
THE UNIVERSITY of LIVERPOOL

Sentence Matching for Question Answering with Neural
Networks

Thesis submitted in accordance with the
requirements of the University of Liverpool

for the degree of Doctor of Philosophy

in

Electrical Engineering and Electronics

by

Jinmeng Wu, B.Sc.(Eng.)

September 2018

Sentence Matching for Question Answering with Neural Networks

by

Jinmeng Wu

Copyright 2018

ii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisors

Prof. Yannis Goulermas, Dr. Jeyan Thiyagalingam and director Dr. Tingting Mu , for

their patient, encouragement, and professional instructions throughout this research.

I could never progress toward the ability to reach to this stage without their consistent

and illuminating support.

I would also like to extend my appreciation to my annual progress committee

members: Dr. Jiafeng Zhou and Dr. Saqib Khursheed, for their invaluable advice

during my research. And my thanks also go to the Department of Electrical Engi-

neering and Electronics at the University of Liverpool, for providing the research

facilities that made it possible for me to carry out this research.

I would like to thank my colleagues, Austin Brockmeier, Andrew Jones, Liyun

Gong, Long Yan, Yanbin Hao, Xingjian Gao and Yu Wu. For their wonderful

camaraderie I enjoyed and many helpful discussions that challenged me to think

deeper and wider about my research.

I offer my regards and blessings to all my friends in Liverpool for the experiences

and pleasures we have had together. Special thanks to Zhihao Tian, Peng Yin, Chen

Xu, and Wenzhang Zhang for all their wonderful camaraderie and suggestions during

my time at the University of Liverpool.

Last but not least, I would like to extend my deepest gratitude to my family,

especially to my parents AiGuo Wu and GuoMei Xu, and my brother JinRui Wu.

Their unconditional love, belief, and support always encourage me and give me

strength.

iii

Abstract

Natural Language Processing is an important area of artificial intelligence con-

cerned with the interactions between computers and human language. Semantic

matching requires accurately modeling the relevance between two portions of text

and is widely used in various natural language processing tasks, such as paraphrase

identification, machine translation and question answering. In the past years, several

works have continually progressed towards improving the ability to capture and anal-

yse the text matching information (e.g. lexical, syntactic, etc.) through application of

various techniques. In this thesis, we examine the problem of developing efficient

and reliable semantic matching methods for question answering and exploring the

effects of the different deep learning algorithms. We split our work into three pieces,

where each part refers to a different sentence matching structure.

In the first part of thesis, we propose a deep semantic similarity model to learn

a distributed similarity representation for sentences pairs. Text matching can use

lexical information without any consideration of semantics. Semantic similarities

can be determined from human-curated knowledge, but such knowledge may not

be available in every language. The novelty of the proposed architecture lies in an

abstract representation of the pairwise similarities created by deep denoising stacked

auto-encoders. Model training is accomplished through a greedy layer-wise training

scheme, that incorporates both supervised and unsupervised learning. The proposed

model is experimentally compared to state-of-the-art approaches on two different

dataset types: the TREC library and the Yahoo! community question datasets. The

experimental results show the proposed model outperforming other approaches.

In the second part of thesis, we focus on designing a new question-answer match-

ing model, built upon a cross-sentence, context-aware, bi-directional long short-term

iv

memory architecture. Semantic matching between question and answer sentences

involves recognizing whether a candidate’s response is relevant to a particular input

question. Given the fact that semantic matching does not examine a question or an

answer individually, context information outside the sentence should be considered

with equal emphasis to the within-sentence syntactic context. An interactive atten-

tion mechanism is proposed which automatically select salient positional answer

representations, that contribute more significantly towards the relevance of an answer

to a given question. In the experiments, the proposed method is compared with the

existing models, using four public community datasets. The results state that the

proposed model is very competitive. In particular, it offers 1.0%-2.2% improvement

over the best performing model for three out of four datasets, while for the remaining

one performance is around 0.5% of the best performer.

In the last part of this thesis, a much more complex deep memory network

structure is considered. In particular, we aim at developing a novel memory network

for storing and reading the relevant question answer pairs from internal corpus.

Traditionally, to provide more related sentence information, the external resources

(e.g. knowledge base, related documents) are widely used in question answering

leading to large computational costs. Thus, our goal in this work is to build a

reliable model that can utilize the input corpus to build the memory network without

the knowledge-based resources. In the experiments, our proposed method indeed

improves the matching performance on three library/community question answering

datasets, when compared with those methods relying on memory structures with

document resources, it achieves better performances compared with the state-of-arts.

v

Declaration

The author hereby declares that this thesis is a record of work carried out in the
Department of Electrical Engineering and Electronics at the University of Liverpool
during the period from October 2014 to September 2018. The thesis is original in
content except where otherwise indicated.

vi

Contents

List of Figures x

List of Tables xii

1 Introduction 1
1.1 Semantic Sentence Matching . 1
1.2 Question Answering Tasks . 3
1.3 Deep Learning Methods . 6
1.4 Motivation and Main Contributions 8

1.4.1 Motivation . 8
1.4.2 Contribution . 11

1.5 Thesis Outline and Related Publications 13

2 Deep Learning Methods for Sentence Matching 16
2.1 Auto-encoders . 16

2.1.1 Theoretical Foundations 16
2.1.2 Sparse Auto-encoder . 18
2.1.3 De-noising Auto-encoder 19
2.1.4 Stacked Auto-encorders 21

2.2 Convolution Neural Network . 22
2.2.1 Theoretical Foundations 22
2.2.2 Convolutional Layer . 23
2.2.3 Subsampling Layer . 24

2.3 Recurrent Neural Networks . 25
2.3.1 Theoretical Foundations 25
2.3.2 Forward Propagation . 26
2.3.3 Backward Propagation . 27
2.3.4 Bi-directional RNNs . 28

2.4 Neural Turing Machines . 30
2.4.1 Theoretical Foundations 30
2.4.2 Data Extraction . 31
2.4.3 Memory Updating . 32
2.4.4 Addressable system . 33

vii

2.5 Conclusion . 34

3 Semantic Sentence Matching 36
3.1 Semantic Matching . 36
3.2 Community Question Answering 38
3.3 Traditional Approaches . 38
3.4 Neural Semantic Models . 40
3.5 Attention Mechanisms for cQA . 43
3.6 Memory Networks . 45
3.7 Conclusion . 46

4 Greedy Word-level Semantic Similarities 47
4.1 Introduction . 47
4.2 The Proposed Semantic Matching Model 50

4.2.1 Distributed Similarity . 51
4.2.2 Deep Similarity Enhanced by Word Overlapping 54
4.2.3 Matching Prediction . 55
4.2.4 Proposed Greedy Layer-wise Model Training Scheme . . . 56

4.3 Experimental Analysis and Results 59
4.3.1 Datasets and Experiment Setup 60
4.3.2 Empirical Analysis of DSSM 62
4.3.3 Comparison with State-of-the-art Methods 68

4.4 Conclusion . 69

5 Context-aware Neural Network for Interactive Matching 71
5.1 Introduction . 71
5.2 Preliminaries . 76
5.3 Proposed Method . 77

5.3.1 Co-attention Sentences Mechanism 78
5.3.2 Positional Word-Sentence Level Similarity 82
5.3.3 Interactive sentence Representation 83
5.3.4 Model Training and Initialization 85

5.4 Experimental Analysis and Results 86
5.4.1 Datasets . 86
5.4.2 Performance Metrics . 86
5.4.3 Experimental Configuration 87
5.4.4 Baselines . 88

5.5 Results and Analysis . 90
5.5.1 Quantitative Evaluation . 90
5.5.2 Example Demonstration 95

5.6 Conclusion . 97

viii

6 Attentive Memory Network For Answer Selection 104
6.1 Introduction . 104
6.2 The Proposed Work . 108

6.2.1 Similarity Construction . 108
6.2.2 Multi-dimensional Memory Network 110
6.2.3 Memory Refinement . 112
6.2.4 Mnemonic Deep Similarity Matching 116
6.2.5 Matching Prediction . 117
6.2.6 Model Specification for Machine Comprehension 118

6.3 Experimental Analysis and Results 120
6.3.1 Datasets . 120
6.3.2 Performance Measures . 121
6.3.3 Experimental Configuration 122
6.3.4 Baselines . 124

6.4 Results and Analysis . 125
6.4.1 Comparison with State-of-the-art Methods 125
6.4.2 Empirical Analysis of Memory Network 130

6.5 Conclusion . 133

7 Conclusion 135
7.1 Summary . 135
7.2 Future Work . 137

References 139

ix

List of Figures

1.1 An example of matching sentence pair. Successfully matched word
pairs are highlighted in bold. Mismatched word pairs are marked by
underline. 2

1.2 Example scenario for QA. 3
1.3 Example “Joe’s story” scenario for QA with inference. 4
1.4 Example scenario for sentence matching in cQA. 5

2.1 An illustration of AE architecture. 17
2.2 An illustration of the DAE architecture. The two circles in black

colour indicate the corrupted units in the input. 20
2.3 An illustration of the SAE architecture. 21
2.4 An illustration of the CNN architecture. 23
2.5 An illustration of the RNN architecture. 25
2.6 An illustration of the BRNN architecture. 28
2.7 An illustration of the NTM architecture. 30

4.1 An illustration of deep architecture for matching text pair. 50
4.2 An example of the pooling process. The input query is ‘where is the

cat?’, an answer is ‘the cat sat on the mat’. A semantic word pair
of each row in similarity matrix, which is pooled to from a vector
representation after pooling. Symbol Sij represents the similarity
matrix between query and answer, and sij is the output from pooling
process. 53

4.3 The operation structure of SAE. SAE is stacked by multiple lay-
ers (l=1,. . . ,H) of traditional AE. Each AE encodes the input to the
encoder representation, which is fed to next AE as input. The de-
coding part of each AE is used to reconstruct input and optimize the
variables in training process. 55

5.1 Example scenario 1 for QA based on key-word matching. 72
5.2 Example scenario 2 with two different QA cases. 73
5.3 Key components of potential answers to the Question Q2. 73
5.4 Key components of potential answers to the Question Q3. 74

x

5.5 Architecture of the proposed CABIN system for computing inter-
active sentence representations. GM(A) symbol represents the pre-
trained answer representation from the generative language model;
GM(Q) symbol is the pre-trained question representation from the
generative language model; CJI(A) symbol means the context infor-
mation jump vector of the answer sentence. 78

5.6 Architecture of the attention mechanisms for computing question-
aware answer representations in the proposed CABIN system. . . . 80

5.7 Architecture of the bi-directional LSTM with context information
jump in the proposed CABIN system. 81

5.8 Left figure (a): Absolute performance and right figure (b): Perfor-
mance gains of the proposed approach. 94

6.1 Example scenario for MRC. With respect to given question and
context, the spans answer is labeled by underline, 105

6.2 An illustration of the proposed model architecture. 108
6.3 An illustration of memory initialization for matching a sentence pair. 110
6.4 Example scenario with three QA sentence pairs for memory refine-

ment operation with three hops. In the candidate answers ranking
list with each hop, a correct answer is labeled as A+, an incorrect
one is marked as A−. 113

6.5 An illustration of memory refinement for matching a sentence pair. . 114

xi

List of Tables

4.1 Data information for TREC data. 60
4.2 Comparison of the proposed DSSM method with alternative designs

and model settings, evaluated using the Yahoo cQA data. The best
performance is highlighted in bold and second best underlined. . . . 64

4.3 Demonstration of model interpretability induced by the question
word score XT

i p1, answer word score YT
j p2, and question-answer

word pair score XT
i p1p

T
2 Yj . The top 5 words (or pairs) possessing

the highest scores (T@5), the bottom 5 with the lowest scores (B@5),
and the middle 5 that are closet to zero (0@5) are listed for two
example questions each with one correct and one incorrect answer. 65

4.4 Performance comparison using TREC data for the proposed and
seven state-of-the-art methods. 67

4.5 Performance comparison using Yahoo cQA data for different methods. 68

5.1 Dataset content statistics in CABIN model. 86
5.2 Benchmark data splits. 87
5.3 Performance comparison of different models across a range of datasets.

The best results are highlighted and the second best results are under-
lined. 91

5.4 Averaged ranking of different models. The best results are high-
lighted in bold and the second best are underlined. 92

5.5 Comparison of the top three answers returned by the proposed
CABIN and existing IWAN [1] architectures for an example question
from the TREC dataset, where the ground truth answer sentences are
marked by (∗) in the end. 99

5.6 Comparison of the top three answers returned by the proposed
CABIN and existing CAM [2] architectures for an example question
from the Yahoo! dataset, where the ground truth answer sentences
are marked by (∗) in the end. 100

xii

5.7 Comparison of the top three salient word positions in answer captured
by the proposed CABIN and the second best models using two
examples from the TREC and Yahoo! datasets. The learned attention
weight is reported in parenthesis for each selected salient word. . . 101

5.8 Illustration of answer word positions with either the largest two
similarity values of the context information jump∇h̃(a)

t indicated by
T@K for K=1,2 (highlighted in bold), or the smallest two similarity
values of ∇h̃(a)

t indicated by B@K for K=1,2 (underlined). We
use Q, A+ and A− to distinguish the question, correct answer and
incorrect answer sentences. 102

5.9 Comparison of the top three answers and salient word positions
returned by the two versions of CABIN-J and CABIN corresponding
to ones with and without using the context information jump. The
same two example questions as in Table 5.8 are examined, where the
ground truth answer sentences are marked by (∗) in the end. 103

6.1 Dataset content statistics. 121
6.2 Benchmark data splits. 121
6.3 Performance comparison using TREC and WikiQA data for different

models. The best results are highlighted and the second best results
are underlined. 126

6.4 Performance comparison on the TriviaQA Wikipedia data for dif-
ferent models. The best results are highlighted and the second best
results are underlined. 128

6.5 Performance comparison on the SQuAD data for various competitive
models. The best results are highlighted and the second best results
are underlined. 129

6.6 Comparison of the proposed method with alternative designs and
model settings, evaluated using the WikiQA and SQuAD datasets.
The best performance is highlighted in bold and second best underlined.132

xiii

Abbreviations

IR Information Retrieval. 1, 8, 38, 105

NLP Natural Language Processing. 1, 6, 8, 25

QA Question Answering. 3, 4, 6, 8, 11, 13, 25, 38, 104, 135, 136

MRC Machine reading comprehension. 4, 8, 11, 25, 35, 45, 104, 136

cQA Community Question Answering. 4, 5, 8, 11, 13, 35, 38, 48, 136

AI Artificial Intelligence. 6, 8

NMT Neural Machine Translation. 7, 25, 37

CNN Convolution neural network. 7, 9, 22, 35

RNN Recurrent Neural Network. 7, 9, 10, 25, 26, 35

LSTM Long-Short Term Memory. 7, 10, 136, 138

GRU Gated Recurrent Unit. 7, 42

BRNN Bi-directional recurrent neural networks. 7, 10

AE Auto-encoder. 16, 20, 22, 35

DAEs Deep Auto-encoders. 16

PCA Principal Component Analysis. 17

DAE Denoising Auto-encoder. 19, 35, 69, 70, 136

SAE Stacked Auto-encoders. 21, 35, 58

ANNs Artificial Neural Networks. 25

xiv

RNN LM RNN-based language model. 26

MLP Multi-Layer Perceptron. 26

NTM Neural Turing machine. 30, 33, 35, 112

CNNs Convolutional Neural Networks. 37

BOW Bag-Of-Words. 39

LSA Latent Semantic Analysis. 39

TED Tree Edit Distance. 39

RBM Restricted Boltzmann Machine. 40

DMN Dynamic Memory network. 45

DSSM Deep Semantic Similarity Model. 49, 50, 61

SDA Sparse Denoising Auto-encoder. 58

MRR Mean Reciprocal Rank. 62, 136

MAP Mean Average Precision. 62, 136

VQA Visual Question Answering. 137

GAN Generative Adversarial Nets. 138

xv

Chapter 1

Introduction

1.1 Semantic Sentence Matching

Semantic matching represents the relationship between objects in an ontology

technique to identify information which is semantically related. The object includes

but is not limited to image, sentence, topic, etc. Semantic matching as a measurement

operation that is used in various applications of fields, such as Information Retrieval

(IR) [3], data integration, Natural Language Processing (NLP) [2, 4, 5], peer to peer

networks, conversational agents [6, 7], ontology merging. Semantic matching de-

mands machine has understanding, reasoning, decision making and natural language

generation in order to replicate or simulate the behavior of human mind in the real

world. In this research, we focus on researching the semantic relationship between

sentences as referred to semantic sentence matching.

Semantic sentence matching as a changeling problem in NLP, it aims to under-

stand words and sentences meaning, and measure the relevance between word pairs

by the similarity formulation. For instance, given the two sentences as an input pair

is shown in Figure 1.1, the semantic matching is an operator which measures those

words in the two sentences which semantically correspond to one another. In Text 1,

the word “car” is semantically equivalent to “automobile” in the Text 2, since they are

in English corpus. Moreover, the word “famous” in Text 1 shares the same meaning

with the word “popular” in Text 2. These information of synonymous word pairs is

1

1.1 Semantic Sentence Matching 2

Text 1: Joe often drives his car to a famous restaurant for lunch on Monday.

Text 2: Joe drove an automobile to a popular restaurant for party yesterday.

× ×

Figure 1.1: An example of matching sentence pair. Successfully matched word pairs

are highlighted in bold. Mismatched word pairs are marked by underline.

optional collected from the external linguistic resources [8], e.g. WordNet, Wikipedia,

Freebase. However, there exist several word pairs are mismatched between the two

sentences, for example, the word “lunch” has a distinguishable entity meaning, differs

from the word “party”. Similarly, the mismatched words “Monday” and “yesterday”

indicate the distinct dates, although these words belong to the same category about

time. In particular, the words “drive” and its paradigmatic type “drove” represent the

same semantic meaning but in grammatical tenses. From the example, we analyzed

the semantic sentence matching based on word-level. When viewed from a sentence-

based perspective, the two sentences present different semantic meanings with a low

similarity based on the expressions of the entire sentences. Therefore, the semantic

sentence matching relies on word or sentence-level is a challenging problem to be

explored.

Actually, the semantic matching method has been proposed to solve the semantic

compatibility problem as a valid solution, is referred as the handling linguistic diver-

sity. For example, the mutual intelligibility of multiple languages appear different

meanings and cultures, the use of different terminology has been a serious problem.

Recent the machine translation works may solve the semantic heterogeneity problem

by converting the language on time. Following with the advent of the internet and

the consequential information explosion, the richness of the language is continually

increased, some novel words and phrases occur on the community forums on the

web, are called network-based language. Since the increase of language, IR includes

question answering and information integration from a variety of sources to be chal-

lenging tasks. The accurately semantic sentence matching becomes more important

and challenging for solving the semantic compatibility problem.

Jinmeng Wu

1.2 Question Answering Tasks 3

The traditional approaches of semantic sentence matching methods detect the

similarity between sentences, e.g. lexical matching, knowledge-based and IR. The

lexical matching [9] method addresses the characters similarity computation without

considering the synonymous problem between word pairs. The knowledge-based

method [8, 10] extracts semantic information from the external resource bases for the

neural network and dependency tree with syntactic structure. Using these traditional

methods, it is hard to capture the semantic relationship between sentences, and

identify the similarity relevance based on word or sentence-level. Recently, a series

of deep neural networks [2, 11] have been proposed to provide a solution for the

challenging problem, since the unique architecture and properties of these deep

neural networks.

1.2 Question Answering Tasks

Question Q1

• Where was the Joe?

Candidate Answers: A1 and A2

• A1: When Joe comes back from school, he will go to the kitchen first, then go to the

bathroom, I guess he should be there.

• A2: Joe often forgets to take his lunch to school. Fred, can you remind him next time?

Figure 1.2: Example scenario for QA.

Question Answering (QA) is an important task within the fields of information

retrieval and NLP, which is concerned with building systems that automatically

answer questions posed by human beings in natural language. The example matching

question and answer (Q-A) pair is shown as Figure 1.2. It can be seen that question

and answer sentences are tidy and clear in the structured QA dataset, they share

the mutual information so that it is easy to identify the A1 is the correct answer for

questionQ1. In general, the structured QA dataset, also called library QA is manually

collected from the regular websites, e.g. TREC [12] and WikiQA [13].

Jinmeng Wu

1.2 Question Answering Tasks 4

QA is widely derived in a variety of tasks in NLP, for instance, dialogue sys-

tem [6, 7], Machine reading comprehension (MRC) [14, 15], Community Question

Answering (cQA) [11, 16], and IR engine on website/mobile [17]. QA tasks are

characterized as challenging research topic in computer science, despite language

being one of the easiest things for humans to learn. Since human language is rarely

precise and plainly spoken, QA tasks becomes difficult for machines to deal with

because of the ambiguity of language. To simulate human language, machine is

not only required to understand the meanings of words, but also to comprehend the

various concepts of phrases or sentences composed of words combinations. Hence

it is crucial to build sentence and word representations capable of capturing the

relationship and semantic information between question and answer.

Question Q1 and Q2

• Q1: Where was Joe before the office?

• Q2: Where is Joe?

Supported Contexts: C1 and C2

• C1: Joe went to the kitchen. Fred went to the kitchen. Joe picked up the milk.

• C2: Joe traveled to the office. Joe left the milk. Joe went to the bathroom.

Target Answers: A1 and A2

• A1: kitchen

• A2: bathroom

Figure 1.3: Example “Joe’s story” scenario for QA with inference.

Recently popular MRC task has been proposed used in various deep neural

networks. MRC [18] is a challenging matching problem which requires an ability to

understand the context meaning, consisting of a large number of sentences. The given

input of MRC is a triple type that consists of question, context and labeled answer,

as shown in Figure 1.3. From the figure, two input triples are given for generating

answer spans of the contexts. Unlike Q-A pair matching in Figure 1.2, the contexts

C1 and C1 perform a key impact for supporting its corresponding questions as the

inferences. With respect to the logical question, the two contexts can be combined to

Jinmeng Wu

1.2 Question Answering Tasks 5

generate an answer, the preceding context information is helpful for reasoning. For

instance, when the question in the second triple changes from ’Where is Joe?’ to

’Who picked up the milk?’, the supported information ’Joe picked up the milk’ occurs

in context C1, not C2. Therefore, capturing a certain amount of related sentences in

the context may benefit the question and context (Q-C) pair matching.

Question Q1

• Hi, Fred!! emmm...Do you know where is Joe going???

Candidate Answers: A1 and A2

• A1: No, emmm..I guess he may back to home, why not contact with him??? LOL...

• A2: wow, He left his card on park, can you please return it to him???

Figure 1.4: Example scenario for sentence matching in cQA.

cQA has seen a spectacular increase in popularity in the recent past. With the

advent of web and popularity of computer, a number of cQA datasets are produced

collected from web forums, such as Yahoo! [19], Quora [20], and Stack Overflow [21].

A large amount of users use these web forums to obtain answers for the posted

questions. Meanwhile, users are allowed to post their question on these community

forums, then waiting it answered by several experts, who are also on-line users.

