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Abstract

This thesis presents data mining research work undertaken in the context of identi-

fying correlations between 3D surfaces. More specifically, this research is directed at

predicting distortions (referred to as springback) in sheet metal forming. The main ob-

jective was to identify a mechanism that “best” serves to both capture effectively 3D

geometrical information while at the same time allowing for the generation of effective

predictors (classifiers). To this end, three distinct 3D surface representation techniques

are proposed based on three different concepts. The first technique, the Local Geom-

etry Matrices (LGM) representation, is founded on the idea of Local Binary Patterns

(LBPs), as used with respect to image texture analysis, whereby surfaces are defined in

terms of local neighbourhoods surrounding individual points in a 3D surface. The second

technique, the Local Distance Measure (LDM) representation, is influenced by the obser-

vation that springback is greater further from edges and corners, consequently surfaces

are defined in terms of distance to the nearest edge or corner. The third technique, the

Point Series (PS) representation, is founded on the idea of using a spatial “linearisation”

with which to represent surfaces in terms of point series curves. The thesis describes

and discusses each of these in detail including, in each case, the theoretical underpin-

ning supporting each representation. A full evaluation of each of the representations is

also presented. As will become apparent, the PS technique was found to be the most

effective. The presented evaluation was directed at predicting springback, in the context

of the Asymmetric Incremental Sheet Forming (AISF) manufacturing process, in such

a way that an enhanced version of the desired 3D surface can be proposed intended

to minimise the effect of springback. For the evaluation two flat-topped, square-based,

pyramid shapes were used. Each pyramid had been manufactured twice using Steel and

twice using Titanium. In addition this thesis presents some idea on how the springback

prediction mechanism can be incorporated into an “intelligent process model”. The

evaluation of this model, by manufacturing corrected shapes, established that a sound

prediction framework, incorporating the 3D surface representation techniques espoused

in this thesis coupled with a compatible classification technique, had been established.

iv



Acknowledgements

This thesis is the end of my three year journey to get my Ph.D degree in Computer

Science. First and foremost, all praise be to Allah, the Most Gracious and Most Merciful,

for giving me the power, the strength and the patience to overcome all tests that came

my way and for blessing me with those wonderful people who have believed that my

efforts will be fruitful by the end of my Ph.D journey.

I am deeply indebted to my Supervisor, Professor Frans Coenen, who has offered me

the chance to work under his supervision and who has supported me with his invaluable

assistance, care and guidance throughout my Ph.D research. He has been always there to

listen, discuss and suggest research ideas. Through his extraordinary experience, he has

taught me not only to be a good student but also a good researcher and an intellectual

person. He has enlightened my way by his inspiration and endless efforts on how to

explain and present academic work simply and clearly. He has been always not only a

great mentor but also a real friend. He was the most perfect resource which inspired me

and enriched my experience making me the person that I am today. He was the best

supervisor any one could hope for, and more. It has been a pleasure and an honour to

have been supervised by him.

My deepest appreciation and gratitude to my second supervisor Dr. Clare Dixon

for her assistance, constructive suggestions, insightful comments, feedback and research

ideas. Besides my supervisors, I would also like to extend my gratitude to my assessor

committee; Professor Trevor J.M. Bench-Capon, Dr. Boris Konev and Dr. Muhammad

Khan for their evaluation, constructive comments and feedbacks. I would also like to

thank staff at Tecnalia (Spain) and IBF (Germany) for their support in providing test

data and the manufacturing of corrected shapes, in particular: Dr. Mariluz Penalva

Oscoz and Dr. Asun Rastrero from Tecnalia, and David Baily from IBF.

Beside the facilities that have been provided by the Department of Computer Science,

the kindness of people that characterises the department to be the perfect place to work

in, I am also grateful to the staff at the department for helping me in numerous ways.

Thanks also go to my fellow PhDs who stood by my side, provided me with incredible

support and have been always there for me when I needed them. In particular, Puteri

N. E. Nohuddin, Matias Fernando Garcia, Kwankamon Dittakan, Wen Yu, Latifa Al-

Abdulkarim, Maduka Attamah, Jeffery Raphael and Eric Schneider.

It is very difficult for me to find the right words to express my gratitude to my

parents, Dr. “Moh’d Faraj” Al Salhi and Basema Abu Zer. They not only have raised

v



me with endless care, love and support, but also they have constantly encouraged me

to be an independent and self confident person and to contribute positively to society.

Without their support and encouragement, this work would not have been started. I

would like also to thank my sisters and brothers; Mayssa, Amer, Shaima, Fatima, Alaa

El Deen, Alaa and Leena for their faith in me and my ability to accomplish my Ph.D

tasks professionally and also for their continuous love and respect.

My literary skills are powerless to express my respect, love and appreciation to my

husband, Moneef Al Qaisi for the patience, support and persistent confidence he provided

me with. He has been always my best friend my confidant and my role model. I am

blessed to share my life with him. His love and kindness are foundation stones for all

that I am and currently have.

My sincere acknowledgements would not be complete without true thanks to my

angels Khaled, Tala and Ahmad. I am blessed to have such wonderful kids in my life. I

could not have coped with the pressures of life without their love and hugs. I owe them

so much; they have always inspired me to work harder, smarter and to utilise my time

effectively. They have always been the source of my strength to keep reaching for the

best. I hope that they will be proud of me when they realize what my Ph.D years have

entailed.

vi



Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research Question and Related Issues . . . . . . . . . . . . . . . . . . . . 4

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Published Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background, Related Work and The Application Domain 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Application Domain: Asymmetric Incremental Sheet Forming (AISF) . . 13

2.2.1 Overview of Springback . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Knowledge Representation and Data Mining . . . . . . . . . . . . . . . . . 18

2.3.1 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Rule-Based Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Bayesian Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.4 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.5 k -Nearest Neighbour . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.6 Dynamic Time Warping (DTW) . . . . . . . . . . . . . . . . . . . 28

2.4 3D Surface Representation Techniques . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Mathematical Representation . . . . . . . . . . . . . . . . . . . . . 33

Parametric Representations . . . . . . . . . . . . . . . . . . . . . . 34

Implicit Representations . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.2 Mesh (Polygonisation) Representations . . . . . . . . . . . . . . . . 36

2.4.3 Other 3D Surface Representation Techniques . . . . . . . . . . . . 37

2.4.4 Overview of Critical Feature Techniques . . . . . . . . . . . . . . . 38

2.5 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



3 The Grid Representation, Error Calculation Mechanism and the RASP
Framework 44

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 The Representation and Springback Prediction (RASP) Framework . . . . 45

3.3 Grid Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Springback Calculation Mechanism . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Normal Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2 Intersection Point Calculation . . . . . . . . . . . . . . . . . . . . . 48

3.4.3 Error (Springback) Calculation . . . . . . . . . . . . . . . . . . . . 51

3.5 Discretising process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Evaluation Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Local Geometry Matrix Representation (LGM) 62

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 The Local Geometry Matrix (LGM) . . . . . . . . . . . . . . . . . . . . . 63

4.3 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Identifying whether the δz or θ LGM representation is the most
effective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 Identification of the best value for d (grid size) . . . . . . . . . . . 68

4.3.3 Identification of best label size (|L|) . . . . . . . . . . . . . . . . . 69

4.3.4 Identification of the best LGM model . . . . . . . . . . . . . . . . 72

4.3.5 Identification of the most appropriate classification algorithms . . 72

4.3.6 Training and testing the classifier on a different data set . . . . . . 75

4.3.7 Run Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Local Distance Measure (LDM) Representation 80

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Effect of proximity of Critical Points on Springback . . . . . . . . . . . . . 81

5.3 The LDM Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Critical Point Detection . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.2 Distance Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 LDM Detailed Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Combining The LDM Model with The LGM Model . . . . . . . . . . . . . 90

5.6 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6.1 Best value for ξ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6.2 Identification of the best value for d (grid size) . . . . . . . . . . . 92

5.6.3 Best number of labels (|L|) . . . . . . . . . . . . . . . . . . . . . . 93

5.6.4 Best LDM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6.5 Training and testing the classifier on a different data sets . . . . . 95

5.7 Run Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Point Series Representation 103

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Point Series Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 The Prediction Framework Mechanism . . . . . . . . . . . . . . . . . . . . 105

viii



6.3.1 Dynamic Time Warping Similarity Measurement . . . . . . . . . . 106

6.3.2 k -NN Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4.1 Discretised vs Real Point Series Representation . . . . . . . . . . 113

6.4.2 The Effect of Grid Size . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.3 The Effect of Neighbourhood Size . . . . . . . . . . . . . . . . . . 117

6.4.4 The Nature of the Linearisation: all Points vs key Points Repre-
sentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.5 Generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Run Time Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7 Statistical Comparison Between the Proposed 3D Representations 126

7.1 Overview of Statistical Performance Comparison . . . . . . . . . . . . . . 126

7.2 Friedman Statistical Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3 Using the Same Data Set for Statistical Comparison . . . . . . . . . . . . 130

7.4 Using Different Data Sets for Statistical Comparison . . . . . . . . . . . . 132

7.5 Run Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8 Identified Springback Error Application 138

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.2 Corrected Cloud Generation Mechanism . . . . . . . . . . . . . . . . . . . 139

8.3 Evaluation of Formed Parts . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.3.1 Steel Manufactured Shapes (GS and MS) . . . . . . . . . . . . . . 141

8.3.2 Titanium Based Shapes . . . . . . . . . . . . . . . . . . . . . . . . 147

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9 Intelligent Process Model 149

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.2 Single Pass IPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.3 Iterative IPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.4 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.5 Run Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

10 Conclusion and Future Research Works 162

10.1 Inroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

10.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

10.3 Main Findings and Contributions . . . . . . . . . . . . . . . . . . . . . . . 164

10.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A Error Visualisation for Gonzalo and Modified Pyramids 168

B Discretised Results for PS Representation Technique 186

C AUC Calculation based on Mann-Whitney-Wilcoxon. 191

ix



C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

References 198

x



List of Figures

2.1 The main themes of the Thesis: Sheet Metal Forming (AISF in particular),

Data Mining (classification in particular) and 3D Surface Representation. . . 12

2.2 The AISF process. The basic elements of AISF are the metal forming force

F , the tool speed v and the spin angular speed w. [114]. . . . . . . . . . . . . 14

2.3 The three subsets of the data set D obtained after splitting with respect to

the different attribute values: young, middle and senior. . . . . . . . . . . . . 22

2.4 The DT classifier for the data set D presented earlier in Table 2.1. . . . . . . 23

2.5 A typical Perceptron Example. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 A warping path, P, that satisfies the (i) Boundary, (ii) Monotonicity and

(iii) Step size conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 A warping path, P where the boundary condition is violated. . . . . . . . . . 29

2.8 A warping path, P where the monotonicity condition is violated. . . . . . . . 29

2.9 A warping path, P where the step size condition is violated. . . . . . . . . . 29

2.10 Different warping paths can be defined between two point series A and B.

The optimal warping path is in red colour. The distance values stored in the

adjacent cells {M(i − 1, j),M(i, j − 1),M(i − 1, j − 1)} (shaded block) are

used to identify the value of M(i, j) elements (black and red points). . . . . . 32

2.11 An example of the Sakoe-Chiba band windowing concept with w = 3. Only

the shaded elements are considered when determining the optimum warping

path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.12 A parametric surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.13 Confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.14 Four different example ROC curves (A, B, C and D). Curve C is the curve

produced as a result of simply guessing. Curve A is said to dominate B, C

and D since A is above and to the left of B, C and D. However, B and D do

not dominate each other therefore the AUC is a convenient way to compare

their performance [135]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Schematic describing the Representation And Springback Prediction (RASP)

Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Typical grid structure for a point cloud (red grid centres indicate the corner

grid squares). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 ~v and ~u vector configurations, indicated in red, that maybe used for normal

calculation. Note that a clockwise direction is used so that all normals point

in the same direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Error (springback) calculation (E) between Gin and Gout defined as the

distance between the point Pi on Gin to where the normal of Pi cuts Gout at

Pint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xi



3.5 The Error direction illustrated by two examples. The left hand example

shows that both the normal ~n and
−−−→
PiPint have opposite direction as the

angle between them is (θ = 180◦). Therefore, the error E, in this case, is

assigned a negative (−) sign. However, the angle between the normal ~n and
−−−→
PiPint on the right hand example is θ = 0◦ which means that both vectors

run parallel in the same direction and as a result the error is assigned a +

sign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Gonzalo (left) and Modified (right) Pyramids. . . . . . . . . . . . . . . . . . 57

3.7 Side sections of Gonzalo (left) and Modified (right) Pyramids. . . . . . . . . 57

3.8 Different views for the GSV1 Gin point cloud using grid size d = 1mm. . . . 60

3.9 Different views for the MSV1 Gin point cloud using grid size d = 1mm. . . . 60

4.1 Level one neighbourhood model. The eight closest surrounding neighbours

(Pi coloured in red) for the grid square are considered and represented using

a 3× 3 LGM (P0 is the centre point coloured in black). . . . . . . . 63

4.2 Level two neighbourhood model. The eight surrounding neighbours (Pi

coloured in red) for the grid square that are “one step away” are consid-

ered and represented using a 3× 3 LGM (P0 is the centre point coloured in

black). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 The composite model founded on a 5× 5 LGM to represent the surrounding

neighbourhood (Pi coloured in red) of P0 coloured in black. . . . . . . . . . . 64

4.4 Square based pyramid with side location highlighted (Example 1). . . . . . . 65

4.5 Square based pyramid with corner location highlighted (Example 2). . . . . . 65

4.6 Comparison of the δz and θ LGM representations in terms of accuracy, with

respect to the eight test data sets using: different grid sizes, |L| = 3, C4.5

and the composite LGM model. . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Comparison of the δz and θ LGM representations in terms of AUC, with

respect to the eight test datasets, using: different grid sizes, |L| = 3, C4.5

and the composite LGM model. . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.8 Comparison of different values of d in combination with the LGM model in

terms of AUC, with respect to the eight datasets, using: |L| = 3, C4.5 and

the composite LGM model coupled with δz values. . . . . . . . . . . . . . . . 71

4.9 Comparison of different values of |L| in combination with the LGM model,

in terms of accuracy and AUC, with respect to the eight datasets, using:

d = 10, C4.5 and the composite LGM model coupled with δz values. . . . . . 73

4.10 Comparison of the three variations of LGM model, in terms of accuracy and

AUC, with respect to the eight datasets, using: d = 10, |L| = 3, C4.5 and

δz values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.11 Comparison of use of different classifiers with the LGM model, in terms of

accuracy and AUC, with respect to the eight datasets, using d = 10, |L| = 3

C4.5 and the composite LGM model coupled with δz values. . . . . . . . . . 75

xii



4.12 AUC and Accuracy results obtained when generating a generic classifier using

different data sets to train and test the classifiers, δz values, |L| = 3, d = 10

and C4.5 classification algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 77

4.13 The run time for d = 2.5 for the different data sets. . . . . . . . . . . . . . . 78

4.14 The run time for d = 5 for the different data sets. . . . . . . . . . . . . . . . 78

4.15 The run time for d = 10 for the different data sets. . . . . . . . . . . . . . . . 78

4.16 The run time for d = 15 for the different data sets. . . . . . . . . . . . . . . . 78

4.17 The run time for d = 20 for the different data sets. . . . . . . . . . . . . . . . 78

5.1 An example shape represented in terms of a point cloud. . . . . . . . . . . . 81

5.2 Colour coding used in Figure 5.3. . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 2D-plot showing springback distribution over a shape (MSV1): (a) magni-

tude only, (b) magnitude and direction (d = 2.5). . . . . . . . . . . . . . . . . 82

5.4 The effect of different d values on critical point detection using ξ = 9 and

the GSV1 data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 The effect of different ξ values on critical point detection using d = 2.5 and

the GSV1 data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Region growing example using Algorithm 5.2 where the closest critical point

is located within the level two neighbourhood. . . . . . . . . . . . . . . . . . 87

5.7 Example of a hemisphere shape for a given point p0 with four Level one

neighbourhood points p1, p2, p3 and p4 each associated with its own normal,

~n1, ~n2, ~n3 and ~n4 respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.8 Accuracy and AUC results obtained for the LDM model, using different

values for d with respect to the eight test datasets (using |L| = 3 and the

C4.5 classification algorithm). . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.9 Accuracy and AUC results obtained for the LDM model using different values

for |L| with respect to the eight evaluation datasets (using d = 2.5 and the

C4.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.10 AUC and Accuracy results to identify the best LDM model using |L| = 3 and

a range of grid size {2.5, 5, 10} with respect to the eight evaluation datasets

(using the C4.5 classification algorithm). . . . . . . . . . . . . . . . . . . . . 96

5.11 The AUC and Accuracy results produced when generating a classifier on one

data set and applying it to another using the LDM model (|L| = 3, d = 2.5

and the C4.5 classification algorithm). . . . . . . . . . . . . . . . . . . . . . . 98

5.12 The AUC and Accuracy results produced when generating a classifier on one

data set and applying it to another using the LDM+ composite LGM model

(|L| = 3, d = 10 and the C4.5 classification algorithm). . . . . . . . . . . . . 99

5.13 Run time for LDM model using d = {2.5, 5, 10, 15, 20} with respect to the

eight data sets GSV1, GSV2, GTV1, GTV2, MSV1, MSV2, MTV1 and MTV2.100

5.14 Run time for LDM + composite LGM using d = {2.5, 5, 10, 15, 20}. . . . . . 101

6.1 Example of a spiral linearisation for a 5× 5 key PS representation. . . . . . . 105

xiii



6.2 An example of the operation of DTW using two equal sized curves c1 and

c2. For illustrative purposes a window size of w = 3 was used (as shown

in shaded area). The indices of the lower and upper boundary are coloured

in green. The optimal DTW path is indicated using dark shading with red

text. The path commences at M(0, 0) and ends at M(11, 11). The DTW

value is located in M(11, 11) and is equivalent to 13 in this case. . . . . . . . 107

6.3 The AUC and Accuracy results produced when generating a classifier on

one data set and applying it to another using n = 3, the key point PS

representation and d = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4 Recorded run time (s) for both the all point and the key point PS represen-

tation using n = 3 and d = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.5 Recorded run time (s) for both the all point and the key point PS represen-

tation using n = 5 and d = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.6 Recorded run time (s) for both the all point and the key point PS represen-

tation using n = 7 and d = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.7 Run time (in seconds) for 3×3 PS representation using d = {2.5, 5, 10, 15, 20}
with respect to the eight data sets GSV1, GSV2, GTV1, GTV2, MSV1,

MSV2, MTV1 and MTV2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.1 The χ2 distribution. The shaded area is equal to α and denoted by χ2
α, and

represents the region of rejection. The p-value is the area under curve right

of the calculated χ2
F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2 The average rank (µi) associated with CD value for the classifiers generated

using the same data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.3 The average rank (µi) associated with CD value for the classifiers generated

using different data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.4 The critical values for Chi-Square (χ2) [66]. . . . . . . . . . . . . . . . . . . . 137

8.1 Corrected Cloud Generation Mechanism. . . . . . . . . . . . . . . . . . . . . 140

8.2 Springback distribution with respect to the shapes manufactured using Cin

cloud (left) and Ccorr (right) for the GS shape and an error scale of ±6 mm. 141

8.3 Springback distribution with respect to the shapes manufactured using Cin

cloud (left) and Ccorr (right) for the GS shape and an error scale of ±4 mm. 142

8.4 Springback distribution with respect to the shapes manufactured using Cin

(left) and Ccorr (right) for the GS shape and an error scale of ±3 mm. . . . . 142

8.5 Springback distribution with respect to the shapes manufactured using Cin

(left) and Ccorr (right) for the MS shape and an error scale of ±6 mm. . . . 143

8.6 Springback distribution with respect to the shapes manufactured using Cin

(left) and Ccorr (right) for the MS shape and an error scale of ±4 mm. . . . 144

8.7 Springback distribution with respect to the shapes manufactured using Cin

cloud (left) and Ccorr (right) for the MS shape and an error scale of ±3 mm. 144

xiv



8.8 The uncompleted GT shape manufactured up to the point where fractures

occurred. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.9 The uncompleted MT shape manufactured up to the point where fractures

occurred. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.1 Single Pass IPM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.2 Iterative IPM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.3 A average absolute diff values and the average springback distribution of

Cpred for the GSV1 using d = 10 mm. . . . . . . . . . . . . . . . . . . . . . . 158

9.4 The average absolute diff values and the average springback distribution of

Cpred for GSV1 using d = 1 mm. . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.5 The average absolute diff values and the average springback distribution of

Cpred for GSV2 using d = 10 mm. . . . . . . . . . . . . . . . . . . . . . . . . 158

9.6 The average absolute diff values and the average springback distribution of

Cpred for GSV2 using d = 1 mm. . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.7 The average absolute diff values and the average springback distribution of

Cpred for GTV1 using d = 10 mm. . . . . . . . . . . . . . . . . . . . . . . . . 159

9.8 The average absolute diff values and the average springback distribution of

Cpred for GTV1 using d = 1 mm. . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.9 The average absolute diff values and the average springback distribution of

Cpred for GTV2 using d = 10 mm. . . . . . . . . . . . . . . . . . . . . . . . . 159

9.10 The average absolute diff values and the average springback distribution of

Cpred for GTV2 using d = 1 mm. . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.11 The average absolute diff values and the average springback distribution of

Cpred for MSV1 using d = 10 mm. . . . . . . . . . . . . . . . . . . . . . . . . 160

9.12 The average absolute diff values and the average springback distribution of

Cpred for MSV1 using d = 1 mm. . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.13 The average absolute diff values and the average springback distribution of

Cpred for MSV2 using d = 10 mm. . . . . . . . . . . . . . . . . . . . . . . . . 160

9.14 The average absolute diff values and the average springback distribution of

Cpred for MSV2 using d = 1 mm. . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.15 The average absolute diff values and the average springback distribution of

Cpred for MTV1 using d = 10 mm. . . . . . . . . . . . . . . . . . . . . . . . . 161

9.16 The average absolute diff values and the average springback distribution of

Cpred for MTV1 using d = 1 mm. . . . . . . . . . . . . . . . . . . . . . . . . 161

9.17 The average absolute diff values and the average springback distribution of

Cpred for MTV2 using d = 10 mm. . . . . . . . . . . . . . . . . . . . . . . . . 161

9.18 The average absolute diff values and the average springback distribution of

Cpred for MTV2 using d = 1 mm. . . . . . . . . . . . . . . . . . . . . . . . . 161

9.19 The run time analysis (in seconds) for the eight data sets using d = 10 mm

with respect to n = 12 iterations. . . . . . . . . . . . . . . . . . . . . . . . . . 161

xv



9.20 The run time analysis (in seconds) for the eight data sets using d = 1 mm

with respect to n = 12 iterations. . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.1 The Error scale used to describe both the absolute and the directed error

(springback) distribution for the Gonzalo and Modified pyramid shapes. . . . 169

A.2 The absolute error visualisation for the Gonzalo Steel V1 (GSV1) pyramid

for different grid sizes (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.3 The directed error visualisation results for Gonzalo Steel V1 (GSV1) pyramid

for different grid size (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.4 The absolute error visualisation results for the Gonzalo Steel V2 (GSV2)

pyramid for different grid sizes (d). . . . . . . . . . . . . . . . . . . . . . . . . 172

A.5 The directed error visualisation results for the Gonzalo Steel V2 (GSV2)

pyramid for different grid sizes (d). . . . . . . . . . . . . . . . . . . . . . . . . 173

A.6 The absolute error visualisation results for the Modified Steel V1 (MSV1)

pyramid for different grid sizes (d). . . . . . . . . . . . . . . . . . . . . . . . . 174

A.7 The directed error visualisation results for the Modified Steel V1 (MSV1)

pyramid for different grid sizes (d). . . . . . . . . . . . . . . . . . . . . . . . . 175

A.8 The absolute error visualisation results for the Modified Steel V2 (MSV2)

pyramid for different grid sizes (d). . . . . . . . . . . . . . . . . . . . . . . . . 176

A.9 The directed error visualisation results for the Modified Steel V2 (MSV2)

pyramid for different grid sizes (d). . . . . . . . . . . . . . . . . . . . . . . . . 177

A.10 The absolute error visualisation results for the Gonzalo Titanium V1 (GTV1)

pyramid for different grid sizes (d). . . . . . . . . . . . . . . . . . . . . . . . . 178

A.11 The directed error visualisation results for the Gonzalo Titanium V1 (GTV1)

pyramid for different grid sizes (d). . . . . . . . . . . . . . . . . . . . . . . . . 179

A.12 The absolute error visualisation results for the Gonzalo Titanium V2 (GTV2)

pyramid for different grid sizes (d). . . . . . . . . . . . . . . . . . . . . . . . . 180

A.13 The directed error visualisation results for the Gonzalo Titanium V2 (GTV2)

pyramid for different grid sizes (d). . . . . . . . . . . . . . . . . . . . . . . . . 181

A.14 The absolute error visualisation results for the Modified Titanium V1 (MTV1)

pyramid for different grid sizes (d). . . . . . . . . . . . . . . . . . . . . . . . . 182

A.15 The directed error visualisation results for the Modified Titanium V1 (MTV1)

pyramid for different grid sizes (d). . . . . . . . . . . . . . . . . . . . . . . . . 183

A.16 The absolute error visualisation results for the Modified Titanium V2 (MTV2)

pyramid for different grid sizes (d). . . . . . . . . . . . . . . . . . . . . . . . . 184

A.17 The directed error visualisation results for the Modified Titanium V2 (MTV2)

pyramid for different grid sizes (d). . . . . . . . . . . . . . . . . . . . . . . . . 185

xvi



List of Tables

2.1 A labeled training data set consists of 14 records. Four attributes are used

to describe the data set while the Loan attribute used to label the record

with either Yes label (coloured in red) or No label (coloured in green). . . . 22

3.1 Discretisation Table for a given example. . . . . . . . . . . . . . . . . . . . . 55

3.2 Statistics concerning the width (W) (mm), length (L) (mm), height (H)

(mm), area (A) (mm2), number of points (N) and density with respect to

the Cin point clouds for each of the evaluation data sets. . . . . . . . . . . . 58

3.3 Statistics concerning the width (W) (mm), length (L) (mm), height (H)

(mm), area (A) (mm2), number of points (N) and density with respect to

the Cout point clouds for each of the evaluation data sets. . . . . . . . . . . . 59

3.4 Number of records generated for the Gonzalo and Modified pyramids using

different values of d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Z matrix for Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 LGM for Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Z matrix for Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 LGM for Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Sample feature vectors for the Gonzalo pyramid data using |L| = |LE | = 3

and the level one neighbourhood model . . . . . . . . . . . . . . . . . . . . . 67

4.6 Sample feature vectors for the Modified pyramid data using |L| = |LE | = 3

and the level two neighbourhood model . . . . . . . . . . . . . . . . . . . . . 67

4.7 Sample feature vectors for the Modified pyramid data using |L| = |LE | = 7

and the composite neighbourhood model . . . . . . . . . . . . . . . . . . . . 67

4.8 Summary results for the obtained AUC and accuracy values (as ranges) for

different grid sizes d = {2.5, 5, 10, 15, 20}. . . . . . . . . . . . . . . . . . . . . 70

5.1 Statistical information for the proposed critical point detection technique

with respect to the evaluation data sets. . . . . . . . . . . . . . . . . . . . . . 89

5.2 The level one neighbourhood point coordinates, normals (ni) and the angles

(θ◦i ) between the normal of the centre grid point p0 and the neighbouring

normals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Number of features and the generated feature vector for pi. . . . . . . . . . . 91

5.4 Number of attributes (including the error class) for each LDM model using

a range of label sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 The tolerance value ξ associated with different grid sizes d . . . . . . . . . . 92

6.1 Accracy and AUC results using discretised error (springback) labels, the 5×5

key point PS technique, d = {2.5, 5, 10, 15, 20} mm, TCV, and the Gonzalo

pyramid datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xvii



6.2 Accracy and AUC results using discretised error (springback) labels, the 5×5

key point PS technique, d = {2.5, 5, 10, 15, 20} mm, TCV, and the Modified

pyramid datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 The Accuracy results obtained using real error (springback) values, the key

point PS representation with n = {3, 5, 7}, d = {2.5, 5, 10, 15, 20} mm and

TCV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 The AUC results obtained using real error (springback) values, the key point

PS representation with n = {3, 5, 7}, d = {2.5, 5, 10, 15, 20} mm and TCV. . . 118

6.5 Occurrences of the best accuracy results obtained using the 3 × 3, 5 × 5

and 7× 7 key point PS representation, d = {2.5, 5, 10, 15, 20} and real error

(springback) values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.6 Occurrences of the best AUC results obtained using the 3 × 3, 5 × 5 and

7 × 7 key point PS representation, d = {2.5, 5, 10, 15, 20} and real error

(springback) values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.7 The accuracy and AUC results when n = 3 (key vs all point variations). . . 120

6.8 The accuracy and AUC results when n = 5 (key vs all point variations). . . 120

6.9 The accuracy and AUC results when n = 7 (key vs all point variations). . . 120

7.1 The best parameter settings for the proposed techniques (variations) with

respect to each 3D representation technique. . . . . . . . . . . . . . . . . . . 129

7.2 The best AUC results for the proposed techniques (variations) using the same

data sets for training and testing with respect to each 3D representation

technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.3 The best AUC results for the proposed techniques (variations) using different

data sets for training and testing the generated classifier with respect to each

3D representation technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.1 Basic Notation used in this chapter. . . . . . . . . . . . . . . . . . . . . . . . 139

8.2 Springback statistical information (provided by IBF) for the GS shapes man-

ufactured using Cin and Ccorr, (year experiment was conducted included in

parenthesis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.3 Springback statistical information (provided by IBF) for the MS shapes man-

ufactured using Cin and Ccorr. (Year experiment was conducted included in

parenthesis.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.4 Statistical information concerning the LE label set used to describe the

springback values with respect to GS shape manufactured using Ccorr. . . . . 146

8.5 Statistical information concerning the LE label set used to describe the

springback values with respect to MS shape manufactured using Ccorr. . . . 147

9.1 An example on the iterative IPM process for a given shape where the average

predicted error (e) and the average absolute difference between the Cpred and

the Cin (diff) are recorded for six iterations n = 6. . . . . . . . . . . . . . . . 155

xviii



9.2 The best iteration ID, the average absolute diff and the springback distribu-

tion for the GSV1, GSV2, GTV1, GTV2, MSV1, MSV2, MTV1 and MTV1

datasets for d = 10 mm and d = 1 mm. . . . . . . . . . . . . . . . . . . . . . 158

B.1 Discretised attributes with descretised error labels for Gonzalo pyramid using

5× 5 key PS technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.2 Discretised attributes with descretised error labels for Modified pyramid us-

ing 5× 5 key PS technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

B.3 Real attribute values with discretised error labels for Gonzalo pyramid using

5× 5 key PS technique and by using different data sets. . . . . . . . . . . . . 189

B.4 Discretised error labels for Modified pyramid using 5 × 5 key PS technique

and by using diferent data sets. . . . . . . . . . . . . . . . . . . . . . . . . . 190

C.1 The values (Group ID) of different combinations of R and S based on Hand

et al. [95]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

C.2 Data sets example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

C.3 The MWW (c1|c2) value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

C.4 The MWW (c2|c1) value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

C.5 The MWW (c1|c3) value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

C.6 The MWW (c3|c1) value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

C.7 The MWW (c2|c3) value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

C.8 The MWW (c3|c2) value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

C.9 The overall AUC value for the given data sets. . . . . . . . . . . . . . . . . . 197

xix



Chapter 1

Introduction

1.1 Overview

Data mining is the process of extracting useful information from data. The discipline

has emerged as a response to the global increase in the amount of data that is available

for analysis, facilitated by corresponding technical advances in the ways that we are able

to collect and store data. The term data mining has been popularly used as a synonym

for Knowledge Discovery in Databases (KDD) by some researchers such as [74, 191],

while others view data mining as a sub-process within KDD such as [62, 63, 93, 94].

In this latter case KDD is viewed a multi stage process that includes elements of data

pre-processing and post processing of results (as well as the central data mining process).

In this thesis the latter view has been adopted. Currently data mining encompasses a

variety of different application oriented tasks within which we can include classification,

prediction, pattern recognition and clustering. The technology used to realise these tasks

is in part borrowed from the related fields of machine learning and statistics, and in part

is unique to the discipline of data mining. The work described in this thesis is directed

at classification (although the work also encompasses elements of pattern recognition).

Classification is what is known as a “supervised learning” technique in that it requires

the availability of pre-labelled training data with which to build a classifier that can

then be used to label “unseen” data.

Data mining was originally concerned with tabular data [3], but since its concep-

tion has been applied to increasingly complex forms of data such as text, images, video,

graphs and so on. In many cases it is not the data mining techniques that are of concern,

rather the way in which that data can be organised (represented) so as to permit data

mining. The work described in this thesis is concerned with the mining of three dimen-

sional (3D) surfaces. There are a number of applications where this is applicable, for

example geological analysis for terrains (so called “Terrain Classification”) as presented

in [130, 146] and image texture analysis such as that presented in [22]. (Images can be

viewed as 3D surfaces where the third dimension represents a “grey scale” value.) There

is also related work concerned with 3D object classification (mostly used in the medical

1



2

field in the context of Magnetic Resonance Imaging and Optical Coherence Tomogra-

phy data) such as that found in [5, 203]. The work presented in this thesis is directed

at 3D surfaces describing fabricated components produced using sheet metal forming

processes. More specifically, the work is directed at using classification techniques to

predict distortions in such components that occur as a result of the application of the

sheet forming processes used to produce them. To the best knowledge of the author

there is no reported research on classification techniques directed at 3D surfaces with

the aim of identifying (predicting) distortions associated with such surfaces.

The commercial motivation and the application focus for the work described in this

thesis, as noted above, is sheet metal forming. There is an increasing demand for accurate

and well formed sheet metal components in a variety of industries (such as the automotive

and aircraft manufacturing industries). To this end there are a number of manufacturing

process that can be adopted. One such process, and that used for evaluation purposes

with respect to the work described in this thesis, is Asymmetric Incremental Sheet

Forming (AISF). In AISF the metal sheet from which the desired component is to be

manufactured is clamped into a “blankholder”, a forming tool then follows a predefined

tool path to “push out” a desired shape [115]. The main advantage of AISF, over

alternative sheet metal forming processes, is that of cost reduction [86, 190]. However,

a major limitation of techniques such as AISF is that as a result of applying the process

deformations, called Springback are introduced whereby the produced shape is not the

same as the desired shape. Springback is defined as the elastic deformation that occurs

in a produced shape, as a result of the application of a sheet metal forming process,

that become apparent when the manufactured piece is unclamped. In other words

the produced shape differs from the desired shape. Springback is a complex physical

phenomenon that normally occurs because of the elastic properties of the material being

worked. The motivation for the work described in this thesis is considered further in

Section 1.2 below.

The work described in this thesis is thus directed at representing 3D surfaces in

such a way that classification techniques can be employed so as to effectively predict

springback (so that some mitigation can be applied). The main challenge of the work

is how “best” to describe the 3D surfaces, that define the sheet metal components,

so that the springback phenomena can be effectively predicted. An alternative way

of viewing the work described is that it is directed at uncovering correlations between

two 3D surfaces, T and T ′, so as to generate classifiers that can be used to predict

the correlation associated with “unseen” shapes. More generally the thesis addresses a

number of issues concerned with the representation of 3D surfaces and the employment of

classification techniques with respect to such surfaces (these issues are discussed further

in Section 1.3 below). The thesis proposes several different approaches to address these

issues. As will become apparent later in this thesis, very positive feedback was obtained

from the industrial partners who provided support for the work described (IBF1 and

1The Institute of Metal Forming (IBF) is a research institute belonging to the Faculty of Georesources
and Materials Engineering of RWTH Aachen University. See [180] for more details.
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Technalia1) and manufactured a number of “corrected shapes” produced using one of

the proposed springback prediction techniques. Perhaps the most significant novelty of

the work described in this thesis is in the context of the practical application of data

mining to support a real commercial application, namely sheet metal forming.

The rest of this introductory chapter is organised as follows. A more detailed de-

scription of the motivations of the work described in this thesis is presented in Section

1.2. Section 1.3 presents the main research question and its related issues. The main

research contributions are listed in Section 1.4. The research methodology adopted is

presented in Section 1.5. A review of the published work to date resulting from the re-

search described in this thesis is presented in 1.6. Section 1.7 represents the organisation

of the rest of this thesis. Finally, this chapter is concluded with a summary presented

in Section 1.8.

1.2 Motivation

From the foregoing the motivation for the research described in this thesis is to provide a

solution to a real world problem encountered in the sheet metal forming industry, more

specifically, to identify techniques for predicting the springback phenomena. Accurate

prediction of springback is considered to be of great significance with respect to sheet

metal manufacturing processes in general. Generally speaking, springback is induced as

a result of a variety of factors such as: (i) the material itself (ambient temperature,

thickness, type of raw material and so on), (ii) the manufacturing tools used (such as

the dimension and the shape of the tool head in the case of AISF) and (iii) the product

geometry [13, 18, 86, 114, 115]. Previous work conducted to minimise the springback im-

pact may be categorised into two main groups. The first group describes work directed at

reducing springback by modifying the manufacturing parameters such as the force used

to form the shape, this approach has been found to be expensive and has very limited

application in real life [141, 194]. The second group describes work intended to predict

springback and then to compensate for it by modifying the input shape description.

The work described in this thesis falls into this second category. In this second category

there is a substantial body of work based on using the Finite Element Method (FEM)

[38, 136, 178], however the application of FEM requires significant resource because of

the large number of parameters that need to be considered. In order to overcome this

limitation, and since springback is a “local” phenomena [12] due to the local forming

nature of AISF and distributed unequally across a desired shape, the approach taken

in this thesis is founded on a “local geometry” based approach. In summary the work

presented in this thesis is motivated by the following.

1. Commercial needs with respect to the sheet metal forming industry (especially the

automotive and airplane manufacturing industries).

1TECNALIA is a technological corporation, located in northern Spain, involved in sheet metal form-
ing research. See [111] and [112] for more details.
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2. The need for techniques to represent 3D surfaces in terms of their local geometry,

as springback is a local phenomena related to local geometries, in order to be able

to conduct further processing so as to effectively predict springback.

3. The desire to be able to generate effective classifiers to predict springback (based

on 3D surface representation techniques).

4. The desire to supply manufacturers with a “corrected” input description that

would serve to mitigate against the springback effect and consequently improve the

quality of shapes intended to be produced in the context of sheet metal forming.

5. The opportunity to research an aspect of data mining that has not previously

received attention with respect to the available literature (to the best knowledge

of the author).

The motivation for selecting the AISF sheet metal forming process to be the exem-

plar application was because of ongoing collaborative research carried out within the

Computer Science department in the University of Liverpool with respect to the EU

funded Innovative MAnufacturing of complex Ti sheet components (INMA) project (See

[112] for more details on this project). This has meant that suitable “training data” was

readily available together with access to domain experts in industry.

1.3 Research Question and Related Issues

Given the motivations presented in the previous section, the main research question

is “How best can 3D surfaces be represented to reflect local geometrical information

according to certain feature(s) of interest so that classification techniques can be applied

effectively?”. As noted at the start of this chapter, classification requires the provision

of “training data”. This thesis assumes that this training data will be available in the

form of a grid where the grid centre points are defined in terms of a x-y-z coordinate

system. Each grid centre point will also have a “class label” associated with it; the value

which we wish our classifier to eventually be able to predict. The main challenge of the

work described in this thesis is thus how best to represent this data so that effective

classifiers can be built.

In the context of sheet metal forming, information concerning the before and after

surfaces is presented in the form of “point clouds”, sets of points P = {p1, p2, p3, . . . , pn}
where each pi ∈ P is defined in terms of x-y-z coordinates [192]. In the context of

the AISF application domain the training data was generated using two 3D surface

descriptions, input Cin and output Cout, where Cin is a “point cloud” describing the

desired shape T while Cout is a point cloud describing the produced shape T ′.

To address the research question, as formulated above, the following related research

issues were identified:
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1. Training Set Generation. How best to generate the required training data, in the

desired grid format, given two correlated input clouds. In other words how best

to identify a correspondence between Cin and Cout, so that appropriate (grid)

training data can be produced.

2. 3D Surface Representation. The need to determine a most appropriate 3D sur-

face representation technique. The representation technique that is best able to

describe the nature of 3D surfaces so as to allow the effective application of clas-

sification algorithms.

3. Best Classification Technique. Given a particular grid encapsulation there are

a number of different classification techniques that can be applied. Different sur-

face representations may require different classification algorithms to be employed.

There is a need to thus identify the most appropriate classification algorithm/ap-

proach compatible with a particular representation.

4. Corrected Input Generation. With respect to unseen data, once appropriate class

labels have been identified, these need to be applied in some way. How these are

applied is application dependent but in the context of sheet metal forming, and

especially AISF, a “corrected” cloud must be produced. How such a corrected

cloud can best be produced was thus an issue to be addressed.

It should also be noted that, although the above is directed at AISF, any proposed solu-

tion to the identified research issues will also have more general applicability; however,

this is not considered further in this thesis.

Given the above the following main objectives for the work described in this thesis

were identified:

1. To research and identify a framework to compare T and T ′ (Cin and Cout) shapes

in order to generate the required training data in a simple, easy and effective

manner.

2. To research, identify and evaluate a variety of 3D surface representation techniques

appropriate to classifier generation.

3. To research and investigate the suitability of a variety of classification techniques

with respect to the proposed representation techniques (individual representation

techniques may be best suited to different classification algorithms).

4. To research and investigate mechanisms to generate corrected clouds in order to

utilise the predictions produced by classifiers.

5. To investigate the possibility of defining an “Intelligent Process Model” with gen-

eral applicability within the sheet metal forming industry.
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1.4 Contributions

The main contributions of this thesis are the proposed representation techniques for

modelling 3D surfaces in such a way that the main geometrical characteristics of such 3D

surfaces are captured. Most previously considered 3D surface representation techniques

have been directed at the application domain of visualisation inspection [19, 106, 205];

however, as noted at the start of this chapter, little work has been done related to

the representation of 3D surface to support both feature extraction and classification.

Therefore, based on the aforementioned objectives of this thesis, the main contributions

of the research (with respect to both computer science and industry) can be itemised as

follows:

1. A 3D Surface Correlation Technique: In the context of sheet metal forming a

novel and effective framework to identify the correlations between the Cin and Cout

point clouds describing a given surface in order to effectively identify the features

of interest (springback) so that a comprehensive description for the desired shape

in terms of local geometry and anticipated springback can be produced.

2. The Representation And Springback Prediction (RASP) Framework:

In the context of sheet metal forming, an effective framework for processing point

cloud data and generating springback classifiers for future use.

3. The Local Geometry Matrix (LGM) representation: A novel technique to

represent 3D surfaces in terms of local neighbourhoods based on ideas taken from

the field of image texture analysis (especially the use of Local Binary Patterns

[88]).

4. The Local Distance Measure (LDM) representation: A mechanism to rep-

resent 3D surfaces in terms of the distance to a nearest edge or corner (there

appears to be a correlation between springback and proximity of edges).

5. The combined LGM and LDM representation: An effective 3D surface rep-

resentation technique that combines the proposed LGM and LDM representations.

6. The Point Series (PS) representation: An novel and effective technique to

represent 3D surfaces in terms of a linearisation of space, a series of points, that

can be incorporated into a KNN classification style technique.

7. Best Classification Techniques: The identification of individual classification

techniques best suited to each of the proposed representations.

8. A Corrected Point Cloud Generation Technique: In terms of sheet metal

forming an effective mechanism with which to generate corrected point clouds

based on springback predictions.

