therefore be interpreted with caution. 

This thesis provides the foundation for further work to continue to build towards 
better methods for centre of mass estimation in extinct species, and more confident 
biological interpretations of the resulting predictions. 
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CHAPTER 1 - INTRODUCTION AND BACKGROUND 

 

1.1. Thesis introduction and overview 

Locomotion is fundamentally important to all organisms, enabling a host of essential 

behaviours - such as feeding, reproduction and survival. It determines the interactions 

between organisms and subsequently whole ecosystem dynamics. The evolution of 

locomotor behaviours is therefore intertwined with the evolution of all vertebrate species. 

Locomotor behaviours frequently place harsh demands on the vertebrate skeleton, meaning 

locomotor demands are reflected in organisms’ anatomy. In extant species, locomotion and 

whole organism morphology can be quantified directly, and thus the links between form and 

function can be directly tested. However, in extinct taxa, locomotion cannot be observed 

directly. One factor influencing, and influenced by, the locomotor mode of an organism is 

mass distribution. Mass distribution, summarised by whole body centre of mass (CoM), 

represents an indirect route to information on locomotor capabilities in fossil species (e.g. 

Henderson, 2018, Sellers et al., 2017, Snively et al., 2018). However, in fossil taxa, mass 

properties must be estimated from skeletal material only, which is far from a simple task. 

 

CoM is a fundamentally important biomechanical parameter. At the level of the whole 

organism, it is a key determinant of stability at rest and in motion. Through its impact on a 

host of factors, including posture, CoM has a substantial impact on the locomotor capabilities 

of an organism. CoM has been estimated using a variety of methods across a wide range of 

extant and extinct species, but no comprehensive review of these methods currently exists. 

A range of digital methods have been developed with the aim of improving mass property 

(body mass, CoM etc) estimates in fossil species. However, these methods bring their own 

limitations, which are currently poorly explored. The primary issue is a reliance on 

subjectively generated skin outlines, and a lack of data on modern species to enable 
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interpretation of resulting CoM predictions. When existing digital methods are applied in an 

evolutionary context, they are therefore accompanied by considerable error margins. This 

undermines any conclusions drawn, and potentially obscures more subtle trends in body 

shape evolution. 

 

This thesis will examine the relationship between whole body morphology and CoM, and the 

links to the evolution of locomotion diversity present in modern birds. This chapter provides 

background information on previously published work in this field, outlining past successes 

and weaknesses. In my subsequent review of previous work, I identify key gaps in the area 

related to CoM estimation and interpretation of the resulting CoM data. From a 

methodological perspective there is currently considerable uncertainty regarding the 

accuracy of frequently used methods for CoM estimation, in addition to the effects of 

heterogeneous density and explicit inclusion of key organ systems. From a biological and 

evolutionary perspective, there is currently limited understanding of how adaptations to 

whole body shape are correlated to locomotion in living birds. This hinders our 

understanding of living birds, but also undermines our ability to predict body shape and 

locomotion in closely related fossil species. A literature review in Section 1.2 culminates in a 

series of specific research objectives (Section 1.3) which form the basis for the novel 

independent research carried out in Chapters 2-5 of this thesis. 

 

1.2. Background 

1.2.1. Mass properties and avian locomotion 

1.2.1.1. CoM and locomotor biomechanics 

The CoM of an object can be thought of as the point at which all its mass is concentrated 

(Özkaya et al., 2012). In a terrestrial organism, the CoM must lie over the area of support  
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Figure 1.1: A: Taken from Google Images. Showing differences in areas of support for 

quadrupeds versus bipeds. The centre of mass (indicated as black circle) must lie within the 

base of support in order for an organism to be stable at rest. B: Taken from Carrano and 

Biewener (1999). For an organism to maintain stability in walking, whole body centre of mass 

must be positioned over the supporting foot during the stance phase. This is shown in a 

natural state in chickens in (a). Alterations of whole body CoM position must result in 

postural changes (e.g. b and c) in order to maintain stability. C: Taken from Gatesy (2009). 

Showing possible limb postures for Tyrannosaurus (b & d), as determined by constraint based 

mapping of joint angles (a). The combined effects of centre of mass position and muscle 

moment arms result in differences to locomotor ability, as indicated by ground reaction force 

(GRF) (c). 
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defined by the limbs in order for the organism to be stable at rest (Figure 1.1A). For example, 

a CoM located far cranial to the hindfeet requires a quadrupedal posture to be adopted; 

while if the hindfeet can be placed under the CoM, bipedal behaviours are possible (Figure 

1.1A). Because of this, CoM exerts a substantial influence over the posture of an organism at 

rest and in motion. This is especially true in bipeds, where the area of support defined by the 

feet is much smaller, and CoM therefore imposes stricter constraints on posture (Figure 

1.1A). This principle is exemplified by the extreme posture shift which occurred alongside 

drastic changes to CoM position in bird line archosaurs. Along the ancestral bird line, within 

non-avian theropods, body plan underwent drastic changes - the forelimbs, head and neck 

complexes were enlarged, while the tail was reduced - resulting in a cranial CoM shift (Allen 

et al., 2013). In association with this CoM shift, hindlimb posture changed from a relatively 

straight-legged stance, to that seen in modern birds - a virtually horizontal femur and flexed 

hip and knee joints (Alexander, 2006, Gatesy and Biewener, 1991) (Figure 1.1B). In this way, 

the gait kinematics and kinetics seen in extant birds came to evolve, in which locomotion is 

driven by flexion-extension at the knee and ankle, rather than at the hip as it was in their 

extinct, long tailed bipedal ancestors (Gatesy, 1990). 

 

The CoM shift seen in bird line archosaurs has been relatively well studied, and the 

repercussions of this shift for terrestrial locomotion have been explored. For example, the 

downstream effects of whole body CoM position have been quantitatively examined in 

factors such as posture (Gatesy et al., 2009) and locomotor ability (Bates et al., 2010), 

highlighting the non-trivial effects CoM has on higher level biological conclusions (see Figure 

1.1C for example, and Section 1.2.3 for further discussion). This underlines the importance 

of producing and utilising correct CoM estimates in studies of fossil taxa. However, studies 

investigating links between CoM and aerial locomotion are rare (with the exception of 

Henderson, 2010, Thomas and Taylor, 2001). CoM position informs the stability and   
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Figure 1.2: A: Taken from Thomas (2001). In aerial locomotion, rotation can occur about 3 

axis which produce pitch, yaw and roll movements. B: Taken from Thomas (2001). Centre of 

mass position (circle) along the cranio-caudal axis varies across species. The majority of 

species have been found to have CoMs which are cranial to the wing centre (cross). The 

relationship between centre of mass and wing position determines stability in pitching 

motions. C: Schematic of an organism in lateral view showing the influence of dorso-ventral 

centre of mass position. A greater distance between the shoulder joint (white circle) and the 

centre of mass (crossed circle) means a larger moment arm (red arrow) and therefore greater 

inertial resistance to rolling motions. This ‘pendulum’ effect can be observed in paragliders 

and ships, and acts to provide passive roll stability. 
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manoeuvrability of an organism in-flight (Figure 1.2). Any turning moments generated about 

the centre of lift of the wings must be countered in order for a bird to maintain steady 

locomotion in the air. A CoM which lies close to the wings, minimises the active inputs 

required to correct for any undesired rotations (Thomas and Taylor, 2001). However, in the 

dorso-ventral direction, a CoM which is more distant to the wing centre can provide passive 

benefits - a greater inertial resistance to motion results in greater stability at the expense of 

manoeuvrability (Figure 1.2C). Extant bird species vary considerably in the amount of time 

they spend flying, and the way in which they fly. Some birds have taken this to the extreme, 

having reverted back to the ancestral state of terrestrial bipedalism (e.g. ratites), but still 

retain the characteristic avian flexed hindlimb posture suggestive of a more cranial CoM. 

However, previous studies (Henderson, 2010, Thomas and Taylor, 2001) suggest that CoM 

position varies within Aves, potentially reflecting differences in locomotor capabilities. 

 

If links between CoM position and locomotor style could be established in extant birds, CoM 

could be used as an indirect route to information about both the terrestrial and aerial 

locomotor capabilities of extinct ‘transitional’ species, such as Microraptor and 

Archaeopteryx. The locomotion, and particularly the flight capabilities, of these taxa have 

been extensively debated and remain controversial (e.g. Alexander et al., 2010, Chatterjee 

and Templin, 2007, Dyke et al., 2013, Koehl et al., 2011). However, at present more work is 

required in order for CoM position to make a significant contribution to this debate. 

 

1.2.1.2. Other mass properties and locomotor biomechanics 

It should be noted that CoM, though the main focus of this thesis (see Section 1.2.1.1), it is 

only one of a host of mass property which all act to determine the locomotor capabilities of 

an organism. For example, the simple metric of whole body mass determines the force 

generation required for take-off, and for sustained flight. In combination with wing area, 
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body mass determines wing loading which in turn determines the locomotor behaviours an 

individual is capable of (see Section 1.2.1.3 for more detail). Moment of inertia (MoI) is a 

more detailed mass property, which describes the distance between the centre of mass and 

the pivot point of a segment. A CoM close to the pivot produces a low MoI, meaning that for 

a given force input the resulting angular velocity of the segment will be greater. Alternatively, 

for an organism which must generate a set angular velocity (e.g. in order to move a segment 

in order to achieve a given locomotor behaviour), a low MoI means less force is required to 

be generated. Through MoI, segment CoM position therefore directly impacts the locomotor 

capabilities of an individual. 

 

1.2.1.3. Mechanics of flight 

Birds are one of only three vertebrate groups to have evolved powered flight, alongside the 

pterosaurs and bats. Flight is a complex, energy intensive locomotor behaviour which places 

a wide range of demands on an organism, and requires a suite of specialisations. The 

successful development of flight was a key factor in enabling the extensive radiation of birds 

into over 10,000 species, occupying a diverse range of niches across all seven continents. 

 

For powered flight to be successful, an organism must generate sufficient lift and thrust in 

order to counter the forces of gravity and drag respectively (Figure 1.3A). These forces are 

inherently linked to morphology and mass properties. Bird wings are a biological aerofoil, 

their anatomy forces air to travel faster over the upper surface than the lower surface of the 

wing (Kardong, 2012). This generates a pressure difference between the upper and lower 

surfaces of the wing, which produces lift. This aerofoil is achieved by a combination of soft 

tissue and flight feather morphology. Lift is required to counter the force of gravity, and 

enables birds to stay aloft. Birds with lower body masses are subjected to lower forces by 

gravity, and therefore need less lift to fly. Birds must also generate thrust in order to move   
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Figure 1.3: A: Schematic showing the forces acting on a bird in flight. B: Bird wings from three 

species scaled to the same length (from Kardong, 2012). The different locomotor modes of 
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the hummingbird and the albatross are reflected in the relative length of the various wing 

segments. C: Two bird species with different aspect ratios (modified from Rayner, 1988). The 

high aspect ratio wing of the albatross facilitates soaring, while the lower aspect ratio wing 

of the eagle provides greater manoeuvrability in flight. 
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through the air and maintain flight. For the majority of volant birds, sufficient lift can be 

generated passively by the wings in order to stay aloft, however the majority of thrust must 

be actively generated. Thrust is generated by the wingbeat, which is powered by the flight 

musculature. The flight musculature attaches onto the pectoral girdle of birds, and is 

dominated by the large pectoralis major. The pectoral muscles attach onto the highly keeled 

sternum, and make up a considerable proportion of whole body mass (Hartman, 1961, 

Tobalske, 2007). Thrust acts to counter drag, which birds have reduced with covering of 

contour feathers and many have minimised drag further by altering their body profile to be 

more aerodynamic (Kardong, 2012). 

 

The flight capabilities of an organism are intrinsically linked to various aspects of their 

morphology and mass properties. For example, lift and thrust generation are dependent on 

energy generated by the flight musculature, which in turn affect the size and shape of their 

attachment sites (e.g. pectoralis major on the sternal keel), which impacts body mass and 

mass distribution across the organism. Additionally, the relative proportions of wing 

segments give indication of locomotor requirements of an organism, as does wing shape. 

The primary flight feathers, attached to the manus, are responsible for producing thrust; 

while the secondary flight feathers, attached to the forearm, produce lift (Kardong, 2012). 

Reflecting this, birds which require high manoeuvrability (e.g. hummingbird), have an 

elongate manus segment; while soaring birds (e.g. albatross) possess elongate forearms to 

support a larger area of secondary feathers, facilitating greater lift generation (Figure 1.3B). 

The aspect ratio of a wing refers to the relationship between wing span to wing area (Lindhe 

Norberg, 2002, Savile, 1957) (Figure 1.3C). This relationship informs the locomotor 

capabilities of an organism, with different wing morphologies offering different benefits. For 

example, the relatively short and elliptical wings of woodland birds offer enhanced 

manoeuvrability at low speeds; while swept-back wings enable higher top speeds for hunting 
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or migrating species; and long, slender wings generate large amounts of lift, as seen in many 

sea birds (Kardong, 2012, Savile, 1957, Warham, 1977) (Figure 1.3C). Wing loading describes 

the relationship between body mass and wing area (Lindhe Norberg, 2002). Birds which have 

low wing loadings can generate sufficient lift to stay aloft at slower speeds, which has impact 

on take-off and landing speeds (Lindhe Norberg, 2002). Wing loading also determines turning 

abilities in flight (Lindhe Norberg, 2002). High wing loading and high wing aspect ratio are 

both energetically expensive, a further consideration which informs trade-offs for different 

wing morphologies and functions (Lindhe Norberg, 2002). 

 

1.2.2. Methods for CoM estimation 

1.2.2.1. Physical methods 

CoM position has long been estimated using a range of physical experimentation techniques, 

on various species of interest, to tackle a range of research questions (e.g. Alexander, 1985, 

Clemente, 2014, Crompton et al., 1996, Dempster, 1955, Henderson, 2006). Three methods 

are primarily utilised, each of which will be discussed in more detail here (see Özkaya et al., 

2012 for summary). 

 

In suspension methods (see Figure 1.4A), objects are suspended from a single point and 

either allowed to come to rest naturally (Alexander, 1983, Alexander, 1985, Chandler et al., 

1975, Dempster, 1955, Dempster and Gaughran, 1967, Fedak et al., 1982, Rubenson and 

Marsh, 2009), or they are repositioned until they come to rest aligned with a set axis 

(Nauwelaerts et al., 2011). When the system reaches equilibrium, the CoM of the object lies 

along the same line as the line of suspension. To determine CoM in more than one 

dimension, as is required for 3D biological specimens, it is necessary to use multiple points 

of suspension. The results of these multiple runs can then be overlain, and the point at which 

the lines of suspension intersect is then taken as the CoM position for that specimen. This 
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method requires no specialist equipment for small to medium sized specimens, but is difficult 

for large specimens and not feasible for in vivo experimentation. 

 

The balance board uses the same principal as suspension (see Figure 1.3B). This technique 

can be applied to whole organisms or to individual segments (e.g. Crompton et al., 1996, 

Dempster, 1955, Dempster and Gaughran, 1967, Goetz et al., 2008, Hutchinson, 2004a, 

Myers and Steudel, 1997, Vilensky, 1979). In this method, a board is balanced on a knife-

edge which acts as a pivot for the system. The object of interest is then placed on the balance 

board, and repositioned until the board returns to its balanced state. When the board-object 

system is at this point of equilibrium, the CoM of the object lies directly over the pivot of the 

balance board. For three-dimensional objects such as a biological specimen, it is necessary 

to repeat this process for each of the three axes, in order to give a final, 3D CoM. This method 

offers no substantial benefits over the suspension method, and requires the construction of 

specialist equipment for each specimen, if not each segment. 

 

The scales technique (or ‘reaction board’ technique) (see Figure 1.4C) uses a set-up with 

scales at one end only (Lephart, 1984, Sprigings and Leach, 1986, Walter and Carrier, 2002, 

Willey et al., 2004), or with scales at both ends (Clemente, 2014, Henderson, 2003, 

Henderson, 2006, Kilbourne, 2013). This method determines a 1D CoM position by enabling 

calculation of the moment arm of the specimen’s weight which is acting on the scales at the 

ends of the system. This method is accessible as it only requires basic lab equipment for small 

to medium sized specimens. However, as for other physical methods it is difficult to apply in 

vivo, and requires a series of 1D CoM positions to be combined. 

 

Few studies which calculate CoM position using physical methods include an investigation 

into the accuracy of their respective methods, with some notable exceptions. This, along
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Figure 1.4: Taken from Ozkaya (2012). Showing three physical methods for determining centre of mass position. A: suspension method, when the object is 

suspended from points O and Q, the centre of mass (C) is located at the intersection of lines aa and bb. B: balance board method. C: scales technique, where 
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the object (exerting force Wp) is placed on a board (exerting force Wb) balanced on a knife edge (A) and a scale (B) which are a known distance (l) apart. The 

distance from the end of the board to the centre of mass (xcg) can then be calculated. 
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with a lack of detail on the exact methods used, and infrequent reporting of the geometries 

of studied objects, makes a rigorous comparison of methods challenging. Lephart (1984) 

assessed the accuracy of a variation of the scales technique which had samples positioned 

on a plate, which by means of two metal blades, rested on a set of scales at one end and an 

adjustable height stand at the other. Lephart (1984) found mean absolute percentage errors 

of 0.03% in his estimations of CoM position. This accuracy test was performed on a range of 

37 test objects ranging from 0.3 to 30kg, all with standard geometries, including hollow and 

filled metal cylinders. This error was within the error margin of the balance used (± 1g), 

leading Lephart to label this method “a very accurate procedure indeed”. The balance board 

technique of Sprigings and Leach (1986) predicted a CoM within 2mm of the measured, 

geometric centre of their test object (Olympic weightlifting disc: 20kg, 450mm diameter). 

The suspension method used by Nauwelaerts et al. (2011) was able to predict CoM to within 

approximately 1cm of the ‘true’ CoM. They found that this accuracy was dependent on the 

length and radius of their test objects, though do not specific the dimensions or number of 

these test items. Additionally, the method of Nauwelaerts et al. (2011) represents an usual 

application of the suspension technique, and therefore this error may not be representative 

of that present in more traditional methods. Though the theoretical principles behind all of 

these techniques is correct, any experiment has the potential to introduce error at various 

stages of testing. Aspects of these errors will undoubtedly be unique to specific studies, and 

researchers, further hindering the comparison of published studies in order to assess the 

accuracies of physical methodologies relative to one another, as well as their practical 

limitations for biological specimens. 

 

Furthermore, all of these techniques are of limited use to palaeontologists. They have been 

employed to look at dinosaurs (e.g. Alexander, 1985). But these methods are then reliant on 

the accurate creation of scale models of the specimen of interest. Even for specimens where 
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there is largely complete skeletal material for one individual, there is substantial uncertainty 

on the amount of soft tissue to include around the skeleton. This inherent subjectivity 

undoubtedly results in discrepancies. Any errors made in the original scale models will be 

magnified when calculating the mass properties of the whole organism, resulting in large 

differences in CoM positions from small changes to the original model (Farlow et al., 1995). 

 

1.2.2.2. Digital methods 

To combat the significant challenges posed by use of physical methodologies when applying 

to dinosaurs, various computational approaches have been developed which are capable of 

estimating mass properties in extinct taxa. These methods share common benefits over 

physical models, including ease of alteration and distribution and the fact that they can be 

based directly on the original skeletal material. However, they are all sensitive to the effects 

of errors in the original reconstructions of the skeletal material (Brassey et al., 2013). These 

methods must also tackle the major issue surrounding work on mass properties of extinct 

taxa - the question of how much flesh to add around the skeletal material. Some take a 

qualitative approach to reconstructing this skin outline; while later studies apply quantitative 

methods in attempts to improve accuracy, and to give objectively constrained error margins. 

The main digital methods for computing mass properties are discussed below. 

 

Mathematical slicing 

The first computational method - mathematical slicing - was developed by Henderson (1999), 

and the methodology has since been refined and applied to a variety of taxa to address a 

wide range of questions (e.g. Henderson, 2006, Henderson, 2010, Henderson, 2018, 

Henderson and Snively, 2004, Henderson and Nicholls, 2015, Jones et al., 2000b, Maidment 

et al., 2014) (see Figure 1.5 for summary of this method). This method reconstructs the skin 

outline of the specimen of interest from a dorsal and ventral perspective, commonly taken   
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Figure 1.5: Taken from Henderson (1999). Showing the stages of the mathematical slicing 

method. Body outline is created (A) and split into sections (B) from which the final model is 

constructed and whole body centre of mass (indicated by ‘+’) can be calculated (C).  
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directly from pre-existing artistic reconstructions, with the exception of Maidment et al. 

(2014) who created their own reconstructions based two 2D pictures of the articulated 

skeletal material directly. The resulting 2D skin outlines are then extrapolated into 3D, and 

the model is split into a series of thin sections which run along the cranio-caudal axis of the 

animal. Areas of zero density, such as the lungs or air cavities can be modelled in the same 

way. Additional heterogeneity in the composition of an organism can be accounted for by 

altering the density value for each individual cylinder as deemed appropriate. From these 

data on segment volumes and densities, mass and subsequently CoM can be calculated. The 

validity of this method has been tested in large mammals, crocodylians and birds, with model 

estimates found to correspond closely to the expected (Henderson, 1999, Henderson, 2010) 

or experimentally measured (Henderson, 2003, Henderson, 2006) CoM values. However, this 

method suffers from uncertainty around construction of skin outlines. Though it uses skeletal 

material to an extent, reduction of the material to 2D means it is not used to its full potential. 

It also assumes elliptical cross sections of all body segments, which has been found to 

introduce varying degrees of error across a range of vertebrates (Motani, 2001). 

 

Manual shape fitting 

Later digital volumetric methodologies improved on Henderson’s technique by utilising the 

whole 3D skeleton when constructing their own skin outlines, and using techniques which 

enabled easier manipulation of the shape of each body segment. This has been achieved 

using B-splines (Hutchinson et al., 2007), NURBs (Bates et al., 2009a, Bates et al., 2009b, 

Mallison, 2010) and octagonal hoops (Allen et al., 2013, Allen et al., 2009, Hutchinson et al., 

2011). The basis of all the studies is similar and they yield similar results (see Figure 1.6 for 

summary). Firstly, a fully 3D representation of the skeletal material is generated, for example 

by laser surface scanning, computed tomography or digital photogrammetry. A series of 

shapes are fitted to the skeletal material along the cranio-caudal axis of the articulated   
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Figure 1.6: Taken from Hutchinson et al. (2011). Showing the stages of the manual shape 

fitting method using octagonal hoops in this case. The skeletal material is digitalised and put 

into a standard posture (A), hoops are applied around the skeleton to define the soft tissue 

outline (B) and air spaces (C) and a final skin outline is created by lofting a surface between 

the hoops (D). 
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skeleton. These shapes are subsequently inflated in order to accommodate soft tissue 

around the skeletal material, based on reference to soft tissue anatomy in closely related 

extant taxa. Joining these shapes produces a final skin outline for the specimen, from which 

whole body CoM can be calculated. 

 

By using data from the whole 3D skeleton, these manual shape fitting methods maximise the 

amount of biological information available to inform their reconstructions. However, their 

soft tissue reconstructions contain the same inherent subjectivity as in the creation of a 

physical model, or a model for mathematical slicing. In several cases, the validity of these 

manual shape fitting methods has been tested, by application to extant archosaur(s) in 

addition to application to fossil material (e.g. Allen et al., 2009, Bates et al., 2009b, 

Hutchinson et al., 2007). In these cases, the method was found to produce a CoM in close 

agreement with expected values for the extant specimen. However, the ability to generate 

a good reconstruction of a living animal, with a relatively familiar morphology, does not 

speak to the ability of observers to accurately recreate the skin outline of a long-extinct 

species, especially those with a body plan unlike anything alive today (Bates et al., 2009b). 

The uncertainty and subjectivity associated with these methods has been acknowledged by 

extensive sensitivity analyses. By creating ‘maximal’ and ‘minimal’ versions of their skin 

outlines, within bounds deemed to be biologically realistic, a spread of plausible CoM 

positions have been calculated in the cranio-caudal and dorso-ventral directions (e.g. Allen 

et al., 2013, Bates et al., 2009b, Bates et al., 2016, Hutchinson et al., 2011). The ‘true’ CoM 

position of an organism is assumed to lie within these bounds, and these maximum brackets 

inform any higher conclusions being drawn. 
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Mathematical shape fitting - convex hulls and alpha shapes 

In an attempt to eliminate the need for subjective reconstructions of skin outlines in extinct 

species, mathematical shape fitting methods have been developed which are grounded in 

quantitative data from extant taxa (Brassey and Gardiner, 2015, Sellers et al., 2012) (see 

Figure 1.7 for summary). These methods were originally developed to predict whole body 

mass, and have been widely applied in this context (Basu et al., 2016, Bates et al., 2015, 

Brassey and Gardiner, 2015, Brassey et al., 2015, Brassey et al., 2016, Brassey et al., 2018, 

Brassey and Sellers, 2014, Sellers et al., 2012). The original relationship derived by Sellers et 

al. (2012) has also been used to derive estimates for whole body CoM (Bates et al., 2016, 

Sellers et al., 2013, Sellers et al., 2017). 

 

These mathematical shape fitting methods take digitised skeletal material from specimens, 

either whole (e.g. Brassey and Gardiner, 2015) or split into segments (e.g. Brassey et al., 

2016, Sellers et al., 2012). 3D shapes are then wrapped around the skeletal material using 

automated, mathematical shape fitting. A convex hull is formed by wrapping a 3D surface 

around the points at the outer extremes of an object, like an elastic band (see Figure 1.7B). 

An alpha shape with an infinitely high α value is a convex hull. Decreasing the α value relaxes 

the shape, allowing it to wrap to increasingly more internal points, creating a shrink-wrap of 

the original object (see Figure 1.7B). Alpha shapes undoubtedly have the potential to 

produce volumes which are closer to the true value for the object under consideration. 

However, they require selection of an appropriate α value for each object, which is a time 

consuming, subjective process. While convex hulls are coarser representations of the skeletal 

volume; they can be generated faster, more objectively and with greater repeatability than 

alpha shapes. 

 

By mathematically deriving skin outlines, these methods offer improved repeatability and   
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Figure 1.7: Taken from Sellers et al. (2012) and Brassey and Gardiner (2015). A: The stages 

of the ‘mathematical shape fitting’ method using convex hulls. The original skeletal material 

(Aa) is digitalised (Ab) and convex hulls are applied around the skeletal material for each 

segment (Ac). B: A ‘family’ of alpha shapes for the 2D object in (Be). A infinite alpha value 

gives a convex hull (Ba), while reducing alpha relaxes the outer boundary of the alpha shape, 

producing gradually more detailed representations of the original object (Bb-d). 
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greater objectivity in the derivation of segment mass properties (mass and CoM). 

Additionally, their grounding in data from living animals enables the error contained within 

the method to be confidently quantified. However, all previously published methods of this 

type focus solely on the relationship between whole body mass and skeletal mass/volume. 

In their application, they therefore assume a homogeneous expansion of skeletal material 

across an organism. It is reasonable to hypothesise based on visual examination of 

organisms’ morphology that soft tissue is rarely, if ever, distributed evenly across the body 

relative to the skeletal material. This has been recognised as an area requiring future work 

(Brassey and Gardiner, 2015), as assuming a homogeneous expansion will impact on the 

accuracy of any resulting CoM estimates. Additionally, existing relationships using this 

methodology are based on limited sample sizes, on groups of taxa which are unlikely to be 

the best proxies for dinosaurs, and frequently use museum specimens which have been 

subjectively mounted and have unknown body masses. 

 

Extant CoMs using digitised skin outlines 

Though not applicable to extinct taxa, studies have also used digital skin outlines from living 

species to derive CoM estimates (Allen et al., 2013, Allen et al., 2009, Clemente et al., 2018). 

By using real skin outlines, these studies represent significant improvements over previous 

work on extant taxa using mathematical slicing and manual shape fitting (e.g. Henderson, 

1999, Henderson, 2010, Ren and Hutchinson, 2008). These newer studies using real skin 

outlines are able to offer an insight into the maximum potential accuracy of any methods, in 

a best case scenario which is unachievable for extinct taxa. These studies extract skin outlines 

from CT data (Allen et al., 2009, Clemente et al., 2018), which also enables capture of 

relevant internal geometry (e.g. air cavities). This eliminates the major problem faced in 

paleontological work where a soft tissue outline must be generated subjectively based only 

on skeletal geometry. The ability of the segmenting process in producing a consistent skin 
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outline was assessed by Allen et al. (2009) and found to produce insignificant differences to 

CoM position. Other factors, such as density assignment also impact on final CoM position 

predicted, these are discussed below. 

 

Digital models - model detail 

Digital methods offer a host of advantages over physical approaches to CoM estimation, 

including easy data sharing, sensitivity analyses and replication of results. Digital approaches 

make it possible to incorporate extremely high levels of detail into models, particularly in the 

case of extant taxa. Researchers using these techniques must therefore make decisions on 

how much detail to include in models, constrained mainly by researcher time (Allen et al., 

2009). There are multiple factors which have the potential to influence estimates of whole 

body CoM, but the extent of their impact is generally poorly quantified in extant and extinct 

taxa. 

 

Air cavities have been included as standard in models since the advent of digital modelling 

approaches (Henderson, 1999), and long before (e.g. Alexander, 1985). As a minimum this 

involves the low density structures of the lungs in the torso cavity (e.g. Alexander, 1985, 

Henderson, 2018), alternatively more detailed representations include more pneumatic 

cavities across the model segments (e.g. Allen et al., 2013, Bates et al., 2016, Hutchinson et 

al., 2007). Physical representations, assumed to have zero density, can be incorporated into 

models, or the density of the relevant segments can be reduced to an appropriate degree in 

order to account for the presence of pneumaticity. 

 

Aside from air cavities, other organ systems are very rarely explicitly included in volumetric 

models, instead being represented by the different density values assigned to segments. One 

system which has the potential to influence whole body CoM is the integument. Various 
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types of integumentary coverings are present across the animal kingdom which serve a 

variety of functions, including insulation from heat and water loss, as well as for display. 

Modern birds have evolved a unique integument in the form of feathers which not only 

represent a significant proportion of whole body mass (up to 19% (Summers et al., 1992)), 

but which also has a non-uniform distribution across the body. These factors combine to 

suggest that a feathered integument may exert a significant influence on CoM position in 

modern birds, an influence which would have appeared gradually through time culminating 

in crown Aves. However, there is currently a lack of published data on the integument mass 

properties required to test this hypothesis in birds. The effect of integument has been 

assessed in various ornithischian species (Maidment et al., 2014, Mallison, 2014), which 

possess extremely derived integumentary features such as cranial frills and extensive dermal 

armour. These studies found that highly modified integument with uneven distribution 

significantly influenced whole body CoM position (Maidment et al., 2014). 

 

In order to derive whole body CoM positions, density data are required for application to the 

skin outlines of the model. Some data are published on whole body density in birds and a 

few in crocodylians, but no segment specific data are available for extant archosaurs. 

Previous volumetric modelling studies use a wide range of data, some based on published 

studies, others based on ‘common sense’ conclusions about the relative proportions of tissue 

types in extinct taxa (e.g. Alexander, 1985, Allen et al., 2013, Henderson, 2004, Henderson, 

2006). Generally, density is modelled heterogeneously, accounting for different ratios of 

tissue types of different densities in the different segments. For other taxa (e.g. horse - 

Buchner et al., 1997, and human - Dempster and Gaughran, 1967), segment specific density 

data are available, which enable measured biological data and observed biological variability 

to be incorporated into models. Currently, there is limited assessment of the impact of these 
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decisions on density assignment make on whole body CoM. Again, the lack of data from 

extant species is a major problem, hindering confident application to extinct taxa. 

 

Digital methods - summary 

The best digital methodologies seek to incorporate as much of the data available from fossils 

into models, while generating quantitative, minimally subjective predictions which are 

grounded in data from living animals. However, existing methods drastically underuse the 

broad range of data obtainable from extant archosaurs; producing relationships at the whole 

body level only which are based on narrow ranges of taxa. These methods are currently 

therefore limited when it comes to the derivation of CoM estimates for fossil archosaurs. 

The amount of detail required to produce accurate estimates of CoM using digital models 

also currently remains poorly understood, with a lack of published data on extant taxa 

hindering any rigorous investigations into this area of potentially substantial error. 

 

1.2.3. CoM and evolutionary studies 

Due to the wide range of factors influenced by CoM position, it has often been used to inform 

conclusions about the biology of extinct taxa. CoM position represents an invaluable, indirect 

route to information on locomotion which is otherwise inaccessible in fossil species. 

Sensitivity analyses have shown that different CoM positions can have drastic impacts on 

predictions of various aspects of an organism’s biology. 

 

For example, CoM has been used in conjunction with an organism’s interactions with the 

ground to help inform feasible postures for T. rex (Gatesy et al., 2009). As a result of the 

effect of CoM on posture, CoM position also affects the moment arms of muscles around the 

hindlimb joints, which determines the magnitude of force generation possible through a gait 

cycle, which in turn influences factors such as top speed (Hutchinson, 2004b). The various 
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impacts CoM has on the function of the musculoskeletal system combine to produce proven 

effects on the maximum running speed (+/- 8.9%) and stride length (+/- 26.4%) (Bates et al., 

2010). This demonstrates the potential impact of whole body CoM position on a range of 

higher biological conclusions, which are often drawn about extinct taxa, highlighting the 

importance of accurate CoM estimates for fossil taxa. 

 

Few studies have examined trends in CoM through time (with the exception of Allen et al., 

2013, Bates et al., 2016). Allen et al. (2013) investigated CoM in range of archosaur species 

from modern crocodylians, through extinct taxa to modern birds. They found a gradual 

cranial CoM shift approaching crown Aves, which then reversed in the modern bird node 

(Figure 1.8A-C). However, that node (and the extant crocodylian node) is only represented 

by one species. By representing the two extant groups with one specimen each, Allen et al. 

(2013) likely underestimate the variability present within these groups, undermining their 

interpretations of the resulting evolutionary trends. Additionally, the currently limited 

understanding of the correlates of any given CoM position in extant species hinders 

conclusions regarding the locomotor capabilities of extinct taxa. It has therefore been 

recognised in palaeontological studies that more data linking locomotion and CoM in living 

species are required to further our understanding of the same features in extinct taxa 

(Hutchinson, 2011). The work of Allen et al. (2013) is further weakened by their use of 

subjectively generated body outlines for the fossil taxa studied, using a manual shape fitting 

method (see Section 1.2.2.2 here for summary). Bates et al. (2016) conducted a similar 

investigation into the changes in whole body CoM position across the sauropod radiation, 

using skin outlines objectively generated by a mathematical shape fitting method (see 

Section 1.2.2.2 here for summary). Bates et al. (2016) found a series of cranial CoM shifts 

coinciding with the evolution of quadrupedalism and subsequently with drastic neck 

elongation in the titanosauriforms (Figure 1.8D and E). Bates et al. (2016) include substantial 
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Figure 1.8: A-C: Taken from Allen et al. (2013). 16 specimens across Archosauria (A) were modelled using a manual shape fitting approach to predict “best 

guess” CoM positions, along with CoMs skewed maximally in the cranio-caudal and dorso-ventral directions in order to generate error margins (B & C). D & 
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E: Taken from Bates et al. (2016). 22 specimens covering the sauropod radiation (D) were modelled using a mathematical shape fitting approach to predict 

“best guess” CoM positions, along with CoMs skewed maximally in the cranio-caudal direction in order to generate error margins (E). 
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error margins, recognising the considerable uncertainty inherent to any predictions of soft 

tissue outlines in fossil species with no modern analogues, as for many dinosaurs. Though  

these considerable error margins do not mask all trends, it is highly likely that more subtle 

shifts in CoM are being obscured as a result of the limitations of current methods. The 

reconstructions of Bates et al. (2016) benefit from a quantitative grounding in data from 

extant taxa. However, there are issues with the specifics of the method applied (based on 

Sellers et al., 2012). Firstly, the applicability of data generated from large bodied mammals 

to sauropod dinosaurs is questionable. For studies seeking to investigate dinosaur fossil 

species, it is possible that data from extant archosaurs would be a closer fit - this is 

particularly true for bipedal theropods. Additionally, the relationship used by Bates et al. 

(2016) to generate segment masses, and therefore whole body CoM was originally designed 

for body mass estimation. Bates et al. (2016) assume the extent of soft tissue around the 

skeletal material is consistent across all body segments. This assumption is unlikely to be true 

and which will result in unknown effects on whole body CoM. Future work should examine 

the relationships between skeleton and skin volumes on a segment-by-segment basis. This 

would provide a better understanding of the relationships and extent of variation present in 

living taxa, which would help to inform more accurate CoM predictions and better constrain 

the associated error bars in extinct species. 

 

Examining CoM through time and in transitional species has the potential to shed new light 

on our understanding of enigmatic taxa. However, current methods are hindered by limited 

extant datasets or subjective methods to generate CoM position. The interpretation of CoM 

data is further hindered by a lack of understanding of the correlates of CoM in extant taxa. 

  



Chapter 1 - Introduction and background 

31 
 

1.2.4. Systematics 

Existing volumetric approaches (e.g. Henderson, 1999, Hutchinson et al., 2007, Sellers et al., 

2012) are ultimately seeking information on soft tissue properties, in order to examine mass 

properties. This biological information is not preserved in the fossil record, and must 

therefore be inferred from osteological remains. Many previous studies on fossil dinosaurs 

have used qualitative approaches which contain inherent subjectivity (e.g. Bates et al., 2009, 

Henderson, 1999, Hutchinson et al., 2007), while current quantitative approaches (based on 

Sellers et al., 2012) are based on data from distantly related taxa. This thesis seeks to develop 

existing quantitative approaches, while focussing on specimens which form an ‘extant 

phylogenetic bracket’ (EPB) around the extinct species of interest. 

