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Abstract 

This thesis presents several studies and designs on power dividers, filters and diplexers to 

overcome respective challenges of these topics. This thesis focuses on the following three areas. 

The first research area focuses on improving the bandwidth of Wilkinson-type power dividers. 

For broadband power dividers design, the impedance matching is challenging. A novel design 

method is proposed to broaden the bandwidth of Wilkinson-type power dividers by adding 

capacitors in parallel with the main structures. Adding capacitors in parallel with transmission 

lines is firstly proposed to control of the reflection zero frequency and operating bandwidth. 

The fabricated circuit occupies a very compact circuit size at the same time. A two-way power 

divider is designed and measured to validate the proposed method. The measurement indicates 

that the device has a 15-dB bandwidth of 2.73:1. The proposed method can be applied to the 

design of multi-way multi-section power dividers. An eight-way power divider is designed and 

fabricated. The measured response has a bandwidth of 2.67:1. The proposed power divider 

exhibits a much wider tunable bandwidth than other similar works. In addition, the design has 

a simple layout, compact size, good physical and electrical isolation features. 

The second area concentrates on reconfigurable power dividers. A novel power divider with a 

wide operational frequency tuning range is presented and investigated. Using varactors in 

parallel with transmission lines is firstly proposed to extend the operational frequency tuning 

range. The reconfigurable feature is realized by electrically adjusting the bias voltage on 

varactors. Theoretical formulas for the characteristic impedance and electrical length of the 

transmission lines of the power divider are derived and analysed to precisely control the 

operating frequency band. A power divider has been designed and fabricated to validate the 

proposed design method. The measured results indicate that the power divider can achieve a 

20-dB tunable operating frequency range of 4.63:1 which is the largest among all the other 

similar works. Moreover, the power divider has a simple layout and a very compact size of 

0.2𝝀𝒈 ×0.16𝝀𝒈. This work demonstrates the excellent potential for working with frequency 

agile components in modern communication systems, such as antenna arrays. 

The last area under investigation is mm-Wave (Millimetre-Wave) coplanar power dividers 

design. For mm-Wave applications, most of existing power dividers suffer from large size, 
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high cost, complex fabrication processes and lossy performance. On these circumstances, CPW 

power dividers using coupled resonators at V band are designed. This work has three main 

contributions. The first is that the power dividing ratio of a power divider can be precisely 

controlled via calculation. The second one is reducing circuit loss by replacing T- or Y-

junctions to eliminate air-bridges. The last contribution is circuit miniaturization by using spiral 

resonators.  Mathematical proof and parametric studies have been done in the thesis. A diplexer 

is designed using this method which indicates an extensive applicability of the method for RF 

components designs.  

This thesis has successfully demonstrated novel design methods and techniques for power 

divider designs. Several challenges including complex circuitry, large size and unnecessary 

loss have been overcome by using the presented technologies. The research and knowledge in 

this thesis should be of great significance to the future development of power dividers or even 

other RF devices.  
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Chapter 1 Introduction  

Advanced researches are aiming to keep up with the social demands for a new generation of 

wireless communication functions. As shown in Fig. 1. 1, the development of modern wireless 

communication contributes to every aspect of life globally including health & safety, security 

and wireless charging, etc. Radio Frequency (RF) devices, as the physical fundamentals for 

signal transmission and receiving, play a vital role in wireless communication systems.  

 

Fig. 1. 1. A diagram of wireless communication networks [1]. 

1.1 Power Dividers  

Power dividers (PDs), also called power splitters, are one of the essential components in 

building wireless communication systems. A PD can be used to split the power from the input 

port into several smaller portions to different output ports. On the other hand, the PD can be 

used for combining power from several input ports into one output port once the jobs of the 
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input and output ports are reversed. The features and performance of the PD regarding 

operating frequency, bandwidth, output ports isolations, circuit size etc. will significantly affect 

the overall performance of the wireless communication system built on it. With the 

development of communication systems, especially 5G communications, the spectral range for 

data transmission is higher and higher. Multiple communication standards are desired due to 

that a single standard transmission cannot satisfy the required performance of the system. In 

that case, PDs are essential for assigning the signal to different paths. In RF systems and 

measurement control systems, like power amplifier network, the performance of the power 

distribution and coupling elements are crucial to the quality of the whole system. Many PDs 

are designed to have different features to satisfy the requirements of a high-performance 

communication system. 

Resistive PD.  

The easiest method to realise a PD is to use simple purely resistive elements [2]. Choosing 

proper values of the resistors used in the PD can enable the input/output impedance of the 

system to be constant when splitting or combining the power with the desired ratio. One of the 

most common and fundamental forms of the PD is a three-way PD. The most adopted 

configurations of the three-way resistive PD, namely star and delta format, are shown in Fig. 

1. 2(a) (b) as follow. 

 

 

(a)                                                                  (b) 

Fig. 1. 2. Schematic of the resistive PD, (a) star format PD, (b) delta format PD. 
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For the star PD, the series resistors to the star centre are all equal. Since the input impedance 

should be equal to the load impedance 𝑍0 and the resistance can be derived by  

𝑅 +
(𝑅 + 𝑍0)

2
⁄ = 𝑍0 

𝑅 =
𝑍0

3⁄                                                            (1.1) 

Eq (1.1) shows that the resistance is one-third of the characteristic impedance of the ports. For 

the delta format PD, the resistance of the resistors is identical to that of the characteristic 

impedance of the RF system. With these simple forms of resistive PDs or splitters, any port 

can be used as the input while the rest two severing as the outputs.  

It should be mentioned that the resistive PD has double loss compared to a lossless PD’s 

insertion loss. Taking the star format PD as an example, for an N-way star format PD, the 

power dissipated in resistor A that is close to the common port is 𝑃𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑_𝐴 = 𝑃𝑖𝑛 ×

(𝑁 − 1) (𝑁 + 1)⁄ , while the power dissipated in the two resistors B and C that  are close to 

output ports can be calculated as 𝑃𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑_𝐵/𝐶 = 𝑃𝑖𝑛 × (𝑁 − 1) [(𝑁 + 1) × 𝑁2]⁄ . For 

example, when N equals to 2, the output power is only 25% of the input power (-6.02 dB). 

Furthermore, it is very convenient to achieve multi-ports PD by connecting more resistors to 

the centre of the star. But the power loss will be higher, which is acceptable for some 

applications. Resistive PDs are very easy to implement, and they can provide an extensive 

operating bandwidth as the resistors are not frequency dependent. Also, a resistive PD is 

relatively cheap. These factors make them very attractive for many applications if the main 

disadvantage of power loss can be tolerated. 

T-junction PD.  

The T-junction [3]-[4] is a simple lossless three-port network that can be used for power 

dividing or power combining. It can be formed in virtually any type of transmission line 

medium (commonly used in the waveguide, microstrip or stripline structure). The lossless T-

junctions shown in Fig. 1. 3(a)-(c) can all be modelled as a junction of three transmission lines 

as shown in Fig. 1. 4. 𝑍1 represents ports impedance, and 𝑍2 and 𝑍3 indicate load impedances 

at Port 2 and Port 3.  
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(a) 

 

(b) 

 

(c) 

Fig. 1. 3. (a) E-plane waveguide, (b) H-plane waveguide and (c) Microstrip T-Junction. 



Chapter 1: Introduction 

 

P a g e | 5  

 

 

 

Fig. 1. 4. Transmission line model of a lossless T-junction.  

Due to the fringing fields and higher order modes that associated with the discontinuity, stored 

energy that can be regarded as a lumped susceptance, B. To have input impedance matched, 

the following equation should be satisfied (1.2) 

2 3 0

1 1 1
in

Y jB
Z Z Z

                                        (1.2) 

𝐵 = 0  "not practical" 

⇒ A lossless divider has mismatched ports 

A transmission line is assumed to be lossless so that the characteristic impedances are all real. 

In that case, B should be zero for perfect matching. However, B is not negligible in practice, so 

a lossless divider has mismatched ports. But some reactive tuning element can usually be added 

to the divider to cancel the susceptance B, at least over a narrow frequency range [5]. If not, 

there will be poor isolation between the two output ports, and there will be a mismatch looking 

into the output ports. The T-junction PD realised by the transmission lines will maintain a good 

power division efficiency with a minimal loss.  

Wilkinson-type PD.  
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The Wilkinson N-way power splitter that shown in Fig. 1. 5 was invented by Ernest Wilkinson 

[6] in 1960. The Wilkinson-type PD uses quarter-wavelength transformers, which are easy to 

be fabricated using transmission lines on printed circuit boards (PCB). As a result, it offers the 

possibility of a very cheap and straightforward splitter/divider/combiner while still providing 

high levels of performance regarding loss and isolation between output ports.  

 

 

Fig. 1. 5. N-way Wilkinson PD [6]. 

The N-way PD proposed by Wilkinson in [6] can split an input signal into N equal phase output 

signals or combine N equal-phase signals into one in the opposite direction.  

Looking at a two-way PD first, the main path of Wilkinson-type circuits relies on quarter-wave 

transformers to match the split ports (output ports) to the common port (input port). Due to the 

difficulty of achieving the perfect matching of a three-ports reciprocal network, usually a 

resistor will be added between the output ports. The added resistor will not only contribute to 

the terminations matching but also provides good isolation between the output ports. An equal-

amplitude, two-way splitting, single-stage Wilkinson is shown as Fig. 1. 6. The two split paths 

are quarter-wave transformers of impedance √2Z0 . Therefore, these two paths provide the 

same potential over the two ends of the resistor, the resistor consumes no resistive power, so 

an ideal Wilkinson splitter is 100% efficient. Although Wilkinson PDs can be used as N-way 

PDs, it is difficult to realise a planar structure since all ports need to connect to a common point 

with a resistor.  

https://www.microwaves101.com/encyclopedias/microwave-hall-of-fame-part-iii#wilkinson
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(a) 

 

(b) 

Fig. 1. 6. (a) Signal split in a two-way Wilkinson PD, (b) schematic of a two-way 

Wilkinson PD. 

A two-way Wilkinson PD is relatively simple and can be realised by different technologies 

such as printed components on a printed circuit board (PCB) and lumped inductor and capacitor 

elements [7]. From the power loss point of view, if perfect elements are adopted, the Wilkinson 

PDs would not present any extra power loss from the division of the power. In practice, the 

real components used for the Wilkinson splitter can be of low loss, especially when PCB 

transmission lines are used along with a low loss PCB substrate material. 

Furthermore, contributed by the isolation circuit realised by resistors, high-level isolation is 

introduced between the output ports which will prohibit the ports from interfering with each 

other. On the other hand, the realisation of the Wilkinson PD is highly dependent on the quarter 

wavelength transmission lines. Once the operating frequency deviates from the original one, it 

will cause a vital impedance mismatch, and limit the performance. Thus, the traditional 

Wilkinson PDs are only suitable for relatively narrow-band applications. 

Rat-race Coupler.  
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The Rat-race coupler is one of the 180°  hybrid couplers that are widely used in PD and 

combiner designs. The schematic of a conventional rat-race coupler is outlined in Fig. 1. 7[8]. 

It is a lossless reciprocal four-port network. It comprises three 90° branches and one 270° 

branch. In many references, the 270° branch is always decomposed into three 90° sections to 

simplify the design. The characteristic impedance of the ring should be √2  times the 

characteristic impedance of the port terminations with the purpose of impedance  

 

(a) 

 

(b) 

Fig. 1. 7. (a) Circuit schematic and (b) configuration of a conventional rat-race coupler 

[8]. 
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matching for all ports. As a PD, the rat-race coupler can be used for in-phase operation and 

180° out-of-phase operation. For the case of the in-phase operation, a signal applied to port 1 

is divided equally into Ports 2 and 3 with the same phase shift, and Port 4 is isolated. Conversely, 

for out-of-phase operation, a signal injected into Port 4 is divided evenly into Ports 2 and 3 

with 180° phase difference, and Port 1 is isolated. 

The rat-race coupler is easily realisable and can be implemented in numerous technologies, 

such as microstrip line, stripline and waveguide (magic-tee). Advantages are the simple design 

and high degree of isolation between the input ports. However, it also has serious drawbacks, 

such as relatively narrow bandwidth and sizeable occupied area due to the requisite 270° 

transmission line section [8]. 

 

Fig. 1. 8. Basic Gysel topology.  

Gysel PD.  

Ulrich Gysel [9] proposed a new structure (shown in Fig. 1. 8) of PD in 1975. The configuration 

is similar to a combination of a Wilkinson and a rat-race coupler [10]. The main advantage of 

the Gysel power splitter is its power handling capacity. In a Wilkinson splitter, the resistor is 

embedded into the network and must provide a short phase length for the scheme to work. The 
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terminations in a Gysel are equal to Z0 and can be high-power loads if power handling is a 

requirement. The Gysel divider is often used in kilowatt-level power combining, for example, 

if some redundancy in a 50,000-Watt television transmitter is demanded a five-way Gysel 

combiner with 15,000 Watt tubes could be use and it is able to remove one of the tubes for 

service or replacement without taking the transmitter off-line. 

1.2 PD in Modern Wireless Communication Systems  

The increasing number of frequency bands and spectrum fragmentation demand the system 

having broadband features. Modern wireless communication systems are evolving and 

applying a multiplicity of emerging communication standards such as high-speed packet access 

(HSPA), long-term evolution (LTE) and microwave access (WiMAX). These techniques 

require different centre frequencies, bandwidths and modulation schemes [11]. Wireless 

service providers have to offer a large number of radios for each standard resulting in a very 

costly overall network infrastructure. To decrease costs, the flexibility and reusability of RF 

transmitters and transceivers should be improved to allow the combination of different 

technologies in a single piece of hardware. Driven by the demands of the consumer for wireless 

services such as portable devices, smartphones and Internet access with the high data rate, the 

industry and academia have responded and offered improved services and standards [12] [13]. 

For example, the first generation named 1G cellular was introduced in the early 1980s, based 

on the analogue network operated at 900MHz. Then, the 2G cellular system based on Time-

Division Multiple Access (TDMA), Global System for Mobile Communications (GSM), and 

Code Division Multiple Access (CDMA) was announced ten years later, which provided much-

improved data rate. Till now, the 4G using OFDM technology is operated around the world 

offering high quality and enhanced functionality services. Nowadays, the idea of the 5G system 

has been proposed to deliver higher data rate services. It will demand broader bandwidths and 

higher efficiency with lower cost and smaller size devices. In this case, the design of broadband, 

multi-band tunable, high isolation and compact PD attracts attention and becomes the research 

topic. 

In general, the main preferred functionalities of a PD can be summarized as the following 

aspects.  
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 Broadband technology has drawn much attention to wideband antennas and antenna 

arrays [1]. As an essential part of these applications, PDs need to keep up with the 

spectrum extension.  

 Many wireless communication systems have multi-band operating ranges. GSM works 

at 0.9 GHz and 1.8 GHz; WLAN system works at 2.4/5.2/5/8 GHz. Many RF devices 

tend to have a multi-band or reconfigurable feature to make the most of existing 

spectrum and infrastructure sources.  

 Nowadays, people demand mini portable products, like smaller and thinner mobile cell 

phones and RFID (Radio Frequency Identification). Circuit miniaturisation and 

integration are the trends. Obtaining compact sizes and maintaining high performance 

of the device will be the primary challenge. 

From the functionality point of view, there are PDs with different frequency configuration 

which includes dual-band, multi-band and wideband PDs. Those types work for multi-standard 

communication systems. In addition to multi-band or broadband features, PDs having tunable 

operating frequencies are valuable for constructing multi-standard systems. Despite tuning 

operating frequencies, power ratio can also be tuned. For some applications like antenna arrays, 

and power amplifiers, power division ratios need to be customized. In those cases, PDs with 

different power division configurations are desirable. Although most of the time the word 

“power divider” indicate in-phase power division, arbitrary phase differences are required in 

many applications like phased arrays. 

In addition to the pre-mentioned types, function–integrated (hybrid) PDs are also very popular, 

such as PDs with different termination impedances, PDs with filtering response and PDs with 

harmonic suppression. There are several hybrid PD examples demonstrated in the next chapter. 

Usually, those multi-functional PDs are suitable for systems that are very complex and highly 

integrated to save space and avoid unnecessary loss.  

From the fabrication technology’s aspect, there are conventional transmission lines PDs 

including microstrip, stripline, coplanar waveguide, etc. It is usually easy to calculate the 

dimensions and fabricate. However, to achieve advanced performance, unconventional 

transmission lines are widely used, like coupled-line PDs and PDs using right-/left-handed 

(CRLH) transmission lines and Lower Temperature Co-fired Ceramic (LTCC). The structures 
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of above PDs follow the fundamental topology like Wilkinson type PDs. The substrate 

integrated waveguide (SIW) is also a popular technology. By using metallic via holes to prevent 

signal leakage a “planar waveguide” can be formed. An SIW has waveguide properties but 

without a bulky size or heavyweight.  

1.3 The Motivations of the Work  

In recent years, with the rapid development of wireless communication systems, many ideas 

and technologies have been applied to improve the overall performance of the systems. Passive 

PDs, as an essential component of RF modules, have attracted more and more interests in 

researching and industry field. The nature of a three-port network determines that it cannot be 

simultaneously lossless, reciprocal, and matched at all ports. As a result, pursuing optimised 

performance for a PD is worth investigating. Nowadays, PDs have already gone far beyond 

original prototypes to keep up with the innovation of modern communication technologies. For 

practical use, people care about the performances, functions and fabrication processes of a PD. 

State-of-the-art PDs exhibit improvement in various aspects according to different applications 

and specifications. Subsequently, function-integrated PDs attract more and more attention 

because this is the trend to have compact integrated systems.  

To summarise, more works can be done to improve the performance of a PD. The main 

objectives of this research are listed below: 

 To study the wideband PD technologies and investigate the mechanisms of these 

methods. 

 To design a wideband PD with a simple layout and compact size. Analytical solutions 

for determining the design parameters should be produced.  

 To further study the mechanism of designing reconfigurable PDs and evaluate the pros 

and cons of each method. To investigate multi-functional PDs. 

 To develop a reconfigurable PD with a wide centre frequency tuning range and has a 

very compact size.  

 To explore mm-Wave PD designs and fabrication technologies.  
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 To design an mm-Wave coplanar waveguide PD using coupled resonators for easy 

fabrication and reduction of conductor loss at such high frequencies. 

1.4 Thesis Organization   

The content of this thesis are organized in the following manner. 

Chapter 1 provides the background of the project, the motivations of the work and the outline 

of the thesis. 

Chapter 2 is the literature review of previous works on PDs. The main focuses of the literature 

review are broadband PDs, reconfigurable PDs and mm-Wave PDs.  

Chapter 3 presents a wideband PD design. The procedures and methodology of the design are 

provided. Measurements were taken to validate the design.  

Chapter 4 introduces a reconfigurable PD with a wide centre frequency tuning range. The 

tuning mechanism is explained, and the relationship between the varactors and the tunable 

centre frequency is analysed in detail. Measurements were taken for validating of the design.  

Chapter 5 explores mm-Wave CPW PDs using coupled resonators. The size can be 

significantly minimized by using G-type spiral resonators. Also by the use of a common 

resonator to replace a T-junction or Y-junction, the size can be further reduced. Moreover, by 

controlling the coupling between the resonators, a different power dividing ratio can be 

achieved. Based on the coupling method, a diplexer can also be implemented by controlling 

the size and distances of resonators.  

Chapter 6 concludes the works. The main objectives and contributions of the work are reviewed 

and highlighted. Moreover, the potential extensions of the work and its challenges are presented. 

This chapter has also listed several future research topics worthy of investigation. 
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Chapter 2 A Review of Power Dividers 

In this chapter, a number of state-of-the-art planar PDs are introduced and discussed. The 

innovations of these PDs lie in their performance breakthrough, physical configurations, and 

function integrations. This chapter provides a basis for the development of planar PDs. 

2.1 Broadband PD Technologies 

PDs with different frequency configurations are quite important for modern communication 

systems that require multi-standards. Since conventional PDs [1] [2] can not provide sufficient 

bandwidth, many works have been reported on dual-band [3]-[18], multi-band [19]-[20], and 

broadband PDs [21]-[28]. Compared to multi-band designs, PDs with wide frequency bands 

are more desired because they are not only able to meet the requirements of the multi-standard 

system, but can also contribute high-speed data rate [29]. It is reported in the literature [30] that 

there are several techniques that identify the broadband PDs. The pros and cons of those 

techniques will be analysed and discussed in the following sections with some typical design 

examples. The discussion of the bandwidth in this thesis will be based on the scattering 

parameters Sij. 

2. 1. 1    PDs with Multi-section 

Theoretically, the conventional single-section two-way Wilkinson-type PD has a usable 

bandwidth (20-dB return loss) of 1.44:1. The impedances are perfectly matched at all ports that 

generate reflection zeros at the centre frequency and its harmonic frequencies. However, Sii 

and Sij between each adjacent reflection zeros are insufficient to make it a wideband. As a result, 

the operational band only consists of one reflection zero. To broaden the operational bandwidth, 

the reflection zeros can be allocated closer to make Sii and Sij sufficient (ideally all below 20 

dB) for a wideband response. This is done by carefully choosing the impedances and lengths 

of the transmission lines. In that case, the operational band will consist of several reflection 

zeros. This cannot be accomplished by using conventional single-section Wilkinson PDs. On 
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the other hand, adapting multi-section paths to the main circuit, as shown in Fig. 2. 1(a), is a 

comprehensive method to realise the broadband response. 