9. Intelligent Process Models (IPMs): Two mechanisms for combining the spring-

back prediction and corrected point cloud generation mechanisms.
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1.5 Research Methodology

In order to provide an answer to the above research question and acknowledging, in the

context of sheet metal forming, that springback is primarily affected by the nature of

local geometries, the proposed research methodology was centred on possible representa-

tions of 3D surfaces. In other words the broad research methodology was to investigate

a sequence of different techniques to represent 3D surfaces. As indicated in Section

1.4 three different styles of representation were considered: (i) a Local Binary Pattern

(LBP) based technique, (ii) a distance from nearest edge based technique and (iii) a

linearisation of space based technique.

As noted at the beginning of this chapter classification requires the provision of

training data. To this end “real provenance” data sets, describing 3D surfaces that

have been manufactured, were obtained from industry. More specifically The Tecnalia

Corporation (Spain) and IBF institute of metal forming (Germany) with whom the

Department of Computer Science at The University of Liverpool has contact within

the context of the INnovative MAnufacturing (INMA) Framework 7 European project.

The data sets described two flat topped pyramid shapes referred to as the Gonzalo and

Modified pyramids (more details of these data sets will be presented later in Chapter 3).

In total eight data sets were obtained each comprising before and after point clouds.

To evaluate the proposed representations each was applied to the provided data

and the result used to generate classifiers. These classifiers were then evaluated using

standard approaches used with the field of data mining (such as the use of Ten-fold

Cross Validation (TCV) [73], and the analysis of metrics such as the Area Under the

receiver operating Curve [26, 97]). As will become apparent later in this thesis some

excellent results were produced. To determine whether the results were also statistically

significant Friedman and Nemenyi tests were used [50, 66, 76].

In the context of the sheet metal forming application used as a focus for the work

described in this thesis it was also considered desirable to identify mechanisms whereby

springback predictions could be used to generate corrected clouds. This required an

investigation into the generation of corrected clouds. So that the correction mechanism

could be effectively applied it was decided to combine the mechanism with the classifica-

tion (springback prediction) process into a single Intelligent Process Model (IPM). Two

IPMs were considered: (i) a single pass IPM and (ii) an iterative IPM. The distinction

being that the second incorporated an iterative prediction-correction loop rather than a

straightforward application of the prediction result.

To evaluate the IPM concept a number of corrected shapes were manufactured (by

IBF in Germany) so that a full evaluation of the research work described in this thesis

could be undertaken. The organisation of these tests required a significant lead time

and thus it was only possible to test the LGM representation, coupled with the single

pass IPM, in this manner. However, again as will become apparent later in this thesis,

the results obtained were very encouraging.
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1.6 Published Work

In this section an annotated list of publications to date that have arisen from the work

described in this thesis is presented:

• Conference papers:

(a) M. Khan, F. Coenen, C. Dixon, and S. El-Salhi. “Finding Correlations

Between 3D Surfaces: A study in Asymmetric Incremental Sheet Forming”.

In Machine Learning and Data Mining in Pattern Recognition (Proceedings

Conference MLDM 2012), Springer LNAI 7376, pages 336-379, 2012. This

paper presented the first 3D surface technique, the LGM technique, proposed

in this thesis. In the paper several variations of the LGM technique combined

with different classification techniques were considered and evaluation. The

main finding was that there is no significant difference between them. It

should also be noted that the reported evaluation was conducted using two

alternative data sets, referred to as the small and large pyramids for obvious

reasons, which are not referred to with respect to the work described in

this thesis (because the new data sets are more reliable specially in terms

of materiel type.). This paper is related to the grid representation and the

LGM techniques described in Chapters 3 and 4 respectively.

(b) S. El-Salhi, F. Coenen, C. Dixon, and M. S. Khan. “Identification of Cor-

relations Between 3D Surfaces Using Data Mining Techniques: Predicting

Springback in Sheet Metal Forming”. In SGAI International Conference on

Artificial Intelligence, pages 391-404, 2012. This paper followed on from the

work described in (a) and introduced the second proposed 3D surface rep-

resentation technique, the LDM technique. Evaluation was conducted by

comparing the operation of the LDM technique with the LGM technique pro-

posed earlier. A combination of both LGM and LDM was also proposed.

The main finding was that the combination of the LGM and LDM techniques

achieved much better performance than when each technique was used in iso-

lation. Again the reported evaluation used the small and large pyramid data

sets used in the early stages of the work described in this thesis before the

acquisition of the Gonzalo and Modified data sets. This paper is related to

the LGM and LDM techniques described in Chapters 4 and 5 respectively.

(c) S. El-Salhi, F. Coenen, C. Dixon, and M. S. Khan. “Predicting Features in

Complex 3D Surfaces Using a Point Series Representation: A Case Study in

Sheet Metal Forming”. In Advanced Data Mining and Applications, volume

8346 of Lecture Notes in Computer Science. 2013. This paper introduced the

third 3D representation, the Point Series representation technique. The paper

describes how a “bank” of point series patterns (curves) can be established

to describe a given 3D surface and how a k -nearest neighbour technique can
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applied for prediction purposes. The technique was evaluated, in the context

of sheet metal forming, using the Gonzalo and Modified pyramids (as opposed

to the small and large pyramid data sets used in earlier work). This paper is

related to the PS techniques described in Chapter 6.

• Journal paper:

(d) S. El-Salhi, F. Coenen, C. Dixon, and M. S. Khan. “On Predicting Spring-

back Using 3D Surface Representation Techniques: A Case Study in Sheet

Metal Forming”. In Expert Systems with Applications (2015), Vol. 42, pages

79 - 93. This paper is a combination and extension of the work described in

(a), (b) and (c), presented in such a way that a more substantial comparisons

between the operations of the three representation techniques, LGM, LDM

and PS, was included along with a statistical significance comparison. The

statistical comparisons showed a significant difference between the proposed

techniques. The Gonzalo and Modified pyramids were used for the evalua-

tion. This paper is related to the LGM, LDM and PS techniques described

in Chapters 4, 5 and 6 respectively and the statistical study presented in

Chapter 7.

(e) M. S. Khan, D. Bailly, F. Coenen, C. Dixon, S. El-Salhi, M. Penalva, A.

Rivero, “An Intelligent Process Model: Predicting Springback in Single Point

Incremental Forming”. In The International Journal of Advanced Manu-

facturing Technology (2014), Vol. 74, pages 1-12. This paper presented the

Intelligent Process Model (IPM) as a process to generate “corrected” versions

of the input clouds. The LGM technique presented in papers (a) and (b) was

used to translate the 3D surface into a suitable format whereby a classifier

could be used to generate the springback prediction effectively. Comparisons

between the shapes produced using the initial input clouds and the shapes

produced using the corrected clouds are presented, demonstrating that the

IPM can be successfully used to improve the quality of the produced shapes.

This paper is related to the work presented in Chapters 8 and 9.

The work described in this thesis has also lead to a number of “spin off” investiga-

tions, not reported on in this thesis, which in turn has resulted in further publications

(to which the author has made some contribution). For, completeness these publications

are summarised below.

• Conference papers:

(f) W. Yu, F. Coenen, M. Zito, and S. El-Salhi. Minimal Vertex Unique Labelled

Subgraph Mining. In DaWaK, pages 317-326, 2013. This paper proposed

the concept of Vertex Unique Labelled Subgraph (VULS) mining, a variation

of graph mining. The significance with respect to the work reported in this
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thesis was that the VULS concept can be used as another mechanism for rep-

resenting 3D surfaces. The reported evaluation was founded on the Gonzalo

data set also used with respect to the work described in this thesis.,

(g) W. Yu, F. Coenen, M. Zito, and S. El-Salhi. Vertex Unique Labelled Sub-

graph Mining. In SGAI Conf., pages 21-37, 2013. This paper is an extended

version of (f) and proposed minimal VULS mining (a variation of VULS min-

ing). The significance of this paper in the context of the work described

in this thesis is that evaluation was again conducted in the context of AISF

springback prediction using the Gonzalo data set. The reported experimental

results indicate that the proposed minimal VULS algorithm can successfully

identify all minimal VULS in reasonable time and with (in some cases) ex-

cellent coverage (an important requirement in the context of the AISF sheet

metal forming application used as a focus for the work).

(h) W. Yu, F. Coenen, M. Zito, and S. El-Salhi. Vertex unique labelled sub-graph

mining for vertex label classification. In Advanced Data Mining and Applica-

tions, volume 8346 of Lecture Notes in Computer Science. 2013. This paper

is a further extension of (f) and (g), again using the AISF application domain

for evaluation purposes. The main contribution of the paper was a Match-

Voting algorithm for springback prediction. The results again indicated that

the minimal VULS concept could be successfully applied in the context of

sheet metal forming.

With respect to the above three publications it should be noted that the work on

VULS is on going and has yet to reach full fruition. It is outside the scope of this thesis

and thus not considered further in the following chapters.

1.7 Thesis Organisation

In this section the overall organisation of the remainder of this thesis is presented. Chap-

ter 2 presents the necessary background to the work described together with a review of

related work. An overview of the sheet metal forming application domain and the data

sets used with respect to the evaluation reported in this thesis are presented in Chapter

3. The detail of the three proposed 3D surface representation techniques are presented

in Chapters 4, 5 and 6 respectively. Chapter 7 presents a statistical significance com-

parison of these three techniques to determine whether there is a statistically significant

difference in their operation. Chapter 8 then presents the proposed IPMs. In Chapter

9, some results obtained when real parts are manufactured using one of the proposed

IPMs are presented and discussed. This thesis is concluded with a summary of the main

findings, and some suggested future work, in Chapter 10.
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1.8 Summary

This chapter has defined the main motivations, main research question and related

issue associated with the work described in this thesis. The work is broadly focused

on three surface representation techniques: (i) The Local Geometrical Matrix (LGM)

technique, (ii) the Local Distance Measure (LDM) technique and (iii) the Point Series

(PS) technique. The main objective of the work described is to provide an answer to the

research question: “how best can 3D surfaces be represented to reflect local geometrical

information according to certain feature(s) of interest so that classification techniques

can be applied effectively?”. The main contributions and research methodology were

also presented. In the following chapter (Chapter 2) previous work and background to

the research presented in this thesis is reviewed.



Chapter 2

Background, Related Work and

The Application Domain

2.1 Introduction

This chapter presents a review of the background, related work and the application

domain central to the work described in this thesis. The related work is mainly founded

on three areas of research study (as shown in Figure 2.1): (i) sheet metal forming and

Asynchronous Sheet Metal Forming (AISF) in particular, (ii) Data Mining (especially

classification) and (iii) 3D surface representation. Each of these is considered in this

chapter. We commence the discussion in Section 2.2 with a review of the application

domain. We then go on to discuss the concept of data mining in Section 2.3, and 3D

surface representation in Section 2.4. For evaluation purposes, as reported later in this

thesis, a number of classification techniques were employed, a review of these techniques

is included in Section 2.3. A review of the evaluation metrics, and their derivation,

used with respect to the work described in this thesis, is then presented in Section 2.5.

Finally, this chapter is concluded with a summary in Section 2.6.

Figure 2.1: The main themes of the Thesis: Sheet Metal Forming (AISF in particular),
Data Mining (classification in particular) and 3D Surface Representation.

12
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2.2 Application Domain: Asymmetric Incremental Sheet

Forming (AISF)

As noted in the introduction to this thesis the exemplar domain at which the work

described in this thesis is directed is sheet metal forming, more specifically Asymmetric

Incremental Sheet Forming (AISF). AISF as a process was patented in 1967 by Lezak

[132], however academic work related to AISF was not undertaken until much later. The

first publication, to the best knowledge of the author, was in 2005 [115]. AISF is defined

“as a sheet metal process that: (i) has a solid, small sized forming tool; (ii) does not

have large, dedicated dies; (iii) has a forming tool which is in continuous contact with

sheet metal; (iv) has a tool that moves under control, in three dimensional space (CNC)1

and (v) can produce asymmetric sheet metal shapes” [115]. Of note is that the sheet

thickness of the part being manufactured reduces (in an irregular manner) as the shape

is pushed out; taken to extreme AISF will result in undesired fractures being introduced

into the part. The basic component of an AISF machine are the sheet metal blank, the

blank holder where the sheet metal is fastened and the forming tool used to form the

desired shape according to a prescribed path. The process is illustrated in Figure 2.2.

The tool spins at w angular speed and moves horizontally and vertically at v speed to

form the shape as shown in the figure. Single Point Incremental Forming (SPIF) or Two

Point Incremental Forming (TPIF) are two alternatives to AISF. The distinction is that

in TPIF a “die” is used to support the sheet metal over which the tool head is passing.

SPIF is sometimes referred to as dieless AISF. With respect to the work described in

this thesis; experiments were conducted using only SPIF; hence wherever the term AISF

is used this refers to SPIF or dieless AISF.

AISF is mainly used for small production runs and prototyping. AISF supports a

wide range of applications in industrial fields such as the aerospace industry, where the

trend is to manufacture small numbers of parts. Interestingly the AISF concept has

also been used in the medical contexts to produce artificial limbs and dental crowns.

For further discussion on the applications of AISF the interested reader is referred to

[114, 115].

The most significant issues associated with the AISF sheet metal forming processes

are: (i) production time (it is a lengthy process, several hours to produce a single part);

(ii) it is time consuming and requires trial and error experiments to determine the best

parameters values for the process and (iii) deformation (geometric inaccuracies) resulting

from the “springback” that is introduced as part of the process [86]. It is the latter that is

of concern with respect to the work presented in this thesis. Springback is the geometric

“elastic deformation” that manifests itself on completion of the AISF process (when

the part is unclamped); as a result the produced shapes is not identical to the intended

shape. An additional issue is that springback is unequally distributed and non-linear [36,

40, 209]. Springback tends to be induced by several factors: (i) the shape and dimensions

1CNC is an acronym for computer controlled cutting.
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Figure 2.2: The AISF process. The basic elements of AISF are the metal forming
force F , the tool speed v and the spin angular speed w. [114].

of the manufacturing tool (the tool head), (ii) the properties of the material from which

the part is being manufactured and (iii) the geometry of the shape to be manufactured

[13, 18, 65, 86, 114, 115, 140, 154]. It is generally acknowledged within the industry that

the geometric shape of the part to be manufactured is the most significant factor. Hence

the springback phenomena encountered in AISF is good exemplar application domain

for the work presented in this thesis. Some further discussion regarding springback is

thus presented in the following section.

2.2.1 Overview of Springback

There has been a substantial amount of reported work on springback analysis, prediction

and compensation. This previously conducted work can be categorised into four main

approaches:

1. Experimental Approaches: Work to identify the optimal parameters for a cer-

tain (simplified) forming processes and to explain the relationship between these

parameters through a series of “try-out” experiments.

2. Analytical approaches: Typically concerned with describing the changes in

the “before” and “after” geometrical shape of a given part using, mathematically

based, theoretical analysis techniques. Generally adopted in the context of simple

shapes.

3. Modelling Approaches: Used for investigations with respect to more compli-

cated 3D shapes. The idea is to develop models of the manufacturing process with
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respect to different parameters. Normally, the Finite Element Method (FEM) or

Artificial Neural Network (ANN) methods are employed to generate a fully oper-

ational simulation environment whereby springback predictions can be made (and

in some cases compensated for).

4. Regression Approaches: Work that has adopted a regression based approach to

attempt to characterise springback. This approach incorporates the most recent

work on springback analysis.

Note that other categorisations have also been proposed (see for example [154]). Some

further detail concerning the above four approaches is given below. In each case appro-

priate examples are given.

Using experimental approaches springback is typically analysed and characterised

with respect to particular forming process parameters or material properties [34, 134,

169, 218]. Experimental approaches are typically used to identify the relationship of

springback with respect to other parameters such: as sheet thickness, tool radius, tool

head size and the different properties of the material used. Two processes, called “V-

bending” and “U-bending”, are the most popular techniques used with respect to the

experimental approach since as a result of the “bending” the induced springback is large

and can thus be easily detected and analysed. Examples of this approach can be found

in [47] where V-bending was used and Zhang et al. [230] where U-bending was adopted.

Despite the simplicity of the approach it does not sufficiently take into consideration

actual manufacturing process conditions [34]; it is also time-consuming and expensive

[134].

In the case of the analytical approaches springback prediction is founded on a theo-

retical analysis that entails certain assumptions and simplifications, namely a simplified

tool description is assumed and the nature of the manufacturing conditions are sim-

plified. Some work that has adopted the analytical approach has simplified the process

even further by considering only simple 2D shapes (and without considering any realistic

forming process), see for example [149, 169, 230]. Examples of work using the analytical

approach where the forming process is taken into consideration can be found in [14, 230].

It is generally acknowledged that the analytical approach is informative even though the

process is over simplified. It has also been suggested that the analytical approach can be

used to provide support for modelling approaches so as to provide some understanding

of the manufacturing process conditions and parameters that have an impact on the

nature of springback.

Modelling approaches, as the name suggests, are directed at building a simulation

environment. The most frequently used modelling approaches are based on FEM, see

for example [36, 137, 153, 222]. Some researchers, such as Karafillis et al. [119], have

proposed iterative FEM models where springback calculations are used to optimise the

tool path. Other researchers have used FEM not only to predict but also to com-

pensate for springback error (see for example [38, 150]). There has been some work
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where the outcomes from FEM simulations have been analysed using Rough Set Theory

(RST). Examples include [185] and [219]. In [185] RST was applied to FEM U-bending

simulation results in order to identify optimal forming process parameters. In [219] a

framework was proposed, based on the Knowledge Discovery in Data (KDD) process,

whereby FEM simulation results could be collected and analysed using RST. Despite the

sometimes successful application of FEM it requires significant resource to undertake.

The limitation and drawbacks of FEM, as presented in [43, 99, 134, 150, 204], may be

summarised as follows.

1. Identifying the different alternatives for each parameter required by FEM is chal-

lenging and time consuming.

2. Given that FEM supports different alternatives for each parameter and that these

parameters may be related, choosing a particular parameter setting may impact

on the options for other parameters.

3. To generate an accurate simulation environment an extensive set of “try-out”

experiments must first be undertaken with respect to the alternatives for each

parameter. This is a resource intensive process. Hadoush et al. [90] estimate that

the time required may vary between 16 hours to a few days.

4. To achieve a highly accurate level of prediction requires accurate identification of

the forming parameters which in turn requires a degree of expertise (which may

be informed using analytical work).

5. FEM cannot respond interactively when a new condition arises that was not con-

sidered during the FEM design stage [56].

6. The choice of alternatives for the various parameters impact upon the simulation

process with respect to: (i) the integration algorithm used (implicit or explicit), (ii)

the number of integration points and (iii) the type of shape used in the simulation

(shell, solid or 2D plane) [134].

7. FEM entails mathematical approximations (such as numerical integration) which

in turn are a source for potential inaccuracies (sensitive to numerical tolerances).

In other words, the reliability and accuracy provided by FEM, in many cases, do

not satisfy industrial requirements [150].

8. Limited applications in real life as prediction using FEM is very time consuming

[91, 134].

Despite the significant work that has been conducted to develop and improve FEM

simulation/modelling, the accuracy of the resulting springback prediction remains in-

sufficient with respect to industrial requirements [34, 157]. Therefore Artificial Neural

Networks (ANNs) are often quoted as being a good alternative modelling approach to



17

FEM. Moreover, ANN approaches are suited to interactive simulation environments such

as those described in [56, 126, 148]. The forming process parameters, such as tool ge-

ometry and material properties, are input into the ANN for training purpose. Typically

an ANN comprises several layers where each layer consistis of several “neurons”. The

structure of an ANN is determined after several iterations of training [110]. The work

presented in [92] proposed a hybrid simulation environment based on both FEM and

ANN simulation to predict springback. However, the main drawback of the use of ANNs

is the computational cost (time and memory) required. In addition, when using ANN

techniques it is difficult to understand the internal operation due to the black box na-

ture of ANNs. ANN techniques can be argued to be a data mining technique. However,

there has been a very little reported work that considered the problem of springback

prediction in the context of classification (as in the case of the work described in this

thesis).

The final category of previous work on springback analysis considered in this review

is the work based on regression analysis. The significance of this approach is that it is

the most recent. A good example of the use of this approach, in the context of spring-

back prediction, can be found in [17] where a Multivariate Adaptive Regression Splines

(MARS) technique to support springback prediction is proposed. MARS incorporates

a non-parametric1 statistical regression test [75]. Initially, two files are generated; one

describing the desired shape and one the obtained shape (in other words T and T ′) in

terms of a small number of “features” (types of geometries, such as flat planes), along

with a description of their locations, orientations and normals. A comparative analysis

between the description files (before and after manufacturing) was used to generate an

accuracy file that contains details about each individual point located in the T and T ′

point clouds along with their springback values in the x, y, and z directions. Features

of a particular type (such as flat plane features) were identified and then linked with

this accuracy file. Then for each identified individual feature a separate text file was

produced that contains information about all the points (vertices) within the feature

with respect to certain parameters (some parameters are related to the part to be man-

ufactured such as its geometry while other parameters are related to the manufacturing

process such as tool diameter). Series of “try-out” experiments were conducted to deter-

mine the main parameters of each relevant feature. After that, the text files were used

to generate the “MARS” models which could then be employed to predict springback

in the context of new shapes that contain the identified feature types. Although an

improved result was reported, the usage of MARS is limited because it typically covers

only a limited range of features. Another disadvantage is that the technique requires

complex structures to compare features with corresponding parameters; this complexity

increases as the number of features is increased and/or when the features are specified

to a greater level of detail.

1There is no assumption about the relationship between the variables.
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The approach presented in this thesis is founded on the idea of classification. The

conjecture is that sufficiently robust classifiers can be learnt without the need for: (i)

a detailed understanding of the effect that specific parameters have on the springback

phenomena (as in the case of the experimental and analytical approaches) or (ii) a

deep understanding of the process (as in the case of the modelling approaches) or (iii)

restriction to a limited set of “features” (as in the case of the regression approach).

To the best knowledge of the author there has been no reported work on the use of

classification techniques to predict springback in the context of AISF (or sheet metal

forming in general).

It should also be noted that successful springback prediction (however this is done)

is only “half of the story”. For such predictions to be useful they need to be applied.

The application of springback prediction, in order to produce high quality shapes, is also

a research issue [10]. For example the first version of the the Displacement Adjustment

(DA) algorithm, suggested by [137], was enhanced to produce the Smooth Displacement

Adjustment (SDA) algorithm so as to aid the application of springback predictions.

Further discussion on the application of springback, in the context of the work presented

in this thesis, is described in Chapter 8.

2.3 Knowledge Representation and Data Mining

Knowledge Discovery in Databases (KDD) is the process of knowledge extraction from

raw data. The field of KDD came into being in the early 1990s [74]. According to Fayyad

et al. [62, 63] the KDD process is defined as the “non-trivial process of identifying

valid, novel, potentially useful and ultimately understandable patterns in data”. Despite

the different definitions that have been proposed for KDD, such as those presented in

[21, 62, 94, 96], the KDD process is generally acknowledged to comprises the following

steps [62–64]:

• Data cleaning and pre-processing: The detecting, and correcting or removing,

of errors caused by the presence of “outliers” or noise and irrelevant data; and the

filling in of missing values where appropriate.

• Data integration: In the case where data comes from multiple sources the re-

moval of inconsistencies.

• Data selection: The identification of a subset of the available variables according

to the nature of the knowledge discovery task to be performed.

• Data transformation: Translation of the data into an appropriate format with

respect to the knowledge discovery technique to be applied.

• Data mining: The actual knowledge discovery process where the patterns of

interest are identified.
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• Pattern evaluation: Analysis of the discovered patterns typically using metrics

of some form.

• Usage: The application of the extracted knowledge in the context of some appli-

cation domain.

From the foregoing the data mining step is the most significant. A variety of defini-

tions for the phrase “data mining” can be found in the literature [21, 62, 94, 96]. For

example Han describes data mining as “the process of discovering interesting patterns

and knowledge from large amounts of data” [94]. What these definitions have in common

is that the ultimate goal of data mining is the extraction of hidden knowledge from data.

Thus, KDD can be viewed as a multi-stage process where the data mining stage is the

most significant within the overall process [62, 63, 167].

Data mining encompasses a number of different kinds of pattern identification. That

of interest with respect to the work described in this thesis is prediction (also referred to

as classification or categorisation). The challenge is how best to “learn” the predictor.

This is actually done in a supervised manner where we have pre-labelled training data.

A variety of algorithms are available for the generation of classifiers using pre-labelled

training data [2, 24, 37, 94, 195]. Five are used with respect to the work described in this

thesis: (i) Decision Trees (in particular, C4.5 technique), (ii) Rule-Based Classifiers (in

particular, JRIP and PART techniques), (iii) Näıve Bayes, (iv) a neural network classifier

and (v) k -Nearest Neighbour (k -NN). It should be noted that for the five classification

techniques we used the implementation available in Weka [215]. Each is described in

more detail in the following five sections.

2.3.1 Decision Tree

Decision Trees (DTs) are a widely used classification technique due to their simplicity,

ease of understanding, explanation generation capability and interpretability. In addi-

tion, if desired, they can easily be converted into a rule format [216]. In the context of

classification a decision tree is a tree structure where the root and body nodes represent

alternatives while the leaf nodes represent individual classifications. More specifically

each root/body node represents an attribute and the connections to child nodes poten-

tial individual attribute values or groups of values. Therefore, a DT can be said to be

a tree based classifier. In a binary DT there can only be two alternatives at each root/-

body node; in other forms of DT there may be many alternatives emanating from root

and body nodes. When constructing a decision tree the challenge is in selecting which

attribute is to be represented by which node and how to split the range of potential

values that an attribute might have. Once a DT is constructed it becomes very easy

and straightforward to classify a new data item starting from the root and finding a

route through the DT until one of the leaves (classes) is reached. Typically DT con-

struction is top down following a “greedy” search process, with no backtracking, based

on a “divide and conquer” strategy where the training set is partitioned recursively
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into subsets according to some splitting criterion. Various splitting criteria have been

proposed. Popular measures include Information Gain, Gini Index and Gain Ratio (for

more information see [55, 94]). A variety of decision tree generation algorithms have

also been proposed.

With respect to the work described in this thesis the C4.5 algorithm [173] was

adopted as it has been considered to be a benchmark DT classifier throughout the data

mining community. C4.5 uses Information Gain (IG) as the splitting criteria whereby

the attribute with the highest information gain is selected to be used in the current

node. IG is calculated using Equation 2.1:

IG(D,X) = Entropy(D)− Entropy(D,X) (2.1)

where IG(D,X) is the information gain for the data set D with respect to attribute X.

Entropy for the data set D is calculated using Equation 2.2.

Entropy(D) =

i=|c|∑
i=1

−pi log pi (2.2)

where pi is the probability of class i ∈ c. Normally, pi =
|ci,D|
|D| where |ci,D| is the number

of records corresponding to class i with respect to the entire data set D. Intuitively,

0 ≤ Entropy(D) ≤ 1. Entropy is a measure of the homogeneity of a given data set.

If Entropy(D) = 0, then all the records belongs to the same class and therefore the

outcome is certain. On the other hand, if Entropy(D) = 1 this would mean that the

data set is totally homogeneous and all classes are equally likely.

IG is thus a measure of the expected reduction in the entropy for a given attribute.

In other words IG indicates the “importance” of a given attribute with respect to the

DT construction process. In the context of Equation 2.1 the importance of an attribute

is determined by identifying the entropy value of the attribute before and after splitting.

The same calculation is made for the complete set of attributes and the attribute that

maximises information gain selected for the DT node in question.

Example: The following example illustrate the process of constructing the DT for

a given data set (D) where the IG measurement is adopted as the splitting criteria.

Table 2.1 describes a small hypothetical data set (D) comprised of 14 records describing

bank customers, each record consists of five attributes: (i) Status describing whether

the customer is a new or existing customer (True or False), (ii) Age (Young, Midde or

Senior), (iii) Gender (Male or Female), (iv) Income (Low, Medium or High) and (v)

Loan (Yes or No). The Loan attribute is the class attribute. The steps required to

induce the DT for the given data set (D) are described below.

1. For the root node, the IG values for each attribute is calculated. For the Age

attribute, the entropy values for the data set D before and after splitting are
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calculated. Recall that the dataset D is a collection of 14 records with 9 Y es and

5 No records. So, the entropy before splitting is:

Entropy(D) = −9/14 log 9/14− 5/14 log 5/14

= 0.94

After splitting and with respect to age attribute, the data set (D) is divided into

three subsets according to the attribute values as shown in Figure 2.3 and therefore

the entropy after splitting Entropy(D,Age) is calculated as follows:

Entropy(D,Age) =
∑

v∈{young,
middle,
senior}

|Sv|
|D|

Entropy(Agev)

= 5/14 Entropy (Ageyoung) + 4/14 Entropy (Agemiddle)

+ 5/14 Entropy (Agesenior)

Where |Sv| is the number of records where S has the label v and Sv/D is the

proportion of records that exist in the the set Sv that features the label v (Sv ⊂ D).

Entropy(Ageyoung), Entropy(Agemiddle) and Entropy(Ageyoung) are calculated as

follows.

Entropy(Ageyoung) = −3
5 log 3/5− 2

5 log 2/5 = 0.97

Entropy(Agemiddle) = −4
4 log 4/4− 0

4 log 0/4 = 0.0

Entropy(Agesenior) = −3
5 log 3/5− 2

5 log 2/5 = 0.97

Now, the value of Entropy(D,Age) is calculated as:

Entropy(D,Age) = 5/14 (0.97) + 4/14 (0) + 5/14 (0.97)

= 0.69

2. The value of the IG(D,Age) is calculated as follows.

IG(D,Age) = Entropy(D)− Entropy(D,Age)

= 0.94− 0.69

= 0.26

3. Similarly, the IG value for the rest of attributes are calculated in the same manner

and thus IG(D, Income) = 0.03, IG(D,Gender) = 0.15 and IG(D,Status) =

0.05.

4. Based on the obtained IG values, the attribute associated with the highest IG

value is selected to represent the current node. In this case, the age attribute is

selected to represent the root node.
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5. Steps 1, 2, 3 and 4 are repeated recursively for each node in the tree as it is

constructed until no more records and/or attributes remain. The Final DT is

shown in Figure 2.4 is obtained.

Status (new Customer) Age Gender Income Loan

True Young Female High No
False Young Female High No
True Middle Female High Yes
True Senior Female Medium Yes
True Senior Male Low Yes
False Senior Male Low No
False Middle Male Low Yes
True Young Female Medium No
True Young Male Low Yes
True Senior Male Medium Yes
False Young Male Medium Yes
False Middle Female Medium Yes
True Middle Male High Yes
False Senior Female Medium No

Table 2.1: A labeled training data set consists of 14 records. Four attributes are used
to describe the data set while the Loan attribute used to label the record with either

Yes label (coloured in red) or No label (coloured in green).

Figure 2.3: The three subsets of the data set D obtained after splitting with respect
to the different attribute values: young, middle and senior.

2.3.2 Rule-Based Classifiers

Rule-Based Classifiers comprise sets of rules R = {r1, r2, · · · , rn}. In this case, R is

referred to as a Rule Base. The rules have an X ⇒ Y format where X is a condition
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Figure 2.4: The DT classifier for the data set D presented earlier in Table 2.1.

(antecedent) and Y is a class label (consequence). The condition can be either a single

attribute or a conjunction of attributes. If the attributes of a given new record satisfy

the condition X of a rule r then it is said that r covers the record and the label from Y

is used to classify the record.

Example

The set of rules described below {R1, R2, R3, R4, R5} is an example of a rule based

classifier for the data set D presented earlier in Table 2.1:

R1: if Age=middle → loan= Yes

R2: if Age=young and Gender= male → loan= Yes

R3: if Age=young and Gender= female → loan= No

R4: if Age=senior and New customer = true → loan= No

R5: if Age=senior and New customer = false → loan= Yes

Typically, the rules are learned one at a time and added repeatedly to the rule

set. During the generation process the records covered by each rule are removed from

the data set prior to the next iteration, otherwise the next rule would be identical to

previous one. This process is repeated until the entire training data set is covered or

the number of the records covered by a new rule is less than some predefined threshold.

Further details regarding the construction of rule based classifiers, and the different

issues related to the construction process, are beyond the scope of this thesis, for more

details see [72, 93, 94, 195].

In the context of the work described in this thesis the RIPPER (Repeated Incremen-

tal Pruning to Produce Error Reduction) algorithm (called JRIP in Weka) is used [41].

Using JRIP rules are generated directly from the dataset, starting with an empty set of

rules which is iteratively added to (more details can be found in [93, 94, 195]). The main



24

advantages of Rule-Based Classification are: (i) simplicity, (ii) ease of interpretation and

generation and (iii) understandability. Note that the set of generated rules are ranked

(ordered), a new record is assigned the class label of the highest matching ranked rule

[195]. Otherwise, a default case is applied.

An alternative method of generating a rule based classifier is to extract rules, of the

above form, from a previously generated DT. Different approaches have been proposed

to extract and generate rules from decision trees, for more details see [195]. The PART

classifier [72] has been adopted with respect to the work described in this thesis as a

rule based classifier generated from a partial decision tree in such a way that the “best”

leaf obtained in each iteration is used to generate a rule. This type of rule generation is

referred to as an indirect rule generation because rules are generated as a “by product”

of some other process (DT generation).

2.3.3 Bayesian Classifiers

The third type of classifier used for evaluation purposes was a Bayesian classifier.

Bayesian classifiers are statistical classifiers based on the well known Bayes probabil-

ity theorem:

P (H|A) =
P (A|H)P (H)

P (A)
(2.3)

where H is a “hypothesis” and A is an “evidence”. The probability of the hypothesis

H holding given the evidence A is denoted by the conditional probability P (H|A) and

is called the posterior probability. In the context of classification, A is a vector of n

features whereby A = {a1, a2, · · · , an}. Similarly, the conditional probability P (A|H) is

the posterior probability of A given H. P (H) and P (A) are called the prior probability

of the hypothesis H and the feature vector A respectively. The prior probability is the

distribution probability without considering any event, while the posterior probability

considers the event H. Bayes theorem assumes that all the attributes in a feature vector

are independent, this is why it is sometimes referred to as Näıve Bayes; however, the as-

sumption simplifies the calculation. Given a training set of n records T = {t1, t2, · · · , tn}
where each ti comprises of l attributes ti = {a1, a2, · · · , al}. Suppose that there are m

classes where ti belongs to class k if and only if the posterior probability P (ck|ti) has

the highest probability value amongst other classes:

P (ck|ti) > P (cj |ti) 1 ≤ j ≤ m and j 6= k

Recall that P (ck|ti) is calculated using Equation 2.3. A Bayesian classifier is constructed

as follow [94].

1. Estimate the prior probability P (ck) of each class, P (ck) =
|ck,T |
n , where |ck,T | is

the number of tuples in T that belongs to class ck and n is the total number of

tuples in the training set. The prior probability P (H) is constant for all classes.
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2. Maximise the posterior probability P (ti|ck) by finding the total product of the

posterior probability of each attribute in ti individually as follows1.

P (ti|ck) =
l∏

i=1

P (ai|ck) = P (a1|ck)× P (a2|ck)× P (a3|ck)× · · · × P (al|ck)

3. Finally, calculate P (ti|ck)P (ck) for all m classes. The class ck that has the highest

P (ti|ck)P (ck) value associated with it is selected as the predicted class.

The main limitation of Bayesian classifiers is the Näıve Bayes assumption. However,

their main advantages are their simplicity and computational efficiency; they only require

a single scan of the training data and provide a fast classification of new unlabelled cases

[24, 94].

2.3.4 Artificial Neural Network

The fourth type of classifier generator used for evaluation purposes with respect to

the work described in this thesis is an Artificial Neural Network (ANN) classifier. An

ANN is a mathematical model inspired by the conjectured operation of the human

biological neural system. ANNs have been used with respect to a wide range of real world

applications, especially in the context of environments that are continuously changing.

Examples include: (i) banking systems for loan decision making [33], (ii) investment

decision making [89] and (iii) monitoring and control manufacturing processes [56, 126].

More examples can be founded in [214] which provides a survey of such applications.

Typically, an ANN comprises a set of layers: (i) the input layer, (ii) the hidden layer(s),

and (iii) the output layer. Each layer consists of nodes (“neurons”) and weighted links.

The simplest structure (topology) is the input-output layer where there are no hidden

layers. Note that although the complexity of an ANN structure increases as the number

of hidden layer(s) increases, the effectiveness frequently also tends to increase.

The idea is to use training data to train an ANN so that the link weightings can be

learnt starting with initial weights. ANNs thus fall into the supervised learning category

where weights are iteratively adjusted in order to minimise the error between the desired

output and the predicted output through using a sufficient number of training examples

[100]. There are various algorithms that can be used to apply the necessary weight

adjustment during training. The Back-Propagation (BP) algorithm is a widely used

algorithm for learning weights, that has been extensively employed with respect to many

applications domains due to its simplicity. Note that if the accuracy of a generated ANN

is not acceptable then the ANN can be trained again using either a different structure

or new initial weights [177].

1In case of continuous attribute values, the Gaussian distribution is assumed along with a mean µ and

standard deviation σ to be used for the calculation of probability. P (x|ck) = f(x) =
1√
2πσ

e
−(x−µ)2

2σ2 .

See [94] for more details.
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Figure 2.5 presents a simple example of an ANN (a perceptron). The perceptron,

popularised in the 1960s, is an early example of an ANN [94, 177]. The n inputs are given

by X = {x1, x2, . . . , xn} and each xi is connected to the neuron by a weighted link wi.

Typically, the neuron consists of a summation function along with an activation function

(sometimes referred to as the “threshold function”). In a simple case, the output y will

be activated (y = 1) if and only if the summation of x0 and the weighted inputs exceed

a threshold value t as shown in Equations 2.4 and 2.5 and also in Figure 2.5.

x0 +

n∑
i=1

xiwi > t (2.4)

y = f(x0 +

n∑
i=1

xiwi) (2.5)

Figure 2.5: A typical Perceptron Example.

With reference to Figure 2.5 x0 is an additional fixed input called the bias neuron which

can exist in more than one layer. x0 is connected to all neurons in the next layer (but

not the previous one). x0 can be set to any value in the activation function for some

specific output. The main goal of x0 is to provide more flexibility and control for the

ANN [94, 177].

Beside the simple perceptron, there are many different types of ANN that have been

suggested and proposed. A commonly used type of ANN is the Multilayer Feed Forward

Neural Network (FNN) where the flow of information is in only one direction (forward).

FNN can be seen as an extension of the perceptron with hidden layers and sometimes

it is known as a Multi-Layer Perceptron (MLP) [179].

Despite the accurate prediction that can be obtained using supervised ANN, the

main limitation of NN is the large amount of training data required to effectively train

them. Moreover, the time complexity for training NN can be significant which makes

them unsuited to mining very large data sets [44]. A further criticism sometimes levelled

at ANN is that it is a “black box” technique, which means that explanation generation

is difficult if not impossible. Nevertheless, ANNs have been included in the five classifier
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generation algorithms considered in this thesis for the purpose of evaluating the proposed

3D surface representations.

2.3.5 k-Nearest Neighbour

The last classification technique used to evaluate the 3D surface representations proposed

later in this theses was the k -NN classifier. k -NN is one of the simplest and most

popular non-parametric1 classification techniques. k -NN was originally proposed by Fix

and Hodges in 1951 [67]2 and because of its expensive computation requirements (in

terms of both time and storage space) it did not gain popularity until the 1960s when

available computing power reached a level whereby the use of k -NN became a realistic

option. k -NN is now considered to be one of the most powerful classification techniques

available [216]. k -NN operates by finding the most similar k previously labelled records

to a new record and using the knowledge of these pre-existing labels to label the new

record. The main challenges are: (i) the similarity measure to be used, (ii) how to

address the situation where the nearest k records have different labels associated with

them and (iii) what the “best” value for k is. In the case of the work described in this

thesis, as will become apparent later in Chapter 6, k = 1 was used thus obviating the

need to resolve challenges (ii) and (iii). Records are usually presented using a feature

vector representation, in which case similarity between two records can be determined

using a simple distance measurements such as the standard Euclidean distance measure

(Equation 2.6) or the Manhattan Euclidean distance measure (Equation 2.7). The first

is typically used where the distribution is Gaussian, the second where it is Exponential

[225].

D(x, y) =

√√√√ N∑
i=1

(xi − yi)2 (2.6)

D(x, y) =

N∑
i=1

|xi − yi| (2.7)

The above distance measures require two equal length feature vectors (so that a one-

to one matching can be achieved). Thus these distance measures are not suited to all

types of data and data distributions [224, 225]. Simple distance measures are also not

suited data representations other than feature vector representations. As noted earlier

one of the representations proposed in this thesis is the PS representation, this uses a

point series (curve) representation. Thus in the context of the work described later in

this thesis the k -NN algorithm was used in combination with Dynamic Time Warping

(DTW) as this allowed for the effective measurement of the similarity between point

series [39, 156, 223]. DTW is therefore discussed in more detail in the following section.

1The term non-parametric in this context indicates the data or population is assumed to not have
any particular distribution.

2Later it was republished in [187].
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2.3.6 Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) is an established technique used to identify the similar-

ity between two point series or sequences that can be represented as a “curve”. Originally

DTW was used with respect to speech recognition systems where the data was recorded

in the form of time series (hence its name) [156, 182], but it can equally well be applied

to any point series representation. It also has the advantage that the two series to be

compared do not have to be of equal length. Other than hand writing recognition [57]

DTW has been successfully applied with respect to a variety of time series applications

[164] as well as motion tracking [152]. Further examples of the application of DTW can

be found in [20, 77, 122, 124, 182, 211].

In the context of the work described in this thesis, as noted above, DTW is used

to compare PS representations of 3D surfaces. Thus DTW is described in detail below.

The description highlights three key constraints concerning the operation of DTW:

1. The alignment process of two series (using the concept of a cost matrix).

2. The conditions of the alignments process that must be satisfied.

3. The identification of the optimal “warping path” (using an accumulative cost ma-

trix based on Dynamic programming1).

Starting with the alignment process, given two series A = {a1, a2, . . . , an} of length

n ∈ N and B = {b1, b2, . . . , bm} of length m ∈ N. Let the feature space be denoted by F ,

then ai, bj ∈ F , ∀i ∈ [1 : n] and ∀j ∈ [1 : m]. Similarity is normally described in terms of

some cost measure, a distance measure c(a, b). Typically a and b are more similar as the

cost value becomes smaller. Thus, a cost matrix M of size n ×m, created by aligning

A and B, contains the local distance (cost) for each corresponding points in A and B.

We useM(i, j) to denote the local distance between ai ∈ A and bj ∈ B. Equation 2.8 is

used to calculate c(ai, bj), the local distance (cost) to be stored in the elements of M,

in terms of the simple Euclidean distance between two points.

M(i, j) = c(ai, bj) =
√

(ai − bj)2 (2.8)

A warping path P is a sequence of points {p1, p2, . . . , ps, . . . , pk} where ps =M(is, js) ∈
[1 : n]× [1 : m], s ∈ [1 : k] and P is typically subject to several constraints [123, 152]:

1. Boundary condition: The warping path starts at the bottom left element p1 =

M(1, 1) and ends at the top right element pk =M(n,m).

1Dynamic Programming is a strategy used to solve complex problems by breaking them down into
a collection of simpler sub-problems where each sub-problem is solved separately, then the solutions are
combined together to generate an overall solution (see [83, 188] for more details).
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2. Monotonicity condition: ∀i,∀j ∈ P : 1 ≤ 2 ≤ · · · ≤ k. This indicates that both

indices i and j are forced to be increased along the warping path P and this

guarantees that P will not turn back.

3. Step size condition: pi+1 − pi ∈ {(1, 0), (0, 1), (1, 1)} for i ∈ [1 : k − 1].

The first condition (Boundary) guarantees that the entire series A and B are considered

by forcing the warping path to be started at p1 = (1, 1) (lower left corner) and ended

diagonally at pk = (n,m) (upper right corner). The second condition ensures that the

warping path would never be in the backward direction which means that the possibility

to repeat any feature is zero and this is consistent with the time warping path definition.