 

An EPB approach uses data on extant, closely related taxa in order to provide insights into 

the likely biology of the extinct species of interest (Witmer, 1995). This thesis uses an EPB 

based on (1) extant birds, as the direct descendants of dinosaurs; (2) extant crocodylians (i.e. 

crocodiles and alligators) which belong to Pseudosuchia, the sister group of Dinosauria; and 

(3) extant lepidosaurs (lizards and tuatara) as an outgroup (see Figure 1.9 for a summary of 

these phylogenetic relationships). If a soft tissue feature with an associated osteological 

feature is present in extant species at both ends of the bracket, and that osteological feature 

is present in the extinct species of interest, then it is possible to confidently conclude that 

the extinct species also possessed that soft tissue feature. However, in many cases, extant 

crocodylians and extant birds possess disparate soft tissue morphologies. Even in these 

cases, an EPB can be used to constrain a range of plausible conditions for the extinct taxa, 

thereby informing their likely morphology and enabling higher conclusions to be drawn 

based on quantified error margins. 
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Figure 1.9: Schematic displaying the phylogenetic relationships between the three extant 

groups and the fossil species which are studied in this thesis. 
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The following chapters of this thesis use different subsets of specimens as follows: 

- Chapter 2: three birds (chicken, buzzard, duck) 

- Chapter 3, integument testing: 49 specimens from 17 bird, 5 crocodylian and 11 

lepidosaur species (NB: these specimens are used in this dataset only, and were not 

available for digital modelling) 

- Chapter 3, digital modelling: three birds (chicken, buzzard, duck from Chapter 2), 

three reptiles (lizard, crocodile, alligator) and three fossil dinosaurs (Coelophysis, 

Microraptor, Yixianornis) 

- Chapter 4: 27 birds from 27 avian families, covering a range of body sizes and 

ecologies (see Table 4.1, Figure 4.2) 

Chapter 5: 48 specimens from 27 bird, 11 crocodylian and 10 lepidosaur species (see Table 

4.1, Table 5.1); with subsequent application to five fossil dinosaurs (Plateosaurus, 

Coelophysis, Allosaurus, Microraptor, Yixianornis) 
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1.2.5. Background summary 

- CoM is a fundamentally important biomechanical parameter, which impacts factors such 

as posture and ultimately locomotor capabilities in terrestrial and volant behaviours. 

 

- CoM has the potential to inform our understanding of locomotor behaviours in fossil 

species which cannot be observed directly. However, the links between locomotion and 

CoM are currently poorly understood in extant taxa. 

 

- Numerous methods have been used to predict CoM position in physical specimens, 

however there have been no assessments of their absolute or relative accuracies. 

 

- Various digital methods have recently been proposed which can be used to predict CoM 

position in extant and extinct specimens of interest. While offering substantial advances 

over physical methods, they suffer from limitations. 

 

- Previously published studies examining the evolution of CoM are hindered by a lack of 

data on closely related living animals. This limits their ability to confidently predict CoM 

position and to interpret the resulting CoM estimates. 
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1.3. Aims and Objectives 

The overall aim of this thesis is to quantify links between body shape and locomotor diversity 

during the evolution of birds. This aim will be achieved through a number of smaller 

objectives which address key knowledge gaps currently present in the field, as identified in 

Section 1.2. These objectives are: 

 

1) Assess the absolute accuracies of three commonly used methods for determining 

centre of mass position, and their applicability to biological specimens. 

 

2) Investigate the integumentary changes which occurred in bird-line archosaurs with 

the advent of feathers, in the context of impact on whole body centre of mass 

position. 

 

3) Explore links between centre of mass position and locomotor behaviours across 

Aves. 

 

4) Establish and apply a new methodology for the estimation of centre of mass position 

in fossil archosaurs, grounded in an extensive extant dataset. 
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1.4. Thesis Structure 

1.4.1. Chapter 2 

This chapter has been published in the Journal of Anatomy.  

 

MACAULAY, S., HUTCHINSON, J. R. & BATES, K. T. 2017. A quantitative evaluation of 

physical and digital approaches to centre of mass estimation. Journal of Anatomy, 

231, 758-775. https://doi.org/10.1111/joa.12667 

 

Author contributions: SM and KTB conceived the project, provided specimens, and collected 

data. SM analysed and interpreted data, and drafted manuscript. All authors critically revised 

manuscript and approved article. 

 

1.4.2. Chapter 3 

This chapter is based on a manuscript which is currently in review at Evolution. 

 

MACAULAY, S., BATES, K. T., BROPHY, P., ALLEN, V., HONE, D. W. E. & HUTCHINSON, 

J. R. (In review). Linking integument and body shape evolution in archosaurs. 

Evolution. 

 

Author contributions: PB, VA, DWEH and JRH designed and carried out the experimental 

integument data collection. SM analysed experimental integument data. SM and KTB 

designed the computer modelling. SM carried out the computer modelling and analysed the 

resulting data. All authors contributed to the manuscript. 
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1.4.3. Chapter 4 

I am currently developing this chapter for publication. The version of this chapter presented 

in this thesis has been completed with the following collaborators: K.T. Bates, J.R. Hutchinson 

and E.R. Schachner. 

 

MACAULAY, S., SCHACHNER, E. R., HUTCHINSON, J. R. & BATES, K. T. (In preparation). 

Body shape and the evolution of locomotor diversity in birds. 

 

Collaborator contributions: SM and KTB conceived the project. SM, KTB, JRH and ERS 

provided specimens and collected data. SM processed, analysed and interpreted data, and 

wrote the chapter. 

 

1.4.4. Chapter 5 

I am currently developing this chapter for publication. The version of this chapter presented 

in this thesis has been completed with the following collaborators: K.T. Bates, J.R. Hutchinson 

and E.R. Schachner. 

 

MACAULAY, S., SCHACHNER, E. R., HUTCHINSON, J. R. & BATES, K. T. (In preparation). 

A new method for predicting mass distribution in extinct archosaurs. 

 

Collaborator contributions: SM and KTB conceived the project. All authors provided 

specimens and collected data. SM processed, analysed and interpreted data, and wrote the 

chapter. 
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2.1. Abstract 

Centre of mass is a fundamental anatomical and biomechanical parameter. Knowledge of 

centre of mass is essential to inform studies investigating locomotion and other behaviours, 

through its implications for segment movements, and whole body factors such as posture. 

Previous studies have estimated centre of mass position for a range of organisms, using 

various methodologies. However, few studies assess the accuracy of the methods that they 

employ, and often provide only brief details on their methodologies. As such no rigorous, 

detailed comparisons of accuracy and repeatability within and between methods currently 

exist. This paper therefore seeks to apply three methods common in the literature 

(suspension, scales and digital modelling) to three ‘calibration objects’ in the form of bricks, 

as well as three birds to determine centre of mass position. Application to bricks enabled 

conclusions to be drawn on the absolute accuracy of each method, in addition to comparing 

these results to assess the relative value of these methodologies. Application to birds 

provided insights into the logistical challenges of applying these methods to biological 

specimens. For bricks, it was found that, provided appropriate repeats were conducted, the 

scales method yielded the most accurate predictions of centre of mass (within 1.49mm), 

closely followed by digital modelling (within 2.39mm), with results from suspension being 

the most distant (within 38.5mm). Scales and digital methods both also displayed low 

variability between centre of mass estimates, suggesting they can accurately and 

consistently predict centre of mass position. The suspension method here resulted not only 

in high margins of error, but also substantial variability, highlighting problems with this 

method.  
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2.2. Introduction 

Centre of mass (CoM) is a fundamentally important anatomical and biomechanical 

parameter. At the level of the whole organism, it is a key determinant of stability at rest and 

in motion, and is therefore crucial in determining posture and limb kinematics (Attwells et 

al., 2006, Carrano and Biewener, 1999, Gatesy and Biewener, 1991, Grossi et al., 2014, 

Loverro et al., 2015, Young et al., 2007). Knowledge of CoM and other mass properties (i.e. 

mass and moment of inertia) of individual body segments are also essential in determining 

how a whole organism can move. These mass properties are essential inputs in research 

seeking to quantitatively characterise the spatial translations and rotations of segments, the 

muscular forces required to achieve any given motion and the associated energetic costs 

(Kilbourne, 2013). As such, mass properties are primary input parameters in biomechanical 

approaches investigating locomotion using both inverse and forward dynamic assessments 

of movement. Through its consequences for segment movements and for the whole 

organism, CoM therefore has a highly significant impact on determining the locomotor 

capabilities of an organism, and subsequently its wider behaviours and ecological role. The 

impact of CoM on behaviours such as posture and locomotor capabilities has been assessed 

through various sensitivity analyses (Bates et al., 2010, Gatesy et al., 2009, Hobbs et al., 2014, 

Hutchinson, 2004b) which found CoM position to have a substantial impact on these traits, 

further highlighting the importance of accurate estimates of CoM. Given its fundamental 

importance, it is unsurprising that CoM position has been estimated in a variety of species 

from primates and equids to dinosaurs (e.g. Allen et al., 2009, Crompton et al., 1996, 

Sprigings and Leach, 1986). Indeed, CoM is of particular interest in extinct taxa where it 

provides a valuable indirect route to information that cannot be directly observed. For 

example, on the locomotor habits of long extinct species, especially those possessing 

disparate body forms unlike those of living animals such as dinosaurs (e.g. Alexander, 1985, 

Henderson, 2004, Hutchinson et al., 2007, Sellers et al., 2013). 
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Historically, a range of physical methods have been employed to determine CoM position for 

whole organisms (e.g. Alexander, 1983, Alexander, 1985, Clemente, 2014, Henderson, 2003, 

Henderson, 2006), as well as organisms divided into their major component segments (e.g. 

Andrada et al., 2013, Crompton et al., 1996, Dempster, 1955, Nyakatura et al., 2012, 

Sprigings and Leach, 1986) (for overview, see Nigg and Herzog, 2007, Özkaya et al., 2012). 

Three primary physical methods are present in the literature, each having been applied to a 

range of species. Balancing approaches have been applied to whole organisms and to 

individual segments (e.g. Crompton et al., 1996, Dempster, 1955, Dempster and Gaughran, 

1967, Goetz et al., 2008, Hutchinson, 2004a, Myers and Steudel, 1997, Vilensky, 1979). This 

has been done most frequently using forms of balance boards (Dempster, 1955, Vilensky, 

1979), but also using knife edges (Goetz et al., 2008). Suspension techniques rely on the same 

physical principles, but instead involve the suspension of specimens (or body segments) from 

one point, where they are either allowed to hang naturally (Alexander, 1983, Alexander, 

1985, Chandler et al., 1975, Dempster, 1955, Dempster and Gaughran, 1967, Fedak et al., 

1982, Rubenson and Marsh, 2009), or the position of the support is moved until they come 

to rest in alignment with a defined axis (Nauwelaerts et al., 2011). This process is repeated 

from multiple suspension points, from which results are overlaid (often with the help of 

photography (Fedak et al., 1982)). The point of intersection of the lines of suspension then 

gives the CoM of the object under study. The third technique, uses a scale, or scales, over 

which a specimen is supported to determine the moment arm of the specimen’s weight that 

is acting on the scale at one end of the support system. Published variants of this approach 

include using scales at only one end of the system (Lephart, 1984, Sprigings and Leach, 1986, 

Walter and Carrier, 2002, Willey et al., 2004) or scales at both ends of the system with the 

organism lying on a support (Clemente, 2014, Henderson, 2003, Kilbourne, 2013) or resting 

directly on the scales (Henderson, 2006). It has been suggested that this technique is most 
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effective when the CoM is only to be investigated along one axis at a time (Eshbach et al., 

1990), though this is also the case for some variants of the suspension method. It should be 

noted that the balancing and suspension methods both work based on the same physical 

principles - that an object will only come to rest if it is supported through its CoM. In the case 

of suspension, an object left to hang freely will come to rest with its CoM in line with the 

string it is suspended from; i.e. the vector of its weight and the vector of tension in the string 

are parallel and collinear, passing through the CoM. In the case of balancing methods, a plate 

(and any object placed upon it) will only balance on a support if the combined CoM of the 

system lies directly above the support; i.e. the vector of combined weight, passing through 

the combined CoM of the system, passes through the support. 

 

Very few studies investigating CoM position using physical methods, such as those described 

above, include any form of assessment of the accuracy of their methods. Though the physical 

principles behind each of the methods are sound, any physical experimentation method has 

the potential for error, at the very least human error, in the set-up, capture and recording of 

data. Assessing the accuracy of the scale based technique, Lephart (1984) found mean 

absolute percentage errors of 0.03% in their estimations of CoM position (37 test objects 

ranging from 316 to 30,426g, unknown geometries). The balance board technique employed 

by Sprigings and Leach (1986) resulted in a predicted CoM position within 2mm of the 

geometric centre of their test object (an Olympic standard weightlifting disc: 20kg, 450mm 

diameter). Nauwelaerts et al. (2011) assessed the accuracy of their suspension method on 

test objects with simple geometries, finding that accuracy was dependent on the length and 

radius of their objects, and overall determined their method to be within approximately 1cm 

of the true CoM for a number of test objects of unknown geometries. Although some 

attempts have been made to compare results across studies (e.g. Nigg and Herzog, 2007), 
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such comparisons are hindered by the often extremely limited descriptions of the 

methodologies used in many cases. 

 

Recent advances in computing technology have seen digital modelling used more and more 

frequently as a method for calculating CoM position (e.g. Allen et al., 2013, Amit et al., 2009, 

Bates et al., 2009a, Bates et al., 2016, Henderson, 1999, Hutchinson et al., 2007, Maidment 

et al., 2014, Nyakatura et al., 2015, Park et al., 2014, Paxton et al., 2014, Peyer et al., 2015, 

Ren and Hutchinson, 2008). Digital models offer some advantages over physical methods 

including ease of data sharing and simple manipulation for sensitivity analyses and 

repeatability analyses, in addition to the advantages of scanning procedures such as 

computed tomography (CT). Models based on CT scans or similar data enable internal and 

external anatomy to be visualised, and used as the basis for model generation, therefore 

incorporating a greater amount of the anatomical data available into models. It has been 

suggested that the detail of digital models is constrained more by researcher time than by 

limits of technology (Allen et al., 2009), highlighting the extensive opportunities and 

challenges presented by this medium. 

 

It is however, frequently recognised that the validity of any methodology employing digital 

modelling techniques should be assessed before further application, and before any higher 

conclusions are drawn (Hutchinson, 2011). Comparisons are often made between physical 

measurements of body mass and values predicted from digital volumetric models (e.g. Allen 

et al., 2009, Bates et al., 2015, Bates et al., 2009b, Henderson, 2006, Hutchinson et al., 2007), 

where in some cases the discrepancies are appreciable (for example up to 16% in extant taxa 

(Allen et al., 2009)). However, assessing the ability of a model to accurately predict body 

mass does not indicate how accurately the model is able to predict CoM. The CoM estimates 

produced by digital models are rarely checked (with some notable exceptions; e.g. 
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Henderson, 2003, Henderson, 2006, Hutchinson et al., 2007), in part due to the relative 

difficulty of physically measuring CoM in comparison to body mass. Considering the 

fundamental importance of CoM in biomechanical and functional analyses (e.g. for 

dinosaurs: Allen et al., 2013, Bates et al., 2010, Gatesy et al., 2009), and the ever-increasing 

usage of digital models, the current lack of a comprehensive assessment of the accuracy of 

these digital modelling techniques in their ability to predict CoM is problematic. 

 

This study therefore aimed to assess the accuracy of three commonly used methods for 

estimating CoM by application to a set of objects with known geometries, as well as biological 

specimens. Two physical methodologies for CoM estimation and a digital volumetric 

approach were applied to each object. Due to the similarities between suspension and 

balancing methods, only one was investigated here. A version of the suspension method was 

selected over balancing for inclusion in this study because it did not require the fabrication 

of specialist equipment, and it has been more widely applied across disciplines and species, 

for example in studies of both extant (Chandler et al., 1975, Dempster and Gaughran, 1967, 

Fedak et al., 1982, Hutchinson et al., 2007, Nauwelaerts et al., 2011) and extinct (Alexander, 

1985, Koehl et al., 2011) taxa. A variant of the scales method was also included. The 

comparison of results from these three methodologies to the geometric centres of the test 

objects enabled an assessment of absolute accuracy for each method. By comparison with 

each other, the relative accuracies of these commonly employed methods were then 

investigated. Application of each of these approaches to the same three biological specimens 

allowed absolute CoM predictions to be compared, in addition to enabling an examination 

of the differences in repeatability and logistical limitations between the methodologies. 
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2.3. Methodology 

2.3.1. Specimens and background 

Six specimens were studied here - three intact cadavers of birds (as specimens of biological 

interest), and three bricks. Bricks were selected due to their simple, known geometries, and 

therefore predictable CoM positons. The bricks acted as standards by which the absolute and 

relative accuracy of our methodologies could be assessed, and therefore aided our 

interpretation of the results obtained from biological specimens. The three birds studied 

here were a leghorn chicken (Gallus gallus domesticus), common buzzard (Buteo buteo) and 

mallard duck (Anas platyrhnchos), selected to represent a range of different avian body plans 

and locomotor types. The linear dimensions and masses of the six specimens studied here 

are presented in Table 2.1. 

  

As it was our aim to compare results from physical and digital methodologies, it was 

necessary to transfer the results of physical methods to digital space. This could be achieved 

in a variety of ways, such as a series of still photographs, or through the creation of 

photogrammetric models. Such methods have their merits (namely that they are cheap, and 

require no specialist equipment or knowledge to operate), and would be valid solutions to 

this problem. Here, however we opted to use an Oqus 7 Qualisys infrared motion capture 

system (www.qualisys.com), as the technology offered a quicker solution than 

photogrammetry, a more complete record of testing than still photographs and was not 

adversely affected by any movement of the specimens occurring during captures (e.g. during 

suspension testing). Calibration of the Qualisys system was performed before each data 

collection session to ensure that errors in capture accuracy were suitably low, i.e. 

approximately 1mm (mean error across cameras, across data collections: 1.32mm). This 

represents an additional benefit over other potential methods, for which the error margins  



Chapter 2 - Methods for CoM estimation 

52 
 

Table 2.1: Data on body mass and approximate dimensions for the six specimens studied 

here. 

 

* Dimensions for bricks are listed along the axes EF x CD x AB (see Figure 2.4 for more 

information on brick axes), and bird dimensions are listed along the axes cranio-caudal x 

dorso-ventral x left-right. 

  

Specimen Mass (kg) Dimensions (mm)* Additional information 

Brick1 
3.13 

216 x 99 x 67   

Brick2 
2.37 

214 x 102 x 65   

Brick3 
4.26 

203 x 210 x 133   

Chicken (Gallus gallus 
domesticus) 

1.08 
500 x 250 x 570 

Leghorn chicken, male, 14 
weeks 

Buzzard 
(Buteo buteo) 

0.69 
475 x 230 x 980 

Common buzzard, gender 
and age unknown 

Duck 
(Anas platyrhnchos) 

1.12 
545 x 150 x 610 

Mallard duck, female, age 
unknown 
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may be poorly investigated, and may vary considerably between trials. The Qualisys system 

used here consisted of 12 cameras, positioned around a large laboratory space usually used 

for capturing human gait trials. The Qualisys system enabled the 3D coordinates of a series 

of reflective spherical markers (12.7mm diameter), to be captured and transferred to digital 

space. All raw data (including Qualisys and CT data captures), data at key stages of 

processing, and final data produced here are available online at 

http://datacat.liverpool.ac.uk/310. 

 

For the bricks, six markers were attached, one on each face (Figure 2.1A). The faces were 

designated as A-F, as identification was essential for running later tests. Seven markers were 

attached to the birds in the following positions: cranial surface of the head, lateral surface of 

the torso at the junction with the neck, lateral surface of the torso at the junction with the 

tail, one on each wing tip (on the ventral and dorsal surfaces respectively; corresponding to 

the distal phalanges rather than the flight feathers) and two on the left and right distal 

tarsometatarsi (Figure 2.1B). Markers were affixed to the skin (e.g. distal hindlimb) or to the 

outer surface of the birds’ feathers and secured with tape to minimise movement of markers 

between testing runs. In all cases, markers were placed in order to give maximal coverage of 

the whole object under study, including the geometric extremes. 

 

Consistency of posture for the ex vivo bird specimens was crucial in preventing CoM shifts 

relating to postural changes, which could affect comparisons between methodologies (Allen 

et al., 2009). Before testing, all bird specimens were therefore thawed to enable them to be 

positioned in a standardised posture. The posture used here was selected to be comparable 

to those typically used in digital modelling studies (e.g. Allen et al., 2013), where the aim is 

to compare the morphology of often vastly different organisms, and is therefore unlikely to  
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Figure 2.1: Pictures showing marker positions (silver balls indicated by white arrows) in bricks 

(A), and birds (B) as well as the standardised posture used for all bird specimens. 
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reflect a life-like position used by any given specimen. Our standardised posture was as 

follows: head and neck straightened cranially, forelimbs straightened laterally, hips extended 

and the remaining hindlimb joints straightened and allowed to freely hang ventrally (Figure 

2.1B). To achieve this, specimens were tied to frames and then frozen at -20°C. It was 

necessary to remove the frozen specimens from these supporting frames for the duration of 

each testing period. Some defrosting, and therefore postural changes, inevitably occurred 

during this time, with the extent dependent on the nature and duration of testing. Attempts 

were made to minimise any changes by packing specimens with ice for transport in the case 

of CT scanning, and replacing the specimens onto their frames after each testing phase. The 

magnitudes of these postural changes were quantified from data captured during testing. 

Posture change was measured by computing the 3D distance between each marker and each 

other marker for each testing condition. Inter-marker distances were then compared across 

testing conditions, those with the largest summed discrepancy between tests were taken to 

represent the largest posture shift. Models from one of these testing conditions could then 

be manipulated to match the other extreme posture, thereby producing approximations of 

the CoM shift resulting from this change in posture. The resulting data informed the degree 

of caution necessary when drawing comparisons between testing methods for the bird data. 

 

2.3.2. Physical CoM - suspension methodology 

Our suspension method is based on the approaches used by Alexander (1983) and 

Nauwelaerts et al. (2011). Specific details of our methodology follow, and a visual overview 

is presented in Figure 2.2. 

 

Specimens were suspended from a string via a loop that was tightened around each 

specimen. In order to estimate CoM with this method, it was also necessary to collect data 

on the position of the string in relation to the object under study. Two Qualisys markers were  
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Figure 2.2: Stages of the suspension methodology performed in this study. A: Suspension of 

object for Qualisys capture, at least three different suspension positions were captured for 

each object. B: After the multiple Qualisys runs for the same specimen were matched, the 

specimen markers are aligned, and the various lines of suspension are now distributed 

around the specimen. C & D: Two hypothetical 3D lines plotted in two, 2D graphs. Note that 

in (C), the lines have equal x values at y=0.5, but at y=0.5 in (D), they have different z values, 

and therefore do not intersect in 3D space. E: Two hypothetical, non-intersecting curves, 

highlighting the point of closest approach (CPoA) on each line, and the resulting mean CPoA. 
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therefore placed on the string for each position, as far apart as possible (see Figure 2.2A). 

The system was allowed to come to rest, after which a data capture was performed for at 

least three seconds at 200Hz. This procedure was repeated for multiple positions for each 

specimen. Between each position, specimens were removed from the string loop, 

repositioned and reaffixed to the string. Positions were selected attempting to provide 

coverage of the whole object, with at least one position taken in each plane. All specimens 

had data collected for at least three positions. To assess the impact of the selection of 

suspension location and other potential sources of human error on the CoM predicted by 

the method, data were collected for a total of 10 positions for one brick and two bird 

specimens. 

 

The 3D marker coordinate data resulting from the Qualisys data captures for each position 

were exported, and marker coordinates from one timeframe extracted in Matlab 

(www.mathworks.com). In order to determine CoM for each specimen, it was necessary to 

determine the point in space where the strings from each position intersected with one 

another in relation to the object. Coordinate sets for each object were therefore matched to 

one another, using the position of the markers directly on the specimens (i.e. those not on 

the string) as inputs. This was achieved using a global least square optimisation algorithm 

within the open source physics package GaitSym (www.animalsimulation.com). This 

algorithm matched the objects by a combination of translation and rotation in order to find 

the best global statistical fit (defined as the position with minimal error across all markers) 

between the two sets of markers. Once all the positions for a given object had been matched 

in digital space, the new coordinates for all markers were extracted in Matlab. 

 

The matched coordinates for the two string markers for each position were carried forward 

to estimate the overall object CoM. When considered in 2D (as in previous studies; e.g. 
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Alexander, 1985), the point of intersection between two lines of suspension (here 

represented by the string) is the CoM estimated for that object. However, in 3D, two lines 

will very rarely intersect exactly with one another (see Figure 2.2C and D for schematic 

representation of this). As an alternative to a strict intersect point, the point of closest 

approach was calculated for each pair of lines using custom Matlab code, which is freely 

available online (http://datacat.liverpool.ac.uk/310). The mean of the two points of closest 

approach was taken to be the CoM predicted by those two lines (see Figure 2.2E for 

simplified example). This approach was repeated for each pair of lines in turn, giving a total 

of three predicted CoM positions where three suspensions were carried out, and 45 

predicted CoMs where ten suspensions were carried out. The mean of all the predicted CoM 

positions for each object was then taken, giving the overall CoM predicted for that object by 

the suspension method (CoMSu). 

 

2.3.3. Physical CoM - scales methodology 

Our scales method is based on the approach used by Clemente (2014). Specific details of our 

methodology follow, and a visual overview is presented in Figure 2.3. 

 

Two identical Ohaus Scout electronic balances (±0.1g) were placed on a flat table. The scales 

were aligned with one another, and with the table they were resting on. A support was 

placed in the centre of each scale, perpendicular to the long axis of the table (Figure 2.3A). 

Here, the supports were inverted triangular prisms, length 60mm. A wooden plank was then 

placed between the two supports so that it rested on them evenly, with care taken to align 

the plank with the long axis of the table (Figure 2.3A). This plank, in addition to a metre ruler 

perpendicular to it, had one Qualisys marker placed at the centre of each end to enable the 

specimen-scales system to be aligned to the digital world axes in the processing phase. The 

scales were positioned to give approximately 10-20mm overhang between the plank ends  
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Figure 2.3: Stages of the scales methodology performed in this study. A: Photograph of the 

experimental set-up, with the duck specimen. B: Schematic of experimental set-up, showing 
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specimen resting on plank, lying on the two scales. The distance between supports (L) and 

distance from proximal plank edge to proximal support (ΔL) are indicated. These data 

combined with mass readings from the two scales enable calculations of CoM position. C: 

Rendering of Brick1, after marker data from three data captures was matched, showing the 

position of the three planks aligned with the three axes, and the three, 1D CoM positions 

plotted. These are then combined to give a 3D, final CoM prediction from the method. 
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and the centre of the supports (see Figure 2.3A for experimental set-up). Both scales were 

then tared. 

 

The specimen under investigation was then placed onto the plank, with the proximal face of 

the brick, or the beak tip of the bird, in line with the proximal plank edge (see Figure 2.3A for 

experimental set-up). In the case of the bricks, this was repeated for each of the three axes, 

with a different axis aligned with the plank in each run, in order to estimate CoM position in 

3D. For bird specimens, CoM was measured only along the cranio-caudal axis, resulting in 1D 

CoMs along that axis for all three birds. Though it is desirable to measure dorso-ventral CoM 

position, to achieve this for the complex geometries of the biological specimens would have 

required specimen specific modifications to the experimental set-up, which were deemed 

beyond the remit of this study. Although the cranio-caudal axis is the primary axis of interest 

in many studies (e.g. Allen et al., 2013, Bates et al., 2010, Clemente, 2014, Gatesy et al., 2009, 

Hutchinson, 2004a), this represents a limitation of this methodology when applied to 

biological specimens where 3D CoM positions are essential to investigate problems in a 

complex 3D system such as an organism. 

 

For each run, a Qualisys capture was performed (at least three seconds, at 200Hz), in addition 

to recording the values from the proximal and distal scales, the distance between the two 

supports, and the distance from the proximal plank edge to the centre of the proximal 

support. The distance of the CoM, along the axis that is in line with the plank, from the 

proximal plank edge could then be calculated as follows: 

 

𝐶𝑜𝑀𝑆𝑐 = (𝑊2 ∗ 
𝐿

(𝑊1 + 𝑊2)
)  +  Δ𝐿  

Equation 2.1 
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Where CoMSc is the distance of the CoM from the proximal plank edge along the axis of the 

plank, W1 and W2 are the masses on the proximal and distal scales respectively, L is the 

distance between supports and ΔL is the distance between proximal plank edge and the point 

where the proximal support contacts the proximal scale (see Figure 2.3B for a schematic 

highlighting these values). 

 

Runs for the same specimen were spatially aligned using GaitSym, as described in Section 

2.3.2. Bird and brick data were then plotted in Maya (www.autodesk.com/maya). The 

specimen axes were aligned with the digital world axes using trigonometry based on the 

markers on the plank and ruler. Once aligned, calculated values for CoMSc could be plotted 

in digital space. In the case of bricks, it was necessary to plot three 1D CoMs, one for each 

axis investigated (see Figure 2.3C). The combination of these 1D CoMs gave a 3D CoM for 

each brick, which along with the 1D CoMs for birds, formed the final coordinates for CoMSc 

for each specimen. 

 

Using the original methodology described here, it was noted that the predicted CoM position 

was consistently skewed towards the proximal scale. To address this issue, ‘reversed repeats’ 

were conducted for two bricks. Here, a further three data collection runs were performed, 

so that each brick face was aligned with the proximal plank edge for one run, giving two runs 

per axis. Additionally, it was noted that the construction of this experimental set-up and 

subsequent object placement had the potential to introduce human error into resulting 

predictions of CoM position. The associated error was therefore quantified using one brick, 

by conducting repeats where the experimental set-up was de-constructed and re-

constructed between each of five trials, with full data captures performed for each individual 

trial. 
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2.3.4. Digital CoM - digital modelling 

All specimens were scanned in a medical grade CT scanner at the University of Liverpool 

Small Animal Hospital, Leahurst (Toshiba Aquilion PRIME helical scanner, slice thickness: 

1mm, 120kVp, 100mA). All scan data are freely available online 

(http://datacat.liverpool.ac.uk/310). Scan data were segmented in Avizo 7.1 

(www.Avizo3D.com) using a combination of automated and manual thresholding as required 

to extract clean models. For bricks, the whole brick outline was extracted, along with the 

Qualisys markers. For birds, Qualisys markers, a solid skin outline, and all notable air cavities 

(defined as regions of zero density on CT scan) present in the torso, neck and head regions 

were extracted. The condition of the air cavities varied considerably between the bird 

specimens, due to differences in conditions and handling prior to freezing (Supplementary 

Information 2.1). All air cavities were left as they were in the original frozen specimen, 

meaning the conditions captured in the CT scans were equivalent to those present during 

the experimental work, though they are unlikely to represent the resting condition for a living 

bird. Previous studies have shown that any subjectivity present in the segmentation process 

has minimal effect on the final mass properties estimated (Allen et al., 2009). To ensure our 

methodology followed this finding, segmentation of the original CT data for one brick was 

repeated, giving a total of three models. 

 

Extracted surfaces were edited in Geomagic Studio 10 (www.geomagic.com) to remove any 

excess material captured by segmentation. Mass properties (volume and CoM) for the final 

surfaces were calculated in FormZ (www.formz.com). In the case of bricks, this CoM was the 

final digital CoM, but further steps were required for avian specimens due to the inclusion of 

multiple components (i.e. flesh and air cavities) in the models. For birds, the masses of each 

component were calculated from their respective volumes by the application of a density 

value of 1000kgm-3, with air cavities subtracted where appropriate, as in numerous previous 
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studies (e.g. Alexander, 1985, Allen et al., 2009, Bates et al., 2009b, Henderson, 1999, 

Hutchinson et al., 2007). This method is referred to as our ‘best guess’ digital CoM for birds, 

CoMD1. It should be noted that although this method is commonplace in recent literature, it 

represents a simplification of the anatomy, and one that has the potential to affect the CoM 

predicted by models. Though a thorough investigation of the consequences of these 

decisions on density modelling was beyond the scope of this study, a sensitivity analysis was 

conducted on this parameter to assess the impact on predicted CoM position. This was 

achieved by applying a range of published density data (Buchner et al., 1997, Dempster and 

Gaughran, 1967, Henderson, 2004, Henderson, 2006, Lovvorn and Jones, 1991, Tserveni and 

Yannakopoulos, 1988), dervived by a variety of methods in a range of taxa, to our models 

(see Table 2.2 for details). Once mass properties were calculated, centres of mass for all 

components were combined, to give an overall CoM for the specimen according to the 

following equation: 

 

𝐶𝑜𝑀𝐷 =
𝛴(𝐶𝑜𝑀𝑓  ∗  𝑚𝑎𝑠𝑠𝑓) −  𝛴(𝐶𝑜𝑀𝑎  ∗  𝑚𝑎𝑠𝑠𝑎)

𝛴𝑚𝑎𝑠𝑠𝑓 −  𝛴𝑚𝑎𝑠𝑠𝑎
 

Equation 2.2 

 

Where CoMD is the digital CoM for the whole system, CoMf and massf refer to the mass 

properties of flesh components, and CoMa and massa refer to air cavity mass properties. 

 

2.3.5. Geometric centres 

For brick specimens, by virtue of their simple geometry, symmetry and uniform density, it 

was assumed that the geometric centre (CoMG) of each brick was also the true CoM position. 

The accuracy of each method could therefore be assessed by comparing the CoM predictions 

made to CoMG. CoMG was calculated, after aligning bricks with the digital world axes as   
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Table 2.2: Details of the density data used in the sensitivity analysis. 

* Values calculated as an average for all segments of that limb. 

  

CoM 

abbreviation Density data source 
Taxonomic 

group Density data applied (kgm-3) 

CoMD1 
Best guess (see e.g. Allen 
2013) 

Generic Flesh: 1000, Air cavities: 0 

CoMD2 

Tserveni & 
Yannakopoulos 1988 - 
Homogeneous flesh 
(maximum density) 

Bird Flesh: 1069 

CoMD3 
Lovvorn & Jones 1991 - 
Homogeneous flesh 
(minimum density) 

Bird Flesh: 536.8 

CoMD4 Henderson 2006 Bird/archosaur 
Head and Neck: 300, Trunk: 
800, Limbs: 1000 

CoMD5 Henderson 2004 Bird/archosaur 
Head: 1000, Neck: 600, Trunk: 
850, Limbs: 1050 

CoMD6 
Dempster & Gaughran 
1967 

Human 
Head and Neck: 1170.8, Trunk: 
1013.8, Forelimbs: 1080*, 
Hindlimbs: 1062* 

CoMD7 Buchner et al. 1997 Horse 
Head: 1031, Neck: 1038, Trunk: 
850, Forelimbs: 1155*, 
Hindlimbs: 1170* 
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Figure 2.4: Render of Brick1 from the top (A), left side (B) and front (C) depicting the method 

for calculating the geometric centre (CoMG). This was calculated by taking the mean of three 

pairs of Qualisys markers, one pair per axis. CoMx, CoMy and CoMz then combine to give the 

final xyz co-ordinates for a 3D CoMG. 
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described in Section 2.3.3, by taking the mean coordinates of markers on opposite faces of 

the brick, using a different pair for each axis of interest. Combining these 1D coordinates 

gave the 3D CoMG (see Figure 2.4 for a visual overview). 

 

To enable comparisons between methods, and with CoMG, the marker coordinates resulting 

from the two physical methods were matched to those extracted from the CT data of the 

corresponding specimen using GaitSym, as described in Section 2.3.2. Once data from all 

methods were combined, models were translated so that for bricks corner ADE (i.e. the 

corner shared by faces A, D and E) or the right hip (for birds) were at the origin of the world 

coordinate system in digital space (i.e. x=0, y=0, z=0), for ease of interpretation of CoM 

values. All raw and processed data, as well as the code used to generate them, are freely 

available online (http://datacat.liverpool.ac.uk/310). 

 

2.4. Results 

2.4.1. Overview 

Data on the geometric centres and CoM positions predicted by each method conducted here 

are visualised in Figures 2.5 and 2.6, with differences presented in Figure 2.7 and Tables 2.3 

and 2.4. Further data on CoM positions are reported (Supplementary Information 2.2 and 

2.3), along with data on 1D differences in CoM positions and normalised versions of CoM 

results (Supplementary Information 2.4 and 2.5). No statistics were performed on the data 

collected here; all results are therefore purely descriptive. 

 

First, we report the results from bricks, stating the absolute and relative errors of the 

different methodologies in these reference objects in comparison to their known CoM 

positions. These results include those from the various repeatability tests. We then discuss 

results from bird specimens by methodology. It should be noted that, as true CoM is not  
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Figure 2.5: Predicted CoM positions displayed on renders of Brick1 (A-C), Brick2 (D-F) and 

Brick3 (G-I), shown from the left (A, D, G), front (B, E, H) and top (C, F, I). Predicted CoM 

positions are shown for each methodology, coloured according to the key. In cases where 

multiple CoM positions were available for the initial suspension and scales methods, only the 

CoM from the first runs are displayed here, for clarity. 
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Figure 2.6: Predicted CoM positions displayed on renders of chicken (A-C), buzzard (D-F) and duck (G-I), shown in cranial view (A, D, G), left lateral view (B, E, 

H) and dorsal view (C, F, I). Predicted CoM positions are shown for each methodology, coloured according to the key. In the chicken and buzzard, multiple 

suspension CoMs are shown along with multiple scales CoMs in the chicken.
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Figure 2.7: A: Graph displaying 3D distances from brick geometric centre (CoMG) to the CoM 

positions predicted by the methodologies listed on the x axis. B: Graph displaying 3D 

distances from our ‘best guess’ bird digital CoM (CoMD1) to the CoM positions predicted by 
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the methodologies listed on the x axis. (C) 3D differences between geometric centre 

(bricks)/best guess digital CoM (birds) and CoM predictions produced by the methods 

studied here, normalised by maximum side length (bricks)/cranio-caudal body length (birds).  
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Table 2.3: 3D distances from brick geometric centre (CoMG) to the centres of mass predicted 

by the methodologies examined here for the three brick specimens. 