The answers can help the other users by posting comments under the answers. The

increases of Q-A pairs in such web platforms enables the ability to accomplish QA

tasks, e.g. sentence retrieval, answer selection and relevant question searching.

The sentence matching example of cQA is illustrated in Figure 1.4. Unlike the

structured Q-A pair, two semantic components of cQA may lead to the challenging

problem. The Q-A pairs in cQA belong to open-domain without much access

limitation, and the non-factoid pair causes amount of disordered and misunderstood

words in sentences, such as the slang “emmm...” and “LoL” in the figure. These

unstable pairs in cQA may result in a poor matching quality. An alternative problem

is that, the answer sentence in cQA is generally composed by a large number of

words, which lead to a long answer sentence, especially compared with short question.

Thus, the information of Q-A pair is not equivalent and insufficient for semantic

Jinmeng Wu

1.3 Deep Learning Methods 6

matching.

1.3 Deep Learning Methods

Deep learning is a novel branch within machine learning system. A series of

research works have been proposed in recent years to learn algorithms towards various

deep architectures with multiple levels of representations. Theoretical arguments

in [22] claimed deep learning architectures are necessary to efficiently represent the

kind of high-level abstractions through learning the family of functions in Artificial

Intelligence (AI). The successful research work of deep learning has already attracted

much attention from academic field and commercial industries.

The origin of deep learning goes back to the discovery of biology, neocortex

is a key founding for deep architecture research based on mammal brain that has

cognitive capacity. It allows sensory signals to pass through a complex hierarchy and

observations are represented regularity follows with learning [23]. Abstractions at

multiple layers represent given input from the lowest to the highest level and each

layer corresponds to the relevant cortex area. Therefore, this discovery leads to the

appearance of deep structure in machine learning field [23]. The innovation of deep

architecture performance with an unsupervised pre-training approach for training

deep belief networks [24]. The pre-training approach focuses on training each layer

in the architecture with unsupervised learning algorithm followed by global fine-

tuning. With respect to supervised training, this pre-training method offers a better

generalization, regularization, capacity control, and low variance.

Typically, deep learning includes two main properties denote depth and flexibility,

they employ the possibility of features at each level by creating the representation in

a layer-wise approach. Depth represents the numbers of layers in the architecture,

which has at least two training layers of distributed representations. Flexibility

property permits the deep learning structure contains a series of prior information and

achieves a state-of-art performance in multiple tasks, e.g. speech recognition [25],

computer vision [26, 27], NLP [28, 29].

Recently, a variety of deep neural networks have been developed to QA task based

Jinmeng Wu

1.3 Deep Learning Methods 7

on presenting word to a distributed representation type [30,31]. Deep learning models

have shown effectiveness to characterize latent relationship between words, producing

distributed embedding representation for words [5, 29] and sentences [32, 33], since

the properties of deep learning model allow the structure contains a series of prior

information and learns multiple tasks in a meanwhile [30]. Deep neural networks

have been widely applied to various NLP tasks such as Neural Machine Translation

(NMT) [4, 34], paraphrase identification [35], and summarization [36].

Convolution neural network (CNN) [37, 38] is a common semantic sentence

matching method, aiming to integrate the word patterns into a representation that

expresses the semantics of a given sentence. In general, CNN uses a convolution

operator to reduce the dimension of distributed sentence representation from a matrix

to vector type, this step simplifies similarity matching so the similarity score is com-

puted based on two vectors. However, there are two main drawbacks of these models:

the input information such as the cumulative meanings of words, the relationship

between word pairs and the order of words would be loss and unclear. Sentences

representations are separately learned by two CNNs in [33], which increases the

number of variables need to be tuned and costs a larger model computation.

Recurrent Neural Network (RNN)-based language models [39, 40] recently per-

form well on retaining and stacking the key information of words spread through-

out a sequence using variant architectures such as the Long-Short Term Memory

(LSTM) [41] and Gated Recurrent Unit (GRU) [42], since the long-term monomeric

property. Bi-directional recurrent neural networks (BRNN) [43] has been proposed to

learn the sentence representation through taking into account information from both

the preceding and following words, supported by an alignment model to produce

a vector to aggregate word information into sentence. As for QA tasks, BRNN is

used to learn similarity based on word-level considering with adjacent words in the

sentence. Since BRNN has the long-term mnemonic property, we study an interactive

attention model that uses BRNN to generate the question representation by involving

sentence’s context information. This context information is automatically created

by question or answer representation and represented by a vector, which instead of

external resources provided by manual feature engineering in previous works [8, 44].

Jinmeng Wu

1.4 Motivation and Main Contributions 8

1.4 Motivation and Main Contributions

1.4.1 Motivation

In this thesis, the goal of the research work is to design the various deep neural

networks to learn the high-level semantic text matching for QA tasks, including

answer selection, cQA, and MRC. The semantic text matching task is a challenging

problem in NLP, it demands machine has understanding, reasoning, decision making

, and natural language generation in order to replicate or simulate the behavior of

the human mind in the real world. Nevertheless, the traditional methods based

on statistical language models are not able to capture the meaningful relationship

between words by using shallow learning. The deep neural network is efficient to

learn the meaning of word according to its deep layered architecture and flexibly

designed algorithms. In the current, text matching task is widely applied in modern

industries, for instance, automatic conversation on mobile, IR on the website, and

image description.

AI is a popular field focuses on creating novel technologies allow computers and

machines to simulate minds of human being in an intelligent manner. The general

fields of simulating intelligence include machine learning [45], machine visual [46]

and NLP [47]. As one of central tasks of AI, NLP explores how machines are

able to understand and manipulate natural languages such as sentence or speech, to

accomplish multiple real-world applications. Several popular tasks of NLP include

automatic sentence summarization [36], sentiment analysis [48], and machine transla-

tion [34]. QA is a computer science area within the fields of information retrieval and

NLP, which is concerned with building systems that automatically answer questions

posed by human beings in a natural language. QA is widely used in variety of

applications, for instance, dialogue system [6, 49], social network [50] and search

engine on website/mobile [17].

The traditional approaches in QA typically adopted a statistical method that is to

use lexical matching to count the number of matching words or stems [9], however,

it fails to understand the meanings of words and capture the correlation between

words, which leads less relevance, namely semantic information between question

Jinmeng Wu

1.4 Motivation and Main Contributions 9

and answer. Although feature-based models have been proposed in [51–53] by use

semantic features to improve the similarity metric, their feature engineering stage

can be expensive. Moreover, these approaches cannot be adapted to match language

for which there is no external semantic resource available, as previously noted [32].

Replacing the manual feature engineering with a neural language model, various

recent works have been developed to compute semantic similarity between sentence

by learning distributed representations of words via neural networks [30,31,33]. The

strategy of the neural network is to characterize each word with a vector with less

dimensionality. Popular ways for generating a word vector embedding include bag-

of-word representation based on the contextual words around the targeted word [54],

latent semantic analysis [28], and distributed embedding representation generated by

a probabilistic neural language model [55].

Above neural networks provide effective ways to represent a word in a certain

amount of corpus, nevertheless, machine computes the similarity over phrases/sentences

representation level is still a precise issue for QA. In recent years, deep learning

models have shown effectiveness to characterize the latent relationship between

words, returning distributed embedding representation for words [5, 29] and sen-

tences [32, 33], due to the two main properties of deep learning models: depth and

flexibility that allows the structure of deep architecture contains a series of prior

information and learns multiple tasks in a meanwhile [30].

Recently, CNN [37] and RNN-based models [39] gain the state-of-art perfor-

mance on semantic sentence matching. In the previous subsection 1.1, we mentioned

that learning semantic sentence matching based on word-level and sentence-level

provide a different similarity between sentences, which is a challenging problem for

QA. Most CNN [33, 35] and RNN works likely to learn the semantic relationship

between sentence representations. More precisely, CNN demonstrates the similarity

between Q-A pair by integrating the word patterns into a combined representation

that expresses the semantics of a given sentence. These models consider the com-

plexity of CNN, converting the distributed sentence embedding representation from

matrix to the vector at the early step, which simplifies similarity matching procedure

through computing score over two vectors. However, there are two main drawbacks

Jinmeng Wu

1.4 Motivation and Main Contributions 10

of these models: the input information such as the cumulative meanings of words,

the relationship between word pairs and the order of words would be lost and unclear.

The sentences representations are separately learned by two CNNs in [33], which

increases the number of variables need to be tuned so that larger model computation

would cost. In Chapter 4, we propose the deep matching model based word-level

similarities to solve these problems. The proposed model represents each word

positional similarities by using a distributed similarity matrix, which captures word

pair importance factor between a pair of the sentence.

Other than treating a sentence representation as a unordered words, RNN retains

and stacks the key information of words spread throughout a sequence using archi-

tectures similar to LSTM [41]. BRNN [34] has been proposed to strengthen the

sentence representation by taking into account information from both the preceding

and following words, and can be applied with the support of an alignment model

to produce a vector for aggregating word information in a sentence for translation

task. As for QA tasks, previous work [56] computed a similarity matrix between

the answer and question sentences, utilizing their multiple positional representations

learned by a BRNN. Although this work has been achieved a satisfying matching

result, BRNN learns the similarity based on sentence-level in an individual learning

approach, which lacks the interaction between question and answer. In Chapter

5, with respect to the long-term memory property of LSTM , we propose the in-

teractive attention model that uses bi-directional LSTM to generate the sentence

representation by involving the contextual and interactive information using pair-wise

attention mechanisms: co-attention and similarity-attention. This contextual infor-

mation is automatically created by combing word-positional representations, which

instead of external resources provided by manual feature engineering in previous

works [51–53].

A knowledge-based resource [44, 57] has been recently adopted in deep neural

networks for semantic sentence matching. Despite the external database can supply

the relevant information to improve matching, it is hard to master the semantic

relationship between a pair of sentence. Moreover, it costs an expensive computation

by collecting the database from a web or large corpus. Instead of external resource

Jinmeng Wu

1.4 Motivation and Main Contributions 11

with a neural language model, memory network based models [58,59], a specific type

of recurrent networks with dynamic and addressable memory mechanism, have been

recently proposed to store the input content information for MRC task. The content

consists of multiple sentences has enriched information to be stored, whereas for pure

QA matching also called answer selection, the question and answer has a few words,

which are not able to be utilized by memory. In Chapter 6, we design the memory

network to store the relevant questions and answers for each Q-A pair as possible.

Besides, the relevant Q-A pairs are collected from internal dataset corpus related

to the input Q-A pair. Except for answer selection task, the proposed model is also

able to accomplish MRC task by using attentive memory as a matrix to store content,

input, and relationship between Q-C pair, with a dynamic storage process. The large

capacity of the proposed memory overcomes the other memory networks [59, 60]

that suffer from the storage limitation problem. To summarize, the key hypotheses of

the thesis are listed as follows:

• The semantic deep neural networks are proposed to maintain a better perfor-

mance than the existing methods for question answering task.

• The set of word-level similarities is sufficient for the semantic matching task.

Essentially, the proposed neural network is able to learn how to distill a set of

pairwise similarities to a single relevance measure.

• Interactive learning of the question and answer representations is beneficial to

semantic sentence matching by considering positional words information.

• A multi-dimensional memory network has the ability to store relevant sentence

pairs, then improve sentence matching by releasing these sentence pairs.

1.4.2 Contribution

In this thesis, we design the deep neural networks for handling the semantic

matching problem in three types of QA tasks – answer selection with structured QA

and cQA, and MRC. Accordingly, three new models are adaptive for three types of

tasks and these models are briefly introduced as follows:

Jinmeng Wu

1.4 Motivation and Main Contributions 12

• Greedy Word-level Semantic Similarities: In Chapter 4, we examine the

problem of semantic information loss caused by compressing the sentence

representation at an early stage for semantic structured QA and cQA matching.

In the proposed work, we first learn the distributed interaction representation of

sentence pair directly, and gradually compress the distributed similarity repre-

sentation, instead of learning individual sentence representation. To investigate

the effect of deep learning network to semantic sentence matching problem,

we compare the performance between two learning presentation approaches,

the experimental result show that the proposed work learns semantic similarity

based on word-level outperforms the one on sentence-level. Considering the

amount of trainable parameters in complex deep neural networks, we employ a

pair-wise training method to train the proposed model. The training approach

is divided into multiple steps is individually trained by the specific loss objec-

tives. At last, the model is supported by an effective greedy layer-wise training

strategy to fine-tune the entire model, and this decomposable training approach

is experimentally shown to outperform the previous models.

• Context-aware Neural Network: In Chapter 5, we consider strengthening the

sentence representation based on a cross-sentence context-aware bi-directional

LSTM architecture for examining structured QA and cQA matching. The

new pair-wise attention mechanisms are designed to enrich the generative

sentence representation: the co-attention mechanism takes the sentence content,

interactive attention involves the semantic information of word pairs between

question and answer. The quantity context information jump is proposed by

considering informativeness of multi-positional words, it helps to improve the

computation of attention mechanism. Besides, the proposed model pre-trains

the sentence representation based on Bi-directional LSTM in unsupervised

training. The generative sentence representation reduces the computation

without sacrificing the representation quality.

• Attentive Memory Network: In Chapter 6, we deal with the storage limitation

problem of memory for semantic QA and MRC matching. The proposed work

Jinmeng Wu

1.5 Thesis Outline and Related Publications 13

employs the memory as a matrix type to store all semantic similarities of word

pairs to improve the content representation in memory, which extracts the

semantic information for supporting the semantic matching. In proposed work,

the new memory refinement is designed to store the contextual information of

sentences in separately two steps at one iteration, with simplify recording the

information using row and column-based vectors. Attention memory network

improves the interactive content in the memory, it is helpful for generating

multiple words with weakly unsupervised training. The proposed memory

network is capable of completing QA and MRC tasks by defining a different

matching operation and loss functions in the output layer.

1.5 Thesis Outline and Related Publications

We organize the thesis outline as follows:

C H A P T E R 2 introduces the preliminaries by introducing various generic deep

learning methods for semantic matching by learning the input representation.

The chosen methods studied in this chapter represent the basic concepts and

methodologies in this area. In fact, most existing works in deep learning are

largely based on recognizing some of these ideas and create novel extensions

to them.

C H A P T E R 3 reviews the related works connect to semantic sentence matching.

The related works present the general conceptions and various architectures

in different period. The related works provide a better understanding of this

field and the proposed works in this thesis. In addition, it describes the ideas

of state-of-art models compared with the proposed model.

C H A P T E R 4 introduces the deep semantic similarity model with a pair-wise

training approach in structured QA and cQA. It is based on the hypothesis

that learning interactive similarity based on word-level. The proposed model

structure consists of three parts: distributed bilinear similarity computation,

Jinmeng Wu

1.5 Thesis Outline and Related Publications 14

the stacked AE with unsupervised training learns the high-level deep simi-

larity representation, an overall similarity score computation and matching

prediction. The pair-wise training approach based on a supervised ranking

score is used to optimize the variables in parts of the proposed model. In

analysis of experiments, the proposed model achieves better with this training

approach. Performance comparison with the state-of-art models, its superiority

demonstrates in various performance comparisons.

C H A P T E R 5 addresses the interactive learning of sentence representation. We

propose a cross-sentence context-aware bi-directional LSTM architecture. This

model contains interaction-based and sentence-based attention mechanisms

for answer representation learning, and augment the proposed approach to

consider the relationship between adjacent words. The context-aware model

with pair-wise attention mechanisms offers the best performance among all the

comparing methods.

C H A P T E R 6 studies multi-dimensional memory network with attention mech-

anisms. The proposed attentive memory network is to efficiently store and

extract the semantic information related to question and answer or context

pairs as an internal knowledge resource for the memory network. Multiple

performance comparisons with the state-of-art approaches also demonstrate

the superiority of the proposed model.

C H A P T E R 7 concludes the whole thesis. We underline the contribution of this

thesis, recapture the key ideas, and propose several potential directions for

future research.

The publications produced from this research work are listed as follows:

• J. Wu, T. Mu, J.Thiyagalingam and J. Y. Goulermas, "Building Interactive

Sentence-aware Representation based on Generative Language Model for

Question Answering", Neurocomputing, Elsevier, minor revision.

• J. Wu, T. Mu, J.Thiyagalingam, and J. Y. Goulermas, "Multi-dimensional

Memory Model for Question Answering and Machine Comprehension", IEEE

Jinmeng Wu

1.5 Thesis Outline and Related Publications 15

Transactions on Knowledge and Data Engineering, to be submitted.

• J. Wu, T. Mu, J.Thiyagalingam, and J. Y. Goulermas, "Deep Semantic Answer

Matching by Greedy Word-level Similarity", IEEE Transactions on Knowledge

and Data Engineering, to be submitted.

Jinmeng Wu

Chapter 2

Deep Learning Methods for Sentence

Matching

In this chapter, we explore the deep learning methods since they are building

models for developing the more complicated methods or to handle more complex

semantic matching problem. Almost deep learning methods for semantic sentence

matching are implicitly developed based on the designs of these networks. For

instance, the proposed methods expressed in Chapters 4- 6 are partly based on the

theoretical conceptions and algorithms related to generic neural networks. Therefore,

it is vital to investigate these neural networks in great depth.

2.1 Auto-encoders

2.1.1 Theoretical Foundations

Auto-encoder (AE) is a symmetrical model [31] in neural networks, that learns

features through an unsupervised leaning algorithm that computes back-propagation,

assuming that the target labels are equivalent to the inputs. The basic structure

of AE illustrated in Figure 2.1 is composed of a single hidden layer, while an AE

contains the multiple hidden layers is called Deep Auto-encoders (DAEs) that is

commonly applied in paraphrase detection [31] and the document analysis [61, 62].

Regardless of AE or DAEs, the two main components of these models are the

16

2.1 Auto-encoders 17

𝒙

W(1)

W(2)

h(1)

h(2)

Figure 2.1: An illustration of AE architecture.

encoder and the decoder. The encoder is responsible for encoding the input x into

the mapped representation, whereas the decoder aims to reconstruct this intermediate

representation to the input.

Consider an AE with d units denoted as the input vector x = [x1, ..., xd]
T , where

xi (0<i<d) is defined as a scalar value in the input vector. Here, we study a simple

case of using a single hidden layer with k units. Let W(1) = [w
(1)
ij] and b(1) = [b

(1)
j]

denote the parameters associated with the connection between unit i in input layer

and unit j in hidden layer. The encoding formulation under AE is computed by

h(1) = f
(
(W(1))Tx+ b(1)

)
, (2.1.1)

with

(W(1))Tx =
d∑
i=1

w
(1)
ij xi, (2.1.2)

where the weight wij and bias bj parameters are used to calculate the weighted sum

of input to unit j in hidden layer. Here, we use a non-linear activation function f(·)
of hidden layer, such as sigmoid function [63], that adapts to binary input by mapping

the output value to the interval (0,1). The hyperbolic tangent [64] and rectified

linear unit [65], that map the output to a certain domain are commonly chosen in

the other cases. In particular, if activation is a linear function, a number of hidden

units project the input in the span of the first principal components of data, so that the

AE is similar to the Principal Component Analysis (PCA) [66]. Since the non-linear

Jinmeng Wu

2.1 Auto-encoders 18

function applied to the AE, the encoded feature h(1) = [h
(1)
j] in the hidden layer has

the ability to obtain the main factors of variation from given input data.

In decoder, the encoded features are mapped to the reconstruction from hidden

unit j to unit i in the output layer. Let the decoding formulation is defined as

h(2) = f
(
(W(2))Th(1) + b(2)

)
, (2.1.3)

with

(W(2))Th(1) =
k∑
j=1

w
(2)
ji h

(1)
j , (2.1.4)

where the weight matrix W(2) = [w
(2)
ji] and bias vector b(2) = [b

(2)
i] denote the

parameters from hidden layer to output layer. Because the decoder aims to reconstruct

the input, the decoded feature h(2) = [h
(2)
i] has the same d-dimensional units as the

input vector x.

During the training procedure, AE is trained to minimize the re-constructive

error between the output h(2) at the decoding layer and the input x at the encoding

layer.Consider a set of m training samples {xi}mi=1, with an overall parameter θ =

[W (l), b(l)] in the l-th layer (l=1,2 for one hidden layer). The common choice for an

arbitrary re-constructive error formulation is the mean square error over the input

samples, the objective cost function is defined as

L(θ) =
1

m

m∑
i=1

||xi − h(2)
i ||2 +

λ

2

2∑
l=1

||W (l)||22, (2.1.5)

note the latter term of cost function λ
2

∑2
l=1 ||W (l)||22 is called the regularization term,

where || · ||2 means Euclidean norm and λ > 0 is the regularization parameter, also

called weight decay term, which tends to decrease the magnitude of the weights and

helps prevent over-fitting phenomenon. In the following, we exploit the variations of

the AE in order to capture significant input information and enrich the representations,

including the sparsity, denoising and multiple layer properties.

2.1.2 Sparse Auto-encoder

In general, an AE is used to map the input representation to a fix-sized hidden

representation with dimensionality reduction. However, the compression of the input

Jinmeng Wu

2.1 Auto-encoders 19

becomes difficult when the number of hidden units is large. In particular, a sparsity

constraint on the hidden units makes it possible to vary the effective number of

units. A sparse auto-encoder does not suffer from these issues: the computational

complexity (of inferring the codes), the stability of the inferred codes, and the

numerical stability and computational cost of computing gradients on the first layer

in the context of the global fine-tuning of a deep architecture.

In sparse AE [67,68], a non-linear mapped over-fitting of the input vector x tends

to employ the sparsity to the activation in hidden layer. The objective minimizes

reconstructed error with a sparsity constraint, the overall cost function becomes

Lsparse(θ) = L(θ) + β
k∑
j=1

KL(ρ||ρ̂j), (2.1.6)

where L(θ) is the cost function defined in Eq.(2.1.5), and β is sparsity penalty

weight. Notice KL(ρ||ρ̂j) is Kullback-Leibler (KL) divergence [69] between a

Bernoulli random variable with a target activation ρ and the other type of averaged

activation ρ̂j of hidden unit j. The penalty term of cost function based on KL

divergence is given as:

k∑
j=1

KL(ρ||ρ̂j) =
k∑
j=1

ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

, (2.1.7)

where ρ is the sparsity parameter whose a small value nears to zero. The averaged

activation ρ̂j = 1
m

∑m
i=1 h

(1)
j ||xi||1 of the j-th hidden unit is calculated over m

training sets, where ||xi||1 =
∑d

j |xij|, and the activation h(1)j of hidden layer is

computed from Eq.(2.1.1). In particluar, if ρ = ρ̂j , KL(ρ||ρ̂j)=0. Otherwise, when

the value of ρ̂j is not equal to ρ, the penalty term becomes larger whatever the increase

or decrease of ρ̂j . This variation influences sparsity constraint that non-redundant

over-fitting features are learned when ρ is small enough [70].