 

(a) 

 

(b) 

Fig. 2. 1 (a) Schematic of three-section Wilkinson PD, (b) photo of industrial products. 

The multi-section method was introduced in 1968 [31] to further broaden the operational 

bandwidth of the Wilkinson PDs. Each section consists of a pair of transmission lines and a 

resistor. This is done so that the circuit is like several single-section two-way Wilkinson PD 

cascaded end to end. The multi-section structure can provide a significant increase in 

bandwidth. More specifically, bandwidth can be increased to 2:1 with two sections, 4:1 with 

four sections, and even 10:1 with seven sections. Theoretically, the bandwidth of multi-section 

PDs can be extended without limitation with infinite sections. However, the size will be 

sacrificed accordingly as shown in Fig. 2. 1(b). As shown in [30], the circuit is composed of a 
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finite number of resistors and the same transmission lines, and so synthesis for optimum 

performance can be concluded. The design procedure is easy for two sections PDs, but 

calculation difficulties of PDs with more sections will increase exponentially. Although in the 

following half-century, many works [32]-[34] have been conducted on optimising the 

algorithms with the help of simulation software, the designs are reliant on the approximations 

and software tuning processes. In addition to the calculation difficulties, the size of a multi-

section Wilkinson PD is multiplied because the length of each section is usually a quarter 

wavelength.  

In summary, the advantages are that this multi-section solution can effectively provide 

unlimited bandwidth, and the bandwidth in terms of design parameters can be calculated and 

predicted. However, the longer transmission lines for the wider bandwidth increased the circuit 

size which in turn brings more insertion loss.  

To save space of the circuit, Yu [35] has analysed broadband Wilkinson PDs based on a 

segmented structure formed by many transmission line segments in shunt with grounded 

capacitors and series resistor-capacitor networks. The word “segment” is to distinguish “multi-

section”; while the latter indicates a multiple quarter-wavelength transmission line section, 

“segmented” implies the total length of transmission lines is 𝜆 4⁄  which downsizes the circuits. 

The layout of a segmented structure is shown in Fig. 2. 2. The reason that this work is put in 

“multi-section” is because the design still needs a number of resistors to connect each segment. 

The operation bandwidth of Wilkinson PDs with a fixed transmission line length can be 

extended by replacing the original quarter-wave transmission line section with the proposed 

impedance transformer segmented. As shown in Fig. 2. 3, the measured bandwidth is 1 in this 

work, which is a very significant improvement compared to the previous best-reported 

bandwidth of 2.03:1 in [18].  
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(a) 

 

(b) 

Fig. 2. 2 (a) Even-mode circuit of the design in [34] based on the structure of two segments, 

(b) printed circuit. 
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Fig. 2. 3 (a) Simulated and measured S11 and S21, (b) simulated and measured S22 and S23 

[35].  

Theoretically, more implemented segments can achieve larger bandwidths. Practically, though, 

the limitations of the maximum achievable bandwidth depend on the implementation of the 

required components values. In addition, too many lumped elements will consume more energy. 
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2. 1. 2    PDs with Stepped-impedance Transformers 

 

Fig. 2. 4 Structure of stepped-impedance transformer.  

Comparable to the multi-section solution, the use of stepped-impedance lines is also an easy 

and accessible method to achieve broadband PDs. Stepped-impedance lines, also known as 

stepped-impedance transformers, were initially proposed by Young [36] in 1962. The stepped-

impedance transformer is shown in Fig. 2. 4. It consists of several lossless transmission line 

sections with electrical length φ  and terminated in resistive load Z0 and ZL. The input 

impedance looking into the transformer can be calculated by continually integrating the input 

impedance of lossless transmission line formula (2.1) [36]: 

0

0

0

tan( )
( )

tan( )
L

in

L

Z jZ l
Z l Z

Z jZ l









                                       (2.1) 

where phase constant β =
2𝜋

𝜆
 and 𝜆 indicates the wavelength. Stepped-impedance transformers 

are widely applied in filter designs for circuit size reduction [37]-[40]. For Wilkinson PDs, 

output ports need to be close in order to minimize phase shift across the resistor. However, an 

extra 50 Ω transmission lines are needed to connect the resistor to the output ports. The stepped-

impedance transformers utilize the space occupied by 50 Ω interconnection lines to improve 

impedance matching on all ports, in turn reducing the circuit size simultaneously. Refs [41]-

[43] provide some mathematical solutions of choosing the values for these transmission lines.  
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(a) 

 

     (b)                                                           (c) 

Fig. 2. 5 (a) Photograph of the designed four-way PD, (b) S11 S21 and output return losses 

and (c) isolations of the designed four-way PD with ripple 15 dB [46].  

Papers [44]-[45] propose an impedance-matching method of interconnecting transmission lines 

between adjacent stages to achieve wideband feature. Ref [46] has demonstrated a 

comprehensive design of stepped-impedance transformers by choosing different parameters at 

different stages to have concurrent impedance matching between stages, broadening the 

bandwidth significantly. As shown in Fig. 2. 5(a), by cascading three single-section two-way 

PDs into a four-way one, the measured results demonstrate a bandwidth of 3:1 as Fig. 2. 5(b) 

(c) indicate. This method employs Chebyshev polynomials [47]-[49] to the interconnecting 
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transmission lines between stages. Theoretically, for the given number of stepped-impedance 

transformers, the optimised design parameters can indeed be calculated. This method could be 

very effective when dealing with conventional multi-stage, multi-way Wilkinson PDs with 

plenty of interconnecting transmission lines, but these interconnecting transmission lines will 

inevitably occupy more space.  

2. 1. 3    PDs with Coupled-Line 

 

(a) 

 

(b) 

Fig. 2. 6 (a) Schematic model of coupled-line, (b) coupled-line side view.  

Coupled-line is one type of transmission line that is widely used in microwave integrated circuit 

designs. An example of two microstrip coupled-lines over a common plane as shown in Fig. 2. 

6(a) (b). Coupling will gradually emerge when they are sufficiently close to each other. The 

coupling strength between the coupled lines can be modelled by introducing a mutual 

inductance and capacitance per unit length, 𝐿𝑚 and 𝐶𝑚. When 𝐿𝑚 = 𝐶𝑚 = 0, they are reduced 

to the uncoupled equations describing the isolated individual lines. 

Coupled-line resonators are widely used in wideband filter designs (see works in [50]-[55]). 

As a result, these types of PDs are typically designed by following the filter design synthesis 
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which can generate finite transmission poles in the band, just as filters are performed. The 

transmission poles and bandwidth can therefore be predicted and controlled according to the 

filter performance. Moreover, coupled-lines and microstrip-slotline transitions [56]-[59] can 

be regarded as transmission line transformers, which is a benefit for size reduction and is 

capable for further bandwidth extension.  

Conventional two-way Wilkinson PDs consists of two quarter-wavelength lines and an 

isolation resistor. For high-frequency applications, chip resistors with small dimensions are 

widely used for the isolation resistors. In such cases, the coupling between the two quarter 

wavelength transmission lines can not be neglected. To avoid unwanted coupling, some 

measures are taken to lead the designs for PDs [60]-[64]. However, as the analysis in [65] 

illustrates, the broadband feature can be achieved with ports impedance matching at a relatively 

wide frequency range by controlling the coupling between coupled-line. The coupled-line PD 

can provide a filtering response compare to PDs with conventional transmission lines. In 

addition, owing to the coupled-line structure, the width and spacing of the microstrip lines are 

reduced, thereby resulting in the miniaturisation of circuit width. Since the first coupled-line 

Wilkinson PD has been proposed in [66], there has been a worldwide interest to develop more 

versatile components by using this method.  

The PD in [67] utilises the coupling between transmission lines to enhance the bandwidth, 

reducing the size of a convention Wilkinson PD. The two transmission lines of the conventional 

Wilkinson PD are placed apart to avoid coupling between them, as unwanted coupling will 

lead to diminished performance. However, for the design in [67], the two transmission lines 

are close to each other because the coupling is a part of the impedance matching network.  
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(a)                                                                          (b) 

Fig. 2. 7 Fabricated PDs of (a) conventional and (b) coupled-line design for a gap of 0.56 

mm. 

Fig. 2. 7 exhibits the size comparison between a conventional Wilkinson PD and coupled-line 

PD, and the size of the latter is a quarter of the former. The measurement results in Fig. 2. 8 

indicate that the proposed design achieves slightly wider S11 bandwidth compared to the 

conventional Wilkinson one. The circuit is analysed by using even- and odd-mode analyses. 

The odd-mode impedance of the transmission line 𝑍0 will only change the matching output 

ports while not affecting the matching condition for the input port. The 20-dB S11 bandwidth 

is 1.45:1, and S22 and S33 are 2.08:1 which shows little improvement to the conventional 

Wilkinson one. The bandwidth improvement is limited as only one coupled-line section is used 

as shown in Fig. 2. 8(a). It should be noted that the isolation S23 and output return loss S22/S33 

have visible shifts from the centre frequency. This is because the odd-mode impedance 𝑍0will 

change along with the frequency, which degrades the matching of the output ports. The 

frequency shift can be mitigated by adding more lumped elements and transmission lines 

between the output ports. This design shows the potential of the coupled-line method to change 

the impedance matching at ports. 
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(a)                                                                       (b) 

 

(c)                                                                   (d) 

Fig. 2. 8 Measured (a) S11, (b) S21, (c) S22, and (d) S23 comparing to the conventional 

Wilkinson PD [67].  

2.1.3 Hybrid and Multi-Functional Wideband PDs 

As the basic design in [67] can only produce small improvements in terms of bandwidth, more 

technologies are expected to be combined to provide better performance such as wider 

bandwidth and higher out-of-band selectivity. A better-designed case is presented in [68] as 

shown in Fig. 2. 9(a), connecting coupled-line and stepped-impedance stubs to the 

conventional Wilkinson PD. From Fig. 2. 9(a) (b), this design utilises a pair of quarter-

wavelength coupled lines that are located between one side of the resistor and the outputs. In  
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(a)                                                                (b) 

 

(c)                                                                 (d) 

Fig. 2. 9 (a) Schematic of proposed Ultra-wideband PD and (b) fabricated circuit. 

Simulation and measured comparison of (c) S11, S21, and (d) S22 & S23 [68]. 

addition, a pair of stepped-impedance open-circuited stubs and parallel coupled lines are 

introduced to the output ports. As a result, four additional transmission poles can be generated. 

Thus, impedance matching can be achieved in the overall ultra-wide band range if these poles 

are properly allocated. The work can achieve a 3.4:1 13-dB bandwidth corresponding to a 

bandwidth from 3.1 GHz to10.6 GHz which is relatively wide for PDs designed in X-band. 

The advantages of the design are the simple structure (only one segment of Wilkinson divider), 

the sharp and controllable reflection-zeros on S21 band edges, and the relatively wide frame. 
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Moreover, the isolation can be sufficient without adding more lumped elements to the isolation 

circuit. However, this design requires a large area (four quarter-wavelength × two quarter-

wavelength) which will consume more energy, especially in the higher frequency bands.  

A multi-functional, ultra-wideband PD using coupled-line is reported in [69]. This design 

proposed a two-way dual-section PD with three pairs of coupled lines as shown in Fig. 2. 10. 

This filtering PD can realise multiple properties, including good in-band return loss, high 

isolation, good harmonic suppression, ultra-wide isolation frequency band, and ultra-wide 

stopband. In Fig. 2. 10(a) (b), the quasi-coupled lines are composed of one transmission line 

and three coupled lines for power splitting. By shifting the isolation circuit Ziso to the right-

hand side of the middle-coupled line, a broad isolated bandwidth between two output ports can 

be observed. Also, with a weak–strong–weak coupling scheme and low impedance of the 

middle-coupled line, the adopted quasi-coupled lines would result in a wide stopband. 

Furthermore, unlike the shifted isolation band in [67], the work in [69] has already improved 

the output ports matching by connecting the resistor R and the capacitor C in series. A reflection 

zero would appear in the passband so that there would be conspicuous isolation. The open and 

short stubs are used for harmonic suppression. Consequently, with the assistance of open and 

shorted stubs, available passband frequencies at the input port can be significantly increased 

and the isolated frequency band between two output ports can be broadened. 

A design guideline is provided; by determining the centre operating frequency, the length of 

coupled lines can be confirmed and then the even- and odd-mode impedances of coupled lines 

can be calculated accordingly. Finally, a formula concludes the total impedance of the isolation 

circuit; by substituting all design parameters of coupled lines, the impedance Ziso can be 

calculated as a complex number while the real part is the resistance and the imaginary part can 

be capacitance in the isolation circuit. Overall, as shown in Fig. 2. 10(c) (d) the design exhibits 

a 15-dB bandwidth of 3.2:1 and a stop bandwidth of 3.04:1. This design not only successfully 

demonstrates a wideband response for operating band, but also realizes an ultra-wide stopband 

(4.5GHz to 14.5 GHz). It is worth noting that the fabricated circuit is very  
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(a) 

 

(b) 

           

             (c)                                                                   (d) 

Fig. 2. 10 (a) Schematic and (b) fabricated circuit of the proposed wideband filtering PD, 

simulation and measured results of (c) S11, S22 and S33, (d) S21, S31and S23 [69].  
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compact (0.2λ𝑔  x 0.15λ𝑔 ) compared to other works with similar performance. Normally, 

compact size is referring to the circuit that the longest dimension is shorter than N quarter 

wavelengths (𝑁 ×0.25λ𝑔, N is the order of the circuit) at the centre operating frequency. This 

type of multi-functional work is desired in many applications to replace filters.  

2.2 Reconfigurable PDs 

If a system requires changing operating frequencies but not very wideband performance, then 

reconfigurable PDs are desired. Reconfigurable PDs are capable of selecting the frequencies 

by adapting a tuning process. The multi-standard or self-adapted systems require tunable PDs 

or reconfigurable PDs. The tunability of a PD mainly focuses on two aspects; one is the power 

division ratio, and the other is operating frequencies.  

2. 2. 1    Tunable Power Dividing Ratios 

Plenty of applications such as antenna feeding networks and power amplifiers prefer small PDs 

with highpower division ratios. These applications propose several challenges for PDs with 

different dividing ratios. One is that the circuit is expected to be compact, and the arbitrary 

power division ratio is best to fit in multi-standard communication systems. Typically, there 

are three common methods to achieve unequal power division ratios, namely the uneven-

impedance method, the phase-modification method, and the hybrid method. The uneven-

impedance method is based on the notion that more power is passed through the path with 

smaller impedance. Tuning the charateristic impedances of each ouput port will then achieve 

the desired power division ratio easily. However, changing the characteristic impedances will 

lead to extremely narrow or wide transmission lines, which are difficult to fabricate. The 

second method, tuning the phase of the transmission lines instead of impedance, is easier. 

Moreover, this method is capable of constructing high power division ratios. The third method, 

a hybrid, is where the phase and impedance of the transmission line is modified simultaneously. 

To realize single-band PDs with various functions, such as equal/unequal power splitting and 

tunable power splitting ratio, conventional three-line coupled structure has been widely utilised. 

The work in [68] shows a two-way PD with arbitrary power division as shown in Fig. 2. 11(a) 

(b). The hybrid method is used in this design. A quarter-wavelength three-line coupled structure 
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is employed. One terminal of the central coupled-line is connected to the input port, whereas 

the other terminal is grounded. The two coupled sidelines are connected to the output ports, 

whereas an isolation resistor connects the other ends. The power division ratios can be tuned 

by altering the capacitance of two centrally connected varactors. Adding capacitors between 

coupled lines can affect the odd-mode impedance of the circuit and tuning the capacitance of 

the varactors will further change the odd-mode impedance and phase velocity simultaneously. 

There are two bias circuits applying voltages to two varactors; the bias circuits come with L 

biases and C blocks connected to prevent short circuit. The results in Fig. 2. 12(a)-(c) show a 

tunable power division ratio from 1:1 to 2.4:1 with more than 15 dB of isolation and 10 dB of 

return loss across the frequency band from 0.7 to 1.4 GHz. 

 

(a) 

  

(b) 

Fig. 2. 11 (a) Tri-coupled line structure, (b) layout and photography of the proposed 

tunable PD [70]. 
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(a)      

     

(b) 

 

(c) 

Fig. 2. 12 Measured (a) S21 and S31, (b) S11 and the phase difference between output ports, 

(c) S23 [70]. 
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2. 2. 2    Tunable Operating Frequency 

Similar to the tunable power division, from the reconfigurable operating frequency point of 

view, the most commonly used method is adding varactors to change the ports impedance 

matching. The tunability results from the impedance/phase velocity change of the coupled or 

uncoupled lines.  

Fig. 2. 13(a) (b) show the configuration and layout of the PD in [71]. Adapting a stepped-

impedance transformer on the common arm, a pair of coupled lines, and a shunt varactor is 

connected at the common node for tunability. An approximate solution for impedance Z3 and 

Z4e is given in the paper under the condition of θ3 is small, and the sum of θ3 and θ4 approaches 

θ2. According to Fig. 2. 14(a)-(d), this work achieves a wide tuning band of 2.89:1 considering 

all S-parameters better than 20-dB. This tuning band range is extensive in relation to its 

compact size (0.24𝜆𝑔 × 0.02𝜆𝑔). However, as mentioned in the paper, the bandwidth is not 

constant; with the change of centre frequency, the lowest return loss will turn up after 2 GHz, 

resulting in the bandwidth shrink with a 20-dB standard. Although this study exhibits a very 

wide tuning range, the main drawback is putting the isolation circuit between the closely spaced 

coupled-line. Moreover, the realization of physical isolation between two outputs requires two 

50Ω transmission lines which increases circuit size. Integrating filtering response into a PD as 

shown in Fig. 2. 15(b) is effective for system simplification. For instance, a PD and tunable 

filter combined in the same front-end can be merged as shown in Fig. 2. 15(a), resulting in a 

multi-functional but simply component with no extra loss.  

                    

(a)                                                               (b) 

Fig. 2. 13 (a) Configuration and (b) fabricated circuit of the PD. 
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       (a)                                                                (b) 

 

     (c)                                                                (d) 

Fig. 2. 14 Comparison of simulated and measured (a) S11, (b) S22, (c) S21, and (d) S32. 
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                      (a)                                                                            (b) 

Fig. 2. 15 (a) Cascaded a filter and a PD to form a filtering PD, and (b) multiple bandpass 

filter to form tunable bandpass filter. 

Research study [72] utilises the synthesis of coupled-resonator filters to produce a tunable PD 

with filtering response. The art of this method is that tuning the varactors will only affect the 

resonating frequencies, while the coupling coefficient and quality factors do not change. In 

other words, the centre operating frequency will be changed by altering varactors, but the 

bandwidth will be ideally kept constant. Since tunable filters with constant bandwidth have 

become a popular trend, the same mechanism can be applied to design PDs.  
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(a)                                                                    (b) 

 

(c)                                                                       (d) 

Fig. 2. 16 (a) Configuration and (b) fabricated circuit of the proposed PD in [72], and 

comparison of measured and simulated performances regarding (c) S11, and (d) S22 & S33.   

The configuration of the PD is shown in Fig. 2. 16(a) (b). Methods of controlling the coupling 

coefficients and external quality factors are investigated, and the constant bandwidth is 

complimented by using capacitors as well as magnetic and electric coupling to obtain required 

external quality factors and coupling coefficients. A constant bandwidth is maintained when 

tuning the frequency. The performance is shown in Fig. 2. 16(c) (d) with the frequency tuning 

range from 0.62 to 0.85 GHz (1.37:1) with an absolute bandwidth of 60±2.5 MHz. Since the 
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frequency tuning range is not very wide, this method is suitable for applications that require 

the same absolute bandwidth in a small tuning range.  

2. 2. 3    Hybrid Reconfigurable PDs 

The word “hybrid” indicates multiple reconfigurable responses, including operating frequency 

tuning, operating bandwidth tuning, and power division tuning, all implemented at the same 

time.  

 

Fig. 2. 17 Reconfigurable RF front end with tunable power dividing and controllable 

filtering for antennas.  

For example, in a reconfigurable RF front end, as shown in Fig. 2. 17, a tunable PD and two 

tunable bandpass filters are usually cascaded. The tunable PD can control the power dividing 

ratios for each output terminals, while the tunable filters can control the spectrum of the 

transmitting signals to eliminate interferences. To simplify the system and avoid unnecessary 

transmitting loss, hybrid reconfigurable PDs are very attractive. However, so far a 

reconfigurable wideband filtering PD having a simultaneous frequency, bandwidth, and power 

division control is less explored. 

The design in [73] proposed a wideband in-phase PD with tunable power division ratio and 

filtering response as depicted in Fig. 2. 18(a) (b). The design consists of a three-line coupled 

structure loaded with a pair of varactors in between a pair of short-ended stubs at two outputs. 

A variable power division is achieved by changing the coupling factors between the centre-line 

and side-lines of the three-line coupled structure using a pair of varactors. The centre frequency  
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(a) 

 

(b) 

Fig. 2. 18 (a) From cascaded structure to an integrated tunable filtering PD, (b) proposed 

design configuration, and (c) fabricated circuit (0.24𝝀𝒈 ×0.12𝝀𝒈) for [73]. 

and corresponding operating bandwidth are tuned by the varactors; one at the centre of the 

loaded short-ended stub, and another one connecting the end of the stub to the ground. The 

power division ratio is a function of capacitances. Once the mode impedance and loaded 

varactors are defined, the power division ratio can be controlled easily by the two varactors 

between the three coupled-line.  
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(a)                                                               (b) 

  

(c)                                                               (d) 

Fig. 2. 19 Simulations and measurements results for demonstrating (a) different power 

division ratio, (b) bandwidth tunability, (c) centre frequency tunability, and (d) cut-off 

edge tunability and in-band differential phase of [73].  