CoM Description 

3D distance to CoMG (mm) 

Brick1 Brick2 Brick3 

Digital (CoMD) 2.1 2.4 2.0 

Digital (CoMD) - - 2.1 

Digital (CoMD) - - 2.0 

Suspension (CoMSu) - 10 runs 8.2 - - 

Suspension (CoMSu) - 3 runs 38.5 5.6 20.5 

Suspension (CoMSu) - 3 runs 27.8 - - 

Suspension (CoMSu) - 3 runs 15.1 - - 

Suspension (CoMSu) - 3 runs 16.0 - - 

Scales (CoMSc) - 6 runs 0.7 1.5 - 

Scales (CoMSc) - 3 runs 17.6 15.0 17.2 

Scales (CoMSc) - 3 runs 18.5 - - 

Scales (CoMSc) - 3 runs 18.1 - - 

Scales (CoMSc) - 3 runs 15.4 - - 

Scales (CoMSc) - 3 runs 16.0 - - 

Geometric (CoMG) - 3 runs  2.0 0.4 - 

Geometric (CoMG) - 3 runs  0.4 - - 

Geometric (CoMG) - 3 runs  2.2 - - 

Geometric (CoMG) - 3 runs  0.9 - - 
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Table 2.4: 3D distances from the digital centre of mass predicted by our original model 

(CoMD1) to the centres of mass predicted by the methodologies examined here for the three 

bird specimens. 

CoM Description 

3D distance to CoMD1 (mm) 

Chicken Buzzard Duck 

Digital - CoMD2 - Tserveni 1988 0.9 3.8 1.0 

Digital - CoMD3 - Lovvorn 1991 0.9 3.8 1.0 

Digital - CoMD4 - Henderson 2006 10.0 16.2 13.3 

Digital - CoMD4 - Henderson 2004 2.0 4.0 0.7 

Digital - CoMD6 - Dempster 1967 2.2 3.1 4.3 

Digital - CoMD7 - Buchner 1997 1.8 3.4 3.8 

Digital - Extreme posture shift - - 3.8 

Suspension (CoMSu) - 10 runs 8.5 9.5 - 

Suspension (CoMSu) - 3 runs 10.7 58.5 15.0 

Suspension (CoMSu) - 3 runs 36.0 27.6 - 

Suspension (CoMSu) - 3 runs 68.3 48.1 - 

Suspension (CoMSu) - 3 runs 24.1 19.6 - 

Suspension (CoMSu) - 3 runs 77.8 19.6 - 

Suspension (CoMSu) - 3 runs 26.4 13.4 - 

Scales (CoMSc) - 3 runs * 14.4 6.8 12.8 

Scales (CoMSc) - 3 runs * 9.3 - - 

Scales (CoMSc) - 3 runs * 8.3 - - 

Scales (CoMSc) - 3 runs * 8.1 - - 

Scales (CoMSc) - 3 runs * 16.8 - - 

* Scales CoM positions in birds were only determined in one dimension, therefore the 

distances here are 1D only.  
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known for the birds, the methodologies are instead compared back to our ‘best guess’ digital 

CoM predictions (CoMD1). The results reported for the avian specimens here are therefore 

strictly relative, suitable for comparison with one another, but do not provide a quantitative 

measure of the accuracy of any given method. Results from further repeatability tests are 

presented for these exemplar animals, which have more complex geometries and which 

therefore present more logistical challenges for testing than simple objects like bricks. 

 

2.4.2. Bricks 

2.4.2.1. Geometric centres 

The interpretations made here are reliant on the accuracy of estimates of the geometric 

centres (CoMG) of each brick. In an attempt to maximise the accuracy of CoMG, it was 

calculated using data from six runs wherever possible, or in the case of Brick3, from three 

runs. The variability present in CoMG predictions from repeated runs was quantified in Brick1. 

When comparing CoMG values for this brick, the difference between the alternative CoMG 

predictions ranged from 0.374 to 2.18mm, with a mean of 1.34mm (Table 2.3). 

 

2.4.2.2. Suspension method 

Initial predictions of CoM by suspension (CoMSu) from three suspension positions were 

within 16, 5.6 and 20.5mm of CoMG for Bricks 1-3 respectively (Table 2.3, Figure 2.5). In 

Brick1, where data from four iterations of this basic suspension method were collected to 

assess the effect of human inputs, distance from CoMSu to CoMG ranged from 15.1 to 

38.5mm, a total range of 23.4mm (Table 2.3, Figure 2.5A-C). The error present in CoMSu 

decreased when additional runs were performed on Brick1; for a total of ten suspension 

positions CoMSu was then within 8.2mm of CoMG (Table 2.3, Figure 2.5A-C). This represented 

a 66% improvement in the ability to predict CoMG when ten, rather than three, positions 

were considered for Brick1 (Table 2.3, Figure 2.5A-C). However, it should be noted that for 
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Brick2, CoMSu predicted from only three suspension positions was closer to CoMG (5.6mm; 

Table 2.3, Figure 2.5D-F) than was CoMSu for Brick1, predicted from ten suspension positions 

(8.2mm) (Table 2.3, Figure 2.5A-C). 

 

2.4.2.3. Scales method 

Initial predictions of CoM by the scales method (CoMSc) from three runs (one per axis), were 

within 17.6, 15 and 17.2mm of CoMG, for Bricks 1-3 respectively (Table 2.3, Figure 2.5). The 

error present in CoMSc decreased substantially when additional ‘reversed repeats’ were 

performed (giving two runs per axis). This effect was assessed in Bricks 1 and 2, where CoMSc 

was then within 0.691 and 1.499mm of CoMG respectively. Those ‘reversed repeats’ values 

represented 90% and 96% improvements in the ability of the scales method to predict CoMG. 

Five CoMSc positions were predicted for Brick1 from repeats to assess the repeatability of 

this method, where the experimental set-up had been completely deconstructed and 

reconstructed between runs. These predicted CoMs were between 15.4mm and 18.5mm 

from CoMG, a maximum variance of 3.13mm (Table 2.3). 

 

2.4.2.4. Digital modelling 

Predictions of CoM position by the digital methodology (CoMD) were within 2.05, 2.39 and 

2mm of CoMG, for Bricks 1-3 respectively (Table 2.3, Figure 2.5). Two additional models were 

generated for Brick3 by repeating the segmentation of the raw CT data. For these additional 

repeats, CoMD was within 2.05 and 2.03mm of CoMG (Table 2.3). The three CoMD values 

estimated were highly consistent with one another, with a range of 0.058mm. 

 

2.4.2.5. Overview 

Comparing the initial runs across the three bricks (i.e. three suspension positions, three 

scales captures [one per axis], and the initial CT segmentation), CoMD was consistently 
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closest to CoMG (2.05, 2.39, 2mm; Figure 2.7A). In Bricks 1 and 3, CoMSc was the next closest 

(17.1, 17.12mm; Figure 2.7A), followed by CoMSu (24.4, 20.5mm; Figure 2.7A). In contrast, in 

Brick2, CoMSu was closer to CoMG than was CoMSc (5.58mm versus 15mm; Figure 2.7A). The 

variation present in the predicted values across bricks for these initial runs was lowest for 

CoMD (0.391mm), followed by CoMSc (3.47mm) and CoMSu (32.9mm). Alternatively, 

considering only the best performing runs for each methodology (i.e. ten suspension 

positions, six scales captures [two per axis], and the original CT segmentation) in Brick1, 

CoMSc was closest to the geometric centre (0.692mm), followed by CoMD (2.05mm), with 

CoMSu the most distant (8.18mm). 

 

2.4.3. Birds 

2.4.3.1. Suspension method 

Initial predictions of CoM by suspension (CoMSu) in birds were within 10.7, 58.5 and 15mm 

of CoMD1, for the chicken, buzzard and duck respectively (Table 2.4, Figure 2.6). As seen in 

the brick data, CoMSu predictions were highly variable. In the chicken and buzzard, where six 

repeats of the basic suspension run were conducted, predicted values of CoMSu varied by 67 

and 45mm respectively (Table 2.4, Figure 2.6A-F), a maximum distance of 77.8mm from 

CoMD1. CoMSu positions calculated from ten runs were closer to CoMD1 compared to those 

from three runs, for both the chicken (8.47mm versus 40.55mm; Table 2.4, Figure 2.6A-C) 

and the buzzard (9.46mm versus 31.1mm; Table 2.4, Figure 2.6D-F). 

 

2.4.3.2. Scales method 

Initial predictions of CoM position by the scales method (CoMSc) were within 14.4, 6.8 and 

12.8mm of CoMD1 for the chicken, buzzard and duck respectively (Table 2.4, Figure 2.6). In 

the chicken, where the experimental set-up was dismantled and reassembled between 

repeats, the variability between CoM positions was relatively low (8.66mm; Table 2.4, Figure 
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2.6), considerably lower than in suspension for avian specimens (i.e. up to 67mm; Table 2.4, 

Figure 2.6), but greater than that seen in equivalent repeats for bricks (3.13mm; Table 2.4, 

Figure 2.6). 

 

2.4.3.3. Digital modelling 

Digital CoM predictions in biological specimens require not only a detailed representation of 

object geometry (as for bricks), but also the assignment of density data. Results from the 

sensitivity analysis conducted on this variable show that the CoM predicted using density 

data from Henderson (2006) (CoMD4) was most distant from the original CoMD1 in all three 

birds (10, 16 and 13mm; Table 2.4, Figure 2.6). The remainder of the CoM positions, 

predicted with applications of different density data (see Table 2.2 for details), were all close 

to one another, and to the original CoMD1 (maximum distance of 3.58mm; Table 2.4, Figure 

2.6). 

 

2.4.3.4. Quantifying posture change 

The effect of posture change was quantified in the bird with the most extreme posture shift 

between testing conditions (defined by the greatest total difference in distances between 

markers). Specifically, the greatest posture change occurred in the duck between the digital 

and suspension methodologies. The segments of the digital duck model were manipulated 

to match the Qualisys marker positions to their altered positions, as captured during the 

suspension runs. This rigid body transformation was achieved in Maya by rotating segments 

around appropriate joint centres, indicated by the skeletal material. This resulted in a CoM 

shift of 3.81mm from the original CoMD1 (Table 2.4). This can be considered an approximation 

of the maximum error present in CoM positions due to posture changes between the 

different methodologies. As the CoM positions predicted by the different methodologies in 

the biological specimens studied were different from one another by more than 4mm, it can 
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be concluded that the differences seen between methodologies are real and not the effect 

of postural changes between testing runs. 

 

2.4.3.5. Overview 

Taking the best runs from each methodology, CoMSc was marginally closer (8.11, 6.78 and 

12.8mm) to CoMD1 compared to CoMSu (8.46, 9.46 and 15mm), in these birds (Figure 2.7B). 

It should be noted that the scales method used here did not include ‘reversed repeats’, which 

was shown to increase the accuracy of CoM predictions in the bricks (Table 2.3, Figure 2.5). 

The variability within the methods showed similar trends to bricks: CoMSu from three runs 

showed relatively high variability (up to 67.1mm), CoMSc from three runs displayed relatively 

low variability (8.66mm) and the variability seen in digital models with the sensitivity analysis 

on density parameters (if outlying data from Henderson (2006) were excluded; see Section 

2.5.4 below), was lower again (1.28mm). 

 

2.5. Discussion 

2.5.1. Overview 

The CoM positions predicted by the three methodologies here varied considerably across 

each of the bricks (Table 2.3, Figure 2.5). This variability is indicative of differences in their 

ability to accurately predict CoMG, which is taken to be a good measure of true CoM position 

(±2mm) in these test objects. For both bricks and birds, the variability present within 

methods was found to differ considerably between the three approaches (Tables 2.3 and 2.4, 

Figures 2.5 and 2.6). This is suggestive of differences in consistency and repeatability of the 

different methods. Briefly, we found that the scales methodology with reversed repeats was 

the most accurate, as well as being highly consistent (Tables 2.3 and 2.4, Figures 2.5 and 2.6). 

It was very closely followed by the digital method, which also appeared accurate, and with 

good consistency across the repeats performed on bricks here (Table 2.3, Figure 2.5). The 
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suspension method was identified as the least accurate, yielding predictions that were the 

most distant from CoMG, as well as displaying high variability between repeats (Tables 2.3 

and 2.4, Figures 2.5 and 2.6). 

 

We recognise that the small sample size studied here, and the associated lack of statistical 

testing has the potential to hinder conclusions being drawn about the differences between 

the methodologies investigated. However, we suggest that as the differences present 

between suspension and the other methods are so stark, and our experimental design 

identified and investigated multiple influencing factors, that these descriptive results can be 

used to confidently identify real differences. 

 

A standardised posture was used here (see Section 2.3.1), which sought to replicate the 

standard postures commonly used in digital modelling studies (e.g. Allen et al., 2013, Bates 

et al., 2016, Hutchinson et al., 2007) as closely as possible in physical ex vivo specimens. The 

use of a standardised posture enables comparisons to be drawn between the morphologies 

of species with considerably different body plans. However, in vivo, drastic differences in 

morphology and the associated changes in CoM position are often accompanied by 

differences in posture which can act to mitigate these differences. Similarly, two specimens 

with a similar CoM in a standard posture may utilise substantially different postures, and 

therefore possess distinct CoMs in vivo. Model posture should therefore be selected based 

on the purpose of the study in question. For studies seeking to quantify morphology using 

CoM, a standard posture is appropriate. 

 

Though previous studies (Nauwelaerts et al., 2011) found correlations between features of 

object geometry and the error present in CoM predictions, we found no strong evidence of 

such an effect in any of the methods investigated here (Supplementary Information 2.6). In 
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the absence of a strong correlation, and given that all our objects are approximately equal in 

size, we suggest that the absolute errors reported here can be interpreted with confidence. 

 

Normalising the data by length (longest side in bricks, cranio-caudal body length in birds) did 

not change the overall trends seen in the data (Figure 2.7C, Supplementary Information 2.5). 

The digital and scales methods, including reversed repeats, still had very low errors (less than 

1.2% of body/brick length), further supporting our conclusion that these methods perform 

best for the specimens studied here. In the normalised data, errors relative to length were 

notably lower in birds than in bricks. This is a reflection of their greater lengths, and the fact 

that error is independent of size (Supplementary Information 2.6). 

 

Below, we discuss results from all methodologies in more detail, highlighting their benefits 

and limitations. We seek to identify issues with the methods, discuss the potential causes of 

these problems as well as possible solutions which could improve the future use of these 

methodologies. 

 

2.5.2. Suspension methodology 

In the bricks, CoMSu positions predicted from three runs were markedly different from CoMG 

(3D distance: 15-38mm), indicating this method performed relatively poorly at predicting 

CoM. This, along with the high variability (maximum range in bricks: 23mm and birds: 67mm) 

in the results not only indicates that this method is a relatively poor predictor of CoMG, but 

that there is also considerable variation in its ability to do so (Figure 2.7). This is suggestive 

of complex human-incurred error inherent to this methodology, with potential sources of 

error including the subjective selection of suspension position, and placement of string 

markers. A small amount of additional error was introduced here, as the string axis was 

defined using the raw marker centres, which were offset from the string itself (by 6.35mm, 
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the marker radius). However this error was in one dimension only, and the effect was 

consistent across runs and between specimens. While this would affect the absolute 

accuracy of our suspension method, the error was small in comparison to the total error 

detected in this method (up to 38mm), and did not affect our observation that results from 

the suspension methodology were highly variable. Further, the error present in this method 

was potentially influenced by the mass of the object under investigation. Error margins may 

be greater if an object of the same size as our bricks, but with a lower density, and therefore 

lower mass and inertia, was used as the test object. Such an effect may explain the different 

error margins seen in the brick and bird specimens, though we did not explicitly test this 

hypothesis. 

 

For Brick1, the chicken and the buzzard, where additional suspension runs were conducted 

(taking the total to ten runs, rather than three), the apparent accuracy of CoMSu improved 

compared to the best results from three runs for those objects (Figure 2.7). However, this 

improvement was only slight in the chicken (2.24mm) and buzzard (3.93mm). Additionally, 

the error in CoMSu for Brick1 using ten runs was actually higher than that obtained from only 

three runs on Brick2 (Figure 2.7A). This further highlights problems with consistency in this 

methodology, regardless of the addition of further data runs. The addition of extra data 

captures here increases the number of unique lines of suspension (10 versus 3), and 

therefore increases the number of string intersect points drastically (45 versus 3). However, 

in the case of all the specimens studied here, these intersect points remained widely 

scattered (see Figure 2.8). As the final predicted CoMSu is calculated as the mean of all these 

points, the addition of more unique lines of suspension, and therefore intersect points, 

should act to increase the chances of a more central overall CoM being predicted, despite 

the fact that the accuracy of any given run does not improve. However, this is not a 

predictable effect; hence results from three suspension runs may be more accurate than 
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those from ten runs. If enough unique suspension positions were tested, it may be possible 

to consistently derive highly accurate CoM positions from this methodology, but the cost in 

time and effort associated with performing the presumably large number of runs required 

might not always be desirable, particularly when other methods are available which address 

the issue in a more efficient, and more accurate manner. 

 

2.5.3. Scales methodology 

CoMSc positions predicted from the original three runs for each brick were a notable distance 

from CoMG (mean 3D distance of 17mm, approximately equivalent to that in CoMSu). Despite 

this relatively low accuracy, the variation within these predictions was low (bricks: 3.13mm, 

birds: 8.66mm), indicating the relatively high repeatability of this method (Figure 2.7). It was 

identified that there was a consistent shift of CoM towards the proximal scale; additional 

reversed repeats were conducted for two bricks in an attempt to counter this and to 

consequently improve the accuracy of this methodology. These repeats resulted in a drastic 

improvement in the ability of the scales method to predict CoMG in bricks (within 0.69 and 

1.49mm in Bricks1 and 2; see Table 2.3, Figure 2.7A). In both of those cases, the improved 

CoMSc was fractionally closer than CoMD to the brick’s geometric centre (Table 2.3, Figure 

2.7A). 

 

The short distance between CoMG and CoMSc further highlights the absolute and relative 

accuracy of this methodology, provided that the appropriate repeats are conducted. It 

should be noted that in the birds studied here, only the initial runs (i.e. from the proximal 

end only, with no reversed repeats) were conducted. There is no reason to assume that the 

proximal skew observed in bricks would not also be seen in biological specimens. It is 

therefore safe to assume that the CoMSc positions predicted for birds are not accurate 

predictors of true CoM position, instead lying more cranially than the ‘true’ CoM position. 
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Figure 2.8: Renders of Brick1 (A-C), chicken (D-F) and buzzard (G-I) displaying the broad spread of centre of mass positions predicted by the suspension 

methodology with three repeats (orange) and ten repeats (red).
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The reversed repeats, which impart such a considerable improvement in CoMSu prediction 

ability, are rarely conducted in the literature (with the notable exception of Henderson, 

2003), with the vast majority of papers conducting only the initial runs performed here (e.g. 

Clemente, 2014, Kilbourne, 2013, Lephart, 1984). Our results suggest that reversed repeats 

are fundamentally important in order for this scale-based methodology to accurately predict 

CoM position, and should therefore be employed wherever data on absolute CoM position 

are required from this method. 

 

Investigation of the error associated with the subjective processes of de-constructing and re-

constructing the scales experimental set-up between data captures found relatively small 

errors (bricks: 3.13mm, birds: 8.66mm; Tables 2.3 and 2.4). However, it should be noted that 

this margin of error, along with that identified from the calculation of geometric centre in 

bricks (2.18mm; Table 2.3), mean it is not possible to confidently distinguish between the 

accuracies of the scales and digital methods. 

 

One key limitation of this scales methodology is the difficulty of deriving 3D CoM positions 

for biological specimens. Lying specimens along the plank was straightforward for the cranio-

caudal dimension here, and could also be easily achieved for the medio-lateral dimension 

(though the almost universal assumption of bilaterally symmetry in analyses involving CoM 

limits the need to measure in this axis). However, determination of CoM position along the 

dorso-ventral axis would require specimens to be positioned with that plane in line with the 

plank. While possible, developing a set-up which would be capable of supporting a range of 

biological specimens in the precarious posture required, in a systematic and repeatable 

manner, was deemed to be beyond the scope of this study. Given that the scales method is 

accurate (to within 1.5mm) along the cranio-caudal axis, developing such a set-up is an 

avenue that is potentially worth exploring. This is especially relevant for biological subjects, 
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where the accuracy of digital CoMs are currently poorly constrained due to a scarcity of 

avian-specific density data; a scale-based method could therefore provide an avenue for 

validating digital CoM predictions in 1D or 2D. However, it should be noted that the error in 

the scales method (set-up error, bricks: 3.13mm, birds: 8.66mm; error in CoMG: 2.18mm; 

Tables 2.3 and 2.4) overlaps the error margin for digital estimates. This is the case for the 

cranio-caudal axis, but the error present in an estimation of CoM along the dorso-ventral axis 

is likely to be greater again due to the irregular shape of biological specimens. Hence overall 

error in CoMSc would be expected to exceed that present in a digital modelling approach 

when applied to biological specimens in more than one dimension. The relative merits and 

limitations of these techniques should be considered, along with specific aims of the study, 

when considering the best method to apply in future studies seeking to derive CoM 

estimates. 

 

2.5.4. Digital modelling 

Predictions of CoMD in bricks were close to CoMG (3D distance: 1.99-2.39mm; Table 2.3), 

indicating that the digital modelling method employed here resulted in accurate predictions 

of CoM position. Repeats of the segmentation protocol in bricks seeking to assess the 

variability introduced by that process found only minor differences (maximum difference 

between estimates: 0.39mm; Table 2.3). Our findings therefore agree with those of Allen et 

al. (2009) obtained in biological specimens, that the process of digital segmentation from CT 

image data is highly repeatable, providing consistently accurate representations of object 

geometry which facilitate the accurate determination of CoM position. 

 

In birds however, an accurate representation of specimen geometry is only the first stage of 

digital model making. Biological specimens are heterogeneous, being composed of various 

tissue types with different densities, unlike bricks that can safely be assumed to be 
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homogeneous. Previously, this heterogeneity has been recognised to a degree when 

constructing digital models, in order to provide a more realistic representation of not only 

volume distribution, but also of mass distribution. There is a history of including air cavities 

in digital models of birds and dinosaurs (Bates et al., 2009b, Henderson, 1999, Hutchinson et 

al., 2007). However, to our knowledge, the consequences of incorporating these structures 

have not been assessed to determine if this brings predicted CoM closer to true CoM 

position. For other species (e.g. human, horse), more detailed mass properties are available 

on segment-specific densities, which could be included in digital models. To our knowledge, 

there are no published data on segment-specific densities for birds, and therefore the 

implications for CoM position of incorporating this additional heterogeneity are untested. 

We sought to explore the effects of this uncertainty with a sensitivity analysis here, applying 

our initial method, as well as five alternative sets of density data to our bird models (Table 

2.2). 

 

Results from this sensitivity analysis show that five of the six density applications tested lie 

close to one another (within a maximum range of 3.58mm across the three birds; Table 2.4, 

Figure 2.7B). It is encouraging that the majority of data points cluster together in this way, 

despite the use of a variety of density assignment methods, and the wide range of sources 

(including human and horse segment mass properties) for the density data applied. 

However, the CoM estimates generated using data from Henderson (2006) were markedly 

different from the others (10-15mm from the main group, across the three birds; Table 2.4, 

Figure 2.7B). The density values applied to the head and neck by Henderson (2006) seem 

unrealistically low (density: 300kgm-3, cited as taken from Bramwell and Whitfield (1974) 

[although it should be noted that we were unable to reconstruct this number from the 

original text, so this may be erroneous]), and it is this low density which is the main 

contributor to the appreciably different CoM position predicted. The consistency of CoM 
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predictions derived here using a range of density datasets highlights the relatively small 

effect of density variations on CoM position, provided broadly realistic data are used. 

 

Application of different density datasets to different bird specimens resulted in different 

relative CoM shifts. The chicken and buzzard showed low variability, regardless of density 

data, with maximum CoM shifts of ~1mm (Table 2.4, Figure 2.6). The duck however displayed 

higher variability, with a maximum of 3.6mm between CoMD estimates (between CoMD5 

(Henderson, 2004) and CoMD6 (Dempster and Gaughran, 1967) respectively) (Table 2.4, 

Figure 2.6). This reflects a cranial shift in CoMD when data from humans in Dempster and 

Gaughran (1967), and to a lesser extent horses in Buchner et al. (1997), are applied to the 

duck model. This difference is driven by differences in the neck and torso density values used 

by these studies. The fact that these differences appear in one bird, but not the others, 

potentially reflects the different relative body proportions of these birds, which result in 

effects of different magnitudes by specific segments on the overall CoM. Alternatively, it may 

be indicative of different density datasets matching the true density data for some birds 

more closely than others. Unfortunately, no density data by segment are available for birds, 

nor is there a comprehensive quantitative examination of body proportions across Aves, so 

it is difficult to determine if either or both of these, or indeed other factors, are influencing 

this trend. 

 

2.6. Conclusion 

In conclusion, the scales (with reversed repeats) and digital modelling methods were found 

to be highly accurate predictors of true CoM position in the test objects examined here. The 

scales method was marginally more accurate (1.31mm closer to CoMG; Table 2.3), though 

the error associated with calculating the geometric centres (up to 2.18mm; Table 2.3) means 

the relative accuracies of these two methods cannot be confidently distinguished. Both 
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scales and digital methods were identified as being highly consistent in their ability to predict 

CoM position, as well as demonstrating high levels of repeatability in experimental 

procedures. The suspension methodology was a generally poor predictor of CoM position, in 

addition to showing high variability and poor levels of repeatability (8.2-38.5mm error; Table 

2.3). These accuracies were assessed in test objects, with simple geometries and mass 

properties, and are arguably therefore a ‘best case’ representation of methodological 

accuracy. Biological specimens introduce additional complicating factors, varying by method. 

For the scales method, problems arise with the repeatability of capturing the required 

measurements; this is the case along the cranio-caudal axis, but additional complications 

(and most likely greater error) would arise if data for additional axes were sought. Digital 

methods meanwhile face problems around the inclusion of heterogeneous densities. 

However, the sensitivity analysis conducted here, using a broad range of density datasets, 

found that variations in density data had a relatively low impact on CoM position. Provided 

bird segment densities do not differ substantially from the data used here, it is likely that 

uncertainty around density data will not introduce large inaccuracies in CoM position. 

However, we found that density has the potential to affect birds of different body plans 

differently, and there are currently no avian-specific density data published to conclusively 

rule out density as an important influencing factor on CoM position. Future studies wishing 

to quantify CoM position in biological taxa should consider these factors in the light of their 

specific aims to determine the optimum method for CoM determination. 
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2.7. Supplementary Information 

 

Supplementary Information 2.1: Renders of chicken (A, B), buzzard (C, D) and duck (E, F) 

showing the skin outlines (grey) and air cavities (blue) extracted from CT data and used in 

digital predictions of CoM position. 

 

  

A B 

C D 

E F 
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Supplementary Information 2.2: Data for centre of mass positions for three brick specimens, 

as predicted by the three different methodologies examined here. Where, x axis = E-F, y axis 

= A-B, z axis = C-D. 

CoM Description 
Brick1 

 

 

Brick2 Brick3 

x y z x y z x y z 

Digital (CoMD) 108.1 34.7 49.1 102.4 68.3 102.3 106.7 33.1 51.6 

Digital (CoMD) - - - - - - 106.8 33.1 51.5 

Digital (CoMD) - - - - - - 106.7 33.1 51.6 

Suspension (CoMSu) - 10 runs 106.3 42.3 54.2 - - - - - - 

Suspension (CoMSu) - 3 runs 144.8 41.4 59.5 99.1 62.1 102.2 89.1 42.0 54.0 

Suspension (CoMSu) - 3 runs 87.3 50.7 61.2 - - - - - - 

Suspension (CoMSu) - 3 runs 104.8 47.0 42.7 - - - - - - 

Suspension (CoMSu) - 3 runs 94.9 42.5 56.7 - - - - - - 

Scales (CoMSc) - 6 runs 107.2 35.0 50.8 102.7 67.3 102.7 - - - 

Scales (CoMSc) - 3 runs 96.4 25.5 60.8 91.1 56.3 102.7 96.1 23.3 63.1 

Scales (CoMSc) - 3 runs 96.6 24.3 61.3 - - - - - - 

Scales (CoMSc) - 3 runs 96.2 25.0 60.8 - - - - - - 

Scales (CoMSc) - 3 runs 98.5 25.4 58.9 - - - - - - 

Scales (CoMSc) - 3 runs 98.2 25.8 60.2 - - - - - - 

Geometric (CoMG) - 6 runs  107.8 34.8 51.1 102.0 66.6 103.9 - - - 

Geometric (CoMG) - 3 runs  108.3 34.1 49.4 102.1 67.0 103.6 107.1 32.3 53.4 

Geometric (CoMG) - 3 runs  108.1 34.9 51.0 - - - - - - 

Geometric (CoMG) - 3 runs  108.1 34.8 49.0 - - - - - - 

Geometric (CoMG) - 3 runs  108.2 35.1 50.4 - - - - - - 
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Supplementary Information 2.3: Data for centre of mass positions for three bird specimens, 

as predicted by the different methodologies examined here. Where, x axis = left-right, y axis 

= cranio-caudal, z axis = dorso-ventral. 

CoM Description 
Chicken 

 

 

Buzzard Duck 

x y z x y z x y z 

Digital - CoMD1 - Best guess -18.1 48.4 -30.0 -11.2 61.2 -28.9 -11.1 43.1 -28.8 

CoMD2 -Tserveni 1988 -18.9 39.4 -34.2 -11.4 45.0 -29.1 -10.5 29.8 -30.1 

CoMD3 -Lovvorn 1991 -18.1 46.9 -31.3 -11.6 57.7 -27.0 -10.6 42.8 -29.1 

CoMD4 -Henderson 2006 -18.0 48.8 -29.2 -11.2 58.5 -26.2 -11.0 44.1 -28.5 

CoMD4 -Henderson 2004 -18.0 48.8 -29.2 -11.2 58.5 -26.2 -11.0 44.1 -28.5 

CoMD6 -Dempster 1967 -17.8 50.4 -29.1 -11.5 60.6 -25.8 -10.8 47.3 -28.7 

CoMD7 -Buchner 1997 -17.9 49.8 -31.2 -11.7 58.1 -27.6 -10.7 46.9 -28.7 

CoMD - Extreme posture shift - - - - - - -14.7 44.2 -29.4 

Suspension (CoMSu) - 10 runs -11.3 53.2 -28.4 -3.6 58.0 -24.3 - - - 

CoMSu - 3 runs -9.0 44.4 -26.2 -5.0 119.

1 

-23.0 -10.8 36.1 -15.5 

CoMSu - 3 runs -11.2 13.3 -33.5 -2.9 35.2 -32.5 - - - 

CoMSu - 3 runs -32.8 114.

5 

-20.6 2.4 105.

9 

-17.4 - - - 

CoMSu - 3 runs 4.5 56.7 -31.0 -5.2 45.3 -19.3 - - - 

CoMSu - 3 runs 46.4 33.2 10.7 -26.0 48.4 -30.3 - - - 

CoMSu - 3 runs -36.3 35.1 -43.8 -5.1 69.0 -19.8 - - - 

Scales (CoMSc) - 3 runs * -11.1 62.8 25.5 -0.9 68.0 23.5 -9.0 55.9 14.6 

CoMSc - 3 runs * -16.0 57.7 25.9 - - - - - - 

CoMSc - 3 runs * -15.7 56.7 25.7 - - - - - - 

CoMSc - 3 runs * -11.6 56.6 24.9 - - - - - - 

CoMSc - 3 runs * -10.7 65.2 22.6 - - - - - - 

*Scales CoM positions were only determined in one dimension, along the cranio-caudal (y) 

axis. 

  



Chapter 2 - Methods for CoM estimation 

92 
 

 

Supplementary Information 2.4: Differences between geometric centre (bricks)/best guess 

digital CoM (birds) and CoM predictions produced by the methods studied here, presented 

as 1D differences for each axis. A-C: Data for Bricks1-3, where positive values represent shifts 

towards sides F (x), B (y) and C (z) of the predicted CoM position relative to the brick 

geometric centre. D-F: Data for chicken, buzzard and duck, where positive values represent 

right (x), cranial (y) and dorsal (z) shifts to predicted CoM position relative to the best guess 

digital CoM.  
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Supplementary Information 2.5: 1D differences between geometric centre (bricks)/best 

guess digital CoM (birds) and CoM predictions produced by the methods studied here, 

normalised by maximum side length (bricks)/cranio-caudal body length (birds). A-C: Data for 

Bricks1-3, presented by axis. D-F: Data for chicken, buzzard and duck, presented by axis.  
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Supplementary Information 2.6: Distance to geometric centre (i.e. error) plotted against 

side length, for three sides of three bricks of different dimensions. Least squares linear 

regression fitted to data, and r2 value displayed at top right of each plot. For suspension (A), 

scales (B) and digital (C) methodologies. 
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2.1. Appendices 

Appendix 2.1: An examination of potential sources of error in the suspension methods used 

in this thesis chapter. 

 

Substantial, variable error was found for the suspension method used in this thesis chapter 

(error 8.2-38.5mm). This contradicts previously published studies which find considerably 

lower errors for suspension based methods (e.g. < 1cm, Nauwelaerts et al., 2011). One 

potential explanation for this discrepancy was the offset of the string markers from the string 

itself, by 6.35mm (the radius of the Qualisys markers) (see Section 2.5.2 for discussion). 

However, other factors have since been identified which could help explain the large error 

found in this version of the suspension method; these are discussed below. 

 

Examining the method used to define the string axis 

In the suspension method used in this thesis, two Qualisys markers were affixed to the string 

and used to define the axis of the string, with the line between them representing the line 

of suspension in digital space (see Figure 2.2). As identified in the main text (Section 2.5.2), 

the method of affixing the markers to the outside of the string was not ideal, and would 

result in an error of 6.35mm (the marker radius), even if all subsequent application was 

faultless. When applied, the string markers should be in the same plane in the x and y 

dimensions, with the differences in their positions explained wholly by the z dimension. 

However, any error in the original marker placement or due to twisting of the string has the 

potential to displace the string markers in the x and/or y dimensions. 

 

Examination of the xyz co-ordinates of the string markers in the original Qualisys files 

(available at http://datacat.liverpool.ac.uk/310) shows that there was considerable 

displacement (> 3mm) of the two string markers in at least one of the x and y dimensions in 
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most runs (27/39 runs). The mean marker offset across all runs of all specimens was 3.8mm 

(minimum offset: 0.02mm, maximum offset: 21.0mm). 12/39 runs included a marker offset 

of greater than the marker radius. Though some of these offsets are considerable, and would 

certainly affect the accuracy of resulting CoM predictions, there is only a weak correlation 

between marker offset and CoM prediction error for the sample tested here. 

 

The original offset of markers from the string would produce small errors in the resulting 

CoM predictions. Any additional marker displacements would produce further error when 

drawing a line through them and extrapolating onto the brick itself. The point of closest 

approach (a proxy for the intersection point, see Figure 2.2) of these incorrect lines of 

suspension were then used to determine the CoM of each object, which would likely 

compound the original error. This issue could have been avoided by drilling through the 

Qualisys markers and threading them onto the string itself. These issues should be noted by 

any future studies wishing to use a digitised version of the traditional suspension method. 

 

Testing a purely physical suspension method 

As the problems encountered with the original method were a result of the digitisation 

process, a test was done using a purely physical version of this method, after Nauwelaerts et 

al. (2011). The three bricks were suspended in a loop of string, as per the original method 

(see Section 2.3.2). However, rather than being allowed to come to rest, the position of the 

string support was shifted until the brick came to rest horizontally. This was repeated for 

each axis, with the point of support marked on the bricks. These support points were then 

compared with the geometric centres for each brick. 

 

The results of this test showed that errors for individual dimensions were all less than 3.5mm, 

with a mean of 2.05mm. Assuming the maximum error for all three dimensions of a brick, 
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this would give a maximum 3D error of 6mm when compared to the geometric centre. This 

error is equivalent to those reported in the literature, and less than the error reported by 

Nauwelaerts et al. (2011). 

 

I therefore conclude that although the version of the suspension method used in the original 

thesis contained substantial errors, suspension based methods themselves are not 

inherently flawed. Any future applications of a suspension based method should either stay 

entirely physical in nature, or if digitisation is required, care should be taken to avoid the 

issues outlined here. 
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3.1. Abstract 

Body shape, locomotion and ecology are tightly correlated in living archosaurs (birds and 

crocodylians). Alongside changes in body shape, the ancestors of birds also evolved a 

feathered integument. How integument properties are adapted to locomotion in living taxa 

is poorly understood, and the links between integument and body shape evolution in 

archosaurs remains completely unstudied. Here, we present a new dataset on integument 

mass properties from 33 species of living archosaurs and lizards. We statistically assess the 

correlation between integument properties and species locomotor mode, phylogeny and 

body size. This demonstrates key correlations between feather mass properties and 

locomotor ecology in extant birds, for example flight feather length, thickness, surface area 

and density were all found to significantly differ between locomotor groups. This highlights 

adaptive links between feather properties and the degree of flight capability. Application of 

these mass property data to validated computational models of body shape indicates that a 

feathered integument impacts mass distribution as significantly as other major organs (e.g. 

lungs). Additionally, the presence of a feathered integument further exaggerates existing 

differences in the mass distribution of extant archosaurs, whereby centre of mass is distant 

to the hip in the caudal direction in reptiles, and in the ventral direction in birds. By applying 

integument to models of three extinct bird-line dinosaurs (Coelophysis, Microraptor and 

Yixianornis), we track interactions between body proportions and integument during the 

evolution of flight. Our models demonstrate that feather evolution in bird-line ancestors 

acted to shift whole body centre of mass ventrally, providing increased inherent stability 

which would may have provided key mechanical benefits to early fliers, before the advent of 

complex neuromuscular control of flight behaviours. 
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3.2. Introduction 

Living archosaurs (crocodylians and birds) have evolved disparate body shapes that reflect 

adaptations to different locomotor styles, and ultimately different environmental and 

ecological niches. Crocodylians are characterised by a long streamlined body, relatively short 

limbs and a large muscular tail that drives both aquatic and terrestrial locomotion (Gatesy, 

1990, Reilly et al., 2005). By contrast, living birds lack this muscular tail and have evolved 

enlarged limbs, chest and neck regions and a reduced head (Allen et al., 2013, Gatesy, 1990, 

Gatesy and Dial, 1996). The body shape of living birds is intrinsically linked with two unique 

functional traits that underpin their exceptional ecological diversity: feather-assisted flight 

and the use of crouched hindlimbs in terrestrial locomotion (Gatesy and Biewener, 1991, 

Ostrom, 1974). Body shape shows a clear mechanistic link to both these remarkable traits: 

the enlarged forelimbs and reduced tail mean that the whole body centre of mass (CoM) is 

more cranially positioned (Allen et al., 2013, Jones et al., 2000a). This relatively cranial CoM 

position serves to reduce moments about the shoulder joint and therefore aids stability 

during flight, whilst placing the highly flexed hindlimbs beneath the CoM during bipedal 

behaviours (Carrano and Biewener, 1999, Gatesy and Biewener, 1991, Thomas and Taylor, 

2001). Building on earlier anatomical studies (Christiansen and Bonde, 2002, Gatesy, 1990, 

Gatesy and Dial, 1996, Gatesy and Middleton, 1997), the development of computer 

modelling approaches for quantifying mass distribution in fossils has revealed that this basic 

avian body plan evolved in a gradual step-wise pattern in non-avian dinosaurs (Allen et al., 

2013). This was reflected by an accelerated cranial shift in CoM occurring in early 

maniraptoran theropods with some degree of aerial capability (Allen et al., 2013). 