2.1.3 De-noising Auto-encoder

Denoising Auto-encoder (DAE) is a stochastic variant of a basic AE that focuses

on reconstructing the original input from a partially corrupted transformation of

the input. The structure of the DAE is shown in Figure 2.2. It learns a robust

Jinmeng Wu

2.1 Auto-encoders 20

W(1)

W(2)

𝒙

𝐿#(𝜽)

𝒉(())

𝒉((*)

𝒙+

Figure 2.2: An illustration of the DAE architecture. The two circles in black colour

indicate the corrupted units in the input.

representation from a corrupted input that is able to restore the original undistorted

input [71].

Intuitively, DAE tends to prevent the redundant information of the input whilst

offsetting the influence of a stochastically corruption procedure is applied to the input

of AE. The corrupted input is obtained through the stochastic corruption mapping:

fR(x̃|x)→ x̃, where the fR is the desturuction mapping function that has multiple

approaches, e.g. additive isotropic Gaussian noise, salt-and-pepper noise and random

noise [72]. Here, we consider the random noise that consists of randomly selecting a

set of elements in the initial input to zero. Let the corrupted input x̃ instead of the

original input x, as the input mapped to AE, we obtain the encoded representation

h̃(1) via the encoder formulation Eq.(2.1.1), then the encoded representation as input

applied to the decoder formulation Eq.(2.1.3) from which we reconstruct the decoded

representation h̃(2). Denote the final hidden representation h̃(2) is used to reconstruct

the original input x, the overall parameter θ = [W(l),b(l)] in the l-th layer (l=1,2).

The cost function of DAE is expressed over the training samples:

L̃(θ) =
1

m

m∑
i=1

||xi − h̃i
(2)
||2 +

λ

2

2∑
l=1

||W(l)||22. (2.1.8)

The strategy of DAE is to robustly extract a high-level representation whilst enriches

the hidden features under the corrupted input. The main innovation of DAE is highly

stable and roubust as the unsupervised pre-training for a deep neural network [72].

Jinmeng Wu

2.1 Auto-encoders 21

...

𝒙

W(1)

W(N)

h(N-1)

...
... W(n)

h(1)

h(N)
𝐖#(%)

...

g(1)

g(N)

𝐖#(')

Figure 2.3: An illustration of the SAE architecture.

2.1.4 Stacked Auto-encorders

Stacked Auto-encoders (SAE) is a neural network with multiple layers consisting

of a set of auto-encorders, where the output of each layer is connected to the input of

the next layer [71], as shown in Figure 2.3. Formally, suppose a stacked auto-encorder

with N auto-encorders to avoid confusion with hidden layer number L (L ≥ N) in

SAE, we adopt the same number of hidden layers and auto-encorders L = N as a

simple example shown in the figure. In the encoder of n-th AE, using the parameters

from basic AE denote the weightW (n) = [w
(n)
ij] and bias b(n) = [b

(n)
j]. The encoded

feature is given by running the encoding step of each layer in the forward way

h
(n)
j = f(

d∑
i=1

w
(n)
ij h

(n−1)
i + b

(n)
j). (2.1.9)

In particular, h(n−1) = x when n = 1. The encoder representation h(n) = [h
(n)
j] of

n-th hidden layer as the input passed to next layer n+ 1 in SAE network. Prior to the

above step, we first use the encoder representation to reconstruct the input from the

last layer, and learn the higher level hidden representation contains input information.

The decoding formulation of the n-th AE is expressed by

g
(n)
i = f(

k∑
j=1

w′
(n)
ji h

(n)
j + b′

(n)
i), (2.1.10)

Jinmeng Wu

2.2 Convolution Neural Network 22

where the decoding parameters weight W′(n) = [w′
(n)
ij] and bias b′(n) = [b′

(n)
j]

connect the units between the encoding and decoding layer. Given the decoded

representation g(n), denote the overall encoding parameter θn = [W(n),b(n)] and

decoding parameter θ′n = [W′(n),b′(n)], the reconstruction minimization function is

defined to restore the input from last layer h(n−1)

L′(θn,θ
′
n) =

1

m

m∑
i=1

||h(n−1)
i − g(n)i ||2 +

λ

2

2∑
n=1

||W(n)||22. (2.1.11)

In SAE network, a set of auto-encorders are stacked in a greedy layer-wise type

for pre-training the parameters of a deep network. The greedy layer-wise approach

for pre-training a deep network by training each layer in turn. Finally, the pre-trained

encoded representation is initialized as the input to the next layer in SAE.

2.2 Convolution Neural Network

2.2.1 Theoretical Foundations

CNN is a hierarchical neural network with alternating convolutional layers and

sub-sampling layers as shown in Figure 2.4. The operation of CNN contains three

main architecture properties: a local receptive field, shared weights and sub-sampling,

to ensure invariance in the shift, scale and rotation for connecting the local receptive

fields to neurons. The application of CNN shows a good performance on the visual

tasks (e.g. pattern recognition) [73].

Suppose the input is a large size of 2-dimensional image (e.g. a 1000*1000 pixels).

The AE network mentioned in the previous section can learn features through a fully

connected network (spanning the entire image) but this is computationally expensive,

and this method increases the number of parameters to be learned. For instance,

assuming a number of 106 input pixels or variables, the order of 108 parameters

must be learned to 100 features from the input. The computational speed of the

feed-forward and back-propagation algorithm becomes much far slower with a large

size input.

A locally connected network provides a solution due to its well-known advantage

of being able to learn local features. Different from AE, CNN learns features through

Jinmeng Wu

2.2 Convolution Neural Network 23

𝒙"#
(%&')

(l-1)-th 𝑙𝑎𝑦𝑒𝑟

l-‐‑𝑡ℎ	 𝑙𝑎𝑦𝑒𝑟

(l+1)-‐‑𝑡ℎ 	 𝑙𝑎𝑦𝑒𝑟

Convolution

Subsampling

𝐹𝑒𝑎𝑡𝑢𝑟𝑒	 𝑚𝑎𝑝

Figure 2.4: An illustration of the CNN architecture.

restricting the respective fields of hidden neurons to be a local connection. It allows

the hidden unit to connect with a subset of input units. The idea of a locally-connected

network refers to the the primary visual system (perceptron) in biology, and neurons

in the visual cortex correspond to localized receptive fields with stimuli in certain

locations [74].

Neurons extract features in contiguous region pixels with a different position in

the local respective fields, such as comers and edges. Input units in the same located

respective field are mapped to a plane called “feature map”. These units share a set

of weights and bias during the mapping process. The output units in the feature map

perform the same operation when working on different parts of the input, thereby

constituting translation invariance. Next, we analyze the structure of a CNN that

consists of convolutional layers and pooling layers.

2.2.2 Convolutional Layer

The convolution operation is the key component to CNN. The convolution kernel

works as a local filter, it moves through the entire input and do the convolution

operation on each local components. This process extracts feature representation

of the local input, which works similar to common machine vision filters. The

convolutional layer of CNN employs the convolution operation to the portions of

input map using a kernel, and the convolved outputs denote states of the neuron are

Jinmeng Wu

2.2 Convolution Neural Network 24

stored in a feature map. The layer’s parameters consist of a set of learnable filters or

kernels, which correspond to a local receptive field used to convolve the input maps

or the feature maps in the previous layer. Generally, the output feature map combines

convolutions with input maps by kernels. Denote a set of d-dimensional vectors of

the input maps X = [x̂
(l−1)
i] , where x̂(l−1)

i is the feature map for location i in the

(l − 1)-th layer. Here the connection weightsW (l) = [w
(l)
j] and bias b(l) = [b

(l)
j] are

specified to be the j-th type of kernels, where the parameters w(l)
j and b(l)j connect

the input map and output map by neurons in the feature map. The convolution output

of feature map for location i in the l-th layer is defined as

x̂
(l)
ij = f(w

(l)
j x̂

(l−1)
i + b

(l)
j),∀j ∈ [1, 2, . . . , Kl], (2.2.1)

with its matrix form is defined by

x̂li = f(W (l)x̂
(l−1)
i + b(l)), (2.2.2)

where Kl is the number of kernels used for convolution at layer l, and total number

of layers is set as L. In particular, x̂(0)
i is a segment part of the primary input when

l=1. Assuming the width size of sliding windows is set to k for a kernel, thus the

convolved input map is scanned from the i-th position to (i + k − 1)-th position

across the entire input denotes by x̂(0)
i = xi:i+k−1 = [xi,xi+1, . . . ,xi+k−1]

T, where

x̂
(0)
i is the k-th dimensional vector. Since the convolution network has a robust shift

invariance property, the same amount of change occurs in the feature map output as

that in the input changes.

2.2.3 Subsampling Layer

The precise positions of the detected features are irrelevant in identifying the

patterns after the convolution process. The property of being stationary implies that

convolved features in one region are still useful in the other regions. A subsampling

layer is introduced to reduce the resolution of the feature maps, and increases the

sensitivity of output shifts and distortions.

A subsampling layer is also called a pooling layer. This displays a pooling

function by aggregating the statistical features in the various positions of the input

Jinmeng Wu

2.3 Recurrent Neural Networks 25

𝒉"#$

𝒉"

Output

𝒙"

Figure 2.5: An illustration of the RNN architecture.

map. Generally, the pooling function includes a local averaging and maximizing

operations. The layer’s unit computes the average (mean) or maximum (max) of the

feature maps of the input in a region. The pooling function is the non-overlapping

approach that maps the max or mean of the input into a feature map in the next

layer, and the dimension of the feature map output becomes lower than the original

input dimension. Supposing the last L-th layer is the subsampling layer, the pooling

function after the convolution process is

x
(l+1)
i = fpooled(x̂

(l)
i),∀l ∈ [2, 4, . . . , L], (2.2.3)

where fpooled represents the pooling function, denoted as max or mean operation. In

general, these features after pooling go through the convolution layer as the input.

2.3 Recurrent Neural Networks

2.3.1 Theoretical Foundations

In the previous sections, we introduced typical Artificial Neural Networks (ANNs)

(e.g. CNN, AE) whose connections belong to a end-to-end approach. RNN is a

cyclical connections system, considering the order of element in input sequence. It is

successfully used in a variety of NLP tasks, including NMT [75, 76], MRC [77] and

QA [78].

Jinmeng Wu

2.3 Recurrent Neural Networks 26

The RNN-based language model (RNN LM) is called Elman network [39, 79].

This structure contains previous input, hidden and output layers. In general, RNN

is an instance of extension of Multi-Layer Perceptron (MLP), whereas the core

operation is quiet different. The MLP focuses on mapping from input to the output

units, whereas RNN in principle map the whole history from previous inputs to each

current output. The key component of RNN is that the recurrent connections permit

a memory of previous inputs to persist in the internal hidden state, which is used to

affect the network output. In this section, we focus on a basic RNN containing a self

connected hidden layer, as shown in Figure 2.5.

2.3.2 Forward Propagation

The forward propagation of an RNN is similar as that of an MLP with a single

hidden layer, different from MLP, the activations of the hidden layer based on both

the current external input and the previous hidden layer activations one step back in

time. Assuming a length T input sequence X presented to RNN, and a sequential

of elements is expressed by [x1, · · · ,xT], where xt is a d-dimensional input vector

at current time t. In particular, the previous hidden state ht−1 changed to be a part

of inputs with the current input vector xt. Since the same operation is executed

for the previous layers, hidden layer output sequence is [h1, · · · ,hT], where ht is

the n-dimensional output hidden state for the current layer. The m-dimensional

output vector is denoted as yt. Let xit to be a scalar value of the i-th input unit at the

current time t, and hjt denotes a value of the j-th hidden unit at time t. The defined

parameters W = [wik] connect the input and the current hidden layer, U = [ujk]

connects units from the previous hidden layer to the current hidden layer. The hidden

state at current time t is computed by the combination between input vector xt and

the previous hidden layer state ht−1, is defined as

akt =
d∑
i=1

wikx
i
t +

n∑
j=1

ujkh
j
t−1, (2.3.1)

with the hidden state at current time t is computed with a nonlinear and differentiable

activation function, given as

hkt = f(akt), (2.3.2)

Jinmeng Wu

2.3 Recurrent Neural Networks 27

where the output hidden activation ht = [hkt] is a n-dimensional vector at time t.

The complete sequence of hidden activations is computed by starting from t = 1,

then recursively applying 2.3.1 and 2.3.2 with the increase of time t at each step.

The parameters W and U are shared between the input vector and previous hidden

state when both dimensions are the same. Note that the required initial values hj0 are

commonly set to 0 or random distribution, [80] has shown that using nonzero initial

values improves the robustness and stability of RNN to noise. Denote the parameter

V = [vkh] is a n×m dimensional matrix. The output yt is calculated by the hidden

state at the current time t as

yht = g(
n∑
k=1

vkhh
k
t), (2.3.3)

where the output yht is a scalar at h-th element of vector yt at time t. The activation

function g(·) can be set to a linear or non-linear functions (e.g. softmax function

and logistic sigmoid) depends on different tasks. For instance, sequence prediction

task [39] uses the softmax function as their activation function.

2.3.3 Backward Propagation

Apart from forward propagation for RNN, the backward pass for each training

epoch is significant for optimizing the network. Supposing the partial derivatives of

the objective function is given with respect to the outputs from RNN, it is important

to compute the derivatives with respect to the forward parameters W,U and V

of RNN. There are two commonly methods have been proposed to successfully

compute the weight derivatives of RNNs, one is called back-propagation through

time (BPTT) [81], the second one is real time recurrent learning (RTRL) [82]. In the

backward pass for RNN, we employ BPTT method to compute the derivatives of

weights since it is more efficient and conceptually simpler with a less computation.

Similar to a standard backward propagation for MLP, BPTT is composed by a

repeated process of the time chain rule. It is worth noting that for recurrent networks

like RNN, the objective function Eq.(2.3.2) relies on the activation in the hidden

layer not only affect the output layer, but also the hidden layer at the next time step

Jinmeng Wu

2.3 Recurrent Neural Networks 28

𝒙" 𝒙"#$

𝒉",'

𝒉",(

𝐘*

𝒉"#$,'

𝒉"#$,(

𝐘*#$

Forward pass

Backward pass

Figure 2.6: An illustration of the BRNN architecture.

in a recurrent network. Therefore, the partial derivative of the activation at in hidden

layer is obtained by the hidden layer at the next time step t+ 1, defined as

δkt = f ′(akt)

(
m∑
h=1

δht vkh +
n∑
j=1

δjt+1ukj

)
, (2.3.4)

where

δit
def
=
∂L

∂ait
, (2.3.5)

with the cross entropy loss of RNN is denoted as L, and the symbol def
= denotes the

equal definition function. The δit term is defined by the derivative of i-th element of

activation at time t, this term is calculated by starting at final time step t = T , and

recursively computing a partial derivative function following with the decrease of t.

2.3.4 Bi-directional RNNs

Bi-directional recurrent neural networks (BRNN) [83] are composed by a training

sequence forwards and backwards of two separate recurrent hidden layers, both of

which are connected to the same output layer, as shown in Figure 2.6. Normally, we

compute the current output according to the past context information by a forward

propagation for RNN. However, the context in future is significant as well as that in

past for a series of tasks, such like sequence labeling. For instance, when recognizing

Jinmeng Wu

2.3 Recurrent Neural Networks 29

a special hand written letter, it is useful to obtain the subsequent letters coming after

the target letter as well as those before. While a standard RNN process sequences

only considers a forward order of letters, regardless of the subsequent context.

An efficient approach is to pad the subsequent context to the input sequence so

that increasing the dimension of the input, this method called time-window. Although

it can provide the future context to predict the current letter, it suffers from the issue

that a range of useful context is generally unknown, it may cause the required time-

window size becomes very large. Thus, a number of unnecessary input weights

is increased to cause expensive computation. Another approach is given a delay

between the inputs and the output through providing the network a few time steps of

future context. This method remains the robustness to distortions of RNN, but it still

requires the range of future context to be determined by hand. Furthermore it places

an unnecessary burden on the network by forcing it to remember the original input,

and its previous context, throughout the delay. In above approaches, neither of these

approaches remove the asymmetry between past and future information.

Differently, BRNN offers a better solution to solve the above issue, it provides

a symmetrical network to collect the past and future context together for each step

time in the input sequence, without changing the input based on the relevant output.

In recent, BRNN brings an improvement results in various fields, such as machine

translation [34], machine comprehension [43] in NLP tasks and protein secondary

structure prediction [84] in the biological area.

The forward propagation for the BRNN hidden layers is the same as for the

traditional RNN. In particular, the input sequence is pointed in the opposite directions

to the two hidden layers, and the output layer of the BRNN stops updating until

both two hidden layers have processed the entire input sequence. The total hidden

state at time t is represented by ht = [ht,f ;ht,b], where the notation [·; ·] represents

the aggregation between forward and backward hidden states. The activation of the

output layer is computed by using the two hidden layers, given as

yht = g(
n∑
k=1

vkh[h
k
t,f ;h

k
t,b]), (2.3.6)

where the activation yht is a 2-dimensional vector at h-th element of matrix Yt at time

Jinmeng Wu

2.4 Neural Turing Machines 30

Input

Control Unit

Arithmetic/Logic Unit

Read Heads Write Heads

Memory Bank

Neural Network Controller

Output

Figure 2.7: An illustration of the NTM architecture.

t. The forward and backward hidden states are separately computed from Eq.(2.3.1)

and Eq.(2.3.2). Additionally, the backward propagation for BRNN is the same as

it for a basic RNN trained with BPTT method. In particular, the BPTT backward

propagation first computes the derivative terms for the output layer, then calculates

that for two hidden layers in an opposite directions for BRNN.

2.4 Neural Turing Machines

2.4.1 Theoretical Foundations

Neural Turing machine (NTM) is a structure of recurrent neural networks pro-

posed by [85], it allows to selectively store the information for a variable length of

time. The NTM architecture consists of two main components as illustrated in Figure

2.7, where one is the neural network controller, and the remaining one is a memory

bank. In fact, the controller of NTM is an optional neural network that is defined

according to the specific task, e.g. MLP, RNN and LSTM. Similar to the standard

neural networks, the one of usages for the controller is that interacting to external

Jinmeng Wu

2.4 Neural Turing Machines 31

resources through attention mechanisms for input vectors. In particular, an additional

function of the controller is to connect with a memory bank by adopting read and

write operations, where the controller can selectively collect required information

from memory, meanwhile it also leads to a change of content in memory.

The interactive architecture of NTM belongs to the differentiable end-to-end

system, hence it is possible to efficiently optimize the parameters using a standard

optimizing method including gradient descent algorithm [24]. To achieve it, the read

and write operations are used to interact with a certain number of elements in memory.

An attentional focus mechanism determines the number of elements from memory

that connects to the controller. In general, the attention mechanism constrains both

read and write operations to interact with a small portion of the memory, since the

NTM tends to store the output data from the controller without interference so that

the interaction is set to highly sparse when connecting the elements in memory.

Differentiable neural computers are an outgrowth of NTMs, with attention mech-

anisms that control where the memory is active, and improved performance. The

memory location brought into attentional focus is determined by specialized outputs

emitted by the heads. These outputs define a normalized weighting over the rows in

the memory matrix. Each weighting, one per read or write head, defines the degree

to which the head reads or writes. Several memory models derived from NTM offer

given improved results in machine comprehension [59, 86]. For example, given

question and context as the inputs, the memory provides information required to

predict the target answer for a given question.

2.4.2 Data Extraction

In this section, we describe the read operation that extracts data from the memory

bank to controller. Assuming Mt denotes a N ×M dimensional memory matrix

at time t, where N is defined as the number of positions in memory matrix, and

M is the dimension of each position. Let the parameter wt = [wit] is the vector of

weightings for N positions released by a read head at time t, where wit denotes a

value for the i-th position of memory matrix at time t. The read vector returned by

the head is defined as rt at time t. The weight wit of wt attends to each position of

Jinmeng Wu

2.4 Neural Turing Machines 32

memory M i
t for computing the read vector rt, given as

rt =
N∑
i=1

witM
i
t, (2.4.1)

where rt is a M -dimensional vector by the weighted sum function, and it is clearly

differentiable with respect to both the memory and the weighting. The normalized

weightings wt over the N positions of rows in memory matrix, are constrained by

N∑
i=1

wit = 1,∀i ∈ [1, . . . , N] (2.4.2)

where the N elements weighting wit ofwt is belong to [0,1] interval. The read vector

rt contains data from memory is utilized to the controller. In addition, the controller

is capable of deciding the magnitude of the weightings applied to memory.

2.4.3 Memory Updating

Memory update mechanism of NTM focuses on modifying the content in memory

based on each position of the previous memory matrix Mt−1 by using the write

operation. It consists of two operations: erase and add. Given a vector wt of

weightings returned by a write head at time t. Assuming et denotes a M -dimensional

the erase vector, whose elements belong to the range [0,1]. The vector Mi
t−1 of i-th

position of memory matrix at previous time t− 1, is refined as follows

M̃i
t = Mi

t−1[v − witet], (2.4.3)

where v is defined as a row vector with all element values of 1, and it acts point-wise

operation with respect to the multiplication of memory locations. In particular, the

elements of a memory location are equal to zero when both the weighting wit at the

i-th location and the elements of erase vector et are one. The elements of memory

are unchanged when either the weighting or the erase is zero.

Besides, the write head also defines a M -dimensional add vector at for refining

memory. The add vector focuses on the memory matrix M̃i
t computed from the erase

step, thereby the add function is defined as

Mi
t = M̃i

t + witat, (2.4.4)

Jinmeng Wu

2.4 Neural Turing Machines 33

where the vector Mi
t for the i-th position of memory matrix at time t has been

updated by the combined erase and add operations of the write head. Subsequently,

the memory matrix Mt contains the final content is applied to the read head for

providing the newest information for the controller. Note that the write operation is

differentiable end-to-end since both erase and add functions are differentiable. The

erase and add vectors contains M elements, which is the same as the read vector,

NTM allows them to refine over the specific elements in each memory location.

2.4.4 Addressable system

In the previous sections, we have shown the operations of reading and writing,

respectively. Here, we briefly introduce the weightings produced by read and write

heads of the controller. In NTM, two addressing mechanisms with complementary

facilities focus compute the read and write weightings: content-based addressing and

location-based addressing. The content-based addressing mechanism focuses on the

interactive relationship between the current memory matrix and the outputs from

controller by computing the semantic similarity. By using the similarity operation, the

goal of the content-based addressing mechanism is to make the memory to produce

a portion of data is approximate to the output produced by the controller. Suppose

kt denotes the M -dimensional output vector from a head of the controller. The

content-based addressing mechanism computes the normalized weighting between

the output kt and a memory vector Mi
t defined as

w̃t =
exp (βtcos[kt,M

i
t])∑N

j=1 exp
(
βtcos[kt,M

j
t]
) , (2.4.5)

where the parameter βt represents a positive key strength for controlling the magni-

tude of similarity between kt and Mi
t. The operation cos[·, ·] is represented by the

cosine similarity function by

cos[kt,M
j
t] =

kt ·Mj
t

||kt|| · ||Mj
t ||
, (2.4.6)

where the notation · is an Euclidean dot product, and || · || represents the length of the

vector, which is commonly computed by the Euclidean norm. The cosine similarity

output determines the weighting of content-based addressing.