To investigate the filtering response, the loaded varactors are kept at the same value. A series 

of transmission zeros that located at harmonic frequencies 2f0, 4 f0 to 2n f0 (n = 1, 2,.) are 

generated due to the three-line coupled structure. Similar to the two-line structure, reflection-

zeros result from the cancellation of phase at these frequencies. Moreover, more transmission 

zeros can be produced by the shunted varactors loaded at the short-ended stubs. The bandwidth 

and the centre frequency of the tunable filtering band highly depend on the position of 

transmission zeros. In the experiment of [73], the bandwidth tuning range achieved 1.29:1 to 

2.2:1 as shown in Fig. 2. 19(a)-(d), which is substantial. For the isolation circuit analysis, the 

mutual coupling between the two side lines is extremely weak, and the equivalent capacitances 
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of the coupled lines do not vary significantly from their values at the centre frequency. 

Therefore, the isolation remains almost the same under equal or unequal power division ratio. 

To sum up, the proposed design has a controllable filtering bandwidth, relocatable cut-off zeros, 

and tunable centre frequency. The Tunability of power division ratio ranges from 0.5:1 to 2:1; 

controllable filtering bandwidth from 1.42:1 to 1.92:1; tunable centre frequency from 1.3 to 

1.48 GHz; sharp cut-off with relocatable transmission zeros; and upper stopband harmonic 

suppressions up to more than 6 GHz in the whole measurement process. The experimental 

performance is slightly different from the simulated one due to the nonlinearity of the tuning 

elements as well as losses in fabrication and measurements processes.  

It is noted that the tunability of the centre frequency comes from the shunted varactor-loaded 

stubs, while the resonant modes are related to both three-line coupled structure and shunted 

stubs. This is the reason why the tunability of the centre frequency is limited to some extent. 

This design can serve a range of narrowband to wideband applications where the tunability of 

the bandwidth is more significant than that of the centre frequency.  

Similar work using the same method is reported in [74]; the structure and tuning mechanism is 

the same as shown in Fig. 2. 20(a) (b). The circuit consists of two tri-mode stub-loaded 

resonators, a three-line coupled structure loaded two varactors, and two output parallel-coupled 

lines loaded a lumped capacitor. The centre frequency and operating bandwidth of wideband 

filtering response can be tuned by controlling the varactor diodes loaded onto the open end of 

tri-mode resonators. Meanwhile, the power division ratio is controlled by tuning the coupling 

strength between the centre line and two side-line of three-line coupled structure. The capacitor 

loaded onto the parallel-coupled line of two output ports is to enlarge the coupling between 

them, which can increase the return loss S11, and then can relieve the limitation of the line space 

between two coupled lines. The advance of [74] over [73] is the wider centre frequency tuning 

range, from 0.86 GHz to1.32 GHz. However, the occupied area for this design is slightly larger 

than [73].  
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(a) 

 

(b) 

Fig. 2. 20 (a) Circuit model of reconfigurable wideband filtering PD and (b) fabricated 

circuit for [74].  
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2.3 Coupled Resonator PDs 

Resonant-coupled PDs exhibit a great prospect in communication systems due to the compact 

size, harmonic suppression [75] [76], and high passband selectivity [77]. The quarter-

wavelength sections of a conventional Wilkinson PD can be replaced by coupled resonators to 

reduce circuit size [78]. Furthermore, the critical resonant coupling condition between 

resonators will only be achieved at certain frequencies, contributing the harmonics suppression. 

Cross-coupling between the resonators will introduce transmission zeros. If the introduced 

transmission zeros are located at the end of the passband, the transition between the passband 

and the stopband will be sharpened. The selectivity of the passband can be enhanced by 

increasing external coupling between resonators. Some design examples in terms of size 

miniaturization and passband selectivity enhancement are discussed in this section. The work 

in [79] has demonstrated a compact PD design with a filtering response using spiral resonators. 

The spiral resonators are utilised for miniaturisation due to its curled structure. The coupling 

scheme of the PD is shown in Fig. 2. 21(a). 

 

    (a)                                                                    (b) 

Fig. 2. 21 The (a) coupling scheme, and (b) the structure of the in-phase PD in [79]. 

The source-load cross-coupling is employed to create a pair of transmission zeros on both ends 

of the passband. The PD is composed of four half-wavelength spiral resonators. Signals 

transmitted from input will be split into two ways directly by the T-shape feedlines (represented  



Chapter 2: A Review of Power Dividers 

 

P a g e | 42  

 

 

    

                                           (a)                                                          (b) 

     

     (c)                                                            (d) 

 

(e) 

Fig. 2. 22 Selective band-edge regarding (a) L4 and (b) S4, and tuning frequency band 

regarding (c) L1, and (d) W1, (e) comparison of simulated and measured results [79]. 
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by the dash lines in Fig. 2. 21(a)). The feedlines will couple with the two pairs of spiral 

resonators as shown in Fig. 2. 21(b). It is suggested in [79] that this type of resonator-coupling 

scheme can provide strong operating-passband enhancement around the resonant frequency. In 

addition to filtering response and high selectivity, the passband and the two transmission zeros 

can be controlled by properly choosing the lengths and gaps of the resonators. A comprehensive 

demonstration of the frequency responses with varied coupling stength can be seen in Fig. 2. 

22(a)-(e).  The transmission zeros can be controlled by changing the gaps between two 

input/output feedlines, as shown in Fig. 2. 22 (a). The variation of the gap widths will change 

the source-load cross-coupling conditions. Higher selectivity can be achieved by enhancing the 

cross-coupling strength. The pictures in Fig. 2. 22(c) (d) illustrate that the centre frequency of 

the passband can be tuned by changing the width and length of the spiral resonators. The 

dimension of the resonators determines the resonant frequency so that leads to a change of 

centre frequency. The measured results of the PD in Fig. 2. 22(e) show good agreement with 

simulations. The fabricated circuit is a second order PD with a compact size of 0.15 λg×0.3 λg. 

However, the isolation between the output ports is relatively poor due to the cross-coupling 

between each port.  

A compact and high in-band isolation resonator-based PD with a second-order Chebyshev 

filtering response is proposed in [80]. The coupling scheme is shown in Fig. 2. 23(a). The size 

can be reduced by modifying the structural frame of the quarter-wavelength unit-impedance 

resonators. The traditional unit-impedance resonator shown in Fig. 2. 23(b) can be evolved into 

the net-type resonator with two open-ended stubs and two shorted-ended stubs. For further 

miniaturization, the net-type resonator is folded to a square box shape where the size is 

approximately 0.09λg by 0.09λg. Moreover, the electric and magnetic coupling can be easily 

achieved due to the configuration of the resonator. It should be noted that the coupling 

coefficient 𝑀34  in Fig. 2. 23(a) is realised by the magnetic coupling, while the others are 

realized by the electric coupling. Herein, the electric coupling can be realised when the open-

ended line sections of two folded net-type resonators are closely placed, and the magnetic 

coupling can be achieved if the short-ended line sections of two folded net-type resonators are 

closely allocated. The proposed coupling scheme is symmetric with respect to the two output 

ports. When an incident signal is applied at output Port 2, the signal will be evenly split into 

two out-of-phase parts. These two parts can cancel each other at output Port 3 and thus no 
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power is coupled to Port 3. This results in enhanced in-band isolation. The measurement results 

in Fig. 2. 24(a) (b) depict a narrow bandwidth of input return loss with only 1.036:1 at the 

centre frequency. The measured results show very good in-band isolation, which is better than 

30 dB. It should be mentioned that the circuit has an extremely compact size of 0.19λg×0.19λg 

which was achieved by curving quarter wavelength transmission lines into spiral resonators. 

An in-band performance deterioration is obtained, which might be caused by fabrication and 

measurement errors. 

 

(a)                                                                      (b) 

 

(c) 

Fig. 2. 23 (a) Coupling scheme of the PD in [80], and the (b) quarter-wavelength unit-

impedance resonator, and the (c) configuration of the PD in [80].  
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(a) 

 

(b) 

Fig. 2. 24 Comparison of simulation and measurement in terms of (a) |S11| and |S21|, and 

(b) |S22|, |S33| and |S23|.   

In general, resonator-based PDs exhibit remarkable features such as compact sizes, high 

passband selectivity, and harmonic suppression. These features are realised by using the 

coupling mechanism between the resonators. The majority of the resonator-based PDs have 
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these characteristics and as a result possess filtering responses. The resonator-based PD design 

methods can be borrowed from filter designs. However, the isolation performance highly 

depends on the coupling scheme. 

2.4 Millimetre-Wave PDs 

Millimetre-Wave (mm-Wave), as indicated by the name, has a frequency that ranges from 30 

GHz to 300 GHz with such a small wavelength. Mm-Wave devices were exotic and only been 

used as specialised applications such as military space. As low-frequency bands have been 

assigned to numerous wireless communication systems and the number will subsequently keep 

growing, high-frequency bands are becoming increasingly attractive and necessary. Mm-Wave 

bandwidths have long been employed for military radar systems and are frequently being used 

in commercial automotive collision-avoidance radar systems. Achieving mm-Wave circuit 

designs on reliable Printed Circuit Boards (PCB) materials in a practical manner will be the 

challenge in making these higher frequencies affordable.  

Several Design Examples 

1) Microstrip  

A novel Monolithic Hybrid Microwave Integrated Circuit mm-Wave PD/combiner was 

proposed in [81]. A ring PD/combiner was used, and it was integrated on a ceramic substrate. 

The structure showed in Fig. 2. 25(a) enhances the traditional Wilkinson design by adding two 

half-wave transmission lines to connect the integrated resistor, converting the layout in a ring 

circuit of 1.5𝜆𝑔  length. These additional lines create the ideal framework for this isolation 

resistor, reducing undesirable mutual coupling between the main transmission arms. The 

measured transmission magnitudes that are less than 3.5 dB which can be seen from Fig. 2. 

25(b), while the overall imbalance is less than 0.25 dB. Also, from Fig. 2. 25(c) the matching 

of all ports is less than -15 dB, and the measured isolation factor between the two output ports 

is at least 25 dB. Overall, this work shows an outstanding performance, but the bandwidth is 

relatively narrow.  
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(a) 

      

(b) 

     

(c) 

Fig. 2. 25 (a) Modified Wilkinson PD and micro-photographs of the PD in [81], and 

measured results of (b) transmission, and (c) return losses and isolation.  
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2) Substrate Integrated Waveguide 

Since the conventional microstrip structure will cause incredible energy loss in mm-Wave 

frequencies, Substrate Integrated Waveguide (SIW) technology may be one of the solutions. 

Traditional metallic waveguides exhibit excellent properties in designing high frequency, high 

Q, and deficient loss devices. As modern communication systems require lightweight and 

miniaturized components, one of the main drawbacks for metallic waveguide is the massive 

size, which involves complex transitions to integrated planar circuits. The transitions always 

consist of two or more separate pieces that need accurate assembly, and a tuning mechanism is 

also generally essential. Furthermore, the planar substrate has to be cut into a specific shape. 

These constraints make integration difficult and costly. The concept of integrated microstrip 

and rectangular waveguide in planar form was firstly proposed by D. Deslandes and K. Wu 

[82]. A basic SIW structure is shown in Fig. 2. 26: the rows of metallised via holes form the 

electrical side walls, while the substrate is in between the top and bottom metal plates to allow 

propagation of TE modes.  This form of the waveguide will inevitably reduce the factor of the 

waveguide due to dielectric filling and volume reduction. However, the entire circuit, including 

planar circuit, transition, and waveguide can be constructed using standard PCB or other planar 

processing techniques. In other words, SIW converts 3D bulky metallic waveguides to planar 

ones and preserves the advantages of conventional waveguides.  

 

Fig. 2. 26 Structure of SIW and its equivalent rectangular waveguide. 

The SIW has recently become very popular for the design and development of high-

performance and cost-sensitive filters over a very large frequency range from sub-gigahertz to 

sub-terahertz. Plenty of works [83]-[86] have focused on designing SIW filters with smaller 
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sizes and better performances. The mechanism of designing a PD is similar to a filter; energy 

is transmitted to outputs within assigned frequency bands. Many SIW PDs [87]-[91] have been 

proposed, but few of them concentrated on mm-Wave applications. The design in [92] reported 

a broadband H-plane Wilkinson PD that makes use of the half-mode substrate integrated 

waveguide (HMSIW) technique for the first time (see Fig. 2. 27(a)). This broadband PD utilizes 

the half-mode structure of SIWs to achieve a half-size reduction. In addition, the lossy network 

or resistor branch is integrated with the SIW structure in order to obtain good output matching 

and isolation if unbalanced signals are combined or divided. 

 

(a) 

 

        (b)                                                                 (c) 

Fig. 2. 27 (a) A prototype of the proposed HMSIW PD, and simulations and 

measurements for (b) S11, S21 and S31, and (c) S22, S33 [92].  

The design takes the advantages of SIW, such as low profile, low insertion loss, and little 

interference, however the resulting structure becomes smaller in size. It should be noted that 

the half-mode configuration does not support higher-order mode TE20 as in the case of SIW. 
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Therefore, a broader bandwidth is another side product of the proposed PD in contrast with its 

counterparts. The proposed PD can easily be used at mm-Wave frequencies and favourable for 

the microwave integrated circuit applications. Measured results in Fig. 2. 27(b) (c) suggest that 

good input return loss S11 and S21 and S31 performances can be achieved across a broad 

bandwidth from 18 GHz up to 40 GHz. Meanwhile, S22, S33, and S23 better than 10-dB are also 

ensured across a 1.94:1 bandwidth from 18 GHz to 35 GHz. However, the design is critical for 

power combining or non-equal power dividing due to the potentially poor output port matching. 

3) Coplanar Waveguide 

Several works [93]-[95] focus on the design of a conventional Wilkinson PD using coplanar 

waveguides. The circuit consists of four quarter-wave coupled lines that are cleverly connected 

in a ring configuration as shown in Fig. 2. 28.  

 

(a) 

                     

(b)  

Fig. 2. 28 (a) Simplified schematic of the coplanar ring divider [91], (b) Simulated surface 

current flow at 80 GHz. 
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(a)                                                         (b) 

 

  (c)                                                       (d) 

Fig. 2. 29 Measured results compared with Simulations of (a) S11, (b) S21, (c) S33 and (d) 

S23.  

The design is uniplanar and was fabricated on a thick GaAs substrate. The isolation resistor 

was formed by using 33 nm thick of NiCr to give approximately 50 Ω/square. The air-bridge 

connecting the ground planes of the CPW and the symmetric CPS crossover is used to prevent 

odd-mode generation. Unlike the conventional Wilkinson divider, which has a pair of lumped 

resistors, the proposed divider has two quarter-wave symmetric CPSs, a coplanar stripline 

crossover, and a pair of 100 Ω resistors between the two output ports. The crossover forms a 

phase inverter, which provides 180º non-frequency selective phase inversions; the two quarter-

wave CPSs ensure an open-circuit at the output port when looked into the other ports. The 

divider is thus expected to have broadband isolation performance. The two resistors provide a 

good port matching comparing to conventional Wilkinson PDs. The measurements in Fig. 2. 

29(a)-(d) indicate a transmission loss lower than 1.3 dB and S11 better than 15 dB. The S23 is  
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(a) 

 

    (b)                                                                 (c) 

 

(d)                                                               (e) 

Fig. 2. 30 (a) Structure of CPW ring PD and (b) S-parameters simulation and 

measurement comparison of (b) S11, (c) S22, (d) SS21 and (e) S23 [95]. 
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kept below 18-dB in the entire V and W bands. The performance is comparable to the devices 

that used at lower frequencies, and the fabrication process is more straightforward compared 

to studies at similar bands. Similar work has been conducted in [95]. A wideband CPW power 

combiner is shown in Fig. 2. 30(a) using two upper quarter-wave CPWs and two lower quasi 

quarter-wave CPWs with an impedance of 70.7 Ω. Compared to [93], this structure avoids high 

insertion loss caused by CPW and CPS transitions.  

Experimental results in Fig. 2. 30(b)-(e) indicate less than 0.8 dB transmission loss (less than 

0.5 dB from simulation may cause by the transition of CPWs and ports). S11 and S22 are greater 

than 15 dB, and S23 is better than 22 dB in the frequency range of 50 and 100 GHz. The results 

have demonstrated that even in such high frequencies, efficient wideband power dividing and 

combing can be achieved by using standard GaAs MMIC process and air-bridges. 

2.5 Summary 

This chapter has presented and discussed a large amount of state-of-the-are PDs from 

conventional prototypes to multi-functional PDs. Different aspects of PD’s performance are 

discussed in this chapter including operating bandwidth, power division and frequency 

selectivity, etc.  Normally, a variable bandwidth and power dividing ratio and broad frequency 

selective range are desired. However, the circuits will have high complexity and larger size 

when pursuing good performance. In this case, realizing excellent performance while 

maintaining small electrical size and simply layout is a challenge for PD design. In addition to 

performance, abundant functionality is the other remarkable challenge. Engineers always 

facing specifications that require PD to have multi-function. In general, versatility is 

implemented by cascading different components which sacrifices transmission efficiency. 

Multi-functional PDs can integrate power dividing with filtering response. Besides, RF 

components at mm-Wave frequencies have attracted more and more attention and can be 

extensively investigated due to the promising applications in modern wireless communications. 

Maintaining promising performance and avoiding unnecessary loss at mm-Wave frequencies 

are also very challenging.  

The work to be presented in Chapter 3 has remarkable operating bandwidths by using a 

variable form of a conventional Wilkinson PD. It exhibits excellent performance with a simply 
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layout. Comparing to other similar work presented in this chapter, the proposed design can 

achieve a wider bandwidth but the size is less than 2/3 of that of a conventional PD. The design 

in Chapter 4 based on a Horst-type Wilkinson power divider can provide a great frequency 

tuning range. Thus, high frequency selectivity and a simple structure are implemented at the 

same time. The proposed design in Chapter 5 can be applied at mm-Wave frequencies. 

Additionally, the proposed coupling strategy can provide filtering response and get rid of T- or 

Y- junction at the common port for loss reduction. This design integrates good performance, 

multi-function and low loss together at the same time. The proposed design method has a great 

potential for the development of various mm-Wave components.  
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Chapter 3 Design of a Broadband Wilkinson Power 

Divider with Wide Range Tunable Bandwidths  

This chapter presents a novel two-way and a cascaded eight-way power divider with a wide 

range of tunable bandwidths. The proposed two-way power divider is designed based on adding 

a pair of capacitors in parallel with the transmission lines in a Trantanella-type of Wilkinson PD. 

This PD has an additional zero-reflection frequency which will significantly increase the 

bandwidth compared with a conventional Wilkinson PD. Moreover, the added zero- reflection 

frequency is sensitive to the capacitances so that the bandwidth can be tuned by tuning the 

capacitors. Analytic design methods and formulas are derived and presented in detail. A two-

way PD is designed and measured to validate the proposed method. The measurement indicates 

that the device can achieve a 15 dB bandwidth of 𝒇𝑯/𝒇𝑳=2.73:1 (0.75 GHz to 2.05 GHz). The 

proposed method can be applied for the design of multi-way multi-section PDs. Meanwhile, an 

eight-way PD is designed and fabricated. The measured response has a 13 dB bandwidth of 

𝒇𝑯/𝒇𝑳=2.67:1 (0.75 GHz to 2 GHz). The proposed PDs exhibit wide bandwidths, compact sizes, 

and good physical and electrical isolation features. The measurement agrees well with the 

theoretical prediction which validates the proposed design theory. 

3.1 Introduction 

The features of PDs regarding bandwidth, circuit size, insertion loss, and isolation will 

significantly influence the overall performance of the communication system. A Wilkinson-

type PD [1] is one of the most widely used dividers due to its simple structure and low insertion 

loss. However, there are several drawbacks for the conventional Wilkinson PD. One is the 

narrow bandwidth, and the other weakness is the lack of physical isolation for the two outputs. 

In 2010, Trantanella [2] presented a novel PD by placing the isolation elements between the 

λ/4 transmission lines at an arbitrary phase angle instead of 90° as in a conventional Wilkinson 

divider to enhance both electrical isolation and physical separation. The structure has been 

investigated in depth in [3]. Although the layout of the Trantanella Wilkinson PD has been 

simplified, the bandwidth is limited to 1.5:1. Since there has been a sustained increase in the 
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demand of the wideband PDs, researches on broadband PDs have been proposed [4]-[6] to 

increase the effective bandwidth. However, most of them are designed based on quarter-wave 

transmission lines so that they suffer from the lack of compactness. Large sizes will make the 

integration very challenging in some wireless devices. Nowadays, frequency-tunable devices 

are attracting more and more attention because they can integrate diverse operating frequency 

bands in a single device [4] [5] to satisfy multi-standard systems. A reconfigurable PD based 

on the Trantanella structure was presented in [6] where the centre frequency can be changed 

from 0.85 GHz to 2.4 GHz by tuning the bias voltage on the varactor diodes. However, the 

effective bandwidth for each operational band is narrow. A few works [4]-[6] have been 

proposed to provide tunable centre frequency and tunable bandwidth features within one 

component, where the 10 dB bandwidth can achieve 2.32:1. These reconfigurable PDs have a 

high potential to be widely used in multi-standard systems. But unfortunately, the complexity 

of the circuit has been greatly increased, and also the10 dB in-band performance is normally 

not sufficient to many systems.  