 

However, at present these evolutionary changes in body shape have been considered 

independently of the other major morphofunctional trait of birds - feathers. This is surprising 

given the role that feathers play in the mechanics and energetics of locomotion in birds 
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(McGowan, 1979, Ostrom, 1974), and the fact that feathers make up a substantial proportion 

of whole body mass (with published values up to 19% (Summers et al., 1992); see 

Supplementary Table 3.1). Furthermore, aerodynamic assessments of both living and fossil 

birds are also intrinsically influenced by the contribution of the feathered integument to 

body mass, mass distribution and wing area, through their role in determining both the 

aerodynamic forces required for flight, and the magnitudes of force generation possible 

(Alexander et al., 2010, Chatterjee and Templin, 2007, Dyke et al., 2013, Koehl et al., 2011). 

However, there are currently limited quantitative data on integumentary mass properties 

(e.g. volume, density) reported in the literature. It is therefore unknown to what extent 

integumentary (including feather) mass properties are adapted to locomotion and behaviour 

in living birds occupying different ecological niches, and no data to quantitatively reconstruct 

integument evolution in extinct taxa.  

 

Here, we combine new quantitative data on the mass properties of integument from living 

birds and non-avian sauropsids (Figure 3.1A) with validated computer models of body shape 

(Figure 3.1B) to address three novel questions about archosaur locomotor ecology and 

evolution. First, do integument mass properties correlate with life habits in extant birds? 

Second, does integument affect CoM position in extant birds, crocodylians and lizards (Figure 

3.1B)? Finally, we apply our integument dataset to models of bird-line dinosaurs (Figure 

3.1C), asking for the first time, what impact did the evolution of feathers have on CoM 

position during the early stages of flight evolution in bird-line theropods (Figure 3.1D)? 

 

3.3. Methodology 

3.3.1. Integument mass property data 

For our investigation into integument mass properties, samples were taken from 49 

specimens, from 33 species (17 birds, 5 crocodylians, 11 lizards). Three integument types  
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Figure 3.1: A: Diagrammatic representation of data collection protocol for integument mass 

properties. Mass and thickness measures were taken for the whole sample, and retaken after 

plucking of body feathers. Surface area calculated for remaining skin sample. B: Digital model 
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of iguana model in standardised posture. Shown from left to right as: skeleton with air 

cavities (in blue), overlying skin, and skin with centre of mass positions indicated. C: Digital 

model of Microraptor model in standardised posture. Shown from left to right as: skeleton 

with air cavities (in blue), overlying skin, and skin with centre of mass positions indicated. D: 

Schematic representing the phylogenetic relationships of the species modelled in this study 

(not to scale). 

  



Chapter 3 - Integument and body shape evolution 

109 
 

were identified a priori in the extant archosaurs studied here: scaly skin, non-flight feathers 

and flight feathers. Samples of each integument type were taken across a range of 

specimens, from numerous locations across the body attempting to capture the full extent 

of mass property variability within and between specimens. In 25 birds, skin samples with 

overlying feathers were taken from the head, neck, torso (including ventral, dorsal and 

lateral regions wherever possible), shoulder and both feathered and scaly areas of the 

hindlimb. For the flight feathers, samples were taken from 22 birds from the distal, middle, 

and proximal segments of the wing (to represent primary, secondary and tertiary flight 

feathers), along with caudal flight feathers. In nine non-avian sauropsid specimens, samples 

were taken from the pectoral and pelvic limbs, the dorsal, ventral and lateral surfaces of the 

tail and torso, the head wherever possible, and the scutes (in the case of crocodylians). 

 

For each integument type, the following methodology was followed, with minor alterations 

according to the differing natures of integument under investigation. Integument samples 

were extracted, and any non-integumentary structures removed (e.g. subcutaneous fat, 

vessels, etc). Each sample was weighed (±0.01g), a minimum of three thickness 

measurements were made using digital callipers (±0.1-0.01mm), and a scale photograph 

taken. In samples with overlying feathers, the samples were then plucked, and the mass and 

thickness measurements were repeated for the skin alone. From the scale photographs, 

surface area was calculated for all samples in ImageJ (imagej.nih.gov/ij), along with flight 

feather length (from the base of the rachis proximally, to the tip of the feather distally). 

Integument volumes were then calculated from these surface area and thickness data. By 

dividing these volumes by the recorded masses integument density was calculated. Full 

plucks were also conducted on an additional whole 13 avian specimens (see Supplementary 

Table 3.1). All feathers were plucked, and total feather mass was measured (±0.01g). Whole 

body mass was also recorded. 
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3.3.2. Statistical analysis of integument data 

Data on the density and thickness (and in the case of flight feathers, surface area and length) 

of each integument type were examined for trends with body mass, body region, phylogeny, 

feather type (where applicable) and locomotor type. The regions compared here 

corresponded to key body segments, as represented in our computer models (see below). 

For investigations into differences according to phylogeny, birds were grouped by taxonomic 

order, and non-avian sauropsids were classified as either crocodylian or lizard. Feather type 

was assessed during data collection, with feathers classified as either contour, down, 

filoplume, mixed or semiplume. For the purposes of our analyses, specimens were identified 

as belonging to one of five locomotor types (after Close and Rayfield, 2012, Martin-

Silverstone et al., 2015): continuous flapping flight, flap-gliding, soaring, burst-adapted flight 

and terrestrial. Details of the classifications of all specimens are in Supplementary Table 3.2. 

Statistically significant differences between groups were determined by Kruskal-Wallis or 

one-way ANOVA testing, for skewed and normally distributed data respectively. Where 

significant differences were detected (i.e. p<0.05), post-hoc testing was applied, using a 

Mann-Whitney U test or Tukey’s honestly significant difference test (according to the 

normality of the data’s distribution). All statistical analysis was done in R (www.r-

project.org). 

 

3.3.3. Digital modelling 

The models used here are those of Allen et al. (2013) and Macaulay et al. (2017) (but see 

Chapter 2 here) which have been previously validated and used in assessments of CoM, along 

with two previously unpublished models of Iguana iguana and Alligator mississippiensis (see 

Supplementary Table 3.3 for details of all models). These models are different specimens, 

which were not part of the original dataset from which integument was sampled. Briefly, skin 
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outlines were extracted from CT data (for extant organisms, using Avizo) following Macaulay 

et al. (2017), or reconstructed based on the digitised skeleton (for extinct taxa, using Maya) 

following Allen et al. (2013). Likewise, air cavities were modelled from CT data or 

reconstructed with reference to the skeletal material (Allen et al., 2013, Macaulay et al., 

2017). The models were then split into segments (e.g. for forelimb: upper arm, forearm and 

hand), and placed into a standardised posture, with forelimbs and hindlimbs outstretched 

medio-laterally and dorso-ventrally respectively (Figure 3.1B) (for full methodological details, 

see (Allen et al., 2013, Allen et al., 2009, Macaulay et al., 2017)). In recognition of the 

uncertainty surrounding soft tissue reconstruction in fossil taxa, maximum and minimum 

versions of these models were created to represent the maximal feasible range of segment 

volumes (Allen et al., 2013). 

 

Integument property data were applied to our models, informed by our statistical analyses 

comparing the properties of different regions across specimens (Supplementary Figure 3.1). 

Where statistically significant differences were found between regions for a given property, 

it was applied heterogeneously across the model. If no significant differences were 

identified, an average value (mean/median according to the normality of the data’s 

distribution) was applied. Of the four integument types, across their nine properties, seven 

were heterogeneous across models, and two (general body feather density and bird skin 

thickness) were homogeneous (see Supplementary Table 3.4). These differences between 

integument in other regions are presented in Supplementary Figure 3.1; summary of data 

applied to models in Supplementary Table 3.5. 

 

In order to calculate a mass for the integument overlying each segment, it was necessary to 

determine an integument volume, to which our derived density values could be applied. The 

area of the integument-bearing surface only (i.e. excluding the artificial surfaces which lay 
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inside joints between segments) was determined for each segment using FormZ 

(www.formz.com). This area, multiplied by the appropriate thickness value from our dataset, 

produced an estimation of integument volume for each segment. This protocol assumed, for 

each segment, that integument CoM was equal to the CoM of the skin outline; i.e. the flesh 

component of our model segments. This assumes that the integument outline followed the 

contours of the skin outline, that integument thickness was constant within each segment, 

and that regions not bearing integument would have a small effect on integument CoM for 

each segment. Although not strictly biologically accurate, these assumptions allowed simple, 

consistent application of integument to models, and are unlikely to appreciably impact whole 

body CoM position (see sensitivity analysis on flight feather CoM position outlined below, 

and see Supplementary Text 3.1 for details). 

 

Representations of the flight feathers were included, given that they constitute a substantial 

proportion of the feather mass for birds (published values of up to 26%, DesRochers et al., 

2010) and should exert a relatively large effect on whole body CoM due to their distal 

positioning on the forelimb. However, wing shape is highly variable, even within extant taxa 

(Wang and Clarke, 2015), making a rigorous reconstruction of flight feathers surfaces 

challenging. This is especially true for fossil taxa, which have been suggested to possess traits, 

including tetrapteryx flight (Xu et al., 2003) and unusual wing compositions (Longrich et al., 

2012), which have no modern homologue. We therefore included only a simplistic 

representation of the flight surfaces. A sensitivity analysis was conducted to assess the 

impact of subjective modelling decisions regarding the geometries and mass properties of 

the flight surfaces. Flight feathers were considered separately for each segment of the wing 

and the tail (plus shank and metatarsal for Microraptor model (Xu et al., 2003)). The thickness 

and lengths of these flight surfaces were dictated by our integument dataset. Combined with 

specimen-specific segment lengths taken from the models, and our integument density data, 
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a mass for each flight surface was calculated. Determination of a CoM position for each flight 

surface required more subjective decisions. CoM position was dictated by the geometry of 

the flight surfaces, which are variable even between extant species, and can be varied in vivo 

under neuromuscular control. We assessed the difference made to overall CoM position with 

a range of flight surface geometries and orientations, all grounded in the empirical data 

collected here. We compared these results with those obtained if it was assumed that flight 

surface CoM was equal to the CoM of the flesh component of each segment (as was done 

for the general body feathers). Our sensitivity analysis showed only small differences 

between these model variants (< 1.5mm, see Supplementary Text 3.1). We therefore 

proceeded with the simplest solution: assuming that all components of a segment share the 

same CoM, the CoM of the flesh component. 

 

Mass data were calculated for flesh components using a density of 1000kgm-3; and zero 

density for air cavities. Centre of mass was then determined for these components from the 

closed skin outlines and air cavities using FormZ. The centres of mass for all components 

were summed to give segment, and subsequently whole organism, CoM, according to the 

following equation: 

 

𝐶𝑜𝑀𝑊 =
𝛴(𝐶𝑜𝑀𝑠  ∗  𝑚𝑎𝑠𝑠𝑠) −  𝛴(𝐶𝑜𝑀𝑎  ∗  𝑚𝑎𝑠𝑠𝑎)

𝛴(𝑚𝑎𝑠𝑠𝑠) −  𝛴(𝑚𝑎𝑠𝑠𝑎)
 

Equation 3.1 

 

Where CoMW is the centre of mass of the whole organism (or simply ‘CoM’ in the remainder 

of this study), CoMS and massS refer to segment mass properties (i.e. flesh and integument 

components) and CoMa and massa refer to air cavity mass properties. 
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3.4. Results 

3.4.1. Do integument mass properties correlate with ecology and locomotion in 

archosaurs? 

Here, we present key results from our investigations of integumentary mass properties. 

These only represent a selection of the 42 analyses conducted. 

 

Flight feather density, length and thickness were all found to vary significantly between the 

different locomotor and phylogenetic groups studied here (Figure 3.2A-C). Notably, with 

increasing flight ability (from purely terrestrial, through burst-adapted flight, to other fully 

aerial flight behaviours), flight feather density decreased (Figure 3.2A), while feather length 

and thickness both increased (Figure 3.2B and C). Additionally, flight feather surface area was 

found to correlate with locomotor type (Figure 3.2D). The surface areas of the individual 

flight feathers of weaker fliers (i.e. terrestrial and burst-adapted) were low; birds favouring 

soaring and gliding behaviours had high surface areas; while those using continuous flapping 

represented an intermediate group (Figure 3.2A). Further significant differences were found 

between the different types of flight feather (i.e. primary, secondary, tertiary and caudal). 

Each feather type was significantly distinct in length, primary feathers were significantly 

thicker than all others, and primary and caudal feathers were more dense (Supplementary 

Figure 3.1C-E). 

 

Examination of the mass property data for scaly integument highlighted significant 

differences in the density and thickness of scaly skin from lizards, crocodylians and birds 

(Figure 3.3A). Different feather types (i.e. contour, filoplume, semiplume) also displayed 

significant differences in their density and thickness (Figure 3.3B and C). General body 

feathers showed insignificant variance in density across phylogenetic and locomotor groups. 

However, their thickness varied significantly between the wholly terrestrial ratites and the  
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Figure 3.2: Flight feather properties (A: density, B: length, C: thickness, D: surface area) 

showing differences between birds of different locomotor types. Significant differences were 

determined and are indicated by text over each bar (where * indicates significant difference 

to all other groups, and letters indicate significant differences to another group - B: Burst-

adapted flight, C: Continuous flapping, F: Flap-gliding, S: Soaring, T: Terrestrial). N = 140 flight 

feathers from 22 specimens. 

 

For box and whisker plots (A): black line represents median value, box represents interquartile 

range, the whiskers mark the maximum and minimum values within 1.5 interquartile ranges 

of the box extremes and any values outside this range are displayed as points. 
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For bar charts (B-D): the mean value is plotted, with 95% confidence limits displayed as error 

bars.  
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Figure 3.3: Integument properties (A: scaly skin density, B: feather density, C & D: feather 

thickness, E & F: skin thickness) showing differences between different taxonomic groups (A, 

D, E), different feather types (B, C) and different locomotor types (F). Significant differences 
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were determined and are indicated by text over each bar (where * indicates significant 

difference to all other groups, and letters indicate significant differences to another group). 

Abbreviations for taxonomic groups in D & E - A: Accipitriformes, Ca: Casuariiformes, Co: 

Columbiformes, F: Falconiformes, Ga: Galliformes, Gr: Gruiformes, Pa: Passeriformes, Ps: 

Psittaciformes, Su: Struthioniformes. N = 152 scaly skin samples from 22 specimens; 155 

feathered skin samples from 27 specimens. 

 

For box and whisker plots (A-C): black line represents median value, box represents 

interquartile range, the whiskers mark the maximum and minimum values within 1.5 

interquartile ranges of the box extremes and any values outside this range are displayed as 

points. 

For bar charts (D-F): the mean value is plotted, with 95% confidence limits displayed as error 

bars. 
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other birds included in this study (i.e. Neognathae), all of which are capable of flight (Figure 

3.3D). Similarly, the thickness of the skin underlying these feathers varied significantly 

between phylogenetic and locomotor groups (Figure 3.3E and F), whereas skin density did 

not. These differences were more complex than those seen in feather thickness, with 

differences present between neognath groups (Figure 3.3E), and several locomotor types 

(Figure 3.3F). 

 

There were also numerous significant differences detected in the mass properties of 

integument between different regions (Supplementary Figure 3.1). These differences 

impacted model construction, and are outlined in Section 3.3.3. 

 

3.4.2. How does integument impact mass distribution in extant archosaurs? 

Results from digital models, normalised by body mass, are outlined here (Figure 3.4). Models 

displaying raw CoM positions are shown in Figure 3.5, and graphically presented in 

Supplementary Figure 3.2. 

 

First, we outline the differences between our various model iterations, comparing CoM 

position from models with flesh, flesh with air cavities, and the latter model with integument 

added (Figure 3.4A). Extant birds and non-avian sauropsids were affected differently by the 

addition of both air cavities and integument, relative to the ‘flesh-only’ models. In non-avian 

sauropsids, CoM was strongly shifted in the caudal direction, while birds displayed a notable 

ventral shift (Figure 3.4A). For two of the three bird specimens (chicken and duck), adding 

integument had a markedly greater effect on CoM position than adding air cavities (225 and 

346% greater shifts respectively). The two birds where this was the case did have poorly 

inflated air cavities; however, a sensitivity analysis showed that even drastic increases in air 

cavity volume (+ 300%) or extreme shifts in air cavity CoM position (+ 30mm) did not negate  
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 Figure 3.4: CoM positions for all models, normalised by body mass0.33, with convex hulls 

around specimens from the same groups. Displayed A: relative to flesh CoM (displayed as ‘x’, 

set to 0 0 0 in x y z coordinates for all models) and B: relative to right hip (displayed as ‘x’, at 

0 0 0 in xyz coordinates for all models). Different colours represent different taxa as per the 

legend. Lightly shaded icons: flesh only models; hollow icons: flesh and air cavities; filled 

icons: flesh, air cavities and integument.  
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Figure 3.5: Digital models showing skin outlines (grey) and air cavities (blue) for Coelophysis 

(maximum model) (A), Microraptor (maximum model) (B), Yixianornis (maximum model) (C), 

alligator (D) and duck (E). Centre of mass positions indicate by coloured spheres, see key for 

detail. Models are not to scale.  
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this effect (see Supplementary Text 3.2). In the three non-avian sauropsid taxa, the effect of 

adding integument was markedly less than adding air cavities (16-70%). 

 

The CoM positions of these specimens, showing the effects of adding different components, 

were also plotted relative to the right hip (Figure 3.4B). As above, the different groups 

mapped differently. However, here the extant groups were separated in the dorso-ventral 

rather than the cranio-caudal direction. Extant non-avian sauropsids displayed low variance 

in the dorso-ventral plane, with their CoM positions grouping around the level of the hip; 

there was much greater variablity in the cranio-caudal direction (Figure 3.4B). Addition of 

both air cavities and integument resulted in a more caudal CoM position, with the most 

drastic shift seen in the iguana (Figure 3.4B). The addition of air cavities and integument to 

extant bird models resulted in a ventral shift of CoM position relative to the hip. The degree 

of shift varied across the three species from very little in the duck to a moderate shift in the 

buzzard (approximately 50% of the shift seen in the iguana). Substantial variation can be seen 

in CoM position, both in the dorso-ventral and cranio-caudal directions when observed 

relative to hip position for the three bird specimens. The three extant birds studied here 

exhibited distinct CoM positions, with some as similar to the fossil taxa as they were to the 

other extant birds, even when considering the extensive range of possible body forms tested 

here for fossil taxa. 

 

3.4.3. How did feather evolution impact CoM position during theropod 

evolution? 

When plotted relative to the ‘flesh-only’ models, the fossil species studied here showed 

intermediate responses of CoM to integument, relative to the extant taxa (Figure 3.4A). 

These responses were consistent with their phylogenetic position and body shape. The 

Triassic theropod Coelophysis demonstrated a more plesiomorphic response, similar to the 
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extant non-avian sauropsids, with a moderate caudal CoM shift. Meanwhile, the Cretaceous 

taxa Microraptor (a heavily feathered non-bird) and Yixianornis (a bird, close to crown group 

Aves) both showed more derived responses, with the CoM shifted ventrally, similar to the 

extant birds (Figure 3.4A). 

 

When plotted relative to the right hip (Figure 3.4A), the three fossil taxa modelled here had 

CoMs fairly distinct from the other specimens. The CoM of Coelophysis had some overlap 

with the extant bird group (closest to the duck), and was distinct from the extant non-avian 

sauropsid species in the dorso-ventral dimension. Microraptor and Yixianornis had CoMs 

both somewhat similar to one extreme of the bird group (the chicken and buzzard 

respectively), with similar distances between these species to those evident between the 

different extant bird species. 

 

3.5. Discussion 

3.5.1. Ecological and functional adaptations in integumentary structures 

Our examination of the physical properties of flight feathers here revealed numerous 

statistically significant differences between birds that favour different locomotor behaviours 

(Figure 3.2A-D). In particular, we identified several parameters with strong correlations to 

flight capability that represent mechanical and aerodynamic adaptations for flight (Figure 

3.2A-D). Comparisons of flight feather length and surface area showed strong trends to 

greater individual feather dimensions with increasing flight ability (Figure 3.2B and D). This 

matches evidence that flight feather length and whole wing surface area generally increase 

with increasing flight ability, especially for gliding and soaring behaviours (Lindhe Norberg, 

2002, Wang et al., 2011). Flight feather thickness also increased with increasing flight ability 

(Figure 3.2C). This morphological change would increase the structural stability of feathers, 

making them more able to resist bending moments during flight (Nudds and Dyke, 2010).  
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A further structural change to flight feathers in birds with greater flight abilities was indicated 

by a decrease in density from terrestrial birds to soaring and gliding birds (Figure 3.2A). These 

lower density feathers would serve to slightly reduce the mass of the whole bird, and perhaps 

more importantly the mass of the distal wing segment during flight, perhaps resulting in 

increased efficiency. Our results also revealed that different types of flight feathers had 

different densities (Supplementary Figure 3.1C). Flight feathers were split into two groups, 

with primary and caudal feathers possessing higher densities, while secondary and tertiary 

feathers were less dense (Supplementary Figure 3.1C). We suggest this is a reflection of the 

different functional demands placed on these feathers, also evident in their different 

morphologies.  

 

The significantly greater thickness of primary flight feathers is a further indication of the 

different morphology of feathers with more rigorous functional requirements 

(Supplementary Figure 3.1D), reflecting the thicker rachis required to resist greater bending 

moments nearer the wing tip (Nudds and Dyke, 2010). Similarly, the differences detected in 

the density and thickness of the different general body feather types (i.e. contour, filoplume, 

semiplume etc) are logical reflections of their different functions and match the visible 

morphological differences (Figure 3.3B and C). General body feathers did not vary in density, 

but did vary in thickness, across locomotor and phylogenetic groups (Figure 3.3D). However, 

these properties were both constant within Neognathae. This consistency hints that these 

physical properties are dictated by another function of feathers, for example 

thermoregulation, which would likely exert a greater selection pressure than locomotion on 

these generalised feathers. 
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Overall, our analysis reveals how flight capabilities and ecology are correlated with simple 

geometrical measurements taken from flight feathers. These correlations indicate the 

potential to inform conclusions on the locomotor behaviours of extinct taxa, with simple 

geometry serving as predictors of relative flight capability in fossils with feather preservation. 

Our models and data can also contribute to more complex aerodynamics simulations in 

extant and extinct taxa. However, herein we used our dataset to examine the evolution of 

integument and body shape in archosaurs (Figure 3.1D). 

  

3.5.2. Functional consequences of the evolution of body shape and integument 

Our models (Figure 3.5) are the first to explicitly incorporate empirical integumentary data 

into mathematical assessments of body shape in archosaurs, in order to use CoM position to 

investigate the impact of feather evolution on the evolution of flight in theropod dinosaurs. 

This was made possible by our experimental dataset, which enabled inclusion of 

heterogeneous integumentary surfaces to our models where appropriate. This allows us to 

address the role of integument in body shape evolution in detail (Figure 3.4). 

 

Examination of fossil taxa can provide unprecedented insights into transitional 

morphologies. They provide important insights into the functional ecology of these 

transitional species, which are unlike anything alive today. By gradual application of 

components to each of our models, our methodology and results simulated the changes 

associated with the evolution of a feathered integument, while keeping all other aspects of 

the model constant. Comparing our ‘flesh-only’ CoM data to our complete CoM estimates 

(including air cavities and integument), it is evident that extant birds and non-avian 

sauropsids were affected differently by the addition of integument to models (Figure 3.4A). 

This effect was related to their different body plans, as well as their different integumentary 

coverings. In particular, the Triassic theropod Coelophysis displays a plesiomorphic response 
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to the addition of integument; more like the extant non-avian sauropsids studied here; 

whereas the feathered maniraptorans Microraptor and Yixianornis display more ‘bird-like’ 

responses (Figure 3.4A). In the case of Coelophysis and Microraptor in particular, these fossil 

species possess transitional body plans between those of ancestral Sauropsida and Aves. The 

result that they group with the modern non-avian sauropsids and birds respectively, 

indicates that it was specifically the integument type (scaly versus feathered) that strongly 

influenced these different effects on CoM (Figure 3.4). This effect was further confirmed by 

application of a purely scaly integument to Microraptor (see Supplementary Text 3.3). In two 

of the three bird species, the effect of adding integument was greater than that of adding air 

cavities (Figure 3.4). In contrast, in all three extant non-avian sauropsids, the effect of air 

cavities was greater than integument (Figure 3.4). Air cavity volumes were no larger in these 

non-avian sauropsids relative to body mass than in the bird specimens, again suggesting that 

it was integumentary differences driving this disparity in the effects of air cavities and 

integument on CoM position (Figure 3.4A). Feathers have varied properties across the body 

as well as varied distributions, both of which would contribute to a more substantial impact 

on whole body CoM (Figure 3.4A). 

 

Absolute CoM positions provide insights into the functional ecology of organisms (Alexander, 

1985, Allen et al., 2013, Gatesy and Biewener, 1991, Henderson, 2004, Maidment et al., 

2014, Sellers et al., 2017, Henderson, 2018) (Figure 3.4B). A cranial shift of CoM position in 

bird-line archosaurs occurred alongside the evolution of aerial capabilities (Allen et al., 2013). 

A more craniad CoM, combined with modified wing positions (together determining centre 

of lift and the forces acting about it) contributes to the improved stability of birds in gliding 

and flapping flight behaviours (Taylor and Thomas, 2002, Thomas and Taylor, 2001). 

Alongside the evolution of flight, a novel feathered integument was also evolving, facilitating 

the development of increasingly aerial behaviours (Dial, 2003, Ostrom, 1974, Padian and 
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Chiappe, 1998). Our results show that increased feathering also changed the CoM of 

maniraptoran theropods, producing a marked CoM shift in the ventral direction as evident 

in all five feathered specimens studied here (Figure 3.4B). This too is a benefit for stable flight 

- a more ventral CoM relative to the centre of lift produced by the wings provides passive 

’pendulum’ stability to the system by resisting pitch (about the left-right axis) and roll (about 

the cranio-caudal axis) (Thomas and Taylor, 2001). The stability conferred by having a more 

ventral CoM is likely a key factor in the overwhelming success of birds in aerial environments, 

enabling them to develop a huge range of flight morphologies, unlike other extant flying 

vertebrates (Thomas and Taylor, 2001).  

 

There are some similarities in our results when comparing absolute CoMs relative to ‘flesh-

only’ models (Figure 3.4A), and assessing CoMs relative to the right hip joint (Figure 3.4B). 

These similarities are evident in the extant taxa: non-avian sauropsids vary mostly in cranio-

caudal CoM position, as reflects their body plan. Birds again show substantial CoM variability 

in the dorso-ventral plane across the species studied here. This CoM variability is likely 

indicative of the more diverse morphologies (in particular different body segment 

proportions) of the bird specimens in comparison to non-avian sauropsids. In plots of CoM 

positions relative to the hip joint (Figure 3.4B), Coelophysis showed an overlap with the bird 

group. Though Coelophysis was chosen as a representative early dinosaur species, its body 

plan was more derived than in other non-avian sauropsids due to the elongate hindlimbs, 

but it lacked the more derived, enlarged forelimbs typical of extant avians. Examination of 

first mass moment data for the various components of this model indicate that it was the 

long hindlimbs of Coelophysis that drove this ventral CoM shift, exerting a much greater 

influence (at least double) on whole body CoM relative to body mass than in extant non-

avian sauropsids (Supplementary Text 3.4). Microraptor and Yixianornis were both distinct 

from the extant bird group (Figure 3.4B), reflecting differences in their morphology - neither 
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had mass properties equivalent to our extant bird subjects. Though our extant bird sample 

is a decent representation of the ancestral avian body plan, it is possible that incorporation 

of a larger sample of living birds (e.g. tinamous, other Galloanseres and Neoaves) would 

result in overlap with the fossil taxa. The large ventral shift in the CoM of Microraptor was 

driven by the elongate hindlimbs, exerting a much greater (almost four times) influence 

relative to body mass than in Yixianornis (Supplementary Text 3.4). 

 

It should be noted that the alligator specimen used here was a young juvenile (body mass: 

0.6kg). Previous studies have found significant differences in whole body CoM between adult 

and juvenile crocodiles (Allen et al., 2009). Though no research has been published in this 

area, it would be expected that alligators would show similar differences across their 

ontogenetic development. Addition of a wider ontogenetic range of alligators and crocodiles 

to this dataset would therefore be likely to expand the envelope of CoM positions 

established here for reptiles, as would the addition of a wider range of bird species (Figure 

3.4). These additions would be of great benefit to future work seeking to interpret the CoM 

positions of fossil archosaurs in order to predict their locomotor capabilities. 

 

3.6. Conclusion 

We conclude that the magnitude of the effects of adding integument, along with the variable 

effects across specimens, even within Aves, indicates that integument should be 

incorporated into future volumetric models seeking to precisely determine CoM position in 

feathered archosaurs. The effects of integument were often at least as great as adding air 

cavities, which have long been included as standard in volumetric modelling approaches (e.g. 

Alexander, 1985, Bates et al., 2009b, Henderson, 1999, Hutchinson et al., 2007). 

Furthermore, our comparison of integumentary effects on CoM in archosaurs with different 

body plans (Figure 3.4) reveals important biomechanical consequences with clear links to 
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evolutionary changes in locomotor function and ecology. Thus, we infer that the evolution 

of integument amplified changes in CoM positions between birds and earlier sauropsids 

(Allen et al., 2013). The evolution of the highly specialised feathered integument in bird-line 

archosaurs, through its effect on mass distribution alone, also served to confer important 

mechanical advantages and therefore functional benefits, aiding the evolution of flight and 

contributing to the success of birds in their occupation of aerial ecological niches. 
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3.7. Supplementary Information 

Supplementary Text 3.1: Details of the sensitivity analysis on the effect of flight feather 

geometry on CoM position. 

 

Flight feathers make up approximately 20% of total feather mass in extant birds (DesRochers 

et al., 2010, Summers et al., 1992). This, along with their position, at large distances from the 

whole body CoM, mean they are likely to exert a substantial effect on whole body CoM 

position. To explicitly include flight feathers in our models, data was required on their mass, 

and CoM position. Mass was calculated for each series of flight feathers (primary, secondary, 

tertiary and caudal) directly from our dataset on feather mass properties. However, 

determination of a suitable CoM position was more subjective. We therefore sought to 

investigate the effect of different flight feather CoM positions on whole body CoM position 

to determine the most effective method for inclusion in our final models. 

 

In this sensitivity analysis, for the three extant bird specimens, we considered the following 

scenarios: 

- SA0 - flight feather CoM is equal to the ‘flesh’ CoM for the corresponding segment 

(e.g. primary feather CoM = hand flesh CoM) 

- SA1 - ventrally directed wing flights, wide tail feathers 

- SA2 - ventrally directed wing flights, narrow tail feathers 

- SA3 - caudally directed wing flights, wide tail feathers 

- SA4 - caudally directed wing flights, narrow tail feathers 

In SA1-4, the three wing flight surfaces were represented by cuboids, one per wing segment 

(see Supplementary Text 3.1.1). Flight surface length was calculated as an average from our 

integument dataset, width from model specific segment length, and thickness set to 5mm 

(thickness did not affect CoM position, it only assisted with visualising and positioning of the 
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flight surfaces). Wing flight surfaces were directed either ventrally (in accordance with the 

orientation of the rest of the wing), or caudally (to represent the in vivo condition). The flight 

feather surface of the tail was a semicircle (wide variant) or quarter circle (narrow variant) 

to assess the impact of the kind of variation seen in vivo. In both cases, the circle radius was 

set to the average caudal feather length from our dataset (see Supplementary Text 3.1.1). 

 

In all birds, the differences between whole body CoM positions calculated from each 

iteration of the sensitivity analysis were small when compared to the original model (SA0). 

Maximum differences were 1.5mm, 0.9mm and 0.9mm for the buzzard, chicken and duck 

specimens respectively (see Supplementary Text 3.2). These differences are small, and the 

process of modelling flight surfaces is inherently subjective. In contrast, SA0 (which produces 

similar CoM estimates) assumes that flight feather CoM is equal to flesh CoM for the same 

segment. This approach is objective and repeatable, and therefore we proceeded to use the 

SA0 models. 

Supplementary Text 3.1.1: Rendering of buzzard model showing caudally (A) and ventrally 

orientated (B) wing flight surfaces, and narrow (A) and wide (B) tail flight surfaces as included 

in sensitivity analysis. 
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Supplementary Text 3.1.2: Data from 5 iterations of bird models examining the effects of 

changing flight feather CoM position. CoMs presented in two dimensions, cranio-caudal and 

dorso-ventral respectively. Air cavity shift (mm) calculated as the distance between the 2D 

flesh CoM and flesh-air cavities CoM. Integument shift (mm) calculated as the distance 

between the 2D flesh-air cavities CoM and the flesh-air cavities-integument CoM. Distance 

to SA0 (mm) is 2D distance to the flesh-air cavities-integument CoM of SA0. 

Buzzard SA0 SA1 SA2 SA3 SA4 

Flesh CoM 
62.8 62.8 62.8 62.8 62.8 

-26.2 -26.2 -26.2 -26.2 -26.2 

Flesh-air cavities CoM 
66.0 66.0 66.0 66.0 66.0 

-29.3 -29.3 -29.3 -29.3 -29.3 

Flesh-air cavities-
integument CoM 

63.7 63.3 63.2 62.5 62.3 

-30.2 -30.9 -30.8 -30.0 -29.9 

Air cavity shift 4.43 - - - - 

Integument shift 2.47 - - - - 

Distance to SA0 - 0.82 0.87 1.30 1.49 

Chicken SA0 SA1 SA2 SA3 SA4 

Flesh CoM 
51.0 51.0 51.0 51.0 51.0 

-33.7 -33.7 -33.7 -33.7 -33.7 

Flesh-air cavities CoM 
50.3 50.3 50.3 50.3 50.3 

-34.7 -34.7 -34.7 -34.7 -34.7 

Flesh-air cavities-
integument CoM 

52.6 51.9 51.8 51.9 51.7 

-36.0 -36.0 -36.0 -36.0 -36.0 

Air cavity shift 1.16 - - - - 

Integument shift 2.62 - - - - 

Distance to SA0 - 0.71 0.82 0.75 0.87 

Duck SA0 SA1 SA2 SA3 SA4 

Flesh CoM 
57.0 57.0 57.0 57.0 57.0 

-21.1 -21.1 -21.1 -21.1 -21.1 

Flesh-air cavities CoM 
56.4 56.4 56.4 56.4 56.4 

-21.6 -21.6 -21.6 -21.6 -21.6 

Flesh-air cavities-
integument CoM 

58.9 58.2 58.1 58.1 58.0 

-21.8 -21.9 -21.9 -21.8 -21.9 

Air cavity shift 0.71 - - - - 

Integument shift 2.47 - - - - 

Distance to SA0 - 0.70 0.82 0.74 0.86 
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Supplementary Text 3.2: Details of the sensitivity analysis on the impact of bird air cavity 

volume on CoM. 

 

In two of our bird specimens (chicken and duck), CoM position was affected more by the 

addition of integument than the addition of air cavities. The air cavities in these two birds 

were deflated due to conditions between collection and CT scanning. We sought to 

determine if our observation (that a feathered integument had a greater effect on CoM 

position than air cavities in these specimens) was real, or an artefact resulting from the 

deflated air cavities. 

 

For both specimens, we examined seven versions of the models, including the originals. 

These model iterations included changes to air cavity volume (and therefore mass) and CoM 

position, in order to reflect a more life-like condition. Model iterations in the sensitivity 

analysis were as follows: 

- SA0 - original model 

- SA1 - torso air cavity volume increased by 150% 

- SA2 - torso air cavity volume increased by 200% 

- SA3 - torso air cavity volume increased by 300% 

- SA4 - torso air cavity CoM moved dorso-caudally 10mm 

- SA5 - torso air cavity CoM moved dorso-caudally 30mm 

- SA6 - torso air cavity volume increased by 200% & CoM moved dorso-caudally 30mm 

Air cavity volume was increased in both specimens to a maximum of 300%, at which point 

air cavity volume represents 15% of torso volume, as expected for birds (Henderson, 2010). 

Air cavity CoM was moved incrementally dorso-caudally. A 30mm dorso-caudal shift is a 

drastic shift, in both specimens this puts the CoM just outside the torso flesh outline (see 

Supplementary Text 3.2.1). 
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For the duck, all model iterations maintained the observed trend - integument had a greater 

impact on CoM position than air cavities (see Supplementary Text 3.2.2). For the chicken, 6 

out of 7 model iterations (with the exception of SA3) maintained the observed trend - 

integument had a greater impact on CoM position than air cavities (see Supplementary Text 

3.2.3). For the majority of the extreme scenarios covered by our sensitivity analysis, the 

observed trend is maintained. We therefore conclude that our observation of a greater 

impact of integument than air cavities on CoM is true, not an artefact of air cavity deflation. 