The last condition (Step size) ensures the continuity of the generated path P in terms

of the elements in A or B; in other words that the path is comprised of adjacent cells

(including diagonally adjacent cells). Figures 2.6, 2.7, 2.8 and 2.9 presents some example

warping paths.

Figure 2.6: A warping path, P,
that satisfies the (i) Boundary, (ii)
Monotonicity and (iii) Step size

conditions.

Figure 2.7: A warping path, P
where the boundary condition is

violated.

Figure 2.8: A warping path, P
where the monotonicity condition

is violated.

Figure 2.9: A warping path, P
where the step size condition is vi-

olated.

Many different warping paths can be generated between A and B (Figure 2.10) where

the total cost of a warping path, cp(A,B), is calculated using Equation 2.9. However, we
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are interested only in the optimal (shortest) warping path which minimise the warping

cost1 as shown in Figure 2.10 where the optimal path is highlighted in red. Note that if

A and B are identical the warping path through the matrix would be along the diagonal.

We indicate the minimal warping cost using the notation c∗p(A,B). It should be noted

that if A = B are identical, then c∗p(A,B) = 0.

cp(A,B) =

k∑
s=1

c(as, bs), ∀(as, bs) ∈ P (2.9)

Determining all the warping paths between A and B is an exhaustive process and

may require exponential computational cost. Instead we generate an optimal path dy-

namically (hence “dynamic” time warping) by stepping through the matrix in such a

way as to minimise the cost.

Recall that the value ofM(i, j) as defined earlier is represented in terms of Euclidean

distance, whereM(i, j) = c(ai, bj). However, the value of c(ai, bj) is actually comprised

of: (i) the local cost (distance) between the corresponding points of the series and (ii) the

minimum cost of the adjacent neighbours. The local cost ofM(i, j) is typically defined as

the distance between the corresponding elements of the two series A and B; for example,

the local cost (distance) between ai and bj isM(i, j) = c(ai, bj) = |ai− bj |. However, the

minimum cost of the adjacent neighbours of M(i, j) is calculated with respect to the

“positions” represented by the elements within M. The minimum distance is defined

recursively amongst the adjacent elements using a dynamic programming approach.

Given A = {a1, a2, . . . , an} of length n ∈ N and B = {b1, b2, . . . , bm} of length m ∈ N,

then the generation process of M is as follows:

1. Firstly, the value for M(1, 1) is identified by calculating the distance between a1

and b1. Thus, M(1, 1) = c(a1, b1) = |a1 − b1|.

2. The values of the M(1, j) of the first row are calculated using the local cost

c(a1, bj) = |a1− bj | and the value of previous elementM(1, j − 1) as shown below:

M(1, j) = |a1 − bj |+M(1, j − 1)

3. The values of the M(i, 1)) of the first column are calculated using the local cost

c(ai, b1) = |ai− b1| and the value of previous elementM(ai−1, b1) as shown below:

1In some special cases, the optimal path is not unique. For more details and examples see [152].
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M(i, 1) = |ai − b1|+M(i− 1, 1)

4. The cost for each remaining element M(i, j), ∀i ∈ (1 : n] and ∀j ∈ (1 : m], is cal-

culated using the local cost c(ai, bj) and the minimum cost of adjacent neighbours

M(i− 1, j),M(i, j − 1),M(i− 1, j − 1) as shown below:

M(i, j) = |ai − bj |+min{M(i− 1, j),M(i, j − 1),M(i− 1, j − 1)}1

where min indicates the minimum value of the three adjacent cells: M(i − 1, j),

M(i, j − 1) and M(i − 1, j − 1). An example of these adjacent cells are clearly

shown in Figure 2.10 coloured in green in the shaded block.

Finally, the value of the optimal warping path, P, with respect to A and B is located at

M(n,m). Thus, DTW (A,B) = c∗p =M(n,m).

By employing dynamic programming to calculate the minimum warping path costs

the time complexity of DTW is O(n×m). Nevertheless, further efficiency improvements

can be made to enhance the performance of DTW by considering global constraints

besides the local constraints (described earlier). The idea is to consider only a portion

of theM, using a windowing concept, because we know that the optimum warping path

will be located along the diagonal. The idea was first proposed to prevent undesirable

behaviour, such as when a single point in one series matches with many points on

the other series (a one-to-many mapping) resulting in a piece of horizontal or vertical

warping path directed away from the diagonal [45, 152]. However, the use of windows

also provides for efficiency gains. The Sakoe-Chiba band (S-C band)2 is one of the

most frequently used windowing methods. The idea is based on the observation that

P typically runs close to the diagonal of M by w units, where |i − j| ≤ w and w > 0

[181]. Therefore, the diagonal will be bounded by j = i+w (upper limit) and j = i−w
(lower limit) which means that only part of the cost matrix M needs to be completed.

Figure 2.11 shows an example of Sakoe-Chiba band windowing. DTW can utilise the

windowing concept to improve the run time complexity to O((n) × w) [108, 147, 184].

Further details on different efficiency enhancements for DTW and their implications

can be found in [122–124, 152]. With respect to the work described in this thesis the

Sakoe-Chiba band expedient was adopted (see Chapter 6).

1Lexicographic ordering is adopted if min is not unique.
2It has been found that the Sakoe-Chiba band works well when n ≈ m [84, 122].
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Figure 2.10: Different warping paths can be defined between two point series A and B.
The optimal warping path is in red colour. The distance values stored in the adjacent
cells {M(i− 1, j),M(i, j − 1),M(i− 1, j − 1)} (shaded block) are used to identify the

value of M(i, j) elements (black and red points).

Figure 2.11: An example of the Sakoe-Chiba band windowing concept with w = 3.
Only the shaded elements are considered when determining the optimum warping path.
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2.4 3D Surface Representation Techniques

Techniques for representing 3D surfaces have been widely used in various application

domains such as: medicine and bioinformatics [48, 175, 201, 221], manufacturing [98, 107]

and especially computer graphics with respect to animation and video gaming [101, 106].

The most straight forward representation for a given 3D surface (or object) is a

point cloud [127]. A point cloud is simply a collection of unordered and unorganised

data points, P = {pi = (xi, yi, zi) | 1 ≤ i ≤ n}. A variety of techniques are available

to generate such point clouds, these include: (i) laser and optical scanners, (ii) 3D

digitizers (coordinate measuring machines), (iii) some Computer Aided Design (CAD)

and Computer Aided Manufacturing (CAM) systems and (iv) range data converters1

such as in [5, 203]. In the case of the work described in this thesis the Cin input

clouds were generated using a CAD system and the Cout output clouds using an optical

measuring system2.

Although point cloud representations are simple there is often a need, depending on

a particular application domain, for a higher level representation. A wide range of 3D

representation techniques have been proposed. An overview of these different represen-

tations is presented in this section. These are categorised as follows: (i) Mathematical

representations (Parametric and Implicit representation), (ii) Mesh representations and

(iii) Other representations such as CSG, B-Rep and Voxel representations. Each is dis-

cussed in further detail below including their advantages and limitations. Note that

in the context of the work described in this thesis we are interested in 3D representa-

tions that are not only able to capture the geometrical information contained in a given

surface but also support the application of classification techniques.

2.4.1 Mathematical Representation

Mathematical 3D surface representations play a significant role in the context of indus-

trial applications where they are typically used, in connection with CAD software, to

build 3D models of some object. Mathematical representations also often provide the

foundation for other representations. With respect to the work described in this thesis

mathematical representations are utilised in Chapters 3 and 5. In Chapter 3 it was

adopted for the purpose of springback calculation (given a before and an after surface),

whilst in Chapter 5 it was adopted for the purpose of identifying “critical features”

(corners and edges) within a given 3D surface. More detail concerning the particular

mathematical representation process used is presented in Section 2.4.4. Mathematical

3D representations can be further divided into two categories: (i) Parametric and (ii)

Implicit. Each is discussed in the following two subsections.

1Range data is 2D data where each “pixel” value describes the distance between the points in a 3D
scene (object) to a specific point such as a camera. It is sometimes considered to be a special form of
3D data and referred to as “2.5D” data

2The actual system used was the GOM (Gesellschaft fur Optische Messtechnik).
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Parametric Representations

A parametric representation is a mapping from R2(u, v) → R3(x, y, z) where a vector

valued function f(u, v) comprised of two variables u and v is applied as follows:


x

y

z

 =


fx(u, v)

fy(u, v)

fz(u, v)

 (2.10)

where umin ≤ u ≤ umax and vmin ≤ v ≤ vmax are surface parameters and x, y, z are the

coordinates of a point located on the surface as shown in Figure 2.12. The domain can

be defined more generally when u and v are normalised as (0 ≤ u, v ≤ 1) [30].

The parametric surface representations tend to be simple representations. In [176]

it is noted that “parametric surfaces are generally easier [than implicit surfaces] to

draw, tessellate, subdivide, and bound, or to perform any operation on that requires

a knowledge of where on the surface”. In [133] their simplicity with respect to the

modification of object shapes is noted. Due to this simplicity parametric representations

have been widely utilised: (i) as a surface construction technique [113] where by curve

fitting and smoothing processes are applied to support visualisation [99] and (ii) for

inferring new ranges of data points for regions that are either sparsely represented or do

not contain any data points.

Given the normal vector ~n = 〈a, b, c〉 of a point p0 = (x0, y0, z0), then the line along

the normal n can be defined using a parametric equation which can then be used for

further processing (as in the case of the work described in Chapters 3 and 5). However,

it is usually not feasible to describe an entire 3D object using parametric mathematical

representations because [60, 133]: (i) it is difficult to determine whether the position

of a given point is inside or outside a given volume, and (ii) it is difficult to combine

multiple “patches” to form a complex shape due to smoothness problems that may arise

at patch boundaries. So we can say that the parametric representations are best suited

to representing interesting geometrical features (such as lines) but not an entire 3D

surface.

Figure 2.12: A parametric surface.
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Implicit Representations

An implicit 3D surface representation is defined as a mapping R3(x, y, z)→ R given by

the following function of three variables:

f(x, y, z) = 0 (2.11)

Given a point (x0, y0, z0), with a normal ~n =< a b c >, located on a plane, the implicit

representation of the plane is given by:

f(x, y, z) = 0

a(x− x0) + b(y − y0) + c(z − z0) = 0

ax− ax0 + by − by0 + cz − cz0 = 0

ax+ by + cz = ax0 + by0 + cz0

Now, let d = ax0 + by0 + cz0 and thus we have:

ax+ by + cz = d

ax+ by + cz − d = 0 (2.12)

Equation 2.12 should be satisfied by each point (x, y, z) located on this plane. The

coefficients of the implicit surface (a,b,c,d) indicate that the value of function f for the

point (x, y, z) gets close to zero. These coefficients can be estimated [198]. The main

advantage of implicit surface representations is the ease with which they can be used to

indicate the location of a given point with respect to a 3D surface as shown in Equation

2.13. More specifically they are well suited to describing topological information (infor-

mation about connected components). This property is used, with respect to the work

described in this thesis, to determine springback magnitude (as described in Chapter 3).{
f(x, y, z) ≥ 0 if the point is on/outside the surface.

f(x, y, z) < 0 if the point is inside the surface.
(2.13)

However, implicit mathematical 3D representations are not well suited to identify-

ing points on a surface, although they are well suited to identifying whether particular

locations are “inside” (below) or “outside” (above) the surface (this is why the repre-

sentation is referred to as being implicit). Implicit representations are thus well suited

to raytracing (for more details about raytracing see [71]).

One of the most popular examples of an implicit mathematical representation is the

Isosurface representation [143]. An Isosurface (isos in Greek translates to “the same”)

is defined as the surface that contains all points that feature the same scalar value in the

context of volumetric 3D data [200] (thus a contour in 2D). The Isosurface representation
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is employed, for example, in the medical field to represent a region (object) of interest

in medical images.

The main disadvantage of implicit mathematical representations is that there is a

“trade off” between efficiency (speed) and effectiveness (quality); this is particularly

significant in the context of visualisation. The solution is to transform it into some

other format that does support visualisation (for example a mesh representation) as

described in the following section. In the context of the work described in this thesis

an implicit representation is used to identify the point where the extension of a normal

~n to a given point p0 = (x0, y0, z0) on an input surface intersects the output surface as

will become clear in Chapter 3.

2.4.2 Mesh (Polygonisation) Representations

A Mesh representation, of a given 3D object, is defined in terms of a collection of 0-

dimensional cells (vertices), 1-dimensional cells (edges) and 2-dimensional cells (facets)

in R3. Thus, an object is defined by a pair of ordered lists, 〈P,V〉, where: (i) V =

{v1, v2, . . . , vn} is a set of n vertices defined in terms of a 3D coordinate system where

vi = (xi, yi, zi) and (ii) P = {p1, p2, . . . , pm} is a set of polygons described in such a way

that pi = vi1, vi2, . . . , vij is the polygon comprised of j vertices (thus if j = 3 we would

have a triangular polygon [30]). The P is normally used to describe the topological

information (information about the connectivity between V). In other words, the mesh

can be seen as unstructured grid.

Constructing a mesh representation from a point cloud is a well known problem in

the field of 3D geometrical modelling referred to as “surface reconstruction”. Surface

reconstruction has been widely investigated in the context of various domains such as

reverse engineering (reconstructing a representation given a visualisation of a 3D object)

and face recognition. Alternatively the polygons that frequently make up mesh represen-

tations can be generated from parametric mathematical representations [129] and from

implicit mathematical representations [158]. Recall that the representation techniques

with respect to this thesis should facilitate surface comparison (as well as classification).

Mesh representations inherently support such comparisons. They also support fast pro-

cessing, especially in the context of current graphics system that support high quality

visualisation. The popularity of mesh representations comes from their simplicity and

high manageability in 3D design (easy to define and modify). From this point, and with

respect to the work described in this thesis, the advantages of the mesh representation

are incorporated into a uniform equal grid representation where the centre points of

these grids represent the set V. Using a regular grid the connectivity information can be

easily attained, therefore the regular grid (mesh) representation adopted in this thesis

is considered to be a special case of the mesh representation without the set P. More

specifically the grid representation was adopted because:

1. It was compatible with the CAD/CAM systems used to generate desired shape

descriptions.
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2. It was simple to generate and process.

3. When combined with other representation forms it readily supports edge detection

(as will be demonstrated later in this thesis).

4. It facilitates the capture of local geometries (again as will also be demonstrated

later in this thesis).

5. It provides a useful mechanism whereby geometrical information can be stored

(and subsequently used or reused).

6. It provides flexibility (it supports translation into other forms).

As noted above details of the grid (mesh) representation used throughout this thesis

will be presented in Chapter 3. However, grid representations have been used elsewhere,

for example with respect to texture analysis in the context of satellite image processing

[85, 120] and terrain analysis in Geographical Information System (GIS) [145]. In the

field of texture analysis Local Binary Patterns (LBPs) [159] are a popular grid based

technique that has been used to describe effectively the local structure of a given image.

Though originally proposed in the context of texture analysis LBPs have been adopted

more widely, such as for remote sensing [53] and for face recognition [4]. With respect

to the work described in this thesis the LBP idea was adopted with respect to the

Local Geometry Matrix (LGM) representation technique described later in Chapter 4.

In the field of GIS (systems concerned with the integration of geographically referenced

information) map information is typically included in either a Vector or Raster format.

The Vector format is essentially a parametric mathematical representation. However,

the Raster format is a uniform cell-based method which is essentially a (fine grained)

grid representation.

Alternative mesh representations, to that proposed and utilised in this thesis, have

been adopted elsewhere with respect to research related to AISF, such as the work

presented in [137, 150]. The effectiveness of mesh representations can be influenced by

surface complexity. However, in the case of the 3D objects considered in this thesis,

objects that can be produced using AISF, this is not an issue.

One last observation in the context of mesh representations, and by extension grid

representations, is that they can be conceptualised as graphs. Although outside the scope

of the work described in this thesis there is some current work, in which the author

has participated, looking at the application of graph mining techniques to facilitate

springback prediction. More specifically the concept of Vertex Unique Labelled Sub-

graphs as described in [226–228].

2.4.3 Other 3D Surface Representation Techniques

There are other 3D Surface Representation Techniques that have not been included in the

above categorisation that have been extensively used for solid modelling. These include:
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Constructive Solid Geometry (CSG) [213], Boundary Representation (B-Rep) [174] and

Voxel Representation [85, 120]. CSG and B-Rep are typically used to represent 3D solids

in terms of their outer “shell”, whilst Voxel representations are used to represent both

the “interior” and “exterior” of a given 3D solid. Voxel representation is mostly applied

to volumetric data especially in the medical field, for more information see [6, 25, 120].

However, all of these types of representation are typically concerned with aspects of

visualisation such as: (i) object recognition and (ii) the detection of deformations with

respect to shape reconstruction processes. These types of representations are therefore

not well suited to surface representation for springback prediction. As volumetric data

representation is beyond the scope of this thesis, our review of this sub-area terminates

here.

2.4.4 Overview of Critical Feature Techniques

This section presents a general overview of the techniques that have been proposed,

and extensively employed, to extract the “critical” features for a given 3D surface with

respect to different applications. The critical features (sometimes called “sharp” feature)

are the corners and edges within a given 3D surface. In the context of grid representations

we refer to “critical points”, grid centre points that represent edges or corners. The Local

Distance Measure (LDM) representation presented later in this thesis uses the concept

of critical points (see Chapter 4). Point cloud representation and mesh representation

are two examples of different 3D representations. Examples of detection techniques used

with each approach are discussed in further detail below.

Generally speaking, critical feature detection and extraction from 3D surfaces is an

area of research interest with respect to different applications such as: (i) 3D imaging

and modelling [105], (ii) movement tracking [28], (iii) image matching [80] and (iv) im-

age recognition [8, 46, 118, 139, 160]. It also finds application with respect to domains

such as the automotive part manufacturing industry where it is used for fault detec-

tion in assembly line processes [165, 220]. From the listed applications, we can argue

that the accurate detection of critical features is of primary interest for most of these

applications. From the above we have seen that there exists a wide variety of 3D rep-

resentation techniques. There is a similar range of critical feature detection techniques

many dependent on the nature of the adopted 3D representation. In the following the

various critical feature detection methods have been grouped according to whether they

are: (i) cloud based, (ii) mesh based or (iii) normal analysis based.

In the context of point cloud representations, the lack of information concerning

connectivity and neighbourhoods in the point cloud makes direct detection of critical

features a challenging task [32]. However, there is some reported research directed at

extracting critical feature points from point clouds, examples include [87, 127, 210, 231].

In Gumhold et al. [87] the authors generated a local neighbourhood graph for each

point in the point cloud, then identified critical points using eigenvector and eigenvalue

analysis. The technique attempted not only to detect the critical points but also to
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classify effectively the point according to whether they were: edges, crease lines, corners

or flat surfaces. This work was extended and improved in [165] by the inclusion of better

surface smoothing and noise reduction techniques. In Zhao et al. [231] a technique to

extract edges (and corners) from point clouds was proposed whereby the point cloud

is first converted into a 2D image format where the z values are used as the image

pixel value. Well known 2D image edge extraction techniques can then be applied,

such as: Canny edge detection [31], the Sobel operator [171] and the Prewitt operator

[170]. However the approach is expensive in terms of computation time and storage

requirements [142]. Moreover, using the image processing detection techniques with

point cloud representations has the disadvantages that: (i) it requires the user to specify

certain parameters, (ii) it is difficult to know the real location of points belonging to

edges and (iii) it tends to be very sensitive to the presence of “noise”.

With respect to mesh representations, as noted above, these are popular in the

context of CAD/CAM systems. Many mesh based critical feature detection techniques

have been proposed such as [70, 103, 161, 196]. Most of these mesh based techniques

are founded on curvature analysis. Curvature describes the shape of a local region

within a given 3D surface and thus it is often used as a local shape descriptor [9]. A

number of mechanisms have been proposed for determining curvature. For example

there is reported work where the mesh representation is converted into a mathematical

surface representation (an “implicit representation”) and differential geometry employed

to calculate the curvatures such as in the case of [172]. Further discussion regarding

different types of curvature analysis, and their computation and estimation, can be

found in [7, 163]. Eigen analysis has been extensively used in combination with curvature

analysis to determine the direction of bending for a given 3D surface, see for example

[162, 193]. Despite the accurate detection of critical features offered by the combination

of curvature analysis and the eigen analysis, the major limitation is the complex nature

of the required mathematical calculation founded on the second derivative of a surface;

this is difficult to calculate in the context of 3D surface representation other than where

specific mathematical representations are used [163].

The Identification of critical features based on the calculation and comparison of

normals with respect to “neighbourhood areas” has been reported by a number of au-

thors [151, 229, 232]. The basic idea is the consider the angle between the normals of

adjacent points, if this angle is above some threshold a critical feature can be said to

exist. The ease and simplicity of the approach are its main advantages. Some authors

(for example [49]) recommend this type of critical feature detection. The nature of the

generic grid representation proposed with respect to the work described in this thesis is

will suited to critical feature identification using normal analysis because:

• The surrounding neighbourhood of a given grid point can be clearly and easily

identified.

• By ordering the neighbours of a given grid point in (say) a clockwise direction,

{N,NE,E, SE, S, SW,W,NW} this facilitates: (i) normal calculation using the
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cross product approach, and (i) identification of the direction of the calculated

normals using the “right hand rule”.

The normal analysis approach to critical feature selection was thus adopted. Fur-

ther detail concerning the adopted normal analysis critical feature detection method is

presented in Chapter 5 and thus will not be considered further here.

2.5 Evaluation Criteria

The main aim of the work presented in this thesis was to identify the most appropriate

3D representation technique with which to model 3D surfaces in the context of spring-

back prediction with respect to sheet metal forming processes such as AISF. To identify

this representation the proposed representations were evaluated individually and com-

paratively. More specifically the conducted evaluation was as follows:

• Individually for each technique (discussed separately in each relevant chapter)

using accuracy and Area Under ROC Curve(AUC) as the performance measures.

• Comparatively, first by comparing collated accuracy and AUC values, and then

statistically by applying the Friedman and the Nemenyi tests to demonstrate

whether there was a statistically significant difference between the operation of

the proposed techniques.

This section presents an overview of the evaluation measures used with respect to the

individual evaluations (accuracy and AUC). Details concerning the adopted statistical

evaluation will be presented later in Chapter 8.

The most fundamental mechanism for analysing classifier performance within the

data mining community is the confusion matrix where each instance can be classified as

belonging to class X or ¬X1 as shown in Figure 2.13. With reference to Figure 2.13 the

True Positives (TP ) are the number of instances that are correctly classified as belonging

to class X, the False Negatives (FN) are the number of instances belonging to class X

that are erroneously predicted as belonging to class ¬X class, the True Negatives (TN)

are the number of instances that are correctly classified as belonging to class ¬X and

the False Positives (FP ) are the number of instances belonging to class ¬X that are

erroneously predicted as belonging to class X. Frequently used measures that may be

derived from a confusion matrix are accuracy, sensitivity and specificity. These metrics

are defined in Equations 2.14, 2.15 and 2.16 below.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.14)

sensitivity =
TP

TP + FN
(2.15)

1A one against all binary classifier has been adopted with respect to the work described in this thesis.
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Figure 2.13: Confusion matrix.

specificity =
TN

FP + TN
(2.16)

Accuracy is an overall indicator of the quality of a classifier although it does not

take into consideration the distribution of the classes (“class priors”). Sensitivity is

an indicator of the ability of the classifier to identify the positive instances (X), while

specificity reflects the ability of the classifier to identify the negative instances (¬X).

The Area Under a Receiver Operating Characteristic (ROC) Curve (AUC) [26, 97] is

used extensively in this thesis for evaluation purposes. Broadly, the ROC curve concept

was originally used in signal detection theory to depict the trade-off between hit rates

and false alarm rates [58]. The “hit rate” is called the True Positive Rate (TPR), benefit

or sensitivity; while the “false alarm rate” is called the False Positive Rate (FPR), or

cost. Both are expressed in the form of a real number ranging from between 0.0 and

1.0. TPR and FPR are calculated as shown in Equation 2.17 and 2.18 respectively.

Spackman [61] illustrated how the ROC curve can be used to evaluate the performance

of a binary classifier. A ROC curve is generated by plotting the FPR against the TPR

(with the FPR plotted along the X-axis and the TPR along the Y-axis). In the ROC

space, the best classification performance exists in the upper left corner (FPR=0 and

TPR=1) while the diagonal represents random classification (guessing). Therefore, a

“good” ROC curve is one that reaches the upper left corner. Figure 2.14 shows four

different ROC curves, each curve representing the operation of a classifier. From the

figure, it can be seen that curve A is the best curve as it has the highest TPR over the

other curves. Curves B, C and D are all below curve A. Curve C represents a classifier

that operates in a completely random manner. The Area Under a ROC curve (AUC)

is a single value frequently used to measure classifier performance (0 ≤ AUC ≤ 1). In

other words AUC is an indicator of the probability that a classifier will correctly classify

instances [15, 69, 109, 135]. Note that an AUC value of 0.5 indicates a random classifier

(guessing).

TPR =
TP

TP + FN
= sensitivity (2.17)
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FPR =
FP

FP + TN
= 1− specificity (2.18)

For example, consider a 2-class problem where class 1 has 990 instances and class

2 has 10 instances, then the accuracy of the generated model would be 990
1000 = 99% as

long as each new instance will be labelled with the majority class (class 1, in this case).

However, a classifier that does this is clearly not a good classifier. The main advantage

of AUC is its ability to deal with unbalanced data sets since it considers the distribution

of classes (TPR and FPR values) [61]. Therefore, AUC was chosen to be one of the

performance evaluation measures with respect to the proposed mechanisms presented in

this thesis because of the uneven error (springback) distributions within the evaluation

datasets. The Mann-Whitney-Wilcoxon (MWW) statistical method, which employs a

ranking concept based on the signal detection theory proposed by [95], was used with

respect to the work described in this thesis to calculate AUC values1. A full example on

how to calculate the AUC value based on the MWW statistic, is presented in Appendix

C.

Ten Cross Validation (TCV) [189] was also adopted with respect to the conducted

evaluation in order to reduce the overfitting problem and to ascertain the validity of the

generated classifiers [73]. Overfitting mainly occurs when a generated classifier (model)

fits the data set exactly and in a perfect manner. TCV is used in order to limit the

implication of overfitting [23]. TCV is a well established technique for evaluating the

performance of supervised learners whereby the data is divided into ten parts so that

class labels are distributed equally (stratified). Using the TCV technique the learner is

applied ten times, each time to a different 9
/

10 of the data set, and tested using the

remaining 1
/

10. On completion, the recorded results of the ten iterations are used to

compute an averaged set of results.

2.6 Summary

This chapter has presented the background to the work presented in this thesis. The

chapter covers three main areas: (i) sheet metal forming processes, (ii) data mining

(classification techniques) and (iii) 3D surface representation. Recall that springback

is the major cause of deformation in AISF that affects the final geometry of the shape

produced and that springback prediction was the main motivation of the work described

in this thesis. Therefore, the chapter commenced with a general description for the

springback phenomena within the context of the AISF process. Then an overview of

the KDD process, and data mining in particular, was presented including reviews of the

classification techniques used for evaluation purposes with respect to the work described

in this thesis. The main 3D representation techniques that are the foundation of the

thesis work were discussed next. In the context of this thesis the proposed 3D surface

1The AUC/ROC calculation conducted using Weka is also done using the Mann Whitney statistic
[215].
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D 

Figure 2.14: Four different example ROC curves (A, B, C and D). Curve C is the
curve produced as a result of simply guessing. Curve A is said to dominate B, C and
D since A is above and to the left of B, C and D. However, B and D do not dominate
each other therefore the AUC is a convenient way to compare their performance [135].

representations were not only required to capture effectively geometrical information, but

also to facilitate the classification task. Finally the criteria used to evaluate the operation

of the proposed techniques was presented. It was noted that two types of evaluation

were conducted: (i) individual evaluation for each proposed technique using accuracy and

AUC measurements and (ii) overall performance evaluation using statistical approaches.

Only the first was considered in this chapter, the latter will be presented separately in

Chapter 7. The following chapter describes the necessary data preprocessing that needs

to be applied to the AISF data sets used for evaluation purposes.



Chapter 3

The Grid Representation, Error

Calculation Mechanism and the

RASP Framework

3.1 Introduction

This chapter describes the generic Representation And Springback Prediction (RASP)

framework used to generate springback classifiers with respect to the different proposed

techniques described later in this thesis. The chapter also presents the grid representa-

tion and error calculation mechanism required to support the different proposed surface

representation techniques, the labelling process and the data sets used for evaluation

purposes. The grid representation provides a standard input format with respect to the

different surface representation techniques. As will be seen, the grid representation also

facilitates error (springback) calculation. The error calculation mechanism comprises

three steps: (i) normal calculation, (ii) intersection point calculation and (iii) error cal-

culation where both the magnitude and the direction of the error is determined. The

Representation And Springback Prediction (RASP) framework on which the proposed

surface representation techniques are founded is comprised of three processes: (i) data

preprocessing and error calculation (as described in this chapter), (ii) surface represen-

tation and (iii) classifier generation.

Given the above the rest of this chapter is organised as follows. Section 3.2 presents

a detailed overview of the proposed RASP framework. Then the grid representation

generation process is described comprehensively in Section 3.3. A full description of

the error calculation mechanism is then given in Section 3.4. Section 3.5 presents the

process of labelling for the attributes and the class (springback) attribute which is an

essential pre-processing step for the proposed 3D surface representation techniques. A

full description of the evaluation data sets is presented in Section 3.6. Finally, the

chapter is concluded with a summary in Section 3.7.

44
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Figure 3.1: Schematic describing the Representation And Springback Prediction
(RASP) Framework.

3.2 The Representation and Springback Prediction (RASP)

Framework

The research methodology adopted with respect to this thesis was to investigate a num-

ber of techniques in order to find the best surface representation method with respect to

“surface” error prediction (classification). Each of the proposed techniques, at least at

an abstract level, was founded on the same set of high level processes. In other words,

the proposed techniques subscribe to a general framework called the Representation And

Springback Prediction (RASP) Framework. A schematic for the framework is presented

in Figure 3.1. In the case of our sheet metal forming application the input to RASP

will be the Cin and Cout point clouds as indicated in the figure, however for other pre-

diction applications other forms of input may be used. From Figure 3.1 it can be seen

that the proposed framework comprises three main phases: (i) data pre-processing, (ii)

representation and (iii) classification. The first phase is concerned with generating the

advocated grid representation with associated error values. During the second data rep-

resentation phase the grid representation is translated into one of the proposed surface

representation techniques described later in this thesis. The third phase comprises clas-

sifier generation and evaluation. Once an appropriate classifier has been generated it can

be used to predict grid labels associated with unseen grids. In the case of sheet metal

forming applications these will be the springback errors associated with new shapes to

be manufacturer (provided that the same material and process as that used to build

the model is used). Later in this thesis two Intelligent Process Models (IPMs) will be

proposed whereby this can be achieved.
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3.3 Grid Representation

A grid is a simple organisational structure used to represent a 2D space by subdividing

the space into equally spaced horizontal and vertical bands. Grid representations can be

equally well applied to 2D and 3D space. The main reasons for using a grid representation

are as follows [113, 144, 168]:

1. To minimise the density of the point clouds (the required input to RASP).

2. To minimise the computation time (as a result of 1).

3. To create a representative sample of a given shape.

4. To perform dimensionality reduction (2D instead of 3D).

5. To represent the shape using fewer parameters than when using all available data.

6. To permit straightforward further processing.

7. To obtain an integrated and unified framework for both Cin and Cout.

8. To provide a simple referencing system between corresponding grid squares repre-

senting Cin and Cout.

9. To support the efficient definition of local geometries (important in the context of

springback prediction).

The grid representation generation process commences with “before” (Cin) and “af-

ter” (Cout) point clouds referenced in terms of a Euclidean coordinate system. Cin is the

point cloud for the desired shape (T ), while Cout is the point cloud for the actual shape

(T ′) produced as a result of (say) the application of some sheet metal forming process

such as AISF. Two grid representations are initially generated, Gin for the Cin cloud

and Gout for the Cout cloud. These are then used to produce a final grid representation

G for input to the RASP framework.

The size of the grids is defined in terms of a value (d) which represents the size of

a grid square as illustrated in Figure 3.2. Each grid square is represented by a central

representative point, P , described in terms of a pair of (x, y) coordinates. The z value

associated with each grid square is obtained by averaging the z coordinates for all the

3D points located in that grid square. Thus each grid represents a mesh describing a

3D surface. The x− y coordinates for a specific grid square in Gin will be the same as

the corresponding grid square in Gout; however, the z values may differ. Consequently,

each grid square is referenced by a pair of (x, y) coordinates and has a z value associated

with it. Note that, prior to grid generation, both coordinate clouds, Cin and Cout, are

registered to the same reference origin and direction.

The size, in terms of grid squares, of the overall grid structure is equivalent to R×C
where R is the number of grid rows, and C is the number of grid columns; R and C
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Figure 3.2: Typical grid structure for a point cloud (red grid centres indicate the
corner grid squares).

are calculated according to the size of the input clouds1 as described in equations 3.1

and 3.2 respectively where d is the size of the desired grid square in mm. Appropriate

adjustments are made where d does not fit exactly into maxy −miny or maxx −minx.

R = dmaxy −miny
d

e (3.1)

C = dmaxx −minx
d

e (3.2)

with respect to the above minx, maxx, miny and maxy are as indicated in Figure 3.2.

To support the generation of classifiers each grid square in the final grid G has to have

an error (“springback”) value associated with it. How this is calculated is considered in

the next section.

3.4 Springback Calculation Mechanism

The mechanism for the calculation of the “Springback” (error) between a pair of cor-

related grid squares is described in this section. Broadly, the separation between two

correlated grid squares is the distance along the normal originating from the centre point

P of a grid square in Gin to where the normal cuts the surface represented by Gout. The

error calculation mechanism comprises three steps: (i) normal calculation, (ii) Gout in-

tersection point calculation and (iii) the final error calculation. Each is discussed in

more detail in each of the following subsections.

1The point clouds may have different sizes, therefore the shared area (intersection) for both clouds
is considered.
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3.4.1 Normal Calculation

In order to find the degree of the deviation (distance and direction) between each grid

centre point Pi located on the 3D surface described by Gin and its corresponding point

located on the surface described by Gout; the normal for each Gin centre point is first

calculated. If the before and after surfaces are horizontally parallel, then the Gin and

the Gout centre points will be directly positioned over one another, in which case the

error calculation is straightforward (the z difference), however, usually this is not the

case. Instead vector arithmetic is used. A vector ~v has a magnitude and a direction and

is usually represented using the format 〈x, y, z〉 or xi+ yj + zk where i, j and k are the

unit vectors in the positive directions of the x, y and z axes respectively and generally

referred to as the standard basis [11, 59, 131, 208]. A vector from a point P0(x0, y0, z0)

to a point P1(x1, y1, z1) is defined as ~v = 〈x1 − x0, y1 − y0, z1 − z0〉. Given two vectors

~v = 〈v1, v2, v3〉 and ~u = 〈u1, u2, u3〉 at right angles to each other, the normal ~n is defined

by the cross product between ~v and ~u (~n = ~v× ~u, the result of the cross product of two

vectors is a vector that is perpendicular to both vectors ~v and ~u). The direction of the

normal can be ascertained using the “right hand rule”. The cross product is calculated

using Equation 3.3 [11, 131, 206] :

~n = ~v × ~u = 〈v2u3 − v3u2, v3u1 − v1u3, v1u2 − v2u1〉. (3.3)

The calculation of the normal is thus founded on the concept of the vectors’ cross

product [59, 183, 208]. With respect to the work described in this thesis there are a

number of ~v and ~u vector configurations that can be used to calculate the normal of a

grid point. For internal points of the grid, there are four ~v and ~u combinations that can

be used. There are three at the edges and two at the corners as illustrated in Figure 3.3.

Thus, in each case the separation between the corresponding grid squares in the before

and after clouds can be calculated as follows:

• Internal grid point. The four normals for the four neighbouring points (N, E, S and

W) are calculated, then the normal for the grid square is calculated by averaging

these four normals.

• Edge grid point. The normal is calculated by averaging the two normals that can

be obtained.

• Corner grid point. Straight forward calculation of a single normal.

Note that a clockwise direction is used to identify the order of selecting the vectors that

are used in the cross product to calculate normals (as illustrated in Figure 3.3) so that

the surface normals will all be pointing in the same direction.

3.4.2 Intersection Point Calculation

After the normals have been calculated for all grid centre points in Gin; the vector

describing each normal is translated into a polynomial equation describing the line (L)
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Figure 3.3: ~v and ~u vector configurations, indicated in red, that maybe used for
normal calculation. Note that a clockwise direction is used so that all normals point in

the same direction.

passing through the relevant centre point in Gin and intersecting Gout. The desired

straight line equation is defined using a set of parametric equations.

Fact 3.1. The line in 3-D space that passes through a point P0(x0, y0, z0), and is parallel

to the non zero vector ~v = 〈a, b, c〉 = ai + bj + ck, has parametric equations x = x0 + at,

y = y0 + bt and z = z0 + ct.

Thus for each point in a grid Pi (xi, yi, zi) with its associated normal (calculated

as described above) ~n = 〈a, b, c〉; and, based on Fact 3.1, the parametric equations

(Equations 3.4) can be used to determine the straight line equation passing through Pi.

x = xi + at, y = yi + bt, z = zi + ct. (3.4)

With reference to Figure 3.4, the steps required to calculate the t value and the

associated intersection point Pint are presented below where the following identities are

used.

(a) Pi(xi, yi, zi): is a point located on Gin.

(b) Pj(xj , yj , zj): is the corresponding point located on Gout and determined in the

same manner as for Pi.

(c) Pint(xint, yint, zint): is the intersection point on Gout where the normal from Pi cuts

Gout.

(d) ~n〈a, b, c〉: is the normal for the point Pi.

(e) ~N〈A,B,C〉: is the normal for the point Pj .

(f) ~L: is the line passing through Pi and Pint.

The process is thus as follows:

1. Identify the line (~L) passing through Pi and Pint. The line (~L) is parallel to the

normal (~n) to the point Pi.
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Figure 3.4: Error (springback) calculation (E) between Gin and Gout defined as the
distance between the point Pi on Gin to where the normal of Pi cuts Gout at Pint.

Pint − Pi = t · 〈a, b, c〉

(xint, yint, zint)− (xi, yi, zi) = t · 〈a, b, c〉

xint − xi = a · t

yint − yi = b · t

zint − zi = c · t

xint = xi + a · t yint = yi + b · t zint = zi + c · t (3.5)

2. Identify the plane equation at the point Pj on Gout
1

~N · ~PjP = 0

A · (x− xj) +B · (y − yj) + C · (z − zj) = 0

A · x−A · xj +B · y −B · yj + C · z − C · zj = 0

A · x+B · y + C · z = A · xj +B · yj + C · zj
A · x+B · y + C · z = D

(3.6)

Note that the intersection point Pint should satisfy both the parametric equations

described in 3.5 and the plane equation given in (3.6). Thus:

1Any point P on Gout that satisfy equation 3.6 means it is located on this plane. In our case, P is
the intersection point Pint on which it satisfies the plane equation of Pj .
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A · (xi + a · t) +B · (yi + b · t) + C · (zi + c · t) = D

A · xi +A · a · t+B · yi +B · b · t+ C · zi + C · c · t = D

A · a · t+B · b · t+ C · c · t = D −A · xi −B · yi − C · zi

t =
D −A · xi −B · yi − C · zi

A · a+B · b+ C · c

(3.7)

Now, by substituting the parametric equations in the plane equation we can find

the t parameter for the parametric equation and consequently the coordinate for

the intersection point Pint can be obtained using (3.5).

3.4.3 Error (Springback) Calculation

After the coordinates for the intersection point have been calculated, the error (spring-

back) to be associated with each Gin grid square may be obtained. This is the distance

between the centre grid point Pi located on Gin and the intersection point Pint located

on Gout. The distance between two points in 3-D space is calculated using equation 3.8.

E =
|a(xint − xi) + b(yint − yi) + c(zint − zi)|√

(a2 + b2 + c2)
(3.8)

On completion of the error calculation, a vector
−−−→
PiPint is obtained with a magnitude

equal to error (E) and a direction. The error E is assigned a positive sign if the direction

for
−−−→
PiPint and the normal (~n) is the same, and a negative sign otherwise. To determine

whether the directions for vectors
−−−→
PiPint and ~n are the same or not the angle θ between

them is calculated using the dot product rule presented in Definition 3.1 above. Clearly,

θ has only two options (with respect to our case). The first option is when θ = 0◦

indicating that both vectors run parallel in the same direction. The second option

is if θ = 180◦ which means that both vectors run parallel but in opposite directions

(Figure 3.5).

Definition 3.1. Given any two vectors a and b in Rn, the “Dot Product” can be defined

as: a · b = ‖a‖ ‖b‖ cos∠a,b

where ‖a‖ denotes the length of a, and ∠a,b is the angle between a and b, taken to be

between 0 and π.

Fact 3.2. Let u be a vector in the real vector space Rn. Then u · u = ‖u‖2, where ‖u‖
is the length of u.

Example:

The following example illustrates the Springback Calculation process. Let point Pi and

its normal ~ni located on Cin, and point Pj and its normal ~nj located on Cout have the

following coordinates:

To define a line ~L passing through Pi and Pint and parallel to ~ni:



52

Figure 3.5: The Error direction illustrated by two examples. The left hand example

shows that both the normal ~n and
−−−−→
PiPint have opposite direction as the angle between

them is (θ = 180◦). Therefore, the error E, in this case, is assigned a negative (−)

sign. However, the angle between the normal ~n and
−−−−→
PiPint on the right hand example

is θ = 0◦ which means that both vectors run parallel in the same direction and as a
result the error is assigned a + sign.

Pi = (77.50, 38.04, 0.05)
~ni = 〈−0.90, 0.00, 18.75〉 The normal of Pi
Pj = (77.50, 38.04,−0.65)
~nj = 〈−1.82, 0.23, 18.75〉 The normal of Pj

Pint − Pi = t · ~n

xint − 77.50 = −0.90 · t

yint − 38.04 = 0.00 · t

zint − 0.05 = 18.75 · t

xint = 77.50− 0.90 · t (3.9)

yint = 38.04 + 0.00 · t (3.10)

zint = 0.05 + 18.75 · t (3.11)

The plane equation at Pj is then identified as follows:

~nj ·
−−→
PjP = 0

A · (x− xj) +B · (y − yj) + C · (z − zj) = 0

− 1.82 · (x− 77.50) + 0.23 · (y − 38.04) + 18.75 · (z + 0.65) = 0

(−1.82 · x) + (0.23 · y) + (18.75 · z) = −144.35 (3.12)

Now, Equations 3.9, 3.10 and 3.11 are substituted in Equation 3.12 to obtain the t value:
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t =
−144.35− (−140.89)− (8.67)− (0.86)

(−1.82 · −0.90) + (0.23 · 0.00) + (18.75 · 18.75)

t =
−144.35− (−140.89)− (8.67)− (0.86)

(1.64) + (0.00) + (351.56)

t = −12.99
/

353.21

t = −0.04

Next, the coordinates of the intersection point Pint are obtained by re-evaluating equa-

tions 3.9, 3.10 and 3.11:

xint = 77.50− (0.90×−0.04) = 77.53

yint = 38.04 + (0.00×−0.04) = 38.04

zint = 0.05 + (18.75×−0.04) = −0.64

Finally, the error is calculated. This is the distance between Pi on Cin and the inter-

section point Pint on Cout, therefore the error (Springback) associated with the point

Pi = (77.50, 38.04, 0.05) is:

E =
|a(xint − xi) + b(yint − yi) + c(zint − zi)|√

(a2 + b2 + c2)

E =
|(−0.90× 0.03) + (0.00× 0.00) + (18.75×−0.69)|√

(−0.90)2 + (0.00)2 + (18.75)2

E = +0.69

E is assigned a positive sign + because the angle between vector
−−−→
PiPint and the normal

~ni is θ ≈ 0 as shown below:

|~ni|2 = (−0.90)2 + (0.00)2 + (18.75)2

= 358.38
−−−→
PiPint〈Pintx − Pix, Pinty − Piy, Pintx − Pix〉
−−−→
PiPint〈0.03, 0.00,−0.69〉

|
−−−→
PiPint|2 = (0.03)2 + (0.00)2 + (−0.69)2

= 0.48

~n ·
−−−→
PiPint = nix · px + niy · py + niz · pz
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= (−0.03) + 0.00 + (−12.96)

= −12.96

cos θ = (~ni ·
−−−→
PiPint)

/√
|~ni|2 + |

−−−→
PiPint|2

= −12.96
/√

358.38 + 0.48

= 0.69

θ = arccos(−0.69)

θ = 2.33◦

θ ≈ 0◦

This means that both
−−−→
PiPint and ~ni run parallel in the same direction.