Jinmeng Wu

2.5 Conclusion 34

The content-based addressing mechanism computes the weighting over each

position of matrix based on the content of data from memory and the controller.

Followed by this, an alternative approach is location-based addressing mechanism

updates the weighting over entire locations of memory, where this design is suitable

for storing the arbitrary content of data to memory. The content-based addressing

mechanism contains several transformations of a weighting, e.g. interpolation, shift,

and sharpening. Assuming gt denotes a interpolation gate. The weighting vector w̃t

from content-based addressing is interpolated with the weighting wt−1 from the head

at the previous time t− 1 according to the value of interpolation gate gt, thereby the

gated weightingŵt is defined by

ŵt = gtw̃t + (1− gt)wt−1, (2.4.7)

where ŵt is a N -dimensional vector. In particular, the gated weighting ŵt only

depends on the weightingwt−1 at the previous time when gt is set to zero. Oppositely,

the gated weighting ŵt equals to content weighting w̃t by ignoring wt−1. Let st
defined as a shift weighting vector. The gated weighting ŵt is used to shift operation

by indexing the memory positions from 0 to N − 1, defined as

w̄it =
N−1∑
j=0

ŵits
(i−j)
t , (2.4.8)

where the number of shift index is under N . The shift transformation may lead to the

leakage or dispersion of weightings over time when the shift weighting is not sharp.

To solve this, the head denotes a scalar γt to normalize the shift weighting as

wit =
w̄t(i)

γt∑
j w̄t(j)

γt
, (2.4.9)

where the value of γt is bigger than 1. Overall, the weighting from read and

write heads is refined by the combined addressing system including the content

and location-based addressing mechanisms.

2.5 Conclusion

In this chapter, we have explored a number of deep learning methods in the field

of learning high-level representation. These generic methods lay the foundations for

Jinmeng Wu

2.5 Conclusion 35

developing new neural network architectures and their key ideas have been repeatedly

applied and developed in the entire field of machine learning. We summarise their

main ideas here: a) AE aims to compress and reconstruct input with an unsupervised

training. In compression procedure, an encoder is used to map the input to a hidden

representation with dimensionality reduction. In reconstruction process, a decoder

reconstructs the input from the hidden layer. The variation models of AE includes

DAE and SAE. The key idea of DAE is to learn a robust representation from the

disturbed input. SAE conducts an unsupervised pre-training in a layer-by-layer

approach. The pre-trained layer conducts feature selection and extraction on the input

from the preceding layer, followed by supervised fine-tuning. b) CNN consists of

three kinds of structural ideas: a local receptive field, weight sharing and temporal or

spatial subsampling to obtain a certain degree of displacement, scale and deformation

invariance. The locally connection approach between two layers benefits to reduce

the intermediate parameters in network. c) RNN is an instance of recursive training

network. It learns a high-level representation by aggregating the whole information

of a input sequence. Note that in the forward pass, the current hidden state depends

on the hidden state at the previous time, whereas in backward pass, the derivative of

it depends on the hidden state at next time. d) An NTM is a differentiable memory

network. It defines a readable and writable memory to absorb the external resources

and return the useful information to the controller. In particular, similar to RNN, the

content of the memory is updated on time according to that in the previous state.

Recently, above neural network models have been applied to numerous fields,

e.g. machine translation in NLP [34], image caption generation in visual QA [27],

and speech recognition in audio processing [25]. However, we have come across the

semantic matching problem using this generic models for related QA tasks, eg. cQA,

MRC. This problem is important to almost QA models since the semantic matching

between question and answer determines the model performance. In this chapter, we

have closely studied the properties and designs of various neural network models,

and clarifying their mathematic algorithms will certainly be helpful to new algorithm

designs. In the next Chapter 3, we will describe the background of semantic matching

and its literature review.

Jinmeng Wu

Chapter 3

Semantic Sentence Matching

In this chapter, we review the related works of semantic sentence matching in

cQA. Multiple designs of architectures are investigated for the relevance between a

pair of sentences. Generally, most of works studied the semantic sentence matching

based on the generic neural network models, e.g. CNN, RNN. Semantic matching

measures the model performance that is significant to be explored in details.

3.1 Semantic Matching

The most basic technique for detecting semantic similarity between text objects

is lexical matching, e.g., by evaluating the string similarity between words [9]. The

main drawback of such techniques is that they are unable to recognize similarities

between synonymous words [87–89]. To tackle this problem, word co-occurrence

information obtained from large text corpora (e.g., Wikipedia, newswire text) or

hierarchy information drawn from semantic networks (e.g., Wordnet) can be utilized

to formulate the semantic similarities between words [8, 9]. Another strategy is to

characterize each word with a vector and compare the words through a similarity

function, e.g., inner product and cosine similarity [90]. Popular ways for generating

a word vector embedding include bag-of-word representation based on the contextual

words around the targeted word [54], latent semantic analysis [91], and distributed

embedding representation generated by a probabilistic neural language model [28,55].

36

3.1 Semantic Matching 37

Given the established similarities between words, sentence similarity can be further

established obtained based on an element-wise comparison of words resulting in

a similarity matrix between two sentences [92]. Such a matrix no longer contains

much of the syntactic or global structure of sentences [31].

In recent years, deep neural networks have been shown to be effective in char-

acterizing the latent relationships between words, returning distributed embedding

representation for words, phrases, sentences, paragraphs, and even documents. They

have been widely applied to various NLP tasks such as paraphrase identification to

detect whether two sentences share the same meaning [35, 93], and NMT to match

a source sentence in one language to a target sentence in another [34, 94]. This

is a highly dynamic research area and new architectures are being proposed and

refined. In particular, Convolutional Neural Networks (CNNs) have been used to

integrate the word patterns into a representation that preserves the semantics of a

given sentence [33, 35, 93]. Additionally, recursive auto-encorders can learn sentence

representations by encoding the parse tree structures of sentences [31], and recurrent

neural networks (RNNs) can retain the key information of words spread throughout a

sequence [94] using architectures such as the Long-short Term Memory (LSTM) [41].

Bi-directional RNN takes into account information from both the preceding and fol-

lowing words, and can be applied with the support of an alignment model to produce

a context vector to aggregate word information in a sentence [34]. Recently, a hierar-

chical modification of a RNN has been developed jointly to model words, sentences,

and paragraphs by treating a paragraph as a sequence of sentences and a sentence as

a sequence of words [61]. There has been increasing interest in using an attention

mechanism in NLP. An attention mechanism would enable a network selectively to

focus on the key parts of a sentence, for instance, through the use of attention driven

RNN [4, 95] or CNN [37, 96]. In addition to comparing the similarities between text

objects, semantic matching can also be performed between an image and a portion of

text, e.g. sentence description generation for images [27,97]. A popular approach for

this is to build a compositional network that contains a CNN (for image processing)

and a RNN (for text processing) to model the similarity between image and text

representations [98].

Jinmeng Wu

3.2 Community Question Answering 38

3.2 Community Question Answering

QA is the task of producing a machine that can automatically answer questions

posed by humans using natural language. Given a question, QA consists of two

typical schemes. The first approach is to select the best answer from an existing

pool of answer candidates, known as cQA. The other is a machine dialogue task

which requires the computer to automatically to generate a novel answer, based

on a natural language model [49]. On the other hand, cQA is structured around

a website that allows users to post their questions and for other users to submit

answers [99, 100]. The answer selection task for cQA can be treated as a semantic

matching task between the question and answer text; this matching task is the focus

of this study.

Commonly, cQA has undergone a spectacular increase in popularity in recent

years. With the advent of relevant websites (e.g. Stack Overflow [21] , Yahoo!

[19]), an increasing number of people can freely post any question and expect a

variety of answers. With the influx of new questions and the varied quality of the

answers provided, it is very time-consuming for a user to inspect them all. Therefore,

developing automated tools to identify good answers to a question is of practical

importance [101]. The problem of redundancy and noise is prevalent in CQA [102].

Both questions and answers contain auxiliary sentences that do not provide any

meaningful information.

In the past, the traditional QA approaches treated a series of documents as a type

of memory to retrieve answers from these documents corresponding to the question.

A set of recent works attempt instead to generate a graph of facts called a knowledge

base [8, 57], as the memory, and map the questions to logical queries.

3.3 Traditional Approaches

The traditional approach is IR-based techniques [3] adopts the retrieval methods

to collect the specific information from a set of documents. The retrieval methods

search the answers from the website through detecting the entities for question.

Considering the other traditional technique, lexical matching is employed to detect

Jinmeng Wu

3.3 Traditional Approaches 39

semantic similarity between text objects. For instance, Islam et al. [9] has evaluated

the string similarity between words, and Chen et al. [103] has developed a feature-

based system, computing the similarity distances between words using a variety of

statistical methods. One of the main drawbacks of using such techniques is that the

similarity between synonyms cannot be well captured directly from the text [87, 89].

This synonym-specific problem, however, can be addressed through a number

of methods. One approach is to pre-compute or pre-load word co-occurrence infor-

mation based on one or more large text corpus, such as Wikipedia. Another method

is to leverage word hierarchy information drawn from semantic networks, such as

WordNet, as in [8, 9]. Characterizing each word with a vector and comparing the

words through a well-defined similarity function, such as cosine similarity [90], can

also counteract this specific problem. A number of techniques exist for generating

an embedding vector for a word. Popular methods include Bag-Of-Words (BOW)

representation based on the contextual words around the target word [37, 54], Latent

Semantic Analysis (LSA) [91], distributed word embeddings generated by a proba-

bilistic neural language model [28, 55], and Gaussian distribution embedding [104].

Once the similarities between words have been established, the similarity be-

tween a pair of sentences can be derived based on an element-wise comparison of

words using techniques like the syntactic tree kernel [105, 106], Tree Edit Distance

(TED) [107] and its multiple variations [53, 108]. In particular, TED is a flexi-

ble, lexical-based matching technique, which compares two sentences based on the

number of operations required to transform one sentence into the other, where the

operations include inserting a word, substituting a word, moving the position of a

word within the sentence, and deleting a word [107]. There are multiple variations

of TED models, for instance, ones that use tagging sequences [109] and ones that

consider both lexical semantic resources and distributional representations [53]. An-

other variation for transforming complex sentences is to first extract shorter and

more intuitive sentences using a tree kernel heuristic [110]. The probabilistic TED

model [108] uses tree-edit operations to transform a question into an answer, and

decides whether an answer is relevant according to whether or not the given question

can be successfully transformed into this answer. There are also cQA approaches

Jinmeng Wu

3.4 Neural Semantic Models 40

aimed at extracting structural patterns that contain syntactic information in sentences,

e.g., the feature-based one [106] and [105] based on a syntactic tree kernel. These

techniques return a similarity matrix [92] between two given sentences. Nevertheless,

despite measuring the similarity, the similarity matrix may not reflect the syntactic or

global structure of the sentences [31].

3.4 Neural Semantic Models

Deep neural networks have been proven to be effective for generating distributed

embedding representations of text objects (e.g., words, phrases and sentences) and

characterizing the latent relationships between them. In the context of cQA, they have

been widely applied to handle a number of problems, such as identifying paraphrased

sentences [31, 111], detecting shared meaning between sentences [35, 112], and for

syntactic parsing to capture semantic relationship between phrases [113, 114]. In

this section, we review neural network architectures for answer selection in cQA, we

not only explain the basic ideas of the existing works but also note their limitations,

which has motivated the design of the proposed network architecture and its training.

A simple way to use a neural network for answer selection is through feature

learning. For instance, [16] employs a Restricted Boltzmann Machine (RBM) to

combine bag-of-word features and non-textual features for a given sentence and then

feeds the fused features to a classifier to decide the best answer. An alternative way

is the CNN-based approaches that have been very successful in image representation

learning and very popular in text representation learning. By characterizing a sentence

as a set of word embedding vectors (the set of word embedding vectors constitutes

a distributed representation) stored in a sentence matrix [11, 32], a CNN can be

typically employed to compute a vector representation for the sentence from its input

matrix. A CNN applies the convolution operator between a weight matrix and the

sentence matrix to extract contributing patterns corresponding to word sequences

in sentences [37, 115]. Each sentence is represented by a new vector in another

distributed representation, from which a scalar similarity score can be computed

for a sentence pair. The advantage of such a design is that the convolution feature

Jinmeng Wu

3.4 Neural Semantic Models 41

map enables the modeling of (1) the semantic information between words within

the same sentence and (2) the syntactic information of a sentence via extracting the

contributing word sequences. Similar to a CNN, an auto-encoder can be applied

to learn the sentence representation from word embeddings [19]. Overall, all of

these techniques formulate sentence representation without consideration of the

matching task, and although the sentence representations will preserve semantic

information, the detailed word-level information that may be crucial for matching

the two sentences, will be lost.

There are other approaches that attempt to encode the semantic links between the

questions and answers that are important for matching. For instance, a latent sentence

representation can be learned in order to reconstruct a question from its answer using a

deep belief network [116]. To model more accurately the semantic relevance between

sentences, some architectures have begun to combine similarity information directly

with representations of sentence pairs. In particular, the similarity score computed

from a CNN-based sentence representation can be treated as an intermediate feature

and combined with sentence representations themselves prior to further processing

[33]. That is, the sentence representations returned by CNN for each sentence are

concatenated with the scalar similarity score. The concatenated vector is compressed

to a dense vector of lower dimension by a fully connected neural network. Although

this model learns a distributed similarity representation tailored to the matching task,

it starts from the CNN-based sentence representation which, as mentioned earlier,

has already suffered a information loss of the detailed word-level information and

thus is not optimal for improve the matching.

Focusing on the word-level semantics, Lu and Li propose a model that recog-

nizes the similarity between each pair of words using a topic-based neural network

architecture [29]. Specifically, each first-layer neuron is associated with a topic and

the neuron is active if both sentences have at least one word associated with this

topic. The cross-domain topics [117] are modeled using latent Dirichlet allocation

(LDA) [118]. The output of an active neuron is a function of a linear weighting of

the bag-of-words representation for each topic. In total, an overall relevance score

is computed through a further two hidden layers, where the second hidden layer

Jinmeng Wu

3.4 Neural Semantic Models 42

is also controlled by the topic hierarchy. Although this model directly considers

the word-level similarity, the information flow in the model is limited by the initial

architecture, which compresses the representation based on the topic hierarchy, which

may not be optimal for the matching task.

Another approaches work on word-level semantics between sentences, where

CNN learns the distributed similarity representation from sentence embedding matri-

ces [2, 5]. The network architectures use a 2D convolution feature map to encode the

detailed segment-level similarity between sentences, but employs a 1D convolution

feature map to encode word-level similarity between the sentence segments. The

input of this 1D map is a simple concatenated vector of two individual segment

vectors of word occurrences. In this case, local word interactions between sentence

segments will not be considered thoroughly, thus detailed word-level similarity may

be lost under the segment scale. To address these issues, we propose an alternative

deep matching model in Chapter 4 that directly utilizes the word-level similarities to

extract a robust similarity measure.

However, none of the above approaches account for the order of the words in a

sentence. In recent years, RNN [39] have become a popular choice for processing

natural language due to their effectiveness in modeling the word order information

within a sentence. For instance, [75] uses a bi-directional RNN facilitated by an

alignment model [98] to compute the sentence representation for the NMT task. In

QA related tasks, [56] characterizes the sentence by using a stacked bi-directional

LSTM, while [78] uses a bi-directional LSTM. In [78], the multiple hidden represen-

tations returned by a bi-directional LSTM at different states are used to compute a

similarity matrix between the question and answer sentences. It is a common choice

that learns a sentence representation using RNN or the variation model of RNN (e.g.

LSTM [41], GRU [42]), and Wang et al. [119] has utilized a bi-directional LSTM to

learn the word position representation of each time step in a sentence.

Jinmeng Wu

3.5 Attention Mechanisms for cQA 43

3.5 Attention Mechanisms for cQA

The attention mechanism, first proposed in [75] for the NMT task, enables a

neural network to identify the salient components of a sentence. It tends to rely on

a weighted sum of a set of component representations, where the attention weights

control the contributions of the components. The softmax function is typically used

to convert a set of importance scores to a set of positive attention weights that sum

to unity. Different ways of designing attention mechanisms correspond to different

strategies of defining the components and formulating their importance scores. In

Chapter 5, we refer to a function that is used to compute these importance scores as

an attention function.

A typical way of incorporating an attention mechanism in an RNN- or LSTM-

based cQA system, is to relate the different components to the different hidden

states of the network, which correspond to the different word positions in a sen-

tence. The final sentence representation can be expressed as a weighted sum of the

hidden representations computed at these states. In [95], the importance score is

formulated as a function of each hidden representation itself, and focuses solely

on the contribution of the word position within the target sentence. In [120], the

attention mechanism is applied to the answer sentences, where the importance score

is computed from not only the hidden representation of the answer states, but also

the question representation returned by a bi-directional LSTM. This results in an

interactive attention mechanism between answers and questions. Similar strategies

to [120] are also proposed in [121, 122]. More sophisticated attention mechanisms

are developed by considering more factors that may affect the importance score. For

instance, [97] takes into account the previous episode memory, while [102] considers

the question topic and question type in cQA, as well as the question and answer

interaction information.

Instead of using attention mechanism in the learned representations from specific

network, an alternative way to set the attention mechanism is to examine the impor-

tance of the word pairs that appear in the given sentence pair. For instance, given a

question sentence containing n words and an answer sentence containing m words,

each element in the n×m attention weight matrix indicates how much a word pair

Jinmeng Wu

3.5 Attention Mechanisms for cQA 44

contributes to the relevance of the two given sentences. The importance score of

each word pair can be computed from their corresponding word embeddings [37]

or the hidden representations at the corresponding word positions returned by an

LSTM [123], through the use of Euclidean distance or dot product. [1] measures

the semantic interactions of word pairs from similarity matrix between the encoded

sentences representations, which come from bi-directional LSTM. A soft alignment

representation is computed for each word in sentence using an attention mechanism

in word-level similarity matrix.

Variations of attention mechanism can be developed in a bespoke manner to

suit a specific task, for instance, by taking into account an external knowledge

base [44], by implementing an attentive max-pooling operation for CNN [38, 96], or

by joining the internal documents into given question using co-attention attention

in MRC task [123], etc. Typically, [40] explores an sentence-aware word attention

on each word position representation of a sentence before computing the RNN

representations. Besides the CNN or RNN-based attention models, a recent auto-

encoder with attention model [124] applies a hidden representation from the encoder

to reconstruct sentence representations in the decoder for question retrieval. Recently,

self-attention has emerged as an attention mechanism aimed at aligning the multiple

positions of a sequence, which has been widely used in a variety of the related QA

tasks, for instance, machine reading comprehension (MRC) [77, 125], NMT [76] and

abstractive summarization [36]. For instance, [126] provides the fusion functions to

combine self-attention and similarity matrix based attention to complete the related

MRC task. In cQA, [101,127] apply a multi-dimensional self-attention mechanism to

question and answer embeddings, and an attention weight vector instead of a single

attention scalar is computed to learn word-level alignment representation. In Chapter

5, we extend the self-attention mechanisms by involving more contextual information

in cQA datasets.

Jinmeng Wu

3.6 Memory Networks 45

3.6 Memory Networks

General neural network memory models such as NTM consists of the differen-

tiable memory and controller that reads and writes to specific locations [85]. Recently,

a series of deep neural network models adopt the memory architectures for machine

comprehension [128, 129], image caption generation [97] and dialogue system [6].

Memory network has been employed for MRC with internal resources, such as

supporting contexts or facts, in most cases. The MRC is derived by QA task, the

difference being that the knowledge-base of external domain is typically required to

answer questions [13, 128], whereas in machine comprehension answers are inferred

from a given text.

A Memory network called MemNN has been proposed in [58], first introduced

the concept of a long-term memory component for MRC. MemNN aims to store

useful contextual information from supporting facts, and produces relevant memories

to support given input. Followed by this, as a strongly supervised model, MemNN

generates a single word relies on the supporting facts as the answer for given question.

A series of attentive memory networks [86, 130] are recently proposed to strengthen

memory by storing the relevant information. Dynamic Memory network (DMN) [97]

improves over it by employing an end-to-end trainable network with an attention

mechanism. The memory iteratively produces a vector to store the relevant input

information, which is used in answer generation. End-to-end memory networks

(MemN2N) [86] encodes sentence to a continuous vector representation depends on

a recurrent attention mechanism instead of sequence aligned recurrence, it has been

shown to perform well on simple-language machine comprehension and language

modeling tasks. Different from the MemNN and DMN architectures, MemN2N

uses an end-to-end mechanism with a weakly supervised training. However, the

disadvantage of MemN2N is that it only generates answers with one single word.

Multi-layer Embedding with Memory Network (MEMEN) [59] provides a hierar-

chical attentive memory to learn an alignment memory matrix, which contains the

syntactic and semantic information of the words returned by skip-gram model. The

proposed model in Chapter 6, exploring to use memory network in QA task without

external sources and knowledge-base.

Jinmeng Wu

3.7 Conclusion 46

3.7 Conclusion

In this chapter, we have introduced a variety of neural network methods crossing

different periods for tackling semantic matching problem. The traditional model is

also called shallow learning use the statistical methods to capture lexical information

including BOW, TED and LSA. The variants of deep learning models focus to learn

the high-level semantic similarity representation through multiple layers. Addition-

ally, the attention mechanism as an efficient tool improves the relevance between

question and answer, by involving the contextual information to the model. A typical

memory network utilizes its core memory not only store the content related to the

question or answer, and selectively release that to support the semantic matching. It

is helpful for improving the model performance, especially for a large scale of the

dataset. Although there exist multiple types of models can complete QA matching,

we still come across a series of problems, such as the model complexity, the small

storage of memory, and external resources.

In the next following sections, the proposed models will provide the solutions

with respect to above mentioned problems. For instance, in regard to the complexity

and computation speed, the proposed method in Section 4 solves the problems by

training model in a decomposition way. The proposed memory network model in

Section 6 is able to store relevant information in specific locations of memory, and

generate internal interactive information to support semantic matching.

Jinmeng Wu

Chapter 4

Greedy Word-level Semantic

Similarities

4.1 Introduction

In Chapter 2 and Chapter 3, we have reviewed some of conventional deep learning

methods and the background of semantic sentence matching. Semantic matching

requires accurately modeling the relevance between two portions of text and is

widely used in various NLP tasks, such as paraphrase identification [31,35], machine

translation [34, 61, 94], image caption generation [27, 98], answer selection [14, 86,

131], etc. For instance, in the answer selection task, given the query “where is the

cat?”, it is clear that “the cat sits on the mat” is a relevant answer. A semantic

similarity score can be computed based on how well two portions of text are matched.

The simplest similarity scoring approach is to use lexical matching to count the

number of matching words or stems, but this fails to notice the similarity between the

question word “where” and the preposition “on” or the location “mat”. A knowledge

resource can be used to inform the matching about the relationship between words

or phrases; however, this requires additional effort to manually create or curate a

knowledge resource, and still requires a mechanism to combine the word or phrase-

level similarity. An alternative is to use machine learning to train a model to quantify

the semantic similarity. Recently, there has been a burgeoning interest in using neural

47

4.1 Introduction 48

language models—neural networks adapted for representing natural language – for

estimating the semantic similarity between portions of text, and improved matching

performance over traditional approaches has been demonstrated [29, 32, 56, 132].