Supplementary Text 3.2.1: Renderings of duck (A) and chicken (B) models. Showing skin 

outline (grey), air cavities (blue), right hip (black sphere), flesh CoM (red sphere), and three 

versions of CoM position of the torso air cavity (light blue spheres). 

 

Supplementary Text 3.2.2: Data from 9 iterations of duck model examining the effects of 

changing air cavity properties. CoMs presented in two dimensions, cranio-caudal and dorso-
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ventral respectively. Air cavity shift (mm) calculated as the distance between the 2D flesh 

CoM and flesh-air cavities CoM. Integument shift (mm) calculated as the distance between 

the 2D flesh-air cavities CoM and the flesh-air cavities-integument CoM. Greater shifts are 

highlighted in red. 

 SA0 SA1 SA2 SA3 SA4 SA5 SA6 

Flesh CoM 
57.0 57.0 57.0 57.0 57.0 57.0 57.0 

-21.1 -21.1 -21.1 -21.1 -21.1 -21.1 -21.1 

Flesh-air cavities 

CoM 

56.4 56.8 57.3 58.2 56.0 55.3 54.9 

-21.6 -21.7 -21.8 -22.1 -21.2 -20.5 -19.5 

Flesh-air cavities-

integument CoM 

58.9 59.3 59.7 60.5 58.6 57.9 57.7 

-21.8 -21.9 -22.0 -22.2 -21.5 -20.9 -20.1 

Air cavity shift 0.71 0.59 0.76 1.53 0.92 1.80 2.65 

Integument shift 2.47 2.44 2.40 2.32 2.55 2.69 2.88 

 

Supplementary Text 3.2.3: Data from 9 iterations of chicken model examining the effects of 

changing air cavity properties. CoMs presented in two dimensions, cranio-caudal and dorso-

ventral respectively. Air cavity shift (mm) calculated as the distance between the 2D flesh 

CoM and flesh-air cavities CoM. Integument shift (mm) calculated as the distance between 

the 2D flesh-air cavities CoM and the flesh-air cavities-integument CoM. Greater shifts are 

highlighted in red. 

 SA0 SA1 SA2 SA3 SA4 SA5 SA7 

Flesh CoM 
51.0 51.0 51.0 51.0 51.0 51.0 51.0 

-33.7 -33.7 -33.7 -33.7 -33.7 -33.7 -33.7 

Flesh-air cavities 

CoM 

50.3 50.3 50.2 50.1 50.0 49.2 48.0 

34.7 -35.1 -35.6 -36.6 -34.3 -33.6 -33.3 

Flesh-air cavities-

integument CoM 

52.6 52.6 52.6 52.6 52.3 51.7 50.8 

-36.0 -36.4 -36.8 -37.6 -35.7 -35.1 -35.0 

Air cavity shift 1.16 1.57 2.01 2.95 1.17 1.71 3.00 

Integument shift 2.62 2.63 2.64 2.66 2.72 2.91 3.24 
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Supplementary Text 3.3: Comparison of feathered and scaly Microraptor models. 

 

We sought to investigate the difference in the observed magnitudes of CoM shifts between 

feathered and scaly integument types, particularly in the fossil species Coelophysis and 

Microraptor which possess broadly similar body plans. This was achieved by application of a 

purely scaly integument to our Microraptor models, with the same thickness and density 

data as applied to the non-avian sauropsid and Coelophysis models. 

 

For the minimum Microraptor model, the addition of scaly integument resulted in a small 

CoM shift from the ‘flesh + air cavities’ model (absolute 2D distance: 1.57mm), 53% of the 

shift produced by the addition of a fully feathered integument (2.98mm) (see Supplementary 

Text 3.3.1). The maximum Microraptor model displayed a greater difference in CoM position 

produced by scaly versus feathered models, with a scaly integument having only 38% of the 

effect on CoM (1.19mm vs 3.11mm) (see Supplementary Text 3.3.1). These results confirmed 

our observation that it is feathered integument specifically, that results in large CoM shifts. 
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Supplementary Text 3.3.1: Raw CoM positions for all models, with convex hulls around 

specimen from the same groups. Displayed A: relative to flesh CoM (displayed as ‘x’, set to 0 

0 0 in xyz coordinates for all models) and B: relative to right hip (displayed as ‘x’, at 0 0 0 in 

xyz coordinates). Different colours represent different taxa as per the legend. Lightly shaded 

icons: flesh only models; hollow icons: flesh + air cavities; filled icons: flesh + air cavities + 

integument.  
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Supplementary Text 3.3.2: CoM positions for all models, normalised by body mass0.33, with 

convex hulls around specimens from the same groups. Displayed A: relative to flesh CoM 

(displayed as ‘x’, set to 0 0 0 in xyz coordinates for all models) and B: relative to right hip 

(displayed as ‘x’, at 0 0 0 in xyz coordinates). Different colours represent different taxa as per 

the legend. Lightly shaded icons: flesh only models; hollow icons: flesh and air cavities; filled 

icons: flesh, air cavities and integument.  
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Supplementary Text 3.4: Summary of first mass moment data for nine models. 

 

In order to investigate which segments were driving CoM differences between our 

specimens, first mass moments (FMMs) were calculated for each segment, including all 

component parts (i.e. flesh, integument, air cavities). 

 

FMM was calculated for each segment according to the following equation: 

 

𝐹𝑀𝑀 = (𝐶𝑜𝑀𝑊 − 𝐶𝑜𝑀𝑆) ∗ 𝑚𝑎𝑠𝑠𝑆 

Equation 3.2 

 

Where CoMW is the centre of mass of the whole organism and CoMS and massS refer to 

segment mass properties. FMMs were calculated in the cranio-caudal and dorso-ventral 

dimensions, using the y and z components of the CoM respectively. Where necessary, the 

resulting FMMs were summed to produce one value for the necks and tails which were 

represented by numerous sections in the models. Additionally, FMMs for the limbs were 

doubled, to account for the missing contralateral limb pair. This raw FMM data is presented 

at Supplementary Text 3.4.1 - 3.4.3. When drawing comparisons between specimens, 

summed FMM data were normalised by specimen body mass, as predicted by our models. 

 

FMMs for extant, non-avian sauropsid models (see Supplementary Text 3.4.1) were high for 

the axial components, in both cranio-caudal and dorso-ventral directions. A large caudally 

directed FMM for the tail was particularly evident in the crocodile and alligator, reflecting 

their muscular tails relative to the iguana. Hindlimb FMMs were relatively large in ventral 

direction, due to their orientation in models. The influence of integument and air cavity 
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components on FMMs were generally small, but varied across specimens, and across 

segments within specimens. 

 

FMMs for extinct fossil taxa studied here show variation across specimens, reflecting the 

substantial morphological differences between the three species (see Supplementary Text 

3.4.2). The FMMs for the tails of Coelophysis and Microraptor were large in the caudal 

direction, similar to those of the extant crocodylians, reflecting their similar morphology 

(Supplementary Text 3.4.2). Relative to whole body mass, FMMs for the hindlimbs of 

Coelophysis were high in comparison to the extant non-avian sauropsids. This difference was 

driven by both a greater limb mass, and a slightly greater limb length relative to body mass. 

The FMMs of the forelimbs transition from a more plesiomorphic condition to a more 

derived, ‘bird-like’ condition in Microraptor in the cranio-caudal direction and Yixianornis in 

the dorso-ventral direction (Supplementary Text 3.4.2). The hindlimb of Microraptor was 

found to drive the ventral CoM seen in that taxa, with a much greater hindlimb FMM present 

compared to Yixianornis as a result of a substantially larger limb mass and longer length 

relative to body mass in Microraptor. 

 

FMMs for extant birds (see Supplementary Text 3.4.3) vary across the three species studied, 

reflecting their different morphologies and their different whole body CoM positions. For 

example, despite a relatively short neck in the buzzard, the head has high FMM values in 

relation to the other axial segments. The influence of forelimb varied most in dorso-ventral 

plane, whereas hindlimb showed higher variance in cranio-caudal direction. 
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Supplementary Text 3.4.1: Graphs displaying first mass moment (FMM) data for the three 

extant non-avian sauropsid models (A & B: iguana, C & D: crocodile, E & F: alligator) in the 

cranio-caudal (A, C, E) and dorso-ventral (B, D, F) directions. Contributions by different 

segment components are indicated by different colour portions of each bar, as per the figure 

legend.  
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Supplementary Text 3.4.2: Graphs displaying first mass moment (FMM) data for the 

maximum variants of three fossil models (A & B: Coelophysis, C & D: Microraptor, E & F: 

Yixianornis) in the cranio-caudal (A, C, E) and dorso-ventral (B, D, F) directions. Contributions 

by different segment components are indicated by different colour portions of each bar, as 

per the figure legend.  
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Supplementary Text 3.4.3: Graphs displaying first mass moment (FMM) data for three extant 

bird specimens (A & B: buzzard, C & D: chicken, E & F: duck) in the cranio-caudal (A, C, E) and 

dorso-ventral (B, D, F) directions. Contributions by different segment components are 

indicated by different colour portions of each bar, as per the figure legend. 
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Supplementary Figure 3.1: Graphs showing statistically significant differences between 

regions for each integument type modelled heterogeneously. A: general body feather 

thickness, B: bird skin density, C: flight feather density, D: flight feather thickness, E: flight 

feather length, F: scaly skin density, G: scaly skin thickness. Significant differences are 

indicated by text over each bar (where * indicates significant difference to all other groups, 

and letters indicate significant differences to another region - A: Arm, H: Head, L: Leg, N: 

Neck, S: Scutes, Ta: Tail, T/To: Torso; or differences to another flight feather type - C: Caudal, 

P: Primary, S: Secondary; T: Tertiary). N = 155 feathered skin samples from 27 specimens; 

140 flight feathers from 22 specimens; 152 scaly skin samples from 22 specimens. 



Chapter 3 - Integument and body shape evolution 

145 
 

 

For box and whisker plots (A-C, E-G): black line represents median value, box represents 

interquartile range, the whiskers mark the maximum and minimum values within 1.5 

interquartile ranges of the box extremes and any values outside this range are displayed as 

points. 

For bar charts (D): the mean value is plotted, with 95% confidence limits displayed as error 

bars. 
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Supplementary Figure 3.2: Raw CoM positions for all models, with convex hulls around 

specimen from the same groups. Displayed A: relative to flesh CoM (displayed as ‘x’, set to 0 

0 0 in xyz coordinates for all models) and B: relative to right hip (displayed as ‘x’, at 0 0 0 in 

xyz coordinates for all models). Different colours represent different taxa as per the legend. 

Lightly shaded icons: flesh only models; hollow icons: flesh and air cavities; filled icons: flesh, 

air cavities and integument. 
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Supplementary Table 3.1: Data on feather mass as proportion of whole body mass in birds, adapted from (Brassey and Sellers, 2014). Values presented from 

the literature, and from specimens sampled here. 

Order Species Common name 
Feather mass 

(% body mass) Source Notes 

STRUTHIONIFORMES Struthio camelus Ostrich 1.5% Brand, 2010 Total body feathers  
Struthio camelus Ostrich 1.7% Brand, 2010 Total body feathers  
Struthio camelus Ostrich 1.9% Morris, 1995 Feather mass       

RHEIFORMES Rhea americana Greater rhea 1.5% Sales, 1997 Feather mass  
Rhea pennata Lesser rhea 1.8% Sales, 1997 Feather mass       

CASUARIIFORMES Dromaius 
novaehollandiae 

Emu 1.7% Sales, 1999 Feather mass 

 
Dromaius 
novaehollandiae 

Emu 1.1% Naveena, 2013 Feather mass 

      

APTERYGIFORMES Apteryx sp. Kiwi 4.7% Reid, 1975 Total feather mass  
Apteryx sp. Kiwi 6.8% Reid, 1975 Total feather mass       

ANSERIFORMES Aythya fuligula Tufted duck 4.8% Daan, 1990 Dry total feather mass  
Anas platyrhynchos Mallard duck 6.4% Daan, 1990 Dry total feather mass  
Anas platyrhynchos Mallard duck 6.1% Hopps, 2002 Total feather mass  
Anas platyrhynchos Mallard duck 6.0% Hopps, 2002 Total feather mass  
Anas platyrhynchos 
domesticus 

Miniature Silver Appleyard Duck 7.1% This study Total feather mass 

 
Branta bernicla Brant goose 8.0% Daan, 1990 Dry total feather mass  
Branta bernicla Brant Goose 12.7% This study Total feather mass 
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Order Species Common name 
Feather mass 

(% body mass) Source Notes  
Aix sponsa Wood duck 5.4% Hopps, 2002 Total feather mass  
Aix sponsa Wood duck 5.2% Hopps, 2002 Total feather mass  
Anas strepera Gadwall 6.5% Hopps, 2002 Total feather mass  
Anas strepera Gadwall 6.5% Hopps, 2002 Total feather mass  
Anas americana American wigeon 5.5% Hopps, 2002 Total feather mass  
Anas americana American wigeon 5.9% Hopps, 2002 Total feather mass  
Anas discors Blue-winged teal 5.8% Hopps, 2002 Total feather mass  
Anas discors Blue-winged teal 5.7% Hopps, 2002 Total feather mass  
Anas carolinensis Green-winged teal 6.9% Hopps, 2002 Total feather mass  
Anas carolinensis Green-winged teal 5.1% Hopps, 2002 Total feather mass  
Aythya americana Redhead 5.5% Hopps, 2002 Total feather mass  
Aythya americana Redhead 5.0% Hopps, 2002 Total feather mass  
Aythya collaris Ring-necked duck 5.4% Hopps, 2002 Total feather mass  
Aythya collaris Ring-necked duck 4.7% Hopps, 2002 Total feather mass  
Aythya affinis Lesser scaup 4.5% Hopps, 2002 Total feather mass  
Aythya affinis Lesser scaup 4.2% Hopps, 2002 Total feather mass  
Lophodytes cucullatus Hooded merganser 5.2% Hopps, 2002 Total feather mass  
Lophodytes cucullatus Hooded merganser 5.0% Hopps, 2002 Total feather mass  
Cygnus columbianus Whistling Swan 10.1% Ammann, 1937 Contour feather mass       

GALLIFORMES Meleagris gallopavo Wild turkey 5.6% Schorger, 1996 Total feather mass  
Gallus gallus domesticus Broiler chicken 6.0% Leeson, 2007 Total feather mass  
Gallus gallus domesticus Broiler chicken 5.8% Leeson, 2007 Total feather mass  
Gallus gallus domesticus Athens Canadian Random Bred 

Chicken 
8.7% Collins, 2014 

 

 
Gallus gallus domesticus Cobb 500 Broiler chicken 3.5% Collins, 2014 
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Order Species Common name 
Feather mass 

(% body mass) Source Notes  
Coturnix coturnix Common quail 4.7% Daan, 1990 Dry total feather mass  
Callipepla californica California Quail 4.3% This study Total feather mass  
Rollulus rouloul Crested Partridge 11.3% This study Total feather mass       

COLUMBIFORMES Streptopelia decaocto Eurasian collared dove 9.6% Daan, 1990 Dry total feather mass  
Streptopelia risoria Barbary Dove 10.0% This study Total feather mass  
Zenaida macroura Mourning dove 7.7% Wetmore, 1936 Contour feather mass       

APODIFORMES Archilochus colubris Ruby-throated hummingbird 7.1% Wetmore, 1936 Contour feather mass       

CAPRIMULGIFORMES Chordeiles minor Eastern nighthawk 8.1% Wetmore, 1936 Contour feather mass  
Chordeiles minor Eastern nighthawk 8.4% Wetmore, 1936 Contour feather mass       

GRUIFORMES Gallinula chloropus 
sandvicensis 

Hawaiian moorhen 3.6% DesRochers, 
2010 

Total feather mass 

 
Gallinula chloropus 
sandvicensis 

Hawaiian moorhen 3.8% DesRochers, 
2010 

Total feather mass 

 
Fulica atra Eurasian coot 7.1% Daan, 1990 Dry total feather mass       

CHARADRIIFORMES Arenaria interpres Ruddy turnstone 7.4% Daan, 1990 Dry total feather mass  
Pluvialis apricarius Golden plover 4.7% Daan, 1990 Dry total feather mass  
Limosa lapponica Bar-tailed godwit 4.5% Daan, 1990 Dry total feather mass  
Larus ridibundus Black-headed gull 10.1% Daan, 1990 Dry total feather mass  
Haematopus ostralegus Eurasian oystercatcher 8.8% Daan, 1990 Dry total feather mass  
Larus argentatus European herring gull 1.1% Daan, 1990 Dry total feather mass  
Calidris maritima Purple sandpiper 18.9% Summers, 1992 Contour & flight feather 

mass 
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Order Species Common name 
Feather mass 

(% body mass) Source Notes       

ACCIPITRIFORMES Haliaeetus 
leucocephalus 

Bald eagle 16.6% Brobkorb, 1955 Contour feather mass 

 
Buteo buteo Buzzard 18.9% This study Total feather mass       

CORACIIFORMES Unknown Kingfisher 34.9% * This study Total feather mass       

FALCONIFORMES Falco tinnunculus Common kestral 10.4% Daan, 1990 Dry total feather mass       

PSITTACIFORMES Melopsittacus 
undulatus 

Budgerigar 10.0% Wolf, 2003 Total feather mass 

 
Agapornis sp. Lovebird 7.4% Wolf, 2003 Total feather mass  
Eclectus roratus Eclectus Parrot 11.2% This study Total feather mass  
Psittacus erithacus African Grey 9.2% This study Total feather mass  
Ara ararauna Blue and Yellow Macaw 10.2% This study Total feather mass       

PASSERIFORMES Tyrannus tyrannus Eastern kingbird 7.5% Wetmore, 1936 Contour feather mass  
Myiarchus crinitus Northern crested flycatcher 7.4% Wetmore, 1936 Contour feather mass  
Empidonax virescens Acadian flycatcher 8.8% Wetmore, 1936 Contour feather mass  
Contopus virens Eastern wood pewee 7.5% Wetmore, 1936 Contour feather mass  
Stelgidopteryx sp. Rough-winged swallow 5.8% Wetmore, 1936 Contour feather mass  
Hirundo rustica Barn swallow 8.0% Wetmore, 1936 Contour feather mass  
Cyanocitta cristata Northern blue jay 7.0% Wetmore, 1936 Contour feather mass  
Pica pica Eurasian magpie 8.5% Daan, 1990 Dry total feather mass  
Pica pica Magpie 9.2% This study Total feather mass  
Corvus monedula Western jackdaw 9.1% Daan, 1990 Dry total feather mass 
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Order Species Common name 
Feather mass 

(% body mass) Source Notes  
Corvus corone Carrion crow 7.6% Daan, 1990 Dry total feather mass  
Poecile carolinensis Carolina chickadee 5.5% Wetmore, 1936 Contour feather mass  
Poecile carolinensis Carolina chickadee 8.0% Wetmore, 1936 Contour feather mass  
Poecile carolinensis Carolina chickadee 7.2% Wetmore, 1936 Contour feather mass  
Parus major Great tit 9.7% Daan, 1990 Dry total feather mass  
Poecile gambeli Mountain chickadee 2.5% Cooper, 2002 Contour feather mass  
Poecile gambeli Mountain chickadee 5.3% Cooper, 2002 Contour feather mass  
Baeolophus ridgwayi Juniper titmouse 2.7% Cooper, 2002 Contour feather mass  
Baeolophus ridgwayi Juniper titmouse 4.0% Cooper, 2002 Contour feather mass  
Certhia americana Brown creeper 7.1% Wetmore, 1936 Contour feather mass  
Certhia americana Brown creeper 7.1% Wetmore, 1936 Contour feather mass  
Troglodytes aedon Eastern house wren 4.5% Wetmore, 1936 Contour feather mass  
Troglodytes aedon Eastern house wren 6.1% Wetmore, 1936 Contour feather mass  
Thryothorus 
ludovicianus 

Carolina wren 3.3% Wetmore, 1936 Contour feather mass 

 
Cistothorus palustris Long-billed marsh wren 4.4% Wetmore, 1936 Contour feather mass  
Mimus polyglottos Eastern Mockingbird 7.0% Wetmore, 1936 Contour feather mass  
Dumetella carolinensis Catbird 6.5% Wetmore, 1936 Contour feather mass  
Toxostoma rufum Brown thrasher 4.6% Wetmore, 1936 Contour feather mass  
Hylocichla mustelina Wood thrush 5.3% Wetmore, 1936 Contour feather mass  
Catharus guttatus Eastern hermit thrush 7.7% Wetmore, 1936 Contour feather mass  
Catharus guttatus Eastern hermit thrush 7.3% Wetmore, 1936 Contour feather mass  
Catharus guttatus Eastern hermit thrush 7.2% Wetmore, 1936 Contour feather mass  
Turdus merula Common blackbird 9.3% Daan, 1990 Dry total feather mass  
Regulus satrapa Eastern golden-crowned kinglet 12.1% Wetmore, 1936 Contour feather mass  
Regulus satrapa Eastern golden-crowned kinglet 10.9% Wetmore, 1936 Contour feather mass 
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Order Species Common name 
Feather mass 

(% body mass) Source Notes  
Regulus satrapa Eastern golden-crowned kinglet 10.2% Wetmore, 1936 Contour feather mass  
Regulus calendula Eastern ruby-crowned kinglet 7.8% Wetmore, 1936 Contour feather mass  
Regulus calendula Eastern ruby-crowned kinglet 10.9% Wetmore, 1936 Contour feather mass  
Regulus calendula Eastern ruby-crowned kinglet 8.1% Wetmore, 1936 Contour feather mass  
Lanius ludovicianus Migrant shrike 6.1% Wetmore, 1936 Contour feather mass  
Vireo griseus White-eyed vireo 2.5% Wetmore, 1936 Contour feather mass  
Vireo griseus White-eyed vireo 4.1% Wetmore, 1936 Contour feather mass  
Vireo griseus White-eyed vireo 6.8% Wetmore, 1936 Contour feather mass  
Vireo griseus White-eyed vireo 7.3% Wetmore, 1936 Contour feather mass  
Vireo flavifrons Yellow-throated vireo 6.0% Wetmore, 1936 Contour feather mass  
Vireo olivaceus Red-eyed vireo 5.6% Wetmore, 1936 Contour feather mass  
Vireo olivaceus Red-eyed vireo 4.4% Wetmore, 1936 Contour feather mass  
Vireo olivaceus Red-eyed vireo 5.1% Wetmore, 1936 Contour feather mass  
Mniotilta varia Black and white warbler 4.4% Wetmore, 1936 Contour feather mass  
Oreothlypis peregrina Tennessee warbler 6.5% Wetmore, 1936 Contour feather mass  
Setophaga pitiayumi Southern parula warbler 5.2% Wetmore, 1936 Contour feather mass  
Setophaga magnolia Magnolia warbler 2.1% Wetmore, 1936 Contour feather mass  
Setophaga magnolia Magnolia warbler 5.1% Wetmore, 1936 Contour feather mass  
Setophaga magnolia Magnolia warbler 6.7% Wetmore, 1936 Contour feather mass  
Setophaga caerulescens Black-throated blue warbler 5.6% Wetmore, 1936 Contour feather mass  
Setophaga caerulescens Black-throated blue warbler 6.1% Wetmore, 1936 Contour feather mass  
Setophaga virens Black-throated green warbler 6.5% Wetmore, 1936 Contour feather mass  
Setophaga fusca Blackburnian warbler 4.5% Wetmore, 1936 Contour feather mass  
Setophaga pensylvanica Chestnut-sided warbler 5.4% Wetmore, 1936 Contour feather mass  
Setophaga pensylvanica Chestnut-sided warbler 6.1% Wetmore, 1936 Contour feather mass  
Setophaga castanea Bay-breasted warbler 5.0% Wetmore, 1936 Contour feather mass 
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Order Species Common name 
Feather mass 

(% body mass) Source Notes  
Setophaga castanea Black-poll warbler 6.8% Wetmore, 1936 Contour feather mass  
Setophaga pinus Northern pine warbler 7.9% Wetmore, 1936 Contour feather mass  
Seiurus aurocapilla Oven-bird 6.9% Wetmore, 1936 Contour feather mass  
Parkesia motacilla Louisiana water-thrush 5.1% Wetmore, 1936 Contour feather mass  
Geothlypis formosa Kentucky warbler 4.9% Wetmore, 1936 Contour feather mass  
Oporornis agilis Connecticut warbler 7.6% Wetmore, 1936 Contour feather mass  
Geothlypsis trichas 
brachidactyla 

Northern yellowthroat 6.8% Wetmore, 1936 Contour feather mass 

 
Geothlypsis trichas 
brachidactyla 

Northern yellowthroat 7.0% Wetmore, 1936 Contour feather mass 

 
Geothlypsis trichas 
brachidactyla 

Northern yellowthroat 4.3% Wetmore, 1936 Contour feather mass 

 
Geothlypsis trichas 
brachidactyla 

Northern yellowthroat 5.9% Wetmore, 1936 Contour feather mass 

 
Geothlypsis trichas 
trichas 

Maryland yellowthroat 7.3% Wetmore, 1936 Contour feather mass 

 
Geothlypsis trichas 
trichas 

Maryland yellowthroat 7.5% Wetmore, 1936 Contour feather mass 

 
Icteria virens Yellow-breasted chat 6.1% Wetmore, 1936 Contour feather mass  
Icteria virens Yellow-breasted chat 5.8% Wetmore, 1936 Contour feather mass  
Cardellina canadensis Canada warbler 7.4% Wetmore, 1936 Contour feather mass  
Cardellina canadensis Canada warbler 6.5% Wetmore, 1936 Contour feather mass  
Passer domesticus House sparrow 5.3% Wetmore, 1936 Contour feather mass  
Passer domesticus House sparrow 8.6% Daan, 1990 Dry total feather mass  
Agelaius phoeniceus Eastern red-wing 5.2% Wetmore, 1936 Contour feather mass  
Icterus spurius Orchard oriole 6.3% Wetmore, 1936 Contour feather mass  
Quiscalus quiscula Purple grackle 7.1% Wetmore, 1936 Contour feather mass 
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Order Species Common name 
Feather mass 

(% body mass) Source Notes  
Molothrus ater Eastern cowbird 4.6% Wetmore, 1936 Contour feather mass  
Xanthocephalus 
xanthocephalus 

Yellow-headed Blackbird 8.8% Ammann, 1937 Contour feather mass 

 
Piranga olivacea Scarlet tanager 6.2% Wetmore, 1936 Contour feather mass  
Pheucticus ludovicianus Rose-breasted grosbeak 3.5% Wetmore, 1936 Contour feather mass  
Passerina cyanea Indigo bunting 5.9% Wetmore, 1936 Contour feather mass  
Passerina cyanea Indigo bunting 5.2% Wetmore, 1936 Contour feather mass  
Carduelis tristis Eastern goldfinch 6.0% Wetmore, 1936 Contour feather mass  
Spinus cucullata Red Siskin 8.8% This study Total feather mass  
Unknown Canary 15.3% This study Total feather mass  
Serinus canaria 
domestica 

Canary 13.9% Wolf, 2003 Total feather mass 

 
Pipilo erythrophthalmus Red-eyed towhee 7.4% Wetmore, 1936 Contour feather mass  
Passerculus 
sandwichensis 

Eastern Savannah sparrow 7.3% Wetmore, 1936 Contour feather mass 

 
Ammodramus 
savannarum 

Eastern Grasshopper sparrow 5.0% Wetmore, 1936 Contour feather mass 

 
Ammodramus 
savannarum 

Eastern Grasshopper sparrow 7.3% Wetmore, 1936 Contour feather mass 

 
Ammodramus 
savannarum 

Eastern Grasshopper sparrow 4.3% Wetmore, 1936 Contour feather mass 

 
Ammodramus henslowii Henslow’s sparrow 6.2% Wetmore, 1936 Contour feather mass  
Ammodramus sp. Sharp-tailed sparrow 5.4% Wetmore, 1936 Contour feather mass  
Ammodramus 
maritimus 

Northern seaside sparrow 6.1% Wetmore, 1936 Contour feather mass 

 
Ammodramus 
maritimus 

Northern seaside sparrow 6.1% Wetmore, 1936 Contour feather mass 
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Order Species Common name 
Feather mass 

(% body mass) Source Notes  
Pooecetes gramineus Vesper sparrow 5.6% Wetmore, 1936 Contour feather mass  
Pooecetes gramineus Vesper sparrow 4.9% Wetmore, 1936 Contour feather mass  
Spizella passerina Chipping sparrow 4.3% Wetmore, 1936 Contour feather mass  
Spizella passerina Chipping sparrow 6.3% Wetmore, 1936 Contour feather mass  
Spizella passerina Chipping sparrow 7.1% Wetmore, 1936 Contour feather mass  
Spizella passerina Chipping sparrow 4.6% Wetmore, 1936 Contour feather mass  
Spizella pusilla Field sparrow 8.3% Wetmore, 1936 Contour feather mass  
Spizella pusilla Field sparrow 5.2% Wetmore, 1936 Contour feather mass  
Zonotrichia albicollis White-throated sparrow 7.4% Wetmore, 1936 Contour feather mass  
Zonotrichia albicollis White-throated sparrow 6.1% Wetmore, 1936 Contour feather mass  
Melospiza melodia Song sparrow 5.3% Wetmore, 1936 Contour feather mass  
Junco hyemalis Dark-eyed junco 3.4% Swanson, 1991 Dry total feather mass  
Junco hyemalis Dark-eyed junco 4.1% Swanson, 1991 Dry total feather mass  
Poephila guttata Zebra finch 5.6% Daan, 1990 Dry total feather mass  
Lonchura striata White-rumped munia 3.8% Daan, 1990 Dry total feather mass  
Erithacus rubecula European robin 9.0% Daan, 1990 Dry total feather mass  
Saxicola torquata 
rubicula 

European stonechat 6.4% Klaassen, 1995 Feather mass 

 
Saxicola torquata 
axillaris 

East African stonechat 7.2% Klaassen, 1995 Feather mass 

 
Malurus cyaneus Superb fairy-wren 2.6% Lill, 2006 Dry contour mass  
Malurus cyaneus Superb fairy-wren 4.0% Lill, 2006 Dry contour mass 

 

* The value obtained by this study suggesting that 34.9% of the body mass of a kingfisher seems unreasonably high. It has been included here for completeness 

only, and is not believed to be biologically realistic. 



Chapter 3 - Integument and body shape evolution 

156 
 

Supplementary Table 3.2: Details on the phylogenetic and locomotor classifications applied to each 

species of bird in our integument mass property dataset. 

Species Common Name Order Locomotor group 

Numida meleagris Guineafowl Galliformes Burst adapted flighta 

Coturnix coturnix Quail Galliformes Burst adapted flighta 

Rollulus rouloul Crested Partridge Galliformes Burst adapted flight* 

Columba livia Pigeon Columbiformes Continuous flappingb 

Gallicolumba luzonica Bleeding Heart Pigeon Columbiformes Burst adapted flight* 

Gallinula chloropus Moorhen Gruiformes Continuous flappinga 

Milvus milvus Red Tailed Kite Accipitriformes Soaringc 

Buteo buteo Buzzard Accipitriformes Soaringc 

Strix aluco Tawny Owl Strigiformes Flap glidinga 

Falco peregrinus Peregrine Falcon Falconiformes Flap glidingb 

Psittacus erithacus African Grey Parrot Psittaciformes Continuous flappinga 

Ara ararauna Blue & Yellow Macaw Psittaciformes Continuous flappinga 

Cacatua moluccensis Cockatoo Psittaciformes Continuous flappinga 

Pica pica Magpie Passeriformes Continuous flappingb 

* Locomotor style determined from online videos, or from data on similar species. 

a Locomotor style determined from Close & Rayfield (2012). 

b Locomotor style determined from Martin-Silverstone et al. (2015). 

c Locomotor style determined from Bruderer et al. (2010). 
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Supplementary Table 3.3: Details of all models included in this study. Measured body mass (kg) 

measured with scales for extant specimens, estimated body mass (kg) and 2D CoM position (mm) 

presented in the cranio-caudal, dorso-ventral dimensions) are as predicted by the final model 

(containing flesh, air cavities and integument). CoMs are expressed relative to the right hip at 0 0 0. 

Positive values indicate the cranial and dorsal directions respectively. 

Model Species 
Measured body 

mass 
Estimated body 

mass CoM position 

Iguana Iguana iguana 1.102 0.99 38, -3 

Crocodile Crocdylus johnstoni 20.19 21.87 138, -14 

Alligator Alligator mississippiensis 0.60 0.65 38.2, -1.8 

Coelophysis (Max) Coelophysis bauri - 25.04 75, -55 

Coelophysis (Min)  - 13.90 120, -54 

Microraptor (Max) Microraptor gui - 1.85 39, -50 

Microraptor (Min)  - 1.16 47, -48 

Yixianornis (Max) Yixianornis grabaui - 0.34 55, -16 

Yixianornis (Min)  - 0.22 55, -17 

Buzzard Buteo buteo 0.69 0.68 64, -30 

Chicken Gallus gallus domesticus 1.08 1.13 -53, -36 

Duck Anas platyrhnchos 1.12 1.25 59, -22 
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Supplementary Table 3.4: Summary of integument properties applied to models. 

 Integument Property Homogeneous Heterogeneous 

General body feathers Density X   

  Thickness   X 

Bird skin Density   X 

  Thickness X   

Flight feathers Density   X 

  Thickness   X 

  Length   X 

Scaly skin Density   X 

  Thickness   X 
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Supplementary Table 3.5: Integument mass property data as applied to models, density (kgm-3), thickness (mm), length (mm). 

Integument Property Locations 

General body feathers   All regions Arm Head Leg Neck Torso & Tail 

  Density 65.3 
     

  Thickness 
 

15.6 4.7 7.6 12.8 15.9 

Bird skin   All regions Arm Head Leg Neck Torso & Tail 

  Density 
 

2888.4 1998.9 2570.2 2703.5 2559.8 

  Thickness 0.3 
     

Flight feathers   Primary Secondary Tertiary Caudal 
  

  Density 158.1 116.6 119.4 160.2 
  

  Thickness 0.7 0.5 0.4 0.5 
  

  Length 184.6 127.5 108.3 185.9 
  

Scaly skin   Head Limbs Neck & Torso Tail  
 

  Density 1242.0 1571.9 1671.8 1295.2  
 

  Thickness 0.6 0.7 0.8 1.0  
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CHAPTER 4 - BODY SHAPE AND THE EVOLUTION OF LOCOMOTOR 
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4.1. Abstract 

Birds are the one of the most taxonomically and ecologically diverse groups of vertebrates 

in modern ecosystems. This diversity places a broad range of mechanical demands on the 

avian locomotor system. It is hypothesised here that these varied demands are reflected by 

gross morphological adaptations in body shape, which would be detectable through 

differences in whole body centre of mass position. While previous work has suggested that 

the evolution of avian flight was intrinsically linked to changes in mass distribution, no study 

has investigated links between whole body centre of mass and different locomotor ecologies 

in living birds. Here, I test the hypothesis that whole body centre of mass position will be 

strongly correlated with locomotor type in birds. I analyse a range of validated computer 

models of body proportions from species covering 27 avian families and a range of body sizes 

and locomotor modes. This reveals insignificant differences between whole body centre of 

mass position for birds using different locomotor strategies. Volant species, with locomotor 

behaviours dominated by the forelimbs, have more dorsally positioned centres of mass than 

their terrestrial counterparts, placing the centre of mass closer to the axis of the wings 

enabling more agile flight behaviours. These differences are determined to be driven mainly 

by differences in hindlimb morphologies in volant versus terrestrial birds. Significant 

variability was detected within the locomotor groups identified here, reflecting the 

considerable variability present within Aves. 
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4.2. Introduction 

Aves is one of the most speciose vertebrate groups, containing almost 10,000 species (Jetz 

et al., 2012). Birds have diversified to fill a huge range of niches in ecosystems on every 

continent, from aquatic penguins and obligate terrestrial ostriches to arboreal turacos and 

almost entirely volant hummingbirds. This diversity is also evident in the huge size range of 

living birds spanning several orders of magnitude from the Bee Hummingbird at 2g to the 

Ostrich at >150kg (Blackburn and Gaston, 1994). 

 

The evolutionary success of birds has been driven by their ability to adapt their morphology 

to satisfy the wide range of requirements necessary to occupy such a broad variety of niches 

(Kardong, 2012). Avian morphology is rooted in their initial diversification from theropod 

dinosaurs, when the ancestors of modern birds became one of only three tetrapod clades to 

develop powered flight (Kardong, 2012). This transition to aerial locomotion required a host 

of adaptations, including: the development of powerful flight muscles and forelimbs (Gatesy 

and Dial, 1996); the reduction of the tail (Gatesy, 1990); the evolution of a feathered 

integument (Ostrom, 1974); and the development of the head and neck complex (Kambic et 

al., 2017). For example, avian forelimbs have diversified from the ancestral condition in their 

osteology and myology, with further differences instigated by flight feathers. These 

specialisations have resulted in the broad range of wing shapes seen in modern birds, which 

are specialised for different types of locomotion (Rayner, 1988, Savile, 1957). The evolution 

of the head and neck complex was driven by the need for the head to be used as a surrogate 

hand for object manipulation, since the hyper-specialised forelimbs are no longer useful for 

that purpose (Krings et al., 2017). Further musculoskeletal specialisations in the hindlimbs 

(e.g. for high speed terrestrial locomotion, high degrees of arboreality, prey capture etc) and 

in the torso (e.g. expanded sternum to accommodate flight musculature) also indicate the 

evolutionary flexibility of avian musculoskeletal anatomy. 
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These key morphological changes occurring in the avian lineage combined to drastically alter 

centre of mass (CoM) position. A cranial shift in CoM occurs across the archosaur phylogeny 

towards crown Aves, largely due to the enlargement of the pectoral limb (Allen et al., 2013). 