3.5 Discretising process

After the error values (the set E) have been calculated and assigned to the Pi’s in the

Gin, a discretising (binning) process is applied where each springback error value is given

a label value. The inherent nature of the classification techniques used later in this thesis

require discrete attribute values, the suggestion being that more effective classifiers are

produced [128].

One of the main objectives of discretisation is to enhance computational effectiveness

(the number of discretised values, labels, are fewer than the number of all possible

continuous values) [35, 54]. Therefore, discretisation was adopted to transform the

continues real values into nominal values by dividing the range of values into sub-ranges

where each sub-range is replaced by an integer value (label).

There are two types of discretisation [35]:

1. Equal width discretisation: where the range of values are divided into k equal

length intervals (thus the number of instances in each bin is different) such that

bin “size” is ((max−min)
/
k). Typically, the first and the last bins are extended

to include values outside the data range.

2. Equal frequency discretisation: where the range of values are divided into k bins

such that each bin holds an equal number of instances (n
/
k) where n is the total

number of instances. Different variations of equal frequency binning have been

proposed (more details can be founded in [54]).

Equal width and equal frequency discretisation are both considered to be simple

unsupervised methods where no attempt is made to take class labels into consideration.

The equal frequency and equal width approaches considered are also global discretisation

approaches as they both operate using all available values. The main limitation of the
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equal width discretisation is that it may result in many instances belonging to one range

while few instances belong to others (a skewed distribution). Thus, with respect to the

work reported in this thesis, equal frequency binning was adopted and applied because

of the unequal distribution of the springback values over 3D surfaces with respect to the

AISF process. However, it should be noted that with respect to some of the published

work, produced prior to the work described in this thesis, equal width discretisation was

used by the author. An overview of different discretisation algorithms can be found in

[138].

Algorithm 3.1 presents an overview of the discretisation process adopted with respect

to the work described in this thesis. The input is a data set M comprised of m records

characterised by a set of attributes (features) {t0, t1, · · · , tn} and a class attribute c such

that each attribute has a set of values associated with it. The algorithm commences

by sorting the records for each attribute ti according to value (ascending order) and

associating a rank with each (a sequential numbering from 1 to m). Then, a Discretisa-

tion Table is generated that contains information about label IDs and the rank of each

attribute using Algorithm 3.2. Note that label ID’s are numbered sequentially. Given

a data set M comprised of 90 records, an attribute set A = {att0, att1, att2, att3} where

each attribute has a set of ranked values between 1 and 90 and L is a set of labels of

size 3. The Discretisation Table will be as shown in Table 3.1.

Table 3.1: Discretisation Table for a given example.

att0 att1 att2 att3

labels ID (max rank)
1 (30) 4 (30) 7 (30) 10 (30)
2 (60) 5 (60) 8 (60) 11 (60)
3 (90) 6 (90) 9 (90) 12 (90)

Algorithm 3.3 is then applied to discretised the attributes based on the label infor-

mation gathered in the Discretisation Table. Thus, for a given instance, if the rank

values of att3 is 67, then the label is 12. Finally, the class attribute is discretised using

Algorithm 3.4, where M is sorted in ascending order where the first dm
/
ce instances

have the same label, then the next dm
/
ce and so on. By the end, all the instances will

have been discretised with respect to the prescribed set of attributes and class labels.

3.6 Evaluation Data Sets

To evaluate the different 3-D surface representation methods proposed, and the associ-

ated classification techniques, eight “ real world ’ ’ data sets were used:

• Gonzalo Steel Version 1 (GSV1).

• Gonzalo Steel Version 2 (GSV2).

• Gonzalo Titanium Version 1 (GTV1).
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Algorithm 3.1: Equal Frequency Discretisation

Input: Dataset M with m records, set of attributes A = {att0, att1, · · · , attn},
number of attribute labels |L|, number of class label |c|)

Output: Discretised dataset M
1 rankList ← empty 2D array of size m× n;
2 for j ← 0 to n do
3 for i← 0 to m do
4 rankList [i][j] ← value of tj in record i;
5 end
6 rankList ← sorted rankList with respect to tj values ;

7 end
8 T ← GenerateDiscretisationTable(rankList, m, n, |L|) (Algorithm 3.2);
9 M ← DiscretiseAttributes (T , M , m, n, |L|) (Algorithm 3.3);

10 M ← DiscretiseClassAttribute (M , m, n, |c|)) (Algorithm 3.4);

Algorithm 3.2: GenerateDiscretisationTable

Input: rankList, number of records m, number of attributes n, number of
attribute labels |L|

Output: Discretisation Table T
1 T ← empty 3D array measuring n× |L| × 2;
2 k = 1;
3 for i← 0 to n do
4 for j ← 0 to |L| − 1 do

5 index ←
⌈
m× (j + 1)

|L|

⌉
;

6 T [i][j][0]← index;
7 T [i][j][1]← k;
8 k + +;

9 end

10 end
11 return T

• Gonzalo Titanium Version 2 (GTV2).

• Modified Steel Version 1 (MSV1).

• Modified Steel Version 2 (MSV2).

• Modified Titanium Version 1 (MTV1).

• Modified Titanium Version 2 (MTV2).

These were manufactured by IBF1 who provided support for the work described in this

thesis. The first four describe a flat topped pyramid shape referred to as the “Gonzalo”

pyramid2, the last four a “modified” version of this shape. The Gonzalo pyramid is

1The Institut für Bildsame Formgebung (Institute of Metal Forming) at the Rheinisch-Westfaelische
Technische Hochschule Aachen, Germany

2The name “Gonzalo” is derived from the name of the person at IBF who designed and manufactured
the shape.
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Algorithm 3.3: DiscretiseAttributes

Input: Discretisation Table T , Dataset M , number of records m, number of
attributes n, number of attributes labels |L|

Output: Dataset M with discretised attribute values
1 label ← |L| − 1; // Default label is the max label ID

2 for i← 0 to m do
3 for j ← 0 to n do
4 for k ← 0 to |L| do
5 if M [i][j].rank < T [j][k][0] then
6 label ← T [j][k][1];
7 break;

8 end

9 end
10 M [i][j]← label;

11 end

12 end
13 return M

asymmetric in shape, a bulge exists in one of its side sections. The Modified pyramid

is an enhanced shape with rounded corners. The differences between the Gonzalo and

Modified shapes can be observed from Figures 3.6 and 3.7.

! !

Figure 3.6: Gonzalo (left) and Modified (right) Pyramids.

! !
Figure 3.7: Side sections of Gonzalo (left) and Modified (right) Pyramids.

Note also that four of the data sets were made of steel and four of titanium. Each had

a Cin before and Cout after cloud associated with it (thus sixteen clouds in total). In each

case the Cin point cloud, representing the desired shape T for each pyramid shape, was

generated using a CAD system and thus this cloud is sometimes referred to as the CAD

cloud (representing the CAD shape). The Cout output point cloud, representing the

obtained shape T ′, was obtained using a GOM (Gesellschaft f́’ur Optische Messtechnik)

optical measuring tool applied on completion of an AISF process, and thus this output

cloud is sometimes referred to as the GOM cloud (representing the GOM shape). Flat

topped pyramid shapes were used because this is a commonly used shape with respect to
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Algorithm 3.4: Discretise Class Attribute

Input: M , m, n, |c|
Output: Dataset M with discretised class attribute values

1 Sort M based on class attribute values in ascending order;
2 rankList ← array of length m;
3 for i← 0 to m do
4 rankList [i] ← rank springback error value;
5 end
6 T ← empty 2D array measuring |c| × 2;
7 k = 1; // Start class labelling from 1.
8 for j ← 0 to |c| − 1 do

9 index ← m× (j + 1)

|c|
;

10 T [j][0]← rankList[index];
11 T [j][1]← k;
12 k + +;

13 end
14 for i← 0 to m do
15 label ← |c| − 1;
16 for j ← 0 to |c| − 1 do
17 if M [i][n+ 1].rank < T [j][0] then
18 label ← T [j][1];
19 break;

20 end

21 end
22 M [i][n+ 1]← label;

23 end
24 return M

sheet metal forming related research. Tables 3.2 and 3.3 give some statistics regarding

the evaluation data sets in the context of their Cin and Cout clouds.

Table 3.2: Statistics concerning the width (W) (mm), length (L) (mm), height (H)
(mm), area (A) (mm2), number of points (N) and density with respect to the Cin point

clouds for each of the evaluation data sets.

GSV1 GSV2 GTV1 GTV2 MSV1 MSV2 MTV1 MTV2

Width (W ) 195 195 195 195 190 190 190 190
Length (L) 195 195 195 195 190 190 190 190
Height (H) 43 43 43 43 42 42 42 42
Area (A = W × L) 38025 38025 38025 38025 36100 36100 36100 36100
Num. points (N) 250847 250847 250847 250847 565817 565817 565817 565817
Density (N/A) 7 7 7 7 16 16 16 16

The pairs of Cin and Cout clouds were processed as described above, to provide

the desired grid representations required by phase two of the RASP framework. For

experimental purposes a range of d values were used {2.5, 5, 10, 15, 20} mm. Thus forty

(8 × 5) data sets were generated in total, The number of records associated with each
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Table 3.3: Statistics concerning the width (W) (mm), length (L) (mm), height (H)
(mm), area (A) (mm2), number of points (N) and density with respect to the Cout

point clouds for each of the evaluation data sets.

GSV1 GSV2 GTV1 GTV2 MSV1 MSV2 MTV1 MTV2

Width (W ) 194 194 199 195 196 196 195 195
Length (L) 194 194 189 194 195 195 195 194
Height (H) 45 44 46 46 45 44 47 46
Area (A = W × L) 37636 37636 37611 37830 38220 38220 38025 37830
Num. points (N) 421214 233480 430900 185526 257436 269031 394895 401186
Density (N/A) 11 6 11 5 7 7 10 11

is presented in Table 3.4. From the table it can be seen, as would be expected, that

as d increases the number of records decreases. Note also that the shapes were not all

of exactly the same size, hence at lower values of d the number of records is no longer

consistent across the eight surfaces. With respect to the conducted evaluations, reported

in detail later in this thesis, it should be noted that given a pair of shapes (surfaces) the

generated classifiers were training and testing on the same shape, or by training on one

shape and testing on another. The GSV 1 and MSV 1 shapes are depicted in Figures

3.8 and 3.9 respectively using d = 1 (d = 1 was used so that the differences between the

generated shapes can be easily noticed and detected).

Table 3.4: Number of records generated for the Gonzalo and Modified pyramids using
different values of d

d GSV1 GSV2 GTV1 GTV2 MSV1 MSV2 MTV1 MTV2

2.5 6086 6086 5928 6086 5853 5853 5853 5853
5 1523 1523 1483 1523 1483 1483 1483 1483
10 402 402 381 402 381 381 381 381
15 171 171 171 171 171 171 171 171
20 102 102 102 102 102 102 102 102

3.7 Summary

This chapter presented an overview of the necessary preprocessing required to translate

sheet metal forming input point cloud data into the desired grid representation (with

associated springback error values). This has been incorporated into the RASP frame-

work which comprises three phases. During phase 1 the point clouds are translated in to

a grid representation that provides a simple, manageable and uniformed structured for

both the Cin and Cout point clouds. Error values were then associated with the Gin grid

centres to produce the grid representation G required for Phase 2 of the RASP frame-

work. The error calculation mechanism was founded on the concepts of line and plane

equations, and 3-D vector representation and manipulation. The pre-processing stages

would not be completed without the labelling process, therefore a full description for the
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Figure 3.8: Different views for the GSV1 Gin point cloud using grid size d = 1mm.

Figure 3.9: Different views for the MSV1 Gin point cloud using grid size d = 1mm.
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process was also presented. Finally a description of the data sets, used for evaluation

purposes later in this thesis, was given. In the next chapter, the first proposed surface

representation techniques is considered.



Chapter 4

Local Geometry Matrix

Representation (LGM)

4.1 Introduction

The first 3-D surface representation considered in this thesis, and that presented in

this chapter, is the Local Geometry Matrix (LGM) method. The input to the LGM

representation is a “coordinate grid” of the form described previously in Chapter 3. The

LGM method is directed at the capture of local 3-D surface geometries in terms of the

“local” neighbourhoods associated with each coordinate grid square. As will become

apparent later in this chapter, the idea behind LGMs is founded on the concept of Local

Binary Patterns (LBPs) as used, for example, with respect to image texture analysis

[88, 159]. A neighbourhood to a grid square comprises the grid squares surrounding

it up to a certain distance away (some authors use the term “radius”, see for example

[207]). In the context of this thesis neighbourhoods are defined in terms of levels. A

level one neighbourhood comprises the grid squares immediately adjacent (in all eight

direction) to the current grid square. A level two neighbourhood comprises the grid

squares one “step” away (in all eight direction) from the current grid square, and so

on. The concept of levels of neighbourhoods will become clearer later in this chapter.

For the purpose of the evaluation of the proposed LGM method, level one and two

neighbourhoods were considered independently and in combination. The metrics used

for the evaluation were the accuracy and Area Under the ROC Curve (AUC). As will

be reported later in this chapter, good classification AUC results were obtained using

the LGM method, not only when the classifiers are trained and tested on identical

shapes, but also when the classifiers are trained on one shape and tested on another.

The rest of this chapter is organised as follows. The proposed LGM method is described

comprehensively in Section 4.2 where a number of different models of the LGM technique

are also presented. Section 4.2 also includes some examples illustrating how the different

LGM models are constructed and how they are used to generate feature vectors to be

used later with respect to the RASP framework. The data sets introduced in Chapter 3

62
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were used with respect to the evaluation, the results of which are described in Section

4.3. The chapter is concluded with a summary of the main findings in Section 4.4.

4.2 The Local Geometry Matrix (LGM)

As noted above the idea behind the LGM model is to describe the geometry of a given

3D surface shape in terms of the local geometry associated with each grid square in the

input. In general terms an LGM is typically a 3 × 3 matrix whose elements describe

some geometric feature with respect to a given grid square represented by the central

element of the matrix. The matrix elements surrounding the central element are referred

to as its neighbours, the entire matrix thus describes a “neighbourhood”. As mentioned

in the introduction to this chapter different kinds of neighbourhood may be considered.

In this chapter we initially consider what we have referred to as level one and level two

neighbourhoods as shown in Figures 4.1 and 4.2. Both are described using 3× 3 LGMs

with the point of interest p0 at the centre of the matrix (shown in black and the eight

neighbourhoods Pi shown in red). The distinction is that the level 2 neighbourhood

covers a larger area and, it was conjectured, might serve to better capture the geometry

surrounding a grid square (although the grid size d would clearly also have a role to

play in this respect). A composite model was also consider (Figure 4.3) represented by

a LGM measuring 5× 5. There are two different options with respect to the values that

may be stored in an LGM:

1. The first option is to calculate the positive or negative difference in hight (δzi)

between the centre grid point P0 and each of its neighbours Pi.

2. The second option is to calculate the angle (θi), above or below the horizontal,

between P0 and each of its neighbours Pi.

Figure 4.1: Level one neighbour-
hood model. The eight closest sur-
rounding neighbours (Pi coloured in
red) for the grid square are consid-
ered and represented using a 3 × 3
LGM (P0 is the centre point coloured

in black).

Figure 4.2: Level two neighbour-
hood model. The eight surround-
ing neighbours (Pi coloured in red)
for the grid square that are “one
step away” are considered and rep-
resented using a 3 × 3 LGM (P0 is
the centre point coloured in black).
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Figure 4.3: The composite model founded on a 5×5 LGM to represent the surrounding
neighbourhood (Pi coloured in red) of P0 coloured in black.

Whatever the case at the end of the process we have LGMs describing each grid point in

the input coordinate grid. With respect to the variations considered, the LGMs comprise

either (3 × 3) − 1 = 8 or 2 × ((3 × 3) − 1) = 16 values in terms of either δzi or θi (−1

to exclude the centre point which always has the value zero) each with an error value

associated with it (calculated as described in Chapter 3).

The next step is to convert the LGMs into a feature vector representation that can

be used as input to the classifier generation process. A set of qualitative labels L is

used to describe the nature of “the slope” for the surrounding neighbours. Therefore,

L8 different local geometries can be described with respect to the level one and level two

neighbourhoods. For the composite neighbourhood model there will be L16 different

local geometries. Thus, if the label set is L = {negative, level, positive} then 38 =

6, 561 different combinations can be used to describe the nature of the local geometry

surrounding each grid point in the level one and level two neighbourhood models. An

example of a resulting feature vector might then be of the form:

〈positive, negative, positive, level, negative, positive, negative, level, E〉

where E is the associated error value. It should be noted that the order of the geometrical

information around P0 is important which means that the geometries are not rotation

invariant. For example, if two feature vectors have the same occurrence for each label

(negative = 3, level = 2, positive = 3) but with different order as follows.

〈positive, positive, positive, level, negative, negative, negative, level, E1〉
〈negative, negative, negative, level, positive, positive, positive, level, E2〉

then both are not equivalent so they will be associated with different E values (E1 and

E2 respectively as shown). The order of reading the geometrical information is fixed

starting from the top left and moving in clockwise direction with respect to LGM. For

the composite model, 316 = 43, 046, 721 different combinations can be used to describe

the nature of the 16 neighbours surrounding the grid point. Different sizes of |L| may

be used to generate configurations of the desired binary valued feature vectors. To il-

lustrate the operation of the LGM representation method two examples are presented
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below (the examples are taken from [125]):

Example 1: Side Location. Considering a “side” location of a flattened square based

pyramid of the form indicated in Figure 4.4. Table 4.1 shows the z values for a (3× 3)

grid representing this location. The associated level 1 LGM will then be of the form

shown in Table 4.2 calculated using the δz values between the centre point and its neigh-

bourhoods. The δz values are then recorded in a clockwise direction from the top left,

with an associated E (springback) value to form the desired feature vector that will be

used later in the RASP framework. If the label set is L = {negative, level, positive},
then the feature vector would be:

〈positive, positive, positive, level, negative, negative, negative, level, E〉

Figure 4.4: Square based pyramid
with side location highlighted (Ex-

ample 1).

Figure 4.5: Square based pyramid
with corner location highlighted (Ex-

ample 2).

40 40 40

20 20 20

0 0 0

Table 4.1: Z matrix for Example 1.

20 20 20

0 0 0

-20 -20 -20

Table 4.2: LGM for Example 1.

Example 2: Corner Location. Considering a corner location of a flattened square

based pyramid of the form indicated in Figure 4.5. Table 4.3 shows the z values for a

3 × 3 grid representing this location. The associated LGM is presented in Table 4.4.

If the label set L = {negative, level, positive} is again used, then the resulting feature

vector, including an E value, would be:

〈positive, level, negative, negative, negative, negative, negative, level, E〉

40 20 0

20 20 0

0 0 0

Table 4.3: Z matrix for Example 2.

20 0 -20

0 0 -20

-20 -20 -20

Table 4.4: LGM for Example 2.
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However, in this thesis only classifiers that operate with binary valued data are

considered, the LGM information needs to be represented in a binary (zero-one) format.

Thus each possible pairing of location p1 to p8 (p1 to p16 in the case of the composite

neighbourhood model) and value from L is considered to be a binary valued “data

attribute” that can exist or not exists. Thus we have:

〈p1 : negative, p1 : level, p1 : positive, . . . , p8 : negative, p8 : level, p8 : positive〉

or in the case of the composite neighbourhood model:

〈p1 : negative, p1 : level, p1 : positive, . . . , p16 : negative, p16 : level, p16 : positive〉

Thus in the case of the two examples above the LGMs would be represented as

follows:

Example 1: 〈0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0〉
Example 2: 〈0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0〉

In practice it makes sense to only store the 1s, we do this by giving a sequential number to

each attribute value pair (for convenience we will simply call this the attribute number).

Thus, in the case of the above examples, the resulting vectors will be:

Example 1: 〈3, 6, 9, 11, 13, 16, 19, 23〉
Example 2: 〈3, 5, 7, 10, 13, 16, 19, 23〉

Some further examples of feature vectors extracted using the LGM model, with

respect to the Gonzalo and Modified pyramid data sets, are presented in Tables 4.5,

4.6 and 4.7. Table 4.5 presents a fragment of the Gonzalo pyramid dataset represented

using the level one neighbourhood model with |L| = |LE | = 3 (|LE | is the set of labels

for the error value). Table 4.6 presents a fragment of the Modified pyramid dataset

represented using the level two neighbourhood model with |L| = |LE | = 3. Table 4.7

presents a fragment of the Modified pyramid dataset represented using the composite

neighbourhood model with |L| = |LE | = 7. The tables merit some further discussion. If

|L| = 3 a point Pi will have either label 1, 2, 3 associated with it, or 4, 5, 6 associated

with it, and so on. It should be noted that E is also discretised using another set

of labels LE . Thus using the level one or level two neighbourhood models the range

of attribute identifiers associated with each record will be from 1 to (8 × |L|) + |LE |
inclusive. In the case of the composite model the range of identifiers will be from 1

to (8 × |L|) + (8 × |L|) + |LE | inclusive. For example, with respect to Table 4.5 the

maximum value is (8 × 3) + 3 = 27. With respect to Table 4.7 the maximum value is

(8× 7) + (8× 7) + 7 = 119.

Once the feature vectors have been generated the next stage, within the RASP

framework, is to apply an appropriate classifier generator to the data to produce the

desired classifier which can then be used to predict the errors associated with new shapes.
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P1 P2 P3 P4 P5 P6 P7 P8 E

3 6 9 12 15 18 21 24 27
2 5 8 11 14 17 20 23 25
3 6 9 12 15 18 21 24 27
2 5 8 11 14 17 20 23 25
2 5 8 11 14 17 20 23 25
2 5 8 11 14 17 20 23 26
2 5 8 11 14 17 20 23 27
1 4 7 10 13 16 19 22 25

Table 4.5: Sample feature vec-
tors for the Gonzalo pyramid data
using |L| = |LE | = 3 and the level

one neighbourhood model

P9 P10 P11 P12 P13 P14 P15 P16 E

1 4 7 10 13 16 19 22 25
1 4 7 10 13 16 19 22 25
1 4 7 10 13 16 19 22 25
2 5 8 11 14 17 20 23 25
3 5 8 12 15 18 21 24 27
3 6 8 12 15 18 21 24 27
3 5 8 12 15 18 21 24 26
2 5 8 11 14 17 20 23 25

Table 4.6: Sample feature vec-
tors for the Modified pyramid data
using |L| = |LE | = 3 and the level

two neighbourhood model

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 E

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113
2 9 16 23 30 37 44 51 58 65 72 79 86 93 100 107 114
3 10 17 24 31 38 45 52 59 66 73 80 87 94 101 108 115
4 11 18 25 32 39 46 53 60 67 74 81 88 95 102 109 116
5 12 19 26 33 40 47 54 61 68 75 82 89 96 103 110 117
6 13 20 27 34 41 48 55 62 69 76 83 90 97 104 111 118
7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119
3 11 18 25 29 38 44 54 59 66 72 80 87 93 102 110 113

Table 4.7: Sample feature vectors for the Modified pyramid data using |L| = |LE | = 7
and the composite neighbourhood model

4.3 Experiments and Evaluation

To evaluate the proposed LGM method, with respect to its three variations (the level

one, level two and the composite neighbourhood models), a variety of experiments were

conducted using different data sets generated from the test shapes presented in Chapter

3. Recall that the generic shape used for experimentation purposes was a flat-topped

pyramid with a square base (the flat topped pyramid shape is a commonly used shape

with respect to AISF related research) similar to the shape shown previously in Figures

4.4 and 4.5 taken from [125]. Recall also that the RASP framework comprise three

phases: (i) the data pre-processing phase where the initial input grid representation

is generated and error calculation performed, (ii) the surface representation phase that

results in a set of feature vectors, and (iii) the classifier generation and evaluation phase.

In the context of the work described in this chapter the RASP surface representation is

the LGM representation.

The main objectives for the experiments were:

1. To identify whether the δz or θ LGM representation was the most effective.

2. To identify the most appropriate value for d so that the LGM models could best

capture the geometry of the surface of interest.

3. To identify the best label size |L| for the LGM models.



68

4. To identify the most appropriate LGM model (level one, level two or the composite

model).

5. To identify the best associated classification generation methods.

6. To identify whether a generic classifier, trained on one shape and applied to an-

other, can be produced.

7. To determine the time complexity of the proposed approach.

Each experiment is considered in further detail in the following seven subsections

(one per objective). All experimental results were recorded in terms of accuracy and

Area Under ROC Curve (AUC) [68, 79].

4.3.1 Identifying whether the δz or θ LGM representation is the most

effective

The experiments reported on in this sub-section were concerned with finding the most

appropriate option for the values to be stored in the considered LGM models, either δz

or θ. The advantage offered with respect to use of the θ value was that it was bounded

(between −90◦ and +90◦), whereas the potential δz values are unbounded. A range

of d values were considered {2.5, 5, 10, 15, 20} (mm). All other parameters were kept

constant and set to their most appropriate values as indicated by a number of previously

conducted experiments which will be summarised in the following sub-sections. Thus:

(i) |L| = 3, (ii) the C4.5 algorithm for classifier generation and (iii) the composite LGM

model, were used. The results are presented in Figures 4.6 and 4.7 in the form of a

set of histograms. The histograms plot AUC and accuracy using both the δz and θ

options (δz in blue and θ in red). From the figures it can be seen that both δz and θ

produced good results and that there is little difference in their operation. However, it

is possible to make the argument that δz produced slightly better AUC results than θ

as the best AUC result of 0.90 was obtained using δz with respect to the GSV2 data set

when d = 15 (the corresponding best θ result was 0.88). The best accuracy result of 0.76

was obtained again using δz with respect to the GSV2 data set when d=20. Therefore,

for ease of understanding, only results produced using δz are reported with respect to

the other experiments considered later in this chapter.

4.3.2 Identification of the best value for d (grid size)

In order to establish the best value for the grid size d a range of d values were considered:

{2.5, 5, 10, 15, 20} (mm). Other parameters were kept constant: (i) the composite LGM

model coupled with δz was used, (ii) |L| = 3 and (iii) C4.5. The results are presented

in Figure 4.8. From the figure it can be seen that the highest AUC and accuracy results

were obtained when the grid sizes were d = 10, d = 15 and d = 20. A summary table for

the range of AUC and accuracy results obtained for the different grid sizes is presented
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Figure 4.6: Comparison of the δz and θ LGM representations in terms of accuracy,
with respect to the eight test data sets using: different grid sizes, |L| = 3, C4.5 and the

composite LGM model.

in Table 4.8. The best accuracy result of 0.95 was obtained using the MSV2 data set

and d = 20. However, the best AUC result of 0.96 was obtained using the GSV2 data

set and d = 10. From Figures 4.6 and 4.7, it can also be seen that d = 10 produced a

good performance. Therefore it was concluded that d = 10 was the most appropriate

grid size for use with respect to the further evaluation presented. Note also that AUC is

a better performance measure than simple accuracy, because it takes into consideration

the “class priors”.

4.3.3 Identification of best label size (|L|)

The main objective with respect to the experiments described in this subsection was to

identify the most suitable label size |L| to be used with the LGM models. From the
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Figure 4.7: Comparison of the δz and θ LGM representations in terms of AUC, with
respect to the eight test datasets, using: different grid sizes, |L| = 3, C4.5 and the

composite LGM model.

d AUC Accuracy

2.5 0.50-0.82 0.49-0.83
5 0.63-0.83 0.54-0.84
10 0.73-0.96 0.66-0.89
15 0.75-0.93 0.67-0.89
20 0.72-0.94 0.62- 0.95

Table 4.8: Summary results for the obtained AUC and accuracy values (as ranges)
for different grid sizes d = {2.5, 5, 10, 15, 20}.
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Figure 4.8: Comparison of different values of d in combination with the LGM model
in terms of AUC, with respect to the eight datasets, using: |L| = 3, C4.5 and the

composite LGM model coupled with δz values.
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previous experiments the δz value option and d = 10 were chosen as both had been

shown to produce good AUC results. The C4.5 algorithm and the composite LGM

model were again used. A range of values for |L| were considered: {3, 5, 7, 9, 11, 13}.
The results are presented in Figure 4.9. From the figure it can be seen that despite the

decline in the recorded accuracy values as the label size increased, the AUC was almost

the same for the different Label size (by a small margin). The best AUC and accuracy

results for the different data sets were obtained mostly when |L| = 3. For |L| = 3,

the best AUC result obtained was 0.96 and the best accuracy result obtained was 0.89,

both results were achieved with respect to the GSV2 data set. Experiments were not

conducted with lower values of |L| as it was conjectured that to produce a good error

predictor a range of errors was required. Of course for |L| = 1 all records will be the

same and an AUC value of 1.0 will result, a very effective classifier but of little practical

use!

4.3.4 Identification of the best LGM model

The experiments presented in this subsection were designed to determine which of the

three proposed variations of the LGM representation model was the most effective, ei-

ther: (i) the level one neighbourhood model, (ii) the level two neighbourhood model

or (iii) the composite model where the level one and two neighbourhood models were

combined. As a result of the outcomes of previous experiments (described above) the

following parameters were adopted: |L| = 3, d = 10, δz value calculation and C4.5. The

results obtained are presented in Figure 4.10. From the figure it can be observed that

the composite and level two neighbourhood models outperformed the level one neigh-

bourhood model. Closer inspection also indicates that the composite model performed

slightly better than the level two neighbourhood model (this is why only results obtained

using the composite model were reported earlier in this chapter). It was conjectured that

this was because the composite and level two neighbourhood models “capture” a wider

area and that this was beneficial with respect to classifier performance. The best ac-

curacy was 0.89 obtained by the composite model. The best AUC result obtained for

both the composite model and the level two neighbourhood model was 0.96 using the

GSV2 data set. Further experiments (not reported here for reasons of succinctness and

clarity) using alternative classification algorithms also demonstrated that the composite

model outperformed the other LGM models. The same result was also produced using

different values for d and |L|.

4.3.5 Identification of the most appropriate classification algorithms

The effect of using different classification algorithms with the proposed LGM representa-

tion model was tested using five classification algorithms: (i) C4.5 [173], (ii) Bayes [116],

(iii) JRIP [41] (iv) PART [72] and (v) Neural Network [23]. The composite model cou-

pled with δz values was again used together with d = 10 and |L| = 3. The obtained

results are presented in Figure 4.11. From the figure it can be seen that very little
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Figure 4.9: Comparison of different values of |L| in combination with the LGM model,
in terms of accuracy and AUC, with respect to the eight datasets, using: d = 10, C4.5

and the composite LGM model coupled with δz values.
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Figure 4.10: Comparison of the three variations of LGM model, in terms of accuracy
and AUC, with respect to the eight datasets, using: d = 10, |L| = 3, C4.5 and δz

values.
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difference was recorded with respect to the performance of C4.5, Bayes, PART, JRIP

and Neural Network. The best accuracy value of 0.90 was obtained with respect to the

GSV2 data set using the Neural Network and JRIP classifiers. The best AUC result

of 0.96 was obtained using C4.5 with respect to the GSV2 data set. Thus it can be

concluded that, to an extent, the proposed LGM representation model is tolerant to the

use of different classification approaches. Therefore, for the remaining experiments (and

the previous experiments) described in this chapter only results obtained using C4.5 are

(were) reported.
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Figure 4.11: Comparison of use of different classifiers with the LGM model, in terms
of accuracy and AUC, with respect to the eight datasets, using d = 10, |L| = 3 C4.5

and the composite LGM model coupled with δz values.

Other reasons for choosing C4.5 were: (i) it is one of the top ten most popularly

used classification algorithms [216], (ii) the decision trees produced are easy to interpret

and (iii) it is straight forward to extract rules from the generated decision tree classifier

(if desired).

4.3.6 Training and testing the classifier on a different data set

The objective of the experiments described in this subsection was to determine whether

the proposed LGM representation model was sufficiently generic, in other words whether
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the model captured a sufficiently extensive sample of geometries for general application

(important in the context of AISF). The experiments were conducted by training a clas-

sifier on one shape and applying it to another shape. For the experiments the following

parameters were used: d = 10, |L| = 3, C4.5 and the composite LGM representation

model coupled with δz values. The obtained results are presented in Figure 4.12. From

the figure it can be observed that:

• In most cases, the best overall results in terms of AUC and accuracy were obtained

when the classifier was trained and tested on the same data set. For example, the

AUC and accuracy results were 0.73 and 0.69 and obtained when the classifier

was generated using GSV1 data set. Similarly, the best overall AUC and accuracy

results were 0.96 and 0.89 respectively and obtained when the classifier used GSV2

data set for training and testing.

• A classifier trained on one shape using one material can be successfully applied

to another shape using another material. For example, the classifier constructed

using the MTV1 data set (titanium) was successfully applied to the GSV2 data set

(steel); an AUC value of 0.74 and an accuracy value of 0.53 were recorded (recall

that AUC takes into account the class priors while accuracy does not, therefore

AUC is a better indicator of performance).

Therefore, it can be concluded that applying the classifiers trained on one shape to

another shape produces good AUC results. In other words, using the LGM representa-

tion model we can produce generic classifiers that serve to capture a sufficiently wide

collection of different geometries.

4.3.7 Run Time Analysis

The section considers the run time for the composite LGM model with δz values for a

range of d values, using L = 3, the C4.5 classification algorithm and the eight evaluation

data sets used previously (GSV1, GSV2, GTV1, GTV2, MSV1, MSV2, MTV1, MTV2).

All the experiments were performed with a 2.7 GHz Intel Core i5 PC with 4 GB 1333

MHz DDR3 memory, running OS X 10.8.1 (12B19). The code for the preprocessing

phases in RASP framework, where the grid representation is applied and each centre

grid point is associated with error value, was implemented using the Java programming

language. Weka version 3-6-8 was used to apply the classification algorithms. Figures

from 4.13 to 4.17 present the run times for a range of grid sizes d = {2.5, 5, 10, 15, 20}.
Note that the figures only present recorded run times for the required preprocessing as

the time required for the classification phase was found to be negligible. From the figures

it can be observed that:

• The maximum run time was 207 seconds (to the closest second) reported when

GTV2 data set was used at d = 2.5.
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(b) Training the generic classifier on GSV 2
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(c) Training the generic classifier on GTV 1
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(d) Training the generic classifier on GTV 2
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(e) Training the generic classifier on MSV 1
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(f) Training the generic classifier on MSV 2
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(g) Training the generic classifier on MTV 1
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(h) Training the generic classifier on MTV 2

Figure 4.12: AUC and Accuracy results obtained when generating a generic classifier
using different data sets to train and test the classifiers, δz values, |L| = 3, d = 10 and

C4.5 classification algorithm.
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• The minimum run time was 1 second (to the closest second) reported when each

of GSV2, GTV1, GTV2, MSV1 and MSV2 data sets was used at grid size d = 20.

• The average run time for d = 2.5, d = 5, d = 10, d = 15 and d = 20 were 196.63,

6.00, 2.25, 1.63, 1.5 seconds respectively.

• The computation time increases as the grid size decreases. This is to be expected

because the number of representative points (the centre points for the grid squares)

in the grid representation increases when the grid size decreases and thus more

processing time is required.
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Figure 4.13: The run time for d =
2.5 for the different data sets.
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Figure 4.14: The run time for d = 5
for the different data sets.
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Figure 4.15: The run time for d =
10 for the different data sets.
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Figure 4.16: The run time for d =
15 for the different data sets.
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Figure 4.17: The run time for d =
20 for the different data sets.

4.4 Summary

This chapter has presented the LGM representation model, the first surface represen-

tation technique to be considered in this thesis. The LGM model was founded on the
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concept of Local Binary Patterns (LBPs) that have been effectively used with respect to

image texture analysis. The idea behind the LGM model was to define each grid square

in term of its neighbours. Three variations of the LGM model were considered: (i)

the level one neighbourhood model which considered the eight immediately surrounding

neighbours, (ii) the level two neighbourhood model which considered the eight neigh-

bours that were “one step away” and (iii) the composite model which combined the

previous two models. The feature vectors extracted from the LGM representation were

used to train and test classifiers. A wide range of experiments were conducted to identify:

(i) the most appropriate definition for the LGM representation (δz or θ), (ii) the most

appropriate grid size (d), (iii) the most effective label size (|L|) to predict the “spring-

back”, (iv) the most efficient LGM model (level one, level two or composite), (v) the

best classification generation method to be used in relation to the LGM representation,

(vi) whether it was possible to build a generic classifier and (vii) the time complexity.

The main findings were:

• The δz LGM representation was the most appropriate LGM representation as it

achieved the best AUC results.

• The most appropriate grid size was found to be d = 10.

• The most effective label size |L| was founded to be |L| = 3.

• The composite model outperformed other models (the level one and level two

neighbourhood models).

• There was no significant difference between the classification generation methods

considered (C4.5, PART, JRIP, Bayes and Neural Network). However, C4.5 tended

to outperform the others by a small margin.

• That a generic classifier could be generated if it was trained on a suitable shape

which featured a sufficient set of patterns describing all possible geometries.

Overall it was found that the proposed LGM representation technique, with respect

to its three variations (the level one, level two and the composite neighbourhood mod-

els), could successfully be used to represent 3D surfaces in the context of springback

prediction. In the next two chapters, the other two proposed techniques for 3D surface

representation will be presented. The Local Distance Measure (LDM) representation is

presented in the following chapter.



Chapter 5

Local Distance Measure (LDM)

Representation

5.1 Introduction

In this chapter the second surface representation technique considered in this thesis, the

Local Distance Measure (LDM) representation, is presented. The technique is founded

on the observation that critical features (edges and corners) are likely to have an influence

over springback distribution. The idea was therefore to define each grid point contained

in the grid representation of a given 3D surface in terms of its distance to its nearest

edge or corner (critical point). The LDM technique comprises two main steps: (i)

identification of critical points in the Gin input grid, and (ii) calculation of the nearest

edge distance for each grid point inGin. The proposed critical point detection mechanism

is founded on the concept of identifying the angular variation between the normals

between grid points and their immediate neighbours. Once the critical points have been

identified, finding the nearest critical point to a given grid point is straight-forward.

The motivation for the LDM representation is that the edges and corners are a signif-

icant and integral part of any 3D shape description. In the context of this thesis an edge

is where two “planes” come together, and a corner is where three or more “planes” come

together. The significance of edges and corners is that they define the distinguishable

geometric properties that give a 3D shape its identity. From the industrial perspec-

tive, edges and corners are considered to be the “critical points” used for manufacturing

quality control [78, 197, 210]. In the context of the point cloud representation it is not

immediately obvious where edges and corners occur. Recall that for the sheet metal

forming error prediction application the desired 3D shape is represented by a Cin point

cloud, while Cout represents the obtained 3D shape. As described previously in Chapter

3, both the clouds Cin and Cout are translated into a grid representation to give Gin and

Gout respectively.

As will be seen later in this chapter a comprehensive set of experiments was con-

ducted using the proposed LDM technique. Experiments were also conducted using

80
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combinations of the LDM technique and the three LGM technique variations described

in Chapter 4 to see if a combination of the two techniques would result in an improved

outcome. Thus: (i) LDM and level one LGMs, (ii) LDM and level two LGMs and

(iii) LDM and composite LGMs. As will become apparent, the evaluation of the LDM

models demonstrated that describing the 3D surface using a combination of LDM and

LGMs produces a better result than when considering LDM (or LGMs) in isolation

(LDM coupled with composite LGMs produced the best overall performance).

The rest of this chapter is organised as follows. Section 5.2 provides a discussion of

the “philosophical underpinning” for the proposed LDM approach. Section 5.3 describes

the LDM technique in detail, both in terms of critical feature identification and distance

calculation. Some detailed example LDM calculations are presented in Section 5.4. A

discussion of the combination of the proposed LDM technique with the LGM technique

described in Chapter 4 is presented in Section 5.5. An evaluation of the proposed LDM

mechanism, including its operation in combination with the LGM technique, introduced

in the previous chapter, is then presented in Section 5.6. Section 5.7 presents some

run time analysis for the most “appropriate” variation for LDM technique. Finally, the

chapter is concluded with a summary in Section 5.8.

Figure 5.1: An example shape represented in terms of a point cloud.

5.2 Effect of proximity of Critical Points on Springback

As noted above the motivation for the LDM representation was the conjecture that

springback at specific locations (grid points) was influenced by proximity to critical

points (edges and/or corners). To investigate this suggestion some initial analysis was

conducted to establish whether this conjecture was true or not. This analysis took the

form of visualisations of the springback (error) distribution and magnitude over the

sample shapes (GSV1, GSV2, GTV1, GTV2, MSV1, MSV2, MTV1 and MTV2). For

reference purposes an example shape is shown in Figure 5.1. The colour coding used for

the visualisation is presented in Figure 5.2. Figure 5.3 presents two springback visuali-

sations (2D-plots) for the MSV1 data set (Further visualisations illustrating springback

distributions with respect to the remaining data sets are presented in Appendix A.) In

all cases the grid distance d was set to 2.5 mm. Plots were also generated using other

values for d, but d = 2.5 was found to provide the simplest to interpret visualisations.
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Figure 5.3 (a) considers only the magnitude of the error where the minimum spring-

back (zero) has an error code of 1 (pale yellow) and the maximum an error code of 7

(dark green). The range of springback magnitude values is from 0 mm (yellow) to 1.8

mm (dark green). It can be seen, from the figure, that the larger springback values tend

to be concentrated on the pyramid sides away from edges. The lower springback values

tend to be concentrated at edges and over the flat-topped square area of the pyramid.

Figure 5.3 (b) takes into consideration both direction and magnitude, thus the maxi-

mum negative springback has an error code of 1 (pale yellow) and the maximum positive

springback has an error code of 7 (dark green). From the figures the shape of the flat-

topped square pyramid can be clearly detected. The range of errors is from −1.22 mm

(yellow) to +1.80 mm (dark green). The minus (−) and plus (+) signs indicate that the

direction of the springback is either outwards or inwards respectively. The first obser-

vation that can be made, as is to be expected, is that the error distribution is similar

to that noted with respect to Figure 5.3(a). Further inspection indicates predominantly

positive springback values round the base of the pyramid and negative springback on

the sides of the pyramid.

Similar observations, as the above, can be drawn from the additional springback

distribution visualisations presented on Appendix A. In conclusion, what is clear form

the figures is that the degree of springback does seem to be related (at least in part) to

distance from edges and corners although not in an entirely symmetric manner.

Figure 5.2: Colour coding used in Figure 5.3.

(a) Undirected MSV 1 d = 2.5 (b) Directed MSV 1 d = 2.5

Figure 5.3: 2D-plot showing springback distribution over a shape (MSV1): (a) mag-
nitude only, (b) magnitude and direction (d = 2.5).
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5.3 The LDM Mechanism

The proposed LDM technique is described in this section. As already noted in the intro-

duction to this chapter the proposed technique comprises two stages: (i) critical point

identification, and (ii) nearest edge distance calculation. Thus this section is divided

into two sub-sections describing stages one and two respectively. On completion of the

process each grid point will be described in terms of the distance to the nearest criti-

cal point. In the case of training data this grid point was coupled with an associated

springback (error) value.