A new broadband PD with a wide range of tunable bandwidths is presented in this chapter. The 

idea is to add a pair of capacitors in parallel with the transmission lines as shown in Fig. 3. 1. 

The proposed structure introduces an additional zero-reflection frequency to broaden the 

operational bandwidth and make the bandwidth tunable. The idea of inserting a parallel 

capacitor has been reported in [7] to improve the out-of-band selectivity. The relationship 

between the variations of capacitance and the return loss has not yet been analytically discussed. 

This chapter provides mathematic proof and design guidance on controlling the added zero-

reflection frequency for tunable bandwidths. The structure and design theory are discussed in 

Section 3.2. The relationships between the electrical length of transmission lines, zero-

reflection frequency, and capacitance of added capacitors are illustrated and analysed in 

Section 3.3. In Section 3.4, a two-way and an eight-way three-section PD are designed, 

fabricated and measured to validate the proposed design method. Conclusions are drawn finally 

in Section 3.5. 
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3.2 Design of the PD 

A conventional Wilkinson PD is perfectly matched at all ports at the centre frequency so that 

there is only one reflection-zero in the passband. To broaden the bandwidth, an additional 

reflection-zero at 𝑓𝑧 can be generated by adding a pair of capacitors. As shown in Fig. 3. 1. 𝐶𝑃 

denotes the added capacitors. 𝑍0 stands for the port impedance which is 50 Ω here. 𝜃1,  𝜃2, and 

𝜃3 represent the electrical lengths of the transmission lines at the initial centre frequency, which 

is assumed to be 1 GHz here.  𝑍1,  𝑍2, and 𝑍3  are the characteristic impedances of the 

transmission lines.  𝑍𝐼𝑆𝑂  represents the complex impedance isolation component. There will be 

two minimum-reflection frequencies for the proposed divider. One is near the original zero-

reflection frequency 𝑓𝑜 = 1 GHz and the other is the additional zero-reflection frequency 𝑓𝑧. 

By carefully choosing the values of the capacitors, the additional zero-reflection frequency 𝑓𝑧 

can significantly extend the operational bandwidth of the device.  Details will be discussed in 

the following subsections. 

 

Fig. 3. 1 The proposed broadband bandwidth tunable PD. 
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 Return Loss 

 

Fig. 3. 2 Even-mode equivalent circuit for the proposed divider. 

The equivalent circuit of the proposed PD under even-mode excitation is shown in Fig. 3. 2. 

The circuit can be divided into three sub-networks. Network 1 in the even-mode circuit contains 

one front transmission and a capacitor that are connected to the front transmission line in parallel. 

Network 2 is a single transmission line, and Network 3 is an open stub in the isolation branch. 

To analyze the even-mode equivalent circuit, ABCD parameters for the first network need to be 

calculated. Firstly, the normalized Y matrix of capacitor 𝐶𝑝 and the front transmission line can 

be derived:  

|𝑌𝐶𝑝
̅̅ ̅̅ | = |

𝑗�̅� −𝑗�̅�

−𝑗�̅� 𝑗�̅�
|                                                          (3.1) 

where �̅� = 2𝜋𝑓̅ ∙ 𝐶�̅�   is the normalized admittance of the capacitor 𝐶𝑃 , and 𝑓̅ is an arbitrary 

frequency. The normalized Y matrix for the front transmission line is 

|Y𝑇𝑥1| = |
−

𝑗

𝑍1̅̅ ̅∙tan(𝜃1𝑓̅)

𝑗

𝑍1̅̅ ̅∙sin(𝜃1𝑓̅)

𝑗

𝑍1̅̅ ̅∙sin(𝜃1𝑓̅)
−

𝑗

𝑍1̅̅ ̅∙tan(𝜃1𝑓̅)

|                             (3.2) 

The ABCD matrix of the Network 1 can be derived by adding the Y matrixes in (1) and (2) and 

then convert the sum to the ABCD matrix.  
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|𝑌𝐶𝑝
̅̅ ̅̅ | + |Y𝑇𝑥1

̅̅ ̅̅ ̅̅ | = |
𝑗�̅� −

𝑗

𝑍1̅̅ ̅∙tan(𝜃1𝑓̅)
−𝑗�̅� +

𝑗

𝑍1̅̅ ̅∙sin(𝜃1𝑓̅)

−𝑗�̅� +
𝑗

𝑍1̅̅ ̅∙sin(𝜃1𝑓̅)
𝑗�̅� −

𝑗

𝑍1̅̅ ̅∙tan(𝜃1𝑓̅)

|        (3.3) 

|�̅� �̅�
𝐶̅ �̅�

|
network1

=

|

|

𝑗�̅�−
𝑗

𝑍1
̅̅ ̅̅ ∙tan(𝜃1�̅�)

𝑗�̅�−
𝑗

𝑍1
̅̅ ̅̅ ∙sin(𝜃1�̅�)

1

𝑗�̅�−
𝑗

𝑍1
̅̅ ̅̅ ∙sin(𝜃1�̅�)

(𝑗�̅�−
𝑗

𝑍1
̅̅ ̅̅ ∙tan(𝜃1�̅�)

)

2

−(𝑗�̅�−
𝑗

𝑍1
̅̅ ̅̅ ∙sin(𝜃1�̅�)

)

2

𝑗�̅�+
𝑗

𝑍1
̅̅ ̅̅ ∙sin(𝜃1�̅�)

𝑗�̅�−
𝑗

𝑍1
̅̅ ̅̅ ∙tan(𝜃1�̅�)

𝑗�̅�−
𝑗

𝑍1
̅̅ ̅̅ ∙sin(𝜃1�̅�)

|

|

 (3.4) 

Then the ABCD matrices for Network 2 and 3 can be expresses as: 

|�̅� �̅�
𝐶̅ �̅�

|
network2

= |
cos(𝜃2𝑓)̅ 𝑗𝑍2 sin(𝜃2𝑓)̅
𝑗 sin(𝜃2�̅�)

𝑍2
cos(𝜃2𝑓)̅

|                                   (3.5) 

|�̅� �̅�
𝐶̅ �̅�

|
network3

= |
1 0

𝑗
tan(𝜃3�̅�)

𝑍3
1|                                                       (3.6) 

According to the sequence of these three networks, the ABCD matrix of the circuit can be 

obtained by multiplying the ABCD matrices of the networks: 

|�̅� �̅�
𝐶̅ �̅�

| = |�̅� �̅�
𝐶̅ �̅�

|
network1

∙ |�̅� �̅�
𝐶̅ �̅�

|
network3

∙ |�̅� �̅�
𝐶̅ �̅�

|
network2

          (3.7) 
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-

)tan(2

1

)
)sin(2

1
-(

1

)
)sin(2

1
-(
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where the characteristic impedance of the transmission lines are normalized to 50 Ω, and the 

frequency is normalized to the original centre frequency  𝑓𝑜 = 1 GHz . To simplify the 

calculation, the transmission lines have equal normalized characteristic impedances𝑍1
̅̅ ̅ =  𝑍2

̅̅ ̅ =

 𝑍3
̅̅ ̅ = √2. 𝜃𝑖𝑓̅ (where i=1, 2, 3) represents the electrical length of each transmission line at 

normalized frequency 𝑓.̅ The normalized input impedance of Port 1 at 𝑓𝑧 should satisfy:   

02 j
DC

BA
Z ev

in 





                                               (3.9) 

                                                          

The real part of the input impedance should satisfy Re(𝑍𝑖𝑛
𝑒𝑣̅̅ ̅̅ ̅) = 2. The capacitance 𝐶𝑃 can be 

obtained by: 

3 1 2

1 3

1
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2(tan( ) tan( ) 2)
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Z Z Z

Z P

Z Z
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f f
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    (3.10) 

where  𝑓�̅�  is the normalized zero-reflection frequency. The imaginary part of the input 

impedance should satisfy Im(𝑍𝑖𝑛
𝑒𝑣̅̅ ̅̅ ̅) = 0. The relationship between 𝜃𝑖 (i=1, 2, 3) and 𝑓�̅� can be 

expressed as: 

3 1

3 1

2 2 1

1

3 1

12 1

1
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tan( ) tan( ) 1
2 tan( ) tan( )

tan( ) tan( ) tan( ) 1
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）

        

(3.11) 

To simplify the equation, the formulas can assume some restrictive conditions. For example, for 

Trantanella dividers, there is usually the condition of 𝜃2 = 90° − 𝜃1. For practical applications, 

the electrical length of the additional transmission lines 𝜃3 could be any value but is usually 
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chosen between 0° to 15°  referring to [3]. In this chapter, 𝜃3  is  7° . For any chosen zero-

reflection frequency 𝑓�̅� (1 < 𝑓�̅� < 3 ), 𝜃1 can be obtained from (3.11), given that 𝜃2 = π 2⁄ −

 𝜃1 and 𝜃3 is a fixed value. Now the value of 𝐶𝑃 can be calculated by (3.10).  

 Isolation Circuit 

 

Fig. 3. 3 Odd-mode equivalent circuit for the proposed divider. 

The performance of isolation can be obtained by using the odd-mode analysis method. The 

theoretical values of components in the isolation circuit 𝑍𝐼𝑆𝑂 can be found under the condition 

of perfect matching for port 2 and port 3 at the centre frequency 𝑓𝑐 = (𝑓0 + 𝑓𝑧)/2. Fig. 3. 3 

shows the odd-mode equivalent circuit of the proposed PD.𝑍1
𝑜𝑑̅̅ ̅̅ ̅, 𝑍2

𝑜𝑑̅̅ ̅̅ ̅, 𝑍3
𝑜𝑑 ,̅̅ ̅̅ ̅̅ and  𝑍𝑡𝑜𝑡

𝑜𝑑  ̅̅ ̅̅ ̅̅ ̅are the 

normalized output impedances of the circuit respectively, and they can be obtained by using: 
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(3.16) 

The output impedance 𝑍𝑡𝑜𝑡
𝑜𝑑̅̅ ̅̅ ̅ equals to 1 at the centre frequency  𝑓�̅� for perfect matching at output 

ports. Thus, the total impedance of the isolation circuit can be derived by (3.16). The impedance 

𝑍𝐼𝑆𝑂
̅̅ ̅̅ ̅̅ can be calculated by substituting the design parameters of the transmission lines that 

described in the previous section. Since a series RLC circuit is used in this design, the real part 

and imaginary part of  𝑍𝐼𝑆𝑂
̅̅ ̅̅ ̅̅  should satisfy: 
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                                         (3.17) 

where 𝜔𝑐̅̅̅̅  is the normalized centre angle frequency. The relationship between design 

parameters (such as the values for RLC) and perfect isolation performance among the circuit 

ports can be found through analysing the network isolation using the method that was presented 

in [4] [10] [11]. The summation admittances of both circuit branches are zero when the circuit 

is entirely isolated. 

 Design Parameters and Simulation  

Theoretical equations in Section 3.2.1 and Section 3.2.2 are derived to determine design 

parameters. Firstly, the electrical length of the first and second transmission lines 𝜃1 and 𝜃2 

should be determined based on the original centre frequency.  The original centre frequency 𝑓0 

is designed to be 1 GHz and all the terminal loads are 50 Ω. Firstly,  𝜃3 = 7°and 𝑍1 = 𝑍2 =

𝑍3 = 70.7 Ω are selected in the design. Then, to introduce an additional zero reflection 

frequency  𝑓𝑍  at 1.8 GHz for a 20 dB bandwidth, the electrical length of the transmission 
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lines 𝜃1 = 53° , 𝜃2 = 37° (where 𝜃1 + 𝜃2 = 90° is assumed in this design) can be determined 

using (3.11). Therefore, the capacitance 𝐶𝑃 can be calculated by substituting 𝜃1 = 53°,  𝜃3 =

7° and  𝑓𝑍 = 1.8 GHz into (3.10).  

 

(a) 

 

(b) 

Fig. 3. 4 (a) AWR schematic circuit, (b) comparison of the simulated 20 dB bandwidth of 

S11 between the proposed divider and previous works [1], [3] using AWR.  
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To work out the values of lumped elements on isolation circuit, 𝜃1, 𝜃2, 𝜃3 , 𝐶p  and centre 

frequency  𝑓𝑐  (where 𝑓𝑐 =
(𝑓𝑜 + 𝑓𝑧)

2⁄ ) are substituted into (3.16) to obtain the total 

impedance 𝑍𝐼𝑆𝑂. Then according to (3.17), the real part of 𝑍𝐼𝑆𝑂 is half of the resistance while 

the imaginary part of 𝑍𝐼𝑆𝑂 is the sum of the inductance and capacitance on the isolation circuit. 

As a result, R, L and C can be obtained respectively. Fig. 3. 4(a) shows the schematic circuit 

for the proposed PD. The component values of the schematic circuit can be obtained by using 

(3.10),(3.11), (3.16) and (3.17). The return loss S11 can be calculated and shown as the blue 

dash curve in Fig. 3. 4(b). The proposed design was simulated and optimized using AWR to 

achieve a wider 20 dB bandwidth than a Trantanella-type PD or a conventional Wilkinson PD. 

Then schematic circuit was realized using distributed elements of transmission lines.  Sonnet 

was used in this design. The PD was designed on a Rogers RT/5880 substrate with ɛr=2.2. The 

thickness of the substrate is 0.79 mm, and the copper cladding is 35 μm thick. The layout is 

shown in Fig. 3. 5. The front transmission lines are bent to fit in the capacitors. The widths of 

all transmission lines are the same in this design. The lengths of the transmission lines were 

finely adjusted for optimized results. All the calculated and optimized design parameters are 

listed in Table 3.1.  

       

Fig. 3. 5 Fabrication layout of proposed two-way PD.  
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 Table 3.  1 COMPARISON OF CALCULATED AND OPTIMIZED PARAMETERS. 

 

3.3 Parametric Studies Regarding Bandwidth  

The bandwidth of the proposed PD can be affected by choosing different parameters such as 

𝜃1 (under the condition of 𝜃1 + 𝜃2 = 90°) and capacitance 𝐶𝑝. Parametric studies regarding 

bandwidth are conducted in this section. Although the bandwidth cannot be tuned in a linear 

behaviour, the control of the bandwidth can be guided by sketching the bandwidth plot against 

the variation of 𝜃1 and 𝐶𝑝. Simulations are conducted using Matlab and AWR. 

 Bandwidth Regarding 𝜽𝟏 

The bandwidth changes result from the additional reflection-zero. If the reflection-zero is 

located far from the original reflection minimum (around 1 GHz) then the bandwidth could be 

broadened significantly. Theoretically, the S11 response varies depending on different   𝜃1 

( 𝜃1 +  𝜃2 = 90°). Fig. 3. 6 describes the additional reflection-zero 𝑓𝑧 changes as a function 

of 𝜃1 and corresponding 𝐶𝑃 with all the other parameters fixed. All sets of design parameters 

are calculated as described in Section 3.2.3, the curves in Fig. 3. 6 are plotted using Matlab. 

The figure illustrated that a larger 𝜃1 can produce a reflection-zero at the higher frequency with 

a decrease of 𝐶𝑃. However, a trade-off should be made for bandwidth and overall in-band 

performance. The ripple between 𝑓𝑜 and𝑓𝑐 is described as worst in-band S11. As it shown is 

Table 3.2, the worst in-band S11 deviates with the increase of 𝜃1. 

Items Cal.                 Opt. Items  Cal           Opt. 

LTX1 35.9 mm        38 mm    𝑪𝑷 0.19 pF    0.2 pF 

LTX2 19.8 mm        22 mm R 139Ω       130Ω 

LTX3 6.3 mm           8 mm L 5 nH        3.9 nH 

W 1.34 mm     1.35 mm C 1.6 pF      1 pF 
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Fig. 3. 6 Circuit parameters for realising different additional zero-reflection frequencies. 

Table 3.  2 CALCULATED DESIGN PARAMETERS FOR DIFFERENT ADDITIONAL ZERO 

REFLECTION FREQUENCIES. 

Additional Zero Reflection 

Frequency 𝒇𝒁 (GHz) 

𝜽𝟏 

(°) 

Capacitance CP 

(pF) 

Worst S11  

In-Band (dB) 

1.2 34.2° 1.079 -50.4 

1.4 41.6° 0.661 -30.11 

1.6 48.0° 0.408 -26.2 

1.8 53.0° 0.256 -19.6 

2.0 56.8° 0.158 -17.02 

2.2 59.6° 0.088 -15.11 

2.4 61.5° 0.037 -13.56 

2.5 62.1° 0.015 -12.86 

 

A contour map is shown in Fig. 3. 7 to give a comprehensive understanding of  𝜃1 and the 

corresponding bandwidth. The two concentrated areas indicate two S11 reflection-zeros that 

locate at around 1 GHz and 1.8 GHz, respectively. Take -20 dB as the measure of bandwidth, 
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the achievable S11 bandwidth can be observed by drawing a horizontal line on the contours. 

For example, a horizontal line can be drawn at  𝜃1 = 55°  in Fig. 3. 7. This line has two 

intersections with the 20-dB contour and a wide 20 dB bandwidth is achievable when 𝜃1 varies 

from 54° to 58°. A much wider 15-dB bandwidth can be achieved when 𝜃1 varies from 44° to 

65° with a broad distance between intersections on the 15-dB contour. Those intersections are 

represented by 𝑓𝐻−20 𝑑𝐵
, 𝑓𝐿−20 𝑑𝐵, 𝑓𝐻−15 𝑑𝐵, and 𝑓𝐿−15 𝑑𝐵 in Fig. 3. 7, respectively. Hence the 20 

dB S11 bandwidth can be read from the horizontal difference between 𝑓𝐻−20 𝑑𝐵
 and 𝑓𝐿−20 𝑑𝐵. 

While the difference between 𝑓𝐻−15 𝑑𝐵
 and 𝑓𝐿−15 𝑑𝐵 represents the 15-dB bandwidth. For 𝜃1 =

55°, the achievable 20 dB bandwidth is from 0.8 GHz to 1.9 GHz (bandwidth equals to2.37:1), 

while the achievable 15 dB bandwidth is from 0.65 GHz to 2.1 GHz (bandwidth equals to 

3.2:1).  

 

Fig. 3. 7 The contour of S11 with frequency as a function of 𝜽𝟏 when  𝜽𝟐 = 𝛑 𝟐⁄ − 𝜽𝟏 CP = 

0.256 pF 𝐚𝐧𝐝 𝜽𝟑 = 𝟕°. 

In practice, it is challenging to vary the value of 𝜃1once the PD is fabricated. Thus, choosing 

appropriate 𝜃1 at the first place is essential for the design. Fig. 3. 8(a)-(c) depict the bandwidth 

contours regarding a changing 𝜃1 with 𝐶𝑝 = 0.2 pF, 0.4 pF and 0.8 pF, respectively. It can be 

seen from Fig. 3. 8(a) when 𝐶𝑝 = 0.2 pF, although the two reflection minima are wide apart, 

the 20 dB bandwidth is divided into two parts. In this case, a wide -20 dB bandwidth is not  
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(a) 

 

(b) 

 

(c) 

Fig. 3. 8 The contour of S11 with frequency as a function of 𝜽𝟏 when 𝜽𝟐 = 𝛑 𝟐⁄ − 𝜽𝟏, 𝜽𝟑 =
𝟕° and (a) 𝑪𝒑=0.2 pF, (b) 𝑪𝒑=0.4 pF and (c) 𝑪𝒑=0.8 pF. 



Chapter 3: Design of a Broadband Wilkinson Power Divider with Wide Range Tunable Bandwidths 

 

P a g e | 76  

 

 

achievable no matter what value of 𝜃1 is chosen, but the 15 dB bandwidth could be comparably 

large. So compromise is needed. Fig. 3. 8(b) shows that the two dark areas are falling for a 

smaller  𝜃1 which means a smaller 𝜃1 is sufficient to produce two reflection minima, hence 

realising the widest bandwidth. Fig. 3. 8(c) illustrates that by further increasing 𝐶𝑝, a better in-

band performance but a narrower bandwidth can be achieved with even smaller  𝜃1 . To 

summarize Fig. 3. 8, generally speaking, a smaller 𝐶𝑝 can provide a larger 20 dB bandwidth 

when 𝜃1 is around 45° to 50°. While using a higher  𝐶𝑝 can obtain a narrower bandwidth but a 

better in-band performance with 𝜃1 around 35°.  

 Bandwidth Regarding Capacitance 𝑪𝒑 

This section studies the effects of different 𝐶𝑝 with a fixed 𝜃1, 𝜃2 and 𝜃3. For a conventional 

quarter-wavelength Wilkinson PD, the reflection zero locates at the centre frequency of 1 GHz. 

This reflection-zero becomes a reflection minimum in the proposed design due to the added 

capacitors. As mentioned above, the location of the additional reflection-zero determines the 

relationship between bandwidth and capacitance 𝐶𝑝 . The larger the distance between the 

additional reflection zero and the reflection minimum (slightly larger than 1 GHz), the wider 

the bandwidth could be. However, that is not always the case because the in-band ripple will 

get higher with the increase of 𝑓𝑧. The bandwidth is limited by the ‘worst’ in-band S11 which is 

the peak value of the in-band ripple. As is discussed in the previous section, each 𝜃1 

corresponds to a single value of 𝐶𝑃 that can produce an additional reflection-zero 𝑓𝑧 but the 

bandwidth can still be changed by tuning 𝐶𝑃.  
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Fig. 3. 9  Changing CP produces varying 𝐒𝟏𝟏 𝐚𝐧𝐝 𝐒𝟐𝟏 with 𝜽𝟏 = 𝟓𝟑°, 𝜽𝟐 𝟑𝟕° 𝐚𝐧𝐝 𝜽𝟑 = 𝟕°. 