Concurrently, birds shifted to a highly flexed hindlimb posture in order to facilitate bipedal, 

terrestrial locomotion (Gatesy, 1990, Gatesy and Dial, 1996). CoM is a key biomechanical 

parameter, which effectively summarises the whole body shape (i.e. mass distribution) of an 

organism. The morphology and body shape of birds has been heavily influenced by 

locomotor demands through evolutionary time. For example, this influence is evident from 

the variable investment in the muscular system across the body which has been identified in 

birds using forelimb versus hindlimb dominated locomotion (Heers and Dial, 2015). Given 

the changes in body shape observed during theropod evolution (Allen et al., 2013, Gatesy, 

1990, Gatesy and Dial, 1996), and the disparity observed in muscle proportions in living birds 

(Heers and Dial, 2015), I therefore hypothesise that CoM will correlate closely with specific 

locomotor habits in modern birds. 

 

The links between CoM and locomotion have been indirectly investigated in birds for their 

bipedal, terrestrial locomotion (e.g. Andrada et al., 2013, Gatesy, 1999, Nyakatura et al., 

2012, Smith et al., 2010, Verstappen et al., 2000), but investigations directly exploring these 

links across a range of species are rare (e.g. Allen et al., 2013). Studies investigating 

associations between CoM and flight are even rarer (Henderson, 2010, Thomas and Taylor, 

2001). Previous studies using volumetric modelling techniques have looked at small samples 

of birds, with insufficient numbers to draw any conclusive assessments about links between 

CoM and locomotor behaviours (Allen et al., 2013, Allen et al., 2009, Henderson, 2010, 

Macaulay et al., 2017). A knowledge of the links between CoM and locomotion in birds would 

facilitate a greater understanding, not only for living birds, but also for an appreciation of 
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these same behaviours in extinct species, including transitional avian fossils and pterosaurs. 

CoM has been used previously to quantify body shape changes in fossil taxa on the 

evolutionary pathway to birds (Allen et al., 2013). However, the current lack of quantified 

links between locomotor behaviours and CoM in living species limits the ability to draw any 

nuanced conclusions from CoM positions predicted for extinct taxa. Additionally, Allen et al. 

(2013) included only one extant bird species in their investigation, focussing primarily on a 

broad range of fossil taxa. This limited modern sample (consisting of a single junglefowl 

specimen) yielded an unexpected reversal in CoM position: having gradually shifted in a 

cranial direction along the bird lineage, CoM position seemingly undergoes a substantial, 

counter-intuitive caudal shift in the final node for modern birds (Figure 3 of Allen et al. 

(2013)). This study seeks to explore CoM position across Aves to place this finding in a wider 

context. 

 

In this study, digital volumetric models are created for 27 species from 27 avian families, 

covering a range of body sizes (4g - 13kg) spanning five orders of magnitude and numerous 

locomotor types. These models are used to examine the following hypotheses: 

(1) CoM position will differ between birds using different locomotor modes, and will 

vary considerably across crown-group Aves. 

(2) The differences in whole body CoM positions between terrestrial and volant 

locomotor groups will be driven by differences in limb morphologies. 

(3) Species reliant on uncommon specialist behaviours (e.g. diving, extensive 

arboreality) will display highly adapted morphologies, which will be reflected in 

unique CoM positions. 

(4)  The simplifications in the modelling process will not significantly influence the 

ability of models to accurately predict mass properties. Specifically, does (a) skin 
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closing technique or (b) selection and application of body density data affect the 

accuracy of predictions of CoM? 

 

4.3. Methodology 

4.3.1. Digital modelling: calculating body segment mass properties and whole 

body CoM 

This study utilised computed tomography (CT) scans of 27 specimens from 27 different avian 

families (see Table 4.1 for details). Specimens were a mixture of captive and wild animals. 

Specimens, or whole body scans, were obtained from a variety of sources, including Twycross 

Zoo, The World Museum Liverpool, Emma Schachner, Bill Sellers and Charlotte Brassey. No 

specimens were killed for the purpose of this study. All specimens were scanned in medical 

grade CT scanners, at a variety of locations. Body masses were measured for each cadaver, 

with the exception of the hummingbird and ostrich. Various methods for body mass 

estimation (Brassey et al., 2013, Campione et al., 2014, Field et al., 2013) were used to 

generate estimates of whole body mass for these two specimens. Comparison of the results 

from these different methods (Brassey et al., 2013, Campione et al., 2014, Field et al., 2013) 

with published values for the species in question informed the selection of the most suitable 

value (see Supplementary Information 4.1). 

 

The scan data were segmented using Avizo 7.1 (www.Avizo3D.com), in order to generate 

models of the skeletal material and a whole body skin outline. The resulting surface models 

were processed in Geomagic Studio 10 (www.geomagic.com). Any unwanted material was 

removed, and the skeletal and skin models of each specimen were split into segments (i.e. 

head, neck, torso, tail, upper arm, forearm, manus, thigh, shank, tarsometatarsus, toes). 

Wherever possible, skin segments were closed using tools within Geomagic. However, to  
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Table 4.1: Details on the 27 specimens modelled here, including measured whole body mass 

(kg) and locomotor category. 

# Common name Species name Order 
Body 
mass 

Locomotor 
category 

1 Common ostrich Struthio camelus Struthiformes 12.3* Terrestrial 

2 Darwin’s rhea Rhea pennata Rheiformes 7.85 Terrestrial 

3 Andean tinamou Nothoprocta 
pentlandii 

Tinamiformes 0.417 Terrestrial 

4 Emu Dromaius 
novaehollandiae 

Casuariiformes 13.15 Terrestrial 

5 Mallard Anas platyrhynchos Anseriformes 1.12 Volant 

6 Leghorn chicken Gallus gallus 
domesticus 

Galliformes 1.08 Terrestrial 

7 Clark’s grebe Aechmophorus 
clarkii 

Podicipediformes 1.257 Diving 

8 Chilean flamingo Phoenicopterus 
chilensis 

Phoenicopteriformes 2.55 Volant 

9 Wood pigeon Columba palumbus Columbiformes 0.56 Volant 

10 Anna’s 
hummingbird 

Calypte anna Apodiformes 0.005* Volant 

11 Violet turaco Musophaga 
violacea 

Musophagiformes 0.29 Terrestrial 

12 Red-legged seriema Cariama cristata Gruiformes 2.165 Terrestrial 

13 Black-throated 
diver 

Gavia arctica Gaviiformes 1.83 Diving 

14 Humboldt penguin Spheniscus 
humboldti 

Sphenisciformes 4.01 Diving 

15 Sooty shearwater Puffinus griseus Procellariiformes 0.505 Diving 

16 Scarlet ibis Eudocimus ruber Ciconiiformes 0.6 Volant 

17 Brown pelican Pelecanus 
occidentalis 

Pelicaniformes 2.81 Diving 

18 Brandt’s cormorant Phalacrocorax 
penicillatus 

Suliformes 1.18 Diving 

19 Western gull Larus occidentalis Charadriiformes 0.987 Volant 

20 Common buzzard Buteo buteo Accipitriformes 0.69 Volant 

21 Turkey vulture Cathartes aura Cathartiformes 1.893 Volant 
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# Common name Species name Order 
Body 
mass 

Locomotor 
category 

22 Great horned owl Bubo virginianus Strigiformes 1.268 Volant 

23 Common kingfisher Alcedo atthis Coraciiformes 0.0304 Diving 

24 Great spotted 
woodpecker 

Dendrocopos major Piciformes 0.106 Volant 

25 Merlin Falco columbarius Falconiformes 0.129 Volant 

26 Orange-winged 
parrot 

Amazona 
amazonica 

Psittaciformes 0.375 Volant 

27 Blackbird Turdus merula Passeriformes 0.092 Volant 

 

* indicates species for which body mass was estimated, rather than measured directly. 
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achieve watertight shells for some skin segments, it was necessary to ‘wrap’ them in 

Materialise 3-matic (www.materialise.com/en/software/3-matic) or in extreme cases, 

produce alpha shapes or convex hulls using custom Matlab code 

(www.mathworks.com/products/matlab) (see Section 4.4.3.1 here for an assessment of the 

consequences of these alternatives, addressing hypothesis 4a). Closed skin segments were 

exported for each segment, along with the associated skeletal material. 

 

The skeleton and skin objects for each segment were then imported into Maya 

(www.autodesk.co.uk/products/maya/overview). Here, joint centres were defined with 

reference to the skeletal material. Each specimen was then placed in a ‘standard posture’ 

(see Figure 4.1) so that the proximal and distal joint centres were aligned in the appropriate 

plane, to within 1°. The torso was orientated so that the hip joints were aligned in the sagittal 

and transverse planes, and the right hip and right glenohumeral joint were aligned in the 

dorsal plane. For all remaining segments, flexion-extension and abduction-adduction 

rotations were corrected so that: the head and neck were extended cranially, the forelimbs 

were outstretched laterally and the hindlimbs were extended ventrally. Additionally, long 

axis rotation (LAR) was corrected for all forelimb segments (placing the humeral crest, radius, 

and alula dorsally), hindlimb segments (with the exception of the digits), the head, and (if 

significant LAR was observed) the neck. This standard posture is not a biologically realistic 

representation of in vivo postures for any species studied here. However, this 

standardisation enables comparisons to be drawn between the body plans of species with 

drastically different morphologies (Allen et al., 2013, Bates et al., 2016, Hutchinson et al., 

2011, Hutchinson et al., 2007). If necessary, the limbs were mirrored in the sagittal plane 

(defined as the midpoint between the two hip joints) so that each model had right fore- and 

hindlimbs. The closed skin outlines, now oriented in the standard posture, were then 

exported.  
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Figure 4.1: Tinamou model shown in the standardised posture used in this study, shown as 

skeletal material and associated skin outlines. 
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Segment CoMs and volumes were calculated using FormZ (www.formz.com). Segment 

masses were determined by multiplying segments’ volumes by an appropriate value for 

density. Selection of a density value for volumetric models is therefore a key step, but has 

proven somewhat controversial, with many different values being selected throughout the 

literature. Generally, homogeneous density data is applied to models with air cavities 

accounted for separately (e.g. Allen et al., 2009, Bates et al., 2016, Macaulay et al., 2017), 

though some studies do represent density heterogeneously across all body segments (e.g. 

Henderson, 2004, Henderson, 2006). However, the current lack of whole body and segment 

specific density data for birds makes selection of appropriate values difficult. Here, I seek to 

address this issue, by applying the following to the bird models: (1) a homogeneous density 

of 1000kgm-3 and (2) segment specific density data derived here from five extant taxa of a 

range of locomotor, phylogenetic and ecological groups. This sensitivity analysis provides a 

range of plausible CoM values and enables a preliminary assessment of the impact density 

assignment has on whole body CoM position, testing hypothesis 4b. 

 

It is common in volumetric studies to additionally segment the air cavities (from the torso 

only, or throughout the body) (e.g. Henderson, 1999, Hutchinson et al., 2007). In this way, 

the presence of these zero density regions can be explicitly accounted for in estimations of 

segment mass and CoM. However, in the scans of the specimens used here, the degree of 

air cavity preservation was highly variable. Additionally, the anatomy of air cavities varies 

substantially across Aves (Duncker, 1971, Maina, 2017), making accurate reconstructions of 

air cavity mass properties for each bird a significant challenge. Any attempt to include air 

cavities would therefore have incorporated an additional source of error, the effect of which 

would have been difficult to quantify. It was therefore decided that the most efficient way 

to standardise the models, in order to draw meaningful comparisons, was to avoid the 

explicit inclusion of any air cavities in models here. This study therefore models all body 
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segments as solid, ‘flesh only’ components. The presence of the weight-reducing air cavities 

is instead reflected by the lower density values which are applied to the relevant segments. 

Previous analyses (Allen et al., 2009, Macaulay et al., 2017) (but see Chapter 2, Section 

2.4.3.3) have shown that different density values result in small differences in absolute CoM 

predictions, which are also small relative to the differences in CoM position observed 

between specimens. 

 

Having defined segment mass properties, segment CoMs were combined to give a value for 

whole body CoM using following equation: 

𝐶𝑜𝑀𝑊 =
𝛴(𝐶𝑜𝑀𝑠  ∗  𝑚𝑎𝑠𝑠𝑠)

𝛴(𝑚𝑎𝑠𝑠𝑠)
 

Equation 4.1 

 

Where CoMW is the centre of mass of the whole organism (or simply ‘CoM’ in the remainder 

of this study) and CoMS and massS refer to segment properties. 

 

4.3.2. Density data 

To address hypothesis 4b, I sought to produce new experimental measures of bird whole 

body and segment density. For this purpose, five whole specimens were used (see Table 4.2 

for details), representing a range of avian orders, body plans and locomotor specialisations. 

These specimens were dissected into the following segments: head and neck; torso; forelimb 

(x2); and hindlimb (x2). The neck was split from the torso immediately cranial to the furcula. 

Each forelimb segment included the whole humerus, as well as the entirety of the deltoid 

muscle. The distal portions of the extrinsic forelimb muscles (e.g. pectoralis) were included, 

where they were contained within the upper arm. Both hindlimb segments included the  
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Table 4.2: Details on the five bird specimens for which segment specific densities were 

derived. 

Common name Species name Order Body mass (kg) 

Mallard 
Anas platyrhynchos Anseriformes 1.36 

Leghorn chicken 
Gallus gallus domesticus Galliformes 1.65 

Wood pigeon 
Columba palumbus Columbiformes 0.58 

Kestral 
Falco tinnunculus Falconiformes 0.126 

Long tailed tit 
Aegithalos caudatus Passeriformes 0.007 
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whole femur, and all extrinsic hindlimb muscles (including all muscles attaching to the hip, 

and the caudofemoralis). 

 

For each segment, mass was recorded using an Adam electronic balance (±0.01g). These 

segments were then frozen and CT scanned, segmented in Avizo 7.1 to extract skin outlines 

and wrapped to produce closed outlines in Materialise 3-matic. Segment volume was 

determined in FormZ. Segment densities were calculated by dividing segment mass by 

segment volume. 

 

Finally, as part of the modelling workflow, it was also possible to estimate whole body density 

for each specimen modelled here (27 birds). This whole body density was calculated from 

whole model volume (aka skin volume) and whole body mass physically measured in 

cadavers. 

 

4.3.3. Statistical analyses 

Specimens were grouped by main locomotor type (see Table 4.1 for details). Birds were 

deemed to be terrestrial if they primarily use their hindlimbs for locomotion. This group 

includes flightless ratites, as well as burst flyers (tinamou, chicken, seriema), and the 

predominately arboreal turaco. Birds that frequently utilise diving behaviours with complete 

submersion were classified as ‘divers’. Though it should be noted that all of these birds also 

engage in flying behaviours, with the exception of the flightless penguin. The remaining birds 

use flight as their primary locomotor style. Differences between the CoMs (normalised by 

whole body mass0.33) of birds in these different locomotor groups were assessed using 

ANOVA, and Tukey’s post-hoc test where necessary, in R Studio (www.rstudio.com). 
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CoM position and locomotor mode are both linked to phylogeny. The trends observed for 

raw CoM data are therefore potentially influenced by phylogenetic signals. To get a true 

representation of differences in body plan, the interrelated nature of the data was accounted 

for. A phylogenetic tree for the 27 species used here was downloaded from BirdTree.org, 

using the Hackett backbone, based on Jetz et al. (2012) (see Figure 4.2). The tree, along with 

data on CoM positions and specimen locomotor categories were imported into R Studio. 

Differences between groups were then assessed using phylogenetic generalized least 

squares (PGLS) to account for phylogenetic relationships within the dataset. 

 

To address hypothesis 2, correlations between various segment mass properties and whole 

body CoM were assessed. The segment mass properties investigated here were: segment 

mass, segment CoM and segment first mass moments (FMMs). FMMs were calculated for 

the cranio-caudal and dorso-ventral directions by the following equation: 

 

𝐹𝑀𝑀 = (𝐶𝑜𝑀𝑤ℎ𝑜𝑙𝑒 𝑏𝑜𝑑𝑦 −  𝐶𝑜𝑀𝑠𝑒𝑔𝑚𝑒𝑛𝑡) ∗ 𝑚𝑎𝑠𝑠𝑠𝑒𝑔𝑚𝑒𝑛𝑡 

Equation 4.2 

 

A Spearman’s rank test was then performed in R Studio, to assess the relative influence of 

these various mass properties on whole body CoM. 

 

4.4. Results 

4.4.1. CoM position across Aves 

4.4.1.1.  Does CoM correlate with locomotor style? 

The terrestrial group generally displayed more caudal CoM positions relative to the volant 

group (Figure 4.3). However, marked variation was present between specimens. The turaco 

lay within, and the tinamou slightly outside, the volant group (Figure 4.3). Meanwhile, the  
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Figure 4.2: Phylogeny representing the 27 specimens used in this study, labelled with the 

names of their respective Orders. Based on Jetz et al. (2012). 
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Figure 4.3: Size corrected centre of mass data for 27 bird species, grouped by locomotor type. Centre of mass position is expressed relative to the right hip 

(at 0, 0).
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large bodied ratites, chicken and seriema had CoM positions which were markedly more 

caudal and more ventral (Figure 4.3). There was substantial overlap between the diving and 

volant birds along the cranio-caudal and dorso-ventral axes (Figure 4.3). The pelican was an 

extreme outlier in the cranio-caudal dimension, and the kingfisher also lay outside of the 

volant group. The volant birds showed substantial variation in CoM position. But generally, 

the volant group had a more cranial, more dorsal whole body CoM relative to the terrestrial 

specimens (Figure 4.3). 

 

The differences between groups were not found to be significant in the cranio-caudal 

direction (ANOVA, p value = 0.294). But groups were statistically distinct in the dorso-ventral 

direction (ANCOVA, p value = 0.016) and post-hoc testing revealed the volant and terrestrial 

groups were significantly different (Tukey test, p value = 0.012). However, after correcting 

for phylogeny, these differences in the dorso-ventral direction were no longer statistically 

significant (PGLS, p value > 0.07). 

 

4.4.1.2.  What drives differences in whole body CoM position? 

Though the differences detected between locomotor groups were not significant at p = 0.05, 

here I explore the causes of the observed differences. Examination of only the first mass 

moment (FMM) data for each segment, across the 27 specimens reveals the markedly 

different influences different segments have on CoM position (Figures 4.4 and 4.5), and the 

variability in segment influence present across Aves. The torso segment FMM exerted the 

greatest influence in the cranio-caudal direction (15 out of 27 birds, Χ2 = 28, p < 0.05), 

followed by the head (14 out of 27 birds, Χ2 = 15, p < 0.05). In the dorso-ventral direction, 

the hindlimb was overwhelmingly the main driver (24 out of 27 birds, Χ2 = 81, p < 0.05), 

followed by the torso and forelimb (12 out of 27 and 11 out of 27 birds respectively, Χ2 = 14, 

p < 0.05). 
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Figure 4.4: First mass moment data in the cranio-caudal direction plotted on the y-axis for 

each of the 27 specimens on the x-axis (see Table 4.1 for specimen numbers), for each body 

segment. A positive FMM indicates a cranial pull, negative FMM indicates a caudal pull. 
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Figure 4.5: First mass moment data in the dorso-ventral direction plotted on the y-axis for 

each of the 27 specimens on the x-axis (see Table 4.1 for specimen numbers), for each body 

segment. A positive FMM indicates a ventral pull, negative FMM indicates a dorsal pull. 
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Table 4.3: Table showing the results of Spearman’s rank test, assessing the correlations of 

various segment mass properties with whole body centre of mass in the dorso-ventral 

direction. ρ2 indicates the percentage of CoM variation which is accounted for by a given 

variable. Significant results (at p < 0.05) are highlighted in red. 

 

    
Spearman’s ρ ρ2 (%) p value 

Segment mass 
(kg)  

Head 0.297 8.8 0.133 

Neck 0.410 16.8 0.035 

Torso -0.110 1.2 0.584 

Forelimb 0.287 8.2 0.147 

Hindlimb -0.502 25.2 0.008 

Segment centre of mass  
(mm)  

Head 0.077 0.6 0.702 

Neck -0.068 0.5 0.736 

Torso 0.094 0.9 0.640 

Forelimb 0.274 7.5 0.167 

Hindlimb 0.557 31.0 0.003 

Segment first mass moment 
(kgm)  

Head -0.187 3.5 0.348 

Neck 0.075 0.6 0.709 

Torso 0.767 58.8 0.00001 

Forelimb -0.125 1.6 0.534 

Hindlimb -0.624 38.9 0.001 

Whole body mass 
(kg) 

-0.328 10.8 0.095 
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Table 4.4: Table showing the results of Spearman’s rank test, assessing the correlations of 

various segment mass properties with whole body centre of mass in the cranio-caudal 

direction. ρ2 indicates the percentage of CoM variation which is accounted for by a given 

variable. Significant results (at p < 0.05) are highlighted in red. 

 

    
Spearman’s ρ ρ2 (%) p value 

Segment mass 
(kg)  

Head -0.844 71.2 0.000002 

Neck -0.315 9.9 0.110 

Torso -0.104 1.1 0.605 

Forelimb -0.655 42.9 0.0003 

Hindlimb 0.082 0.7 0.682 

Segment centre of mass  
(mm)  

Head 0.030 0.1 0.883 

Neck 0.258 6.7 0.193 

Torso 0.652 42.5 0.0003 

Forelimb 0.200 4.0 0.315 

Hindlimb -0.206 4.2 0.302 

Segment first mass moment 
(kgm)  

Head -0.927 86.0 0.000001 

Neck -0.211 4.4 0.290 

Torso 0.821 67.4 0.000002 

Forelimb -0.092 0.8 0.649 

Hindlimb 0.395 15.6 0.042 

Whole body mass 
(kg) 

0.449 20.1 0.020 
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When a range of specimen mass properties were assessed for correlation with CoM position, 

the majority (9 out of 12) of the statistically significant associations were strong (Spearman’s 

ρ below -0.5 or above 0.5) (see Tables 4.3 and 4.4). The strongest associations to whole body 

dorso-ventral CoM position were shown by torso and hindlimb FMM (Spearman’s ρ values: 

0.767 and -0.624 respectively), and also for hindlimb mass (Spearman’s ρ = -0.502) and CoM 

(Spearman’s ρ = 0.557). Specimen mass properties showed a greater number of strong 

associations with whole body cranio-caudal CoM position. Particularly strong associations 

were found for head mass, head FMM and torso FMM (Spearman’s ρ values: -0.844, -0.927 

and 0.821 respectively), but also for forelimb mass (Spearman’s ρ = -0.655) and torso CoM 

(Spearman’s ρ = 0.652). 

 

4.4.1.3.  Does CoM correlate with body mass? 

Based on the raw data, CoM position shows a strong ventral shift with increasing body size 

(Spearman’s ρ = -0.93; p < 0.0005; 87% of variance explained by body mass), which is 

maintained even after removing the large-bodied, terrestrial ratites from the dataset (see 

Figure 4.6). Trends in cranio-caudal CoM position are similar (Spearman’s ρ = -0.88; p < 

0.0005; 77% of variance explained by body mass), but the six largest specimens show 

substantial variation (see Figure 4.6). Excluding the pelican, which has an extremely cranial 

CoM, whole body CoM position for the remaining specimens levels off approximately 

100mm cranial to hip. 

 

Normalising data by body mass to remove absolute differences in CoM position suggests that 

larger body masses are weakly associated with more caudal (Spearman’s ρ = 0.45; p = 0.01; 

20% of variance explained by body mass), and more ventral (Spearman’s ρ = -0.33; p = 0.09; 

10% of variance explained by body mass) CoM positions (Figure 4.7). The dorso-ventral trend  
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Figure 4.6: Whole body mass plotted against raw data on cranio-caudal (left), and dorso-

ventral (right) centre of mass position. Negative values indicate shifts in a cranial and ventral 

direction respectively. Data points are colour coded according to locomotor categories: 

terrestrial (green), diving (blue) and volant (orange). Data points of interest are labelled with 

specimen names. 
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Figure 4.7: Whole body mass plotted against size normalised data on cranio-caudal (left), 

and dorso-ventral (right) centre of mass position. Negative values indicate shifts in a cranial 

and ventral direction respectively. Trendlines are for the whole dataset. Data points are 

colour coded according to locomotor categories: terrestrial (green), diving (blue) and volant 

(orange). Data points of interest are labelled with specimen names. 
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is driven mainly by the three large ratites, but the cranio-caudal trend holds well across Aves, 

with the exception of the pelican (Figure 4.7). 

 

4.4.2. Avian body density 

4.4.2.1.  Segment specific density data 

The whole body and segment specific density values determined here are generally similar 

across birds (Figure 4.8, Supplementary Information 4.2). Whole body density ranged from 

922 - 1114kgm-3 for the five species studied here, while the range of segment densities was 

greater at 733 - 1730 kgm-3. Within specimens, segment density varied, to large degrees in 

some cases (e.g. kestrel ±864kgm3, and chicken ±750kgm3). The kestrel had the lowest whole 

body density, which was driven by the exceptionally low density of the torso (733kgm-3). The 

long tailed tit had the highest body density (1114kgm-3), slightly more dense than the 

chicken, duck and pigeon specimens. 

 

4.4.2.2.  Whole body density in 25 bird species 

Whole body density was calculated for all specimens with a known body mass (i.e. excluding 

the ostrich and hummingbird), using body mass measured from cadavers and model skin 

volume. Measured density varied widely from 531kgm-3 (brown pelican) to 1336kgm-3 (black 

throated diver) (Table 4.5). 

 

4.4.3. Assessing modelling approaches 

4.4.3.1. Segment closing technique - validity assessment 

In order to address hypothesis 4a, three different approaches were used here to generated 

‘closed’ skin segments for estimation of CoM position. The effect of these different closing 

methods was assessed on the buzzard specimen. Three CoM estimates were generated 

using: (1) segments closed in Geomagic or wrapped in 3-matic, (2) alpha shapes wrapped   
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Figure 4.8: Segment specific and whole body density data measured from the cadavers of 

five specimens. 
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Table 4.5: Table showing the body density (kgm3) values calculated by dividing measured 

body mass by model skin volume. 

# Common name Body density 

1 Common ostrich NA * 

2 Darwin’s rhea 822 

3 Andean tinamou 1061 

4 Emu 763 

5 Mallard 1037 

6 Leghorn chicken 1139 

7 Clark’s grebe 904 

8 Chilean flamingo 613 

9 Wood pigeon 1099 

10 Anna’s hummingbird NA * 

11 Violet turaco 843 

12 Red-legged seriema 852 

13 Black-throated diver 1336 

14 Humboldt penguin 1004 

15 Sooty shearwater 694 

16 Scarlet ibis 926 

17 Brown pelican 531 

18 Brandt’s cormorant 746 

19 Western gull 781 

20 Common buzzard 1129 

21 Turkey vulture 877 

22 Great horned owl 1325 

23 Common kingfisher 951 

24 Great spotted woodpecker 825 

25 Merlin 802 

26 Orange-winged parrot 906 

27 Blackbird 982 

 

* indicates specimens for which body mass was estimated, and for which body density was 

therefore not calculated.  
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Figure 4.9: A & B: Example skin segments closed in Geomagic (left), using an alpha shape 

(centre) and using convex hulling (right). The segments shown are the upper arm (A) and 

thigh (B) of a buzzard. C: Three alternative whole body CoM predictions produced by applying 

the three alternative methods for closure to all body segments of a buzzard (red: closed 

segments, yellow: alpha-shaped segments, green: hulled segments). 
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Table 4.6: Table showing segment volumes (mm3), segment CoMs (mm) and whole-body CoM estimates (mm) when all body segments are closed using three 

alternative methods (Geomagic, alpha shapes and convex hulls). Where +x is right, +y is dorsal, +z is caudal. See Figure 4.9 for visualisation of these differences. 

  
  Head* Neck1 Neck2 Torso Tail* Arm* Forearm* Hand* Thigh Shank* MT* Toes   

Whole 
body 

Closed 

Volume 63792.2 11338.3 9538.4 305045.
9 

13730.1 22802.9 11907.8 3777.0 29947.4 25582.8 4868.5 5048.0   507379.3 

CoM -16 -11 -12 -10 -13 40 153 249 2 1 0 -1   5 

  3 -9 -7 -16 -5 -1 1 2 -28 -104 -182 -235   -26 

  -199 -161 -129 -52 32 -98 -93 -96 1 1 1 4   -63 

Alpha 

shape 

Volume 66878.2 12502.3 11315.0 331078.
9 

16896.4 25629.9 15373.4 5346.0 33795.1 27138.7 5377.3 5334.0   556665.2 

CoM -16 -11 -12 -10 -13 43 156 250 2 1 0 -1   7 

  3 -9 -6 -16 -4 -1 2 3 -29 -105 -182 -236   -26 

  -199 -160 -129 -53 33 -97 -93 -96 2 1 1 4   -63 

Convex 

hull 

Volume 71839.8 16529.9 13360.0 373342.
9 

21417.6 30015.5 20991.1 7131.98
3 

41609.2
2 

30299.2 6585.8 7018.6   640141.7 

CoM -17 -11 -12 -10 -13 44 162 253 2 1 0 -1   10 

  2 -8 -6 -16 -4 -1 2 3 -29 -107 -184 -236   -26 

  -200 -162 -129 -51 32 -97 -94 -96 3 1 1 4   -61 

 

Segments marked with * were split into multiple component parts to generate convex hulls. 



Chapter 4 - CoM and locomotion in birds 
 

195 
 

around each segment and (3) convex hulls for each segment (Figure 4.9, Table 4.6). To 

generate alpha shapes, an alpha value had to be selected for each segment. When convex 

hulling segments with more complex geometries, they were split into several component 

parts to ensure a close-fitting hull (e.g. Figure 4.9A). 

  

All body segments of the buzzard specimen were closed using each of these methods in order 

to generate three whole body CoMs. These CoM positions represented extreme situations, 

as in the models used in the main study the majority of segments were closed in Geomagic. 

In the main study, segments were only alpha-shaped if they could not be closed, and failing 

that convex hulls were used. Very small differences were detected between the three CoM 

values calculated using these alternative methods. Slight differences in segment volumes and 

CoM positions combined to produce differences in whole body CoM position of less than 

1.86mm for the buzzard (Figure 4.9C, Table 4.6). 

  

I therefore conclude that the effects of using different closing methods is minimal, and has 

no significant adverse effects for the purpose of this study. The very small differences 

detected between estimated whole body CoMs suggests any of these methods are 

appropriate for estimating CoM position. The time investment relative to the reward of 

generating clean, closed skin outlines should be considered for future works seeking to 

generate CoM estimates, when an alpha shape or convex hull-based approach is virtually 

equivalent in accuracy. 

 

4.4.3.2. Comparing mass property estimates from heterogeneous and 

homogeneous models 

Addressing hypothesis 4b, the CoM positions predicted by the alternative applications of 

density data (Section 4.3.2), are generally very similar to one another (see Figure 4.10). The  
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Figure 4.10: Raw centre of mass position plotted relative to the right hip (at 0, 0) for 

homogeneous and heterogeneous version of models (see key). 
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median difference across all 27 bird models was 1.80mm (range: 0.377 - 7.04mm). 21 of 27 

bird models displayed lower error than that observed in the sensitivity analysis of Chapter 2  

 (Section 2.4.3.3), which tested a range of density data used in previously published studies. 

The raw, 2D differences between model versions are positively associated with body mass 

(Spearman’s ρ = 0.681, p < 0.005); as would be expected, larger bodied specimens have 

absolutely larger differences (Figure 4.10). However, all differences represent only a small 

fraction of the whole body CoM in the dorso-ventral (2 - 16%, mean: 8%) and cranio-caudal 

(1 - 7%, median: 3%) directions. I therefore conclude that density assignment has only a 

marginal effect on whole body CoM position. 

 

When used to estimate body mass, both model variants displayed larger errors (median: 18% 

of measured body mass). This error was highly variable - from 0.4% for the homogeneous 

penguin model, to 103% for the heterogeneous pelican model (see specimen 17 in Figure 

4.11). While most models showed less than 50% error (25 out of 27 specimens), only 8 out 

of 27 models showed less than 10% error in their BM predictions (Figure 4.11). The 

homogeneous models more closely predicted measured body mass in 19 out of 27 

specimens, and showed a lower average error than their heterogeneous counterparts (17% 

versus 21% of measured body mass). This study proceeded using data from homogeneous 

models in all subsequent analyses. 

 

4.5. Discussion 

4.5.1. Does whole body CoM position differ between forelimb and hindlimb 

dominated species? 

The demands on the musculoskeletal system vary considerably across Aves, according to the 

wide range of locomotor habits displayed by species within the group. Previous studies have 

elucidated links between locomotion and muscular anatomy, reflected by different levels of  
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Figure 4.11: Difference between measured body mass, and predicted body mass, displayed 

as a percentage of measured body mass. All differences shown as positive changes, in enable 

easier comparison of error magnitudes. Shown for the following specimens - 1: common 

ostrich*, 2: Darwin’s rhea, 3: Andean tinamou, 4: emu, 5: mallard, 6: leghorn chicken, 7: 

Clark’s grebe, 8: Chilean flamingo, 9: wood pigeon, 10: Anna’s hummingbird*, 11: violet 

turaco, 12: red-legged seriema, 13: black-throated diver, 14: Humboldt penguin, 15: sooty 

shearwater, 16: scarlet ibis, 17: brown pelican, 18: Brandt’s cormorant, 19: western gull, 20: 

buzzard, 21: turkey vulture, 22: great horned owl, 23: common kingfisher, 24: great spotted 

woodpecker, 25: merlin, 26: orange-winged parrot, 27: blackbird. 

* indicates species for which body mass was estimated, rather than measured directly. 

 

  



Chapter 4 - CoM and locomotion in birds 
 

199 
 

relative investment in the hindlimb versus the forelimb musculature according to locomotor 

specialisations (Heers and Dial, 2015). This study seeks to examine links between 

morphology and locomotor style at the level of the whole organism, using CoM as a proxy 

for body plan. Contrary to hypothesis 1, no statistically significant differences were found in 

CoM position between birds of different locomotor types (Figure 4.3). Though prior to 

phylogenetic correction, terrestrial (hindlimb dominated) birds were found to have a more 

ventral CoM compared to those which are volant (forelimb dominated). The lack of statistical 

significance after phylogenetic correction is potentially a result of the ratite dominated 

terrestrial group, whose similarity to one another may be driven by their close phylogenetic 

relationships, rather than a convergence on morphologies suited to terrestriality. 

Additionally, though 27 specimens represents a large sample size for a volumetric study (e.g. 

previous studies on birds include a limited number of species: two in Allen et al. (2013) and 

six in Henderson (2010)), it is a relatively small sample size to capture the variation present 

across the whole of Aves. Future work should seek to include a larger number of species, and 

mature adult ratite specimens to better capture the variability, and any trends, present 

within Aves. The spread of data points observed in both the volant and terrestrial categories 

indicates that substantial variability is present within Aves, and within locomotor sub-

categories (Figure 4.3). This reflects the fact that body plan is influenced by more than just 

locomotor mode, with other factors such as life history, habitat and foraging technique also 

influencing morphology. In Figure 4.3, the ventral-most data point in the terrestrial group is 

the turaco, which results in an overlap with the volant group. The arboreal turaco and the 

terrestrial tinamou do not group with the other terrestrial species studied here. By 

observation, both species superficially display a more conservative body plan, closer to that 

of the volant birds than the forms specialised for bipedal, terrestrial locomotion. 
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Based on the findings of Heers and Dial (2015), it would be expected that differences in 

hindlimb and forelimb morphologies, as indicated by their mass properties, would be the 

main drivers of the differences observed between the volant and terrestrial groups here 

(hypothesis 2). The results partially confirm this, highlighting the mass properties of the 

hindlimb as highly significant influences on dorso-ventral CoM position (p < 0.008 for 

segment mass, CoM and FMM) (Table 4.3). Forelimb mass and CoM are also correlated with 

a more dorsal CoM position, though not significantly (p = 0.147 and 0.167 respectively). This 

suggests that it is primarily differences in the hindlimb morphology which drive differences 

in whole body CoM. 

 

The assessment of a range of mass properties to determine links with CoM position revealed 

numerous significant correlations. Most of these statistically significant correlations were 

strong (Spearman’s ρ below -0.5 or above 0.5). It is encouraging that these are robust trends, 

even when sampling across a broad range of avian taxa. Many of these associations are 

stronger than those detected by Allen et al. (2013), perhaps a result of greater sample size, 

or more consistent differences between taxa in a more closely related group. 

 

Previous work examining CoM position focuses almost exclusively on the cranio-caudal 

component (e.g. Allen et al., 2013, Bates et al., 2012, Bates et al., 2016, Hutchinson et al., 

2011). This may be adequate for terrestrial species, where the cranio-caudal component is 

the major determinant of hindlimb posture along with terrestrial locomotor capabilities. 

However, for volant birds, the dorso-ventral component of CoM matters much more than 

for purely terrestrial organisms. Data generated here suggest that the dorso-ventral 

component of CoM is a better, though non-significant in this study, indicator of differences 

between locomotor categories (Figure 4.3; and Chapter 3, Section 3.4.2). For terrestrial 

species, a more ventral CoM confers greater stability for bipedal locomotion on the ground. 
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For volant birds, a more dorsal CoM, positioned closer to the axis of rotation about the wings, 

enabling greater manoeuvrability (Thomas and Taylor, 2001). However, a more ventral CoM 

provides greater passive stability in flight (Thomas and Taylor, 2001). These conflicting 

benefits for dorso-ventral positioning of CoM could explain the variation present within the 

volant locomotion category. For example, less acrobatic fliers such as burst adapted species 

could benefit from a more ventral CoM, without suffering the negative consequences. Whole 

body morphology could be adapted to particular flight styles, in a similar way that wing 

morphology varies according to the required function, (e.g. by the way of aspect ratios 

(Rayner, 1988, Savile, 1957)). However, it is difficult to elucidate more detailed correlations 

such as these from this dataset. More specimens from the specialist categories would be 

required to investigate any potential links. Future work could explore potential correlations 

with quantitative measures of locomotor ability, such as wing aspect ratio and wing loading, 

in order to elucidate links between CoM and locomotor ability in birds. 