5.3.1 Critical Point Detection

Different techniques have been proposed in the literature to detect the critical points

(edges and/or corners) for different purposes such as [46, 118, 139, 165, 220]. The un-

derpinning philosophy supporting the proposed critical point detection mechanism was

that the technique should be computationally simple as it would need to be applied

many times (according to the number of grid centres in the input data). The proposed

detection mechanism is founded on normal calculations and comparisons for each grid

point located on the Gin. A point pi was considered to be a critical point if the angu-

lar difference (θ) between the normal to the point pi and at least one of the normals

associated with the eight level one neighbours is greater than some threshold. The

proposed critical point detection mechanism thus operates as follows: for each point pi

located in Gin, a sequence of eight angles {θ1, θ2, θ3, . . . , θ8} were calculated using the

dot product between the normal to pi and the normal to each of its level one neighbours.

For instance, if the pi normal is ni = 〈xi, yi, zi〉, where the normal length is defined as

|~ni| =
√

(xi)2 + (yi)2 + (zi)2; and the normal for the neighbour pi1 is ni1 = 〈xi1, yi1, zi1〉,
where its length defined as | ~ni1| =

√
(xi1)2 + (yi1)2 + (zi1)2; then the angle θi1 between

ni and ni1 is defined as:

θi1 = arccos
(xi · xi1) + (yi · yi1) + (zi · zi1)

|~ni| · | ~ni1|
(5.1)

where θ1 is the smallest angle between the two normals ni and ni1. The range for θi is

from 0◦ (where both normals run parallel to each other in the same direction) to 180◦

(where both normals run parallel to each other but in opposite directions). A point pi

is considered to be a critical point if at least one of the θ values for one of its level one

neighbours is greater than some threshold (tolerance measure) ξ. Algorithm 5.1 itemises

the steps for identifying the critical feature points in Gin. There are two main factors

that affect the process of the critical point detection mechanism:

1. The grid size (d).

2. The tolerance value ξ.

Considering the grid size first. The greater the grid size the more difficult it is to detect

edges or corners. Recall that the normal to the centre grid point is actually calculated
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Algorithm 5.1: Critical Point Detection

Input: G, ξ
Output: Updated G with identified critical points

1 for each pi ∈ G do
2 pi.status← “non− critical′′;
3 Identify the normal ni for the pi;
4 Identify level one neighbourhood for pi, Nr = {pi1, pi2, ..., pi8};
5 Define the eight normals for the the level one neighbourhood N ;
6 θ ← φ ; // List of θi associated with pi
7 // Find the length of the centre point normal ~n

8 |~n| ←
√

(nx)2 + (ny)2 + (nz)2;
9 foreach ni ∈ N do

10 |~ni| ←
√

(nix)2 + (niy)2 + (niz)2;

11 θi ← arccos(
(nx·nix)+(ny ·niy)+(nz ·niz)

|~n|·| ~ni| );

12 θ ← add θi;

13 end
14 foreach θi ∈ θ do
15 if θi ≥ ξ then
16 pi.status← “critical′′;
17 break;

18 end

19 end

20 end

as an average of a number of normals (dot product calculations) as described previously

in Chapter 3. When the grid size is small this calculation is quite precise, but as the

grid size increases the differences between the normals starts to increase and hence the

averaging also starts to become imprecise, because for a relatively large value of d the

grid square will cover a larger area. In the context of critical point identification, as

the grid size increases the difference between normals starts to become less distinct and

hence normals are more likely to be parallel than if a small value of d is used. The critical

points are located on: (i) the square base, (ii) the square top, (iii) the junction of the four

pyramid walls and the bends in two sides as shown in Figures 5.4(a), 5.5(a) and 5.5(b).

For example, if we consider the GSV1 data set (shown previously in Chapter 3 in Figure

3.8) and apply the critical point identification process to this shape using a variety of d

values from d = 2.5 to d = 20, and using ξ = 9 the results are as shown in Figure 5.4.

From this figure it can be seen that as d increases critical point detection becomes less

precise. When d = 2.5 critical points (edges and corners) are clearly identified, however

when d = 20 the result is unusable. The situation can be addressed by using different ξ

values with respect to different d values.

The second influencing factor is the nature of the selected ξ tolerance value. Ob-

viously, as ξ is increased, the number of points identified as edge points decreases.

Conversely as ξ is decreased, the number of points identified as edge points increases.

This can be illustrated from a sequence of experiments using different values of ξ but
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(a) GSV 1 d = 2.5

(b) GSV 1 d = 5 (c) GSV 1 d = 10

(d) GSV 1 d = 15 (e) GSV 1 d = 20

Figure 5.4: The effect of different d values on critical point detection using ξ = 9 and
the GSV1 data set.
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with a constant value of d as shown in Figure 5.5. Careful inspection of this figure

demonstrates that more points are identified as critical points when ξ = 5 than when

ξ = 15. Therefore, ξ should be carefully chosen. More experiments to determine the

most appropriate value for ξ to be associated with each d value are presented in Section

5.6.1.

(a) ξ = 5 (b) ξ = 9

(c) ξ = 12 (d) ξ = 15

Figure 5.5: The effect of different ξ values on critical point detection using d = 2.5
and the GSV1 data set.

5.3.2 Distance Calculation

Once the critical points have been detected and determined on Gin, as previously de-

scribed in section 5.3.1, the minimum distance between each grid point pi and its closest

critical point can be determined simply by adopting a “region growing” process as shown

in Algorithm 5.2. The input to Algorithm 5.2 is again the grid Gin. The algorithm re-

cursively tests all the points located on Gin (line 1) in order to calculate the critical

distance as long as each pi is not itself a critical point (if so, a distance of 0 is returned).

If pi is not a critical point, the algorithm proceeds in iterative manner, level by level,

starting with level 1 neighbours. The minimum distance from pi to its current level

neighbours is calculated using the procedure Distance (line 7). This procedure returns:

(i) −1 if the region growing has resulted in a set of points outside of G (this might occur
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in the event of a uniform flat plane where a high value of ξ and/or d is used), (ii) 0 if no

critical points are found at the given level or (iii) a distance otherwise. If a distance of

−1 is returned a distance of 0 is recoded and the algorithm terminates. Otherwise, the

algorithm continues with the next level as shown in Figure 5.6. The distance between

the current grid point pi and the discovered critical grid points will be calculated using

Equation 5.2.

d(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (5.2)

Algorithm 5.2: RegionGrowing

Input: G
Output: G′ associated with “critical” distance values

1 for all pi ∈ G do
2 if pi! = “critical′′ then
3 dist← 0;
4 found← false ;
5 level← 1;
6 while ¬found do
7 dist← Distance(pi, level) ;
8 if dist = −1 then
9 pi.distance← 0;

10 found← true;

11 end
12 else if dist > 0 then
13 pi.distance← dist;
14 found← true;

15 end
16 else
17 level + +;
18 end

19 end

20 end

21 end
22 return G′;

Figure 5.6: Region growing example using Algorithm 5.2 where the closest critical
point is located within the level two neighbourhood.
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Function Distance(p,l)

1 P ← set of level l points in G calculated with respect to p;
2 d← array of distance values for critical points found in P ;
3 dist← 0;
4 d← dist;
5 if P ←− ∅ then
6 dist← −1;
7 end
8 else
9 for all pj ∈ P do

10 if pj .status = “critical′′ then

11 distj ←
√

(pjx− px)2 + (pjy − py)2 + (pjz − pz)2;
12 d← distj ;

13 end

14 end
15 dist← minimumdistancevalueind;

16 end
17 return dist;

Again, as in the case of the LGM technique a set of qualitative labels L was used to

describe the range of possible local distance measures given a particular geometry. Some

statistical information for the critical point detection method with respect to both the

Gonzalo and Modified pyramids is presented in Table 5.1.

5.4 LDM Detailed Examples

This section presents two worked examples illustrating: (i) critical point detection and

(ii) local distance measure calculation. The first example, presented below, shows how

critical point are identified using Algorithm 5.1. The second example shows how the

distance to the nearest critical point is obtained using Algorithm 5.2.

Example 1: Critical Grid Point Identification.

Consider a hemisphere shape for a given a point p0 = (−32.50,−66.96,−0.78) associ-

ated with a normal of n0 = 〈0.04, 10.07, 18.75〉 and a set of four points {p1, p2, p3, p4}
describing a level one neighbourhood as shown in Figure 5.7. The points’ coordinates

are as shown in Table 5.2. A set of normals to these points are also listed in the table

along with θ values (the angle between the normals of theses points and the normal to

p0). By using ξ = 9; all θ values are greater than ξ (as shown in the table) and hence

point p0 would be identified as critical point.
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Table 5.1: Statistical information for the proposed critical point detection technique
with respect to the evaluation data sets.

d Number Critical Points as a percentage (%)

of critical points of total size

2.5 1372 22.54%
5 618 40.58%

GSV1 10 195 48.51%
15 82 47.95%
20 49 48.04%

2.5 1414 23.23%
5 620 40.71%

GSV2 10 195 48.51%
15 88 51.46%
20 51 50.00%

2.5 1374 23.18%
5 640 43.16%

GTV1 10 204 53.54%
15 86 50.29%
20 50 49.02%

2.5 1372 22.54%
5 618 40.58%

GTV2 10 195 48.51%
15 82 47.95%
20 49 48.04%

MSV1,
MSV2,
MTV1,
MTV2

2.5 696 11.89%
5 583 39.31%
10 201 52.76%
15 70 40.94%
20 40 39.22%

Figure 5.7: Example of a hemisphere shape for a given point p0 with four Level one
neighbourhood points p1, p2, p3 and p4 each associated with its own normal, ~n1, ~n2, ~n3

and ~n4 respectively.



90

Table 5.2: The level one neighbourhood point coordinates, normals (ni) and the angles
(θ◦i ) between the normal of the centre grid point p0 and the neighbouring normals.

pi (xi, yi, zi) ni θ◦i (angle with reference to p0)

p1 (−32.5,−61.96,−7.18) 〈−1.41× 10−4, 5.76× 10−5, 18.75〉 28.23◦

p2 (−27.5,−66.96,−0.80) 〈−1.61× 10−4,−1.42× 10−5, 18.75〉 28.23◦

p3 (−32.5,−71.96, 0.05) 〈−1.12× 10−4, 2.05× 10−5, 18.75〉 28.23◦

p4 (−37.5,−66.96,−0.77) 〈−1.55× 10−4, 2.72× 10−5, 18.75〉 28.23◦

Example 2: Local distance measurement.

Given a non critical point p1 = (−60.13,−85.13, 0.00) and a critical point p2 =

(−60.13,−70.13, 0.00) within the level three neighbourhood of p1, the minimum distance

between p1 and p2 is:

d(p1, p2) =
√

(0)2 + (15)2 + (0)2

d(p1, p2) =
√

(225.00)

d(p1, p2) = 15.00 mm

(5.3)

5.5 Combining The LDM Model with The LGM Model

The LDM technique, as described above, was used to represent 3D surfaces of interest in

terms of the distance between each point located on Gin and the closest critical point. It

was conjectured that the effectiveness of the LDM approach might be improved if it was

combined with the LGM representation described in the previous chapter (Chapter 4).

Recall that three variations of the LGM model were considered: (i) the level one LGM

model, (ii) the level two LGM model and (iii) the composite LGM model of which the

composite model produced the most effective result. The LDM representation proposed

in this chapter can thus be combined with each of these models to give:

1. LDM + Level 1 LGM

2. LDM + Level 2 LGM

3. LDM + Composite LGM

The essential idea was that combining the two approaches would provide for a more

detailed representation of 3D surfaces. Information concerning the number of attributes

associated with the LDM and LGM combinations is presented Table 5.3 (for comparison

purposes the number of attributes associated with the LDM technique is included in the

table). The significance is that more attributes require more storage and thus more pro-

cessing time. With respect to the different models, the number of attributes generated

using different values of |L| are presented in Table 5.4. The significance is that when

the grid point pi has n features then there would be Ln geometrical patterns describing

the error (springback) associated with pi.
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Table 5.3: Number of features and the generated feature vector for pi.

LDM model No. of Features The generated feature vector

LDM 2 〈dist, ei〉
LDM + Level 1 LGM 10 〈δzi,1, δzi,2, ..., δzi,8, dist, ei〉
LDM + Level 2 LGM 10 〈δzi,9, δzi,10, ..., δzi,16, dist, ei〉
LDM + Composite LGM 18 〈δzi,1, δzi,2, ..., δzi,16, dist, ei〉

Table 5.4: Number of attributes (including the error class) for each LDM model using
a range of label sizes.

Label Set Size (|L|)
3 5 7 9 11 13

LDM 6 10 14 18 22 26
LDM + Level 1 LGM 30 50 70 90 110 130
LDM + Level 2 LGM 30 50 70 90 110 130
LDM+ Composite LGM 54 90 126 162 198 234

5.6 Experiments and Evaluation

To evaluate the proposed LDM technique, and the three combinations with the LGM

technique proposed in the previous chapter, a number of experiments were conducted

using the evaluation data sets introduced in Chapter 3 and the RASP framework. Recall

that the RASP framework comprises three phases: (i) data pre-processing where the

initial input grid representation is generated and error calculation performed, (ii) surface

representation (resulting in a set of feature vectors in the case of the LGM and LDM

representation) and (iii) classifier generation and evaluation. The main objectives for

the experiments with respect to the LDM representation were:

1. To identify the most appropriate value for ξ associated with respect to each grid

size d.

2. To identify the most appropriate value for d with respect to the LDM model and

its combinations.

3. To identify the best label size |L| for the LDM model.

4. To identify the most appropriate overall representation (LDM, LDM + Level 1

LGM, LDM + Level 2 LGM and LDM + Composite LGM).

5. To investigate further (in addition to the investigations considered in the previous

chapter) whether a generic classifier, trained on one shape and applied to another,

can be produced.

6. To conduct some run time analysis concerning both the LDM representation on

its own, and the best performing representation identified so far.

Each experiment is considered in further detail in the following six subsections. All

experimental results were recorded in terms of Accuracy and the Area Under ROC Curve

(AUC) [68, 79]. Work presented in the previous chapter demonstrated that there was no
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significant difference between the different classification algorithms: (i) C4.5 [173], (ii)

Bayes [116], (iii) JRIP [41], (iv) PART [72] and (v) Neural Network [23]. Nevertheless,

C4.5 classifier was selected and identified as the “best” with respect to the LGM model

because of its simplicity and popularity, hence this was used again with respect to the

evaluation reported in this chapter, coupled with Ten Cross Validation (TCV).

5.6.1 Best value for ξ

For the evaluation reported in this chapter the ξ values suggested in Table 5.5 were used

with respect to different grid sizes. These values were obtained through a process of

empirical experimentation. From the table it can be observed that the most appropriate

value for ξ increases with d, this is because, as noted above, as d increases the likelihood

of high θ values (the difference between the normal at a point and one of its neighbouring

normals) increases, hence a higher value of ξ is required.

Table 5.5: The tolerance value ξ associated with different grid sizes d

The grid size d The tolerance value ξ

2.5 9
5 9
10 15
15 18
20 20

5.6.2 Identification of the best value for d (grid size)

Some analysis regarding the most effective grid size with respect to the LDM repre-

sentation has already been presented earlier in this chapter (see Section 5.3.1). In this

section the results obtained from a more comprehensive evaluation of the effect of grid

size is presented using the complete collection of evaluation data sets. For the exper-

iments the same range of d values were considered as before: {2.5, 5, 10, 15, 20} (mm).

|L| = 3 was kept constant and the appropriate ξ value as previously shown in Section

5.6.1 with respect to each grid size was used. The results are presented in Figure 5.8.

From the figure it can be seen that the best AUC was 0.61 when d = 20 achieved using

GTV1. The best accuracy result was 0.65 when d = 15 achieved using MSV2. Despite

the increase in the accuracy results for the grid size d = 10, d = 15 and d = 20, the

associated AUC results were below 0.50. Consequently d = 2.5 was selected as the most

effective grid size for the LDM model as all the AUC results recorded using d = 2.5 were

greater than or equal 0.50. Accordingly, 0.60 is the best accuracy achieved for d = 2.5

using GSV2 (with AUC result = 0.50) while the best AUC for d = 2.5 was 0.59 achieved

by MTV2 (with accuracy result = 0.52). It was acknowledged that these accuracy and

AUC values are not particularly good, but the objective of the reported experiments

was to identify a best grid size d for further experimentation rather than identifying a

best overall set of parameters straight off.
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Figure 5.8: Accuracy and AUC results obtained for the LDM model, using differ-
ent values for d with respect to the eight test datasets (using |L| = 3 and the C4.5

classification algorithm).

5.6.3 Best number of labels (|L|)

The main objective with respect to the experiments described in this sub-section was to

identify the most suitable label set size |L| to be used with the LDM model. A range

of values for |L| were considered: {3, 5, 7, 9, 11, 13}. From previous experiments d = 2.5

had been shown to be the most effective grid size and thus this was chosen for the d

parameter. The results are presented in Figure 5.9. From the figure it can be seen

that |L| = 3 produced the best accuracy and AUC results compared to other label sizes

(0.59 and 0.60 was recorded). Of course as |L| gets smaller the fewer the number of

springback classes and hence the classification is more likely to be correct. As noted

previously, using |L| = 1 we can expect to produce a classification accuracy of 100%

and an AUC of 1.0. It should also be noted that for springback correction purposes a
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value of |L| that is greater than three may be more useful. However, with respect to the

remaining experiments presented in this chapter |L| = 3 was used.

0.5	  

0.6	  

0.51	   0.51	  
0.55	  

0.53	  

0.59	  

0.52	  

0.58	  

0.42	  

0.37	   0.37	  

0.46	  
0.43	  

0.47	  

0.42	  
0.43	  

0.43	  

0.33	   0.33	  

0.4	  
0.38	   0.36	   0.35	  

0.37	  
0.35	  

0.28	   0.27	  
0.31	   0.3	   0.3	  

0.27	  

0.34	   0.34	  

0.23	   0.24	   0.25	   0.26	   0.25	   0.24	  
0.28	   0.29	  

0.22	   0.23	  
0.24	  

0.22	   0.23	  
0.21	  

0	  

0.1	  

0.2	  

0.3	  

0.4	  

0.5	  

0.6	  

0.7	  

GSV1	   GSV2	   GTV1	   GTV2	   MSV1	   MSV2	   MTV1	   MTV2	  

Ac
cu
ra
cy
	  	  

Data	  sets	  

L=3	  

L=5	  

L=7	  

L=9	  

L=11	  

L=13	  

(a) Accuracy results for LDM model to identify the best label size

0.5
	  

0.5
	  

0.5
3	  

0.5
	  

0.5
7	   0.5

8	  

0.5
	  

0.5
9	  

0.5
	  

0.5
9	  

0.5
6	   0.5

8	  

0.5
	  

0.5
7	   0.6

3	   0.6
2	  

0.6
1	   0.6

3	  

0.5
7	  

0.5
1	  

0.6
1	   0.6

2	   0.6
4	  

0.6
4	  

0.5
9	  

0.6
	  

0.5
8	  

0.5
9	  

0.6
5	  

0.6
3	  

0.6
2	   0.6

3	  

0.5
9	   0.6

	  
0.6
	   0.6

4	  

0.6
2	   0.6

4	  

0.6
	   0.6

1	  
0.6
1	  

0	  

0.1	  

0.2	  

0.3	  

0.4	  

0.5	  

0.6	  

0.7	  

GSV1	   GSV2	   GTV1	   GTV2	   MSV1	   MSV2	   MTV1	   MTV2	  

AU
C	  
	  

Data	  sets	  

L=3	  

L=5	  

L=7	  

L=9	  

L=11	  

L=13	  

(b) AUC results for LDM model to identify the best label size

Figure 5.9: Accuracy and AUC results obtained for the LDM model using different
values for |L| with respect to the eight evaluation datasets (using d = 2.5 and the C4.5).

5.6.4 Best LDM model

The experiments described in this subsection were designed to determine whether the

LDM model on its own or in combination with the three proposed LGM models was

the most effective. The models tested were: (i) LDM, (ii) LDM + composite LGM,

(iii) LDM + level one LGM and (iv) LDM + level two LGM. For LDM evaluation, and

as a result of the outcomes of the previous experiments, the following parameters were

adopted: |L| = 3 and C4.5. However, in Chapter 4 L = 3 and d = 10 were identified as

the best parameters for the LGM models. Therefore the experiments used to identify

the best LDM model described in this section were conducted using a range of grid sizes
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d = {2.5, 5, 10}. The results obtained are presented in Figures 5.10. From the figure it

can be observed that:

1. The LDM + composite LGM and LDM + level two LGM outperformed the other

models with respect to |L| = 3 for different grid sizes.

2. The best accuracy result achieved was 0.92 obtained using the LDM + composite

LGM model applied to GSV2 with d = 10.

3. The best AUC result achieved was 0.96 again obtained using the LDM + composite

LGM model when applied to GSV2 with d = 10.

4. There is no significant difference between the performance for the LDM + level

one LGM, LDM + level two LGM and LDM + composite LGM models when the

grid size was small (d = 2.5 and d = 5). However, significant differences in the

performance measurements (accuracy and AUC values) for the different models

started to be notable when using a grid size d = 10. The best performance was

obtained using LDM + composite LGM model.

As a result of the above observations, it was concluded that LDM + composite LGM,

coupled with d = 10, produced the most effective results.

5.6.5 Training and testing the classifier on a different data sets

The objective of the experiments described in this sub-section, similar to those described

in the previous chapter, was to determine whether the proposed LDM representation

model was sufficiently generic. In other words whether the model captured sufficient

geometries to describe 3D surfaces for general application. The experiments were con-

ducted by training a classifier on one dataset and applying it to another dataset. More

specifically, two sets of experiments were conducted: one using only the LDM represen-

tation and the other using the LDM + composite LGM representation.

For the first set of experiments considered in this section, informed by the foregoing

experiments (described above), the following LDM parameters were used: d = 2.5 and

|L| = 3 and the C4.5 classification algorithm. The obtained results are presented in

Figure 5.11 in terms of accuracy and AUC values. From the figure, it can be seen that

the best accuracy was 0.60 obtained when the classifier was trained on GTV2 and tested

on GSV2. The best AUC value was 0.61 obtained when the classifier was trained on

GTV1 and tested on GSV2. From the results, although not particularly good (many

of the recorded AUC values are below 0.50), it can be seen that there is no significant

variation when a classifier is trained on one shape and applied to another. From which

we can conclude that the LDM representation on its own is a generic representation.

For the second set of experiments, L = 3, C4.5 and d = 10 was used. The results

are presented in Figure 5.12 in terms of accuracy and AUC values. From the figures it

can be seen that:
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Figure 5.10: AUC and Accuracy results to identify the best LDM model using |L| = 3
and a range of grid size {2.5, 5, 10} with respect to the eight evaluation datasets (using

the C4.5 classification algorithm).
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• The best AUC was 0.97 obtained when the classifier was trained on GTV2 and

tested on GSV2. The best accuracy result was 0.92 obtained again when the

classifier was trained on GTV2 and tested on GSV2.

• The main thing that can be observed from Figure 5.12 is that the results are

significantly better than those presented in Section 5.6.4.

• For each case presented in Figure 5.12, a classifier was generated using one data set

and tested on another, the results indicated that there was no significant difference

in operation between when the classifier in question was applied to the same data

set (“within data set” testing) or another data set (in “between data set” testing).

• There was no significant distinction between the classification results obtained with

respect to the manufacturing material used (steel or titanium). It was thus con-

cluded that to generate a generic classifier the generation process requires training

provided data that maximises the number of different potential geometries rather

than the number of material types available.

From the foregoing it was therefore possible to assert that the LDM + composite

LGM model was sufficiently generic.

5.7 Run Time Analysis

The section provides a run time analysis for both the LDM and LDM + composite

LGM model for a range of d values using the C4.5 classification algorithm. The label

size considered was |L| = 3. The run time analysis was conducted with respect to all

eight evaluation data sets (GSV1, GSV2, GTV1, GTV2, MSV1, MSV2, MTV1, MTV2).

All the experiments were performed with 2.7 GHz Intel Core i5 PC with 4 GB 1333 MHz

DDR3 memory, running OS X 10.8.1 (12B19). The LDM technique was designed and

implemented using the Java programming language for both phases: (i) the detection

for the critical points (corners and edges) and (ii) calculation of the distance between

each point and the closest edge or corner using the region growing algorithm. The

Weka version 3-6-8 implementation for C4.5 was used. Figures 5.13 and Figures 5.14

present the run time results obtained using LDM and LDM + composite LGM model

respectively with respect to a range of grid sizes d = {2.5, 5, 10, 15, 20}. The run time

presented in the figures was measured to the nearest second. From the figures it can

be observed that the time required for detecting the critical points and calculating the

nearest distance to the closest critical point decreased as the grid size increased. This is

to be expected since the number of centre grid points decreases as the grid size increases.

The run time for both models were very similar although the LDM + composite LGM

required more time (by a very small margin) than the LDM model. Note that, as in the

case of the run time experiments reported in Chapter 4, the run time for the classification

phase was not included as this was negligible.
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(c) Training the generic classifier on GTV 1
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(e) Training the generic classifier on MSV 1
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(f) Training the generic classifier on MSV 2
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(g) Training the generic classifier on MTV 1
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Figure 5.11: The AUC and Accuracy results produced when generating a classifier
on one data set and applying it to another using the LDM model (|L| = 3, d = 2.5 and

the C4.5 classification algorithm).
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(a) Training the generic classifier on GSV 1
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(b) Training the generic classifier on GSV 2
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(c) Training the generic classifier on GTV 1

0.7
4	  

0.9
7	  

0.7
9	  

0.8
1	   0.8

3	   0.9
3	  

0.7
9	  

0.7
4	  

0.6
6	  

0.9
2	  

0.6
9	  

0.7
7	  

0.7
4	   0.8

	  

0.7
1	  

0.6
5	  

0	  

0.1	  

0.2	  

0.3	  

0.4	  

0.5	  

0.6	  

0.7	  

0.8	  

0.9	  

1	  

GS
V1
	  

GS
V2
	  

GT
V1
	  

GT
V2
	  

MS
V1
	  

MS
V2
	  

MT
V1
	  

MT
V2
	  

Pe
rc
en

ta
ge
	  

Tes,ng	  data	  sets	  	  

AUC	  

Accuracy	  

(d) Training the generic classifier on GTV 2
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(e) Training the generic classifier on MSV 1
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(f) Training the generic classifier on MSV 2
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(g) Training the generic classifier on MTV 1
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(h) Training the generic classifier on MTV 2

Figure 5.12: The AUC and Accuracy results produced when generating a classifier
on one data set and applying it to another using the LDM+ composite LGM model

(|L| = 3, d = 10 and the C4.5 classification algorithm).



100

165	  
170	  
175	  
180	  
185	  
190	  
195	  
200	  
205	  
210	  
215	  
220	  

GS
V1
	  

GS
V2
	  

GT
V1
	  

GT
V2
	  

MS
V1
	  

MS
V2
	  

MT
V1
	  

MT
V2
	  

Ti
m
e	  
(s
ec
on

ds
)	  

Data	  sets	  

d=2.5	  

(a) LDM Model (d = 2.5)

0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  

GS
V1
	  

GS
V2
	  

GT
V1
	  

GT
V2
	  

MS
V1
	  

MS
V2
	  

MT
V1
	  

MT
V2
	  

Ti
m
e	  
(s
ec
on

ds
)	  

Data	  sets	  

d=5	  

(b) LDM Model (d = 5)
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(c) LDM Model (d = 10)
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(d) LDM Model (d = 15)
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(e) LDM Model (d = 20)

Figure 5.13: Run time for LDM model using d = {2.5, 5, 10, 15, 20} with respect to
the eight data sets GSV1, GSV2, GTV1, GTV2, MSV1, MSV2, MTV1 and MTV2.

5.8 Summary

This chapter has proposed a new 3D representation technique called the Local Distance

Measure (LDM) technique. The technique was founded on the concept of representing

3D surfaces in terms of the distance each grid point is from a critical point (a point

representing an edge or corner). The local distance measure for a given grid point is

the distance to the closest critical point. The LDM technique commences with the

identification of the critical points in a given Gin and then, for each grid centre point,

calculating the closest distance using a region growing technique. The operation of the

proposed LDM mechanism was also considered in combination with the LGM technique

described in the previous chapter: (i) LDM + Level 1 LGM, (ii) LDM + Level 2 LGM

and (iii) LDM + Composite LGM. The evaluation of the proposed LDM representation

resulted in the following main findings:
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(a) LDM + Composite LGM Model (d = 2.5)
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(b) LDM + Composite LGM Model (d = 5)
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(c) LDM + Composite LGM Model (d = 10)
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(d) LDM + Composite LGM Model (d = 15)
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(e) LDM + Composite LGM Model (d = 20)

Figure 5.14: Run time for LDM + composite LGM using d = {2.5, 5, 10, 15, 20}.

1. The grid size d = 2.5 was founded to be the most appropriate grid size that can

best be used to define geometrical information with respect to the LDM model on

its own because the detection of critical points is more effective using smaller grid

sizes.

2. The label size that produced the best AUC and accuracy values was |L| = 3 with

respect to LDM model (although if we wish to apply corrections for springback an

alternative label size may be more desirable).

3. Usage of the LDM representation on its own did not prove effective, leading to

the conclusion that the idea that springback is related entirely to distance from a

closest edge (critical point) was not entirely well founded.

4. The LDM + composite LGM model was found to be the best overall model as

it obtained the best overall performance results, in terms of accuracy and AUC

values, indicating that the LDM representation does have a part to play.
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5. A grid size d = 10 was founded to be the most appropriate with respect to the LDM

+ composite LGM model (confirming the result reported previously in Chapter

4).

6. A generic classifier can be generated using the LDM technique on its own, however

a more effective generic classifier can be produced using the LDM + composite

LGM model.

7. The LDM + composite LGM model produced the best generic springback predic-

tion results.

8. A generic classifier can be generated regardless of the manufacturing material (steel

or titanium).

In the following chapter, the third surface representation technique considered in this

thesis is presented, the Point Series (PS) Representation.



Chapter 6

Point Series Representation

6.1 Introduction

This chapter presents the last proposed technique in this thesis with which to represent

3D surfaces in such a way that classification algorithms can be successfully applied.

The representation is founded on the idea of using point series (linearisations of space)

to capture the nature of the local geometries making up a given 3D surfaces. More

specifically the representation uses a linearisation process to capture local geometries in

the context of the neighbourhood of each grid centre point to form a collection of point

series, the representation is thus referred to as the Point Series (PS) representation.

Each linearisation is conceptualised as a “curve” made up of a sequence of points.

In the context of the training data required for supervised learning each curve is also

associated with a springback value. The overall intuition is that a sufficiently large

collection of point series curves will serve to encapsulate every possible local geometry

each with an associated springback value. The collection of curves can thus be used to

form a “bank of curves”. Given a new “unseen” 3D surface the point series curves making

up the geometry of this new surface can be “looked-up” in the bank and associated spring

back values retrieved. We can conceive of the process as a form of case-based reasoning

[1] where the bank represents the case base. Comparison between new curves in the

“case base” can be conducted in a number of ways so as to retrieve the“best” match in

each case. However in this thesis it is proposed that the well known k -Nearest Neighbour

(k -NN) approach is adopted coupled with a Dynamic Time Warping (DTW) approach

to determine the similarity between new curves and existing curves (recall that DTW

was discussed in Chapter 2).

There are a number of “space filling curve” formats that could have been adopted

(for example a Peano curve [166] or a Hilbert curve [102]) with respect to the desired

linearisation. However, a straightforward spiral linearisation was chosen as this fits well

with the requirement to capture the local geometries associated with each grid centre

point pi in terms of its n× n neighbours.

Extensive experiments were conducted to evaluate the PS technique. The experi-

ments indicated that the PS technique outperforms the previously proposed LGM and

103
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LDM techniques, in terms of AUC and accuracy. The PS technique is thus considered

to be the “best” proposed 3D representation technique considered in this thesis.

The rest of this chapter is organised as follows. Section 6.2 presents the proposed

PS technique. Section 6.3 describes the incorporation of the technique into the RASP

framework. The evaluation of the proposed PS technique, with respect to prediction

effectiveness, is presented in Section 6.4; while the evaluation of the technique, with

respect to run time, is presented in Section 6.5. Finally, the chapter is concluded with

a summary in Section 6.6.

6.2 Point Series Representation

In a similar manner to the LGM and LDM techniques presented earlier, the input to

the PS technique is the grid representation previously described in detail in Chapter 3.

Recall that the centre representative point pi for each grid square is characterised by its

z value and associated springback value, and that the differences in z-value (δz) between

pi and each of its neighbours can be used to reflect the local geometry surrounding pi.

Point series are generated as follows. For each centre point in the input grid Gin we

consider a n×n neighbourhood centred on pi. We then prescribe a point series (a curve)

that passes through some or all of the points in the neighbourhood such that each point

in the point series is described by a δz value. The resulting curves can be visualised by

plotting them on a graph where the y-axis represents the δz value and the x-axis the

point series ordering (each point can be allocated an ordinal number). Each curve is

also associated with pi springback (error) label or value.

When generating point series, using the process described above, there are two as-

pects to be considered:

1. The neighbourhood size and

2. The number of points to be included in a linearisation (key points only or all

points).

The size of the neighbourhood is related to the grid size d in such away that a large

value for d will induce larger grid squares and consequently the immediate neighbourhood

surrounding pi will cover a larger area. As noted above we define a neighbourhood in

terms of a n × n block of grid squares where n is an odd number and n ≥ 3 (so as

to ensure a symmetric covering of a potential neighbourhood surrounding a given pi).

With respect to the number of points to be included in the PS representation, two

options were considered, either we include all the points located in the n × n blocks

(to give point series of length n2 − 1), or we include only selected key points located in

the corners and “mid-ways” of each block surrounding pi (to give point series of length

8× (n− 1)/2). Intuitively the key PS representation would be more efficient from a run

time perspective, than the all PS representation; especially if n is large. This process is

illustrated in Figure 6.1 where a 5× 5 key point grid is used (the point pi, is located at
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the centre and coloured in red). Figure 6.1(a) shows the neighbouring points of interest

coloured in green (different configurations could clearly be used). Figure 6.1(b) shows

the adopted spiral linearisation (points are numbered from 1 to 16). Figure 6.1(c) shows

a plot of the resulting curve. In this manner a “bank” of curves can be created where

each curve is associated with a predefined label (springback value).

(a) (b)

(c)

Figure 6.1: Example of a spiral linearisation for a 5× 5 key PS representation.

6.3 The Prediction Framework Mechanism

This section demonstrates the operation of the prediction framework while using the

proposed PS representation. As indicated previously in Chapter 3, the RASP frame-

work comprises three stages. The first stage is the preprocessing stage where the grid

representation and error (springback) calculations are performed for a given shape. The

preprocessing stage results in the Gin. Recall that each grid centre point in Gin is as-

sociated with an error (springback) value. Gin is then used as the input to next stage,

the surface representation stage, where any of the proposed 3D surface representation

technique can be applied (in this case, the PS representation is used). The third stage

is classifier generation and testing. In the case of the PS representation, and unlike

the previous representations considered, the PS representation operates using the k -NN

supervised learning mechanisms. More specifically k -NN classification is used, with k

is set to 1. The classification process of a new curve, cnew, using k -NN classification is

conducted according to a similarity measure. Different approaches have been proposed

to achieve this. The most popular similarity measurement is Euclidean distance1:

1Other similarity measurements can be found in [16, 51, 212].
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Given two sequences A = [a1, a2, . . . , an] and B = [b1, b2, . . . , bn] of the same length

|A| = |B| = n then the similarity value (S(A,B)) between A and B is defined using the

standard Euclidean distance measure (D(A,B)) as follows.

S(A,B) = D(A,B) =

√√√√ n∑
i=1

(ai − bi)2

However, with respect to the work described in this thesis, a distance was found to be

insufficient with respect to the proposed PS representation. Note also that, although not

applicable in the context of the PS representation, distance based similarity measures

are not suited to sequences of different length [184, 224, 225]. Hence Dynamic Time

Warping (DTW) was adopted (introduced previously in Chapter 2). The rest of this

section is organised as follows. The calculation of the DTW measure is presented in

Section 6.3.1 while Section 6.3.2 describes the operation of the k -NN classification.

6.3.1 Dynamic Time Warping Similarity Measurement

This section presents the Dynamic Time Warping (DTW) algorithm together with a de-

tailed example. Recall that the background to DTW was described previously in Chapter

2. Algorithm 6.1 presents the DTW algorithm. It should be noted that Algorithm 6.1

makes use of the Sakoe-Chiba (S-C) Band [181], a “windowing” mechanism also de-

scribed earlier in Chapter 2. The Sakoe-Chiba (S-C) band window was employed with

respect to the work described in this thesis to: (i) eliminate the implications of the

singularity problem, (ii) improve the complexity to O(n × w) [108, 147, 184] and (iii)

maintain the desired optimal path near the diagonal. The value of w = 10% of the series

length was used as suggested in [156] and as shown in Algorithm 6.1 (line 8).

The algorithm operates as follows. The input is a new curve to be labelled cnew and

a set of labelled curves C = {c1, c2, · · · , cn}. Suppose that cnew = [a0, a1, · · · , ap] and

cl = [b0, b1, · · · , bq] where cl ∈ C. The first step is to generate a 2D matrixM of size A×B
(line 7). Each matrix entry M(i, j) then holds the “cost” between the corresponding

points ai and bi where the cost is defined in terms of the Euclidean distance between

the two points c(ai, bj) = D(ai − bi) =
√

(ai − bi)2 = |ai − bi|.
Figure 6.2 illustrates the operation of DTW for a given cnew and cl where a matrix

M is generated to identify the DTW path and the DTW value. For simplicity, the

points of the curve are all integer values such that cnew = [1, 2, 4, 5, 7, 6, 6, 5, 8, 3, 4, 7]

and cl = [2, 2, 3, 6, 7, 7, 8, 5, 4, 3, 6, 5]. Referring to Algorithm 6.1, and the example in

Figure 6.2, the operation of DTW can be described as follows.

1. The inputs are the new unlabelled curve cnew = [a0, a1, · · · , ap] (|cnew| = p+1 = A)

and the set of curves C = {c1, c2, · · · , cn} where cl = [b0, b1, · · · , bq] (|cl| = B =

q + 1).

2. A matrix M of length |A×B| is established.
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Figure 6.2: An example of the operation of DTW using two equal sized curves c1 and
c2. For illustrative purposes a window size of w = 3 was used (as shown in shaded area).
The indices of the lower and upper boundary are coloured in green. The optimal DTW
path is indicated using dark shading with red text. The path commences at M(0, 0)
and ends at M(11, 11). The DTW value is located in M(11, 11) and is equivalent to 13

in this case.

3. The first element M(0, 0) is calculated using the standard euclidean distance (line

9 in the algorithm). With reference to the example in Figure 6.2:

M(0, 0) = |1− 2|

= 1

4. The first w elements of the first row of M are calculated by adding the cost of

the corresponding elements of cl and cnew recursively to the cost of the previous

element as shown in line 12. With reference to the example in Figure 6.2:

M(0, 2) = |4− 2|+M(0, 1)

= 2 + 1

= 3



108

Algorithm 6.1: Dynamic Time Warping (DTW)

Input: New unlabelled curve (cnew), a set of curves (C)
Output: The set of similarity values.

1 C = {c1, c2, · · · , cn} ;
2 cnew ← [a0, a1, · · · , ap] ;
3 for all cl ∈ C do
4 cl ← [b0, b1, · · · , bq];
5 A← p+ 1;
6 B ← q + 1;
7 M ← new[A×B] ; // Initialise M
8 w ← d0.10×Ae ;

9 M(0, 0)← |cnew(0)− cl(0)| ;

10 i← 1;
11 while i ≤ w do // Calculate the 1st row of M (M(i, 0))
12 M(i, 0)← |cnew[i]− cl(0)|+M(i− 1, 0) ;
13 i+ +;

14 end

15 j ← 1 ;
16 while j ≤ w do // Calculate the 1st column of M (M(0, j))
17 M(0, j)← |cnew(0)− cl(j)|+M(0, j − 1) ;
18 j + +;

19 end

20 row ← A;
21 column ← B;
22 for i← 1 to row do // Calculate the rest of M
23 for j ← 1 to column do
24 if |i− j| ≤ w then
25 M(i, j)← |cnew(i)− cl(j)|+Min(M, i, j) ; // Algorithm 6.2

26 end

27 end

28 end
29 cl.dtw ←M(A,B) ; // The dtw is the similarity value for cl
30 end
31 return C′ ; // C associated with similarity values

5. The same calculations described in step 4 are performed for the first w elements

of the first column of M as shown in line 17. With reference to the example in

Figure 6.2:

M(3, 0) = |6− 1|+M(2, 0)

= 5 + 4

= 9



109

6. The rest of the elements of M are calculated as follows. For M(i, j) the distance

between the corresponding points along both curves cnew and cl is calculated and

then the value is added to the minimum cost of the adjacent cells M(i − 1, j),

M(i, j − 1) and M(i − 1, j − 1). Algorithm 6.2 is used to identify the minimum

cost within the S-C band (as shown in line 25 of Algorithm 6.1). The value of each

element in M is used to calculate the minimal warping path. To give an example

and with reference to the example in Figure 6.2:

M(8, 7) = |4− 5|+Min(M, 8, 7)

= 1 +minimum value of {M(7, 7),M(7, 6),M(8, 6)}

= 1 +M(7, 7)

= 1 + 6

= 7

Note that Algorithm 6.2 distinguishes the position of the elements, whether they

are located on the upper boundary or the lower boundary based on the i and j

values (indices are coloured in green in Figure 6.2). If the element is located on the

lower boundary (i < j) (as shown in line 2 of Algorithm 6.2) then the minimum

value would be selected from two elements M(i, j − 1) and M(i − 1, j − 1) as

M(i− 1, j) is out of the S-C band. With reference to the example in Figure 6.2:

M(6, 9) = |8− 3|+Min(M, 6, 9)

= 5 +minimum value of {M(6, 8),M(5, 8)}

= 5 +M(6, 8)

= 5 + 7

= 12

However, if the element is located on the upper boundary (i > j) (line 8 of Algo-

rithm 6.2) then the minimum value would be selected from two elements M(i−1, j)
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and M(i− 1, j − 1) as M(i, j − 1) is outside of the S-C band. For example:

M(7, 4) = |5− 7|+Min(M, 7, 3)

= 1 +minimum value of {M(6, 3),M(6, 4)}

= 2 +M(6, 4)

= 2 + 4

= 6

7. When the matrix M has finally been generated, the minimal DTW path, and

associated similarity value can be identified. In our example, the dark shaded

area, with red text, indicates the DTW path (the warping path) and the similarity

value of 13 is located in M(11, 11).

Algorithm 6.2: Min Algorithm

Input: Matrix M , i, j
Output: min value

1 w ← d0.10×M.lengthe;
2 if (|i− j| = w) & (i < j) then // Elements on the lower boundary

3 if M(i, j − 1) < M(i− 1, j − 1) then
4 min←M(i, j − 1)
5 else
6 min←M(i− 1, j − 1)
7 end

8 else if (|i− j| = w) & (i > j) then // Elements on the upper boundary

9 if M(i− 1, j) < M(i− 1, j − 1) then
10 min←M(i− 1, j)
11 else
12 min←M(i− 1, j − 1)
13 end

14 else // Elements within boundaries

15 min←M(i− 1, j) ;
16 if min > M(i− 1, j − 1) then
17 min←M(i− 1, j − 1) ;
18 end
19 if min > M(i, j − 1) then
20 min←M(i, j − 1) ;
21 end

22 end
23 return min ;
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6.3.2 k-NN Classification

This section presents the operation of the k -NN classification algorithm with k = 1

as adopted with respect to PS representation technique described in this thesis. The

combination of 1 -NN with the DTW similarity measure has been shown to outperform

other techniques with respect to time series classification [52, 217]. The curve cl with the

minimum DTW would be the most similar curve to cnew. If there is a clear “winner” the

label from this winner is used to label cnew. However, if more than one cl has the same

lowest DTW value then there are two alternatives to define the label of cnew, either: (i)

some kind of “voting scheme” may be used where the majority label is considered to

be the winner label, or (ii) the average value for the labels may be calculated and used

to define the label for cnew. The first is applicable to the discretised PS representation

while the second is applicable to the real PS representation.