In this chapter, we focus on semantic matching for answer selection in cQA [133],

for which the task is to select highly relevant answers from a candidate sentence

pool given a question posted by the user. It has a wide range of applications such as

information retrieval, web search ranking [132], and dialogue systems [49, 134]. In

order to compute an accurate measure of relevance, it is crucial to take into account

the syntactic, lexical, and semantic information of the text pair. To achieve this

previous works have proposed feature-based models utilizing semantic information

provided by external resources, e.g., WordNet [51–53]. Although these approaches

use semantic features to improve the similarity metric, their feature engineering stage

can be expensive. Moreover, these approaches cannot be adapted to match language

for which there is no external semantic resource available, as previously noted [32].

Replacing the manual feature engineering with a neural language model, various

works have been developed to compute semantic similarity between text by learning

distributed representations of words via neural networks [30, 31, 33].

The state-of-the-art models for this task have used various architectures for the

task. Fundamentally, the models can be divided into those that derive the similarity

score from sentence level representations [32, 33] and those that use directly the

word-level similarities [5, 29]. Here we propose an architecture that uses word-

level similarity, based on a vector-space embedding of words, and then builds an

abstracted representation of this similarity using stacked auto-encoders, with the

aim of both preserving and denoising the information contained by the set of word-

level similarities. Our hypothesis is that, if properly assessed, the set of word-level

similarities is sufficient for the semantic matching task. Essentially, the proposed

neural network is able to learn how to distill a set of pairwise similarities to a single

relevance measure.

Specifically, we propose a deep matching model that represents the similarity

between a pair of sentences using a distributed similarity vector to capture the

semantic similarity between all words in the sentences. We refer to the approach

Jinmeng Wu

4.1 Introduction 49

as Deep Semantic Similarity Model (DSSM). In the proposed DSSM, given an

input sentence pair, the similarity between each pair of words is represented by a

matrix computed from the individual representations of the words in a distributed

representation. The similarity matrix itself may contain redundant information that

can unnecessarily increase the model complexity. Thus, a pooling procedure is

applied to extract the similarity between the word pairs that are most discriminative

to the relevance identification. Multiple stacked auto-encoders (AEs) [62] are used

to denoise and refine the similarity representation across multiple layers. Unlike

previous approaches [31, 33, 135] that follow the procedure of first reducing the

distributed sentence representation from matrix to vector and then computing a

scalar similarity score, DSSM never directly reduces the sentence representation, but

gradually compress the distributed similarity representation. This can potentially

avoid the problem of input information loss caused by compressing the sentence

representation at an early stage [5]. We do not compress similarity information based

on a pre-defined scale, e.g., topics in [29] and sentence segments [5], but use AEs to

automatically encode the important information.

The DSSM model is parameterized by a substantial number of variables including

the word embeddings and the network weights. All of these parameters are difficult

to train jointly. In order to obtain a well-trained model, a greedy layer-wise training

scheme is proposed that trains one part of a model at a time, using the previously

pre-trained parameters to generate the input for the next part [136]. This scheme not

only eases the training complexity, but also has been shown to yield significantly

better local optimum than random initialization and offers better generalization [72].

Specifically, in the proposed greedy layer-wise training scheme for DSSM, we

divide our model into three parts: (1) a distributed bilinear similarity computation,

(2) a high-level deep similarity representation returned by the stacked AE, and (3)

a overall similarity score computation and matching prediction. Initially, the word

embeddings are formed using an unsupervised neural language model. Then during

the initial training stage, a pair-wise training approach based on a supervised ranking

score is used to optimize the variables in the bilinear similarity and pooling computa-

tion for part (1). An unsupervised training based on a regularized reconstruction error

Jinmeng Wu

4.2 The Proposed Semantic Matching Model 50

is then used to optimize the AE weights for part (2). The weights in the matching

prediction (3) are trained based on a cross-entropy loss function. During the final

training stage, an additional fine tuning of all the model parameters is conducted

based on the same cross-entropy loss.

In the experiments, we show empirical comparisons of the proposed method and

various state-of-the-art matching models that do not utilize any external information

resources or manual feature engineering. The text retrieval conference (TREC)

QA dataset and Yahoo! database of cQA are used to evaluate the performance.

In addition, we analyze the performance of variations of the proposed model to

empirically justify model design choices. The results show that the proposed DSSM

model outperforms the state-of-the-art methods and demonstrate that the model

provides a robust approach for text matching.

4.2 The Proposed Semantic Matching Model

𝐖𝐨𝐫𝐝	 𝐄𝐦𝐛𝐞𝐝𝐝𝐢𝐧𝐠
	 𝐌𝐚𝐭𝐫𝐢𝐱

𝐒𝐢𝐣

𝐬𝐢𝐣

𝐡𝐢𝐣
(6)

...

𝐡𝐢𝐣
(8)

𝐡𝐢𝐣

output

𝐒𝐢𝐦𝐢𝐥𝐚𝐫𝐢𝐭𝐲 𝐩𝐨𝐨𝐥𝐢𝐧𝐠

𝐔6

sim(𝑞E, 𝑎H)

𝐠𝐢𝐣
(6)

𝐡𝐢𝐣
(8I6)

𝐖J

𝐠𝐢𝐣
(8)

𝐔K

𝐖6

𝐩𝟏

𝐩𝟐

𝐗𝒊

𝐘𝐣

𝑞E

𝑎H Additional
	 features

𝐒𝐀𝐄 𝐌𝐚𝐭𝐜𝐡𝐢𝐧𝐠	 𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧

𝐓𝐫𝐚𝐢𝐧𝐢𝐧𝐠	 𝐃𝐞𝐜𝐨𝐝𝐞𝐫

Figure 4.1: An illustration of deep architecture for matching text pair.

Given a query described by a sentence, the goal is to rank the relevant answer

sentences from a pool of candidates. Success on this task hinges on the metric used

to quantify the relevance between a query and a candidate sentence. For this purpose,

Jinmeng Wu

4.2 The Proposed Semantic Matching Model 51

we propose to train a deep similarity model that automatically learns not only the

distributed representations of sentences and words, but also a parametric similarity

measure between sentences to capture more accurately their semantic similarity, and

can be used as a confidence score to determine whether the candidate answer is

relevant to the query. The layered algorithm architecture is illustrated in Figure 4.1.

It includes an input layer parameterized over the sentence and word representations,

a similarity computation layer, a pooling layer, multiple similarity denoising layers,

and a finally a prediction layer. A well-trained model should effectively quantify the

semantic relevance between a variable length query and variable length answer.

4.2.1 Distributed Similarity

Bilinear Similarity Construction

Given a query qi and a candidate answer aj , it is reasonable to assume the answer’s

relevance depends on the semantic similarity between the words they contain. We

employ a distributed vector representation to model the semantic similarity between

words—each word is represented by d-dimensional vectorw = [w1, w2, . . . , wd] and

the similarity between two words w and w′ is proportional to wTw′ or the cosine

similarity wTw′

‖w‖‖w′‖ . Assuming the vocabulary size is V , all the word vectors are stored

as the rows of the V ×d matrix W. Subsequently, if the query has mi words it can be

represented as an mi×d matrix Xi, likewise given the answer candidate has nj words

it is represented by an nj × d matrix Yj , where the rows of each matrix correspond

to the vector representations of the words appearing in the sentence. Defining the

integers m and n as the maximal lengths of a query sentence and an answer sentence,

variable length sentences can then be characterized by fixed-size matrices by adding

zero rows to fill up empty positions for shorter sentences: the m × d matrix Xi

denotes a query and the n× d matrix Yj denotes an answer candidate.

Working with the matrix representations of sentences, the semantic relatedness

of a sentence pair (qi, aj) can be formulated by a bi-linear model [29], given as

Sij = f
(
XT
i PYj + bs

)
, (4.2.1)

where the d × d matrix P and the m × n matrix bs are network variables to be

Jinmeng Wu

4.2 The Proposed Semantic Matching Model 52

optimized, and f(·) is an activation function that operates on each element of the

input matrix and can be set as hyperbolic tangent, sigmoid or rectified linear function

[64, 137]. Eq. (4.2.1) computes the similarity for each pair of words, one from each

sentence, and this results in the m× n similarity matrix Sij between the query qi and

answer candidate aj .

The parameter matrix P contains a total of d2 elements. Instead of optimizing

over arbitrary matrices, we can restrict the matrix structure in order to reduce the

number of parameters and improve the computational efficiency—often, without

sacrificing any performance. For instance, one extreme case is to fix P as an identity

matrix. Another commonly used option is to set P as an diagonal matrix [5, 29, 33],

Sij = f
(
XT
i diag([p1, p2, . . . , pd])Yj + bs

)
, (4.2.2)

so that the computation is reduced to optimizing d variables instead of d2. In this

work, we follow a cross attention model [2] to restrict P to be rank-1, given as

Sij = f
(
XT
i p1p

T
2 Yj + bs

)
, (4.2.3)

where p1 and p2 are two d-dimensional column vectors. One main advantage of

such a design is that XT
i p1 projects each word in the query to a one-dimensional

score, and a simple examination of the score value can provide a preliminary view

on the semantic contribution of the query words, and likewise YT
j p2 can be used to

to indicate the contribution of the answer words. The multiplication of the scores of

the query and answer words indicates a word pair that contributes significantly to

the sentence relevance. This straightforward algebraic operation offers good model

interpretability, with 2d variables to be optimized.

Pooling

To aggregate significant information and to reduce the size of the similarity

representation, we apply a pooling process to the computed similarity matrix Sij .

The pooling layer returns a vector version of the similarity between sentences, given

as

s
(l)
ij = pooling

(
S
(l1)
ij ,S

(l2)
ij , · · · ,S(ln)

ij

)
, ∀l ∈ [1, 2, . . . ,m], (4.2.4)

Jinmeng Wu

4.2 The Proposed Semantic Matching Model 53

where s
(l)
ij denotes the l-th element of the similarity vector sij , and S

(lk)
ij denotes the

lk-th element of the full m × n matrix Sij . The pooling operation compares the

semantic similarities between a word in the query sentence and all the words in the

answer candidate, and returns an aggregated similarity measure for that word. This

results in a length-m similarity vector sij for each query.

The two motivations for pooling are (1) to extract influential combinations of

words for text pair so that the pooled vector can be conveniently fed into the next

layer, and (2) to reduce redundant information and the amount of model parame-

ters. Commonly used pooling operations include average, max, min, and stochastic

poolling [138, 139]. In this work, max pooling is applied since it can be seen as

searching for the best match for each query word. For instance, consider the example

in Fig. 4.2, the query is ‘where is the cat?’ and its corresponding answer is ’the cat

sat on the mat.’ For each word in query, we have multiple choices of words to pair

with from the answer. In particular, for the word ‘cat’ in the query, its possible word

pairs include ‘cat cat’, ‘cat sat’,‘cat mat’, etc., and the the pooling process would

select ‘cat cat’ as it has the best matching score.

where
is

cat
the

cat sat on the mat

sij

Sij

Figure 4.2: An example of the pooling process. The input query is ‘where is the cat?’,

an answer is ‘the cat sat on the mat’. A semantic word pair of each row in similarity

matrix, which is pooled to from a vector representation after pooling. Symbol Sij

represents the similarity matrix between query and answer, and sij is the output from

pooling process.

Jinmeng Wu

4.2 The Proposed Semantic Matching Model 54

4.2.2 Deep Similarity Enhanced by Word Overlapping

Encoded High-level Similarity Representation

To denoise the similarity vector sij and remove redundant information, we in-

corporate multiple layers of autoencoders (AEs), referred as stacked autoencoders

(SAE), to compute a robust and abstracted representation of the similarities between

sentences. The network structure is illustrated in Figure 4.3. In the first AE, the

input is the similarity vector sij returned by the pooling operation, and the encoded

representation of the vector is defined by the following mapping function:

h
(1)
ij = f (W1sij + b1) . (4.2.5)

where the h1×m matrix W1 and the h1-length vector b1 define the encoder weights

and bias, respectively, and f(·) denotes the element-wise activation function. Repeat-

edly, chaining the output of the (l−1)-th AE as the input to the l-th AE generates an

abstracted representation formulated as

h
(l)
ij = f

(
Wlh

(l−1)
ij + bl

)
,∀l ∈ [2, . . . , H]. (4.2.6)

Assuming a total of H encoders are employed, the weight parameters to be trained

include the h1 ×m matrix W1, hl × hl−1 matrices {Wl}Hl=2, and the hl-dimensional

bias vectors {bl}Hl=1. Let θl = {Wl,bl} denote the complete set of parameters of

the l-th AE. In general, the high-level representation h
(H)
ij output by SAE has the

potential of capturing useful “part-whole decomposition” and “hierarchical grouping”

properties [71] of the input similarity vector. The use of more encoders may capture

a deeper or more robust representation of the information.

Word Overlapping Features

Previous research works have shown that it can be beneficial to utilize shal-

low word overlapping information between texts as a complementary information

resource to further enhance the deep semantic representation [32, 33]. Thus, in addi-

tion to the high-level representation h
(H)
ij output by the length-H SAE, we identify

words shared by the query and answer candidate sentences, counting the number of

Jinmeng Wu

4.2 The Proposed Semantic Matching Model 55

...

𝒔𝒊𝒋

...

...

...

𝐔%

𝐠𝐢𝐣
(%)

𝐖,

𝐖%

𝐡𝐢𝐣
(%)

𝐡𝐢𝐣
(./%)

𝐡𝐢𝐣
(.)

𝐔0

𝐠𝐢𝐣
(.)

𝐖0

...

...

...

𝐿2(𝜽%, 𝜽5%)

𝐿2(𝜽0,𝜽50)

Figure 4.3: The operation structure of SAE. SAE is stacked by multiple layers

(l=1,. . . ,H) of traditional AE. Each AE encodes the input to the encoder represen-

tation, which is fed to next AE as input. The decoding part of each AE is used to

reconstruct input and optimize the variables in training process.

co-occurring words, and also using their corresponding inverse document frequen-

cies (idf) as weights: h(add)
ij = widf × n. This is motivated by the loss of specific

information (such as years and proper nouns) which may not be accounted for in

the distributed representation of the words, but is useful when matching a query

to an answer. The SAE output h
(H)
ij and the additional features h(add)

ij are concate-

nated into one single vector, hij =

[
h
(H)
ij

h(add)
ij

]
, which is used as the final similarity

representation between two sentences.

4.2.3 Matching Prediction

Given a query sentence qi, the probability that an answer candidate aj is related

to qi can be modelled using two-way softmax based on the encoding of the similarity

representation hij , given as

p(tij = 1|hij) =
exp

(
hTijα1

)
exp

(
hTijα0

)
+ exp

(
hTijα1

) , (4.2.7)

Jinmeng Wu

4.2 The Proposed Semantic Matching Model 56

where the two vectors α0 and α1 are softmax parameters with the same dimensional-

ity as the similarity/feature vector hij . The matching prediction task is formulated as

a binary classification problem, where the label tij = 1 indicates that aj is related to

qi, while tij = 0 otherwise.

4.2.4 Proposed Greedy Layer-wise Model Training Scheme

The training of the proposed text matching model involves the optimization of the

distributed embedding matrix for the vocabulary W, the bilinear similarity weights

and biases {p1,p2,bs}, the length-H SAE network encoding weights {θl}Hl=1 and

decoding weights {θ̃l}Hl=1, as well as the softmax parameters α0 and α1. Given

a collection of query and answer candidate sentences with available ground truth

knowledge of whether they are related, the traditional training approach optimizes

the model variables θ =
{

W,p1,p2,bs, {θl}Hl=1, {θ̃l}Hl=1,α0,α1

}
all together by

minimizing a cost function, e.g., the regularized cross-entropy cost function as shown

below

L(θ) =−
∑

(i,j)∈I

[tij log p(tij = k|hij) (4.2.8)

+(1− tij) log (1− p(tij = k|hij))] +
λ

2
‖θ‖22 ,

where the index set I denotes the used training sentence pairs, and λ > 0 is the

regularization parameter set by the user. However, this model shares many of the

same challenges as other deep learning models [140], e.g., the large amount of

variables to be optimized, the non-convexity and high complexity of the model, and

is very difficult to obtain a good local optimal solution when following the traditional

training approach. We thus propose to use a greedy layer-wise training scheme [72],

which trains different sets of model variables in different stages based on multiple

objective functions relevant to the task, and further fine tunes the trained parameters

based on Eq. (4.2.8), with the goal of obtaining a better model solution with improved

generalization ability.

Jinmeng Wu

4.2 The Proposed Semantic Matching Model 57

Stage 1: Training the Distributed Similarity Metric based on the Ranking Score

In this stage, we aim at obtaining good initial parameters for the bilinear similarity

weights {p1,p2,bs} and the distributed word representation W, while temporarily

ignoring the remaining layers of the SAE and the softmax-based prediction. Rather

than a random initialization, we initialize W with the embedding representation

returned by a state-of-the-art unsupervised neural language model, e.g. word2Vec

[141] or Glove [142], and further optimize it together with the bilinear weights.

The parameters {p1,p2,bs,W} determine the quality of the computed similarity

vector sij . We evaluate sij based on a pairwise ranking scheme [29]. Specifically, an

aggregated similarity score is computed as

sim(qi, aj) = f(pT3 sij + bp), (4.2.9)

where p3 is a column vector with the same dimensionality as the distributed similarity

vector sij and bp is a bias parameter. Assuming a total of M query sentences are

used for training, for each query, a correct answer ai+ and an incorrect answer

ai− are randomly chosen. The cost function evaluates the difference between the

similarity scores of the correct and incorrect query/answer pairs. It is assumed that

ranking of the correct pair is larger than the incorrect one such that sim (qi, ai+) ≥
sim (qi, ai−)+ ε, where ε > 0 is the margin threshold set by the user. Denoting all the

variables to be optimized by θs = {p1,p2,p3,bs, bp,W}, the margin error function

to minimize is

LM(θs) =
M∑
i=1

max (0, ε+ sim (qi, ai−)− sim (qi, ai+))

+
λs
2
‖θs‖22 , (4.2.10)

where λs > 0 is a regularization parameter set by the user. The minimization drives

the differences to be large enough to facilitate the discrimination between the correct

and incorrect pairs. We use p
(1∗)
1 ,p

(1∗)
2 ,b

(1∗)
s and W(1∗) to denote the optimized

bilinear similarity weights and the word distributed embeddings, and s
(1∗)
ij to denote

the resulting similarity vector after the stage-1 training, and h(add,1*)
ij the resulting

additional overlapping features determined by W(1∗).

Jinmeng Wu

4.2 The Proposed Semantic Matching Model 58

Stage 2: Training Deep Similarity based on Regularized Reconstruction Error

This stage seeks to optimize the encoder weights {θl}Hl=1 in a layer-by-layer

manner when s
(1∗)
ij is presented as the input to the SAE. Instead of the traditional

AE training that is commonly used to compute deep semantic similarity between

text [19, 135], we apply a sparse and denoising AE training procedure [71], referred

as Sparse Denoising Auto-encoder (SDA). It learns from a partially destructed input

and attempts to reconstruct a “repaired” input from the destroyed one. Moreover,

it contains a sparsity constraint on encoding representation that restricts the output

magnitude of the inactive neurons to be zero. The operations of input deconstruction

and sparsity enforcement enables a SDA to output more robust features that are less

affected by noisy or irrelevant information in the input [72].

To implement dropout mechanism, the input similarity s
(1∗)
ij to SAE is corrupted

by a stochastic mapping approach: fR
(
s
(1∗)
ij

)
→ s̃

(1∗)
ij , where fR is the destruction

function and s̃
(1∗)
ij is the destructed input. The input destruction is implemented

by randomly choosing a certain number of input elements and then fixing their

value at zero, while retaining values of the other elements [72]. Each encoder is

trained in conjunction with a decoder, which reconstructs the input from the encoded

representation. The l-th reconstruction layer is formulated as

g
(l)
ij = f(Ulh

(l)
ij + cl), for l = 1, 2, . . . , H, (4.2.11)

where the m × h1 matrix U1, hl−1 × hl matrices {Ul}Hl=2, the m-dimensional and

hl−1-dimensional bias vectors c1 and {cl}Hl=2 store the decoder weights. Letting

θ̃l = {Ul, cl} denote the decoding weights, each encoder is trained by minimizing

the following reconstruction error:

LE

(
θ1, θ̃1

)
=

1

M

M∑
j=1

∥∥∥s(1∗)ij − g
(1)
ij

∥∥∥2 + λe
2
‖θ1‖22 + βRs(θ1), (4.2.12)

and for l = 2, 3, . . . , H , we have

LE

(
θl, θ̃l

)
=

1

M

M∑
j=1

∥∥∥h(l−1)
ij − g

(l)
ij

∥∥∥2 + λe
2
‖θl‖22 + βR(l)

s (θl), (4.2.13)

where λe, β > 0 are the regularization parameters, and Rs is the sparsity term. In

practice, most of the units in the initial layer of network are inactive because of

Jinmeng Wu

4.3 Experimental Analysis and Results 59

input text pairs are usually much shorter than the maximum length, resulting in a

similarity vector with many trailing zeros. After the stage-2 training, we obtain the

SAE weights
{
θ
(2∗)
l

}H
l=1

, the high-level similarity representation h
(H,2∗)
ij computed

from the original input s
(1∗)
ij using the trained weights

{
θ
(2∗)
l

}H
l=1

, as well as the

enhanced high-level similarity representation h
(2∗)
ij =

[
h
(H,2∗)
ij

h(add,1*)
ij

]
.

Stage 3,4: Greedy Training based on Cross-Entropy

The final output of the SAE h
(2∗)
ij is the input to the prediction layer. In the 3rd

training stage, the softmax weights are adapted by minimizing the cross-entropy

cost function as in Eq. (4.2.8). The adapted weights are denoted α(3∗)
0 and α(3∗)

1 .

Finally, the 4th training stage performs a fine-tuning [143] of the entire model,

which optimizes all the model variables θ =
{
W,p1,p2,bs, {θl}Hl=1,α0,α1

}
by

minimizing the cross-entropy cost in Eq. (4.2.8), but very importantly, starting from

the initial solution of

θ0=
{
W(1,∗),p

(1,∗)
1 ,p

(1,∗)
2 ,b(1,∗)

s , {θ(2,∗)l }Hl=1,α
(3,∗)
0 ,α

(3,∗)
1

}
. (4.2.14)

To train this model, we apply back-propagation to update model variables of

network [144, 145]. With many parameters in the neural network model, there is

the danger of overfitting on a small size of training data. To tackle the overfitting

issue, we use the dropout technique along with early stopping as surrogate forms

of regularization for the matching model [146, 147]. The dropout method prevents

feature co-adaption by randomly removing hidden units from the neural network

during forward training.