 

Some design examples are shown in Fig. 3. 9. The original centre frequency is assumed to be 1 

GHz, and the additional transmission minimum varies from 1.2 GHz to 2.5 GHz by 

changing 𝐶𝑝under the condition of 𝜃1 = 53°, 𝜃2 = 37° and 𝜃3 = 7°. The reflection coefficient 

at the original centre frequency 1GHz is no longer zero (-∞ in dB) by adding a pair of 

capacitors 𝐶𝑃, but the return loss is still very low (< -20 dB). The reflection minimum frequency 

moves slightly from the original centre frequency (1GHz), but it is still very close to 1 GHz 

(1 < 𝑓̅< 1.12) according to (3.3), (3.4). It can be seen that an additional reflection-zero is 

generated by adding a 𝐶𝑃 = 0.256 pF, and the in-band ripple is exactly on 20 dB. When 𝐶𝑃 is 

increasing, the ripple will descend but the bandwidth will shrink. A wider bandwidth can be 

achieved by reducing 𝐶𝑃 but the in-band performance will deteriorate simultaneously.  In other 

word, for a given layout, increasing 𝐶𝑃 will obtain a better in-band performance with either a 

narrower bandwidth or a wider bandwidth while a compromised in-band performance can be 

achieved by decreasing 𝐶𝑃.   
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Fig. 3. 10 The contours of S11 as a function of frequencies and CP when 𝜽𝟏 = 𝟓𝟑° and 

𝜽𝟑 = 𝟕°. 

To emphasize the bandwidth and in-band performance changing in terms of different 𝐶𝑃, Fig. 

3. 10 shows the contours of S11 as a function of the capacitance 𝐶𝑃 with 𝜃1 = 53° and 𝜃3 = 7°. 

The two dark areas represent the two low-reflection frequency zones at around 1.1 GHz and 1.8 

GHz in this case. The -30 dB, -20 dB, and -15 dB contours are shown in the figure. When 𝜃1 =

53° and 𝜃3 = 7°, the calculated 𝐶𝑃 equals to 0.255 pF, as shown in Fig. 3. 10, S11 is slightly 

worse than 20 dB at around 1.4 GHz. If 𝐶𝑃 is chosen to be 0.4 pF, S11 is better than -20 dB from 

𝑓𝐿−20 𝑑𝐵 = 0.8 GHz to  𝑓𝐻−20 𝑑𝐵
= 1.6 GHz. Slightly decreasing  𝐶𝑃 , the distance between 

𝑓𝐿−20 dB and 𝑓𝐻−20 dB can be further extended. On the contrary, the bandwidth will shrink when 

𝐶𝑃 increases. Therefore, the bandwidth of the proposed divider can be controlled in a wide range 

by alternating the capacitance 𝐶𝑃. It can be concluded that when the capacitance of  𝐶𝑃  is small 

(but not smaller than 0.255 pF), the bandwidth is large while if  𝐶𝑃 is increasing towards 0.8 

pF, then the passband will attenuate. However, if -15 dB S11 is sufficient for the design, the 

tunable range of  𝐶𝑃  will be large. Also, if  𝐶𝑃  is smaller than 0.2 pF, then the performance will 

become a dual-band response. It can be concluded that for a fixed layout,  𝐶𝑃 has a value range 

to maintain an effective bandwidth, and the bandwidth can vary from zero to maximum when 



Chapter 3: Design of a Broadband Wilkinson Power Divider with Wide Range Tunable Bandwidths 

 

P a g e | 79  

 

 

 𝐶𝑃 is in this range. If a tunable bandwidth is preferred, a varactor can be employed to the circuit 

to have reconfigurable responses.  

To sum up, if both 𝐶𝑃 and 𝜃1 are considered in the design, the theoretical maximum 20 dB 

bandwidth has the trend as shown in Fig. 3. 11. The maximum bandwidth in this figure is 2.32:1 

with 𝐶𝑝 = 0.25pF and  𝜃1 = 55°. In general, a small 𝐶𝑝 and a large 𝜃1can contribute to a wide 

bandwidth, but an overlarge 𝜃1 will result in a worse in-band performance which limits the 

extension of the bandwidth.  

 

Fig. 3. 11 The maximum 20 dB bandwidth regarding 𝜽𝟏 and corresponding 𝑪𝒑.  

3.4 General Cases 

In the previous sections of this chapter, impedances 𝑍1, 𝑍2 and 𝑍3 are assumed to be 70.7 Ω 

and 𝜃1 + 𝜃2 = 90° is defined for the ease of calculation. However, it sacrifices the freedom of 

the design. Generally, for the proposed PD, the impedances and electrical lengths of 

𝑍1, 𝑍2 and 𝑍3 could be different from each other instead of being 70.7Ω. Moreover, the sum of 

𝜃1 and 𝜃2 is not necessarily to be 90°. The calculation process for the capacitance 𝐶𝑝 is the 

same with (3.3), but the impedances 𝑍1, 𝑍2 and 𝑍3 are variables instead of being  √2𝑍0. Thus, 

the relationship between these parameters can be derived as: 
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sin(θ2𝑓̅) − cos(θ1𝑓̅)YZ1

tan(θ1𝑓̅)
2 +

cos(θ2𝑓)̅ − 2 sin(θ2𝑓)̅YZ1

tan(θ1𝑓)̅
+

cos(θ2𝑓̅)YZ1 − sin(θ2𝑓̅)

sin(θ1𝑓)̅
2

A + B
   = 

 

cos(θ2𝑓)̅ Z1 − sin(θ2𝑓̅) YZ1
2 − 2 sin(θ2𝑓̅) Z2

tan(θ1𝑓̅)2
+

2 sin(θ2𝑓̅)YZ1Z2 − 2 cos(θ2𝑓)̅Z2 − sin(θ2𝑓)̅Z1

tan(θ1𝑓̅)
+

2 sin(θ2𝑓̅)Z2 + sin(θ2𝑓̅)YZ1
2 − cos(θ2𝑓̅)Z1

sin(θ1𝑓̅)2

(B − A − cos(θ2𝑓̅)) Z2 − sin(θ2𝑓̅) Z1

 

(3.18) 

𝑌 =

sin(θ2�̅�)−cos(θ1�̅�)YZ1
tan(θ1�̅�)2 +

cos(θ2�̅�)−2 sin(θ2�̅�)YZ1
tan(θ1�̅�)

+
cos(θ2f̅)YZ1−sin(θ2�̅�)

sin(θ1�̅�)2

Z1(A+B)
             (3.19) 

A = cos(θ2𝑓)̅ − 2 sin(θ2𝑓)̅YZ1 

B=
4 𝑠𝑖𝑛(𝜃2𝑓̅)(1−𝑐𝑜𝑠(𝜃2𝑓̅))

𝑠𝑖𝑛(𝜃1𝑓̅)
 

α=
tan(θ3𝑓̅)

Z3
 

To find suitable  𝐶𝑝 , all the parameters have to satisfy (3.11) at a selected reflection-zero 

frequency 𝑓𝑧 . Then, Y can be calculated using (3.12), hence 𝐶𝑝 =Y (2𝜋𝑓�̅�)⁄  can be found. It 

should be noted that although the length of the transmission line 𝑍3 is much shorter compared 

to 𝑍1 and 𝑍2, the changes of α can also affect the input impedance of the circuitry. So the 

changes of α cannot be ignored. Since tan(θ3�̅�) and 𝑍3 have a ratio of α, if θ3 changes, then 

the value of 𝑍3 needs be changed to maintain the same α. By doing so, the divider can achieve 

an identical performance. The calculation for the parameters in general cases is much 

complicated than the calculation in the previous section. It is preferred to substitute predefined 

parameters into the equations for simplification.  

3.5 Experimental Results  

 Fabrication and Measurement 

A two-way PD is fabricated and measured as shown in Fig. 3. 12. LPKF ProtoMat S62 is used 

for circuit fabrication. The circuit layout was exported from Sonnet and imported to the easy-
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to-use LPKF CircuitCAM software for working process. The layout is printed on top of a 

Rogers RT/5880 0.031” substrate while the bottom is covered by copper as the ground of the 

circuit. The fabricated circuit has a compact size of 29 mm × 32 mm while the two output ports 

can be placed widely apart. A pair of surface amount capacitors and R, L, C on the isolation 

circuit are soldered on to the circuit. Three SMA connectors are soldered to the ports for 

measurement.  

The circuit is measured by using a VNA (vector network analyser) Agilent FieldFox N9917A.  

The frequency sweeping range of the VNA is from 30 KHz to 18 GHz which is suitable for the 

proposed design. Firstly, the NA (network analyzer) mode is chosen to operate the equipment. 

Then S-parameter measurement was carried out. Before recording data, the measurement 

system (the VNA with two SMA cables) is calibrated by using a SOLT (Short-Open-Load-

Thru) calibration kit. S11, S21 and S22 can be measured by connecting cables to Port 1 and Port 

2.  S31 and S33 are measured by connecting cables to Port 1 and Port 3. The isolation S23 is 

measured between Port 2 and Port 3.  A 50 Ω male load is always connected to the spare port 

that is not measured. The measurement was repeated several times, and the precision is around 

± 0.1 dB. The measured magnitude of S-parameters versus sweeping frequencies are saved in 

corresponding files which can be imported to Matlab or Origins to plot measured results.  

 

Fig. 3. 12  Photographs of the measurement set up and the fabricated two-way divider. 
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 Two-way PD 

The measured results of the proposed PD with 𝐶𝑃=0.2 pF are shown in Fig. 3. 13. It can be 

seen that a reflection-zero is generated as expected, and the operational bandwidth of the 

divider is significantly increased. As analyzed in Section 3.3.2,  𝑓𝑍 can be controlled by 𝐶𝑃. 

Two sets of S11 curves that correspond to  𝐶𝑃 = 0.4 pF and 𝐶𝑃 = 0.8 pF are also shown in Fig. 

3. 13(a). When 𝐶𝑃 = 0.8 pF, there is only one reflection minimum that locates at around 1 GHz 

which results in a narrow bandwidth. Decrease the capacitance of 𝐶𝑃 to 0.4 pF, an additional 

reflection minimum appears in the upper passband at around 1.6 GHz, and the measured 20 dB 

bandwidth is 2.1:1. Then continually reducing the capacitance of 𝐶𝑃 to 0.2 pF, the additional 

zero-reflection frequency moves to around 1.9 GHz. The 20 dB bandwidth cannot be realised 

because the in-band ripple is worse than 20 dB. The measurement shows a 15 dB bandwidth 

of 3.5:1 with 𝐶𝑃 equal to 0.2 pF. This is much greater than that of traditional Wilkinson PDs or 

typical Trantanella ones. The measured reflection and isolation performances are also very 

good (<-15 dB) in the desired operational band. The measured insertion loss S21 is flat at around 

3 dB over the whole operational band as Fig. 3. 13(b) shows. The measured results are in very 

good agreement with the simulations shown in Fig. 3. 14(a) (b). Table 3.3 compares the 

measured performances of the two-way with other similar works. For two-way dividers, the 

effective bandwidth of the proposed one is much wider than all other works. 
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(a) 

 

(b) 

Fig. 3. 13 Measured results of (a) S11 & S21, (b) S22 & S23 for proposed two-way PD. 
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(a) 

 

(b) 

Fig. 3. 14 Simulated results of (a) S11 & S21, (b) S22 & S23 for proposed two-way PD. 
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Table 3.  3 PERFORMANCE COMPARISON OF TWO-WAY WILKINSON-TYPE POWER 

DIVIDERS WITH OTHER WORKS. 

Reference Circuit Size Physical Isolation Bandwidth (15 dB) 

[1] 0.25λg
1 *0.02λg NO 2:1 

[2] 0.2λg *0.05λg YES NA 

[3] 0.25λg*0.06λg YES 1.45:1 

[5] 0.34λg *0.2λg YES 1.85:1 

This work 0.12λg *0.1λg YES 2.73:1 

1: λg is the guided wavelength at the centre frequency of the bandwidth. 

 Eight-way PD 

This method can also be applied to design multi-way PDs. The challenges are the complexity 

of design parameter calculations, and how to avoid deterioration of in-band performance by 

cascading more stages with such a wide bandwidth. An eight-way PD is designed and 

fabricated on the same substrate for further demonstration as shown in Fig. 3. 15.  

 

Fig. 3. 15 The fabricated circuit of eight-way PD.  
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(a) 

 

(b) 

Fig. 3. 16 (a) Measured response and (b) simulated results of S11, S21, S22 and S23 for the 

eight-way PD. 

The eight-way PD has three stages so that analytical solutions for design parameters are more 

difficult to work out. To simplify the calculation, the design parameters in every single section 

of the eight-way divider are almost identical (except for the lumped elements) to the two-way 

divider, which means no further changes on transmission lines are needed for multi-way PDs.  
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(a)                                                                          (b)                     

  

(c)                                                                    (d) 

  

(e)                                                                        (f) 

Fig. 3. 17 (a) S11, S41/S51, and (b) S44, S45 and S55 for ports 4&5, (c) S11, S61/S71, and (d)  S66, 

S67 and S77  for ports 6&7, (e) S11, S81/S91, and (f) S88, S89 and S99 for ports 8&9.  
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The values of 𝐶𝑃  and the lumped elements for the isolation circuits in different stages are 

optimized by simulation. The measured and simulated results for the eight-way PD between 

Port 1 to Port 2 & 3 can be seen in  Fig. 3. 16(a) and (b), respectively. The simulated S11 is 

below 17 dB from 0.5 GHz to 2 GHz while the return losses, S22/S33 are all below 18 dB over 

0.6 GHz to 2 GHz. The isolation S23 is better than 16 dB over 0.75 GHz to 1.9 GHz. The 

measured return loss S11 and the output reflection S22 are better than 15 dB  while the measured 

isolation S23 remains better than 13 dB. Compared with the simulation, the frequency shift and 

deviation of S-parameters are mainly caused by the fabrication error and the inaccuracy of the 

lumped elements. The rest ports (ports 4&5, ports 6&7 and ports 8&9) are also tested, and the 

measured results are plotted in Fig. 3. 17(a)-(c). Ideally the results should be identical, however, 

due to the fabrication error and cable rotations, the measured results are slightly different. 

Overall, the bandwidth of the eight-way PD is wider than previouse similar works [12]-[15]. 

The measured results show very good agreement with the simulated ones. 

3.6 Summary  

Compact and wideband PDs are more and more desirable in modern microwave 

communication systems. The Trantanella-type PDs with the isolation circuit moved from the 

output ports to the middle of the transmission line can provide a compact size and additional 

physical isolation. A new design method has been proposed in this chapter that a pair of 

capacitors are added in parallel with the front-section transmission lines to broaden the 

operational bandwidth.  The added capacitors have significantly increased the bandwidth of the 

PD. The design guidance regarding choosing the lengths and characteristic impedances of 

transmission lines, and the capacitance  𝐶𝑝  are discussed in detail. The bandwidth can be 

enlarged by properly choosing design parameters, but the increment is limited by the 

deteriorated in-band performance. Experiments have been conducted to verify the design. For 

the proposed two-way PD, the measured 15-dB-return-loss bandwidth of the two-way divider 

is 3:1 while the effective bandwidth regarding all the S-parameters (S11, S21, S22, S33 and S23) is 

2.73:1. For the eight-way PD, the measured 13-dB bandwidth is 2.67:1 considering return 

losses and isolation while the return loss bandwidth can achieve 4.5:1. The simulated and 

measured results confirm that this proposed method can provide a broadband response 

compared to other works. Also, changing the added capacitors will result in a broad tunable 
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bandwidth (from 0 to 2.73: 1) of the dividers. Apart from the extensive and tunable bandwidth, 

the proposed divider also has a compact size and can provide physical separation as well as 

electrical isolation among output ports. Moreover, the measurement on the eight-way PD has 

proved that this proposed method can be easily extended to multi-way divider designs. 
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Chapter 4 A Horst-type PD with Wide Frequency 

Tuning Range Using Varactors 

This chapter presents a novel PD with a wide frequency tuning range. In the previous work that 

presented in Chapter 3, a pair of capacitors were connected in parallel with the front transmission 

lines of a Trantanella-type PD introducing an additional reflection minimum together with the 

original reflection zero to broaden the bandwidth. In this design, the latter transmission lines are 

removed. The added capacitors generate a reflection minimum which can be easily controlled by 

varactors.  Thus, the frequency band of the PD can be flexibly tuned by altering the varactors.  

Design parameters are carefully chosen to eliminate the effect of the original reflection zero. By 

doing so, the PD will have a tunable centre frequency instead of a tunable bandwidth. Theoretical 

formulas for the characteristic impedances and electric lengths of the transmission lines of the 

PD are derived and analyzed. A PD has been designed and fabricated to demonstrate the validity 

of the proposed design. The measured results indicate that the PD can achieve a frequency tuning 

range of 0.9-4.2 GHz (𝒇𝑯 𝒇𝑳⁄ = 4.67:1), with in-band input and output return losses both better 

than 22 dB, and an insertion loss S21 of 3.2-4 dB. The measured in-band isolation is better than 

15 dB.  The PD has a simple layout and a compact size of 0.2𝝀𝒈 ×0.16𝝀𝒈which demonstrates 

the excellent potential of the proposed PD for modern communication systems. 

4.1 Introduction 

Modern communication systems usually need to support multi-standard communications, 

which require the components with multiple operational bands. PDs are essential components 

in communication systems for power splitting and combining. The features of a PD regarding 

the operational frequency band, input/output return loss, and isolation between the output ports 

will significantly affect the overall performance of the communication system. Although many 

designs [1], [2], [3] of multi-band PDs have been reported, their circuit size is usually bulky. 

Modern wireless communication prefers tunable RF components instead of multiplexing into 

separated frequency bands due to the size and cost reduction. As the demand for spectrally 

cognitive microwave system is rising, more and more researches are focusing on frequency 
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agile devices, such as reconfigurable couplers [4], resonators and filters [5]-[9]. With the 

rapidly increasing demands on multi-band feature of the PDs, there is growing attention paid 

on PDs with compact size and wide tunable frequency ranges. Filtering tunable PDs [10]-[12] 

have been investigated over the past years. In these designs, a filter and a PD are cascaded to 

achieve filtering PD response. The filter replaces the quarter-wavelength transmission lines in 

Wilkinson PDs. The main contribution of such designs is to provide a filtering response to the 

PDs. However, there are drawbacks. The insertion loss is relatively high (1.8-2.4 dB) due to 

the limited unloaded quality factor of microstrip resonators. Moreover, the port matching and 

isolation conditions are usually not satisfactory. To maintain better performance in the entire 

tunable frequency band, [13] [14] introduced coupled-line tunable Wilkinson PDs which have 

excellent input and output matching (|𝑆11|, |𝑆22| < −17 dB) and isolation (|𝑆23| < −25 dB). 

The aforementioned PDs are good to be used in many filtering PD applications. However, the 

limitation of the 20 dB tuning range (normally less than 2:1) is still a challenge. Modern 

transceivers like software defined radios require a wide range of radio spectrum. The designs 

in [15] and [16] have a tunable frequency range of 2.9:1 by employing short-electrical 

transmission lines along with a shunt varactor to the Wilkinson-type PD, but no analytical 

solutions to describe the relationship of capacitance and the corresponding frequency were 

provided.  

A novel PD with a wide frequency tuning range and a compact footprint is presented in this 

section. Similar to [17], a pair of varactors are introduced in parallel with the front transmission 

lines. The main difference is that the design in [17] has an extra pair of transmission lines that 

connect the outputs with the isolation networks so that the varactors can tune the frequency 

tuning range of the divider. The proposed divider in this work utilises a Horst Divider structure 

[18], [19] to simplify the calculation. In this design, the extra transmission lines were removed 

to eliminate the original reflection-zero in [17] and maintain the additional reflection minimum 

which is introduced by the varactors. As a result, the proposed design can achieve a very wide 

frequency tuning range. The reflection minimum is very sensitive to the capacitance change. 

The centre frequency of the operational band can be defined as the frequency of the 

corresponding reflection minimum.  The centre frequency moves along a locus. In other words, 

the centre frequency tuning range can be controlled flexibly by the varactors. An example in 

this chapter demonstrated an available frequency tuning range of 0.9-4.2 GHz by tuning the 



Chapter 4: A Horst-type PD with Wide Frequency Tuning Range Using Varactors 

 

P a g e | 93  

 

 

varactors. Excellent output return loss and isolation response are retained over the whole tuning 

range. 

Moreover, good physical isolation between two output ports can be realised by using a Horst 

structure which is a pair of short-length-transmission lines connected between the front 

transmission lines and the isolation circuit. Excellent physical isolation not only separates two 

output ports but also suppresses the undesirable coupling between them. The design equations 

and analysis of the proposed structure are presented in Section 4.2. Then the parametric studies 

regarding tuning range are discussed in Section 4.3. In Section 4.4, a prototype of the proposed 

PD is fabricated and measured to validate the proposed theory. In the end, conclusions will be 

drawn in Section 4.5. 

4.2 Analytical Design Equation for the Proposed Horst-type PD 

 

Fig. 4.  1 Structure of the proposed Horst-type PD. 

Fig. 4. 1 presents the equivalent circuit of the proposed two-way reconfigurable PD.  A pair of 

varactors are added in parallel to the main transmission lines to realise tunability, and a single 

varactor is inserted in the isolation circuit to compensate the output return losses and isolation. 