Once the DTW value has been calculated, all cl ∈ C are sorted in ascending order

according to their DTW values as shown in Algorithm 6.3 (line 1). Then S is initialised

as the set of similarity values (line 2 of Algorithm 6.3). The first element of S is assigned

to the lowest DTW value as shown in line 3 of Algorithm 6.3. Thus, if S = {cl}, i.e. S

contains just one curve ci, the cnew is given the label of ci (line 10 of Algorithm 6.3).

Otherwise, all repeated DTW values will be located in S (line 6 of Algorithm 6.3) until

the first different DTW value arise. The label of cnew will be the average of all cl labels

with the same DTW value located in S as shown in line 16 of Algorithm 6.3.

Algorithm 6.3: k-NN

Input: new unlabelled cnew, set of curves C
Output: labelled cnew

1 C′′ ← sorted C′ according to DTW values in ascending order ;
2 Initialise S[ ]← φ ; // Array of the similarity values

3 S[0]← C′[0].dtw ;
4 i← 1;
5 while C′′.dtw = S[0] and i ≤ |C ′′| do
6 S[i]← C′′[i].dtw ;
7 i+ +;

8 end
9 if |S| == 1 then

10 cnew.label← C′′[0].label ;
11 else
12 sum ← C′′[0].label;
13 for i← 1 to |S| do
14 sum← sum+C′′[i].label;
15 end
16 cnew.label← sum/|S| ;

17 end
18 return labelled cnew ;
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6.4 Evaluation

To evaluate the operation of the PS representation, a variety of experiments were con-

ducted using the eight Gonzalo and Modified pyramid data sets: GSV1, GSV2, GTV1,

GTV2, MSV1, MSV2, MTV1 and MTV2. As in the case of the evaluations presented

in Chapters 4 and 5 all the results were evaluated in terms of accuracy and AUC. TCV

was used throughout. The objectives of the evaluation were as follows:

1. To compare the effect of using discretised or real springback error values for the

PS representation.

2. To determine the effect of the grid size d used.

3. To analyse the nature of the neighbourhood size n with respect to prediction

effectiveness.

4. To identify the most appropriate type of linearisation, all points or key points, to

be adopted.

5. To investigate the generalisation of the proposed PS representation technique.

In the context of the first objective (comparison of the use of discretised versus real

springback values) it should be noted that the k -NN classification technique supports

the option of real valued springback error prediction, while this was not the case with the

classification techniques applicable with respect to the previously considered LGM and

LDM representations. Note that the reader should be clear that real values are always

used for the δz values used to define the point series. With respect to the springback

discretisation, the springback values were ranged and allocated labels from a set of labels

L. A sequence of different values for |L| were considered. In the case of the real value

approach, to compare the predicted springback values with the real known values a

tolerance of 0.08 mm was used as suggested by BS EN ISO 1101:2005 [29]1.

To evaluate the effect of different grid sizes, a range of grid sizes d = {2.5, 5, 10, 15, 20}
was considered. The experiments to determine the effect of grid size were coupled with

experiments to determine the effect of the nature of the neighbourhood size n by also

considering three different possible values for n ({3, 5, 7}).
The investigation of the generalisation of the PS representation was conducted so as

to provide an answer to the question: can we generate a sufficiently generic bank of curves

using a given shape in order to predict the springback values for a new shape. Similar

experiments were conducted with respect to the two other proposed representations as

reported in earlier chapters.

The evaluation results, in the context of each of the above objectives, are reported

and discussed in the following five sub-sections (one per evaluation objective).

1BS EN ISO 1101 is a Geometrical Product Specification (GPS) standards. Tolerance in this context
is the maximum acceptable variation between the technical design and actual (true) manufactured
geometry.
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6.4.1 Discretised vs Real Point Series Representation

This section presents and discusses the results obtained from the experiments conducted

to compare the effect of using discretised springback values versus real values. Hence two

groups of experiments were recorded: (i) discretised PS and (i) real PS representation.

For the first group, discretised PS, a neighbourhood size of five (n = 5) was chosen

because this is the mid way value in the range of n values considered and as a result of

some provisional experimentation. Moreover, only the key points representation were

selected so as to limit the number of experiments undertaken and because there was

no expectation, in the context of discretisation versus real point comparison, that there

would be any difference in operation between the key point PS and the all point PS repre-

sentation. The error value was discretised using a range of labels |L| = {3, 5, 7, 9, 11, 13}.
A range of grid sizes d = {2.5, 5, 10, 15, 20} mm was used. The “voting scheme” was

adopted to address the situation where there was more than one best minimum warp-

ing path DTW value. The results obtained using the Gonzalo and Modified pyramids

are presented in Tables 6.1 and 6.2 respectively. The best accuracy and AUC results

obtained for a range of grid sizes with respect to each label are highlighted in bold font.

From the tables, it can be seen that:

1. Most of the best accuracy and AUC results were obtained when |L| = 3 such

as GSV1 (using d = 20) where the accuracy and the AUC were 0.98 and 0.96

respectively (more examples can be detected from the tables).

2. Most of the best accuracy and AUC results were obtained when d = 20 such

as MSV1 (using |L| = 3) where the accuracy and the AUC were 0.87 and 0.60

respectively (more examples can be detected from the tables).

3. Although the best overall accuracy and AUC result was 0.98 and 0.96 respectively,

obtained by GSV2 when |L| = 3 and d = 20, most of the AUC results were much

below 0.50 (worse than a guess) and hence this indicated that the discretised PS

representation was not effective in many cases.

4. It can be observed that as the label size increased, the accuracy increased and the

AUC decreased and this indicates that the majority of records were falling into

one class.

From the above it can be concluded that the discretisation of springback values is in-

appropriate in the context of the PS representation. Closer investigation indicated that

this was due to the skewed distribution of the error labels1 whereby the majority of

the k nearest neighbours of a given new case would always belong to the most frequent

error label. Because the “voting scheme” used the most frequent label wins (although in

1It should be noted that in the case of the equal frequency discretisation, similar values are placed and
grouped together under the same label with respect to each attribute and this would therefore result in
labels with an unequal distribution. However, this observation indicates that the type of discretisation
(equal width or equal frequency) does not have a significant implication (influence) on the different
proposed 3D surface representation techniques.
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many cases this was found not to be the correct one). An alternative might have been

to consider other voting schemes, for example weighted schemes however this was not

undertaken because the real value clearly outperformed the discretised approach.

In the second group, experiments were conducted using a range of values for the

neighbourhood size: n = {3, 5, 7} and the grid size d = {2.5, 5, 10, 15, 20} mm along

with a tolerance of 0.08 where the label is considered as correctly predicted as long as

the difference between the actual and predicted error is below or equal the tolerance

value. The proportion of the correctly predicted curves to the total number of curves

was used to identify the accuracy measurement. However, for the AUC measurement

the error values were divided into a collection of sub ranges where each sub range was

evaluated against others in the same way as for binary valued classifiers (a detailed

example on the AUC calculation is presented in Appendix C). The results are presented

in Tables 6.3 and 6.4 in terms of accuracy and AUC respectively. Both tables indicate

that impressive results were achieved; where the best accuracy and AUC values of 1.00

were obtained (when the GTV1 dataset was used in the prediction framework). The

“best” overall average values for the accuracy and AUC were 0.98 and 0.96 respectively.

These were excellent results.

6.4.2 The Effect of Grid Size

This section presents the conducted experiments in the context of identifying the most

appropriate value for d (the grid size). The accuracy and AUC results obtained using a

range of grid sizes, real error (springback) values and the key point PS representation

were presented in Table 6.3 and 6.4 respectively. From the tables it can be observed

that the PS representation was able to effectively represent 3D surfaces using different

grid sizes. The best accuracy and AUC results of 1.00 were obtained using GTV1 and

the 3×3 key point PS representation with grid size of d = 5. With respect to the overall

average values obtained, the best overall average accuracy of 0.98 was obtained using

grid sizes of d = 2.5, 5 and 10 and the best overall average AUC of 0.96 was obtained

using a grid size of d = 5. Tables 6.5 and 6.6 present a summary of the number of

occasions that a “best” accuracy and AUC result respectively were obtained for the

range of values for d used ({2.5, 5, 10, 15, 20}) and with respect to the three different

values of n considered ({3, 5, 7}). Note that each row adds up to eight because eight

data sets were used for the experiments. From the table, it can be seen that: (i) the

majority of best accuracy results were obtained using d = 2.5 while (ii) the majority

of best AUC results were obtained using d = 5. Thus, d = 5 was found to be the best

grid size for the 3× 3 and 7× 7 key point PS technique, but the AUC results obtained

using the 5× 5 key point PS were not conclusive with respect to a particular value of d

as can be seen from Table 6.6. However, an argument can be made that d = 5 tends to

produce more “best” results than the other grid sizes (total number of best occurrences

of 11). Therefore, d = 5 was considered to be the most “appropriate” grid size for the

PS representation.



115

T
a
b
l
e
6
.1
:

A
cc

ra
cy

an
d

A
U

C
re

su
lt

s
u

si
n

g
d

is
cr

et
is

ed
er

ro
r

(s
p

ri
n

g
b

a
ck

)
la

b
el

s,
th

e
5
×

5
ke

y
p

o
in

t
P

S
te

ch
n

iq
u

e,
d

=
{2
.5
,5
,1

0
,1

5,
2
0
}

m
m

,
T

C
V

,
a
n

d
th

e
G

o
n

za
lo

p
y
ra

m
id

d
a
ta

se
ts

.

d
=

2
.5

d
=

5
d
=

1
0

d
=

1
5

d
=

2
0

|L
|

A
cc

u
ra

cy
A

U
C

A
cc

u
ra

cy
A

U
C

A
cc

u
ra

cy
A

U
C

A
cc

u
ra

cy
A

U
C

A
cc

u
ra

cy
A

U
C

G
S
V

1

3
0
.7

0
0
.5

5
0
.7
7

0
.6
8

0
.7

6
0
.6

5
0
.6

6
0
.4

6
0
.6

9
0
.5

0
5

0
.8
3

0
.4

3
0
.8

2
0
.4
4

0
.8

0
0
.4

1
0
.7

3
0
.2

5
0
.8
3

0
.4

1
7

0
.8

1
0
.3

1
0
.8

2
0
.4
4

0
.7

9
0
.3

0
0
.8

1
0
.2

7
0
.8
3

0
.3

0
9

0
.8

5
0
.2

8
0
.8

5
0
.3
2

0
.8

3
0
.2

4
0
.8

5
0
.2

5
0
.8
8

0
.2

7
1
1

0
.8
7

0
.2

1
0
.8
7

0
.2
7

0
.8

5
0
.1

6
0
.8

6
0
.1

8
0
.8
7

0
.1

7
1
3

0
.8

8
0
.2

0
0
.8
9

0
.2

4
0
.8

7
0
.1

6
0
.8
9

0
.2
6

0
.8

8
0
.1

6

G
S
V

2

3
0
.8

8
0
.5

8
0
.9

0
0
.6

3
0
.8

7
0
.5

8
0
.8

8
0
.8

8
0
.9
8

0
.9
6

5
0
.8

1
0
.3

4
0
.8

1
0
.3

8
0
.8

1
0
.3

9
0
.8

9
0
.6
4

0
.9
0

0
.6

3
7

0
.8

6
0
.2

6
0
.8

5
0
.2

7
0
.8

7
0
.3

7
0
.8

7
0
.5
3

0
.8
8

0
.4

4
9

0
.8

6
0
.2

1
0
.8

6
0
.2

3
0
.8

7
0
.4
4

0
.8

3
0
.3

3
0
.9
0

0
.4

1
1
1

0
.8

8
0
.1

9
0
.8

8
0
.2

3
0
.8

8
0
.3
9

0
.9
2

0
.3

5
0
.9

0
0
.3

8
1
3

0
.8

9
0
.1

6
0
.9
0

0
.2

4
0
.9
0

0
.2

3
0
.8

9
0
.3

3
0
.9
0

0
.3
5

G
T

V
1

3
0
.8

1
0
.5

4
0
.8

0
0
.5

2
0
.7

6
0
.6

0
0
.8

5
0
.6

6
0
.8
8

0
.6
8

5
0
.7

6
0
.3

0
0
.7

5
0
.3

1
0
.7

8
0
.3

3
0
.7
9

0
.5
4

0
.7

8
0
.4

9
7

0
.8

4
0
.2

9
0
.8

4
0
.3

0
0
.8

3
0
.3

5
0
.8
6

0
.4
9

0
.8

4
0
.4

3
9

0
.8

4
0
.2

1
0
.8

4
0
.2

5
0
.8

5
0
.2

6
0
.8
7

0
.4
7

0
.8
7

0
.3

9
1
1

0
.8

7
0
.1

9
0
.8

7
0
.2

1
0
.8

8
0
.2

3
0
.8

7
0
.4
1

0
.8
9

0
.3

0
1
3

0
.8

8
0
.1

5
0
.8

8
0
.1

9
0
.8

9
0
.1

8
0
.8

8
0
.3

3
0
.9
0

0
.2
5

G
T

V
2

3
0
.8

2
0
.5

1
0
.8

1
0
.5

1
0
.8

1
0
.5

4
0
.8

4
0
.5

8
0
.8
9

0
.7
6

5
0
.7

8
0
.3

3
0
.8

0
0
.5

0
0
.7

8
0
.3

6
0
.8

1
0
.4

4
0
.8
4

0
.5
2

7
0
.8

3
0
.3

0
0
.8

4
0
.3

8
0
.8

4
0
.3

5
0
.8
8

0
.4
8

0
.8

3
0
.4

0
9

0
.8

4
0
.2

1
0
.8

5
0
.3
0

0
.8
6

0
.2

6
0
.8
6

0
.3
0

0
.8
6

0
.3
0

1
1

0
.8

6
0
.1

6
0
.8

6
0
.2

9
0
.8

8
0
.3

0
0
.8
9

0
.4
1

0
.8

6
0
.3

0
1
3

0
.8

8
0
.1

6
0
.8

8
0
.2

7
0
.8

9
0
.2

0
0
.9
0

0
.2
8

0
.8

9
0
.2

2



116

T
a
b
l
e
6
.2
:

A
ccracy

an
d

A
U

C
resu

lts
u

sin
g

d
iscretised

erro
r

(sp
rin

g
b

a
ck

)
la

b
els,

th
e

5×
5

key
p

oin
t

P
S

tech
n

iq
u

e,
d

=
{2
.5,5

,10
,15,20}

m
m

,
T

C
V

,
a
n

d
th

e
M

o
d

ifi
ed

p
y
ra

m
id

d
a
ta

sets.

d
=

2
.5

d
=

5
d
=

1
0

d
=

1
5

d
=

2
0

|L
|

A
ccu

ra
cy

A
U

C
A

ccu
ra

cy
A

U
C

A
ccu

ra
cy

A
U

C
A

ccu
ra

cy
A

U
C

A
ccu

ra
cy

A
U

C

M
S
V

1

3
0
.7

7
0
.5

6
0
.7

6
0
.5

6
0
.7

0
0
.4

3
0
.6

8
0
.4

3
0
.8
7

0
.6
0

5
0
.7

8
0
.3

1
0
.7

8
0
.3

9
0
.7

7
0
.2

9
0
.7

3
0
.2

2
0
.8
4

0
.4
1

7
0
.8

1
0
.2

7
0
.7

9
0
.2

2
0
.8

1
0
.2

8
0
.8

0
0
.1

9
0
.8
9

0
.5
3

9
0
.8

4
0
.2

5
0
.8

3
0
.1

7
0
.8

5
0
.2

6
0
.8

2
0
.1

4
0
.8
6

0
.2
7

1
1

0
.8

6
0
.2

2
0
.8

6
0
.1

7
0
.8

6
0
.2

6
0
.8

6
0
.2

6
0
.8
9

0
.3
1

1
3

0
.8

8
0
.2
1

0
.8

7
0
.1

3
0
.8

8
0
.2

0
0
.8

7
0
.1

1
0
.9
0

0
.1

8

M
S
V

2

3
0
.7

8
0
.6

2
0
.8

0
0
.6

6
0
.8

8
0
.7
2

0
.8

9
0
.6

7
0
.9
0

0
.6

3
5

0
.8

2
0
.4

5
0
.8

0
0
.4

9
0
.8

3
0
.5
7

0
.7

6
0
.3

1
0
.9
0

0
.5
7

7
0
.8

3
0
.3

5
0
.8

3
0
.3
7

0
.8
4

0
.3

6
0
.7

7
0
.2

5
0
.8

2
0
.2

1
9

0
.8

6
0
.3

4
0
.8

6
0
.3

1
0
.8

4
0
.2

6
0
.8

3
0
.3
4

0
.8
7

0
.3

2
1
1

0
.8

7
0
.2
9

0
.8

7
0
.2

5
0
.8

7
0
.2

0
0
.8

6
0
.2

6
0
.8
8

0
.2

0
1
3

0
.8
9

0
.2

2
0
.8

8
0
.2

0
0
.8
9

0
.2

0
0
.8

8
0
.2
5

0
.8
9

0
.1

9

M
T

V
1

3
0
.7

7
0
.6

1
0
.7

8
0
.6
3

0
.8
0

0
.6
3

0
.7

2
0
.5

6
0
.6

3
0
.4

6
5

0
.7

8
0
.4

3
0
.7

9
0
.4

4
0
.8
3

0
.6
1

0
.7

8
0
.4

2
0
.7

3
0
.3

7
7

0
.8

3
0
.3

9
0
.8

3
0
.3

8
0
.8
5

0
.5
2

0
.8

2
0
.3

4
0
.8

3
0
.3

4
9

0
.8

5
0
.3

2
0
.8

5
0
.3

3
0
.8
7

0
.4
2

0
.8

5
0
.2

4
0
.8

3
0
.2

0
1
1

0
.8
7

0
.2

5
0
.8
7

0
.2

6
0
.8

8
0
.3
4

0
.8
7

0
.2

3
0
.8

6
0
.1

8
1
3

0
.8

9
0
.2

4
0
.8

9
0
.2

3
0
.9
0

0
.3
5

0
.8

9
0
.2

7
0
.8

7
0
.1

1

M
T

V
2

3
0
.7

0
0
.5

8
0
.7

0
0
.5

4
0
.7
9

0
.6
1

0
.6

3
0
.4

2
0
.7

1
0
.4

9
5

0
.7

7
0
.3

4
0
.7

6
0
.3

4
0
.7

9
0
.3

7
0
.8
0

0
.3

9
0
.7

5
0
.4
0

7
0
.8

1
0
.3

1
0
.8

1
0
.2

9
0
.8
3

0
.3
2

0
.8

1
0
.2

9
0
.8

2
0
.2

9
9

0
.8

4
0
.2

3
0
.8

3
0
.2

0
0
.8
6

0
.3
0

0
.8

1
0
.1

2
0
.8

4
0
.2

3
1
1

0
.8

6
0
.1

8
0
.8

5
0
.1

7
0
.8
7

0
.2

4
0
.8

6
0
.1

6
0
.8

6
0
.2

0
1
3

0
.8

7
0
.1

5
0
.8
8

0
.1

9
0
.8
8

0
.1

8
0
.8
8

0
.1

8
0
.8
8

0
.2
1



117

Table 6.3: The Accuracy results obtained using real error (springback) values, the
key point PS representation with n = {3, 5, 7}, d = {2.5, 5, 10, 15, 20} mm and TCV.

Data set n× n key PS representation
Grid size (d) mm

2.5 5 10 15 20

GSV1
3× 3 PS 0.97 0.98 0.98 0.97 0.90
5× 5 PS 0.97 0.97 0.98 0.99 0.84
7× 7 PS 0.98 0.99 0.94 0.87 0.78

GSV2
3× 3 PS 0.99 0.98 0.97 0.96 0.96
5× 5 PS 0.99 0.97 0.96 0.94 0.92
7× 7 PS 0.99 0.98 0.94 0.89 0.67

GTV1
3× 3 PS 0.99 1.00 0.99 0.94 0.93
5× 5 PS 0.99 0.99 0.94 0.94 0.91
7× 7 PS 0.98 0.99 0.87 0.79 0.81

GTV2
3× 3 PS 0.99 0.99 0.99 0.98 0.96
5× 5 PS 0.99 0.99 0.96 0.95 0.99
7× 7 PS 0.99 0.98 0.88 0.83 0.48

MSV1
3× 3 PS 0.97 0.97 0.98 0.97 0.97
5× 5 PS 0.96 0.96 0.96 0.98 0.91
7× 7 PS 0.96 0.97 0.99 0.89 0.75

MSV2
3× 3 PS 0.96 0.98 0.98 0.97 0.92
5× 5 PS 0.96 0.96 0.97 0.97 0.92
7× 7 PS 0.97 0.97 0.96 0.92 0.67

MTV1
3× 3 PS 0.98 0.98 0.98 0.97 0.90
5× 5 PS 0.98 0.98 0.96 0.97 0.84
7× 7 PS 0.98 0.98 0.92 0.97 0.70

MTV2
3× 3 PS 0.97 0.96 0.93 0.98 0.82
5× 5 PS 0.97 0.96 0.93 0.96 0.99
7× 7 PS 0.97 0.96 0.97 0.92 0.56

Average
3× 3 PS 0.98 0.98 0.98 0.97 0.92
5× 5 PS 0.98 0.98 0.96 0.96 0.92
7× 7 PS 0.98 0.98 0.93 0.89 0.68

6.4.3 The Effect of Neighbourhood Size

This section considers the effect of using different neighbourhood sizes (the size of the

surrounding area, to be covered by a point series, with respect to pi). Considering only

the accuracy and AUC results obtained using a grid size of d = 5 as previously presented

in Tables 6.3 and 6.4 and the summaries in Tables 6.5 and 6.6, it can be clearly seen

that:

• The best accuracy and AUC of 1.00 was obtained using n = 3.

• The best overall average accuracy value was 0.98 obtained regardless of the values

of n (see Table 6.3). However, the best overall average AUC value of 0.96 was

obtained using n = 3 and n = 7 (see Table 6.4).

• Best AUC values tended to be produced when n = 3 (see Table 6.6). Thus it

can be argued that the combination of the 3× 3 key PS representation and d = 5

produced the most effective results.

Therefore, the 3× 3 PS representation was selected to be the most “suitable” PS repre-

sentation for further consideration.
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Table 6.4: The AUC results obtained using real error (springback) values, the key
point PS representation with n = {3, 5, 7}, d = {2.5, 5, 10, 15, 20} mm and TCV.

Data set n× n key PS representation
Grid size (d) mm

2.5 5 10 15 20

GSV1
3× 3 PS 0.96 0.97 0.96 0.95 0.82
5× 5 PS 0.96 0.95 0.97 0.99 0.80
7× 7 PS 0.97 0.98 0.92 0.70 0.33

GSV2
3× 3 PS 0.95 0.89 0.84 0.64 0.78
5× 5 PS 0.94 0.89 0.75 0.64 0.73
7× 7 PS 0.96 0.93 0.85 0.65 0.50

GTV1
3× 3 PS 0.97 1.00 0.98 0.76 0.72
5× 5 PS 0.96 0.99 0.89 0.70 0.74
7× 7 PS 0.93 0.99 0.77 0.57 0.89

GTV2
3× 3 PS 0.96 0.99 0.97 0.93 0.96
5× 5 PS 0.96 0.98 0.85 0.90 0.99
7× 7 PS 0.95 0.96 0.72 0.75 0.19

MSV1
3× 3 PS 0.92 0.92 0.97 0.94 0.87
5× 5 PS 0.91 0.92 0.92 0.97 0.62
7× 7 PS 0.92 0.95 0.99 0.81 0.67

MSV2
3× 3 PS 0.94 0.97 0.93 0.92 0.71
5× 5 PS 0.94 0.94 0.91 0.93 0.64
7× 7 PS 0.95 0.97 0.95 0.86 0.50

MTV1
3× 3 PS 0.96 0.97 0.94 0.96 0.81
5× 5 PS 0.96 0.96 0.89 0.95 0.70
7× 7 PS 0.95 0.97 0.72 1.00 0.47

MTV2
3× 3 PS 0.96 0.94 0.90 0.94 0.73
5× 5 PS 0.96 0.94 0.92 0.93 0.98
7× 7 PS 0.94 0.93 0.95 0.74 0.25

Average
3× 3 PS 0.95 0.96 0.94 0.88 0.95
5× 5 PS 0.95 0.95 0.89 0.88 0.78
7× 7 PS 0.95 0.96 0.86 0.76 0.48

Table 6.5: Occurrences of the best accuracy results obtained using the 3×3, 5×5 and
7 × 7 key point PS representation, d = {2.5, 5, 10, 15, 20} and real error (springback)

values.

Neighbourhood size n
Grid size (d) mm

Total
2.5 5 10 15 20

3 1.66 2.66 2.66 1 0 8
5 2.33 1.33 0.5 2.5 1.33 8
7 3.5 3 1.5 0 0 8

Total 7.49 6.99 4.66 3.5 1.33
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Table 6.6: Occurrences of the best AUC results obtained using the 3 × 3, 5 × 5 and
7 × 7 key point PS representation, d = {2.5, 5, 10, 15, 20} and real error (springback)

values.

Neighbourhood size n
Grid size (d) mm

Total
2.5 5 10 15 20

3 2 5 1 0 0 8
5 2 2 0 2 2 8
7 1 4 2 1 0 8

Total 5 11 3 3 2

6.4.4 The Nature of the Linearisation: all Points vs key Points Rep-

resentation

This section considers the results obtained in the context of the comparison of the all

points and key points variations of the PS representation. Recall that all the earlier

experiments were conducted using the key points PS representation since the intuition

was that using the key points would be more “efficient” than using the all points in

the context of the PS representation because of it has less points and therefore it would

require less memory storage and less processing time. It should be clear to the reader that

a n×n block of points surrounding a given centre point pi was used to describe the area

covered by a linearisation and that n ≥ 3. The all points PS representation included

all the surrounding points covered by a block while the key points PS representation

included only the points at the corners and “mid ways” of a block (the latter was

illustrated in Figure 6.1(a)). Only the results produced using d = 5 are explicitly

identified in this section (as it was considered earlier as the best grid size for the PS

representation), however, it should be noted that similar results to those reported in this

section were also obtained with respect to the other d values considered. Tables 6.7, 6.8

and 6.9 summarise the results using n = 3, n = 5 and n = 7 respectively (best values

are in bold font). Note that there is no difference between the all points and the key

points variations when n = 3 (all points are the key points). Inspection of the tables

indicates that for n = 5 and n = 7, there is also no significant difference in operation

between using either the all points or the key point variations with respect to accuracy

and AUC.

6.4.5 Generalisation

This section considers the conducted evaluation in terms of the generalisation of the PS

representation. Experiments were conducted whereby the “curve bank” was generated

using one data set and tested using another. Note that not only the AUC and accuracy

results of the in between data set testing are reported, but also the AUC and accuracy

results obtained when the classifier was trained and tested using the same dataset (within

data set testing). The n = 3 and d = 5 parameter settings were used with respect to
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Table 6.7: The accuracy and AUC results when n = 3 (key vs all point variations).

Data sets
3× 3 key PS representation (d = 5 mm) 3× 3 all PS representation (d = 5 mm)
Accuracy AUC Accuracy AUC

GSV1 0.98 0.97 0.98 0.97
GSV2 0.98 0.89 0.98 0.89
GTV1 1.00 1.00 1.00 1.00
GTV2 0.99 0.99 0.99 0.99
MSV1 0.97 0.92 0.97 0.92
MSV2 0.98 0.97 0.98 0.97
MTV1 0.98 0.97 0.98 0.97
MTV2 0.96 0.94 0.96 0.94

Table 6.8: The accuracy and AUC results when n = 5 (key vs all point variations).

Data sets
5× 5 key PS representation (d = 5 mm) 5× 5 all PS representation (d = 5 mm)
Accuracy AUC Accuracy AUC

GSV1 0.97 0.95 0.97 0.95
GSV2 0.97 0.89 0.98 0.90
GTV1 0.99 0.99 0.99 0.99
GTV2 0.99 0.98 0.99 0.98
MSV1 0.96 0.92 0.96 0.93
MSV2 0.96 0.94 0.96 0.94
MTV1 0.98 0.96 0.98 0.95
MTV2 0.96 0.94 0.96 0.94

Table 6.9: The accuracy and AUC results when n = 7 (key vs all point variations).

Data sets
7× 7 key PS representation (d = 5 mm) 7× 7 all PS representation (d = 5 mm)
Accuracy AUC Accuracy AUC

GSV1 0.99 0.98 0.98 0.98
GSV2 0.98 0.93 0.98 0.93
GTV1 0.99 0.99 0.99 0.98
GTV2 0.98 0.96 0.98 0.97
MSV1 0.97 0.95 0.97 0.95
MSV2 0.97 0.97 0.97 0.96
MTV1 0.98 0.97 0.98 0.97
MTV2 0.96 0.93 0.95 0.92

the key point PS representation, because earlier experiments had indicated that these

values were the most effective. Figures 6.3(a) to 6.3(h) present the results obtained in

terms of accuracy and AUC values. From the figures it can be observed that:

• A best accuracy value of 1.00 was obtained when GTV1 and MTV1 were used as

the training sets, and GSV2 was used as the testing set.

• A best AUC value of 1.00 was obtained when curve banks were generated using

the GSV2, GTV2, MSV1 and MTV1 data sets and tested using the MTV2, MSV2,

GSV2 and GSV2 datasets.
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• The AUC and accuracy results obtained for the classifiers generated using GTV1

and GTV2 data sets were better than the results obtained using the GSV1 and

GSV2 data sets. Similarly, the AUC and accuracy results obtained using the

classifiers generated using the MTV1 and MTV2 data sets were much better than

the results obtained with respect to the classifiers generated using the MSV1 and

MTV2 data sets. Thus, it can be concluded that a classifier generated using

data sets describing objects manufactured from titanium (such as GTV1, GTV2,

MTV1 and MTV2) produced more generically effective classifiers than than those

generated using data sets describing objects manufactured from steel. Collings et.

al in [42] showed that, based on the anisotropic properties of titanium, springback

is considerably greater than for shapes (surfaces) manufactured from steel. Note

also that the greater the variety of different geometrical patterns that can be

provided when training the classifier the greater the generated classifier’s ability

to predict springback in the context of different shapes.

• For a classifier generated using one data set and tested on another, there is no

significant difference in operation between testing the classifier on another data

set (in between data set testing) or testing it on the same data set (within data set

testing) which means that the proposed PS technique succeeded in capturing all

possible geometries of a given shape effectively regardless of whether it has been

applied on the same or another shape.

Overall these are excellent results. The results obtained in terms of both AUC and

accuracy also indicated that, no matter what the nature of the 3D surface to be man-

ufactured or the material from which it is to be manufactured, an effective generic

prediction framework can be produced using the proposed PS Representation.

6.5 Run Time Evaluation

This section presents a run time analysis of the proposed PS representation. The run

time analysis was conducted using two groups of experiments as follows.

1. Using the key point and all point variations with n = {3, 5, 7}, d = 5 to clearly

identify the effectiveness of the key point representation in terms of run time.

2. Using n = 3, as the 3 × 3 PS representation had been found to be the most

appropriate variation of the PS representation, and a range of grid sizes d =

{2.5, 5, 10, 15, 20}.

The experiments was conducted using all eight data sets, GSV1, GSV2, GTV1,

GTV2, MSV1, MSV2, MTV1 and MTV2; and a 2.7 GHz Intel Core i5 PC with 4

GB 1333 MHz DDR3 memory, running OS X 10.8.1 (12B19). The PS technique was

implemented using the Java programming language and incorporated into the RASP

framework. The run time includes all the preprocessing steps (grid representation and
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(a) Training the generic classifier on GSV 1
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(b) Training the generic classifier on GSV 2
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(c) Training the generic classifier on GTV 1
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(d) Training the generic classifier on GTV 2
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(e) Training the generic classifier on MSV 1
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(f) Training the generic classifier on MSV 2
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(g) Training the generic classifier on MTV 1
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(h) Training the generic classifier on MTV 2

Figure 6.3: The AUC and Accuracy results produced when generating a classifier on
one data set and applying it to another using n = 3, the key point PS representation

and d = 5.
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error calculation), the PS generation and k -NN coupled with similarity calculation. In

addition, TCV was used. For the first group, Figures 6.4 to 6.6 show the recorded run

times for n = {3, 5, 7} in seconds. From the figures, it can be seen that the run times

for the key point and all point variations for n = 3 were the same for reasons already

noted. However, the key point variation outperformed the all point variation when

n > 3 because fewer points need to be processed.

For the second group, 3×3 PS, Figures 6.7(a) to 6.7(e) shows the run time (seconds)

recorded for the grid sizes of d = {2.5, 5, 10, 15, 20} with respect to the eight data sets.

The figures indicate that: (i) the recorded run time for the eight data sets are very similar

for the same grid size, however smaller grid sizes requires more run time than larger grid

sizes and this is clearly because using smaller grid sizes require more preprocessing and

more PS curves to be generated.
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Figure 6.4: Recorded run time
(s) for both the all point and the
key point PS representation using

n = 3 and d = 5.
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Figure 6.5: Recorded run time
(s) for both the all point and the
key point PS representation using

n = 5 and d = 5.
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Figure 6.6: Recorded run time (s) for both the all point and the key point PS
representation using n = 7 and d = 5.

6.6 Summary

The Point series (PS) 3D surface representation technique has been proposed in this

chapter. The technique was founded on the concept of a linearisation of space whereby

local geometric information was captured using a spiral linearisation. The proposed

technique was incorporated into the RASP prediction framework using a k -NN classi-

fication mechanism which used the warping distance, calculated using Dynamic Time

Warping (DTW), as the similarity measure. The “best” Warping Distance value was
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Figure 6.7: Run time (in seconds) for 3 × 3 PS representation using d =
{2.5, 5, 10, 15, 20} with respect to the eight data sets GSV1, GSV2, GTV1, GTV2,

MSV1, MSV2, MTV1 and MTV2.

used to label new curves within a predefined tolerance value of 0.08 when springback

was recorded in terms of real values (as opposed to discretised values). A range of re-

lated issues concerned with the PS representation were considered: (i) the most effective

PS representation in terms of using either discretised or real springback values, (ii) the

effect of using different grid sizes and consequently the most effective value for d, (iii)

the effect of using different neighbourhood sizes n (n = {3, 5, 7}) and hence the most

effective neighbourhood size, (iv) the most “appropriate” linearisation in terms of using

all points or only key points and finally (v) the general applicability of the proposed

representation. The main findings were as follows.

1. Using real error (springback) values was found to produce the most effective results

in the context of the PS representation.

2. The most appropriate grid value was founded to be d = 5.

3. The reported results show that there was no significant difference between using

different neighbourhood sizes (n = {3, 5, 7}) with respect to the recorded AUC
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results. However, the best accuracy and AUC were obtained using n = 3, and thus

n = 3 was identified as the most appropriate variation for the PS representation.

4. The run time experiments indicated that, as might be expected, larger neighbour-

hood sizes required more run time.

5. The key point PS representation was founded to be the most efficient PS repre-

sentation in the context of run time.

6. An effective generic springback prediction model can be produced using the pro-

posed PS 3D surface representation.

The overall results indicated that the PS technique outperformed the results obtained

earlier using all other proposed surface representation techniques (LGM and LDM rep-

resentation techniques). The following chapter presents a statistical study comparing

all the proposed representation techniques in order to identify the significant difference

between them.



Chapter 7

Statistical Comparison Between

the Proposed 3D Representations

This section presents a statistical comparison of the three different 3D surface tech-

niques proposed in this thesis. The objective is to demonstrate that the differences in

performance of the proposed techniques are statistically significant. To this end, the

Friedman statistical test was applied to evaluate the performance of the techniques to

determine whether the results produced were truly significant or not with respect to

the AUC measure. On completion of the Friedman test, the Nemenyi test was used to

identify the “critical distances” between the techniques so as to identify exactly where

the differences actually occurred. The statistical comparison was performed using the

Gonzalo and Modified data sets used earlier. Section 7.1 presents an overview of a num-

ber of statistical performance evaluation methods and presents the reasons for choosing

the Friedman statistical test with respect to the work presented in this thesis. Section

7.2 then describes the Friedman Statistical test and the associated Nemenyi test. Sec-

tion 7.3 presents the results obtained using the Friedman and Nemenyi tests when the

proposed techniques were trained and tested using the same data set, whilst Section

7.4 presents the best result obtained when the proposed techniques were trained on one

data set and tested on the remaining seven data sets. The later test was concerned with

demonstrating the generality of the proposed techniques. More considerations about

the run time analysis of each proposed technique with respect to statistical analysis are

presented in Section 7.5. Finally, this chapter is concluded in Section 7.6 with a brief

review of the main findings of the chapter.

7.1 Overview of Statistical Performance Comparison

This section provides some background concerning the most common (popular) tech-

niques used to perform statistical comparison of competing classification techniques.

The statistical comparison between the operation of different classifiers has recently

attracted more and more attentions from the data mining community. This kind of

statistical analysis is increasingly being used [93? ]. A number of different approaches

126
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have been proposed to conduct such comparisons. Typically, these approaches can be

categorised as being either: (i) parametric or (ii) non-parametric. The first is used when

the distribution of the data set is drawn from a normal (Gaussian) distribution. The

second makes no assumption about the distribution of the data set (Distribution-Free).

The size of the data sets also has an impact on whether parametric or non-parametric

analysis is conducted. For large data sets, both the parametric and the non parametric

statistical tests have the same implication (in other word, there is no difference between

the parametric and non-parametric tests for large data sets). Several forms of statistical

test have been proposed with respect to both parametric and non-parametric testing. For

a comparison between only two classifiers over different data sets, the paired t-test was

proposed for parametric data while the Wilcoxon Signed-Rank Test has been proposed

for non-parametric data. For more details and examples, see [50]. To identify the signif-

icant difference between more than two classifiers the Analysis Of Variance (ANOVA)

and Friedman test have been extensively used [100, 186]. The ANOVA statistical test is

based on two assumptions: (i) the normal distribution of the classification results and

(ii) the data sets to have equal variance (the homogeneity of variance) [50]. Although

both assumptions cannot be guaranteed, the violation of them would cause a greater

effect on the post-hoc tests. Thus the ANOVA statistical test is not recommended

for classification analysis unless both assumptions are certainly satisfied. However, the

Friedman test is mainly directed at non-parametric testing. The Friedman test offers

two advantages over parametric techniques (such as ANOVA): (i) ease of computation

and interpretation and (ii) its ability to demonstrate the classification performance in

terms of ranks rather than vague averages [82]. The Friedman test was thus chosen to

evaluate the performance of the different proposed techniques with respect to this thesis.

In addition to the practical advantages offered by the Friedman test, it was also chosen

because [81, 82, 202]:

• There is no guarantee that the AUC results obtained from the proposed techniques

follow the normal (Gaussian) distribution (the data is thus assumed to be non-

parametric).

• The Friedman statistical test is generally recommended (see for example [50]) for

use with related data sets while the ANOVA test is recommended for unrelated

data sets. With respect to the work described in this thesis, the Gonzalo and

Modified data sets were considered to be related data sets given that both describe

flat-topped pyramids. Therefore, the Friedman test was considered to be the most

suitable statistical test given our related data sets.

7.2 Friedman Statistical Test

This section describes the operation of the Friedman statistical test. The Friedman

test is commenced by ranking each classification techniques, with respect to each of
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the data sets, according to the recorded AUC values. Then, the average rank for each

classification techniques was obtained from across data sets. The Friedman test statistic,

χ2
F , is then calculated as follows [50, 66, 76]:

χ2
F =

12n

k(k + 1)

[
k∑
i=1

µ2i −
k(k + 1)2

4

]
(7.1)

where: (i) n is the number of data sets, (ii) k is the number of classification techniques

and (iii) µi is the average rank for classification technique i which in turn is calculated

as follows:

µi =
1

n

n∑
j=1

rj (7.2)

where rj is the (AUC) rank for classification technique i on data set j.

The Friedman test was applied with respect to the proposed techniques in the con-

text of the evaluation data sets. Two different cases were considered: (i) where the

classification techniques was trained and tested on the same data set and (ii) where the

classification techniques was trained on one data set and tested on another. In both cases

the parameters that produced the best results in terms of the AUC measure, as obtained

with respect to the experiments reported in the foregoing chapters, were used (as listed

in Table 7.1 ). Recall that these results were obtained using TCV. More specifically the

Friedman process is as follows:

1. Each of the proposed techniques is given a rank with respect to each data set as

shown in Tables 7.2 and 7.3 (Table 7.2 shows the rankings when the classifier is

trained and tested on the same data set, while Table 7.3 shows the rankings when

the classifier is trained and tested on different data set). The ranks in both tables

are presented in parenthesis where the best performing algorithm is given a rank

of 1 and so on.

2. Note that (with reference to Tables 7.2 and 7.3) where two techniques share a

ranking r, we used the so called ties rule. For example if two techniques are

ranked fourth then they will be given a ranking of 4.5 (4+4+1
2 )

3. The average rank µ for each of the proposed technique is given in the last column

of the two tables using Equation 7.2 where n = 8.

4. The Null hypothesis (H0) that there is no significant difference between the op-

eration of the techniques, and the Alternative hypothesis (H1) that there is were

established.

5. Using the Friedman test there are two situations where the null hypothesis H0

may be rejected, these are discussed in further detail later in this section.
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6. The rejection of the null hypothesis H0 means the automatic acceptance of the

alternative hypothesis H1.

7. If the null hypothesis is rejected we can proceed with a post-hoc test to identify

the critical distances between pairs of techniques to identify which technique(s) are

significantly different (in terms of recorded AUC values). It should be noted that

we can not proceed with a post-hoc test if the null hypothesis H0 is not rejected.

Number Technique (variation) Classifier Generator Best parameters

1 Level 1 LGM Decision tree d = 10, |L| = 3 andδz representation
2 Level 2 LGM Decision tree d = 10, |L| = 3 and δz representation
3 Composite LGM Decision tree d = 10, |L| = 3 and δz representation
4 LDM Decision tree d = 2.5 and |L| = 3
5 LDM+ Level 1 LGM Decision tree d = 10 and |L| = 3
6 LDM+ Level 2 LGM Decision tree d = 10 and |L| = 3
7 LDM+ Composite LGM Decision tree d = 10 and |L| = 3
8 Point Series (PS) k -NN with DTW technique d = 5, 3× 3 key PS representation

Table 7.1: The best parameter settings for the proposed techniques (variations) with
respect to each 3D representation technique.

Before proceeding with the operation of the Friedman test, the level of significance

(α), p-value and degree of freedom concepts should be clearly defined. The level of

significance, known as α, is the probability of wrongly rejecting the null hypothesis H0

where it is in fact true. Sometimes it is known as the level of risk. The commonly used

value is α = 0.05 [27, 76]. By using this value, there is 95% chance that the statistical

results are real and not due to chance. The “critical value” is the χ2 distribution of α

and normally is denoted as χ2
α. The p-value is defined as the probability of obtaining a

result that is at least as extreme as the one we actually obtained assuming that the null

hypothesis is true and it is typically 0 ≤ p-value ≤ 1. More simply, it is the probability

of obtaining the same results by chance. Normally, the p-value is compared with the

α value. Figure 7.1 shows the χ2 distribution curve where α is the shaded area under

curve for χ2
α while the p-value is the shaded area under curve for χ2

F . With reference to

the figure, if the p-value > α, the test is inconclusive and more evidence will be required

to support the alternative hypothesis (H1), if the p-value < α, then this means that we

have a statistically significant result and hence the null hypothesis H0 can be rejected.