4.3 Experimental Analysis and Results

In this section, we empirically analyze and examine the design of the proposed

DSSM model with its greedy layer-wise training, and compare it with multiple state-

of-the-art models for solving the answer selection and reranking task using the text

retrieval conference (TREC) QA dataset and Yahoo! Answer database.

Jinmeng Wu

4.3 Experimental Analysis and Results 60

Table 4.1: Data information for TREC data.

TREC Data Questions Correct Incorrect

QA pairs QA pairs

TRAIN-ALL 1,229 53,417 automatic

TRAIN 94 4,718 manual

DEV 82 1,148 manual

TEST 100 1,517 manual

4.3.1 Datasets and Experiment Setup

Datasets

The answer selection dataset TREC1 is generated from TREC QA tracks 8-

13, which each contain a set of factoid queries and candidate answers [148]. The

correct answers for each query are manually labelled and ranked in the dataset.

Three partitions of TRAIN, DEV and TEST are provided in the data. An additional

set named TRAIN-ALL is provided containing 1,229 queries, with its answers

determined using automatic keyword match. Thus, we can say that the TRAIN-

ALL set is noisier than the other three sets: TRAIN, DEV, and TEST. Following

the evaluation scheme used in previous work, two experiments are conducted in

which the TRAIN and TRAIN-ALL sets are used to train separate models. In both

experiments, DEV is used for model validation and TEST for reporting the answer

selection performance. More detailed data information for TREC is shown in Table

4.1.

The Yahoo! answer collection is a large-scale dataset collected through Yahoo

Webscope Program2 based on community service. It includes approximately 4 million

questions and answers, and each question is associated with a best answer and a

category. The BM25 retrieval algorithm3 is used to retrieve the top 100 answers

for each question. These retrieved answers are also labelled as the correct ones

1http://trec.nist.gov/data/qa/t8qa_data.html
2http://webscope.sandbox.yahoo.com
3https://lucene.apache.org/

Jinmeng Wu

trec.nist.gov/data/qa/t8qa_data.html
webscope.sandbox.yahoo.com
lucene.apache.org/

4.3 Experimental Analysis and Results 61

for each corresponding question, ranked after its best answer that is provided by

the collection [12, 19]. For model training, we randomly select 10,000 questions,

and five candidate answers for each question which consist of the best answer and

four randomly selected incorrect answers. Two different sets each containing 5000

questions are randomly selected for model validation and evaluation.

Experimental setup

In the proposed DSSM model, the word embedding matrix W is initialized by the

word embeddings generated by a neural language model. Specifically, for the TREC

data, a skip-gram model [54] with a learning rate of 0.025 is trained using Wikipedia

dumps4 containing approximately 3 million words (after removing words that appear

less than 5 times in the corpus). For the Yahoo cQA dataset, the Glove model5 is

trained using the 2B Tweets corpus containing approximately 1.2 million words after

removing the infrequent words [142]. In both cases, the dimensionality of the learned

word embedding vector is set as 50. For words that appear in TREC (or Yahoo) but

not in Wikipedia (or Tweet), we assign random values uniformly sampled from the

interval [−0.3, 0.3] to each embedding dimension. The same text pre-processing

procedure as in [33] is used to process all the studied text. For instance, all digits are

replaced by zero, word tokenization is applied, and all the words are converted to

lowercase.

To train the proposed model, we set the margin parameter as ε = 0.1 and all the

regularization parameters as λ = λs = λe = 10−3 in the different cost functions.

Three layers of SAE are employed, for which the hidden neuron numbers are set

as h1 = 500, h2 = 250 and h3 = 100. The sparsity control parameter is set as

β = 0.05. The sparsity term R
(l)
s = KL

(
ρ, ‖h(l)

ij ‖1/h(l−1)
)

computes the Kullback-

Libler (KL) divergence between the sparsity control parameter 0 < ρ < 1 and the

averaged activation over the hidden unit. Stochastic gradient descent is used for

optimization with a mini-batch containing 50 training examples, a learning rate of

0.1, and a dropout rate of 0.5 [146]. Early stopping [149] is allowed when there is

4http://dumps.wikimedia.org/backup-index.html
5http://nlp.stanford.edu/projects/glove/

Jinmeng Wu

dumps.wikimedia.org/backup-index.html
nlp.stanford.edu/projects/glove/

4.3 Experimental Analysis and Results 62

no further improvement on training performance after 30 epochs. Here, we evaluate

the training performance by Mean Reciprocal Rank (MRR), see Eq. (4.3.1) below,

computed using 10 mini-batches. The parameters adopted above were selected using

the validation set based on a coarse manual tuning.

To report the model performance using the test set, MRR, Mean Average Precision

(MAP) and Precision@N (p@N) are employed [150]6. MRR focuses on the order

of the correct answers, and is formulated as

MRR =
1

|Q|

|Q|∑
i=1

1

rank@1(i)
, (4.3.1)

where rank@1(i) denotes the computed ranking by the model of the best correct

answer in the ground truth ranking list for the i-th query, and |Q| denotes the total

number of queries tested. MAP accumulates the mean ranking of all the correct

answers of each query, given by

MAP =
1

|Q|

|Q|∑
i=1

1

ni

ni∑
j=1

rank@j(i), (4.3.2)

where rank@j(i) denotes computed ranking of the j-th correct answer in the ground

truth ranking list for the i-th query, and ni denotes the number of truly correct answers

for the i-th query. Being more flexible than MAP, Precision@N (p@N) calculates

the mean ranking of the top N ranking answers for each query, given as

p@N =
1

|Q|

|Q|∑
i=1

1

N

N∑
j=1

rank@j(i). (4.3.3)

Usually, N can be set as integers such as 3, 5, 10 [150].

4.3.2 Empirical Analysis of DSSM

In this section, we analyze different components of the proposed method and

compare them with alternative design options appearing in existing works, to justify

the effectiveness of the proposed method. Specifically, the following experiments are

conducted:
6The tool trec_eval provided by Text REtrieval Conference (TREC) is used to compute MAP and

MRR.

Jinmeng Wu

4.3 Experimental Analysis and Results 63

• Experiment 1: A version of DSSM based on the standard training scheme,

which jointly optimizes all the network parameters from a random initialization,

is implemented and is referred as DSSM-Tr-S. Another version of DSSM based

on the proposed greedy-layer training scheme but with the final fine-tuning

stage removed is implemented, referred as DSSM-Tr-GL-NoF. The goal is to

demonstrate the effect of the layer-wise training based on different but relevant

objective functions and the effect of fine-tuning.

• Experiment 2: The effect of SAE length is investigated by examining different

numbers of the encoding layers, e.g., H ∈ {1, 2, 4}, referred as DSSM-SAE-1

when H = 1 for instance. These are compared to DSSM that employs H = 3

encoding layers.

• Experiment 3: We investigate the advantage of learning distributed represen-

tation for sentence pairs over that for individual sentences. An alternative text

matching network is implemented by using the length-3 SAE to encode the

sentence representations (Xi and Yj) instead of the similarity representation

sij as DSSM does, which is referred as DeepMatchAE.

• Experiment 4: Alternative design choices of the parameter matrix P are

compared, including the fixed identity matrix and a diagonal matrix as in Eq.

(4.2.2), referred as DSSM-P-I and DSSM-P-D, respectively. This P matrix

is responsible for computing the bilinear similarity in DSSM as shown in

Section 4.2.1.

• Experiment 5: A version of DSSM based on the proposed greedy-layer train-

ing scheme but with the standard entropy loss trains the distributed similarity

metric, referred as DSSM-Tr-SIM-E. To implement the training with standard

entropy loss, the distributed similarity vector sij is fed to softmax function

Eq.(4.2.7). Consequently, the cross-entropy cost function Eq.(4.2.8) is formu-

lated to optimize the summarized variable θs. The goal is to investigate the

effect of the distributed similarity metric training based on the margin based

loss of the proposed model.

Jinmeng Wu

4.3 Experimental Analysis and Results 64

Table 4.2: Comparison of the proposed DSSM method with alternative designs

and model settings, evaluated using the Yahoo cQA data. The best performance is

highlighted in bold and second best underlined.

Experimental Settings MRR MAP P@3

Exp. 1
DSSM-Tr-S 0.509 0.443 0.371

DSSM-Tr-GL-NoF 0.536 0.492 0.412

Exp. 2
DSSM-SAE-1 0.557 0.509 0.427

DSSM-SAE-2 0.580 0.526 0.458

DSSM-SAE-4 0.572 0.518 0.451

Exp. 3 DeepMatchAE 0.531 0.473 0.402

Exp. 4
DSSM-P-I 0.550 0.493 0.418

DSSM-P-D 0.579 0.528 0.452

Exp. 5 DSSM-Tr-SIM-E 0.568 0.525 0.450

DSSM (H = 3) 0.584 0.532 0.467

Table 4.2 summarizes performance of these compared settings, in terms of MRR,

MAP and p@3.

In experiment 1, different training schemes are compared. It can be seen from

Table 4.2 that the training procedure that jointly optimizes all the network parameters

results in the worst performance. However, training different parts of the network

in turn, according to different objective functions, leads to a performance increase

of more than 3%, and further fine-tuning offers another increase over 5%. This

demonstrates the advantage of greedy-layer wise training enhanced by fine tuning. In

experiment 2, the number of hidden layers in the SAE is increased from 1 to 4, and

it can be seen from Table 4.2 that the matching performance increases until H = 3

and then starts to drop slightly when H = 4. Based on this empirical observation, a

middle depth number H = 3 for SAE is sufficient to achieve robust performance.

As explained in previous sections, one contribution of this work is to suggest not

to compress the sentence representation at an early stage. Instead, a full matrix based

sentence representation is maintained, from which we directly learn a distributed

representation for a sentence pair consisting of individual similarity scores for word

Jinmeng Wu

4.3 Experimental Analysis and Results 65

Table 4.3: Demonstration of model interpretability induced by the question word

score XT
i p1, answer word score YT

j p2, and question-answer word pair score

XT
i p1p

T
2 Yj . The top 5 words (or pairs) possessing the highest scores (T@5), the

bottom 5 with the lowest scores (B@5), and the middle 5 that are closet to zero

(0@5) are listed for two example questions each with one correct and one incorrect

answer.
Example 1:

question (Q): How to create an equivalent representation for a fraction when given the decimal?

Correct answer (A+): Read the decimal without saying point Like, 0.36 would be read as thirty-six hundredths, so 36/100.

Incorrect answer (A−): Like one of the admission requirements for a college is 4.4 but my school goes by a 4 point scale and I have a 3.8?

words (Q) words (A+) words (A−) word pairs (Q-A+) word pairs (Q-A−)

content
score

(XT
i p1)

content
score

(YT
j p2)

content
score

(YT
j p2)

content
score

(XT
i p1p

T
2 Yj)

content
score

(XT
i p1p

T
2 Yj)

T@5

decimal

create

fraction

representation

equivalent

0.925

0.686

0.270

0.217

0.203

decimal

hundredths

thirty-six

num

point

0.832

0.771

0.532

0.203

0.236

admission

college

num

?

school

0.239

0.215

0.203

0.178

0.162

(decimal, decimal)

(decimal, hundredths)

(create, decimal)

(create, hundredths)

(decimal, thirty-six)

0.770

0.713

0.571

0.529

0.492

(decimal, admission)

(decimal, college)

(decimal, num)

(decimal, ?)

(create, admission)

0.221

0.199

0.188

0.165

0.164

B@5

given

when

how

the

for

-0.352

-0.067

-0.045

2.32×10−4

2.82×10−4

saying

as

like

read

without

-0.433

-0.352

-0.232

-0.081

-0.072

requirements

goes

scale

point

have

-1.297

-0.968

-0.736

-0.523

-0.382

(decimal, saying)

(decimal, as)

(create, saying)

(given, decimal)

(given, hundredths)

-0.401

-0.326

-0.297

-0.293

-0.271

(decimal, requirements)

(decimal, goes)

(create, requirements)

(decimal, scale)

(create, goes)

-1.199

-0.895

-0.890

-0.681

-0.664

0@5

a

an

to

the

for

1.23×10−4

1.67×10−4

2.07×10−4

2.32×10−4

2.82×10−4

so

the

be

without

would

2.04×10−4

2.25×10−4

3.83×10−4

-0.072

-0.034

and

of

the

for

is

2.06×10−4

2.18×10−4

2.25×10−4

2.46×10−4

2.55×10−4

(a, so)

(a, the)

(an, so)

(an, the)

(to, so)

2.51×10−8

2.77×10−8

3.41×10−8

3.76×10−8

4.22×10−8

(a, and)

(a, of)

(a, the)

(a, for)

(a, is)

2.53×10−8

2.68×10−8

2.77×10−8

3.03×10−8

3.14×10−8

Example 2:

question (Q): What is the formula for magnesium chloride?

Correct answer (A+): Magnesium has a charge of +2 and Chlorine has a charge of -1. You use the "crisscross" method where you switch the charges and so the chemical formula is MgCl2.

Incorrect answer (A−): In reality, you don’t have KCl. But you have a K+ and a Cl-. Indicating that the Potassium lost 1 electron (which is a negative charge), and the Cl gained an electron.

words (Q) words (A+) words (A−) word pairs (Q-A+) word pairs (Q-A−)

content
score

(XT
i p1)

content
score

(YT
j p2)

content
score

(YT
j p2)

content
score

(XT
i p1p

T
2 Yj)

content
score

(XT
i p1p

T
2 Yj)

T@5

formula

magnesium

?

is

for

0.883

0.497

0.178

2.63×10−4

2.82×10−4

formula

chemical

magnesium

num

method

0.729

0.435

0.281

0.203

0.068

electron

indicating

reality

negative

kcl

0.352

0.284

0.217

0.195

0.083

(formula, formula)

(formula, chemical)

(magnesium, formula)

(formula, magnesium)

(magnesium, chemical)

0.644

0.384

0.362

0.248

0.216

(formula, electron)

(formula, indicating)

(formula, reality)

(magnesium, electron)

(formula, negative)

0.311

0.251

0.192

0.175

0.172

B@5

chloride

what

the

for

is

-0.421

-0.052

2.32×10−4

2.82×10−4

2.63×10−4

has

chlorine

charge

switch

where

-0.396

-0.358

-0.273

-0.197

-0.035

gained

have

charge

lost

but

-0.625

-0.382

-0.273

-0.258

-0.157

(formula, has)

(formula, chlorine)

(chloride, formula)

(formula, charge)

(magnesium, has)

-0.350

-0.316

-0.307

-0.241

-0.197

(formula, gained)

(formula, have)

(magnesium, gained)

(formula, charge)

(formula, lost)

-0.552

-0.337

-0.311

-0.241

-0.228

0@5

the

is

for

what

?

2.32×10−4

2.63×10−4

2.82×10−4

-0.052

0.178

a

so

and

of

the

1.17×10−4

2.04×10−4

2.06×10−4

2.18×10−4

2.25×10−4

a

an

and

the

in

1.17×10−4

1.54×10−4

2.06×10−4

2.25×10−4

2.32×10−4

(the, a)

(is, a)

(for, a)

(the, so)

(is, and)

2.71×10−8

3.08×10−8

3.30×10−8

4.73×10−8

4.78×10−8

(the, a)

(is, a)

(for, a)

(the, an)

(is, an)

2.71×10−8

3.08×10−8

3.30×10−8

3.57×10−8

4.05×10−8

Jinmeng Wu

4.3 Experimental Analysis and Results 66

pairs. Such a model is more focused on learning the pair interaction rather than the

individual representation, and thus could preserve more information between the

sentence. In experiment 3, we compare this design with the traditional sentence

representation learning network, which uses SAE to directly compress the sentence

representation (referred as DeepMatchSAE). It can be seen from Table 4.2 that using

the sentence pair interactions rather than individual sentence representation leads to

a performance increase of at least 5%.

Experiment 4 compares three design options of the bilinear similarity parameter

matrix P. As seen from Table 4.2 that, by fixing it as an identity matrix, a fairly

low performance is obtained due to the lack of model expressive power. Using a

general diagonal matrix, for which a d-dimensional vector containing the diagonal

elements is optimized, offers improved performance of an increase of around 3%.

The proposed design utilizing two d-dimensional vectors to formulate the matrix

P = p1p
T
2 offers another 1% performance improvement approximately as compared

to the setting of diagonal matrix, but doubles the number of variables.

In experiment 5, two different training strategies under the greedy-layer wise

training scheme are compared. It can be seen from Table 4.2 that the cross entropy

loss trains the distributed similarity metric results in the worse performance. However,

the margin-based loss evaluates the difference between the similarity scores of the

correct and incorrect sentence pairs, leads to a performance increase of more than

1.5%. This improvement verifies the advantage of distributed similarity metric

training enhanced by margin based loss.

Although the performance improvement is modest, the advantage of P = p1p
T
2

is that it allows more interpretation the model and its parameters (as explained in the

end of Section 4.2.1) since it is possible to identify dominating words and word pairs

that contribute more significantly to the relationship between two sentence based on

the question word score XT
i p1, answer word score YT

j p2, and score of the question-

answer word pair XT
i p1p

T
2 Yj . Table 4.3 displays the ranked question words, answer

words, and question-answer (Q-A) word pairs for the two examples. For a correct

Q-A pair, word pairs possessing high values are more significant indicators to the

sentence relevance. On the contrary, for an incorrect Q-A pair, word pairs possessing

Jinmeng Wu

4.3 Experimental Analysis and Results 67

Table 4.4: Performance comparison using TREC data for the proposed and seven

state-of-the-art methods.

Methods Word Overlapping Training MAP MRR

[32] no TRAIN 0.5476 0.6437

[33] no TRAIN 0.6258 0.6591

DSSM no TRAIN 0.6512 0.6927

[32] yes TRAIN 0.7058 0.7800

[33] yes TRAIN 0.7329 0.7962

DSSM yes TRAIN 0.7589 0.8051

[32] no TRAIN-ALL 0.5693 0.6613

[33] no TRAIN-ALL 0.6709 0.7280

DSSM no TRAIN-ALL 0.6813 0.7532

[110] NA TRAIN-ALL 0.6091 0.6917

[108] NA TRAIN-ALL 0.5951 0.6951

[109] NA TRAIN-ALL 0.6307 0.7477

[105] NA TRAIN-ALL 0.6781 0.7358

[53] NA TRAIN-ALL 0.7092 0.7700

[32] yes TRAIN-ALL 0.7113 0.7846

[33] yes TRAIN-ALL 0.7459 0.8078

DSSM yes TRAIN-ALL 0.7641 0.8102

low values are more significant indicators to their irrelevance. It is interesting to

observe that, words (or word pairs) possessing scores close to zero correspond to

less meaningful words, e.g., “a”, “an”, “the”, “you”, etc. For correct Q-A pairs, the

common function words shared by both question and answer often play an important

part in identifying the sentence relevance. On the contrary, this is not necessarily the

case for the incorrect Q-A pairs.

Jinmeng Wu

4.3 Experimental Analysis and Results 68

Table 4.5: Performance comparison using Yahoo cQA data for different methods.

Methods MAP p@3 p@5 p@10

Random Guess Baseline 0.205 0.136 0.093 0.038

WordEmbed [90] 0.345 0.290 0.245 0.181

DeepMatch [29] 0.320 0.286 0.225 0.175

DeepMatchCNN [5] 0.421 0.349 0.283 0.215

DSSM 0.532 0.467 0.412 0.355

4.3.3 Comparison with State-of-the-art Methods

Using the TREC dataset, the proposed method is compared with seven state-

of-the-art approaches. For evaluation, we use the testing setup used in previous

works [32, 33]: using the two different training sets, TRAIN and TRAIN-ALL, and

with and without the inclusion of word overlapping features. The other existing works

[53,105,108–110] do not involve word overlapping processing and their performance

was reported by using TRAIN-ALL as the training data. The performance for these

works along with the DSSM model are reported in Table 4.4. It can be seen from

Table 4.4 that the proposed DSSM model with greedy-layer training provides the

best performance under all the evaluation setups. The incorporation of the word

overlapping features as explained in Section 4.2.2 further improves the matching

performance. This is observed for not only our method but also Yu et al. [32] and

Severyn et al. [33]. Among the compared existing works, Yih et al. [53] offers the

best performance, however, it employs external information resource, e.g., WordNet,

which unfortunately is not available for all the language—a case that could limit

its usage. In general, the deep learning methods, e.g., [32, 33], perform better than

the shallow ones, e.g., [108, 110]. Overall, the proposed method outperforms all the

existing deep learning works.

We conduct another evaluation using Yahoo cQA dataset. The proposed method

is compared with three state-of-the-art deep learning methods for this data, including

WordEmbed [90], DeepMatch [29] and DeepMatchCNN [5]. The performance for

Jinmeng Wu

4.4 Conclusion 69

compared methods along with the proposed model are shown in Table 4.5. A baseline

model based on random guess is also included to provide a general view of the

problem. The same performance measures MAP, p@3, p@5 and p@10 as used

in existing works are adopted. It can be seen that the proposed method performs

significantly better than the competing methods, demonstrating superiority of the

proposed deep model design and its training strategy.

It can be seen from Table 4.5 and Table 4.4, the performance of Yahoo! commu-

nity dataset is worse than the one of TREC dataset. We analyze an example where

the proposed model fails to handle a short sentence pair from the Yahoo! dataset.

For the question of "names for an orange puffle?", the correct available answer is

"goofy, bouncy, things to describe it." However, when tested, the proposed model

opted "well, you really can’t make purple without blue and red. purple is a secondary

color, created by mixing the primary colors blue and red. as the best answer, and

selecting the ground truth answer as the second best answer. In this example, the

ground truth answer contains less interactive information to response the informally

formulated question, thus the proposed model selects a longer answer sentence that

contains rich information.

4.4 Conclusion

In this work, we have proposed a novel deep learning architecture for representing

the semantic similarity between question and answer pairs in cQA. This is done

by passing a whole sentence worth of word-level similarities, computed using a

distributed model, to the DAE network with an unsupervised training. The standard

bilinear function matches the sentence pair with a weight matrix, as a common

tool applied in the previous works. To examine the effect of word-level similarity

formulation for QA matching, we designed different types of bilinear matching

functions and compared them by using ranking measurements e.g. MAP and MRR.

The results report that the matching function with parameter constraints offers the

best performance among all comparison functions.

Furthermore, the proposed model benefits from its design of being focused on

Jinmeng Wu

4.4 Conclusion 70

learning directly the distributed representation of sentence pair interaction rather than

learning individual sentence representation, according to compare the performance

between two learning presentation approaches. Regard to the training approach, the

proposed model adopts a pair-wise training method to combine the unsupervised

training for the DAE network and supervised training for semantic matching. Finally,

the model is supported by an effective greedy layer-wise training strategy to fine-tune

the entire model, and this decomposable training approach is experimentally shown

to outperform the previous models.

Although we have investigated to improve the distributed similarity representa-

tion by the proposed model. Nevertheless, there are still exist a number of drawbacks

which could be improved. For instance, only pairwise similarities between words

are used, but sequences of words may correspond to phrases that require a compo-

sitional representations of words. Therefore, in the next section, we aim to explore

architectures that can utilize by multiple word-level and word-sequence similarities.