 

It should be noted that the three large bodied ratite species studied here were represented 

by sub-adult specimens (ostrich: 12.3kg, rhea: 7.85kg, emu: 13.15kg). To my knowledge, 

there has been no work directly investigating CoM position through ontogeny in ratites, 

though significant CoM shifts through ontogeny have been reported in other avian species 

(e.g. Allen et al., 2009). Additionally, the musculature of ratites has been suggested to 

undergo non-isometric growth rates in ratites (e.g. Picasso, 2015), further suggesting that 

CoM differences are likely to be present between juveniles and adults. The use of these 

juvenile ratites represents a limitation of the data comprising the terrestrial group in this 

study. In order to produce a more complete picture of the body types which occur in birds 

using ground dwelling behaviours, both juvenile and adult body types should be included in 

future analyses of this type. 
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4.5.2. Do birds specialised for novel behaviours possess unique CoM positions? 

The third hypothesis of this study was that birds with behaviours specialised for unique 

environments would display specialised morphologies, which would in turn be reflected by 

unique CoM positions. However, no significant differences were found between the CoM 

positions of diving birds and volant birds. The diving birds were however consistently 

clustered at the ventral edge of the volant group, suggesting greater investment in the 

hindlimb musculoskeletal anatomy likely linked to the increased hindlimb use (for propulsion 

in water) compared to an average flying bird. Although the limbs of these diving species are 

adapted for subaqueous locomotion, in most cases they are also used for flight and bipedal 

locomotion on land, as for other bird species, likely imposing significant constraints on 

changes to morphology. 

 

The pelican falls as an extreme outlier, due to the large head and long neck relative to body 

size (Figure 4.3). These extreme morphologies place whole body CoM in front of the wings, 

when in the standardised posture. Clearly, posture is hugely important in determining CoM 

position. In vivo, the posture for all birds would be markedly different from the standard 

posture used here. Alterations to posture would enable organisms to compensate for 

seemingly oversized body parts by repositioning them closer to the CoM. This is 

demonstrated by the pelican, which flies with a high degree of neck curvature, with the head 

folded back against the torso. 

 

In the birds sampled here, the variability present within the volant group does not seem to 

be linked to specific flight styles (e.g. soaring versus gliding versus flapping flight), alternative 

pressures on hindlimbs (e.g. raptors, dabblers), or body mass (see Section 4.4.1.3). However, 

a greater number of species in each of these sub-categories would be required in order to 

confidently detect any such trends which may be present. 
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4.5.3. Does density assignment affect the ability of models to predict mass 

properties? 

The density data determined here from physical measurements of five bird specimens 

(whole body density: 922 - 1114kgm-3) (Figure 4.8, Supplementary Table 4.2) lie well within 

the published range of whole body density values obtained using traditional physical 

methods (537 - 1069kgm-3) (Lovvorn and Jones, 1991, Tserveni and Yannakopoulos, 1988). 

Previous studies have shown that the process of digital segmentation to obtain body volumes 

has a high degree of accuracy and precision (Allen et al., 2009, Macaulay et al., 2017). Digital 

determination of object volume offers numerous benefits over traditional submersion based 

methods, including ease of data sharing. Here, only five specimens were physically tested 

(i.e. volume measured digitally for individual segments, mass measured on a lab balance). 

These specimens covered a range of avian groups, but such a small sample size cannot cover 

the full extent of variation present in body size and locomotor specialisations which are 

present across Aves, which likely explains the differences between this and the published 

range. The density values obtained from the more coarse models constructed from whole 

body scans (531 - 1336kgm-3) (Table 4.5), show a wider range than the published values for 

birds. Literature values obtained using submersion have produced low density values for 

aquatic, diving birds (e.g. 784kgm-3 for a double-crested cormorant, Lovvorn and Jones 

1991), which raises questions about how these birds achieve and maintain submersion. The 

wide range of values obtained here, showing variation between closely related families with 

similar life histories suggest that these data may contain a degree of inaccuracy. This is likely 

in part due to issues with creating closed segments for volume determination. Though 

closing technique does not significantly impact CoM position, it also impacts segment volume 

and may exert a substantial effect on density estimation (Figure 4.9, Table 4.6). Future work 

seeking to determine density data for birds should test a large sample size, covering a range 
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of species of different sizes and locomotor adaptations using a range of physical and digital 

methods to assess the accuracy and precision of these methods. 

 

Due to uncertainty around density data in birds, different approaches to modelling segment 

densities in bird models were explored. This revealed that density affects the estimation of 

different mass properties to varying extents. Previous work (Chapter 2, Section 2.4.3.3) has 

found that application of a wide range of density data has little effect on whole body CoM 

position, for three bird species. The current study applied homogeneous density to models, 

along with heterogeneous data derived for a range of taxa here (Figure 4.8). The findings of 

this study support the previous conclusion, with close agreement between homogeneous 

and heterogeneous models in predicted CoM position across 27 avian species with varying 

body sizes and morphologies (Figure 4.10). Earlier sensitivity analyses (see Chapter 2, Section 

2.3.4) used a broad range of density data for their heterogeneous application, reflecting the 

wide range of values previously used in the literature (see Chapter 2, Table 2.2), due to the 

lack of published bird segment specific density data. The new bird specific segment density 

data generated here (Figure 4.8) has refined the error related to density further (less than 

7mm error for all birds studied here, Figure 4.10). 

 

Use of a homogeneous density essentially gives a centre of volume, rather than a true CoM 

for a given specimen. This is beneficial in studies such as this looking to assess differences in 

body plan, as it is standardised across all specimens. However, it does not provide a truly 

accurate representation of relative mass distribution or CoM across Aves. Any study aiming 

for a highly accurate representation of bird CoM using volumetric models (e.g. submillimetre 

accuracy) would require specimen specific density assessments, in addition to known 

postures and generation of air cavities for each individual. By generating specimen specific 

air cavities, any differences in pneumatisation between juveniles and adults could be 



Chapter 4 - CoM and locomotion in birds 
 

205 
 

explicitly accounted for. The current method described here applies to same generic density 

data to both juvenile (ostrich, rhea and emu) and adult specimens. This is unlikely to be a 

truly realistic representation of the individual specimens, though there is no published 

research on the changes to air cavities and associated CoM changes through ontogeny in 

ratites. The time demands which accompany generation of individual air cavities should be 

weighed against the small increases in accuracy likely to be gained. For the majority of 

studies interested in CoM position in birds, it can be concluded that the effect of density is 

negligible (Figure 4.10). Any selection of feasible density values have been demonstrated to 

provide answers in close agreement to each other, and to the true CoM position (see Chapter 

2, Section 2.4.3.3). This has positive implications for studies predicting CoM in fossil taxa, 

where it can also be assumed that density assignment has minimal impact on CoM results, 

allowing more significant issues to be the primary focus such as improving skin outlines (i.e. 

segment volume estimates) for extinct specimens. 

 

While density has a small effect (average: 1.80mm) on model CoM position, it was found to 

exert a much greater effect on predictions of whole body mass (average: 18% measured body 

mass). The poor ability of heterogeneous and homogeneous models to predict body mass 

suggests that bird density varies considerably across Aves; beyond the generic value of 

1000kgm-3, and beyond the variability captured for the five species studied here (922 - 

1114kgm-3). This is also indicated by the substantial variation in the ‘apparent density’ values 

(531 - 1136kgm-3). This source of error merits further investigation, but was not deemed 

necessary for this study focussing on CoM position. Volumetric models are not generally used 

to estimate body mass for whole specimens of living taxa, given the ease of measuring body 

mass physically. However, the poor performance of avian models here suggests that caution 

should be taken when using volumetric models to predict body mass in extinct taxa. 
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4.6. Conclusion 

Contrary to my hypotheses, this study found no statistically significant differences in whole 

body CoM position between birds using different primary locomotor strategies. However, 

non-significant differences indicated that volant taxa had more dorsally positioned CoMs 

than their terrestrial counterparts, a trend driven by hindlimb morphology. A more dorsal 

CoM would be placed closer to the axis of rotation about the wings in flight, enabling greater 

manoeuvrability. This study identified considerable variability within the locomotor 

categories investigated here, reflecting the substantial variation in CoM position which is 

present across Aves. This large range of CoM positions suggests that studies should avoid 

using one bird species as a proxy for the CoM position of all birds (e.g. Allen et al., 2013). 

Further work should seek to examine CoM position in a greater number of avian taxa, in 

order to better represent the wide range of body plans and locomotor styles present across 

Aves. 
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4.7. Supplementary Information 

Supplementary Information 4.1: Generating suitable values for whole body mass for 

hummingbird and ostrich specimens. 

 

Here, I used the methods of Brassey and Sellers (2014), Campione et al. (2014) and Field et 

al. (2013) to generate whole body mass estimates for two specimens where measured body 

masses were not available. 

 

For the hummingbird, the resulting estimates of body mass were all substantially different 

from expected values (at 14g, 1.9g and 20g respectively). This is likely due to the extreme 

robustness of hummingbird humerus and pectoral girdle, combined with its extremely small 

body size (smaller than any specimens tested by Brassey and Sellers (2014) or Campione et 

al. (2014). By taking the volume of our model and applying a density of 1000kgm-3 (a value 

widely used in volumetric modelling approaches (e.g. Allen et al., 2009, Bates et al., 2009b, 

Hutchinson et al., 2007)), a mass estimate of 5g is derived, which is within the reported range 

of body masses for this species (Kim et al., 2014, Powers and Nagy, 1988). This was carried 

forward as the ‘measured’ body mass for this specimen. Estimates for the ostrich specimen 

fared better (Campione: 13.8kg, Brassey: 12.3kg). Due to the benefits of their volumetric 

approach, and the ratite-based nature of their relationship, the value derived from Brassey 

and Sellers (2014) was carried forward here. 
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Supplementary Information 4.2: Table showing segment specific density values (kgm-3) 

obtained from physical experiments on five bird cadavers. 

 

 Head & Neck Torso Forelimbs Hindlimbs Whole body 

Long Tailed Tit 1078 1088 1385 1120 1114 

Kestral 931 733 1597 1288 931 

Duck 1120 1032 1500 1180 1092 

Pigeon 940 952 1446 1153 1022 

Chicken 1163 980 1730 1162 1095 
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5.1. Abstract 

Knowledge of mass distribution can provide key insights into various aspects of an organism’s 

biology, and is of particular interest when a species cannot be observed directly, as is the 

case for fossil taxa. Mass distribution, summarised by centre of mass, is a key input for 

biomechanical investigations, such as those into locomotor capabilities. Numerous methods 

have been proposed to estimate the centre of mass of fossil taxa. Here, I develop a 

quantitative computational method, grounded in an unprecedented dataset from extant 

animals, in order to estimate whole body centre of mass in fossil taxa. The relationship 

between skeletal and skin volume is established in extant taxa on a segment-by-segment 

basis. This enables quantitative predictions of soft tissue volumes and subsequently whole 

body centre of mass in fossil archosaurs, with error margins informed by the variability 

present within closely related taxa. The results here indicate there is substantial variability 

in the volume of soft tissue present for a given skeletal volume between the two extant 

archosaur groups, which has not been recognised in previous volumetric modelling 

approaches. Full acknowledgment of this uncertainty leads to substantial error margins 

around the centre of mass positions estimated for fossil species. These quantitative error 

margins, grounded in data from living taxa, suggest that extreme caution should be taken 

when using existing methods to calculate centres of mass, from which conclusions are drawn 

about the biology of extinct taxa. 
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5.2. Introduction 

Centre of mass (CoM) is a fundamentally important biomechanical parameter. It plays a role 

in determining organism posture, balance and locomotor abilities (e.g. Bates et al., 2010, 

Farlow et al., 1995, Gatesy et al., 2009, Henderson and Snively, 2004, Hutchinson et al., 2007) 

, which in turn can provide information about species interactions and ecosystem dynamics 

(e.g. Henderson, 2018, Snively et al., 2018, Sellers et al., 2017). These basic functional and 

ecological traits can be directly observed in living taxa, but this is not the case for long extinct 

fossil species with no living analogue, as is the case for many dinosaurs (Gatesy, 1990, Gatesy 

and Dial, 1996, Hutchinson and Allen, 2009). CoM, and mass properties more widely, 

therefore provide a valuable, indirect route to ‘higher-level’ biological and ecological 

information about extinct animals. 

 

As such, many efforts have been made to estimate mass properties for dinosaurs over the 

last century in order to make inferences about the biology of these enigmatic fossils (e.g. 

Alexander, 1983, Allen et al., 2013, Anderson et al., 1985, Bates et al., 2009b, Brassey et al., 

2015, Gregory, 1905, Henderson, 1999, Hutchinson et al., 2007, Maidment et al., 2014, 

Mallison, 2010, Paul, 1997, Sellers et al., 2017). However, the majority of studies focus solely 

on whole body mass, which provides relatively broad information in comparison to CoM. 

Data on an organism’s CoM is essential for more in-depth studies of functional morphology 

and biomechanical performance because of its role in determining body segment motion. 

Despite this central importance, studies that attempt to determine the CoM of fossil taxa are 

still relatively rare (with several notable exceptions, discussed below). This is in part due to 

the complexity of estimating CoM in comparison to whole body mass. Additionally, CoM 

estimation poses more challenges when applied to fossil material, as it requires largely 

complete specimens for example. 
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Historically, studies estimated CoM by constructing physical scale models of dinosaur species 

and then used various physical experimentation techniques (Alexander, 1985, Colbert, 1962, 

Farlow et al., 1995, Gregory, 1905). For example, Alexander (1985) used suspension to 

determine CoM position and gradual submersion to determine the volume of sequential 

‘slices’ of the organism which then informed estimates of mass distribution. However, the 

construction of scale models involves inherent uncertainty on the amount and distribution 

of soft tissue. It is also possible these physical methods have substantial error margins (see 

examination of the suspension methodology in Chapter 2 of this thesis). These errors, along 

with any inaccuracies present in the initial model construction will then be magnified once 

the results from models are scaled up to full size (Farlow et al., 1995). 

 

As digital technologies improved, computational methods were developed in an attempt to 

provide more accurate, repeatable and objective estimates of CoM in fossil taxa. The work 

of Henderson (1999) represents the first major step towards this, and this mathematical 

slicing method has since been developed further (e.g. Henderson, 2010, Henderson, 2018, 

Maidment et al., 2014). Henderson’s method takes images of the fully articulated fossil of 

interest in dorsal and lateral views. A skin outline is then constructed around the 2D images 

of the skeletal material and these reconstructions are extrapolated into 3D. Those 3D models 

are divided into numerous thin, cylindrical sections running along the cranio-caudal axis of 

the animal. Density values can be set for each cylinder specifically as required, and any areas 

of zero-density (such as lungs) can be explicitly incorporated in the model. From these 

density data and segment volumes, segment masses, and subsequently whole body CoM, 

can be calculated. This method has been validated on a selection of large mammals 

(Henderson, 1999, Henderson, 2006), crocodylians (Henderson, 2003) and birds (Henderson, 

2010), and was found to be in good agreement with the expected CoM positions. However, 

to date there have been no attempts to quantify the error present in models of extant taxa 
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using this method. Though this would not directly indicate the error present in 

reconstructions of fossil skin outlines, it would give a quantitative indicator of the minimum 

error present. Studies using this method are therefore yet to include quantitative error 

margins for CoM position in extinct taxa, despite the considerable uncertainty inherent to 

digital modelling of fossil species. Unlike studies using physical modelling, this method is 

capable of basing reconstructions directly on the skeletal material, this is ideally achieved 

through 2D photographs (e.g. Maidment et al., 2014); or more frequently it is based on 

artist’s reconstructions of the soft tissue outline (e.g. Henderson, 1999, Henderson and 

Nicholls, 2015). The mathematical slicing method benefits from the ability to modify models 

relatively easily in comparison to methods using physical models. However, by using only 

two 2D snapshots to represent the entire skeleton, much of the biological data available to 

inform a reconstruction is lost. 

 

Later studies have improved on this by basing their reconstructions on 3D representations 

of the whole skeleton. This can be achieved using, for example, manual digitisation 

(Hutchinson et al., 2007), laser surface scanning (Allen et al., 2013) or computed tomography 

(Mallison, 2010). Once digitised, skin outlines can then be applied directly around the whole 

skeleton. The initial suite of manual shape fitting studies (e.g. Allen et al., 2013, Bates et al., 

2009b, Hutchinson et al., 2007, Mallison, 2010) manually fitted a series of shapes along the 

cranio-caudal axis to the digitised skeletal material. These shapes are then joined and 

expanded to generate skin outlines based on qualitative knowledge of muscular anatomy in 

extant archosaurs, and muscle scars present on the fossil material. Though these studies are 

likely to benefit from the inclusion of a fully 3D digital models of the skeleton, they include 

the same inherent uncertainty as previous studies when reconstructing a skin outline. The 

validity of these methods has been tested by application to extant, yielding good results (e.g. 

Allen et al., 2009, Bates et al., 2009b, Hutchinson et al., 2007). However, the ability to 
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accurately reconstruct the skin outline of a living species does not reflect the accuracy of a 

qualitative reconstruction of the skin outline for a long extinct species (Bates et al., 2009b). 

Many of these previous studies have recognised this subjectivity and uncertainty by 

conducting extensive sensitivity analyses on their models to generate models with CoMs 

maximally skewed in the cranio-caudal and dorso-ventral directions, using segment volumes 

which are qualitatively deemed to be reasonably realistic (e.g. Allen et al., 2013, Bates et al., 

2009b, Hutchinson et al., 2011). 

 

More recently, quantitative techniques using mathematical shape fitting have been 

developed. These studies seek to improve digital volumetric approaches by enabling 

quantitative estimations of mass properties in extinct taxa, based directly on body 

proportion data from extant taxa (Brassey and Gardiner, 2015, Sellers et al., 2012). 

Specifically, these methods generate body volumes based on the skeletal-to-skin volume 

ratio in extant vertebrates and the use of mathematically (rather than manually) generated 

body volumes. Automated derivation of volumes improves intra- and inter-investigator 

repeatability, and subjectivity is significantly reduced by using data from living animals to 

define the minimum and maximum body volumes. But so far, these methods have mostly 

been applied to generate predictions for whole body mass (e.g. Basu et al., 2016, Bates et 

al., 2015, Brassey and Gardiner, 2015, Brassey et al., 2015, Brassey et al., 2016, Brassey and 

Sellers, 2014, Sellers et al., 2012), (with the exception of Bates et al., 2016, Sellers et al., 2013, 

Sellers et al., 2017). Additionally, these relationships have only been established at the whole 

body level, and only for specific groups, none of which are ideal for application to CoM 

estimation in extinct dinosaurs (e.g. mammals (Sellers et al., 2012), ratites (Brassey et al., 

2013), primates (Brassey and Sellers, 2014) and pigeons (Brassey et al., 2016)). These 

methods take skeletal material (whole or split into segments), and use automated processes 

to wrap a shape around the object (see Chapter 1, Section 1.2.2.2 for detailed overview). 
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When generating their predictive equations, the majority of published studies have used 

specimens for which there are no recorded body masses (with the exception of Brassey et 

al., 2016). This represents a substantial limitation, as body mass is instead calculated from 

skeletal measurements, and then bone geometry is used to predict body mass, making the 

whole process somewhat self-reinforcing. These previously published studies have also 

generated relationships between whole skeleton volume and whole body mass. These 

relationships have then been applied to specimens giving a homogeneous skeleton-to-skin 

expansion across the whole body. However, it can be readily observed in living taxa that 

different body segments vary hugely in the amount of soft tissue present around the skeletal 

material. This may not impact substantially on estimates of whole body mass, but means that 

this approach is unlikely to be accurate when generating masses for individual segments. 

Their ability to accurately estimate whole body CoM is therefore limited. 

 

Therefore, despite the host of advances detailed above, current studies predicting CoM in 

fossil archosaurs are limited by a lack of detailed knowledge on the relationships between 

skeletal volume and skin volume in extant taxa. Soft tissue outlines can be subjectively 

constructed for fossil species in order to generate segment masses and CoMs, but in the 

absence of quantitative data from extant taxa, these studies are accompanied by 

considerable and subjectively defined error margins (e.g. Allen et al., 2013, Bates et al., 2016, 

Hutchinson et al., 2011). Quantitative approaches offer solutions to this issue; however, they 

are currently of limited use for estimating segment masses and therefore accurate whole 

body CoM values. Work studying the relationship between skeleton and skin volumes on a 

segment-by-segment basis in closely related extant taxa has the potential to provide a 

quantitative grounding for improved estimates of CoM position in extinct archosaurs, which 

would also benefit from statistically generated error margins. 
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This study therefore aims to: 

(1) Establish segment-specific relationships between skeletal volume and skin volume 

in extant archosaurs (birds and crocodylians) and an associated outgroup 

(lepidosaurs). 

(2) Apply the derived relationships to a selection of fossil taxa from across Dinosauria in 

order to produce new whole body CoM estimates. 

 

5.3. Methodology 

5.3.1. Determining ratio of skeletal volume to skin volume in extant taxa 

This study used computed tomography (CT) data for 48 specimens, representing 27 bird, 11 

crocodylian and 10 lepidosaur species (for details see: Table 4.1 (birds), and Table 5.1 

(reptiles)). All specimens were scanned in medical grade CT scanners, at a variety of 

locations. 

 

All CT data was processed in Avizo 7.1 (www.Avizo3D.com), to extract a complete skeleton 

in addition to a skin outline. These exports were cleaned up as required, and then split in 

Geomagic Studio 10 (www.geomagic.com). The skin outlines were split into the following 

functional segments: head, neck, torso, tail, upper arm, forearm, manus, thigh, shank, 

tarsometatarsus (for birds) or sole (for crocodylians and lepidosaurs) and toes. Skin segments 

were closed in Geomagic, or wrapped in Materialise 3-matic 

(www.materialise.com/en/software/3-matic) to achieve a watertight shell. In order to close 

some skin segments in extreme cases, it was necessary to generate an alpha shape or convex 

hull around them using custom Matlab code (www.mathworks.com/products/matlab). For 

all specimens, the skeletal material was split into the same main segments. In segments 

containing multiple bones, skeletal material was split further where necessary to achieve 

tight fitting hulls (e.g. separating pedal phalanges, separating the cranium and mandible  
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Table 5.1: Details on the reptile specimens used in extant dataset here, including measured 

whole body mass (kg) where available. For details on the bird specimens used in this study, 

see Table 4.1. 

  Family Common name Species name 
Body 
mass 

Crocodylians Alligatoridae American alligator Alligator 
mississippiensis 

4.54 

    American alligator Alligator 
mississippiensis 

0.604 

    Black caiman Melanosuchus niger 90 

    Spectacled caiman Caiman crocodilus 2.174 

  Crocodylidae Nile crocodile Crocodilus niloticus 3.2 

    Nile crocodile Crocodilus niloticus 1.259 

    Nile crocodile Crocodilus niloticus 15.6 

    Nile crocodile Crocodilus niloticus 10.1 

    Dwarf crocodile Osteolaemus tetraspis 7.7 

    Morelet’s crocodile Crocodilus moreleti 14.6 

    Freshwater crocodile Crocodilus johnstoni 20.19 

Lepidosaurs Agamidae Agama Agama sp.   

    Hydrosaurus Hydrosaurus sp.   

    Central bearded 
dragon 

Pogona vitticeps 0.49 

  Chamaelonidae Chameleon Chamaeleo sp.   

  Corytophanidae Basilisk Basiliscus sp.   

  Helodermatidae Heloderma Heloderma sp.   

  Iguanidae Green iguana Iguana iguana 1.102 

  Varanidae Savannah monitor Varanus 
exanthematicus 

0.68 

    Komodo dragon Varanus komodoensis 64 

  Sphenodontidae Tuatara Sphenodon punctatus   
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where the jaws were open, separating neck vertebrae at points of extreme curvature). The 

convex hull of each skeletal element was then calculated in Matlab. 

 

The relationship between skeletal hull volume and closed skin volume was then determined 

for each body segment in turn using ‘ggplot’ in R (www.r-project.org). For each segment, 

three main relationships were derived using the following data subsets - (1) bird data only, 

(2) crocodylian and lepidosaur data (referred to as ‘reptile’ dataset) and (3) data from all 

specimens. ANCOVA tests were performed to determine the statistical similarity of the ‘bird’ 

and ‘reptile’ datasets. A further ANCOVA test, with subsequent Tukey post-hoc test, was 

performed to assess differences between the ‘bird’, ‘crocodylian’ and ‘lepidosaur’ datasets. 

 

5.3.2. Application to extinct taxa 

Convex hulls were then applied to the skeletal material of five fossil taxa from Allen et al. 

(2013) - Plateosaurus, Coelophysis, Allosaurus, Microraptor and Yixianornis. Currently, Allen 

et al. (2013) is one of the only studies to conduct a rigorous, systematic investigation of CoM 

evolution. By applying this new methodology to taxa from their study, it is possible to view 

this new method in the context of the latest in studies investigating CoM evolution. The 

specific taxa were selected based on their relative completeness and in order to cover a 

range of body plans and sizes. 

 

The skeletal material for each fossil was put into a standardised pose (as per Chapters 3 and 

4 here), with forelimbs outstretched laterally, legs extended ventrally, and the head and neck 

fully extended cranially (see Chapter 4, Figure 4.1). In some cases, the skeletal material was 

not sufficiently complete for immediate use. For example, the medial side of some bones 

were missing due to the nature of the original data capture by laser scanning. Due to the 

nature of convex hulling, the process has a high resistance to these effects with minimal 
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intervention (Bates et al., 2015). Where necessary, polygons were added in Maya, to mimic 

the geometric extremes of bones which were missing. 

 

The skeletal material was then split into segments, using the same process described for the 

extant taxa in Section 5.3.1, and each segment was convex hulled. The skeletal convex hull 

volumes generated were then inputted into the segment specific equations derived in 

Section 5.3.1 to give predicted skin volumes. In order to apply the relationships derived here 

to fossil species, it was necessary to decide which scaling equation to use for each segment 

(bird, reptile or all species). Where no difference was detected between the bird and reptile 

groups, the ‘all species’ relationship was applied to that segment. In order to generate a 

“best guess” CoM, the remaining segments were classified as either bird- or reptile-like 

according to their morphology in each fossil species (see Supplementary Information 5.1). 

The neck was deemed to be reptile-like if it was relatively short but muscular (e.g. 

Allosaurus), compared to the elongate avian condition. A bird-type torso segment was 

defined by a carinate keel, while bird-type forelimbs were defined as possessing wing-like 

traits. Hindlimb type was defined based on the presence of a sprawling (reptile-like) or 

upright (bird-like) limb posture (Supplementary Information 5.1). The assignment of segment 

type introduces some subjectivity into model construction. The vast majority of fossil 

archosaurs are unlikely to be wholly comparable to either modern reptiles or to modern 

birds, being more likely to possess a mix of ‘bird-‘ and ‘reptile-type’ body segments, if not 

possessing unique segment expansion factors. In an attempt to acknowledge this 

uncertainty, maximally cranial and caudal whole body CoM estimates were generated 

around the “best guess” CoM. Application of a density value to the estimated skin volumes 

then gave values for segment masses. 
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To generate a whole body CoM estimate, it is also necessary to assign each body segment a 

CoM position. To avoid subjective estimates of segment flesh contours to generate CoM co-

ordinates, previous studies (e.g. Bates et al., 2016) have assumed that the CoM positions for 

fleshed out segments are equal to the corresponding CoMs for the hull of the skeletal 

material in that segment. However, a convex hull of the skeletal material of any given 

segment will have a different geometry to the soft tissue outline, which will result in different 

CoM positions for the two shapes. Here, I explore the consequences of this assumption for 

estimation of whole body CoM. This is achieved by comparing skeletal hull CoM to the known 

skin CoM for each body segment in four extant specimens (rhea, buzzard, alligator and 

iguana), selected to represent four different body plans. 

 

Finally, using segment CoM coordinates derived from skeletal convex hulls, whole body CoM 

was then calculated according to the following equation: 

 

𝐶𝑜𝑀𝑊 =
𝛴(𝐶𝑜𝑀𝑠  ∗  𝑚𝑎𝑠𝑠𝑠)

𝛴(𝑚𝑎𝑠𝑠𝑠)
 

Equation 5.1 

 

Where CoMW is the centre of mass of the whole organism (or simply ‘CoM’ in the remainder 

of this study) and CoMS and massS refer to segment mass properties. 
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Figure 5.1 (i): Plots showing the relationship between skeletal hull volume and skin volume 

for individual body segments. A: head, B: neck, C: torso, D: tail, E: arm, F: forearm, G: hand, 

H: thigh, I: shank, J: tarsometatarsal/metatarsals, K: toes. 
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Figure 5.1 (ii): Plots showing the relationship between skeletal hull volume and skin volume 

for individual body segments. A: head, B: neck, C: torso, D: tail, E: arm, F: forearm, G: hand, 

H: thigh, I: shank, J: tarsometatarsal/metatarsals, K: toes. 

 

  



Chapter 5 - Estimating CoM in fossil taxa 

226 
 

 

Figure 5.1 (iii): Plots showing the relationship between skeletal hull volume and skin volume 

for individual body segments. A: head, B: neck, C: torso, D: tail, E: arm, F: forearm, G: hand, 

H: thigh, I: shank, J: tarsometatarsal/metatarsals, K: toes. 
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5.4. Results 

5.4.1. Establishing relationships between skeletal volume and skin volume in 

extant taxa 

Plots showing the relationship between skeletal hull volume and skin volume are presented 

in Figure 5.1. The residuals for the majority of datasets used in preliminary plots of the raw 

data were non-normal (40 out of 55) according to Shapiro-Wilks tests. The data were 

therefore log10 transformed resulting in normal distribution of 52 out of 55 datasets before 

final plots were produced (Figure 5.1). These are the plots used to derive the final predictive 

relationships applied in the extinct taxa (see below). Using the whole dataset, the majority 

of segments were found to have statistically distinct skeletal to skin ratios (30 out of 55 

comparisons of segment pairs were significantly different at p < 0.01, see Supplementary 

Information 5.2). For each segment, relationships were then established for three groups 

initially: ‘birds’, ‘reptiles’ and ‘all specimens’. These relationships all displayed high r2 values 

(> 0.812) (Figure 5.1), indicating a close fit of the data to the trend lines. Values for mean 

square error (MSE) ranged from 0.001-0.105 for all trend lines reported here, which equates 

to mean percentage prediction errors (MPPE) of 0.44-8.65%. 

 

For seven of the eleven segments identified here, significant differences were detected 

between the ‘bird’ and the ‘reptile’ relationships (ANCOVA test, p values < 0.004) (see 

Supplementary Information 5.3 for complete table of results). For the remaining four 

segments (head, tail, thigh and toes), no statistically significant differences were detected 

between the ‘bird’ and ‘reptile’ groups. These relationships, and their respective 

significances were used to inform the construction of the “best-guess” models of extinct taxa 

(for details, see Supplementary Information 5.1). 
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Additional plots, showing the relationships for the bird group as well as for the two groups 

comprising ‘reptiles’ (crocodylians and lepidosaurs) are shown in Supplementary Information 

5.4. Further statistical tests were conducted to assess differences present between these 

data subsets (see Supplementary Information 5.5 for complete table of results). This analysis 

identifies differences which were undetected when comparing the ‘bird’ and ‘reptile’ lines. 

For example in the skull segment, the lepidosaur line was significantly different to that of the 

birds and crocodylians (Supplementary Information 5.4 and 5.5). Other previously detected 

differences within segments are elaborated. In several segments, slopes for the ‘bird’ 

relationships are significantly different to those for the crocodylians and lepidosaurs (neck, 

forearm, hand and metatarsal) (Supplementary Information 5.4 and 5.5). For the torso and 

arm segments, lepidosaurs and crocodylians displayed unique relationships (Supplementary 

Information 5.4 and 5.5), suggesting that the ‘reptile’ group represented here is not 

universally homogeneous despite general similarities in their overall body plans. 

 

5.4.2. Method validation - predicting CoM in extinct taxa using convex hulling 

5.4.2.1.  Segment CoM positions 

Here, I explore the accuracy of using skeletal convex hull CoM as a proxy for skin CoM. 

Differences in segment CoM, and whole body CoM were determined for four extant 

specimens (rhea, buzzard, alligator and iguana), representing four different body plans 

(Figure 5.2). 

 

Absolute differences in segment CoM values ranged between 0-49mm across all specimens, 

or 0-20mm excluding the large bodied rhea (see Supplementary Information 5.6A for 

summary). The reptiles were minimally affected, with a maximum error of 6.6mm for the tail 

segment in the alligator (Supplementary Information 5.6A). Certain segments of the birds  
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Figure 5.2: Differences between whole body CoMs derived from skeletal segment CoMs (blue spheres) and skin segment CoMs (red spheres), shown in the 
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context of each specimen (A: iguana, B: alligator, C: rhea, D: buzzard).
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were more affected, mostly the tapered limb segments (e.g. buzzard upper arm, error = 

20mm; see Supplementary Information 5.6A). 

 

Two whole body CoM positions were then generated. Both used the same skin mass 

(calculated from known closed skin volume and a density of 1000kgm-3), and either skeletal 

hull CoMs or closed skin CoMs for each segment. The 3D distances between the two 

alternative whole body CoMs ranged between 0.849-10.8mm (see Supplementary 

Information 5.6B for summary). In each case, these distances were small in comparison to 

body size (see Figure 5.2), supporting the use of this assumption for fossil material. 

 

5.4.2.2.  CoM estimates versus Allen et al. (2013) 

Comparing our best guess CoM values to those predicted by the models of Allen et al. (2013) 

reveals notable differences in CoM position (Figure 5.3). The new CoM positions derived here 

are notably more caudal than those of Allen et al. (2013) in all specimens with the exception 

of Yixianornis (Figure 5.3). The error margins also differ between this study and Allen et al. 

(2013). The maximum cranio-caudal spread of CoM positions derived from the models of 

Allen et al. (2013) (white spheres, Figure 5.3) are greater than those observed in methods 

for extant taxa (Chapter 4). The error contained within the predictive equations derived here 

is small, and acknowledging these differences results in small shifts in whole body CoM 

position (grey spheres, Figure 5.3). However, once the uncertainty around segment ‘type’ 

assignment is recognised, the errors for this new method increase substantially (black 

spheres, Figure 5.3). 
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Figure 5.3: Renders in lateral view of the skeletal convex hulls of five fossils species studied 

here. Showing whole body CoM positions estimated using: best guess models (coloured 

spheres), error from predictive equations (lighter coloured spheres), maximum cranio-caudal 

spread (black spheres) and maximum cranio-caudal spread from models of Allen et al. (2013) 

(white spheres) to estimate segment volumes. A: Plateosaurus, B: Coelophysis, C: Allosaurus, 

D: Microraptor, E: Yixianornis.  
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5.5. Discussion 

5.5.1. Segment specific relationships between skeletal volume and skin volume 

In this study, segment specific relationships were generated to determine the expansion 

factor required to convert skeletal hull volume to skin volume. Relationships for different 

segments were found to vary in 30 out of 55 comparisons of segment pairs in the ‘all species’ 

analysis (Supplementary Information 5.2), reflecting the different amount of soft tissue 

present around the skeletal material in different body segments. The required conversions 

were also found to differ significantly across ‘bird’ and ‘reptile’ data subsets within seven of 

the eleven body segments identified here (Figure 5.1, Supplementary Information 5.3). Some 

of the differences between corresponding segments (e.g. forelimb segments) in birds 

andreptiles are expected, given the drastically different locomotor behaviours of bipedal 

birds and sprawled, quadrupedal reptiles. The head and toe segments were found to have a 

statistically similar ratio of skeletal volume to skin volume for the ‘bird’ and the ‘reptile’ 

groups (though the ANCOVA p values of 0.023 and 0.06 are very low) (Supplementary 

Information 5.3). This statistical similarity could be attributed to the fact that these segments 

consistently have minimal soft tissue around the skeletal material, which is the case for all 

specimens studied here. Perhaps more interesting are the thigh and tail segments which, 

despite drastically different appearances in birds compared to the reptile group, have 

statistically similar relationships (Supplementary Information 5.3). However, the p values 

from the ANCOVA tests are still low (0.206 and 0.174 for thigh and tail respectively), 

indicating a fairly low degree of similarity between groups (Supplementary Information 5.3). 

These similarities could reflect the fact that, despite the externally different morphologies of 

tails and thigh skin segments, the same volume could be present with a different distribution. 

For example in the thigh of a bird, the mass is concentrated at the proximal end of the 

segment, while mass distribution is more even across the length of a thigh of a crocodylian. 

This would affect the CoM of the skin segment, but not the expansion factor required to 
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convert skeletal volume to skin volume. The observed similarities could also be driven by 

variation present within data subsets, a factor likely to be particularly relevant for the bird 

specimens (e.g. tail relationship in birds has relatively high degree of scatter, r2 = 0.804). 

These unexpected similarities could also be partly a result of the convex hulling process. 

Convex hull volume is not an accurate value for true bone volume, and the shape differences 

between bird and reptile femurs, for example, will result in different amounts of ‘empty’ 

volume within the convex hulls, which could influence relationships. This is a potential 

avenue for future exploration; do any segment relationships improve if an alternative 

method (e.g. alpha shapes) was used to generate more refined models of skeletal volume? 

 

The majority of the trend lines generated from the data subsets here had mean percentage 

prediction error values of lower than 5% (48 out of 55). These low values are encouraging for 

application of these relationships to fossil taxa, indicating that they are able to predict skin 

volume within a narrow margin of the true value. Even the maximum MPPE here (8.65%) is 

less than for the relationships of (Brassey and Sellers, 2014) when predicting whole body 

mass using convex hulls (11-20%), and much lower than for predictive models using single 

bones to estimate whole body mass (e.g. 25-71% (Campione and Evans, 2012), 25% 

(Campione, 2017) and 13-128% (Field et al., 2013)). Additionally, the relationships here 

which had greater than 5% error were small segments which would have minimal effects on 

whole body CoM position (e.g. bird manus, reptile pedal phalanges). 