Finally, the degree of freedom is a positive number that indicates the variability. In our

case the number of independent classifiers that have been generated using the different

proposed techniques is k = 8 and thus the degree of freedom is k − 1 = 7.

As noted above, if the calculated Friedman test statistic χ2
F is greater than the

critical value for the Chi-square distribution χ2
α obtained from a look up table of the

form shown in Figure 7.4 then this means that the null hypothesis H0 should be rejected

and the alternative hypothesis H1 should be accepted. However, this is not sufficient;

to qualify the strength of evidences against the null hypothesis, a p-value is calculated.

As already noted the rejection of the null hypothesis H0 indicates the existence of a

significant difference amongst the proposed techniques, it does not provide information
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Figure 7.1: The χ2 distribution. The shaded area is equal to α and denoted by χ2
α,

and represents the region of rejection. The p-value is the area under curve right of the
calculated χ2

F .

about the nature of this difference. Therefore, in the case where the null hypothesis is

rejected we can proceed with a post-hoc test to determine which techniques performed

differently. With respect to the work described in this thesis the Nemenyi test [155]

was adopted. This operates using the concept of a “critical difference” calculated using

Equation 7.3:

CD = qα,∞,k

√
k(k + 1)

12n
(7.3)

Where the critical value for qα,∞,k is calculated based on the Studentised range statistic

divided by
√

2. Here, k = 8, α = 0.05 and q0.05,∞,8 = 3.03 according to a table of

critical values for or qα,∞,k presented in [50]. A Critical Difference (CD) in this context

is thus used to identify the difference between the average ranks of pairs of classifiers.

A classifier performance is considered to be distinct from that of the other classifiers if

their average ranks differ by at least the CD.

7.3 Using the Same Data Set for Statistical Comparison

The application of the Freidman test in the case where the classifiers were trained and

tested on the same data set is considered in this section. From the work described in

the foregoing chapters the best AUCs values produced for the techniques considered

(listed in Table 7.1) are presented in Table 7.2. The Friedman statistical test was then

applied to the eight different Gonzalo and Modified data sets (GSV1, GSV2, GTV1,

GTV2, MSV1, MSV2, MTV1 and MTV2). Table 7.2 presents the ranks (indicated in

parentheses) and the average ranks µ for the k = 8 proposed techniques (using the

best AUCs). From Table 7.2, it can be seen that the best average rank, 1.25, was

achieved using the Point Series (PS) technique. The Friedman test value calculated

using Equation 7.1 with k − 1 = 7 degrees of freedom, is as the follows:
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χ2
F =

12× 8

8× (9)

[
197.04− 8× (9)2

4

]
= 1.33× 35.04

= 46.72

Recall that the Friedman test statistic χ2
F is distributed according to the χ2 distribu-

tion, so the computed value χ2
F was tested against the critical value of χ2 with α = 0.005

given 7 degree of freedom. Thus in this case χ2
α = 20.28 using the χ2 statistical dis-

tribution table [66, 117]. As the calculated Friedman test value is χ2
F = 46.72 > 20.28

the Null Hypothesis (H0) could be rejected at p-value < 0.005, in other words there is

a significant difference in the operation of the proposed techniques (when trained and

tested on the same data set). The Critical Difference (CD) is then:

CD = 3.03×
√

8(9)

12× 8

= 3.03× 0.87

= 2.62

In other words two individual techniques are significantly different if the difference

between their average rank is at least 2.62. Figure 7.2 shows the average rank for the

k = 8 proposed techniques along with the CD measure to highlight the techniques

which are significantly different to each other. As shown in the figure, an interval is

represented by a head (indicates the average rank) and the tail indicates the CD value. If

two classifiers have non-overlapping intervals then the operation of both are significantly

different. However, the overlapped intervals of two classifiers indicates that there is no

significant difference between them. From the figure, it can be seen that the PS technique

was ranked first which means that the operation of the PS technique outperformed the

other techniques with an average rank of µ = 1.44. The operation of LDM techniques

was found to be the worst performing with an average rank of µ = 8. Also, from the

table and the figure we can note that:

1. The operation of the PS technique is significantly different with respect to LDM,

Level 1 LGM and LDM + Level 1 LGM techniques while there is no significant dif-

ference between the operation of PS technique and Level 2 LGM , composite LGM,

LDM + Level 2 LGM and LDM + composite LGM techniques as the difference

between their average ranks is less than the CD value (overlapped intervals).
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2. The average rank of the composite LGM was 3.63 and this is an indication that

it is the “best” variation technique with respect to the different variations of the

LGM technique. However, there is no significant difference between the operation

of the composite LGM and the Level 2 LGM as shown in the figure.

3. The average rank of the Level 1 LGM was 6.63 which indicates that it is the

“worst” technique with respect to the different variations of the LGM technique.

However, the operation of Level 1 LGM was slightly improved when combined

with the LDM technique where the average rank of the LDM + Level 1 LGM was

6.38.

4. The operation of the LDM + composite LGM technique is significantly different

with respect to LDM, Level 1 LGM and LDM + Level 1 LGM techniques while

there is no significant difference between the operation of PS and Level 2 LGM ,

composite LGM, LDM + Level 2 LGM and PS techniques as shown in the figure.

5. The LDM + composite LGM has an average rank of 2.87 with respect to other

combinations between LGM and LDM techniques and this would be an indication

that describing a 3D surface using a combination of local geometries and critical

features may serve better than describing the 3D surface using either of them

and consequently this would produce an effective classifier especially when it is

generated using a single shape.

Table 7.2: The best AUC results for the proposed techniques (variations) using the
same data sets for training and testing with respect to each 3D representation technique.

Technique
Dataset

µiGSV1 GSV2 GTV1 GTV2 MSV1 MSV2 MTV1 MTV2

Level 1 LGM 0.62 (7) 0.83 (7) 0.69 (7) 0.73 (6) 0.66 (7) 0.76 (6) 0.67 (6.5) 0.64 (6.5) 6.63
Level 2 LGM 0.73 (4.5) 0.96 (2) 0.79 (4.5) 0.82 (2.5) 0.78 (4.5) 0.91(4.5) 0.75 (3.5) 0.74 (4) 3.75
Composite LGM 0.73 (4.5) 0.96 (2) 0.80 (2.5) 0.82 (2.5) 0.78 (4.5) 0.91 (4.5) 0.75 (3.5) 0.73 (5) 3.63
LDM 0.50 (8) 0.50 (8) 0.53 (8) 0.50 (8) 0.57 (8) 0.58 (8) 0.50 (8) 0.59(8) 8.00
LDM + Level 1 LGM 0.65 (6) 0.84 (6) 0.71 (6) 0.72 (7) 0.74 (6) 0.75(7) 0.67 (6.5) 0.64 (6.5) 6.38
LDM + Level 2 LGM 0.75 (2) 0.95 (4.5) 0.79 (4.5) 0.81 (4.5) 0.80 (2.5) 0.92 (2.5) 0.75 (3.5) 0.75 (2.5) 3.31
LDM+ Composite LGM 0.74 (3) 0.96 (2) 0.80 (2.5) 0.81 (4.5) 0.80 (2.5) 0.92 (2.5) 0.75 (3.5) 0.75 (2.5) 2.87
Point Series (PS) 0.97 (1) 0.95 (4.5) 1.00 (1) 0.99 (1) 0.97 (1) 0.97 (1) 0.97 (1) 0.96 (1) 1.44∑k

j=1 µ
2
j = 197.04

Friedman test statistic = 46.72

7.4 Using Different Data Sets for Statistical Comparison

In the case where the classifier is generated (trained) using one data set and tested on

the remaining n− 1 data sets, the best recorded AUC values are reported in Table 7.3.

The Friedman test value is as follows:
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Figure 7.2: The average rank (µi) associated with CD value for the classifiers gener-
ated using the same data set.

χ2
F =

12× 8

8× (9)

[
200.75− 8× (9)2

4

]
= 1.33× 38.75

= 51.67

Again, recall that the computed value of χ2
F was tested against χ2

α = 20.28. Given

that the Friedman test statistic is χ2
F = 51.67 > χ2

α = 20.28 then the Null Hypothesis

(H0), that there is no difference, can be rejected at p-value < 0.005; which means that

it can be concluded that the average ranks for the k = 8 generated classifiers on the

n = 8 different data sets are significantly different. The value of the Critical Difference

(CD) in this case is 2.62 (which is identical to the CD value obtained for the classifiers

generated on the same data set as the value of q0.05,∞,8, k and n are the same in both

cases). Figure 7.3 shows the average rank for the k = 8 proposed techniques along with

the CD measure to highlight the techniques which are significantly different to each

other. From the table and the figure, it can be observed that:

1. LDM was found to be significantly the worst technique with an average rank of 8.

2. The operation of the PS technique was again found to be the best amongst the

techniques considered with a best average rank of 1.25.

3. There is no significant difference between the operation of the PS technique and

each of: Level 2 LGM, LDM + composite LGM and LDM + Level 2 LGM tech-

niques as the difference between the average rank of the point series and their

average ranks are: 1.31, 1.81 and 1.88 respectively (all are < 2.62).

4. There is a significant difference between the PS technique and LDM + Level 1

LGM, Level 1 LGM, composite LGM and LDM techniques as the difference be-

tween the average rank of the PS technique and the average ranks of the others

are: 4.00, 4.56, 5.69, 6.75 and respectively (all are > 2.62).
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5. The operation of the Level 2 LGM technique was found to be the best technique

with an average rank of 2.56 with respect to the different variations of the LGM

technique. From the figure, it can be seen that there is a significant difference

between the Level 2 LGM technique, the Level 1 LGM and the composite LGM.

6. The combination of the LDM and LGM techniques resulted in a better performance

than when the techniques were used in isolation. The LDM + composite LGM

was found to be the best combination with an average rank of 3.06 (as indicated

in the table). However, there is no significant performance difference between the

LDM + composite LGM and the LDM + Level 2 LGM (as shown in the figure).

7. The average rank of the Level 2 LGM is 2.56 and this would be an interesting

result as it is a strong confirmation that using the local geometries is sufficient to

describe a 3D surface is sufficient to produce an effective generic classifier especially

on which different shapes are used to generate the classifier.

7.5 Run Time Analysis

This section presents some further insight to the run time analysis conducted with

respect to the different proposed techniques. With reference to the run time analysis for

the LGM, the LDM and the PS techniques that were previously presented in Chapters

4, 5 and 6 respectively, the reported run times indicated that there was no significant

difference in run time between the different techniques. It should be noted that the initial

set up time for the classification task was negligible for each technique and therefore the

run time analysis presented in this section consider only the preprocessing phase and

the application of a particular representation technique used to generate the required

classifier. The average run time for the “best” variation of each technique obtained using

the eight data sets (GSV1, GSV2, GTV1, GTV2, MSV1, MSV2, MTV1 and MTV2)

was as follows:

• 2.25 seconds for the composite LGM technique where |L| = 3 and d = 10 were the

“best” parameters.

• 2.50 seconds for LDM + composite LGM technique where |L| = 3 and d = 10 were

the “best” parameters.

• 3.00 seconds for PS technique where 3× 3 PS variation and d = 5 were the “best”

parameters.

.

Note that the average run time using the LDM technique on its own was 199.75

seconds where |L| = 3 and d = 2.5 were the “best” parameters. The long run time in

this case was because the grid size of d = 2.5 (which was previously identified in Chapter

5 to be the most appropriate grid size for the LDM technique in terms of classification
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effectiveness) generated more records and thus require a greater amount of processing

time than the other techniques considered. Therefore, the LDM technique was not only

found to be the worst technique in terms of AUC and accuracy, it was also the worst

technique in terms of run time.

Table 7.3: The best AUC results for the proposed techniques (variations) using dif-
ferent data sets for training and testing the generated classifier with respect to each 3D

representation technique.

Technique
Dataset

µiGSV1 GSV2 GTV1 GTV2 MSV1 MSV2 MTV1 MTV2

Level 1 LGM 0.82 (6) 0.77 (5.5) 0.85 (6) 0.82 (6) 0.82 (6.5) 0.82 (5.5) 0.81 (5.5) 0.82 (5.5) 5.81
Level 2 LGM 0.90 (3.5) 0.90 (3) 0.90 (2.5) 0.96 (3.5) 0.94 (2) 0.96(1) 0.93 (3) 0.94 (2) 2.56
Composite LGM 0.70 (7) 0.74 (7) 0.75 (7) 0.81 (7) 0.82 (6.5) 0.80 (7) 0.76 (7) 0.76 (7) 6.94
LDM 0.52 (8) 0.50 (8) 0.61 (8) 0.50 (8) 0.60 (8) 0.60 (8) 0.50 (8) 0.60(8) 8.00
LDM + Level 1 LGM 0.83 (5) 0.77 (5.5) 0.86 (5) 0.83 (5) 0.86 (5) 0.82(5.5) 0.81 (5.5) 0.82 (5.5) 5.25
LDM + Level 2 LGM 0.90 (3.5) 0.90 (3) 0.90 (2.5) 0.96 (3.5) 0.92 (3.5) 0.95 (3) 0.93 (3) 0.88 (3) 3.13
LDM+ Composite LGM 0.94 (2) 0.90 (3) 0.89 (4) 0.97 (2) 0.92 (3.5) 0.95 (3) 0.93 (3) 0.86 (4) 3.06
Point Series (PS) 0.99 (1) 1.00 (1) 0.99 (1) 1.00 (1) 1.00 (1) 0.95 (3) 1.00 (1) 0.99 (1) 1.25∑k

j=1 µ
2
j = 200.75

Friedman test statistic = 51.67

Figure 7.3: The average rank (µi) associated with CD value for the classifiers gener-
ated using different data sets.

7.6 Summary

This chapter has presented a statistical study concerning the performance of the different

proposed methods. The statistical evaluation was undertakes using the Friedman test for

related data sets. The comparisons were conducted in the context of two different cases:

(i) classifiers trained and tested using the same data sets, and (ii) classifiers trained and

tested on different data sets. The conducted statistical evaluations was performed using

classifiers generated using the best performing (in terms of AUC) parameters for each

proposed technique as established in the foregoing chapters. The statistical evaluation

using the Friedman test demonstrated a significant differences between the proposed

techniques, consequently the null hypothesis (that there was no statistical difference)

was rejected when p-value < 0.005 in both cases. In other words, we are 99% certain that

there is a significant difference between the operation the different proposed techniques.

From the evaluation the following overall observations can be made:
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1. The LDM technique demonstrated the worst performance compared to all other

proposed techniques as it had the highest average rank value, therefore it can be

concluded that the distance from a “critical feature” of a given shape on its own

is not enough to generate an effective classifier.

2. The best overall technique was found to be the PS technique and this is an in-

dication that this technique was best suited to capture local geometries so as to

produce an effective classifier.

3. There is a significant difference between the operation of PS technique and the

LDM technique.

4. The combination between the LDM and LGM techniques resulted in a better

performance than when each was used in isolation.

The application of predicted springback values in the context of the AISF process is

presented in the following chapter.
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Figure 7.4: The critical values for Chi-Square (χ2) [66].



Chapter 8

Identified Springback Error

Application

8.1 Introduction

Three different 3D surface representation techniques, LGM, LDM and PS, have been

presented in Chapters 4, 5 and 6 respectively. The techniques have been extensively

evaluated and compared as reported in Chapter 7. The evaluation has demonstrated

that: (i) springback can be successfully predicted and (ii) that the PS technique is the

most effective. However, being able to predict springback is not the end of the story. We

want to be able to test the effectiveness of the identified springback values by applying

them in an industrial sheet steel processing (AISF) context. More specifically we want

to be able to apply the detected set of springback values E to the original Gin grid

in order to produce a corrected grid Gcorr (Gcorr = Gin − E) which can then be used

to define a new input cloud to be manufactured. If a better shape is produced it can

then be argued that the proposed 3D surface representations are effective at least in the

context of AISF springback prediction (the focus of the work presented in this thesis).

This chapter firstly presents a mechanism for the application of the predicted spring-

back values so as to define a corrected input shape. Secondly the chapter presents an

evaluation of the results. The evaluation was conducted using the Gonzalo and Modified

Pyramids. Springback predictions were made with respect to both steel and titanium.

The springback errors were then applied and corrected clouds generated. The corrected

shapes were then manufactured by IBF and a comparison conducted between the newly

manufactured shapes and the originally manufactured shapes.

For the springback prediction the Level One LGM 3D surface representation tech-

nique was used in combination with the equal width discretisation process. This was

because the scheduling of experiments at IBF required a significant lead time and the

LGM technique was the first fully operational technique produced with respect to the

programme of work described in this thesis. Also, the equal width discretisation process

was adopted at that time when the LGM technique was first proposed.

138
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Table 8.1 presents the notation used in this chapter. The rest of this chapter is

organised as follows. Section 8.2 presents the mechanism used to generate a corrected

cloud Ccorr. An analysis of the manufactured shapes produced is then presented in

Section 8.3. The chapter is concluded with a summary in Section 8.4.

Table 8.1: Basic Notation used in this chapter.

Notation Description

T A desired shape.
T ′ The actual obtained shape after the application of a manufacturing process.
Cin The CAD description for a desired shape T in a point cloud format.
Cout The description of T ′, measured using some optical measuring tool, in a point data

format.
Gin The grid representation for Cin, with associated errors values ei when training a

classifier, without error values otherwise.
Cpred The predicted cloud generated with respect to springback errors produced by a clas-

sifier.
Ccorr The corrected cloud obtained after applying the proposed correction mechanism to

Cpred.

8.2 Corrected Cloud Generation Mechanism

This section presents the proposed mechanism to generate a Ccorr cloud for a given

shape. The process commences with a desired Cin shape and a classifier generated using

the RASP framework previously presented in Chapter 3. As noted above the Level One

LGM surface representation technique was used in this context. In this manner four

classifiers were generated:

1. Gonzalo Steel (GS).

2. Gonzalo Titanium (GT).

3. Modified Steel (MS).

4. Modified Titanium (MT).

The parameters used were d = 1 mm and |L| = |LE | = 5. The generated classifiers

were then applied to the Gonzalo and Modified Cin clouds and sets of error predictions

produced: EGS , EGT , EMS and EMT .

Recall that the each ei ∈ E comprises: (i) a magnitude and (ii) a direction on which

the + indicates an “inward” direction and the − indicates an “outward” direction (as

shown earlier in Figure 3.5 in Chapter 3). The mechanism to generate the Ccorr cloud

is shown in Figure 8.1 and operates as follows.

1. Input Shape Description. The mechanism commences with the Cin of a given

shape as an input for a classifier that was previosely generated using one of the
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proposed techniques, the Level One LGM in particular which consists of a set of

eight attributes {att1, att2, · · · , att8} to describe the geometrical information of

the surrounding neighbours for each pi ∈ Cin.

2. Generate Error Table. Recall that the predicted springback errors are repre-

sented using a set of class attribute labels LE . The mechanism for defining the

class attribute (error), labels was described in Chapter 3 (Section 3.5). Although

|LE | = 3 was defined as the best label size for the LGM technique, for the eval-

uation |LE | = 5 was used because this was requested by the industrial partner

(IBF); |LE | = 5 generates smoother surface than other |LE | values. A table was

generated to translate the identified (predicted) error labels back into the mean

error value for the range associated with each label (mean values were used due to

the skewed nature of springback distribution). Thus |LE | = {l1, l2, l3, l4, l5}.

3. Predict Error Labels. Each pi ∈ Cin associated with an error label when a

generated classifier is applied.

4. Identify Predicted Error Values. The predicted error values were generated

by replacing the predicted error labels with their corresponding mean values using

the error table produced in (1).

5. Apply Predicted Error Value. The Ccorr cloud was then generated by reversing

the error along the direction of the normal for each point pi ∈ Cin.

Using the above process four corrected clouds were generated; (i) CcorrGS , (ii) CcorrGT ,

(iii) CcorrMS and (iv) CcorrMT corresponding to the four generated classifiers listed above.

These were manufactured by IBF. It should be noted that the proposed error application

mechanism offers the twin advantages that it is both simple and easy to apply. However,

other error application mechanisms can be envisioned such as associating a weighting

factor with different types of springback, however such mechanisms are beyond the scope

of this thesis and require more investigations.

Figure 8.1: Corrected Cloud Generation Mechanism.



141

8.3 Evaluation of Formed Parts

In this section an evaluation with respect to the manufactured shapes is presented. The

section is divided into two according to the manufacturing material used. Section 8.3.1

presents the analysis of the results with respect to shapes made out of steel (GS and

MS), while Section 8.3.2 presents the analysis of the results with respect to shapes made

out of titanium (GT and MT).

8.3.1 Steel Manufactured Shapes (GS and MS)

Figure 8.2: Springback distribution with respect to the shapes manufactured using
Cin cloud (left) and Ccorr (right) for the GS shape and an error scale of ±6 mm.

This section presents and discusses the results obtained in the context of the Steel

fabricated shapes GS and MS. Figures 8.2 to 8.4 present the springback distribution over

the Cin cloud for the GS shape using different error scales ±6 mm, ±4 mm and ±3 mm

respectively. Note that an error scale is used to described the springback distribution

and this is included at the bottom of each figure. These scales are divided into sub

ranges where each sub range has a different colour from other sub rages. In each figure,

the left hand side shows the shape produced using the Cin cloud while the right side

shows the shape produced using the Ccorr cloud with respect to the different error scales.

From the figures it can be seen that when the scale covers a small range the springback

distribution becomes more obvious and clearer for both shapes and consequently it can

be seen that the springback distribution over the new fabricated shapes, defined using

the springback prediction process described earlier in this thesis, is clearly minimised.

This is an interesting result as it shows that the generated classifiers were successfully

able to predict the springback to a sufficient standard so that the springback in the

shape manufactured, using the corrected clouds, was significantly reduced.
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Figure 8.3: Springback distribution with respect to the shapes manufactured using
Cin cloud (left) and Ccorr (right) for the GS shape and an error scale of ±4 mm.

Figure 8.4: Springback distribution with respect to the shapes manufactured using
Cin (left) and Ccorr (right) for the GS shape and an error scale of ±3 mm.
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Similarly results were recorded with respect to the manufactured shapes produced

using the Cin and Ccorr clouds for the MS shape. The springback distributions in this

case are presented in Figures 8.5 to 8.7 (again using the same error scales, ±6 mm, ±4

mm and ±3 mm respectively). The Figures again confirm that the degree of springback

can be effectively minimised using the proposed prediction mechanism. Some statistical

information, regarding the GS and MS manufactured shapes, is presented in Tables 8.2

and 8.3. Given these results the following observations can be made:

• For the GS shape, the springback for the shape manufactured using the corrected

shape was minimised, as can be clearly observed with reference to the maximum,

minimum, average and standard deviation measures presented in the table.

• Similarly for the MS shape, the overall degree of springback was also minimised

(despite the observed increase in the maximum springback value).

• Both Tables 8.2 and 8.3 indicate that the maximum and the minimum predicted

springback values are very close to the maximum and the minimum actual spring-

back values for both manufactured shapes (GS and MS).

Figure 8.5: Springback distribution with respect to the shapes manufactured using
Cin (left) and Ccorr (right) for the MS shape and an error scale of ±6 mm.

With respect to the above it should be noted that the generated classifiers will

not be able to predict the exact known maximum and minimum springback values

because the proposed process demands that springback values are ranged (each with

an associated labelling) so as to generate the necessary binary valued data sets. Recall

that the classifier used with respect to the experiments presented in this chapter were

generated using the Level one LGM technique with |L| = 5 (L = {l1, l2, l3, l4, l5})1. For

1The labelling is interpreted as {very low, low, neutral, high, very high}.
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Figure 8.6: Springback distribution with respect to the shapes manufactured using
Cin (left) and Ccorr (right) for the MS shape and an error scale of ±4 mm.

Figure 8.7: Springback distribution with respect to the shapes manufactured using
Cin cloud (left) and Ccorr (right) for the MS shape and an error scale of ±3 mm.

Table 8.2: Springback statistical information (provided by IBF) for the GS shapes
manufactured using Cin and Ccorr, (year experiment was conducted included in paren-

thesis).

Max. Min. Average SD

GS Springback using Cin (2012) +3.24 −2.39 −0.24 +0.89
GS Springback using Ccorr (2013) +2.15 -2.33 -0.06 +0.74
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Table 8.3: Springback statistical information (provided by IBF) for the MS shapes
manufactured using Cin and Ccorr. (Year experiment was conducted included in paren-

thesis.)

Max. Min. Average SD

MS springback using Cin (2012) +1.22 −2.17 −0.30 +0.60
MS springback using Ccorr (2013) +1.27 -1.56 -0.04 +0.48

the classifier to operate correctly, the unseen data must be labelled in the same manner

which means that the same set of error (springback) labels LE used to label the error of

the generated classifier were used again to label the unseen data. Table 8.4 shows some

statistical information about the LE label set used to describe the springback for the

GS shape while Table 8.5 presents the same statistical information for the labels used

for the MS shape.

With respect to the work presented in this thesis AUC and the accuracy measure-

ments were used to evaluate classifier performance in the context of springback label

prediction. However, by substituting the predicted labels with the mean values for the

each label (as in the case of the experiments presented in this chapter), the Root Mean

Square Error (RMSE) measurement can be used to compare the accuracy of the pre-

dicted springback values with the known springback values. Thus, AUC and accuracy

have been used in this thesis as measurements of prediction (classifier) performance,

whilst RMSE was used as an “accuracy” measurement for the actual springback predic-

tion. RMSE is calculated as shown in Equation 8.1 [121].

RMSE =

√∑n
i=1(Ei)

2

n
(8.1)

where n is the number of records in the data sets, Ei = Xi − Xpred, Xi is the known

springback and Xpred is the predicted springback value. The RMSE value serves as a

measure of how far, on average, the error (the difference between the predicted Xpred

and the actual Xi springback value) is from zero.

Evaluation using the RMSE measure was performed on two levels: (i) separately for

each label and in this case n would be the number of records associated with each

label and (ii) for the overall shape, regardless of the number of labels, where n is

the total number of records with respect to each shape. The RMSE results using GS

and MS, along with some statistical information, are presented in Tables 8.4 and 8.5

respectively. Each row demonstrates the statistical information associated with each

label. For instance, the maximum error (springback) value for l1 for the GS shape was

−0.81 while the minimum error value was −1.71 (as shown in Table 8.4). The mean

value for l1 for the GS shape was thus −1.03 and this value was used to replace label l1.

Similarly for the rest of labels for GS and MS shapes. The last row in each table gives

some statistical information for the Ccorr cloud obtained for GS and MS respectively
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when the predicted labels were replaced with their equivalent mean values. For instance,

the maximum replaced value for labels was +2.13 while the minimum replaced value for

the labels was −1.03, these values correspond to the mean values of the set of labels

LE = {l1, l2, l3, l4, l5}. For the GS shape, the mean value for the complete set of values

for the labels was +1.24 and the Standard Deviation (SD) was +0.55. From the results

presented in both tables, it can be seen that:

1. The SD values of the individual labels for the GS and MS shapes were less than the

SD value of the entire Ccorr and this is a typical result since each label has similar

error (springback) values so the difference between individual error values and the

mean error value for the label was very small. However, there was a significant

difference between the individual error (springback) value and the overall mean

value of the entire shape, with respect to Ccorr (last row in each table).

2. The closer the RMSE value is to zero the better the prediction is.

3. The best RMSE value was 0.53 obtained for MS with respect to l3; while the best

RMSE value for GS was 1.03.

4. MS shape obtained better (lower) RMSE values compared to the RMSE values

obtained using the GS shape for each label.

5. The best RMSE value was obtained with respect to the MS shape (1.00) com-

pared to the RMSE value for the GS shape (1.62). These results indicated that

the classifier generated using the MS dataset is more accurate than the classifier

generated using the GS dataset.

6. The recorded RMSE values indicated that the classifiers were better able to predict

the smaller springback values (and springback = 0 associated with l3) than the

larger springback values (associated with labels L1 and L5); this is possibly because

that the small springback values have a higher distribution and more patterns with

which to identify them than the large springback values.

Table 8.4: Statistical information concerning the LE label set used to describe the
springback values with respect to GS shape manufactured using Ccorr.

LE No. of records Max. Min. Mean SD RMSE

l1 1613 −0.81 −1.71 −1.03 0.20 2.51
l2 21641 0.09 −0.81 −0.31 0.22 1.73
l3 8198 0.98 0.09 0.41 0.24 1.03
l4 5076 1.88 0.98 1.42 0.24 1.59
l5 530 2.74 1.88 2.13 0.24 2.62

Ccorr 37058 +2.13 −1.03 +1.24 +0.55 1.62
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Table 8.5: Statistical information concerning the LE label set used to describe the
springback values with respect to MS shape manufactured using Ccorr.

LE No. of records Max. Min. Mean SD RMSE

l1 4146 −0.50 −1.09 −0.61 0.10 0.85
l2 16654 0.08 −0.50 −0.22 0.16 0.76
l3 10056 0.67 0.08 0.34 0.16 0.53
l4 3984 1.25 0.67 0.93 0.17 1.19
l5 1072 1.84 1.25 1.39 0.10 2.16

Ccorr 35912 +1.39 −0.61 +0.49 +0.55 1.00

8.3.2 Titanium Based Shapes

This section reports on the main findings obtained with respect to the corrected flat

topped pyramid shapes manufactured from Titanium (the GT and MT shapes). Un-

fortunately these experiments were unsuccessful because of fractures occurring early on

during the manufacturing process. Figures 8.8 and 8.9 shows the maximum level of

forming reached by the forming process while producing the GT and MT shapes respec-

tively. Some parameters for the AISF machine were changed, but the cracks continue to

reproduce and distort the manufactured shape. The main cause of these fractures was

a property of Titanium called the anisotropic property whereby the wall angle in the

Ccorr shape should not exceed a certain maximum, approximately 60◦. The maximum

wall angle in the Ccorr cloud reached 66◦ for GT1 and 64◦ for MT1. The maximum wall

angle in the original desired shape Cin reached 55◦ for both GT1 and MT1. It was also

unfortunate that the author of this thesis, not being a materials scientist, was unaware

of the Titanium anisotropic property (more details on material properties can be found

in [199]). Thus, if similar corrected shapes, generated using the proposed classification

techniques, are obtained then we would expect to face the same problem. Some work,

such as [104], has proposed a solution to solve this kind of problem during the manufac-

turing process where the shape is formed using a multi stage forming process. Although

the wall angles should be kept below the critical wall angle in the context of titanium,

the mechanism to achieve this incremental forming with respect to the work presented

in this thesis still needs more investigations.

8.4 Summary

This chapter has presented a mechanism to generate and apply corrections to the Cin

definition of a given shape so as to produce a corrected input shape (Ccorr) that compen-

sates the springback phenomena (in the context of the AISF process). A number of Ccorr

clouds were produced for four different shapes (MS, GS, MT and GT ). These shapes

were manufactured by IBF. Analysis of the manufactured shapes confirmed that the

overall springback on the newly produced shapes was reduced compared to the shapes
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Figure 8.8: The uncompleted
GT shape manufactured up to the
point where fractures occurred.

Figure 8.9: The uncompleted
MT shape manufactured up to the
point where fractures occurred.

formed using the original input cloud Cin. The process presented in this chapter pro-

vides the foundation for an intelligent process model that has potential for adoption by

industry. The intelligent process model concept (two variations) is discussed further in

the following chapter.



Chapter 9

Intelligent Process Model

9.1 Introduction

In the previous chapter a mechanism was presented and evaluated for applying pre-

dicted springback errors so as to produce a corrected shape Ccorr. This chapter presents

an Intelligent Precess Model (IPM) which is designed to automate this process. Two

variations of the IPM are proposed: (i) Single Pass and (ii) Iterative. The Single Pass

approach operates in a very similar manner to the process adopted in Chapter 8. A

classifier, specifically built for the purpose, is applied to a given Cin cloud and the pre-

dicted errors are applied (by reversing the error) to produce a corrected cloud Ccorr. In

the iterative approach, the springback predictions are made and applied in an iterative

manner until a “best” Ccorr cloud is obtained. The Single Pass IPM can thus be seen

as a special case of the Iterative IPM with only one iteration.

The rest of this chapter is organised as follows. Section 9.2 presents an overview of

the Single Pass IPM. The iterative IPM is presented in Section 9.3; the section presents

the philosophy behind the iterative IPM and the steps that comprise the iterative IPM.

An extensive evaluation of the iterative IPM is presented in Section 9.4. Note that

the operation of the Single Pass IPM was extensively evaluated in Chapter 8 so the

evaluation of this IPM is not considered further in this chapter. Finally, the chapter is

concluded with a summary in Section 9.6.

9.2 Single Pass IPM

The operation of the Single Pass IPM is essentially described in the previous chapter

(Chapter 8) except that the process is packaged together as described in this section.

Figure 9.1 presents the Single Pass IPM process, on which it starts with the input shape

description Cin and ends with obtaining the Ccorr cloud.

The Cin cloud is preprocessed using one of the proposed 3D surface representations

(the PS representation has been shown to be the most effective) and a previously gener-

ated classifier applied to produce predicted springback values. Note that it is important

that the conducted preprocessing is identical to that applied to the training set used to

149
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Figure 9.1: Single Pass IPM.

generate the classifier (same 3D surface representation, same value for d and the same

L and LE label sets). Recall that the required classifier is obtained using the RASP

framework (presented previously in Chapter 3). Then the predicted errors are used to

generate a corrected version of the Cin, Ccorr, which can be then translated into a CAD

description so as to be used as a new input to the forming process in order to minimise

the effect of springback so that a shape closer to the desired shape is obtained than that

which would have been obtained using the original Cin cloud.

The Single Pass IPM algorithm is presented in Algorithm 9.1. The algorithm starts

with the Cin of a given shape and a previously generated classifier. One of the 3D

representation techniques that have been proposed in this thesis is then used to translate

the Cin into a Gin to which the classifier can be applied (as shown in line 1). Once the

classifier, has been applied to Gin each p ∈ Gin will be associated with one of the

labels from LE which is then replaced by its equivalent mean value e. Recall that the

value e is always associated with a sign “+” or “−” (as illustrated earlier in Chapter

3). The sign indicates that e is already the inverse of the springback since we choose

to associated − for the outward direction and + for the inward direction (See Chapter

3 Figure 3.5). Hence when applying springback values we apply them in a positive

manner to Cin as indicated in Figure 9.1. Finally the corrected cloud is generated

using Procedure GenerateCorrectedCloud1 (line 3). The coordinates of each point

located in the corrected cloud Ccorr are obtained by applying the associated error e to

its corresponding point in the Cin cloud in the opposite direction along the normal from

each point p ∈ Gin as shown in the GenerateCorrectedCloud1 procedure (in particular,

lines 4).

Algorithm 9.1: Single Pass IPM

Input: Cin, classifier
Output: Ccorr cloud

1 Gin ← Process Cin using appropriate 3D surface representation.
2 E ← Set of springback prediction values obtained from applying classifier to Gin,

each value in E is correlated to a point p in Gin.
3 Ccorr ← GenerateCorrectedCloud1(LE , Gin, Cin).

The Single Pass IPM approach was extensively evaluated in Chapter 8 and thus this

is not considered further in this chapter. The significance of the Single Pass IPM, in

the context of this chapter, is that it provided the foundation for the Iterative IPM

presented in the following Section.
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Function GenerateCorrectedCloud1(E, Gin, Cin)

1 Ccorr ← Cin;
2 for all (pin) ∈ Cin and (pcorr) ∈ Ccorr do
3 e← Value in E corresponding to p (already reversed sign);
4 pcorr ← pin + e ;

5 end

9.3 Iterative IPM

This section presents the iterative IPM process as mentioned in the introduction to this

chapter. The main idea behind the iterative IPM is to perform the springback prediction

and the application process repeatedly until a “best” Ccorr cloud is obtained. Best in this

context refers to a Ccorr cloud that is expected to minimise the springback phenomena.

The Iterative IPM process is presented in block diagram form in Figure 9.2. The

iterative element of the process can clearly be seen from the figure. From the figure it

can be observed that the process incorporates three types of clouds: (i) Cin input cloud

(ii) the predicted cloud Cpred and (iii) the corrected cloud Ccorr. The Cin cloud (coloured

in red) is the description of the desired shape (the target shape). The predicted cloud

Cpred (coloured in purple) is used to see whether the current input is close enough to the

desired shape Cin. The corrected cloud Ccorr (coloured in blue) is generated to provide

the Iterative IPM with a new input for the next iteration (where required). The iterative

IPM operates as follows.

Figure 9.2: Iterative IPM.

At start up the process is similar to that for the Single Pass IPM process (see above).

The Cin cloud is preprocessed using one of the proposed 3D surface representations to

give Gin and a previously generated classifier is applied to produce the desired set of
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predicted springback values E = {e1, e2, . . . , en} one value per grid centre point in Gin.

Recall that errors values are given a negative sign if the springback is upwards with

respect to Gout and a positive sign otherwise (as described previously in Chapter 3).

Recall that the springback values are already inverse, so to get the original value of the

error the “inverse of the inverse” E are considered and then applied to Gin to produce

a predicted shape Cpred as shown in Equation 9.1.

Cpred = Cin − E (9.1)

If, on this first iteration, Cpred ≈ Cin (to a certain level of tolerance) then the process

finishes and the original Cin is passed on ready for forming. However, this is an unlikely

event as this will mean that the predicted springback errors all equated to approximately

0 (or below the tolerance value). In practice the predicted shape will not be the same as

the desired shape on the first iteration. As presented previously in Chapter 6, a tolerance

of 0.08 mm has been suggested by BS EN ISO 1101:2005 [29] and used with respect to

the PS representation to identify the similarity between two curves; this tolerance value

can be also used in the context of the iterative IPM in order to identify the maximum

difference of error (springback) between Cpred and Cin that can be acceptable. Thus, as

in the case of the Single Pass IPM, the predicted springback errors are applied to the

Cin cloud to produce a corrected cloud Ccorr as shown in Equation 9.2.

Ccorr = Cin + E (9.2)

In the case of the Single Pass IPM the Ccorr shape was then passed on for manufacture.

In the case of the Iterative IPM the process is repeated. The Ccorr cloud is preprocessed

in the same way as before and fed back into the classifier and a new Cpred produced.

If this new Cpred is now near enough to Cin the process stops and Ccorr passed on for

manufacture. If it is not the set of differences diff between the new Cpred and the original

Cin clouds is determined and this set of difference applied to the input cloud to produce

Ccorr which is a new input for the iterative IPM:

diff = Cin − Cpred
Ccorr = input+ diff

The diff values are described in terms of a magnitude and a direction and calculated

in the same manner as springback as described previously in Chapter 3 (Section 3.4).

The magnitude is the distance along the normal from the point located on Cin obtained

from the Cpred cloud while the direction is determined according the position of the

Cpred points with respect to the Cin points. If the diff value is upwards with respect to

Cin it will assigned a negative sign. Otherwise a positive sign is assigned (as described
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previously in Chapter 3). Note that the diff values will not necessarily be the same

across the shape.

The process continues until either: (i) Cpred approximates to Cin where the average

difference between both clouds satisfy a prescribed tolerance or (ii) a maximum number

of iterations has been reached. Algorithm 9.2 presents the iterative IPM process. For

experimental purposes n = 12 was used. The inputs to the algorithm are the desired

(target) cloud Cin, a classifier and the max number of iterations n.

The algorithm starts by generating Gin using one of the proposed surface represen-

tation techniques (line 1). The classifier is then applied to Gin so that each grid centre

point will be associated with one predicted error value. The set of all the predicted error

values define the set E (line 2). Cin is assigned to the input cloud (line 3). The pre-

dicted cloud Cpred is then generated using Function GeneratePredictedCloud (line 4).

If Cpred is approximately the same as the desired (target) shape Cin, then the Ccorr is the

input and the algorithm stops. Otherwise, the C ′corr is generated (line 9) using Function

GenerateCorrectedCloud1 (described earlier for the Single Pass IPM) and used as an

input for the next iteration (line 9) where Algorithm 9.3 is applied to obtain the best

Ccorr (line 10).

Algorithm 9.2: Main Iterative IPM process

Input: Cin, classifier, number of iterations n
Output: Ccorr cloud

1 Gin ← Process Cin using appropriate 3D surface representation ;
2 E ← Set of springback prediction values obtained from applying classifier to Gin,

each value in E is correlated to a point p in Gin;
3 input← Cin ;
4 Cpred ← GeneratePredictedCloud (E, Gin, input);
5 if Cpred ≈ Cin then
6 Ccorr ← input ;
7 end
8 else
9 C ′corr ← GenerateCorrectedCloud1(E, Gin, input) ;

10 Ccorr ← IterativeIPM(C ′corr, Cin, n) ; // Algorithm 9.3

11 end
12 return Ccorr

The Cpred of a given C cloud is generated using Function GeneratePredictedCloud

where the set of predicted error values E, Gin and the C are the inputs to the func-

tion. Recall that each centre grid point in Gin is associated with an e value, thus e′

is the inverse of the e (opposite sign). The Cpred of the given C cloud is obtained by

apply the inverse of the predicted error values e′ to the points of C cloud (Function

GeneratePredictedCloud line 6).

Algorithm 9.3 describes the iterative part of the Iterative IPM starting from itera-

tion 2 (as shown in line 1). The inputs are: (i) the original Cin cloud, (ii) the maximum

number of iterations n and (iii) the current input cloud. The input cloud is assigned
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Function GeneratePredictedCloud(E, Gin, C)

Input: E, Gin, C
Output: Cpred cloud

1 Cpred ← C;
2 for all p ∈ C and ppred ∈ Cpred do
3 p← Grid centre point in Gin corresponding to (x, y) ;
4 e← Value in E corresponding to p ;
5 e′ ← Value of e with reversed sign ;
6 ppred ← p+ e′ ;

7 end
8 return Cpred

initially to the C ′corr resulting from the first iteration with respect to the main itera-

tive process described in Algorithm 9.2, then it assigned to the Ccorr cloud (Algorithm

9.3 line 2). An iteration counter is used to compare with n as the process proceeds.

Again a Cpred is generated for each iteration using Function GeneratePredictedCloud

(line 6) in such a way that if Cpred is close enough to the Cin, then the Ccorr is the

output. Otherwise, the Ccorr for the current input is generated using Function Gen-

erateCorrectedCloud2 and used as the new input for the next iteration (lines 8 and 9

respectively). Thus, the algorithm will be terminated when the iterative IPM is applied

for n times (line 3). Finally, the output from Algorithm 9.3 is the final Ccorr cloud.

Function GenerateCorrectedCloud2 is used to generate the Ccorr cloud for the Iterative

IPM from the second iteration onwards. The Ccorr is assigned initially to the input cloud

(line 1). The differences (diffs) between the points located in Cin and the points located

in Cpred are obtained in line 3. The intuition is that if the diffs are repeatedly added

to the input then the Cpred for the next input will gradually converge to the desired

(target) shape Cin.

Algorithm 9.3: Iterative IPM

Input: input, Cin, number of iterations n
Output: Ccorr cloud

1 counter ← 2;
2 Ccorr ← input;
3 while counter < n do
4 Gin ← Process Cin using appropriate 3D surface representation;
5 E ← Set of springback prediction values obtained from applying classifier to

Gin, each value in E is correlated to a point p in Gin;
6 Cpred ← GeneratePredictedCloud (E, Gin, input);
7 if Cpred 6= Cin then
8 Ccorr ← GenerateCorrectedCloud2(Cin, input, Cpred);
9 input ← Ccorr;

10 end

11 end
12 return Ccorr
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Function GenerateCorrectedCloud2(Cin, input, Cpred)

Input: Cin, input, Cpred
Output: Ccorr cloud

1 Ccorr ← input;
2 for all (pin ∈ Cin), (ppred ∈ Cpred), (pcorr ∈ Ccorr) do
3 diff = pin − ppred;
4 pcorr = input + diff ;

5 end
6 return Ccorr

Table 9.1 presents a detailed example for the Iterative IPM. The iteration ID, the

average predicted error (springback) e and the average difference diff between the input

and the Cpred for a given shape were recoded for 6 iterations (n = 6). From the table

it can be seen that the average error equalled the average absolute diff on the first

iteration where the Cin cloud double as the input. From the example it can be seen that

the difference diff gradually decreases and that the minimum diff was obtained on the

fifth iteration with a difference of 0.016 (bold font). Thus, the input cloud arrived at

on iteration 5 produce the“best” Ccorr that could be used to form the given shape with

minimum potential effect of springback.