Jinmeng Wu

Chapter 5

Context-aware Neural Network for

Interactive Matching

5.1 Introduction

QA is the task of enabling a machine to automatically answer questions posted by

humans in a natural language form. The selection of the best answer from an existing

pool of candidate answers is referred to as cQA [99], whereas enabling the computer

to automatically generate a novel answer, through some natural language model, is

known as machine dialogue [7,49]. In this work, we focus on cQA by working on the

semantic matching between question and answer texts. In general, semantic matching

requires the accurate modeling of the relevance between two portions of text, and, in

addition to QA, is widely used for tasks, such as paraphrase identification [31, 35],

machine translation [61, 75, 94], and image caption generation [27, 98].

In order to compute an accurate measure of relevance between the sentence

pair, it is beneficial to take the lexical, syntactic and semantic information of the

text pairs into account. Traditional matching seeks effective ways of extracting

semantic features that improve a given similarity metric [52]. Recent advances

have managed to replace this manual feature engineering process with a model that

automatically learns distributed representations of words and sentences via neural

networks [31, 33, 56].

71

5.1 Introduction 72

As previously mentioned, the goal of a QA matching task is to select the correct

answers from a set of candidate answers based on the content of a given question.

One of the key hindrances in this, is that the key lexical components and information

might not be shared between question and answer texts. In some cases, ambiguous

contents in questions or answers may impede this process. For instance, consider

the question-answer scenario given in Fig. 5.1. Regards to the object “cat” of query,

A1 provides more distinct keywords in answer than A2. When focusing on fixed

keywords in the question text, such as “cat” and “where”, both answers contain

information that matches these keywords, e.g., “cat” and “in the park” in A1, and

also “cat” and “on the mat” in A2. This simple keyword-based matching strategy,

hence, becomes a limitation on machine-based decision making.

Question Q1

• Where was the cat?

Candidate Answers: A1 and A2

• A1: I saw the cat before, I think it is in the park now.

• A2: It is left on the mat, in a room wit a cat.

Figure 5.1: Example scenario 1 for QA based on key-word matching.

However, if the focus of the question can be varied according to the context of

the answer, e.g., by paying more attention to “see a cat” instead of “cat” and “where”,

the machine can then be directed to avoid the answer A2. Hence, the question-answer

matching process can become more effective when the sentence representations for

questions and answers are learned jointly, other than in isolation. This interactive

learning has been exploited in the previous work [120] using a hybrid model that

includes a bi-directional long short-term memory (LSTM) model and a convolutional

neural network (CNN). The model incorporates cross-sentence context based on

word-level representations. More specifically, the question text is fed as an input to

produce a hidden representation of the question text, which is then used to generate

the answer representation. As such, the representation of the answer captures the

information contained in the question text.

Jinmeng Wu

5.1 Introduction 73

Question Q2

• Where was the cat?

Candidate Answers: A21 and A22

• A21: The cat was sitting on a mat.

• A22: We had a dog that was friendly to our cat.

Question Q3

• What is the color of that cat?

Candidate Answers: A31 and A32

• A31: The cat was sitting on a mat.

• A32: The cat that was sitting on the red mat.

Figure 5.2: Example scenario 2 with two different QA cases.

Answer Key Components

A21 The cat was sitting on a mat

A22 We had a dog that was friendly to our cat

Figure 5.3: Key components of potential answers to the Question Q2.

Past research on cQA [95, 120, 121] has shown that it is important to model

the content interaction between the question and answer sentences to improve the

performance of a cQA system. Matching performance can be compromised when

collecting information by examining the question and answer sentences individually

and separately. Although interaction between the question and answer sentences can

be formulated as a similarity accumulation over word pairs parameterized by weight

variables (e.g., [56]), the resulting model can be inflexible. This is because, when

converting the discovery of the content interaction between the question and answer

sentences to an optimization of the weight variables, fixed contributing patterns of

word positions for discriminating the matching question-answer pairs are assumed.

Consider another QA scenario shown in Fig. 5.2, where has two question exam-

ples, each with their own pool of answers. We highlight the key components for each

Jinmeng Wu

5.1 Introduction 74

Answer Key Components

A31 The cat was sitting on a mat.

A32 The cat that was sitting on the red mat.

Figure 5.4: Key components of potential answers to the Question Q3.

of the answers in Figs. 5.3 and 5.4. In both examples, these salient components in

the answers directly reflect or respond to the context of the questions, which con-

tribute more significantly towards the relevance of the given question. Such salient

information or the key components in sentences can be captured by an attractive

approach called attention mechanism [75]. This mechanism has been mostly used in

the tasks related to translations [75, 151]. It utilizes a weight function to quantify the

importance of the hidden sentence representation at the corresponding word position.

Recent findings, for example in [120, 152], have demonstrated their applicability

in assigning degrees of importance, known as attention weights, to different word

positions in a sentence. In the QA task, it has been of increasing interest to develop

effective ways of building attention mechanisms. Previous works [127, 153] have

adopted self-attention mechanism to build the connections inside a sentence. Sev-

eral works [40, 95] have proposed co-attention mechanism to collect the interactive

information that involves a sentence representation to the targeted sentence hidden

representation, so that the matching performance can be improved by learning from

and paying more attention to salient text.

In this work, we aim at improving the modeling of the question-answer interaction

in representation learning through investigating effective ways of modeling the

involved input. We know that, given different questions, it is natural for a human to

pay attention to different parts of the answer sentence. For instance, when reading

“a white cat is sitting on the tree", we pay more attention to “white" knowing the

question is “what is the colour of the cat", while more attention to “on the tree" if the

question is changed to “where is the cat". In this example, there also exist words that

are naturally less informative, e.g., “a" and “the" as compared to “white", “cat" and

“sitting". And this is not affected by the question content. Therefore, high attention

Jinmeng Wu

5.1 Introduction 75

weights should be selectively assigned to more informative word positions in the

answer. To automatically identify non-informative words in a sentence and take this

into account in attention weight assignment, we propose a new quantity referred

to as the context information jump indicator. It captures the informativeness of a

word by representing the across joint representation between adjacent words based

on pre-trained language model. By including the proposed quantity as part of input,

the importance of a word position in an answer sentence is affected not only by the

answer and question content that is relevant to the matching task, but also its own

informativeness independent of the matching.

In this section, we address the aspects that have been highlighted above, par-

ticularly on the interactive learning of the question and answer representations and

attention mechanism design, and propose a novel approach to improve the standard of

the response accuracy during the cQA process. In particular, we make the following

key contributions:

1. We extend the notion of interactive learning by developing a cross-sentence

context-aware bi-directional LSTM model, where we generate the hidden

representations for both the question and answer texts, thereby making them

aware of each other’s context. As such, in the proposed model, the hidden

representation for the answer text, and particularly the state values for each

word position, is affected not only by its previous or next states, but also by

the multi-positional representations of the question text.

2. As the interaction between question and answer texts is bi-directional, the

content of the question text should also affect the way that the answer text is

encoded or characterized. We propose interaction-based and sentence-based

two attention parallel mechanisms for sentence representation learning, and

augment our proposed approach to consider the relationship between adjacent

words, instead of concatenating the word representations to formulate co-

attention weights as in previous works [40, 123].

3. A new quantity in co-attention mechanism, referred to as the context infor-

mation jump, is proposed to represent the aggregation representation between

Jinmeng Wu

5.2 Preliminaries 76

forward and backward states based on the bi-directional LSTM. Context jump

is able to modify the question for every words in answer, vice versa.

4. We perform an exhaustive evaluation of the proposed approach using four

community datasets, namely TREC, Yahoo! and StackEx(L) and WikiQA, and

share our findings.

The remaining sections is organized as follows: In Section 5.2, we review the

operation of LSTM. Then we discuss the proposed method in Section 5.3, explaining

the generative bi-directional-interaction model with the context information jump.

This is followed by a detailed discussion on the evaluation process in Section 5.4, and

results from evaluation in Section 5.5. We finally conclude the work in Section 5.6.

5.2 Preliminaries

A commonly used strategy for selecting from a candidate answer pool a sentence

that matches the given question, is to first compute the representations, e.g., in the

form of vectors or matrices, for the question and answer sentences based on their

word content. Similarity (or relevance confidence) scores between the question and

the candidate answers are then computed using their corresponding representations,

and the candidate with the highest score is selected.

We denote a sentence as x = {x1, x2, . . . , xT} where xt is the t-th word in the

sentence. An RNN-based language model learns a vector representation to encode

the semantic and order information of the words in the sentence. This is typically

expressed as

ht = f(wt,ht−1), (5.2.1)

where the t-th word xt corresponds to a hidden state at time step t, and wt denotes

a vector representation for encoding the semantics of the word xt. The hidden

representation vector ht contains word context information accumulated up to the

t-th word in the sentence. It is computed from the vector representation wt of the

current word and the previous accumulation ht−1. The different realizations of the

activation function f(·) result in different types of RNNs. For instance, a classical

Jinmeng Wu

5.3 Proposed Method 77

RNN employs a standard linear operation with a sigmoid activation sig(·) to process

the input wt and ht−1. Differently, an LSTM uses a set of recurrent functions [154]

by following defined as

it = sig (Wxiwt + Whiht−1 + bi) , (5.2.2)

ft = sig (Wxfwt + Whfht−1 + bf) , (5.2.3)

ot = sig (Wxowt + Whoht−1 + bo) , (5.2.4)

gt = tanh (Wxcwt + Whcht−1 + bg) , (5.2.5)

ct = ft � ct−1 + it � gt, (5.2.6)

ht = ot � tanh (ct) , (5.2.7)

where � denotes the Hadamard product. The word vector wt, as well as the

weight matrices W and the bias vectors b with different subscript symbols, are the

model variables to be optimized.

To enrich the sentence representation, a bi-directional LSTM architecture can be

used [75]. Specifically, one LSTM is used to process the input sentence as a sequence

of words in the forward direction, of which the computed hidden representation at

the t-th word position is denoted by the vector ht,f (all vectors in this manuscript

are considered column ones). A different LSTM processes the input sentence in the

reverse direction, and the learned hidden representation is denoted byht,b. Combining

both, an extended hidden sentence representation at each word position is given as

ht =
[
h>t,f ,h

>
t,b

]>, and is referred to as the positional sentence representation at the

t-th word [56]. Working with the two sets of sentence positional representations

{h(q)
t }Tt=1 and {h(a)

t }Tt=1, various strategies [56, 120, 122] are developed to compute

their similarity or relevance confidence scores (we use the indicator symbols “q" and

“a" to distinguish a question sentence from an answer sentence). The model used in

this proposed work is described in sub-section 5.3.4.

5.3 Proposed Method

To summarize, the proposed cQA system contains a cross-sentence context-aware

bi-directional LSTM referred to as CABIN model illustrated in Fig.5.5 . The proposed

Jinmeng Wu

5.3 Proposed Method 78

GM(A) CJI(A) GM(Q)

Alignments Multiplication

Attentional Layer 1 Attentional Layer 2

Similarity MatrixElement-wise Sum

Interactive Representation

Figure 5.5: Architecture of the proposed CABIN system for computing interactive

sentence representations. GM(A) symbol represents the pre-trained answer repre-

sentation from the generative language model; GM(Q) symbol is the pre-trained

question representation from the generative language model; CJI(A) symbol means

the context information jump vector of the answer sentence.

model is built upon an improved modeling strategy of the question-answer interaction,

containing three key components: (1) the pre-trained language model benefits the

proposed method, (2) the attention-driven interactive sentence-aware representation

enhanced by context information jump, and (3) the distributed similarity computation.

In the following sections, we describe the proposed system in detail.

5.3.1 Co-attention Sentences Mechanism

A common method formulate the self-attention function A(ht,X) for each posi-

tional answer sentence representation is defined as

A(ht,X) = tanh

(
uTht + vT

(
1
T

T∑
t=1

ht
))

, (5.3.1)

where u and v are the model parameters to be optimized. The sentence content is

encoded by its averaged positional representations, given as X = 1
T

∑T
t=1 ht. Each

Jinmeng Wu

5.3 Proposed Method 79

positional answer representation and the sentence content jointly control values of

the attention weights.

In this work, we propose a new parallel and interactive attention mechanism with

its architecture to compute the answer sentence representation as example illustrated

in Fig.5.6. Here, we introduce the computation of the attention formulation A(·, ·),
the attention formulationE(·, ·) would be represented in section 5.3.2. Two additional

quantities h̃(q)
T and ∇h̃(a)

t are included in X when formulating the attention function

of answer, given as

A(h̃
(a)
t ,X) = tanh

(
uTa h̃

(a)
t + vTa h̃

(q)
T + gTa∇h̃

(a)
t

)
, (5.3.2)

the two quantities h̃(a)
T , ∇h̃(q)

t are used for formulating the attention of question by

A(h̃
(q)
t ,X) = tanh

(
uTq h̃

(q)
t + vTq h̃

(a)
T + gTq ∇h̃

(q)
t

)
, (5.3.3)

where the representation vectors h̃(q)
T , h̃(a)

T encode the content information of the

question and answer sentence. Different from existing approaches, they are learned

in an unsupervised way by following a sentence generation model. The pre-trained

vectors h̃T effectively reduce the computational complexity. Moreover, the prob-

abilistic language model is an effective approach to encode semantic information

carried by sentences. The vector ∇h̃t is the proposed jump quantity, and the vector

g is the model variable associated with this quantity.

Generative Sentence Content Representation

The vector h̃T corresponds to the final-state representation of a sentence, which is

returned by pre-training a bi-directional LSTM. It is learned in an unsupervised way,

by letting this LSTM operate as a generative model to solve a sentence generation

task. Here, we use the symbol “˜" to distinguish it from the notation hT of Section

5.2, which also denotes the final-state representation vector of a question returned

by a bi-directional LSTM, but trained in a supervised manner tailored to the cQA

matching task. We now first describe the unsupervised training of h̃T and then

explain its advantages.

Taking a corpus containing question sentences only, a bi-directional LSTM is

trained by maximizing the log-likelihood of generating these sentences. Following

Jinmeng Wu

5.3 Proposed Method 80

the probabilistic language model [28], we formulate the probability of generating a

sentence x = {x1, x2, . . . , xT} as

p(x) =
T∏
t=1

exp
(
W(xt, :)h̃t + b(xt)

)
∑T

i=1 exp
(
W(xi, :)h̃i + b(xi)

) , (5.3.4)

where the weight matrix W and the bias vector b are the model variables to be

optimized. The row number of W and the length of b are equal to the number of

words in the question vocabulary list. The operations W(x, :) and b(x) extract the

row in W and the element in b that correspond to the input word x. An optimizer

stochastic gradient descent method is used to optimize the model by following the

same process as the work in [28].

𝒉"#
(%) 𝒉"'

(()

∇𝒉"#
(%)

⨁

Similarity
Matrix (A)

𝐸(𝒉"#
% ,𝒉"'

()

𝒉𝜶
(%.) 𝒉𝒆

(%.)

Element-wise Multiplication

𝒉(%.)

𝒉𝒕
(%.) Question-

Aware Answer
Representation

𝑥2
(%) 𝑥3

(%) 𝑥#
(%) 𝑥'

(%)

𝒉2,4
(%) 𝒉3,4

(%) 𝒉#,4
(%) 𝒉',4

(%)

𝒉',5
(%)𝒉#,5

(%)
𝒉3,5
(%)𝒉#,5

(%)

𝑦2
(%)

…

…

…

Pre-trained

∇𝒉"#
(() Similarity

Matrix (Q)

𝒉"'
(%)𝒉"#

(()

⨁

𝒉𝜶
((7) 𝒉𝒆

((7)

Element-wise Multiplication

𝒉((7)

𝒉𝒕
((7)

𝐴(𝒉"#
% , 𝐗) 𝐴(𝒉"#

(,𝐗) 𝐸(𝒉"#
(,𝒉"'

%)

Answer-Aware
Question

Representation

𝒔 Matching Degree

𝑥2
(() 𝑥3

(() 𝑥#
(() 𝑥'

(()

𝒉2,4
(() 𝒉3,4

(() 𝒉#,4
(() 𝒉',4

(()

𝒉',5
(()𝒉#,5

(()
𝒉3,5
(()𝒉#,5

(()

…

…

…

Pre-trained

𝑦3
(%) 𝑦#

(%) 𝑦'
(%)

𝑦2
(() 𝑦3

(() 𝑦#
(() 𝑦'

(()

Figure 5.6: Architecture of the attention mechanisms for computing question-aware

answer representations in the proposed CABIN system.

The question representation h̃(q)
T and the answer representation h̃(a)

T , computed

separately from the answer and question representations, acts as a fixed input to the

attention function. As compared to Eq.(5.3.1) that requires simultaneous optimization

of {ht}Tt=1 together with u, v and ht, the pre-trained h̃T effectively reduces the

Jinmeng Wu

5.3 Proposed Method 81

𝑥"
($) 𝑥&

($)

𝒉(",*
($) 𝒉("+,,*

($)

𝒉("+,,-
($)𝒉(",-

($)

𝑥".,
($)

𝒉(".,,*
($)

𝒉(".,,-
($)

𝒉(,,*
($)

Aggregation

∇𝒉("
($)

𝒉(,,-
($)

𝒉(0,*
($)

𝒉(0,-
($) …

…

Context Information Jump

𝑥0
($)𝑥,

($) …

Figure 5.7: Architecture of the bi-directional LSTM with context information jump

in the proposed CABIN system.

computational complexity. Moreover, the probabilistic language model is an effective

approach to encode semantic information carried by sentences. The pre-trained

question an answer representations are learned from bi-directional LSTM as the fixed

input of the proposed matching model. We will show later in the result Section 5.5

that the proposed model offers competitive performance and the use of pre-trained

h̃T enhances the matching accuracy.

Context Information Jump

When learning sentence representations by a bi-directional LSTM, each obtained

positional representation accumulates context information up to the targeted word

position within a sentence in forward and backward directions. It is reasonable to

assume that if the previous and next words bring significant change to the sentence

semantics and content, it can directly affect the importance degree of the positional

representation at the current word. Such a change in sentence semantics could be

indicated by the information change contained by the learned hidden representations

between the current and adjacent states. Therefore, given a sentence, we aim to

formulate a quantity∇h̃t that can be potentially used as an indicator of its information

change between the current (t), the previous (t−1) and the next (t+1) word positions.

Jinmeng Wu

5.3 Proposed Method 82

In the common technique of bi-directional LSTM, the positional word representa-

tion is affected by the neighboring word in a single direction during the propagation

of bi-directional LSTM [75]. Here, we design a positional word state depends on the

novel combination of current forward state and backward state. It is reasonable to

assume the next state brings the context information to the current forward state. In a

similar way, the previous state also enriches the current backward state. Thus, we

explore the strategy to compute combined representation at current word position by

involving the next state in backward direction and previous state in forward direction

∇h̃(a)
t =

[
h̃

(a)
t,f � h̃

(a)
t+1,b

h̃
(a)
t,b � h̃

(a)
t−1,f

]
, (5.3.5)

where � is the Hadamard product [155], known as element wise product of two

vectors. The matrix symbol [:, :] aggregates the hidden states to a dimensional vector.

We compute the alignment representation which is a good indicator of similarity

between question and answer sentences. Because the quantity ∇h̃(a)
t of answer

sentence is used as an indicator of the degree that new information is conveyed by the

previous and next word between two adjacent states of an answer sentence, we refer

to it as context information jump. Fig.5.7 illustrates the working operation of context

information jump. Its role is to relate the salience of an sentence word position to the

informativeness of this word given its adjacent ancestor word. By computing this

quantity using a generative language model independent of the particular cQA task,

general language patterns in sentence text can be captured. Using the same process

for question sentence, we obtain the quantity∇h̃(q)
t .

5.3.2 Positional Word-Sentence Level Similarity

It is known that the semantic relativeness is a key component to determine the

similarity between the question and answer sentence. In [1], they computed the

similarity matrix between two sentences and applied it to compute the attention

alignment representation. Inspired by this work, we design an adaptive similarity

matrix to explore the importance of positional word in answer/question sentence for

corresponding question/answer sentence. To achieve this, we compute the similarity

Jinmeng Wu

5.3 Proposed Method 83

between the positional word in answer and the question sentence, and vice versa.

Specifically, we use pre-trained bi-directional LSTM model to solve the same sen-

tence generation task as in Section 5.3.1. This results in a set of learned positional

representations for the sentence, denoted by {h̃t}Tt=1. By treating the final state of

question sentence and the current state of answer sentence as the inputs into matching

function E(h̃
(a)
t , h̃

(q)
T) , given as

E(h̃
(a)
t , h̃

(q)
T) = tanh

(
q
(a)
1 (∇h̃(a)

t (h̃
(q)
T)T)

)
, (5.3.6)

where the weight q(a)1 is a vector. The vectors h̃(a)
t,f , h̃

(a)
t,b indicate the pre-identifying

hidden representation in t-th word in the forward and backward direction, separately.

The output of matching function is a similarity vector representing the contextual

relation between each word in target answer sentence and the question sentence. We

employ the matching function to define the similarity-based attention weighted value

e
(a)
t of question-aware answer as

e
(aq)
t =

exp
(
q
(a)
2 E(h̃

(a)
t , h̃

(q)
T)T

)
∑T

i=1 exp
(
q
(a)
2 E(h̃

(a)
i , h̃

(q)
T)T

) . (5.3.7)

The variable vector q(a)2 transfers the similarity vector to a matching score. The

attention weight is computed based on the content from the similarity matrix between

the answer word and question sentence. In addition to the attention weight in

Eq.(5.3.8), this weight is also used to compute the answer representation in the next

section. In a similar way, the similarity-based attention weight of answer-aware

question e(qa)t could be computed.

5.3.3 Interactive sentence Representation

A method for modeling the interaction between two sentences is through the

co-attention mechanism [56]. It utilizes a weight function to quantify the importance

of the hidden sentence representation at the word position t. By incorporating the

proposed attention formulation of Eq.(5.3.2) into Eq.(5.3.8), an importance weight

between 0 and 1 is learned for each positional representation of the answer sentence

Jinmeng Wu

5.3 Proposed Method 84

h̃
(a)
t , given as

α
(aq)
t =

exp
(
A(h̃

(a)
t ,X)

)
∑T

i=1 exp
(
A(h̃

(a)
i ,X)

) , (5.3.8)

where X stores the additional information that affects the importance of the targeted

word position, and attention function A(·, ·) is computed in Eq.(5.3.2). Because the

attention weight is affected by the question content and the importance of answer

word, we adopt the notations of α(aq)
t and e(aq)t for each weight separately. The

following alignment representation vectors are used to compute the two types of

answer representation

h(aq)
α =

T∑
t=1

α
(aq)
t h̃

(a)
t , (5.3.9)

with

h(aq)
e =

T∑
t=1

e
(aq)
t h̃

(a)
t . (5.3.10)

This parallel weighted formulations encode information carried by each positional

answer representation, and is weighted by an importance score that is affected by the

question content, and also the positional representation and the word informativeness

at the targeted word position. By combining these two alignment vectors, we compute

the fused attention representation of answer sentence by

h(aq) = h(aq)
α � h(aq)

e . (5.3.11)

To compute an adaptive answer sentence representation to the question content,

we aggregate the pre-trained positional representation of answer sentence and the

weighted representation, is defined as

h
(aq)
t = tanh

(
Va(h̃

(a)
t � h(aq)) + ba

)
, (5.3.12)

where the weight matrices Va and the bias vector ba are model variables to be

optimized. We denote each positional question representation computed with this

modified architecture as h(aq)
t , where t = 1, 2, . . . , T . The averaged alignment vector

representation is used as the final state representation h(aq)
T = 1

T

∑T
t=1 h

(aq)
t , which

refers to question-aware answer representation vector. The answer-aware question

representation h(qa)
T = 1

T

∑T
t=1 h

(qa)
t , where the combined state h(qa)

t is computed

from the formulation Eq.(5.3.12) for question sentence.