 

5.5.2. Method validation - predicting CoM in extinct taxa using extant-based 

convex hulling 

5.5.2.1.  Using convex hull CoMs as segment CoM positions 

Clearly, the skeletal hull for any given segment is not the same shape as the corresponding 

skin outline, and therefore will not have the same CoM. I sought to investigate the magnitude 
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of these differences in a segment context, and to examine what effect they have on whole 

body CoM position. 

 

Differences between convex hull and skin CoM for segments were as high as 49mm (for the 

neck segment of the rhea) (Supplementary Information 5.6). Discounting the large bodied 

rhea, which displays absolutely larger errors by virtue of its larger size, the buzzard displayed 

larger errors than the two similarly sized reptiles studied (maximum error: 20 versus 6.6mm) 

(Supplementary Information 5.6). The errors present in the proximal limb segments of the 

two birds are a reflection of the highly tapered form of the skin volumes, a consequence of 

the concentration of muscular tissues at the proximal ends of limbs for energy conservation 

(Kardong, 2012). The resulting errors present in the forelimbs of birds (e.g. 20mm for the 

buzzard upper arm) predominantly affect the medio-lateral dimension due to the orientation 

of the forelimb in the standard posture of the models (Supplementary Information 5.6). 

These errors will not affect the final CoM value, as bilateral symmetry is assumed for all 

specimens, by placing the CoM in the midline medio-laterally. However, the errors resulting 

from tapered hindlimb segments mainly result in a more ventral segment CoMs, but also 

impact the cranio-caudal dimension in the case of the buzzard (Supplementary Information 

5.6). For studies which require highly accurate values for individual segment CoMs, this 

approach may therefore not be suitable for certain body segments. 

 

Despite differences of up to 49mm between skeletal hull CoM and skin CoM at a segment 

level (Supplementary Information 5.6), when segment CoMs are summed to give a whole 

body CoM estimate, the final differences are small relative to body size (Figure 5.2). The 

maximum error detected for whole body CoM was 11mm for the rhea, weighing over 7kg, 

followed by the buzzard at 3mm error, for a small bird weighing 0.69kg (Supplementary 

Information 5.6). 
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5.5.2.2.  Selection of segment ‘types’ for extinct taxa 

Birds and crocodylians represent the closest living relatives of extinct dinosaurs. However, 

these organisms represent specialised morphologies in their own right, with considerable 

variation in the ratio of skeletal to skin volume present even within those groups (Figure 5.1). 

The extinct dinosaurs also show tremendous variability in body plan, locomotor 

specialisations and body size, as demonstrated by the relatively limited range of fossil taxa 

modelled here (Figure 5.3). For these reasons, it is not possible to confidently assume that 

extinct dinosaurs should be modelled as either completely bird- or reptile-like. 

 

However, assigning segment ‘type’ is required in order to use methods which ground 

dinosaurs in data from extant animals, in an attempt to reduce the subjectivity present in 

many existing volumetric methods. Such decisions on segment ‘type’ introduce uncertainty, 

and subjectivity into this new method. The resulting error was identified as being substantial, 

regardless of the body plan or size of the fossil species (Figure 5.3). It is possible that some, 

if not all of these fossil species were comprised of segments which had unique ratio of 

skeleton to soft tissue, beyond those captured here, which would result in further error. 

 

5.5.2.3.  Comparisons to existing work and future steps 

This study successfully quantified the segment-specific relationships between skeletal and 

skin volume in a range of extant birds, crocodylians and lepidosaurs. This formed the basis 

for application of this new methodology to estimate segment skin volumes, and 

subsequently whole body CoM, in five fossil taxa (Figure 5.3). 

 

The whole body CoM positions estimated by the new method are notably different from the 

CoMs estimated by the models of Allen et al. (2013), and the maximum error margins here 
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are substantially larger than in this previous study (Figure 5.3). For the four long tailed taxa, 

the new CoM positions are more caudal, to varying degrees. This is particularly extreme in 

the cases of Coelophysis and Microraptor, where the “best guess” CoM position lies within 

the tail segment along the cranio-caudal axis. This is in large part due to the large ‘all species’ 

expansion factor for the tail segment. Meanwhile, the CoM position for the Yixianornis (a 

bird, close to crown Aves) lies just caudal to the shoulder joint, and cranial to the maximally 

cranial CoM of Allen et al. (2013). Though unexpected, this position is not unprecedented - 

some modern birds were found to possess CoMs in similarly close proximity to the shoulder 

joint along the cranio-caudal axis too (e.g. hummingbird, kingfisher) (see Chapter 4). 

 

However, the error for the new method is entirely grounded in data from extant, closely 

related taxa. That this error is larger than for the subjective modelling approach of Allen et 

al. (2013) speaks to the substantial, previously underappreciated, biological variability 

present even between these closely related taxa. This casts significant doubt over use of a 

relationship based on mammalian taxa (Sellers et al., 2012), to extinct dinosaurs (e.g. Bates 

et al., 2016, Sellers et al., 2013). Additionally, the results suggest that segments possess 

unique skeletal-to-skin expansion factors (Supplementary Information 5.2), indicating 

segments should be modelled heterogeneously in order to derive more biologically realistic 

whole body CoM positions, unlike previous studies (e.g. Bates et al., 2016, Sellers et al., 

2013). Before application of this method to a range of fossil archosaurs in order to draw 

meaningful conclusions on their biology, the dataset behind this methodology should be 

expanded. The dataset here represents a significant increase over the sample sizes used to 

generate previous relationships (e.g. 14 mammals in (Sellers et al., 2012), nine birds in 

(Brassey and Sellers, 2014) and 20 pigeons in (Brassey et al., 2016)). However, 48 specimens 

is a small number of samples to fully represent the range of body morphologies and sizes 
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present within archosaurs and lepidosaurs. The addition of more large bodied specimens 

should be a particular focus, including fully grown ratites. 

 

It should be noted that this dataset includes juvenile ratites and crocodylians. It is likely that 

the ratio of skeletal volume to soft tissue volume, which is the foundation of this study, varies 

across ontogeny. Studies in birds have found muscle mass scales with positive allometry with 

age (e.g. Picasso, 2015, Rose et al., 2016). Though a study of crocodylian musculature (Allen 

et al., 2010) found an isometric relationship across a range of body sizes, it is possible that 

changes to osteology would change the convex hull volume around the skeletal material, and 

therefore alter the soft tissue to bone ratio. Certainly, for the ratite specimens, adult 

specimens should ideally be used in order to match the growth state of the other specimens, 

and the fossils which are the subjects of the resulting investigation. If these limitations are 

acknowledged and suitably addressed, the inclusion of juveniles has the potential to provide 

benefits. For example, it would increase the size range it is possible to study (particularly in 

case of crocodylians). Additionally, it could also shed light on the juvenile state and therefore 

enable more quantitative investigations into likely mass properties, and subsequently 

behaviours, of juvenile fossil specimens. 

 

5.6. Conclusion 

This study successfully established the relationship between skeletal and skin volume in 

individual body segments across a range of extant archosaurs and lepidosaurs. Skeletal to 

skin expansion factors were found to differ significantly across different body segments, 

highlighting the need for heterogeneous expansions in studies wishing to estimate whole 

body CoM position. This new method offers several benefits over previously published 

techniques, including quantified error margins and objective generation of skin outlines. 

However, due to uncertainty in segment ‘type’ (bird or reptile like) assignment in fossil taxa, 
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the maximum potential error in CoM position was found to be substantial. This considerable 

error margin suggests that CoM positions predicted for fossil species by current qualitative 

methods should be interpreted with caution. 
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5.7. Supplementary Information 

Supplementary Information 5.1: Table indicating the segment exponents (’bird’, ‘reptile’ or ‘all species’) applied to the segments of each fossil specimen in 

order to derive the “best-guess” whole body CoM positions. 

 
 

Head Neck Torso Tail Arm Forearm Hand Thigh Shank MT Foot 

Plateosaurus All species Bird Reptile All species Reptile Reptile Reptile All species Bird Bird All species 

Coelophysis All species Bird Reptile All species Reptile Reptile Reptile All species Bird Bird All species 

Allosaurus All species Reptile Reptile All species Reptile Reptile Reptile All species Bird Bird All species 

Microraptor All species Bird Reptile All species Bird Bird Bird All species Bird Bird All species 

Yixianornis All species Bird Bird All species Bird Bird Bird All species Bird Bird All species 
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Supplementary Information 5.2: Results of post-hoc Tukey test to explore differences in relationships for different body segments across all specimens. A 

significant result indicates a significant difference in the relationships between the groups specified. Significant results (at p < 0.01) are highlighted in red. 

 
 

Neck  Torso Tail Arm Forearm Hand Thigh Shank MT Toes 

Skull <0.001  0.023  <0.001 <0.001 <0.001 0.023  <0.001 <0.001 0.920  0.001  

Neck    <0.001 0.988  <0.001 <0.001 <0.001 0.921  <0.001 <0.001 <0.001 

Torso      <0.001 0.812  0.992  1.000  <0.001 0.779  0.663  0.999  

Tail        <0.001 <0.001 <0.001 0.246  <0.001 <0.001 <0.001 

Arm          1.000 0.844  <0.001 1.000  0.010  0.998  

Forearm            0.995  <0.001 1.000  0.084  1.000  

Hand              <0.001 0.813  0.649  1.000  

Thigh                <0.001 <0.001 <0.001 

Shank                  0.008 0.996  

MT                    0.164  
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Supplementary Information 5.3: Results of ANCOVA test on lines in Figure 5.1, where a 

significant result indicates a significant difference in the relationship between the ‘bird’ and 

‘reptile’ groups. Significant results (at p < 0.01) are highlighted in red. 

 
 F value p value 

Skull 5.488 0.024 

Neck 51.896 <0.001 

Torso 9.478 0.004 

Tail 1.909 0.174 

Arm 19.550 <0.001 

Forearm 30.189 <0.001 

Hand 26.629 <0.001 

Thigh 1.649 0.206 

Shank 35.030 <0.001 

MT 112.336 <0.001 

Toes 3.562 0.066 
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Supplementary Information 5.4 (i): Plots showing the relationship between skeletal hull 

volume and skin volume for individual body segments. Relationships are shown with 

specimens split into birds, crocodylians and lepidosaurs. A: head, B: neck, C: torso, D: tail, E: 

arm, F: forearm, G: hand, H: thigh, I: shank, J: tarsometatarsal/metatarsals, K: toes. 
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Supplementary Information 5.4 (ii): Plots showing the relationship between skeletal hull 

volume and skin volume for individual body segments. Relationships are shown with 

specimens split into birds, crocodylians and lepidosaurs. A: head, B: neck, C: torso, D: tail, E: 

arm, F: forearm, G: hand, H: thigh, I: shank, J: tarsometatarsal/metatarsals, K: toes. 
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Supplementary Information 5.4 (iii): Plots showing the relationship between skeletal hull 

volume and skin volume for individual body segments. Relationships are shown with 

specimens split into birds, crocodylians and lepidosaurs. A: head, B: neck, C: torso, D: tail, E: 

arm, F: forearm, G: hand, H: thigh, I: shank, J: tarsometatarsal/metatarsals, K: toes. 

  



Chapter 5 - Estimating CoM in fossil taxa 

246 
 

Supplementary Information 5.5: Results of ANCOVA, and post-hoc Tukey test on lines in 

Supplementary Information 5.4, where a significant result indicates a significant difference 

in the relationships between the groups specified (B: birds, C: crocodylians, L: lepidosaurs). 

Significant results (at p < 0.01) are highlighted in red. 

 

  

F value 
ANCOVA 
p value 

Tukey p value 
B v C 

Tukey p value 
B v L 

Tukey p value 
L v C 

Skull 11.8257 0.0001 0.988 0.0002 0.001 

Neck 25.4686 <0.0001 <0.0001 <0.0001 0.9988 

Torso 5.8572 0.0056 0.2639 0.0046 0.2789 

Tail 2.4301 0.1003 0.9605 0.1143 0.13 

Arm 16.94 <0.0001 <0.0001 0.1923 0.006 

Forearm 14.7606 <0.0001 0.0001 0.0006 0.9637 

Hand 15.2188 <0.0001 <0.0001 0.0098 0.1665 

Thigh 1.1643 0.322 0.3033 0.8556 0.7161 

Shank 22.5459 <0.0001 <0.0001 0.0073 0.028 

MT 55.4071 <0.0001 <0.0001 <0.0001 0.6838 

Toes 2.3758 0.1048 0.0872 0.7248 0.5018 
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Supplementary Information 5.6: A: Differences between skeletal hull CoM and skin CoM for 

four specimens. B: Whole body CoMs derived from skeletal segment CoMs and skin segment 

CoMs, with 3D distances between the two estimates. Where +x is right, +y is dorsal and +z is 

caudal. All measurements in mm. 

A   Head Neck Torso Tail Arm Forearm Hand Thigh Shank MT Toes 

Iguana x 0.0 2.0 0.0 -0.1 -5.0 -1.0 2.2 0.0 -1.0 0.7 1.0 

  y 1.0 6.0 0.0 2.8 0.0 -1.0 -0.2 -4.0 5.0 -0.6 -0.7 

  z -1.0 1.0 2.0 -1.9 -1.0 1.0 0.5 -3.0 -2.0 -0.4 -0.5 

Alligator x 0.4 0.0 -1.0 -0.1 -2.0 2.0 -0.2 -1.0 -2.0 -0.7 -1.1 

  y 1.5 6.0 0.0 1.6 -1.0 0.0 0.5 1.0 1.0 1.9 -0.2 

  z -0.5 0.0 0.0 -6.6 -1.0 1.0 1.1 -2.0 -1.0 -0.7 -1.4 

Rhea x -0.8 -0.2 0.0 -1.0 26.0 9.0 5.0 7.0 -2.0 0.0 0.1 

  y 0.3 0.3 7.0 2.0 -1.0 1.0 2.0 -35.0 -25.0 3.0 0.6 

  z -2.4 48.9 -17.0 12.0 -5.0 -2.0 -1.0 0.0 3.0 -3.0 -0.6 

Buzzard x 0.0 -2.4 -2.0 -3.0 20.0 13.0 3.0 1.0 -1.0 -1.0 0.0 

  y -1.0 2.3 2.0 2.0 1.0 0.0 1.0 -6.0 -6.0 -6.0 0.4 

  z -2.0 0.4 7.0 2.0 3.0 -1.0 0.0 -4.0 -1.0 0.0 0.0 

 

B   Skeletal CoM Skin CoM 3D distance 

Iguana x -0.5 -0.5 
0.849 

  y 0.6 0.0 

  z -60.4 -61 

Alligator x -12.7 -12.2 
2.035 

  y 0.6 -0.4 

  z -50.2 -48.5 

Rhea x 6.4 4.4 
10.808 

  y -78.7 -71.6 

  z -77.7 -69.8 

Buzzard x 5.3 4.4 

3.134 
  y -26.3 -26.2 

  z -59.8 -62.8 
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5.8. Appendices 

Appendix 5.1: Examining the results of an alternative application of the expansion equations 

for the tail segment. 

 

For the original generation of a “best guess” model (as presented in the main body of Chapter 

5 here), the ‘all species’ exponent was applied to the tail segments of all fossil species in 

order to derive a volume estimate. This ‘all species’ exponent was selected as there were no 

significant differences detected between the expansion factors for birds compared to the 

group containing crocodylians and lepidosaurs. However, when used to determine whole 

body CoM for fossil species with large tails (i.e. all fossils studied here with the exception of 

Yixianornis), a very caudal CoM was predicted (see coloured spheres in Appendix 5.1.1). The 

resulting “best guess” CoMs lie outside the error margins defined by Allen et al. (2013), and 

caudal to the hip joint in all cases. This was determined to be primarily due to an 

unrealistically high tail volume. 

 

Therefore, the application of scaling exponent to tail segments was re-examined. It was 

found that the expansion produced by the bird only equation was large, and it was this which 

was skewing the “best guess” CoMs. Birds possess only a short pygostyle, which has limited 

external muscular control; unlike the reptiles which possess long tails, with extensive 

musculature in the form of the caudofemoralis. Therefore, the skin outline of the tail 

segments had drastically different compositions for the bird versus the ‘reptile’ group. 

Because of these fundamental differences in morphology, application of the ‘all species’ 

exponent was deemed appropriate for only Yixianornis, which possesses a pygostyle much 

like modern birds. For the other, long-tailed fossils, an alternative “best guess” CoM was 

generated using the ‘reptile’ relationship for the tail segment. 
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The new “best guess” CoMs all lie within the error margins of Allen et al. (2013) (see coloured 

cubes in Appendix 5.1.1). These new estimates are also now biologically feasible; the CoMs 

are more cranially positioned, which would enable the hindfoot to be placed below the CoM 

during locomotion. 

 

In conclusion, by constraining the assignment of segment type for the tail using biological 

information as well as statistical methods, more biologically feasible CoM estimates are 

produced for the four long tailed fossils here. Though this would shrink the overall error 

margins for the new method presented in Chapter 5, it does not alter the conclusions 

presented in Section 5.6. 
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Appendix 5.1.1: Renders in lateral view of the skeletal convex hulls of fossils species studied 

here. Showing whole body CoM positions derived using: best guess models using ‘all species’ 

exponent for tail (coloured spheres), best guess models using ‘reptile’ exponent for tail 

(coloured cubes), error from predictive equations (grey spheres), maximum cranio-cadual 

spread (black spheres) and maximum cranio-caudal spread from models of Allen et al. (2013) 
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(white spheres) to estimate segment volumes. A: Plateosaurus, B: Coelophysis, C: Allosaurus, 

D: Microraptor. 
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CHAPTER 6 - DISCUSSION 

 

6.1. Overview 

This thesis set out to address the following key objectives: 

1) Assess the absolute accuracies of three commonly used methods for determining 

centre of mass position, and their applicability to biological specimens. 

2) Investigate the integumentary changes which occurred in bird-line archosaurs with 

the advent of feathers, in the context of impact on whole body centre of mass 

position. 

3) Explore links between centre of mass position and locomotor behaviours across 

Aves. 

4) Establish and apply a new methodology for the estimation of centre of mass position 

in fossil archosaurs, grounded in an extensive extant dataset. 

 

In summary, this thesis found that: 

1) The accuracy and repeatability of the scales and digital methods for CoM estimation 

were high, but they each posed unique challenges when applied to biological 

specimens (Chapter 2). 

2) The development of a feathered integument in bird-line archosaurs resulted in a 

marked ventral CoM shift, of equivalent magnitude to that made by the air cavities 

(Chapter 3). 

3) Flying birds were found to have a more dorsally positioned CoM, however this 

difference was not statistically significant after accounting for phylogeny (Chapter 

4). 

4) The CoM estimates produced for fossil taxa using the new method were different 

from those of previous studies, and with larger error bars (Chapter 5). 
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6.2. Methods for CoM estimation 

6.2.1. Physical methods for CoM estimation 

Chapter 2 successfully established the absolute accuracies of three commonly used methods 

using test objects with standard geometries. Substantial differences were detected between 

the two physical methods tested. Suspension performed poorly (error range 8.2 - 38.5mm; 

Figure 2.8, Table 2.3), while the scales method was found to be highly accurate (less than 

1.5mm error; Figure 2.5, Table 2.3). This study highlighted the importance of doing reversed 

repeats when using the scales method, otherwise the CoM positions derived are inaccurate 

(Figure 2.5, Table 2.3). These reversed repeats have been done by some previous studies 

(e.g. Henderson, 2003), but not all (e.g. Clemente, 2014, Henderson, 2006). However, it was 

identified that application of the scales method to biological specimens would pose 

difficulties. Primarily, there were practical difficulties when assessing dorso-ventral CoM 

position for irregularly shaped biological specimens, which would require construction of a 

custom rig for each specimen/segment being tested. The suspension method was found to 

have relatively low accuracy, regardless of the number of repeats performed (Figure 2.8, 

Table 2.3). This to some extent contradicts previous studies which found satisfactory levels 

of accuracy (e.g. 10mm in Nauwelaerts et al. (2011)) in their variants of the suspension 

method. Due to the nature of the suspension method, it is likely to contain higher 

methodological error between runs and between investigators. The high variation identified 

in this method highlights this (Figure 2.8). Any future work seeking to use a suspension based 

method should therefore quantify and seek to minimise inherent methodological and inter-

investigator errors. Chapter 2 concludes that the scales method is the most accurate and 

repeatable physical method for quantifying 2D CoM (Figure 2.5, Table 2.3), and can be 

applied with confidence in future studies of ex vivo biological specimens. However it has 

some limitations when applied to quantify 3D CoM in biological specimens. 
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6.2.2. Digital method for CoM estimation 

Chapter 2 also assessed the accuracy of a digital method for CoM estimation. This was also 

found to be highly accurate (within 2.4mm; Figure 2.5, Table 2.3), comparable to that of the 

scales method. This study identified the fundamental method as accurate (in agreement with 

Allen et al. (2009)), but identified some issues when it is applied to biological specimens. For 

example, a digital model requires the investigator to assign density values to body segment 

volumes in order to calculate segment masses. Decisions must be made on the value(s) to be 

applied, and whether application should be heterogeneous or homogeneous across body 

segments. The accuracy of the digital model is therefore dependent, to some extent, on the 

availability of density data appropriate to the biological specimen under study. 

 

There are currently no published segment specific density data for birds, and previously 

published studies have used a wide range of values (see Table 2.2). A sensitivity analysis 

assessing the impact of current uncertainty about density data found only small differences 

(maximum of 3.58mm), provided that reasonable data are assigned to models (Table 2.4, 

Figure 2.6). Chapter 2 proposed that segment-specific density should be collected in birds to 

assess the variability present across segments, and in particular to assess potential 

differences across birds with different body plans and/or life habits. In Chapter 4, segment 

specific density data were collected from five bird specimens (Supplementary Information 

4.2). Average segment densities were applied to all bird models in order to derive CoM 

estimates based on heterogeneous application of bird segment-specific data, as opposed to 

the horse and human segment density data used in the sensitivity analysis of Chapter 2. The 

maximum absolute difference between the heterogeneous and homogeneous CoMs in 

Chapter 4 was found to be 7mm (for the emu, the largest specimen in the dataset; Figure 

4.10). For the three specimens featured in Chapter 2, the maximum difference between 
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heterogeneous and homogeneous CoMs was small (maximum of 2.61mm; Figure 4.10), 

within the bounds of the sensitivity analysis of Chapter 2 (±3.58mm; Table 2.4). This indicates 

that the bird segment density data produce similar CoM estimates to the various non-bird 

based datasets. This effect of density was deemed to be acceptable for the purposes of this 

thesis. However, other studies requiring more accurate segment mass properties for birds, 

or those seeking to identify smaller differences between specimen CoMs, may wish to use 

bird specific density data. In this case, the segment density dataset established here should 

ideally be expanded to cover a wider variety of birds, as the comparisons of known versus 

predicted mass properties in Chapter 4 suggest these density data vary in their suitability 

across bird species (Figure 4.11). 

 

The digital method used in Chapter 2 offers numerous additional benefits over previously 

discussed physical methods, including ease of data sharing and manipulation (e.g. for 

sensitivity analyses); and the use of medical imaging to create models enables visualisation 

and incorporation of internal structures (e.g. for assessment of air cavities). Chapter 2 

concluded that this digital method can be applied with confidence in order to estimate CoM 

position in extant taxa, though it suggested that additional density data for birds would be 

useful to ensure the accuracy of models. Subsequent chapters build on this work with the 

digital method. 

 

6.2.3. Exploring refinements of digital methods - integument 

Having demonstrated high levels of accuracy and repeatability in the digital method, this 

thesis proceeded to examine the impact on predicted CoM position of adding more detail to 

models. Chapter 3 specifically tackled the impact of integumental changes through 

Archosauria from scaly skin in crocodylians to a feathered covering in birds. This study found 

that CoM position was notably affected by the explicit inclusion of a feathered integument 
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in models, an effect not seen for scaly integument (Figure 3.4). This disparity in integument 

effect was demonstrated by application of a feathered and scaly integument to the 

Microraptor model. Here, a scaly integument shifted CoM by less than 53% of the shift 

exerted by the feathered integument (minimum model: 1.57 versus 2.98mm, maximum 

model: 1.19 versus 3.11mm; Supplementary Text 3.2). 

 

Though the addition of integument had little impact on cranio-caudal CoM position in birds, 

a feathered integument shifted whole body CoM ventrally in birds & feathered fossil taxa 

(Yixianornis and Microraptor). This ventral CoM shift may have facilitated the early 

development of flight by providing greater inherent stability during volant behaviours 

(Thomas and Taylor, 2001). This is the first time integument has been explicitly included in 

models of modern birds and extinct bird-line theropods, an application enabled by the novel 

dataset on integument mass properties presented in Chapter 3. In several of the extant 

models, the impact of integument on CoM position was found to be as great as the effect of 

air cavities (Figure 3.4, Supplementary Text 3.2), which are included as standard in majority 

of models, raising questions about the ‘standard’ digital modelling procedure. I conclude that 

future studies should assess the accuracy required from their CoM estimates before deciding 

on the level of detail to include in their models, a process that can be assisted by the various 

datasets presented in this thesis. If a research question is likely to be highly sensitive to small 

changes in CoM position, then air cavities and integument should be explicitly included. 

 

The novel dataset on integument mass properties presented in Chapter 3 represents a 

sizeable improvement on existing knowledge, but has several limitations. This dataset was 

comprised of a relatively large number of individuals (49), but these represent a limited 

number of species (33) and orders (e.g. for birds: 27 individuals, from 17 species, across 10 

orders). Additionally, the ‘reptile’ cohort was dominated by lizards (13 lizard versus 9 
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crocodylian individuals, from 11 lizard versus 5 crocodylian species). This focus on 

integument from small bodied lizards may not be the best proxy for extinct archosaur 

species, though the aquatic adapted skin of crocodylians may also be unsuitable. The 

considerable dataset on integument mass properties is commendable given the time 

intensive nature of the data collection, with numerous samples taken from each specimen. 

Modifications to simplify the integument extraction methodology, and to minimise the 

destructive nature of the testing, have the potential to enable more specimens to be added 

in future work of this nature. 

 

These data on integument mass properties were also applied to models of extinct taxa in 

Chapter 3 (Figures 3.4 and 3.5). However, this application was limited, due to use of the 

models of Allen et al. (2013). These models were originally generated used a manual shape 

fitting method - ‘maximal’ and ‘minimal’ skin outlines were created around the original 3D 

skeleton, based qualitatively on knowledge of musculature in extant taxa. The predicted 

CoMs for these models therefore have considerable error margins, which recognise this 

subjectivity and uncertainty. In order to increase the confidence around any conclusions 

drawn from CoM data in extinct taxa, a more objective method is needed for the generation 

of skin outlines. Conclusions about extinct taxa are further hindered by a current lack of 

understanding of the links between CoM and locomotor behaviours in extant taxa, 

particularly in volant behaviours. These links should be quantified in extant birds, before 

drawing any conclusions about specific locomotor behaviours in extinct, transitional species 

(discussed below in Section 6.3). Additionally, the amount of variation observed here in bird 

CoMs and the effect of integument, suggests that use of single individuals are not enough to 

accurately capture CoM position for an extant group the size of Aves or Crocodylia (as in 

Allen et al. (2013)). I therefore conclude that more models of extant species, in addition to 

improved methods for producing extinct models (discussed below in Section 6.4), are 
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required to assess any evolutionary changes in body plan and CoM position across 

Archosauria. 

 

6.3. CoM position and locomotion 

Having explored methods for determining CoM position in extant taxa, Chapter 4 applied a 

digital method to 27 extant birds. The primary objective of this chapter was to explore links 

between body plan, as reflected by CoM position, and locomotor style. Previous studies have 

found significant differences in the relative investment in forelimb versus hindlimb 

musculature in birds reliant on terrestrial or volant locomotor behaviours (Heers and Dial, 

2015). I hypothesised that these differences would also be detectable at the whole body 

level, through whole body CoM position. However, Chapter 4 found no statistically significant 

differences in whole body CoM position between the locomotor groups identified here 

(Figure 4.3). Substantial variation was detected within the groups here. This is potentially a 

result of the broad locomotor categories used here (terrestrial, volant or diving), it may be 

possible to detect significant differences in CoM position if more refined categories were 

used. However, more specimens would be needed for each of the more specific locomotor 

groups in order to perform any meaningful statistical tests. Additionally, more samples 

would help to provide greater coverage of the range of body plans and locomotor types 

present across Aves. Though the majority of avian orders are represented here, they are each 

represented by only one specimen, when there is undoubtedly considerable variation 

present within orders. The degree of CoM variation present within species is also yet to be 

quantified. It is possible that the axial anatomy of specimens is masking significant 

differences in the mass properties of the fore- and hindlimbs in taxa with different locomotor 

specialities. Due to its considerable contribution to whole body mass, the torso segment in 

particular has the potential to obscure any slight differences in CoM position resulting from 

differences in limb morphology. Future work on this project is planned to examine linear 
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proportions and mass properties on a segment-by-segment basis. This will provide a more 

detailed representation of limb morphology, and may enable more subtle differences 

between locomotor groups to be elucidated. 

 

Prior to phylogenetic correction of the dataset, significant differences were detected 

between locomotor groups in the dorso-ventral direction (Figure 4.3). The cause of these 

differences was explored using segment mass properties - mass, CoM and first mass 

moments (FMMs). All mass properties for the hindlimb were found to be strongly correlated 

with dorso-ventral whole body CoM position across all specimens (Table 4.3). This partially 

supports the hypothesis that limb morphology is driving differences in CoM position, though 

the differences in whole body CoM were not statistically significant (PGLS, p value > 0.07). 

This non-significant difference indicated that volant species generally possessed a more 

dorsal CoM than their terrestrial counterparts (Figure 4.3). A more dorsally positioned CoM 

is closer to the axis of rotation about the wings, providing greater manoeuvrability in flight, 

while a more ventral CoM provides greater inherent stability (Thomas and Taylor, 2001). The 

species included in the volant group in this study use different flight styles - from the soaring 

buzzard to the continuous flapping of the hummingbird. In a similar way that birds balance 

these conflicting demands as a result of wing aspect ratios, these species may also have 

different preferences for the stability versus manoeuvrability benefits resulting from dorso-

ventral CoM position. 

 

This study represents a significant step forward in terms of filling the gap in knowledge 

surrounding the links between CoM and locomotion in living birds. This chapter sought to 

link whole body CoM position to locomotor behaviour, in order to aid interpretation of CoM 

position in fossil species. Though the absence of a statistically significant difference in CoM 

position between locomotor groups was unexpected, it is useful to know that despite a wide 
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range of body plans and locomotor adaptations present within Aves, all possess 

fundamentally similar CoMs. This result perhaps underlines the need for caution when 

interpreting differences in CoM position in extinct species. 

 

6.4. Improving CoM estimation in extinct taxa 

Chapter 5 sought to develop a new method using mathematical shape fitting techniques to 

improve current estimates of CoM position in fossil taxa. This was achieved using a large 

dataset of living animals to quantify the relationship between skeletal and skin volume in 

body segments, producing quantitative relationships (Figure 5.1) which formed the basis of 

CoM predictions for extinct taxa (Figure 5.3). This study found that different body segments 

possessed significantly different ratios of skeletal to skin volume and therefore 

heterogeneous segment expansions were required across the body (Figure 5.1, 

Supplementary Information 5.2). This highlighted a problem with the use of previously 

established methods, which were originally designed for body mass estimation (e.g. Sellers 

et al., 2012) and assume a homogeneous expansion, when estimating whole body CoM (e.g. 

Bates et al., 2016, Sellers et al., 2017). Significant differences were also found between the 

bird and ‘reptile’ (i.e. crocodylian and lepidosaur) groups in the majority of segments (7 out 

of 11). That such differences are present between these relatively closely related groups 

suggests that application of mammal based expansion factors to extinct archosaurs is not the 

best approach (e.g. Bates et al., 2016, Sellers et al., 2017). However, the applicability of 

mammal versus bird versus reptile based expansion factors may arguably differ depending 

on the body plan of the specimen of interest. Large bodied, quadrupedal mammals with 

columnar limb postures may be good proxies for sauropods (Bates et al., 2016, Sellers et al., 

2013), but are unlikely to be good analogues for large bodied, bipedal theropods (Sellers et 

al., 2017). 
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Contrary to initial expectations, the method established in Chapter 5 produces CoM positions 

that are notably different from those of Allen et al. (2013) (which used a subjective, manual 

shape fitting approach), and the margins of error are greater in all cases (Figure 5.3). This is 

particularly evident in the four long tailed taxa, mainly due to the large ‘all species’ expansion 

factor which was applied to the tail segments of all fossil models (Figure 5.1D, Figure 5.3). 

Nevertheless, the new methodology developed here offers numerous benefits over that of 

Allen et al. (2013), the most important being a quantitative grounding, based on closely 

related extant taxa. This not only enables quantification of likely CoM positions, but by 

assessing the variation present within extant species it can be used to inform appropriate 

error margins. This is in contrast to the manual shape fitting method of Allen et al. (2013), 

where maximum and minimum skin outlines were created subjectively. The considerable 

error margins calculated for the new method suggest that some previous approaches have 

been overly conservative in the past when predicting the potential biological variability 

present in skin outlines (Allen et al., 2013); a problem which can be avoided by grounding 

estimations in data from living species. This suggests that the biological conclusions drawn 

by previous studies should be viewed with caution. The substantial margins of error present 

around the CoM positions predicted here indicate the substantial biological variability 

present in skeleton to skin ratio, even within groups which are relatively closely related. This 

casts further doubts on the validity of assuming extinct dinosaurs had skeleton to skin ratios 

equivalent to modern mammals (e.g. Bates et al., 2016, Sellers et al., 2017). However, it 

should be noted that some of these previous studies studying CoM evolution through time 

using mathematical shape fitting methods (Bates et al., 2016) have included large error 

margins around CoM estimates in order to better acknowledge the uncertainty present, even 

when using a quantitative basis for reconstructions. This is the approach which should be 

adopted moving forward, in order to acknowledge the maximum error present in 

reconstructions of mass properties in fossil species. The CoM positions predicted and the 
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associated error bars must then be used together to inform any conclusions about the 

biology of the specimens of interest. 

 

The new method developed in Chapter 5 incorporates the best features of previous digital 

methods (easy to share and manipulate data; grounded in an extant dataset enabling well 

defined error margins; and the objective generation of segment mass properties), and also 

adds new features (an extensive dataset of closely related taxa; and segment specific 

relationships which are designed to estimate CoM). However, further work is required in 

order for this method to be confidently applied to series of fossil taxa to investigate trends 

in CoM position through time. Before any application, the dataset used here should be 

expanded. Though 48 specimens represents by far the largest dataset for a volumetric study 

of this kind to date, it is a small number of species to capture the full extent of the variation 

present within archosaurs and lizards. The absence of large bodied, mature ratite specimens 

is a particular problem. Additionally, better representation of groups whose members 

display considerable variation in body plan, such as the Galliformes, would also increase the 

robustness of the resulting relationships. It may also be worthwhile to explore other options 

for generating skeleton volumes. Though convex hulls are easy to objectively generate, they 

include considerable empty space around many bones, a factor which may be adversely 

affecting the relationships between skeletal and skin volume. For example, using alpha 

shapes would generate more realistic values for bone volume, which may result in tighter 

fitting relationships. However, the subjectivity within the alpha shape method would pose 

additional problems which would require addressing. 
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CHAPTER 7 - CONCLUSION 

 

The key theme running throughout this thesis was methods for CoM estimation. Chapter 2 

successfully tested a number of different methods for CoM determination in whole biological 

specimens. Digital modelling and the scales methodology were both found to be highly 

accurate and repeatable, but the digital method offered significant logistical benefits for 

application to biological specimens. Proceeding with a digital modelling approach, the 

impacts of different modelling assumptions and levels of model detail were assessed using 

extensive datasets and in some cases, previously unavailable data (e.g. on integument mass 

properties). The errors associated with modelling assumptions (e.g. the inclusion of air 

cavities or integument) were identified as being small. These data can be used to inform the 

level of detail required by future studies using digital modelling in extant taxa. Following on 

from work modelling CoM position in extant taxa, Chapter 5 sought to develop an improved 

methodology for estimating CoM in fossil species. An extensive dataset of extant sauropsids 

was used to quantify skeleton to skin volume ratio, forming the foundation of a new 

volumetric modelling method. The estimates produced by this method for a sample of 

dinosaur taxa were found to disagree with previously published work, in addition to being 

accompanied by larger error margins. 

 

This thesis also sought to quantify links between CoM and locomotion in Chapter 4, with the 

aim of enabling better interpretation of the biological meaning behind predictions of CoM in 

extinct taxa. However, contrary to my hypotheses, no significant differences were found in 

CoM position between birds of different locomotor types. The substantial scatter present in 

the three locomotor groups identified here speak to the considerable variation present in 

the avian body plan. Though 27 avian orders were sampled, this is a relatively small sample 

to cover the full extent of body plan variation across Aves. Additionally, this sample was not 
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large enough to enable statistical investigation of potential differences between more 

specific locomotor groups. Future work plans to investigate the links between segment 

proportions and locomotor type in birds, potentially forming an alternative basis for 

reconstructing locomotor behaviours in extinct species. 

 

In summary, this thesis successfully explored methodologies for CoM estimation, concluding 

that digital approaches offered good levels of accuracy alongside practical benefits, making 

it the most suitable approach for application to extant taxa. Methodological variations on 

this method were then explored to investigate the extent of the impact of factors such as air 

cavities and integument on whole body CoM in birds. Having quantified the associated 

errors, the digital methodology was applied to a range of species across Aves, but was 

unsuccessful in establishing statistically significant links between whole body CoM position 

and locomotor type. Finally, a new method was developed for estimating CoM position in 

fossil taxa. This new method offered greater objectivity than previously published methods, 

and a considerable quantitative grounding in data from extant taxa. However, the resulting 

error bars were substantial, and predicted CoM differed considerably to previously published 

estimates. The implications of this new method on the biological conclusions of previous 

studies is yet to be understood, however the results of previous studies should be 

interpreted with caution. This thesis provides the foundation for further work to continue to 

build towards better methods for CoM estimation in extinct taxa, and more confident 

biological interpretations of any resulting predictions. 
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