As Fig. 4. 1 shows, 𝑍0  represents the port impedance. 𝑍1  and 𝑍2  are the characteristic 

impedances of the front transmission lines and the transmission lines in the isolation circuit, 
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respectively. 𝐶1 represents the capacitance of the added varactors on the front transmission 

lines, 𝐶2 is the capacitance of the varactor on the isolation circuit connected in series with a 

resistor. The electrical lengths of the transmission lines are defined as 𝜃1 and 𝜃2 at frequency f 

in the same way as 𝜃0 at the centre frequency𝑓0. The relationship among the characteristic 

impedances, electrical lengths of the transmission lines and the varactors can be derived by an 

even-mode analysis method. To design the isolation circuit, the odd-mode analysis method can 

be applied to calculate the lumped resistor R and varactor 𝐶2. 

 Even-mode Analysis 

 

Fig. 4.  2 The equivalent circuit of the proposed structure for even-mode analysis. 

The even-mode equivalent circuit of the proposed PD is depicted in Fig. 4. 2. The normalised 

ABCD matrix of the structure is used  to calculate the total input impedance of the circuit. The 

normalised ABCD matrix for the network of the front transmission line with parallel-loaded 

capacitors can be obtained referring to (3.4) in Chapter 3.  
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|
𝐶𝑝+Tx1

=
|
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𝑍1̅̅ ̅̅ ∙sin(𝜃1�̅�)

1

𝑗�̅�−
𝑗

𝑍1̅̅ ̅̅ ∙sin(𝜃1�̅�)

(𝑗�̅�−
𝑗

𝑍1̅̅ ̅̅ ∙tan(𝜃1�̅�)
)

2
−(𝑗�̅�−

𝑗

𝑍1̅̅ ̅̅ ∙sin(𝜃1�̅�)
)

2

𝑗�̅�+
𝑗
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Where  12Y f C   

The ABCD matrix for the other transmission line can be expressed as 
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   (4.3)                                                                                                                              

where the frequency f is normalised to 1 GHz. The terminal impedance 𝑍0 is normalised to 1, 

impedances 𝑍1 and 𝑍2 are normalised to 𝑍0, respectively. The normalised 𝐶1
̅̅ ̅ equals to 𝐶1 ∙ 𝑍0 . 

The normalised input impedance of the circuit can be calculated by using the ABCD matrix as: 

DC

B
Z in
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1Aeven

                                           (4.4) 

And the magnitude of the return loss can be expressed as: 
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The |S11| in (4.5) equals to zero if the input terminal is perfectly matched at 𝑓�̅�. Hence, the 

relationship between impedance 𝑍1
̅̅ ̅, 𝑍2

̅̅ ̅̅  and the zero-reflection frequency 𝑓�̅� can be expressed 

by: 

   

2

1

1 2

1

2 8 2 sin( )

Z
cos( ) 1 2 1

Z

Z

P P f

f P





 
  

 
  

                                       (4.6) 

(4.6) gives the equation for determining 𝑍1
̅̅ ̅ and 𝑍2

̅̅ ̅̅ , and values that satisfy the equation can 

produce a reflection-zero at  𝑓�̅� . Let 𝜃1  and  𝜃2 be independent variables that varying from 

0°to 90°. Since 𝜃1 is the electrical length of the main transmission line, it can be assigned to 

determine the proper tuning band. While  𝜃2  should be chosen from small values such as 

0° ≤  𝜃2 ≤ 20° to simplify the layout for practical applications. Moreover, it is necessary to 

bend the front transmission lines for placing the varactors in parallel with them, and to achieve 

a compact size of the topology. Hence, the ratio of length and width for the front transmission 

lines need to be sufficiently large for bending. Specifically, a larger 𝜃1  indicates longer 

transmission lines while lager 𝑍1
̅̅ ̅ implies narrower width of the transmission lines. Therefore, 

𝜃1 and 𝑍1
̅̅ ̅ should be chosen appropriately for fabrication purposes. 

 Odd-mode Analysis 

 

Fig. 4.  3 The equivalent circuit of the proposed structure for the odd-mode analysis. 
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To determine the parameters in the isolation circuit, odd-mode analysis is adopted. The odd-

mode equivalent circuit of the PD is shown in Fig. 4. 3. The normalized input impedance for 

the odd-mode equivalent circuit is denoted by 𝑍in
odd̅̅ ̅̅ ̅̅ ̅, and the total impedance can be seen as 

𝑍1
odd̅̅ ̅̅ ̅̅  and 𝑍2

odd̅̅ ̅̅ ̅̅  is in parallel.  

𝑍1
odd̅̅ ̅̅ ̅̅ =

𝑗𝑍1̅̅ ̅̅ tan(𝜃1𝑓𝑧̅̅ ̅̅ )

𝑗�̅�

𝑗𝑍1̅̅̅̅ tan(𝜃1𝑓�̅�)+
1

𝑗�̅�

                                             (4.7) 
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𝑍ISO̅̅ ̅̅ ̅̅ ̅̅

2
+𝑗𝑍2̅̅̅̅ tan(𝜃2𝑓�̅�)

𝑍2̅̅̅̅ +𝑗
𝑍𝐼SO̅̅ ̅̅ ̅̅ ̅̅

2
tan(𝜃2𝑓�̅�)

                                     (4.8) 

where 𝑍ISO
̅̅ ̅̅ ̅̅ = �̅� 2⁄ + 1 (2𝜋𝑓�̅�𝐶1

̅̅ ̅)⁄ . The input impedance of Port 2 can be derived. 

𝑍in
odd̅̅ ̅̅ ̅̅ =

𝑍1
odd̅̅ ̅̅ ̅̅ ̅

∙𝑍2
odd̅̅ ̅̅ ̅̅ ̅

𝑍1
odd̅̅ ̅̅ ̅̅ ̅+𝑍2

odd̅̅ ̅̅ ̅̅ ̅                                              (4.9) 

To guarantee perfect impedance matching at outputs, the following conditions should be 

satisfied. 
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                                                  (4.10)  

By substituting design parameters to (4.10), the total impedance of the isolation circuit can be 

calculated as: 
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      (4.11) 

Thus, the capacitance 𝐶2
̅̅ ̅ and resistance �̅� in the isolation circuit can be obtained by solving: 
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Since 𝑍1
̅̅ ̅̅ , 𝑍2

̅̅ ̅̅ , 𝜃1and 𝜃2 have been chosen from the even-mode analysis, hence a proper range 

of  𝐶2
̅̅ ̅̅  can be determined by substituting different values of capacitance 𝐶1

̅̅ ̅ to (4.11). 

4.3 Design Method 

To extend the matching bandwidth, the value of 𝑍1
̅̅ ̅ could be changed from the calculated result 

of (4.6). For a given frequency 𝑓𝑧
̅̅ ̅, values of 𝑍1

̅̅ ̅ and 𝑍2
̅̅ ̅ that satisfy equation (4.6) can generate 

one reflection-zero at  𝑓�̅� . However, if 𝑍1
̅̅ ̅  changes, |S11| will not be equal to zero at the 

frequencies near 𝑓𝑧
̅̅ ̅, but it can be kept very low so that the frequency tuning range can be 

extended. The following sections will discuss the effect on the tuning range in terms of the 

impedance 𝑍1
̅̅ ̅̅ , 𝑍2

̅̅ ̅ and capacitance 𝐶1
̅̅ ̅. Also, a design guidance is provided at the end of this 

section. 

 Determination of Impedance 𝐙𝟏
̅̅ ̅and  𝐙𝟐

̅̅ ̅ 

For the proposed reconfigurable PD, continuously changing the capacitance 𝐶1
̅̅ ̅ will result in 

consecutive S11 pass bands. Every single response band has a frequency minimum, 𝑓𝑚
̅̅ ̅ 

(normally the centre frequency of the tunable band). Thus, continuously tuning 𝐶1
̅̅ ̅ can produce 

consecutive frequency minima which form an envelope curve of |S11|. The frequency tuning 

range can be determined referring to the envelope curve as it records the movement of the |S11| 

trough over the whole operating band. To improve the impedance matching range, the input 

impedance should approximately equal to the load impedance over a wide frequency range. 

This section discusses how to enhance the adaptive frequency range by choosing appropriate 

values of  𝑍1
̅̅ ̅̅  and  𝑍2

̅̅ ̅̅ .  
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Fig. 4.  4 Theoretical reflection-zero frequency curve with changing Z1 and Z2. 

Taking 𝜃1 = 30𝑜 ,  𝜃2 = 18𝑜 and  𝑍2
̅̅ ̅̅  =3 as an example, Fig. 4. 4 depicts several calculated 

curves based on (4.6) which represent the relationship between 𝑍1
̅̅ ̅̅ ,  𝑍2

̅̅ ̅̅  and the zero-reflection 

frequencies. Curves with four different values of  𝑍2
̅̅ ̅̅  range from 1.5 to 3 are plotted here. If 𝑍1

̅̅ ̅ 

and 𝑍2
̅̅ ̅ have only one intersection point then there is only one zero-reflection frequency, and 

in this case 𝑍1
̅̅ ̅ = �̅�matched. Maintaining  𝑍2

̅̅ ̅̅  , and slightly decrease 𝑍1
̅̅ ̅̅ , two intersection points 

will appear, as a result, the approximate matching range is extended. For example, the 

intersection points of  𝑍1
̅̅ ̅̅ = 0.4 and  𝑍2

̅̅ ̅̅ = 2.5 have corresponding frequencies 𝑓𝑚1
̅̅ ̅̅ ̅ = 1.4 and 

 𝑓𝑚2
̅̅ ̅̅ ̅ = 4.5 which indicates that 𝑓𝑚1

̅̅ ̅̅ ̅ and 𝑓𝑚2
̅̅ ̅̅ ̅ are the zero-reflection frequencies over the whole 

tuning range. Theoretically, the wider these two frequencies apart, the wider the approximate 

matching range can be. When 𝑍2
̅̅ ̅̅ = 1.5,  𝑍1

̅̅ ̅̅  should employ a value between 0.2 and 0.4 to have 

two intersection points on the curve as shown in Fig. 4. 4, otherwise there will be no 

approximate matching over the operating band. Although the large gap between these two 

frequencies indicates a wide tuning range, such small  𝑍1
̅̅ ̅̅  ( 𝑍1

̅̅ ̅̅ = 0.2~0.4) indicate large width 

of the transmission lines which makes it more difficult to connect with the varactors. 

 Frequency Tuning Range Regarding  𝑪𝟏
̅̅ ̅̅  

This section discusses the relationship between the value of the loaded capacitors 𝐶1
̅̅ ̅̅  and the 

corresponding centre operating frequency 𝑓𝑚
̅̅ ̅̅ . The design in [17] has a reflection minimum at 

around the original frequency and an additional reflection-zero introduced by the capacitors. 
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Thus, there will be two reflection minima in the passband, and the frequency bandwidth can be 

tuned by changing the capacitance of the capacitors. The difference of the proposed work here 

is that, by properly choosing 𝑍1
̅̅ ̅̅ , 𝑍2

̅̅ ̅, 𝜃1 and 𝜃2, this design only retains the reflection minimum 

introduced by the loaded capacitors. As a result, instead of having a tunable bandwidth as in 

[17], this design will have a tunable centre frequency by changing the capacitance. 

As the S11 curves in Fig. 4. 5(a)-(d) illustrate, the reflection minimum frequency  𝑓𝑚
̅̅ ̅  is a 

function of  𝐶1
̅̅ ̅̅ . By choosing an appropriate 𝐶1

̅̅ ̅ , a minimum |S11| at the chosen frequency can 

be generated. Since each S11 curve has only one trough which is the reflection minimum, the 

expression of the S11 envelope curve can be calculated based on the derivation of |S11| regarding 

frequency. In this case, to find the corresponding capacitance 𝐶1
̅̅ ̅ and the reflection minimum 

frequency 𝑓𝑚
̅̅ ̅, the derivative of |S11| should be zero at 𝑓𝑚

̅̅ ̅: 

11

1

0
d S

dC
                                                          (4.13) 

Which gives (4.14). 
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(4.14) 

The relationship of  𝐶1 
̅̅ ̅̅ and 𝑓𝑚

̅̅ ̅̅  as shown in (4.14) indicates the correlation of the capacitance 

range and the frequency tuning range. To further reveal the relationship between |S11| and 

reflection minima frequencies  𝑓𝑚
̅̅ ̅̅ , the envelope of |S11| needs to be derived. As  𝑓𝑚

̅̅ ̅̅  is a 

dependent variable of 𝐶1 
̅̅̅̅  in (4.13), so 𝐶1 

̅̅ ̅̅ can be replaced by substituting (4.13) to (4.5). Thus, 

the envelope of |S11| can be expressed by:  

  
  

2 2

1 1 1 1 1 1

11 2 2

1 1 1 1 1 1

2 sin( ) 1 cos( ) sin( )

2 sin( ) 1 cos( ) 3 sin( )

m m m

envelope

m m m

c Y Z f Z f d Z f
S

a Y Z f Z f b Z f

  

  

    

     

   (4.15)  

where a, b, c, d and �̅� can be found in (4.1) and (4.5). 
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(a)                                                                           (b) 

 

        (c)                                                                         (d) 

Fig. 4.  5 Theoretical S11 envelope curves as a function of 𝑪𝟏for different impedance of 

front transmission lines for (a) α=1, (b) α=1.15, (c) α=0.85 and (d) α=0.6. 

By only changing the impedance 𝑍1
̅̅ ̅  while 𝑍2

̅̅ ̅  is fixed, the frequency tuning range of PD 

changes regularly. Fig. 4. 5(a)-(d) depicts six sampled |S11| curves with different values of 𝐶1
̅̅ ̅. 

A dash line that is so called ‘envelope curve’, is drawn to illustrate the troughs of |S11| curves 

over the whole frequency band. The envelope curve is a group of reflection minima that records 

the movement locus of minimum values |S11|min when 𝐶1
̅̅ ̅̅  is changing, and other parameters 

remain the same. Let 𝑍1
̅̅ ̅= α ∙ �̅�matched , or α=1, where α is a rational factor. Fig. 4. 5(a) 

represents that when 𝑍1
̅̅ ̅ = �̅�𝑚𝑎𝑡𝑐ℎ𝑒𝑑 , there is only one zero-reflection point over the tuning 
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range. In this case, the centre frequency tuning range is relatively narrow. If α increases, for 

instance, α=1.15, the reflection-zero disappears and the minimum of the S11 envelope will be 

worse, and the tuning range will shrink as shown in Fig. 4. 5 (b). Conversely, there will be two 

reflection-zeros on the S11 envelope curve if α decreases from 1 (e.g. α=0.85, 0.6) as shown in 

Fig. 4. 5(c) (d). In this case, the frequency tuning range can be extended by controlling the 

distance between the two reflection-zeros. A larger distance between the two minima leads to 

a wider frequency tuning range. However, it should be noted that the S11 between the two zeros 

will be sacrificed. 

 Tuning range of the tunable PD 

 

Fig. 4.  6 The relationship between the worst in-band S11 and changing 𝐙𝟏
̅̅ ̅. 

 

The worst in-band |S11| is the other crucial factor that needs to be considered for bandwidth 

calculations. Although large difference between the two reflection-zeros indicates a wide 

tuning range, the S11 envelope should be better than a specified value. For example, if S11 is 

expected to be better than 20 dB, α should be greater than 0.6 because |S11| at the centre 

frequency will exceed 20 dB as shown in Fig. 4. 5(d) if α is smaller than 0.6, which does not 

meet the design specification. Mathematically, the worst in-band S11 can be calculated by 
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taking the derivative of the S11 envelope. Due to the complexity of the calculation, Fig. 4. 6 

can be used to give a picture of how the worst in-band S11 varies with a changing 𝑍1
̅̅ ̅ for 

different  𝑍2
̅̅ ̅̅ . The curves in Fig. 4. 6 are plotted in Matlab based on four sets of calculations. 

By substituting 𝜃1 = 30𝑜 , 𝜃2 = 18𝑜 , and 𝑍2
̅̅ ̅ (𝑍2

̅̅ ̅ = 1.5, 2, 2.5 and 3) into (4.15), the envelope 

of |S11| can be expressed as a function of the reflection minimum frequency  𝑓𝑚
̅̅ ̅  and  𝑍1

̅̅ ̅  . 

Sweeping 𝑍1
̅̅ ̅ from 0.2 to 0.8 in Matlab, the corresponding worst in-band S11 can then be 

obtained using the derivation of |S11|envelope regarding 𝑓𝑚
̅̅ ̅ . For a fixed 𝑍2

̅̅ ̅̅ , the smaller 𝑍1
̅̅ ̅ is, the 

higher the in-band S11 will be, because a smaller 𝑍1
̅̅ ̅ results in a wider frequency difference 

between the two reflection zeros. It can also be observed that a smaller  𝑍2
̅̅ ̅̅  will result in a wider 

frequency difference with a fixed 𝑍1
̅̅ ̅. Since 20 dB is often the desired in-band S11 value in PD 

design, a vertical marker line is drawn and the four interception points are 𝑍1
̅̅ ̅̅ = 0.3, 𝑍2

̅̅ ̅ = 1.5,

𝑍1
̅̅ ̅ = 0.38, 𝑍2

̅̅ ̅ = 2, 𝑍1
̅̅ ̅ = 0.45, 𝑍2

̅̅ ̅ = 2.5, and  𝑍1
̅̅ ̅ = 0.5, 𝑍2

̅̅ ̅ = 3 , respectively. With these 

impedance combinations, the worst in-band value of the |S11| envelope is exactly 20 dB, to 

make full use of the tuning band. Nevertheless, the frequency tuning ranges for these four sets 

of impedances are different, the largest tuning range in this case is realized when 𝑍1
̅̅ ̅ =

0.3, 𝑍2
̅̅ ̅ = 1.5 referring to the previous discussion.  

Another factor that affects the frequency tuning range of the PD is the capacitance tuning range 

of the varactors. Fig. 4. 7 shows an example of the tuning range. The two curves imply that the 

frequency tuning range of the PD varies as a function of the required capacitance for varactor 𝐶1
̅̅ ̅̅  

and 𝐶2
̅̅ ̅̅ . The blue curve exhibits the tuning range of  𝐶1

̅̅ ̅̅ . The capacitance versus reflection 

minimum frequency can be solved using Matlab by substituting 𝑍1
̅̅ ̅̅ ̅ = 0.4, 𝑍2

̅̅ ̅̅ ̅ = 2, and 𝜃1 = 30°, 

𝜃2  =  18°  to (4.14). Once the tuning range of   𝐶1
̅̅ ̅̅  is determined, substituting  𝐶1

̅̅ ̅̅  together 

with 𝑍1
̅̅ ̅̅ ̅̅ ,𝑍2

̅̅ ̅̅ ̅
, 𝜃1 and 𝜃2 to (4.11) will give the relationship between  𝑍𝐼𝑆𝑂

̅̅ ̅̅ ̅̅  and  𝑓𝑚
̅̅ ̅̅ . According to 

(4.12), the tuning range of  𝐶2
̅̅ ̅̅  can be worked out by extracting the imaginary part of  𝑍𝐼𝑆𝑂

̅̅ ̅̅ ̅̅ . By 

specifying |𝑆11|, the specified maximum operating frequency 𝑓max
̅̅ ̅̅ ̅̅  and the minimum operating 

frequency𝑓min
̅̅ ̅̅ ̅, the corresponding 𝐶1min

̅̅ ̅̅ ̅̅ ̅ and 𝐶1max
̅̅ ̅̅ ̅̅ ̅ can be found using (4.12) and (4.13). To 

simplify the design process, 𝐶1min
̅̅ ̅̅ ̅̅ ̅ and 𝐶1max

̅̅ ̅̅ ̅̅ ̅ can be found from Fig. 4. 7 by specifying 𝑓max
̅̅ ̅̅ ̅̅  

and 𝑓min
̅̅ ̅̅ ̅,, then |𝑆11| will be evaluated if it is better than the specified value at 𝑓max

̅̅ ̅̅ ̅̅  and 𝑓min
̅̅ ̅̅ ̅,. 

The frequency tuning range depends on the tuning range of the varactors while it is usually 

limited by the mechanism of the varactor diodes. Although a wide frequency tunable range can 

be achieved theoretically, the range will be limited by the capacitance range of the varactors in 
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practice. In that case, the required 𝐶1min
̅̅ ̅̅ ̅̅ ̅  and  𝐶1max

̅̅ ̅̅ ̅̅ ̅  for 𝑓max
̅̅ ̅̅ ̅̅  and 𝑓min

̅̅ ̅̅ ̅ , should be in the 

capacitance tuning rage of the commercial varactors or as much as possible.  

 

Fig. 4. 7 Theoretical required capacitance 𝑪𝟏
̅̅ ̅ and 𝑪𝟐

̅̅ ̅ versus corresponding frequency 

with 𝐙𝟐
̅̅ ̅ =2 when 𝐙𝟏

̅̅ ̅=0.4, 𝜽𝟏 = 𝟑𝟎° and 𝜽𝟐 = 𝟏𝟖°. 

 Design Guidance 

The design procedure of the proposed tunable PD can be summarized as follows. 

1)  Specify the desired frequency range 𝑓min
̅̅ ̅̅ ̅ and 𝑓max

̅̅ ̅̅ ̅̅ .  

2) Choose appropriate 𝜃1 and 𝜃2 based on the desired frequency range. Determine 𝑍1
̅̅ ̅ and 𝑍2

̅̅ ̅ 

referring to (4.6) and Fig. 4. 4, making sure the chosen frequency range is slightly wider than 

the two reflection-zero frequencies. Besides, ensure that the worst in-band S11 would meet the 

specification.  