Table 9.1: An example on the iterative IPM process for a given shape where the
average predicted error (e) and the average absolute difference between the Cpred and

the Cin (diff) are recorded for six iterations n = 6.

Iteration ID e diff

1 0.731 0.731
2 0.664 0.067
3 0.735 0.071
4 0.763 0.029
5 0.747 0.016
6 0.646 0.101

9.4 Experiments and Evaluation

A sequence of experiments were conducted to evaluate the iterative IPM process. The

Iterative IPM settings were as follows.

1. To be consistent with the evaluation of the Single Pass IPM: (i) |L| = |LE | = 5

using equal width discretisation and (ii) the LGM (level one) was used to generate

a classifier.

2. Two grid sizes d = 1 mm and d = 10 mm. The first was used because this is the

most appropriate resolution for manufacturing purposes and the second because

earlier results indicated that this was best suited to the level one LGM technique.

3. The eight Gonzalo and Modified data sets were used: GSV1, GSV2, GTV1, GTV2,

MSV1, MSV2, MTV1 and MTV2.
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4. It was considered that n = 12 was sufficient to obtain a deep insight in to the

operation of the Iterative IPM in order to: (i) provide a sufficient analysis on the

generated Cpred and Ccorr clouds obtained by each iteration of the iterative IPM

and (ii) to facilitate the identification of the “best” Ccorr.

The results of each iteration of the Iterative IPM were recorded in terms of the

average of absolute diff values between the Cpred and Cin, and the average springback

distribution of the Cpred cloud. It should be noted that only the magnitude of the diff

values was considered as the intuition is to see if the Cpred and Cin converge from each

other and the absolute diff values converge to zeros as well.

The average absolute diff values and the springback distribution of the Cpred clouds

for the GSV1 data set, using d = 10 mm and d = 1 mm are presented in Figures 9.3

and 9.4 respectively. Similarly, for the GSV2 data set, the average absolute diff values

and the springback distribution of the Cpred clouds using d = 10 mm and d = 1 mm are

presented in Figures 9.5 and 9.6 respectively. In the same manner the results obtained

using GTV1, GTV2, MSV1, MSV2, MTV1 and MTV2 data sets are presented in Figures

9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.17, 9.18 respectively. From the

figures, it can be seen that:

• For the first iteration, the average absolute diff values are similar to the average

springback distributions since the input for the Iterative IPM in the first iteration

is the desired shape itself Cin so the predicted error (springback) would be the

difference between the Cin and Cpred as shown in the figures.

• The convergence of Cpred towards Cin can be clearly observed in all the datasets

as the average absolute diff tends to be zero. Note that the actual springback

distribution will not be zero as the error labels are associated with mean values.

• The overall behaviour of the springback distribution is totally related to the opera-

tion of the classifier and the nature of the discretisation (equal width discretisation

in this case). Recall that the predicted error labels are characterised by their un-

even distribution and this may have some implications on the mean values used

to replace the labels. For instance, suppose one of the records was labelled with a

label L1 that had a mean value of v1 in iteration i1 and this label is changed in the

next iteration i2 to be L2 which had a mean value of v2 and if this happened for

n records then the springback distribution would be affected by this change either

in an increasing or decreasing manner.

• The fluctuations in the average absolute diff values (as in the case, for example

of Figure 9.6) are explained by: (i) the uneven distribution of the labels, (ii)

the dominant error (springback) distributed over the shape, (iii) the differences

between the mean values of the error labels and (iv) the changing from one label

to another during IPM iterations with respect to a single record which probably

will not only affect the average springback distribution but also the overall average
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absolute diff values. Despite the fluctuating behaviour of the average absolute diff

values, the overall behaviour was tending to decrease throughout the IPM process.

In practice, it would be of interest to supply the manufacturer with the the “best”

Ccorr cloud rather than the one finally arrived at (there may be local minima). Therefore,

Table 9.2 presents a summary related to the “best” iteration ID where the “best” Ccorr

cloud was obtained (from Figures 9.3 to 9.18) with respect to the eight datasets using

d = 10 and d = 1. From the table it can be noted that:

• The maximum number of iterations required to obtain the “best” input using

d = 10 and d = 1 was 9 iterations (GTV2) and 8 iterations (MTV2) respectively.

• The minimum number of iterations required to obtain the “best” input using

d = 10 and d = 1 was 2 iterations (MSV2, MTV2 and GTV2).

• It was found that d = 1 mm required more iterations to obtain the “best” input

(Ccorr cloud) than d = 10 in five of the eight cases (GSV1, GSV2, GTV1, MSV2

and MTV2). The average number of iterations required to obtain the best input

for d = 10 and d = 1 was 4.25 and 4.88 respectively and thus we can argue that

there was no significant difference between using different grid sizes to obtain the

best input with respect to the number of iterations required.

• The final average absolute diff obtained when d = 1 is always 0. It is therefore

suggested d = 1 will produce slightly a more accurate end result (by small margin)

than when d = 10 is used although d = 10 required fewer iterations and was more

efficient in terms of run time (as will be demonstrated in Section 9.5).

• The material of the shape (steel or titanium) had no significant impact with respect

to the iterative IPM process.

Finally, these results show that the iterative IPM would be able to supply manufac-

turers with a most suitable input cloud for the desired shape so as to serve to limit the

effect of springback.

9.5 Run Time Analysis

This section presents the run time analysis for the IPM process using the two different

grid sizes, d = 10 and d = 1, for the eight data sets GSV1, GSV2, GTV1, GTV2,

MSV1, MSV2, MTV1, MTV2. The experiments were carried out using a 2.7 GHz Intel

Core i5 PC with 4 GB 1333 MHz DDR3 memory, running OS X 10.8.1 (12B19). The

implementation of the IPM was conducted using the Java programming language. The

run time for each iteration of the IPM includes the following:

1. All the preprocessing steps required to generate: (i) grids, (ii) the LGM representa-

tion and (iii) equal width discretisation using |L| = |LE | = 5 and error calculation

with respect to new input (Ccorr cloud) for each iteration.
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Figure 9.3: A average absolute diff
values and the average springback dis-
tribution of Cpred for the GSV1 using

d = 10 mm.
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Figure 9.4: The average absolute diff
values and the average springback dis-
tribution of Cpred for GSV1 using d = 1

mm.
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Figure 9.5: The average absolute diff
values and the average springback dis-
tribution of Cpred for GSV2 using d =

10 mm.
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Figure 9.6: The average absolute diff
values and the average springback dis-
tribution of Cpred for GSV2 using d = 1

mm.

Table 9.2: The best iteration ID, the average absolute diff and the springback distri-
bution for the GSV1, GSV2, GTV1, GTV2, MSV1, MSV2, MTV1 and MTV1 datasets

for d = 10 mm and d = 1 mm.

Datasets d best iteration ID The average absolute diff

GSV1
d=10 5 0.02
d=1 6 0.00

GSV2
d=10 3 0.01
d=1 5 0.00

GTV1
d=10 3 0.00
d=1 5 0.00

GTV2
d=10 9 0.00
d=1 2 0.01

MSV1
d=10 4 0.00
d=1 3 0.00

MSV2
d=10 2 0.00
d=1 5 0.00

MTV1
d=10 6 0.01
d=1 5 0.00

MTV2
d=10 2 0.00
d=1 8 0.00

d=10 4.25 0.01
Average

d=1 4.88 0.00
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Figure 9.7: The average absolute diff
values and the average springback dis-
tribution of Cpred for GTV1 using d =

10 mm.
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Figure 9.8: The average absolute diff
values and the average springback dis-
tribution of Cpred for GTV1 using d =

1 mm.
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Figure 9.9: The average absolute diff
values and the average springback dis-
tribution of Cpred for GTV2 using d =

10 mm.
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Figure 9.10: The average absolute
diff values and the average springback
distribution of Cpred for GTV2 using

d = 1 mm.

2. The prediction of error (springback) values using the predefined classifier.

3. The generation of the Cpred and Ccorr clouds for 12 iterations based on the pre-

dicted value of the error (springback).

Figures 9.19 and 9.20 present the run time analysis (in seconds) for the eight data

sets using d = 10 and d = 1 respectively with respect to n = 12 iterations. From the

figures it can be seen that the IPM required more run time for d = 1 than for d = 10 and

this is clearly because small grid size generates more LGMs and consequently requires

more processing than larger grid size. However, since the results presented earlier in

Section 9.4 indicated that there was no significant difference between using d = 10 and

d = 1 with respect to the iterative IPM process then the run time may be improved

if d = 10 is used, although for manufacturing purposes an alternative grid size may be

desirable.

9.6 Summary

This chapter has presented two Intelligent Process Models (IPMs) which can be used

to reduce the springback effect in the context of AISF. The IPM process assumes the
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Figure 9.11: The average absolute
diff values and the average springback
distribution of Cpred for MSV1 using

d = 10 mm.
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Figure 9.12: The average absolute
diff values and the average springback
distribution of Cpred for MSV1 using

d = 1 mm.

0.0
0	   0.0

0	  

0.0
0	   0.0

0	  

0.0
0	   0.0

0	  

0.0
0	   0.0

0	  

0.0
0	   0.0

0	  

0.0
0	  

0.4
6	  

0.4
6	  

0.4
6	  

0.4
6	  

0.4
6	  

0.4
6	  

0.4
6	  

0.4
6	  

0.4
6	  

0.4
6	  

0.4
6	  

0.4
6	  

-‐0.1	  

0	  

0.1	  

0.2	  

0.3	  

0.4	  

0.5	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	  

Th
e	  
av
er
ag
e	  
va
lu
e	  
of
	  th

e	  
sp
rin

gb
ac
k	  

di
st
rib

u6
on

	  a
nd

	  th
e	  
di
ffe

re
nc
e	  
be

tw
ee
n	  

Cp
re
d	  
an

d	  
Ci
n	  
	  

Iteration	  ID	  	  

Difference	  (diff)	  

Springback	  dist.	  

Figure 9.13: The average absolute
diff values and the average springback
distribution of Cpred for MSV2 using

d = 10 mm.
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Figure 9.14: The average absolute
diff values and the average springback
distribution of Cpred for MSV2 using

d = 1 mm.

existence of an appropriately trained classifier, of the form considered earlier in this the-

sis, and is designed to take an input shape (cloud) Cin (A “CAD Shape”) and produce

a corrected shape (cloud) Ccorr that mitigates against the effect of springback. Two

variations of the IPM process were produced: (i) Single Pass and (ii) Iterative. The

first operated in the same manner as the experimental set up presented in Chapter 8.

The second, as the name suggested, operated in an iterative manner. The Single Pass

IPM was considered in depth in Chapter 8, thus most of the content of this chapter was

directed at the Iterative IPM. The conducted evaluation of the Iterative IPM process

demonstrated that the process can be successfully applied to a given input shape de-

scription to produce a corrected description ready for manufacture. Though the Single

Pass IPM was able to generate a corrected cloud for a given shape, there is actually

no guarantee that this is the “best” corrected cloud (because no further analysis or

investigation was conducted). Therefore, using the Iterative IPM can perhaps provide

some guarantee that the Cpred cloud will gradually converge to Cin and it will end by

providing the end user with a “best” input Ccorr for the desired shape description. A

summary for the entire work described in this thesis, along with some suggested future

work, is presented in the following chapter.
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Figure 9.15: The average absolute
diff values and the average springback
distribution of Cpred for MTV1 using

d = 10 mm.
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Figure 9.16: The average absolute
diff values and the average springback
distribution of Cpred for MTV1 using

d = 1 mm.
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Figure 9.17: The average absolute
diff values and the average springback
distribution of Cpred for MTV2 using

d = 10 mm.
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Figure 9.18: The average absolute
diff values and the average springback
distribution of Cpred for MTV2 using

d = 1 mm.
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Figure 9.19: The run time analysis
(in seconds) for the eight data sets us-
ing d = 10 mm with respect to n = 12

iterations.
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Chapter 10

Conclusion and Future Research

Works

10.1 Inroduction

This concluding chapter presents an overall summary of the work described in this

thesis along with the main findings and contributions. This chapter also provides some

suggestions for future work. The chapter is organised as follows. In Section 10.2 an

overall summary of the thesis is presented. The main findings and contributions are

reported in Section 10.3. Finally, suggested ideas for future work are presented Section

10.4 in the context of further potential research based on the work described in this

thesis.

10.2 Summary

This section presents an overall summary of the work presented in this thesis. The

work was directed at the use of classification techniques for springback detection; the

deformation that occurs as a result of the application of a sheet metal forming process

(specifically AISF). The main challenge was the nature of the springback phenomena

especially the uneven distribution of springback with respect to local geometries. The

work can best be described in terms of the following three categories: (i) preprocessing,

(ii) 3D surface representation and (iii) classifier generation. With respect to preprocess-

ing a grid representation mechanism was proposed with which to compare point clouds

describing the shape of a given object. In the context of AISF the clouds of inter-

est were the Cin cloud (describing the desired shape before manufacture) and the Cout

cloud (describing the shape of the manufactured object). The grid representation was

proposed so as to provide for an initial generic representation for both clouds because:

(i) it is compatible with many forms of higher level representation, (ii) it facilitates the

comparison of the clouds so that springback calculations can be performed easily and

(iii) it can be used as a base representation from which higher level representations can
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be generated. An important element of the preprocessing was springback calculation,

required for classification purposes, which was thus described in detail.

Afterwards, three different surface representation techniques were proposed to cap-

ture the local geometric nature for a given shape in a manner compatible with effective

classifier generation. The first 3D representation technique, LGM, was founded on the

Local Binary Pattern (LBP) concept where the grid center points were described in

terms of their local neighbourhoods. Three different variations of the LGM technique

were proposed with respect to differing neighbourhood levels: (i) Level one LGM, (ii)

Level two LGM and (ii) composite LGM where a combination of level one and two

were used. Although the reported results indicated that there was no significant differ-

ence between them, the performance of the composite LGM tended to produce a better

performance.

The second technique, LDM, was founded on the observation that springback mag-

nitude is influenced by distance from critical features, edges and corners. The reported

results showed that the LDM representation was insufficient, on its own, to adequately

describe the 3D surfaces of interest in the context of classification. However, the re-

ported results did indicate that the combination of LDM and LGM produced a better

performance than when either is used in isolation.

The third technique was the PS technique that was founded on a “space linearisation”

concept where the 3D surface was represented in terms of “curves”. All the techniques

were realised using the proposed RASP framework. The reported performance results

indicated that the PS representation was the “best” 3D surface representation tech-

nique in terms of classification accuracy and AUC results. Moreover, the conducted

statistical evaluation confirmed that the performance of the proposed techniques were

statistically significant and also ensured that the performance of the PS was the best

overall technique.

For classifier generation a binary valued feature vector representation was used with

respect to all the proposed surface representation technique. Individual values were

ranged, including the springback values in the case of training sets, using predefined

labels sets. For the ranging, equal frequency binning was adopted, as opposed to equal

size binning, to eliminate the effect of unbalanced distributions. A wide range of clas-

sification algorithms were considered, namely: (i) the C4.5 decision tree algorithm, (ii)

Naive Bayes, (iii) the JRIP classification rule learner, (iv) the PART rule based decision

tree, (v) a Neural Network (NN) technique and (vi) k -NN. The recorded evaluation in-

dicated that there was no significant difference between the operation of these classifier

generators.

The thesis also reported on the practical application of the techniques in the context

of generating corrected clouds to be manufactured. By manufacturing pieces using the

corrected clouds it was possible to demonstrate that as a result of springback prediction

“better” shapes could be manufactured. The prediction process was packaged into what
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was termed an Intelligent Process Model (IPM). Two variations of this were suggested,

a single pass and an iterative IPM.

10.3 Main Findings and Contributions

This section revisits the research question and associated research issues presented in

Chapter 1 (Section 1.3) and describes how each was resolved in terms of a set of “main

findings”. The section is organised by considering each of the identified research issues

in turn as follows.

1. Training Set Generation. The challenge of how best to generate the required train-

ing data was resolved by first converting the input clouds into a grid representation

which allowed for comparison of two surfaces. By comparing the two surfaces, and

using normal calculations, it was possible to determine the springback values as-

sociated with individual grid squares. This then provided for a generic format in

which to present training data. In total eight different raw data sets were used.

An issue was the optimum value for d the size of the grid representation, to be

used. The conducted experimental analysis established that there was no best

overall value for d, but that each technique had a specific best value associated

with it: d = 10 mm was found to be the best grid size for the LGM techniques,

(ii) d = 2.5 mm was was found to be the best grid size for the LDM technique

and (iii) d = 5 mm was was found to be the best grid size for the PS techniques.

By using different values for d, a large collection of training data were produced,

and successfully utilised with respect to the evaluation of the different surface

representations. As noted above, the advantage offered by the grid representation

was its generic nature and its compatibility with “higher level” representations. It

is difficult to conceive of alternative formats for the training data that offer the

same advantages and thus it is suggested here that the grid representation is the

most appropriate format for training set generation (more details can be found in

Chapter 3).

2. 3D Surface Representation. The main challenge for this thesis was to determine

the most appropriate 3D surface representation in order to capture the most im-

portant local geometrical features (in the context of sheet metal forming) and

consequently facilitate the operation of the classification process. This was ad-

dressed through presenting three different surface representation techniques based

on three different concepts: (i) the LGM technique was founded on representing

the geometrical information in terms of the local surrounding neighbourhood, (ii)

the LDM technique was founded on representing a 3D surface in terms of its “crit-

ical” features and (iii) the PS technique was founded on the idea of representing

a 3D surface in terms of “curves”. The three techniques were presented in Chap-

ters 4, 5 and 6 respectively. An extensive evaluation of the proposed techniques
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was conducted. Two types of classifier performance experiments were conducted:

(i) classifiers trained and tested on the same data and (ii) classifiers trained and

tested on different data. The evaluation of the proposed techniques indicated that

the PS techniques produced the best overall classification performances in that

it outperformed the other techniques in terms of accuracy and AUC. In order

to significantly differentiate between the operation of the proposed techniques, a

statistical evaluation based on the Friedman and Nemenyi statistical tests was

performed. This also confirm the superiority of the PS techniques with respect to

the other techniques considered (more details can be found in Chapter 7).

3. Best Classification Technique. The challenge of identifying the most suitable clas-

sification techniques with respect to each proposed representation technique was

resolved by selecting a number of popular classification techniques: (i) C4.5, (ii)

Bayes, (iii) JRIP, (iv) PART, (v) Neural Network and (iv) k -Nearest Neighbour

(k -NN). The generated classifiers were then incorporated into the IPM concept to

predict the errors (springback) and generate corrected clouds. The obtained results

indicated that there were no significant difference between the different supervised

classification technique considered, but the C4.5 technique was selected to be the

most suitable when using the LGM and LDM techniques due to its simplicity and

powerful interpretation capabilities, especially for non experts from other fields.

The last technique (k -NN) was found to be the most suitable classification tech-

nique with respect to the PS technique. Despite the advantages offered by the

labelling concept, label size was an issue. The uneven distribution of the spring-

back phenomena over shapes was the main reasons behind this issue. However,

to eliminate the effect of springback distribution, equal frequency discretising was

adopted.

4. Corrected Input Generation. The challenge of how the predicted errors can best be

translated into an acceptable format for the manufacturing process was resolved

by applying the predicted errors in the reverse direction to generate a “corrected

cloud”. Practically, the corrected cloud was successfully applied in a real manu-

facturing environment and the effect of the springback in the produced parts was

minimised (more details can be found in Chapter 8). However, the challenge to

obtain the most “optimal” corrected cloud was resolved by the proposed iterative

IPM process where the corrected cloud was repeatedly generated until an optimal

cloud was obtained (more details can be found in Chapter 9).

Returning to the main research question “How best can 3D surfaces be represented

to reflect local geometrical information according to certain feature(s) of interest so that

classification techniques can be applied effectively?”. The techniques presented in Chap-

ters 4, 5 and 6 respectively, clearly indicated that local geometrical information can be

represented effectively using any of these techniques. However, the PS technique was

found to outperform the other techniques. The statistical evaluation confirmed that
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the PS technique was the “best” techniques. However, all the proposed representations

could easily and effectively be used to generate a classifier that served to predict the

feature of interest (springback value in our case). It was also demonstrated that the

springback predictions could be successfully utilized to manufacture better parts.

The main contributions of the work described in this thesis may be summarised as

follows:

1. A grid representation which provides for the comparison of 3D surfaces.

2. A springback calculation mechanism to identify the springback values between the

desired and the actual formed shape (given appropriate before and after data).

3. The RASP framework to support the classifier generation process.

4. The LGM surface representation technique that was used to describe 3D surfaces

in terms of local neighbourhoods.

5. The LDM surface representation technique that was used to represent 3D surfaces

in terms of proximity to the nearest corner or edge.

6. The PS surface representation technique that was used to describe 3D surfaces in

terms of point series curves.

7. A statistical comparison to identify the significant difference between the proposed

techniques.

8. A mechanism to generate corrected clouds based on the predicted values.

9. The concept of an Intelligent Process Model that combines the proposed techniques

with the corrected cloud generation mechanism into a single process with respect

to sheet metal forming.

10.4 Future Work

The work presented in this thesis has demonstrated that, in the context of sheet metal

forming, springback can be effectively predicted and utilised. Despite the successful

results produced, enhancements and improvements can be envisioned. This concluding

section suggests some potential areas for future work as follows:

1. More 3D Representation Techniques. A standard feature vector format was

adopted with respect to the work described in this thesis because of its simplicity

and ease of use. It may be interesting to investigate alternative 3D surface rep-

resentations such as graph or tree based representations. Of course using graph

or tree representations would also consequently require the usage of alternative

classification techniques possibly founded on ideas concerning graph mining.



167

2. Alternative Applications. The proposed techniques were successfully evaluated

in the context of the AISF process. It would be worth investigating the applicabil-

ity of these techniques with respect to other areas. For instance, the classification of

satellite images to identify the diverse topography (mountains, hills, valleys, trees

and houses) of a given image. Such an investigation might then serve to illustrate

the expected generic nature of the proposed surface representation techniques.

3. Visualisation and Reasoning. The ability to generate a visualisation for the

shapes resulting from the application of “corrected” clouds, and what it would

look like if it was manufactured, would be of great help to practitioners since

this would: (i) provide valuable insight on the predicted errors, (ii) provide for

a visual evaluation of the actual shapes to be produced so as to a void needless

manufacturing and (iii) provide more control over the proposed IPM process so

that the process can be stopped at a specific iteration when certain industrial

requirements are met, thus providing for a great degree of flexibility with respect

to the IPM process. Moreover, if the visualisation is combined with an explanation

of why a particular predicted springback occurred in a particular region this would

also provide for additional confidence in the technique.

4. Enhanced Version of Corrected Cloud. According to [10], there are difficul-

ties in the manufacturing environments on how to utilise the predicted value of the

springback effectively to produce the desired shape as accurately as possible. These

difficulties with respect to the work described in this thesis may be caused by the

generic way that corrections are applied; namely reversing the detected springback

along the normal. However, it is conjectured that a better way of doing this might

be to weight the springback magnitude. It is also conjectured that this weighting

will not be uniform a cross a given shape but will instead be dependent on local

geometries. It is therefore suggest that a data mining approach may be used to

identify what these weightings might be.

5. Further Application to Metal Manufacturing Process. Though the pro-

posed techniques were successfully evaluated in the context of the AISF process

using the Gonzalo and the Modified pyramids made of steel and titanium, it would

be worthwhile to investigate the applicability of these techniques with respect to:

(i) other types of metals such as inconel (a mixture of chromium and iron utilized

in the aeroplane industry) and (i) other manufacturing parameters along with the

geometry of a given shape such as the size of tool head and the sheet thickness.

Overall the work on the use of 3D representation and prediction techniques in the

context of sheet metal forming, as presented in this thesis, has produced some interesting

outcomes and provided a sound foundation for future work.



Appendix A

Error Visualisation for Gonzalo

and Modified Pyramids

This appendix presents a visualisation of the error (springback) distribution for the

Gonzalo and Modified pyramids with respect to the eight data sets used in this thesis:

GSV1, GSV2, GTV1, GTV2, MSV1, MSV2, MTV1 and MTV2; using a range of grid

size d = 2.5, 5, 10, 15, 20. The label set size, used for the purpose of the visualisation,

was |L| = 7. The distribution was reported in term of: (i) the absolute springback

(error) and (i) the directed springback (error). The springback distribution for each

of the data sets for the steel manufactured shapes are presented first with respect to

absolute and directed springback distribution respectively, then for each of the data sets

for the titanium manufactured shapes. The figures are as follows.

1. Figures A.2 and A.3 present the absolute springback distribution and the directed

springback distribution respectively for the GSV1 shape using different grid sizes.

2. Figures A.4 and A.5 present the absolute springback distribution and the directed

springback distribution respectively for the GSV2 shape using different grid sizes

respectively.

3. Figures A.6 and A.7 present the absolute springback distribution and the directed

springback distribution respectively for the MSV1 shape using different grid sizes

respectively.

4. Figures A.8 and A.9 present the absolute springback distribution and the directed

springback distribution respectively for the MSV2 shape using different grid sizes

respectively.

5. Figures A.10 and A.11 present the absolute springback distribution and the directed

springback distribution respectively for the GTV1 shape using different grid sizes

respectively.
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6. Figures A.12 and A.13 present the absolute springback distribution and the directed

springback distribution respectively for the GTV2 shape using different grid sizes

respectively.

7. Figures A.14 and A.15 present the absolute springback distribution and the directed

springback distribution respectively for the MTV1 shape using different grid sizes

respectively.

8. Figures A.16 and A.17 present the absolute springback distribution and the directed

springback distribution respectively for the MTV2 shape using different grid sizes

respectively.

The colour code for the error distribution with respect to both the directed and

undirected error visualisation is presented in Figure A.1. In the case of the absolute

error distribution the colour turns from yellow to green as the error becomes larger;

while in the case of the directed error visualisation the largest error values occur when

the errorscale = 1 and 7 (the two ends) and the minimum error value occurs when the

error scale = 4 (in the centre of the error range).

Figure A.1: The Error scale used to describe both the absolute and the directed error
(springback) distribution for the Gonzalo and Modified pyramid shapes.
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(a) GSV 1 d = 2.5

(b) GSV 1 d = 5 (c) GSV 1 d = 10

(d) GSV 1 d = 15 (e) GSV 1 d = 20

Figure A.2: The absolute error visualisation for the Gonzalo Steel V1 (GSV1) pyramid
for different grid sizes (d).
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(a) GSV 1 d = 2.5

(b) GSV 1 d = 5 (c) GSV 1 d = 10

(d) GSV 1 d = 15 (e) GSV 1 d = 20

Figure A.3: The directed error visualisation results for Gonzalo Steel V1 (GSV1)
pyramid for different grid size (d).
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(a) GSV 2 d = 2.5

(b) GSV 2 d = 5 (c) GSV 2 d = 10

(d) GSV 2 d = 15 (e) GSV 2 d = 20

Figure A.4: The absolute error visualisation results for the Gonzalo Steel V2 (GSV2)
pyramid for different grid sizes (d).
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(a) GSV 2 d = 2.5

(b) GSV 2 d = 5 (c) GSV 2 d = 10

(d) GSV 2 d = 15 (e) GSV 2 d = 20

Figure A.5: The directed error visualisation results for the Gonzalo Steel V2 (GSV2)
pyramid for different grid sizes (d).
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(a) MSV 1 d = 2.5

(b) MSV 1 d = 5 (c) MSV 1 d = 10

(d) MSV 1 d = 15 (e) MSV 1 d = 20

Figure A.6: The absolute error visualisation results for the Modified Steel V1 (MSV1)
pyramid for different grid sizes (d).
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(a) MSV 1 d = 2.5

(b) MSV 1 d = 5 (c) MSV 1 d = 10

(d) MSV 1 d = 15 (e) MSV 1 d = 20

Figure A.7: The directed error visualisation results for the Modified Steel V1 (MSV1)
pyramid for different grid sizes (d).
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(a) MSV 2 d = 2.5

(b) MSV 2 d = 5 (c) MSV 2 d = 10

(d) MSV 2 d = 15 (e) MSV 2 d = 20

Figure A.8: The absolute error visualisation results for the Modified Steel V2 (MSV2)
pyramid for different grid sizes (d).
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(a) MSV 2 d = 2.5

(b) MSV 2 d = 5 (c) MSV 2 d = 10

(d) MSV 2 d = 15 (e) MSV 2 d = 20

Figure A.9: The directed error visualisation results for the Modified Steel V2 (MSV2)
pyramid for different grid sizes (d).
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(a) GTV 1 d = 2.5

(b) GTV 1 d = 5 (c) GTV 1 d = 10

(d) GTV 1 d = 15 (e) GTV 1 d = 20

Figure A.10: The absolute error visualisation results for the Gonzalo Titanium V1
(GTV1) pyramid for different grid sizes (d).
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(a) GTV 1 d = 2.5

(b) GTV 1 d = 5 (c) GTV 1 d = 10

(d) GTV 1 d = 15 (e) GTV 1 d = 20

Figure A.11: The directed error visualisation results for the Gonzalo Titanium V1
(GTV1) pyramid for different grid sizes (d).
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(a) GTV 2 d = 2.5

(b) GTV 2 d = 5 (c) GTV 2 d = 10

(d) GTV 2 d = 15 (e) GTV 2 d = 20

Figure A.12: The absolute error visualisation results for the Gonzalo Titanium V2
(GTV2) pyramid for different grid sizes (d).
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(a) GTV 2 d = 2.5

(b) GTV 2 d = 5 (c) GTV 2 d = 10

(d) GTV 2 d = 15 (e) GTV 2 d = 20

Figure A.13: The directed error visualisation results for the Gonzalo Titanium V2
(GTV2) pyramid for different grid sizes (d).
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(a) MTV 1 d = 2.5

(b) MTV 1 d = 5 (c) MTV 1 d = 10

(d) MTV 1 d = 15 (e) MTV 1 d = 20

Figure A.14: The absolute error visualisation results for the Modified Titanium V1
(MTV1) pyramid for different grid sizes (d).
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(a) MTV 1 d = 2.5

(b) MTV 1 d = 5 (c) MTV 1 d = 10

(d) MTV 1 d = 15 (e) MTV 1 d = 20

Figure A.15: The directed error visualisation results for the Modified Titanium V1
(MTV1) pyramid for different grid sizes (d).
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(a) MTV 2 d = 2.5

(b) MTV 2 d = 5 (c) MTV 2 d = 10

(d) MTV 2 d = 15 (e) MTV 2 d = 20

Figure A.16: The absolute error visualisation results for the Modified Titanium V2
(MTV2) pyramid for different grid sizes (d).
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(a) MTV 2 d = 2.5

(b) MTV 2 d = 5 (c) MTV 2 d = 10

(d) MTV 2 d = 15 (e) MTV 2 d = 20

Figure A.17: The directed error visualisation results for the Modified Titanium V2
(MTV2) pyramid for different grid sizes (d).



Appendix B

Discretised Results for PS

Representation Technique

This appendix presents the results of the preliminary experiments conducted to evaluate

the discretised version of the Point Series Representation. The results were evaluated

in terms of accuracy and AUC measurements. TCV was also used. In Chapter 6,

results of experiments demonstrated that using discretised error values with the PS

representation was less effective than when using real error values. Thus, for reasons of

readability and succinctness, only the results using real error (springback) values were

further considered. In this appendix the results from some additional experiments using

discretised error (springback) are presented. The aim is to reinforce the results presented

in Chapter 6. The additional experiments were conducted using a range of label sizes

(|L| = {3, 5, 7, 9, 11, 13}) coupled with a range of grid size (d = {2.5, 5, 10, 15, 20}) for

both the Gonzalo and Modified pyramids; GSV1, GSV2, GTV1, GTV2, MSV1, MSV2,

MTV1 and MTV2. The neighbourhood size of n = 5 was chosen because this is the mid

way value in the range of n = {3, 5, 7} values (considered in Chapter 6). Only the key

points representation was selected so as to limit the number of experiments undertaken

and because there was no expectation, in the context of discretised versus real error

comparison, that there will be any difference in operation.

Two groups of experiments were conducted: (i) using the same data set to generate a

classifier and (ii) using different data sets to generate a classifier where a data set is used

to train the classifier while the other one used to test it. Tables B.1 and B.2 present the

results of the Gonzalo and Modified pyramids respectively for the first group. Tables

B.3 and B.4 present the results for the second group where the classifier trained and

tested on different data sets. The obtained results from both groups confirms that the

discretised PS is not an appropriate alternative for the PS representation.
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Appendix C

AUC Calculation based on

Mann-Whitney-Wilcoxon.

C.1 Introduction

This Appendix presents a full example to demonstrate the AUC estimation based on the

Mann-Whitney-Wilcoxon (MWW) statistical method. The Mann-Whitney-Wilcoxon

(MWW) statistical method1 was proposed in [95] to estimate AUC values based on a

Ranking concept as shown in Equation C.1 where c is the number of classes. In Equation

C.1 Ai,j is calculated based on the MWW values obtained with respect to class i and

class j as shown in Equation C.2. The MWW value is calculated based on the Man-

Whitney-Wilcoxon (MWW) statistic (or rank sum) [26]. The ranking concept used in

this context is mainly based on the signal detection theory [95], and hence the actual

value of an attribute is denoted by (signal “S”) and the predicted value is denoted by

(response “R”) with respect to a binary classification. Thus the MWW value of class i

with respect to class j is calculated as shown in Equation C.3 where n1 denotes number

of positive examples2 while n2 is the number of negative examples3 with respect to ci

and ri is the sum rank for the positive examples with respect to class i. The rank for

a given record of class i and with respect to class j is obtained from a value obtained

according the combinations of R and S. Table C.1 presents the values (denoted as a

group ID in this example) of the different potential combinations of R and S. The group

ID value associated with each record is used to order the records sequentially starting

from group ID 1 to group ID 4 and consequently all the records of group ID 1 will be

followed by all the records of group ID 2 and so on. Then a sequential number (rank) is

given to records starting from the first record in group ID 1 to the last record in group

ID 4. An example of estimating the AUC values using the ranking process for 51 records

1The Wilcoxon rank sum test makes no assumption about the probability distributions and is com-
pletely based on the scores (rank) of the tuples.

2Positive examples are the number of records that are actually labelled with class i with respect to
j and this means that S = 1.

3Negative examples are the number of records that are actually not labelled with class i with respect
to j and this means that S = 0.
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using three classes c1, c2 and c3 is presented below. The actual and the predicted label

of the data set, that are denoted using the S and R variables respectively, are presented

as 1 value with respect to the set of classes c1, c2 and c3 as shown in Table C.2. The

MWW value of c1 with respect to class c2 is presented in Table C.3 and the MWW

value of c2 with respect to class c1 is presented in Table C.4. Both tables shows the

associated group ID and the rank values. The numbering starts with the first record in

group ID 1 to last record in group ID 4 sequentially. According to the given ranks, the

last rows indicates the number of positive and negative records, the sum of ranks and

the MWW values with respect to class c1 and c2 in Tables C.3 and C.4 respectively.

Similarly, Tables C.5 and C.6 presents the MWW value of class c1 with respect to class

c3 and the MWW values of class c3 with respect to class c1, while Tables C.7 and C.8

presents the MWW values of class c2 with respect to class c3 and the MWW values of

class c3 with respect to class c2. Finally Table C.9 presents the calculation of the overall

AUC using Equation C.3 which is based on the MWW values calculated with respect

to classes c1, c2 and c3.

AUC =
2

c(c− 1)

∑
i<j

Ai,j (C.1)

Ai,j =
MWW (i|j) +MWW (j|i)

2
(C.2)

MWW (i|j) =

∑
ri − n1(n1+1)

2

n1n2
(C.3)

Table C.1: The values (Group ID) of different combinations of R and S based on
Hand et al. [95].

R S Group ID

0 1 1
0 0 2
1 0 3
1 1 4
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Table C.2: Data sets example.

Records
S R

c1 c2 c3 c1 c2 c3

1 1 0 0 1 0 0
2 1 0 0 1 0 0
3 1 0 0 1 0 0
4 0 1 0 0 1 0
5 0 1 0 0 1 0
6 0 1 0 0 1 0
7 0 1 0 0 1 0
8 0 1 0 0 1 0
9 0 1 0 0 1 0
10 0 1 0 0 1 0
11 0 1 0 0 1 0
12 0 1 0 0 1 0
13 0 1 0 0 1 0
14 0 1 0 0 1 0
15 0 1 0 0 1 0
16 0 1 0 0 0 1
17 0 1 0 0 0 1
18 0 1 0 0 0 1
19 0 0 1 0 0 1
20 0 0 1 0 0 1
21 0 0 1 0 0 1
22 0 0 1 0 0 1
23 0 0 1 0 0 1
24 0 0 1 0 0 1
25 0 0 1 0 0 1
26 0 0 1 0 0 1
27 0 0 1 0 0 1
28 0 0 1 0 0 1
29 0 0 1 0 0 1
30 0 0 1 0 0 1
31 0 0 1 0 0 1
32 0 0 1 0 0 1
33 0 0 1 0 0 1
34 0 0 1 0 0 1
35 0 0 1 0 0 1
36 0 0 1 0 0 1
37 0 0 1 0 0 1
38 0 0 1 0 0 1
39 0 0 1 0 0 1
40 0 0 1 0 0 1
41 0 0 1 0 0 1
42 0 0 1 0 0 1
43 0 0 1 0 0 1
44 0 0 1 0 0 1
45 0 0 1 0 0 1
46 0 0 1 0 0 1
47 0 0 1 0 0 1
48 0 0 1 0 0 1
49 0 0 1 0 0 1
50 0 0 1 0 0 1
51 0 0 1 0 0 1
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Table C.3: The MWW (c1|c2) value.

S R group ID ranks

1 1 4 16
1 1 4 17
1 1 4 18
0 0 2 1
0 0 2 2
0 0 2 3
0 0 2 4
0 0 2 5
0 0 2 6
0 0 2 7
0 0 2 8
0 0 2 9
0 0 2 10
0 0 2 11
0 0 2 12
0 0 2 13
0 0 2 14
0 0 2 15

n1 = 3
MWW (c1|c2) = 51−6

45
= 1n2 = 15∑

ri = 51

Table C.4: The MWW (c2|c1) value

S R group ID ranks

0 0 2 4
0 0 2 5
0 0 2 6
1 1 4 7
1 1 4 8
1 1 4 9
1 1 4 10
1 1 4 11
1 1 4 12
1 1 4 13
1 1 4 14
1 1 4 15
1 1 4 16
1 1 4 17
1 1 4 18
1 0 1 1
1 0 1 2
1 0 1 3

n1 = 15
MWW (c2|c1) = 156−120

45
= 0.80n2 = 3∑

ri = 156
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Table C.5: The MWW (c1|c3) value.

S R group ID ranks

1 1 4 34
1 1 4 35
1 1 4 36
0 0 2 1
0 0 2 2
0 0 2 3
0 0 2 4
0 0 2 5
0 0 2 6
0 0 2 7
0 0 2 8
0 0 2 9
0 0 2 10
0 0 2 11
0 0 2 12
0 0 2 13
0 0 2 14
0 0 2 15
0 0 2 16
0 0 2 17
0 0 2 18
0 0 2 19
0 0 2 20
0 0 2 21
0 0 2 22
0 0 2 23
0 0 2 24
0 0 2 25
0 0 2 26
0 0 2 27
0 0 2 28
0 0 2 29
0 0 2 30
0 0 2 31
0 0 2 32
0 0 2 33

n1 = 3
MWW (c1|c3) = 105−6

99
= 1n2 = 33∑

ri = 105

Table C.6: The MWW (c3|c1) value

S R group ID ranks

0 0 2 1
0 0 2 2
0 0 2 3
1 1 4 4
1 1 4 5
1 1 4 6
1 1 4 7
1 1 4 8
1 1 4 9
1 1 4 10
1 1 4 11
1 1 4 12
1 1 4 13
1 1 4 14
1 1 4 15
1 1 4 16
1 1 4 17
1 1 4 18
1 1 4 19
1 1 4 20
1 1 4 21
1 1 4 22
1 1 4 23
1 1 4 24
1 1 4 25
1 1 4 26
1 1 4 27
1 1 4 28
1 1 4 29
1 1 4 30
1 1 4 31
1 1 4 32
1 1 4 33
1 1 4 34
1 1 4 35
1 1 4 36

n1 = 33
MWW (c3|c1) = 660−561

99
= 1n2 = 3∑

ri = 660
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Table C.7: The MWW (c2|c3) value.

S R group ID ranks

1 1 4 37
1 1 4 38
1 1 4 39
1 1 4 40
1 1 4 41
1 1 4 42
1 1 4 43
1 1 4 44
1 1 4 45
1 1 4 46
1 0 1 47
1 0 1 48
1 0 2 1
1 0 2 2
1 0 2 3
0 0 2 4
0 0 2 5
0 0 2 6
0 0 2 7
0 0 2 8
0 0 2 9
0 0 2 10
0 0 2 11
0 0 2 12
0 0 2 13
0 0 2 14
0 0 2 15
0 0 2 16
0 0 2 17
0 0 2 18
0 0 2 19
0 0 2 20
0 0 2 21
0 0 2 22
0 0 2 23
0 0 2 24
0 0 2 25
0 0 2 26
0 0 2 27
0 0 2 28
0 0 2 29
0 0 2 30
0 0 2 31
0 0 2 32
0 0 2 33
0 0 2 34

0 0 2 35
0 0 2 36
n1 = 15

MWW (c2|c3) = 516−120
495

= 0.8n2 = 33∑
ri = 516

Table C.8: The MWW (c3|c2) value

S R group ID ranks

0 0 2 1
0 0 2 2
0 0 2 3
0 0 2 4
0 0 2 5
0 0 2 6
0 0 2 7
0 0 2 8
0 0 2 9
0 0 2 10
0 0 2 11
0 0 2 12
0 1 3 13
0 1 3 14
0 1 3 15
1 1 4 16
1 1 4 17
1 1 4 18
1 1 4 19
1 1 4 20
1 1 4 21
1 1 4 22
1 1 4 23
1 1 4 24
1 1 4 25
1 1 4 26
1 1 4 27
1 1 4 28
1 1 4 29
1 1 4 30
1 1 4 31
1 1 4 32
1 1 4 33
1 1 4 34
1 1 4 35
1 1 4 36
1 1 4 37
1 1 4 38
1 1 4 39
1 1 4 40
1 1 4 41
1 1 4 42
1 1 4 43
1 1 4 44
1 1 4 45
1 1 4 46
1 1 4 47
1 1 4 48

n1 = 33
MWW (c3|c2) = 1056−561

495
= 1n2 = 15∑

ri = 1056
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Table C.9: The overall AUC value for the given data sets.

MWW (i,j) MWW(j,i) A(i,j)

MWW (c1, c2) = 1 MWW (c2, c1) = 0.8 A(c1|c2) = 1+0.8
2

= 0.9
MWW (c1, c3) = 1 MWW (c3, c1) = 1 A(c1|c3) = 1+1

2
= 1

MWW (c2, c3) = 0.8 MWW (c3, c2) = 1 A(c2|c3) = 0.8+1
2

= 0.9

AUC= 2×2.8
3×2

= 0.93
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[81] S. Garćıa, A. Fernández, J. Luengo, and F. Herrera, A study of statistical tech-

niques and performance measures for genetics-based machine learning: Accuracy

and interpretability, Soft Computing 13 (2009), no. 10, 959–977.
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