3) Verify if |𝑆11| at 𝑓max
̅̅ ̅̅ ̅̅  and 𝑓min

̅̅ ̅̅ ̅would satisfy the specification based on (4.14) and (4.15). If 

not, choose other values for 𝜃1 and 𝜃2 and repeat design procedure from step 2).  

4) Calculate the required capacitance range for varactor 𝐶1
̅̅ ̅. 
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5) The resistance �̅� and capacitance 𝐶2
̅̅ ̅ on the isolation circuit can be calculated by substituting 

all previous design parameters into (4.11) and (4.12). The required tuning range of 𝐶2
̅̅ ̅ on the 

isolation circuit can be estimated if 𝐶1
̅̅ ̅and the corresponding frequency f are specified.  

6) Choose varactors that can achieve the required tuning ranges of 𝐶1
̅̅ ̅ and 𝐶2

̅̅ ̅. 

7) After obtaining these parameters, implement the PD with distributed elements and optimize 

the physical dimensions with the aid of EM simulation tools. Bias circuits will also be added 

to tune the varactors in the measurement. 

4.4 Fabrication and Measurement  

 

(a) 

 

(b) 

Fig. 4.  8  (a) Configuration of the proposed PD and (b) photo of the fabricated PD. 



Chapter 4: A Horst-type PD with Wide Frequency Tuning Range Using Varactors 

 

P a g e | 106  

 

 

Table 4.  1 DESIGN PARAMETERS OF THE PROTOTYPE TUNABLE POWER 

DIVIDER. 

𝑊1(mm) 4.3 C1 (pF) 5.1-0.01  

𝑊2(mm) 2.3 C2 (pF) 2.1-0.2  

𝑊3(mm) 0.5 R (Ω) 100  

𝐿1(mm) 21 V1 (V) 1.7-20  

𝐿2(mm) 7 V2 (V) 0-20  

𝐿3(mm) 12    
 

One prototype tunable PD with a frequency tuning range from 1 GHz to 4.2 GHz was designed 

and fabricated for the validation of the proposed method. Based on the desired tuning range, 

the electric lengths of the front and isolation transmission lines are 𝜃1 = 30°and 𝜃2 = 18° at 1 

GHz. According to (4.6), 𝑍1
̅̅ ̅ = 0.4  and 𝑍1

̅̅ ̅ = 2.4  are selected in the design. Hence the 

characteristic impedances are 𝑍1 = 20.3 Ω  and 𝑍2 = 120 Ω. The corresponding |S11| at 1 GHz 

and 4.2 GHz are both lower than -20 dB. Then the required capacitance range for 𝐶1 is obtained 

to be 0-7.9 pF. Theoretically, as shown in Fig. 4. 5(d), the achievable frequency tuning range 

is 4.7:1. For the design parameters in isolation circuit, the resistor R is chosen as 100 Ω 

according to (4.11) and (4.12), and the tuning range of 𝐶2 is 0.2 pF to 2 pF. Based on the desired 

capacitance tuning ranges of 𝐶1 and 𝐶2, surface mount tuning varactors MA46H 202 (7-0.5 pF) 

are chosen for 𝐶1, while 𝐶2 is realized by an SMV 2202 (2.1-0.23 pF). Similar to the process 

in Chapter 3 Section 3.5.1, the calculated parameters are converted to distributed elements by 

using Sonnet simulation. The substrate used in Chapter 3 is employed in this design. Fig. 4. 8 

(a) shows the configuration of the design with bias circuits supplying voltages to the varactors. 

Proper gaps are reserved on the layout for soldering lumped elements. Optimized design 

parameters are listed in Table 4.1. Design layout file is imported to LPKF CircuitCAM for the 

fabrication process. The fabricated circuit is shown in Fig. 4. 8(b). The front transmission lines 

are bent in order to connect the varactors (MA46H-202) in parallel with them. Resistor R and 

a capacitor (SMV-2202) connecting in series are soldered to the isolation circuit. There are 

three DC bias circuits added to the divider. 20 pF capacitors and 10 kΩ resistors are used for 

DC blocking and RF blocking purposes in the bias circuits, respectively.  

A DC power supply (BK PRECISION 9202) and a VNA (Agilent FieldFox N9917A) are 

employed in the measurement. The varactor diodes are operated under reverse bias conditions, 

so that there is no conduction. The capacitance 𝐶1 is increased from 0.5 pF to 5.1 pF as the bias 
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voltage for the varactors in the main transmission lines is decreased from 20V to 0V. 

Conversely, the capacitance 𝐶2 is decreased from 2.1 pF to 0.2 pF as the bias voltage on the 

isolation circuit varies from 0 to 20 V. Since the capacitance range of these varactors cannot 

cover the required tuning range of 𝐶1 and 𝐶2, two capacitors with fixed values of 0.01 pF and 

0.2 pF are used in turn here to replace the varactors for part of the measurements. In the 

measurement, gradually tune the bias voltage on MA46H 202 to 1.7V, 6.1V, 11.4V and 20V 

to give S11 band located at 0.9 GHz, 1.7 GHz, 2.1 GHz, 2.8 GHz, respectively. Besides, 0.01 

pF and 0.2 pF capacitors are used in turns to replace MA46H-202 to tune the centre frequency 

to 3.45 GHz and 4.2 GHz. At the same time, in order to make sure S22 and S23 move along with 

S11, the bias voltage on SMV-2202 is set to be 0V, 0V, 0V, 2.2V, 7.8V and 20V, respectively. 

The measurement procedure is repeated several times, and the precision of the measurement is 

±0.1dB.  

Fig. 4. 9 and Fig. 4. 10 show the comparison of the simulated and measured S-parameter 

responses when the divider is tuned to the six sampled frequency bands accordingly. The 

measured S11 and S22 are below -20 dB at each band. The insertion loss varies between 3.2 dB 

and 4 dB, or 0.2 dB to 1 dB above the intrinsic loss of 3 dB. The measured isolation S23 is better 

than -20 dB at most of the sampled frequencies. The isolation is slightly worse at 4.2 GHz with 

a value of -17 dB, which is probably caused by fabrication errors and the accuracy of 𝐶2. The 

measured tunable frequency range is 0.9 GHz to 4.2 GHz. The tuning range is 4.67:1 as the 

measured results indicate. Overall, the measured results are in very good agreement with the 

simulated ones. To show the advantages of the proposed PD, Table 4.2 lists the performance 

comparison between this work and other works reported in recent years. As the table illustrated, 

the frequency tuning range (when S11<-20 dB) for the proposed work is much wider than other 

relevant works. The measured in-band S11 (better than 25 dB) is better than all other works. 

The circuit is very compact as well for such a wide tuning range. 
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(a)            

 

(b) 

Fig. 4. 9 Comparison between simulations and measurements, (a) S11 and  (b) S21. 
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            (a) 

 

                (b) 

Fig. 4.  10 Comparison between simulations and measurements, (a) S22, and (b) S23. 

 



Chapter 4: A Horst-type PD with Wide Frequency Tuning Range Using Varactors 

 

P a g e | 110  

 

 

Table 4.  2 COMPARISON TO OTHER WORKS. 

Ref. Tuning Range (GHz) Return Loss (dB) 
Insertion Loss (dB) 

[10] 1.3-2.08 (1.6:1) ≥ 20 5.3-2.9 

[11] 0.62-0.85 (1.37:1) ≥ 15 5.4-4.8 

[13] 0.56-1.39 (2.48:1) ≥ 22 4.5 

[14] 0.5-1.3 (2.6:1) ≥ 17 4.6-3.5 

[15] 0.83-2.4 (2.9:1) > 23 3.5-3.3 

[16] 0.85-2.4 (2.82:1) > 20 5.6-2.16 

This work 0.9-4.2 (4.67:1) ≥ 25 4-3.2 

 

4.5 Summary 

A compact PD with a wide frequency tuning range has been designed and verified in this 

chapter. The proposed structure is based on a Horst-type PD, and a pair of varactors is added 

in parallel with the main transmission lines which introduces a controllable reflection minimum 

sensitive to the capacitance change. A single varactor diode is added in series to the isolation 

circuit to tune the operating bands of output return losses and isolation. The design equations 

have been derived to quantificate the changing center frequency with capacitances. A design 

guidance is provided to determine the parameters of the proposed PD. Impedances and the 

tuning range of the varactors should be carefully selected for achieving desired tuning 

bandwidth. The centre frequency tuning range is dramatically broadened by using the proposed 

method. To validate the proposed theory, a prototype with a frequency tuning range from 0.9 

GHz to 4.2 GHz has been fabricated and measured. In the measurements, two sets of bias 

circuits are added to the design to alter the capacitance of the varactors. To the best of authors’ 

knowledge, the tuning range is superior to all other works. The circuit has a relatively very 

compact size (0.2 λg × 0.16 λg). The measured and simulated results have a perfect agreement 

with each other. Moreover, this method can also be applied to multi-way designs. The reason 

is that the operating band of the two-way PD exhibits a very good response but within a narrow 

bandwidth. When several two-way PDs are cascaded together, the impedance matching at the 

interconnecting points will be good as well, so that the overall circuit will obtain the same 

frequency tuning range as the two-way PD exhibits.  
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Chapter 5 Millimetre-Wave CPW PDs Using 

Spiral Resonators for Miniaturization. 

5.1 Introduction 

 

Fig. 5. 1 Relative loss, size, and cost of various RF resonators [1]. 

PD designs for mm-Wave applications require low loss, compact size, low cost and easy to be 

integrated into MMICs [1]. Fig. 5. 1 compares these features between various technologies 

including superconductors, microstrip/striplines, substrate integrated waveguide (SIW), 

dielectric resonators and conventional metal waveguides [1]. For such high frequencies, the 

traditional waveguide is mostly used due to its high Q and low power loss. However, the 

traditional waveguide suffers from its massive size which is not preferred for circuit integration. 

To overcome this problem, SIW technique has been introduced. The substrate with via-holes 

can transmit signal just as in a waveguide with a much higher permittivity compared to the air 

used in the conventional waveguides, leading to a compact circuit size [2]. However, the 

substrate used in SIW operating in mm-Wave will be relatively lossy [1][3][4]. 
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Superconducting components can be applied to achieve both a compact size and sufficient low 

loss. However, the cost is too high to perform mass production. Therefore, to make a trade-off 

among these features, coplanar PDs are proposed using coupled resonators.  

The coplanar waveguide (CPW) was firstly proposed by Wen [5]. It consists of a metal strip 

and two adjacent ground planes printed on the dielectric substrate. The most significant 

advantage of the CPW is that only a single-layer metal process is required. As via-hole 

grounding can be omitted because the ground and metal strip are uniplanar so that the active 

or passive components in shunt configuration can be easily connected. On the other hand, the 

conducting material used in the CPW structure is still relatively lossy in mm-Wave [6]-[9]. 

Typically, a three-port component requires a T-junction to connect two output ports with the 

input to form a PD. These connections occupy larger sizes and produce more conducting loss 

especially for mm-wave applications. Moreover, the unwanted quasi-TEM mode will rise due 

to the intrinsic structure of CPW [3]. Air-bridges are needed to suppress the undesired mode 

by keeping the lateral ground planes at the same potential, which will indeed complicate the 

fabrication process and introduce more loss [4]. Many CPW-PD designs have been reported 

[10][11] recently. They used long CPW lines (quarter wavelength) that require more air-bridges 

to maintain the desired operating mode, resulting in large sizes and losses. To overcome the 

problems discussed above, [12]-[16] introduced CPW coupled resonators. [16] utilises three 

stepped resonators in the design to eliminate air-bridges. However, this type of resonators is 

not easy to be implemented at mm-Wave, and the topology is complicated to be used for multi-

way PDs.  

The spiral resonators have been adopted in mm-Wave filters designs which can be realised in 

the forms of CPWs [17] [18]. The spiral resonators can achieve a very compact circuit size by 

folding a quarter-wavelength CPW central strip into a spiral. Referring to the size comparison 

between the spiral resonator and open-loop resonator in [19], the spiral resonator only occupies 

40% of the area of an open-loop at the same resonant frequency. The spiral resonators are not 

only compact but also have remarkable properties such as high Q, high power capability and 

insensitivity to the fabrication process [9]. Hence, the CPW coupled resonators are firstly 

adopted in mm-Wave PD designs. In this work, the conducting loss can be minimised by 

replacing the interconnecting lines with coupled resonators. G type spiral resonators are utilised 
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in this design for size miniaturisation.  Moreover, the Q can also be improved which will be 

explained in detail in the following sections.  

5.2 Analysis of the Coupled-Resonator PD 

To design a low loss and compact size PD, three CPW spiral resonators are employed in the 

circuit. To transmit power from one input port to two output ports, an equivalent circuit of three 

coupled resonators is depicted in Fig. 5. 2. 

 

Fig. 5. 2 The equivalent circuit of a PD with three coupled resonators. 

The inductance, capacitance and resistance of each resonator are denoted as L, C, and R in Fig. 

5. 2, respectively. I represents the loop current in each resonator while Vs indicates the source 

voltage. M12 and M13 represent the mutual inductances between Resonator 1 and 2, and 

Resonator 1 and 3, respectively. By using the voltage law, the algebraic sum of the voltage 

drops around any closed loop circuit in a network is zero. Based on the Kirchhoff’s Voltage 

Law (KVL), the voltages on the resonators can be expressed as: 
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It can be assumed that the coupling between the two outputs can be ignored as it is very weak 

compared to the main coupling from the input port, yielding M23 = 0.  

The port termination of each port is usually the same at 50 Ω, therefore, that is, R1 = R2 = R3 

= R = 50 Ω. Then, when the system is operating at the resonant frequency ω0, the current flow 

in each loop can be derived as: 
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Now, the scattering parameters of the system can be evaluated as: 
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It can be found that the power splitting ratio of the output ports can be derived as: 

21 31 12 13/ /S S M M                                                     (5.8) 
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On the other hand, to minimise the reflection coefficient to enable the maximum power to be 

injected to the system, S11 should be equal to zero, yielding: 
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Then, by combining the desired power splitting ratio derived in (5.8) (5.9), the desired mutual 

inductances to realise the PD can be obtained. The same method can be applied to design an 

N-way PD with desired power division ratio.  

Coupling coefficient kij is usually employed to describe the relationship between the distances 

of resonators and the coupling strength, while mutual inductance M1n cannot show intuitive 

relationship between distance and coupling strength. So introducing k1n to equations can 

simplify the realisation of designs. M1n and k1n can be expressed as: 

1
1

1

n
n

n

M
k

L L


                                                             (5.10) 

And introducing external quality factor Qe into the equation, 
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                                                              (5.11) 

where 𝜔0 = 1 √𝐿𝐶⁄ . 

So the power dividing ratio of the output ports can be concluded as 

212
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As the Eq (5.12) indicates, the power division are not only relates to the coupling coefficients, 

but also affected by the ratio of their external quality factors.  

5.3 CPW PD with Spiral Resonators 

 

Fig. 5. 3 The configuration of the proposed CPW PD with three resonators.  

To reduce the circuit footprint, spiral resonators are employed for significant size reduction 

compared to conventional ring resonators. To verify the method, a CPW-PD with three spiral 

resonators is designed with a centre frequency of 48.5 GHz. The configuration of the design is 

shown in Fig. 5. 3. The spiral line winds clockwise with one end connected to the ground. The 

length of the resonator is about  λ 4⁄ . The width W and gap S of the spiral line are both chosen 

to be 10 μm while the distance between two adjacent resonators is denoted as d. All the 

resonators are directly connected with the input 50 Ω CPW line where Sport is 15μm and Wport 

is 20μm. Due to the winding shape of the spiral resonator, if two resonators are coupled to the 

common resonator at two sides, these three resonators cannot be centrosymmetric. As a result, 

the common and upper resonators are wound in one direction while the lower one in the 

opposite direction to the common resonator winding. 
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 Resonant Frequency 

        

(a) 

 

(b) 

Fig. 5. 4 (a) The configuration of a quarter-wavelength spiral resonator, and (b) the 

relationship between resonance frequencies and side-length L.  

To examine the resonant frequency f0, a pair of open CPW feed-lines are placed at both sides 

of the resonator with some distance. The side-line length of the spiral resonator l is chosen to 

be 110 μm, 112 μm, and 115μm, and the overall length of the spiral line is 596 μm, 614 μm 

and 656 μm, respectively. Fig. 5. 4(a) shows the configuration of a single spiral resonator for 

Unit: um 
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computation and Fig. 5. 4(b) depicts the variation of resonance frequency f with side-length l 

of the spiral. In obtaining the relationship given in Fig. 5. 4(b), the physical dimensions in Fig. 

5. 4(a) are applied. The curve illustrates that the resonant frequency in general increases as the 

length of the spiral line decreases. In this chapter, a PD with a centre frequency f0 equals to 

48.5 GHz is designed. As a result, l is chosen to be 115 μm to conduct the following designs.  

 Coupling Coefficient k 

               

  (a)                                                                    (b) 

Fig. 5. 5 (a) Face-to-back oriented, and (b) back-to-back reversely oriented resonators.  

 

Fig. 5. 5 illustrates two types of coupled spiral resonators, one is face-to-back orientation and 

the other in back-to-back direction. The distances between every two resonators are denoted as 

d1 and d2 respectively. Simulation of the coupling can be carried out by placing a pair of feed 

lines to the two resonators in the opposite direction. With the coupling, the resonant frequency 

will be split into two, frequencies f1 and f2 as shown in Fig. 5. 6(a)-(b). The inter-resonator 

coupling coefficient can be calculated by  

𝑘 =
𝑓2

2−𝑓1
2

𝑓2
2+𝑓1

2                                                          (5.13) 

 

Unit: um Unit: um 



Chapter 5: Millimetre-Wave CPW PDs Using Spiral Resonators for Miniaturization. 

 

P a g e | 121  

 

 

       

     (a)                                                                     (b) 

 

(c) 

Fig. 5. 6 Resonant mode splitting phenomena of (a) face-to-back oriented and (b) back-

to-back reversely oriented. (c) Coupling coefficient k versus the distance d between 

resonators.  

Generally, with the increase of distance d, the split resonance frequencies f1 and f2 come closer, 

which means the coupling is weaker. The coupling coefficient k is computed, and the variation 

with different distance d is shown in Fig. 5. 6(c). 
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 External Coupling Qe 

The general behaviour of these coupled resonators is affected by parameters, including the 

position and offset of the feeding lines, the gaps between spiral line and the ground and the 

height of the air gap. To achieve optimal performance, a parametric study on realizing external 

Qe is performed in this section. For the tapped-line coupling, a 50 Ω CPW line is directly tapped 

onto the input and output resonators. Lfeed denotes the distance between the point where the 

spiral line is connected to the ground and the CPW feed-point. The external single loaded 

quality factor can be extracted from simulation by using: 

𝑄𝑒 =
𝜔0

∆𝜔±90°
                                                  (5.14) 

Where 𝜔0 = 1 √𝐿𝐶⁄  is the resonant frequency, and ∆ω±90° represents the absolute bandwidth 

between the ±90° points which should be determined from the frequency at which the phase 

shifts ±90° with respect to the absolute phase at 𝜔0. 

                   

(a)                                                                            (b) 

Fig. 5. 7 (a) Feeding structure of the PD, and (b) relationship between external Qe and 

centre frequency f0 with the off-set Lfeed in (a).  

Fig. 5. 7 (b) illustrates that the loaded quality factor is decreasing with the distance between 

the spiral-line end to the feed line increases. The Qe achieves the maximum value when the 

feed-line is directly connected to the spiral line end. This is because the smaller the Lfeed is, the 

closer is the tapped line to a virtual grounding of the resonator, which results in a weaker 

coupling, in other words, a larger external Qe. 

Unit: um 
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(a)                                                                           (b) 

Fig. 5. 8 (a) Feeding structure of the resonator, and (b) variation of Qe and centre 

frequency f0 with the gap width in (a). 

Another way to increase the external coupling is to change the gap width G between the spiral 

and the ground on the feeding side. As is shown in Fig. 5. 8(b), when the gap width G is 

extended, the external coupling is enhanced significantly. However, extending the gap width 

G will also result in a centre frequency shifting down. To increase the external coupling without 

changing the centre frequency, the inner spiral line can be shorted a little bit to compensate. To 

get higher or lower values for the external quality factor Qe is a matter of choosing the proper 

side for feeding the resonator. 

5.4 Configurations and Designs 

   Proposed PDs 

Fig. 5. 9(a) shows the structure of the proposed CPW two-way PD. The feedings at all three 

ports have an offset instead of feeding in the middle of the first spiral line to enhance external 

coupling. The signal is passing through the common resonator and coupled to upper and lower 

resonators with the same amount of the coupling. That is, the coupling coefficients 𝑘12 and 𝑘13 

are the same. When the distance between the lower resonator and the common resonator  

Unit: um 
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               (a)                                                                       (b) 

 

               (c)                                                                      (d) 

Fig. 5. 9 (a) Configuration of the optimized three-resonator PD with a 1:4 power division 

ratio, (b) 1:1 power division, (c) 1:2 power division and (d) 1:4 power division. 

increases, the coupling strength between them will decrease, less energy will be coupled to the 

lower coupling path (from Port 1 to Port 3) and vice versa. It is the same for Port 1 and Port 2. 

For equal splitting, the mutual coupling coefficients be 𝑘12= 𝑘13 = 0.026, and 𝑄𝑒2 = 𝑄𝑒3 =

38.43 to achieve a 3-dB bandwidth of 2.2 GHz at a centre frequency of 48.5 GHz. Then the 

corresponding physical distance between coupled resonators can be read from Fig. 5. 9(c). Also, 

this coupling structure is required to have a coupling coefficient ratio of 𝑘12/𝑘13= 1:2 and 1:4 

according to (5.8) for unequal power splitting. 
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(a) 

 

(b) 

Fig. 5. 10 (a) Configuration of the CPW PD with five resonators, and (b) its simulated 

performance. 

A PD with five asynchronous spiral resonators is shown in Fig. 5. 10(a). More spiral resonators 

are used to obtain a sharp-selectivity bandpass response compared to the third-order PD for the 

same Q𝑒 . However, compared to the three-resonator PD, the power division ratio is more 

difficult to control due to the introduction of more resonators. These resonators are not 

allocated in one axis for the purpose of circuit miniaturization. The coupling path requires 

resonators with different orientations which would severely change the coupling conditions 



Chapter 5: Millimetre-Wave CPW PDs Using Spiral Resonators for Miniaturization. 

 

P a g e | 126  

 

 

between resonators because of the asymmetry of the spiral structure. As Fig. 5. 10(b) indicates, 

the bandwidth is around 1.13:1, and the coupling between Resonator 1 and Resonator 3 is 

stronger than the other that of Resonator 1 and Resonator 2 which results in a power division 

around 1:8.  

 Splitting Frequencies (diplexer) 

Similar to a PD, a diplexer is also a three-port network, but assign disparate frequency bands 

at the same time. In this section, a five-resonator diplexer is designed by using resonators of 

different sizes and controlling the coupling strengths between them. 

  

Fig. 5. 11 RF front end of a cellular base station [20]. 

A diplexer is commonly used in satellite communication systems to combine both the Tx 

(Transmit) and the Rx (Receive) antennas on spacecraft. It is frequently used in the RF front 

end of cellular radio base stations to separate Tx and the Rx channels as shown in Fig. 5. 11. 

The response of a diplexer contains two individual frequency bands, the lower passband and 

the higher passband. Conventionally, diplexers can be formed by connecting two separately 

designed filters via an external energy distribution device, such as a T-junction [20][21], a Y-

junction [22], a circulator [23] or a common resonator [24][25]. The external junctions utilised 

in the conventional approaches for diplexer design resulte in more complex and larger size 

devices. Also, the connecting device does not contribute to the resultant diplexer but increases 

circuit size. To overcome these drawbacks, referring to designs [16][24][25], the work in this 
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section eliminates the external junctions and replacing it with a common resonator to distribute 

the input signal.   

 

Fig. 5. 12 The topology of the proposed resonator-based diplexer.  

Fig. 5. 12 shows the topology of the proposed 5-resonator diplexer with each circle represents 

a resonator and the interconnecting lines represent the coupling between them. The diplexer 

can be divided into two parts. The leading part is directly connected to the input which is called 

the stem. The other part is the two branches, one including Resonator 2 and 3 and the other 

formed of Resonator 4 and 5. Resonator 2 and 4 are coupled to the common Resonator 1.  The 

common resonator or Resonators 1 has dual-resonant response to attenuate signals outside of 

the lower and higher passbands [26]. The two branches (B and C) work like two individual 

single band bandpass filters. Each branch occupies one of the two passbands of the dual-band 

filter so that the input signal passing through the common resonator will be guided to one of 

the branches, but rejected by the other branch. The general response of the device is given in 

as well as the lower and higher frequency bands for the two bandpass filters. 𝑓𝑐 denotes the 

centre frequency of the whole circuit. As shown in Fig. 5. 13, the passbands |𝑓2 − 𝑓1| and |𝑓4 −

𝑓3| are not only the responses of the two branches, respectively, but also the passbands for the 

dual-band filter. Let us define A, B, and C as the common structure, and two passband filters, 

respectively. 𝐴−𝑞𝑒1
,  𝐵−𝑞𝑒1

 and 𝐶−𝑞𝑒1
in Fig. 5. 12 represent the external coupling between the 

ports to the terminal resonators for the filters. 𝐵−𝑚12
 and  𝐵−𝑚23

 , and 𝐶−𝑚12
and 

𝐶−𝑚23
represent the internal coupling for the bandpass filters which can be directly employed 

as the internal coupling of the diplexer.  
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(a) 

 

(b) 

Fig. 5. 13 Theoretical response of (a) the dual-band bandpass filter, and (b) the bandpass 

filters of lower and higher frequency bands, respectively [22].  

Normally, the coupling between the common resonators is strong, as well as the coupling 

between Resonator 2 and 3, and Resonator 4 and 5. On the contrary, the coupling between the 

branches and the common resonator, for example, Resonator 1 and 2 is weak. Moreover, the 

common resonator can always be replaced by any networks that have dual-band responses.  

For a diplexer with asynchronously frequency bands, the sizes of the resonators on the two 

branches (1-2-3 and 1-4-5) are different, so that the self-coupling 𝑚𝑖,𝑖 is introduced here. The 

self-coupling 𝑚𝑖,𝑖  is used to quantify the difference between the resonant frequency  𝑓𝑖  of 

Resonator i and the canter frequency 𝑓𝑐 of the whole circuit. When resonator i is synchronously 
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tuned, which normally means the size of the resonators are the same, the normalized self-

coupling 𝑚𝑖,𝑖  equals to zero, while in asynchronously tuning, 𝑚𝑖,𝑖  is an non-zero term. 

According to the coupling analysis in [26], the relationship between the normalized self-

coupling 𝑚𝑖,𝑖 and the resonant frequency 𝑓𝑖 can be derived as 

𝑓𝑖 = 𝑓𝑐 ∙ [
𝐹𝐵𝑊∙𝑚𝑖,𝑖

2
+ √(

𝐹𝐵𝑊∙𝑚𝑖,𝑖

2
)

2
+ 1]                         (5.15) 

And the normalized self-coupling 𝑚𝑖,𝑖 of resonator i equals to that of the higher or lower band 

pass filter. 

𝑚𝑖,𝑖 = 1 −
𝐵𝑊higher / lower band

𝑓𝑐∙𝐹𝐵𝑊
                                     (5.16) 

According to the specifications and the coupling matrix synthesis in [9], the normalized 

coupling matrix of the diplexer is 

{m12, m23, m14, m45, m11, m22, m33, m44, m55, Qe1, Qe2, Qe3 } = {0.45, 0.34, 0.45, 0.34, 0, 0.7, 

0.74,-0.7,-0.74, 1.34, 2.2, 2.2}. 

The normalized coupling matrix is transformed to the desired frequency band with a centre 

frequency 𝑓𝑐 = 50 GHz.  

The configuration of the proposed diplexer is shown in Fig. 5. 14(a), and different sizes of 

resonators are chosen to implement the design. To distribute the input signal to two frequency 

bands, the signal from the common resonator to the output resonator must pass through one 

output at a particular frequency band while there is little signal passing through to the other 

output. For the lower frequency band, the common resonator and the two resonators to Port 2 

realize a passband at lower frequencies while the common resonator and the two resonators to 

Port 3 realize another passband at higher frequencies. The isolation between Port 2 and 3 should 

be high to avoid interference. Since the two coupling paths contribute to two distinct frequency 

bands, the isolation is typically good for coupling-based diplexers. The simulation shows that 

the diplexer has two frequency bands at 47.5GHz and 52 GHz. This design shows a narrow 

passband and only one reflection minimum is realized at each frequency band. To obtain better 

filtering performances with more in-band poles, more resonators can be used.  
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(a) 

 

(b) 

Fig. 5. 14 (a) Proposed five-resonator diplexer, and (b) its performances. 
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5.5 Fabrication Process and Measurement 

Due to the limitation of facilities, the minimum width or gap of metal is 0.1 mm if using LPKF 

ProtoMat S62. To prove the design concept, the designs in this Chapter have been scaled down 

from 50 GHz to 2 GHz as shown in Fig. 5. 15 for experimental validation. A equal splitting 

PD is designed in Sonnet on a Rogers RT6010LM substrate with 𝜀𝑟 = 10.2, and a thickness of 

1.27 mm. The smallest width of the gap/strip is 0.2 mm, which is the smallest fabrication 

dimension of LPKF ProtoMat S62. Three 2.92mm edge launch connectors are clapped onto 

the three ports tightly. The edges of signal lines are wore off finely to prevent short-circuit to 

connectors. The circuit is measured by using a VNA (Agilent FieldFox N9917A) with a 

frequency range up to 18 GHz. A 50 Ω male load is always attached to the spare port that is 

not being measured. The simulated and measured results are imported to Origins for data 

plotting as shown in Fig. 5. 16. The measured S11 is better than 20 dB. S21 is about -4 dB, which 

means there is 1 dB loss caused by fabrication error and substrate. It can be observed from the 

comparison that the measured S-parameters are in good agreement with the simulation. 

                     

(a)                                                                        (b) 

Fig. 5. 15 (a) Circuit layout of a 2 GHz PD, and (b) the fabricated circuit. 

Unit: mm 
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Fig. 5. 16 Comparison between the simulated and measured results of the 2 GHz PD.  

        

                             (a)                                                                 (b) 

Fig. 5. 17 (a) Circuit layout of a 2 GHz diplexer, and (b) the fabricated circuit. 

Unit: mm 
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(a) 

 

(b) 

Fig. 5. 18 Comparison between the simulated and measured (a) S11, S22 and S33, and (b) 

S21, S31 and S23 of the 2 GHz Diplexer. 
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A 2 GHz diplexer has been fabricated and measured in the same way. The circuit layout and 

the fabricated circuit are shown in Fig. 5. 17. The simulated and measured results are plotted 

using Origins as shown in Fig. 5. 18. The measured return loss S11 for lower frequency band is 

better than 14 dB. However, the return loss for higher frequency band is less than 7 dB which 

is caused by the fabrication precision (±0.1 mm in this case) of the gap between the resonators 

for higher frequency band. The fabrication precision also contributes to a relatively high 

insertion loss in measurement. In all, the measurement traces agree with simulations. The 

measured results show the potential of the proposed method to be applied for mm-Wave PD 

and diplexer designs to avoid using T- or Y- junctions and air-bridges.  

5.6 Summary 

In this chapter, two PDs and a diplexer have been designed by using coupled resonators. The 

idea of filter designs has been employed which enables the proposed circuits to have filtering 

responses.  The bandwidth can be tuned by controlling the coupling coefficients between 

resonators. The rectangular G-type spiral resonators have been used to implement all the 

designs, allowing significant size miniaturisation. Moreover, a common spiral resonator 

replaces the T-junction between two branches to avoid using air-bridges. It should be noted 

that with the same distance between resonators, different orientations of two adjacent 

resonators will result in different coupling coefficients which in turns produces distinct power 

division ratios (1:1, 1:2, 1:4 and 1:8). The PDs occupy very compact sizes. The one with three 

resonators has a size of 0.13 𝜆𝑔 × 0.1 𝜆𝑔 while the size of the PD with five resonators is 

roughly 0.2 𝜆𝑔 × 0.06 𝜆𝑔. One equal splitting PD operating at 2 GHz has been fabrication and 

measured, the measured S11 is better than 20 dB which has verified the method well. 

The diplexer design employs a common resonator to connect two branches to avoid using extra 

air-bridges and also eliminate unnecessary loss caused by T- or Y-junctions. The simulation 

shows two narrow frequency bands are located at 47.5 GHz and 52 GHz with S11 better than 

20 dB. The isolation of these two branches is lower than 20 dB. The circuit size of the diplexer 

excluding feed lines is 0.07 𝜆𝑔 × 0.26 𝜆𝑔  which is comparably compact compared to the 

designs with connecting junctions. A diplexer with 2 GHz centre frequency has also been 
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fabricated and tested. The measured results show that the diplexer is more sensitive to the gap 

between resonators, extra loss is caused by the fabrication precision.  
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Chapter 6 Summary and Future Work 

6.1 Summary  

To summarise the contents of this thesis, it has been demonstrated that adding capacitors in 

parallel with transmission lines can effectively adjust the operating frequency of PDs. By 

carefully choosing the PD topology and the impedance of the transmission lines, broadband 

and reconfigurable responses with a wide tuning range can be achieved. Experiments have 

validated the design methods.  

The other research objective is mm-wave PDs. Due to some common challenges in mm-Wave 

device design, such as high loss and low tolerance of fabrication error, the development of mm-

Wave PDs is very challenging. Based on the improvement of manufacturing techniques, many 

simple but effective designs are promising. 

Several key challenges regarding PD designs are listed below: 

1) Due to the increasing number of multi-standard systems, PDs with multi-band, broadband 

or reconfigurable features have been investigated in depth. Although many published papers 

provide plenty of comprehensive solutions, most of them are hybrid technologies that require 

several essential design elements, such as using both coupled-line and stepped-impedance 

transformers to achieve wideband performance. Hybrid solutions are good choices for specific 

applications because they accomplish specifications. However, more versatile but 

straightforward designs are the most desired, because a simple design is more desired to be 

integrated into systems with minimised side effects.   

2) As the competition among communication industries increases the scarcity of radio spectrum 

resource, PDs at higher frequencies, from mm-Wave to even Terahertz bands, are in high 

demand. Feasible solutions need to be investigated in depth. 

3) Most high frequency-related researches are focusing on waveguide structures as they 

perform low loss and high-power capability features. However, they usually suffer from the 

large size and relatively high cost. Moreover, conventional waveguides are not perfect choices 
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for circuit integration. As a result, planar designs working on such high frequencies are 

imperatively desired. Since the majority of planar PDs are designed based on transmission lines, 

they usually have relatively high loss for high-frequency applications. PDs with a simple layout 

and a low-cost precision fabrication process are of great value to be investigated.  

6.2 Key Contributions 

This thesis has provided a thorough study of microwave PD designs and also presented a 

promising mm-Wave PD design.  

The key contributions are detailed as follows. 

Chapter 2  

1) A comprehensive literature review has been carried out to show the critical and recent 

development of broadband and reconfigurable PD designs in microwave communication 

systems. It has also depicted several available mm-Wave PD designs to demonstrate the 

design and fabrication challenges.  

Chapter 3 

2) The idea of adding capacitors in parallel with main transmission lines is firstly proposed. 

This proposed structure solves three main challenges. Firstly, the added capacitors have 

broadened the overall bandwidth to a great extent (2.7:1 of 15-dB bandwidth for a two-

way prototype). Secondly, changing the capacitance can result in a tunable bandwidth. The 

last key point is from the physical aspect of view. The proposed structure has two short 

stubs connecting the output ports which adding the physical isolation between them.  

3) Also, an eight-way PD is designed and fabricated by cascading two-way structures 

together. The measured results indicate that the idea can be adapted to multi-way 

broadband PD designs which validates the importance of this work.  

Chapter 4 

4) By adding a pair of the capacitor in parallel with the main transmission lines, and by 

carefully choosing the lengths and impedances of the transmission lines, the operational 

frequency of the PD can be tuned over a wide range. The design in this Chapter focused 

on the main transmission lines and the stubs that connect the main transmission lines and 

the lumped-elements RLC in the isolation circuit. An analytic solution is provided in the 
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chapter to predict and control the frequency tuning range and its return loss performance. 

The designed two-way circuit uses three varactors and their corresponding bias circuits to 

tune the frequency band electrically. Measurement shows that the centre frequency with 

better than 20 dB return loss can be tuned from 0.9 GHz to 4.2 GHz, which is the widest 

compared to other similar works.  

Chapter 5 

5) The work in chapter 5 focuses on developing an mm-Wave PD using rectangular spiral 

resonators. Using a spiral resonator will significantly reduce the occupied area of the 

circuit. Besides, using a common resonator near the input port can achieve a low loss 

performance and also size reduction compared the traditional design using a T- or Y-

junction and air-bridges. A CPW structure has its signal line and ground on the same side 

of the substrate which reduces the complexity of fabrication and makes it easier for 

integration. The design can effectively control the power division by changing the 

distances between the resonators. Moreover, a diplexer has been implemented by 

appropriately choosing the size and coupling coefficients of the resonators. Good 

demonstration has been made by testing frequency scaled-down PD and diplexer.  

6.3 Future Work 

Based upon the summary above, and considering the challenges of existing technologies, 

further works can be carried out in the following areas. 

1) In Chapter 5, a 2 GHz PD and a diplexer have already been designed and tested to validate 

the design theory due to facility limitation. PDs and diplexer operating at 50 GHz can be 

fabricated and measured by using following method. 

The PD and diplexer will employ the fabrication process in [1] on a 625 µm thick semi-

insulating GaAs substrate with a loss tangent of 0.006. All patterns are defined using Electron 

beam lithography (EBL) which is a powerful technique for creating nanostructures that are too 

small to fabricate with conventional photolithography.  
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Fig. 6.  1 Resist pattern schematic by using EBL [2]. 

The technique works by moving a highly focussed electron beam [2] over a sample to write 

out a pattern designed with Computer-aided Design (CAD) tools. The pattern is recorded in an 

electron sensitive film (or resist) deposited on the sample before exposure by spin coating. The 

electron beam induces a change in the molecular structure and solubility of the resist film. 

Following exposure to the electron beam as shown in Fig. 6.  1, the resist is developed in a 

suitable solvent to selectively dissolve either the exposed or unexposed areas of the resist. 

There are two main reasons for using EBL. One is precision. EBL process can create structures 

at the level of 10 nm.  

The device will be tested using on-wafer probes and a VNA system as shown in Fig. 6.  2(c). 

A typical 110 GHz system contains a VNA, cables, probes, probe positioners, probe station 

contact substrate, calibration substrate, calibration software, bias supply and a microscope [3]. 

The components will be tested using a pair of DC-110 GHz Ground-Signal-Ground (GSG) 

probes (as shown in Fig. 6.  2(a)(b)) with a 100 μm pitch separation from GGB Industries and 

an Agilent PNA N5250C on a Cascade semi-automated probe station. CPW transitions from 

20 µm /15 µm to 60 µm /40 µm will be deployed at three ports to be compatible with the 

geometry of the test probes. A third probe terminated by a broadband 50 Ω load on the 1 mm 

coaxial port side is used to load the idle port [4]. This three-port component test method, unlike 

the conventional method that requires three devices of the same design but terminated with 50 

Ω thin-film resistors for different ports [5], allows the same Device Under Test (DUT) to be 

characterised using a two-port VNA. Off-wafer calibration using a calibration substrate CS-15 

from GGB Industries will used to calibrate the system reference plane to the probe tips before 

taking measurements.  



Chapter 6: Summary and Future Work 

 

P a g e | 142  

 

 

 

                         (a)                                                                  (b) 

 

(c) 

Fig. 6.  2 (a) The GSG probe, and (b) microphotograph of the fabricated ring divider 

under test [6], (c) Typical 110 GHz System [7]. 

The calibration will employ the Short-Open-Load-Reciprocal Thru (SOLR) method [8]-[10] 

for Port 1 to Port 2/Port 3, and a Line-Reflect-Reflect-Match (LRRM) calibration method will 

be used for Port 2 to Port 3 isolation measurement for it is not sensitive to the load asymmetry 

[11]. SOLR uses the SOLT Short- Open-Load Thru (SOLT) short, open, and load standards 

and requires the same characterization knowledge. SOLR calibration does require that the 
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through standard be reciprocal, such that S21 equals S12. The probe station measurement 

requires a circuit configuration of input port to be orthogonal to the directions of output ports. 

Most circuits would not strictly satisfy the measurement requirements so that calibration is 

essential in order to obtain accurate results. The limited knowledge requirement on the through 

standard makes SOLR calibration ideally suited for situations where a non-ideal through 

standard is desired, such as with on-wafer probing where the probes are positioned 90° from 

each other (orthogonally) during the desired measurement. A through standard with a 90° bend 

could be used for calibration. A bend makes the through behave non-ideal and therefore creates 

errors or degradation in those calibration models relying on the ideal characteristics. SOLR 

calibration can overcome this limitation since it does not rely on an ideal through model so that 

eliminate degradation during the measurement. The use of the SOLR algorithm with a 90° 

through standard simplifies both calibration and measurement, which provides the best 

calibration for these less ideal measurement configurations. 

Based on the results in Chapter 3, the topology is promising to be used in mm-wave PD 

designs to extend the operational bandwidth. However, surface mount capacitors are not 

widely available at such high frequencies. An interdigital capacitor as shown in  

2) Fig. 6.  3 may be a good candidate as a semi-lumped element for mm-Wave device designs 

[12]-[13]. The design objectives are to provide the desired capacitance at the design 

frequency in a reasonably small area. The interdigital capacitors are easy to fabricate and 

have more freedom to achieve desired capacitance due to their structures. 

 

 

Fig. 6.  3 Configuration of an interdigital capacitor.  
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3) Since reconfigurable devices become more and more popular, it is of great value to 

investigate the conept in more depth. The term “reconfigurable” here may refer to different 

types of response instead of the centre frequency, bandwidth or power division ratio. For 

example, in Chapter 5, the PD that was designed based on coupling structures can be 

switched to a diplexer. Many papers on reconfigurable operating frequency [14]-[17] have 

been published. They are based on integrating varactors to the circuit to continuously 

control the resonant frequencies changing in a certain range.  As the work in [6] indicates, 

the external quality factor Qe and the operating frequency can be adjusted by altering the 

varactors on strait- and ring-slots. As a result, the two frequency bands can be controlled 

synchronously. Thus, a PD and diplexer can be switchable if the circuit configurations and 

bias circuits are carefully designed.  
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