Jinmeng Wu

5.3 Proposed Method 85

5.3.4 Model Training and Initialization

So far, we have explained the computation of the question-aware answer rep-

resentation vector h(aq)
T and the answer-aware question representation vector h(qa)

T .

Taking these two vectors as input, we formulate the following similarity vector to

encode the distributed matching degree between the question and answer sentences

s = tanh
(
Uqh

(qa)
T + Uah

(aq)
T + bs

)
, (5.3.13)

where the weight matrices Uq, Ua and bias vector bs are the model variables to be

optimized. Subsequently, the sentence matching task can be formulated as a binary

classification problem. The label y = 1 indicates that the answer is related to the

question, while y = 0 otherwise. The probability that an answer is related to a

question can be modeled using a two-way softmax function, such as

p(y = 1|s) =
exp

(
sTα1

)
exp (sTα0) + exp (sTα1)

, (5.3.14)

where the two column vectors α0 and α1 are softmax parameters with the same di-

mensionality as s. Based on the above formulation, model variables can be optimized

by minimizing a regularized cross-entropy cost by following the logistic regression

model [140, 156].

Here, we summarize the training process of the system. First, unsupervised

pre-training of two individual bi-directional LSTM models are performed using the

question sentences and answer sentences separately. Both models are trained to solve

the language generation task via log-likelihood maximization, based on the sentence

generation probabilities as formulated by Eq.(5.3.4). Sentence representations learned

by these two models, e.g., h̃(q)
T and {h̃(a)

t }Tt=1, are used as the fixed input of the

proposed matching model. Then, the matching model is trained to solve a binary

classification problem by minimizing the regularized cross-entropy cost, based on the

probability of observing a positive sentence pair as formulated in Eq.(5.3.14). Instead

of random initialization, we initialize all the distributed word representation vectors

with Glove word embeddings [142]. The bi-directional LSTM used for computing the

question and answer representations are initialized by the pre-trained bi-directional

Jinmeng Wu

5.4 Experimental Analysis and Results 86

Table 5.1: Dataset content statistics in CABIN model.

Parameter TREC Yahoo! StackEx(L) WikiQA

No. of Questions 1,505 90,000 6,939 3,047

No. of Answers 60,800 4.5M 8,595 29,258

Mean Question Length(words) 11.39 9.73 136.03 7.26

Mean Answer Length(words) 24.63 99.38 217.61 24.94

LSTM model. The remaining variables are initialized randomly.

5.4 Experimental Analysis and Results

In this section, we evaluate the proposed model CABIN against a number of

state-of-the-art models using four key cQA datasets. In this section, we present our

evaluation methodology.

5.4.1 Datasets

We relied on four key cQA datasets for our evaluation, namely TREC1 [148],

Yahoo!2 [19], Stack-Exchange-Legal3 (StackEx(L)), and WikiQA4 [13]. We give a

summary of the statistics related to these datasets in Table 5.1.

5.4.2 Performance Metrics

To report model performance using the test set, we use three performance metrics,

namely mean reciprocal rank (MRR), mean average precision (MAP) and the mean

ranking of the top-N answers, denoted by MRTN or pN , as in [150]. The MRR metric

1http://trec.nist.gov/data/qa/t8qa_data.html
2http://webscope.sandbox.yahoo.com
3https://law.stackexchange.com/
4https://aka.ms/WikiQA

Jinmeng Wu

trec.nist.gov/data/qa/t8qa_data.html
webscope.sandbox.yahoo.com
law.stackexchange.com/
aka.ms/WikiQA

5.4 Experimental Analysis and Results 87

Table 5.2: Benchmark data splits.

Data Set Q/A Pairs Development Training Testing

TREC [32] 8,997 1,148 4,718 1,517

Yahoo! [19] 4M 2,500 50,000 25,000

StackEx(L) [21] 7,760 1,500 4,760 1,500

WikiQA [13] 29,258 2,733 20,360 6,165

focuses on the order of the correct answers, and is formulated as

MRR =
1

|Q|

|Q|∑
i=1

1

r1i
, (5.4.1)

where rji denotes the computed ranking of the j-th correct answer in the ground truth

ranking list for the i-th query, and |Q| denotes the total number of queries tested. In

other words, with j = 1, r1i denotes the best possible answer. MAP accumulates the

mean ranking of all the correct answers in each query, expressed as

MAP =
1

|Q|

|Q|∑
i=1

1

ni

ni∑
j=1

nji
rji
, (5.4.2)

where rji is the computed ranking of the j-th correct answer from the ground truth

ranking list for the i-th query, nji is the number of truly correct answers in the

computed ranking list of the j-th correct answer, and ni denotes the number of truly

correct answers for the i-th query.

5.4.3 Experimental Configuration

Experimental platform and recordings: All the training and testing were carried

on a system with 36 physical cores, 128GB RAM, three graphical processing units

(GPUS) each equipped with 12GB RAM, and running the version of the Tensor Flow

Framework (v1.3).

Neural network configurations: The bi-directional LSTM architecture used in our

studies contains 100-dimensional hidden sentence representations. The dimensional-

ity of each word embedding vector is set as 300.

Jinmeng Wu

5.4 Experimental Analysis and Results 88

Training preparation and initialization: In preparing the dataset for training and

testing, we followed the same text pre-processing procedures described in [33]. More

specifically, a special end-of-sentence symbol 〈_EOS〉 is added to the end of each

sentence, and the out-of-vocabulary words are mapped to a special token symbol

〈_UNK〉. Wherever the sentence lengths fall below the minimum threshold, a special

symbol, 〈_PAD〉, is added to the end of the sentence, so as to pad them with extra

characters to meet the processing requirements. Furthermore, the basic pre-training

model is Glove [142] using a corpus containing 6B words from Wikipedia and

Gigaword. For words appearing in each dataset, but not in their training corpus, a

random value uniformly sampled from the interval of [−0.3, 0.3] is assigned to each

embedding dimension. A normal distribution N(0, 0.1) is used for model variables

initialization.

Training / testing process: For model optimization, a root mean square propagation

(RMSProp) algorithm is used. The process includes a mini-batch containing 50

training examples, a learning rate of 0.1, and a dropout rate of 0.5 [146]. The learning

rate is halved after 10 epochs. Gradient clipping [157] is used to scale the gradient

when the norm of gradient exceeds a threshold of five. The overall datasets have

been split for training, testing and development purposes as suggested by the original

datasets [13, 19, 21, 32]. These are given in Table 5.2.

5.4.4 Baselines

To compare with the proposed method, the following ten models, stemming from

the space of CNN, RNN and conventional/traditional techniques, are considered.

Baseline Models:

1. Random Guess (RandomGuess) [56]: A random ranking list for the test sam-

ples without training process.

2. Bag of Words (BoW) [5]: Each sequence of words is represented by the

idf-weighted sum of the embeddings of the words it contains, and concate-

nated before feeding them as input to the network; for instance a multilayer

perceptron (MLP).

Jinmeng Wu

5.4 Experimental Analysis and Results 89

3. Word Embedding (WordEmbed) [90]: This model uses the Glove tool to obtain

the word embedding representation of a sentence. The matching score of two

short-texts are calculated with an MLP, taking the embeddings of the two

sentences as input.

CNN-based Models:

4. Bigram-CNN [32]: This model produces a sentence representation by feeding

the adjacent words to a convolution layer, and then measures the similarity of

the generated sentence representations through an MLP.

5. Add-CNN [33]: The model is an enhanced version of the Bigram-CNN model.

It uses CNNs to produce the representations individually, and then calculates

the matching score with an MLP.

6. AP-CNN [96]: It convolves each word embedding representation of the sen-

tences, the output matrices from the convolution layer use the max pooling

function with attention mechanism to learn the sentence representations.

7. Ab-CNN [37]: The model matches the feature maps of phase-level based

sentences from the convolution layer to generate an attention matrix. It learns

the high-level sentence representations as inputs to the convolutional layer,

which is used to calculate the matching similarity.

8. CAM [2]: A recent work proposes the model performs different comparison

matching functions to match the sentences based on word-level, where the

similarity outputs from the function are aggregated into a vector by a convolu-

tion layer. The convolved vector as the input into the final prediction layer to

compute the matching score.

RNN-based Models:

9. QA-LSTM [120]: Given two sentences, they are encoded by a bi-directional

LSTM with a word-to-word attention mechanism, where the output from the

model is fed to a convolution layer for producing the sentence representation.

Jinmeng Wu

5.5 Results and Analysis 90

10. IARNN [40]: The model learns an answer sentence representation using an

attention mechanism to involve a question hidden representation from an RNN

network, which then generates a high-level answer sentence representation as

the input to the RNN network.

11. BiMPM [119]: The model encodes two sentences with a bi-directional LSTM,

the encoded outputs of a sentence match each hidden representation of the other

sentence in two directions. The sequences of matching vectors are aggregated

into a vector as an input to prediction layer.

12. IWAN [1]: It builds an alignment layer based on a word-level similarity martix

for computing attention weight of each word, where the similarity martix is

computed by the sentence encoded outputs from a bi-directional LSTM.

For the purpose of evaluation, we collect the reported results from the published

works of above mentioned models, wherever possible. Wherever this was not feasible,

we implemented them to match with the reported specification and experimental

evaluation of these models.

5.5 Results and Analysis

5.5.1 Quantitative Evaluation

Comparison with State of the Art Methods

We first compare the performance of our proposed approach against a number of

techniques using the metrics mentioned in Section 5.4. Table 5.3 reports the MRR

and MAP metrics for different models evaluated using the four datasets mentioned

above. Overall, the proposed model CABIN performs best in most cases, and is

always amongst the top three performing models. In Table 5.4, we summarize the

model ranking, where, for instance, the best performing model possesses the ranking

of 1.0, while the worst possesses the ranking of 14.0. For each model, we report

its averaged ranking over the two measures for each dataset, and the last column

of the table reports the final averaged ranking over all the datasets. It can be seen

Jinmeng Wu

5.5 Results and Analysis 91
Table

5.3:Perform
ance

com
parison

ofdifferentm
odels

across
a

range
ofdatasets.T

he
bestresults

are
highlighted

and
the

second

bestresults
are

underlined.

T
R

E
C

W
ikiQ

A
Y

ahoo!
StackE

x

M
odels

M
R

R
M

A
P

M
R

R
M

A
P

M
R

R
M

A
P

M
R

R
M

A
P

R
andom

G
uess

[56]
0.5731

0.4920
0.4620

0.4582
0.4173

0.3759
0.4897

0.4350

B
oW

[5]
0.6810

0.5842
0.5411

0.5330
0.5021

0.4735
0.5842

0.5362

W
ordE

m
bed

[90]
0.7052

0.6091
0.5630

0.5521
0.5273

0.4911
0.6053

0.5578

B
igram

-C
N

N
[32]

0.7846
0.7113

0.6415
0.6311

0.5952
0.5730

0.6821
0.6491

A
dd-C

N
N

[33]
0.8078

0.7459
0.6652

0.6520
0.6150

0.5722
0.7067

0.6525

Q
A

-L
ST

M
[120]

0.8322
0.7111

0.7045
0.6821

0.6468
0.6157

0.7409
0.7158

A
P-C

N
N

[96]
0.8511

0.7530
0.6957

0.6886
0.6489

0.6047
0.7325

0.6830

A
b-C

N
N

[37]
0.8539

0.7741
0.7108

0.6921
0.6530

0.6325
0.7461

0.7205

K
V

-M
em

N
N

s
[128]

0.8523
0.7857

0.7265
0.7069

0.6749
0.6431

0.7580
0.7365

IA
R

N
N

[40]
0.8208

0.7369
0.7418

0.7341
0.6687

0.6275
0.7489

0.7175

B
iM

PM
[119]

0.8750
0.8020

0.7310
0.718

0.6892
0.6353

0.7523
0.7240

IW
A

N
[1]

0.8890
0.8220

0.7500
0.7330

0.7010
0.6521

0.7689
0.7341

C
A

M
[2]

0.8659
0.8145

0.7545
0.7433

0.7035
0.6630

0.7852
0.7483

C
A

B
IN

0.8845
0.8375

0.7653
0.7520

0.7250
0.6825

0.8024
0.7656

C
A

B
IN

-J
0.8563

0.7925
0.7415

0.7242
0.7026

0.6510
0.7812

0.7341

C
A

B
IN

-A
0.8450

0.7843
0.7323

0.7135
0.6937

0.6442
0.7684

0.7150

C
A

B
IN

-P
0.8559

0.7962
0.7320

0.7150
0.6883

0.6320
0.7763

0.7212

C
A

B
IN

-S
0.8621

0.8207
0.7468

0.7292
0.7094

0.6641
0.7891

0.7469

Jinmeng Wu

5.5 Results and Analysis 92

Table 5.4: Averaged ranking of different models. The best results are highlighted in

bold and the second best are underlined.

Models TREC Yahoo! StackEx WikiQA Overall

RandomGuess [56] 14.0 14.0 14.0 14.0 14.0

BoW [5] 13.0 13.0 13.0 13.0 13.0

WordEmbed [90] 12.0 12.0 12.0 12.0 12.0

Bigram-CNN [32] 10.5 11.0 10.5 11.0 10.8

Add-CNN [33] 9.0 10.0 10.5 10.0 9.9

QA-LSTM [120] 9.5 8.5 8.5 6.5 8.3

AP-CNN [96] 7.0 8.5 8.5 9.0 8.3

Ab-CNN [37] 5.5 7.0 6.5 5.0 6.0

KV-MemNNs [128] 5.5 6.0 4.5 3.5 4.9

IARNN [40] 9.0 3.5 4.5 6.5 5.9

BiMPM [119] 3.5 5.0 4.5 5.0 4.5

IWAN [1] 1.5 3.5 3.0 3.5 2.9

CAM [2] 3.5 2.0 2.0 2.0 2.4

CABIN (Proposed) 1.5 1.0 1.0 1.0 1.1

from Table 5.4 that the proposed model possesses the highest ranking among all the

compared ones.

In the following, we make a number of more specific observations from Table 5.3:

• With respect to the MRR, where a higher value indicates better performance,

the proposed approach outperforms all models when evaluated against the Wik-

iQA, Yahoo! and StackEx(L) datasets. In particular, the proposed outperforms

the next best performing model, which is CAM model, by 1.33%, 2.15%, and

1.72% respectively, on these datasets.

• When considering the MAP performance, the proposed approach outperforms

the CAM model, when compared against the WikiQA, Yahoo! and StackEx(L)

datasets, by 0.87%, 1.95%, and 1.73% respectively.

• On the TREC dataset, the proposed approach offers the best MAP performance,

followed by the 2nd best IWAN model providing close performance. The

proposed model beats the IWAN model by 1.55% in MAP performance.

• The MRR performance of the proposed on the TREC dataset, however, are

Jinmeng Wu

5.5 Results and Analysis 93

not as good as would be expected. The best IWAN model outperforms the

proposed approach by 0.6%.

When comparing both MRR and MAP performance over the four datasets, the

proposed model achieves the best results on TREC dataset, conversely, the worst

results on Yahoo! dataset. Upon a closer inspection of the different datasets, we

observe that there is a noticeable difference in mean lengths for questions and answers

between the Yahoo! and other datasets. Also, the Yahoo! dataset contains questions

and answers that are more informally formulated or expressed in a colloquial way,

and this is particularly the case when compared against the TREC, StackEx(L) and

WikiQA datasets. For example, in the Yahoo! dataset, it is common to see a question

sentence like "What Subbed episode does Nel transform???? @ Bobbi: Cause i saw

it on youtube and yeah i just wanted to know, Thank you :-)", and a matching answer

like "Hmmm...bleach episode 192!!!!!!!!!! heres the list of the episodes lol:... GOOD

LUCK!". Albeit being trivial, such informal formations of question-answer pairs

render the cQA problem more difficult to handle.

In comparison, the three other datasets describe non-trivial, but well formulated

question-answer pairs with long sentences. Both the proposed attention mechanism

and the context information jump are developed to capture and encode information

flow in sentences based on word semantics and order information. As such, the

proposed model can better be exploited on the TREC, StackEx(L) and WikiQA

datasets containing better formulated and longer question and answer sentences.

Thus, it still has the challenge to solve the colloquial sentences matching in cQA

datasets such as Yahoo! dataset.

Empirical Analysis of CABIN model

To understand the performance behavior of our proposed CABIN in detail, and to

verify the model varieties against our hypothesis, we trained and tested the proposed

model under the four different conditions: without attention mechanism (CABIN-A),

without context jump (CABIN-J), without pre-training process (CABIN-P) and with

standard self-attention function Eq.(5.3.1) in attention mechanism (CABIN-S). These

evaluations enable the relative merits of the attention and context jump mechanisms

Jinmeng Wu

5.5 Results and Analysis 94

Datasets
TREC WikiQA Yahoo! StackEx

M
R

R
 V

al
ue

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
MRR Performance of variations of CABIN

CABIN!J
CABIN!A
CABIN!P
CABIN!S

(a)

Datasets
TREC WikiQA Yahoo! StackEx

Pe
rc

en
ta

ge
 G

ai
n

0

1

2

3

4

5

6
MRR Perform Gains of CABIN

CABIN!J
CABIN!A
CABIN!P
CABIN!S

(b)

Figure 5.8: Left figure (a): Absolute performance and right figure (b): Performance

gains of the proposed approach.

and pre-training to be quantified over the proposed version. To assess the absolute

advantage over the proposed version, we define the percentage gain on MRR as:

GMRR(x) =
MRR(CABIN) −MRRx

MRRx

(5.5.1)

where x ∈ {(CABIN-A), (CABIN-J), (CABIN-P), (CABIN-S)}. Corresponding

MRR performance and gains are shown in Figure 5.8. A number of observations can

be made:

• When considering the absolute MRR performance (Figure 5.8(a)), the pre-

training, the attention, and the context information jump mechanisms always

improve a certain value in the MRR performance. Thus proposed model

performance against the other varieties of the model.

• When considering the TREC and the StackEx(L) datasets (Figure 5.8(b)), the

biggest contribution comes from the attention mechanism. The gain values of

the two datasets are 4.67% and 4.42% among the proposed configurations.

• When considering the WikiQA and the Yahoo! datasets, the pre-training

process contributes to the highest gain in MRR performance, by 4.55% and

5.33%, respectively.

Jinmeng Wu

5.5 Results and Analysis 95

• The above observation is, for all datasets, where the jump mechanism produces

a stable and similar gains around 3% in MRR performance. In particular,

the jump mechanism brings the biggest increasement on TREC and WikiQA

datasets, by 3.29% and 3.21%, respectively.

• Comparing with the MRR performance between proposed co-attention and

self-attention, the proposed attention offers an increased gains around 2% for

all datasets. The MRR perform gains provide the biggest improvement on

TREC and WikiQA datasets, by 2.6% and 2.5%, respectively.

Overall, the above results show that the attention mechanism leads to a better perfor-

mance to the highly contentable and structured type of the TREC and StackEx(L)

datasets with less training samples. On the other hand, the pre-processing process

is an efficient tool on the Yahoo! and WikiQA datasets with more training samples.

The context jump mechanism considers the effect of adjacent text information leads

to a better performance on highly structured and grammatically correct nature of

the TREC and WikiQA datasets. This observation, to a certain extent, verifies the

hypothesis that well-phrased English sentences are predictable.

5.5.2 Example Demonstration

To illustrate the efficacy of the proposed approach in a qualitative manner, we

present a number of sample question-answer cases, from the best performing TREC

and worst performing Yahoo! datasets. In both the cases, we show the top-three

possible answers picked up by two different architectures. The two different, yet

compatible, architectures are the IWAN model for TREC dataset, and CAM model

for Yahoo! dataset, which are the second best performing models on the two datasets

individually, and hence chosen as a comparative model.

First consider the Example 1 and Example 2 from the TREC and Yahoo! datasets,

presented in Tables 5.5 and 5.6. It can be observed that the true answers are correctly

identified by the proposed model. Also, the ranked answers from the proposed model

are more accurate than the ones from the IWAN model.

Jinmeng Wu

5.5 Results and Analysis 96

In addition to these two successful examples, we now consider an example where

our model fails to handle an informally formulated question-answer pair from the

Yahoo! dataset. For the question of "ahh help, what is a really scary pea my pants

scary story? I want it to be soo scary, Thank you :)", the correct available answer is

"oh god, man now that is really scary you – your pants from reading a scurry story

lol... XD Hope it helps, X". However, when tested, the proposed model opted "if

you don’t take a test, you’ll continue to be scared. you should really just take it. just

remember, if you’re stressed and scared, your period can be late. it’s best to just take

a test to know for sure." as the best answer, and selecting the ground truth answer as

the second best answer. In this example, the ground truth answer contains informal

language, the proposed model could not encode such information accurately and

selects a longer sentence, which is more formally formulated, as the best answer.

To illustrate the efficiency of the proposed attention mechanism, we illustrate the

salient word positions highlighted by the question-aware answer attention weights

α
(aq)
t , for two example question-answer pairs from the TREC and Yahoo! datasets,

in Table 5.7. Attention weights learned by the proposed and the existing attention

mechanisms are reported for each pair. It can be seen from Table 5.7, that the

proposed method is able to capture more accurately the salient word positions, which

are important for the matching task.

To examine the efficiency of context jump mechanism in proposed model, we

demonstrate corresponding similarities between an question and its context informa-

tion jump using two example questions from the TREC datasetin, shown in Table 5.8.

In the table, the word positions possessing the two largest context information jump

and the two smallest context information jump are marked and indicated by T@k

and B@k, respectively, for k = 1, 2. For each example question, a correct answer

and an incorrect one are examined. It is interesting to observe that the T@k words

are generally more informative than the B@k words.

For the same two example questions, we also illustrate the difference of the

selected salient answer words and the top three retrieved answer sentences, between

our two model versions CABIN-J and CABIN in Table 5.9. This is to demonstrate the

effect of the proposed quantity of context information jump in attention learning and

Jinmeng Wu

5.6 Conclusion 97

sentence matching. It can be seen from Table 5.9, that the inclusion of the proposed

quantity results in more accurate answer retrieval and salient word identification for

both example questions.

5.6 Conclusion

In this section, we have proposed the cQA matching model CABIN, which is

based on a cross-sentence context-aware bi-directional LSTM architecture. The goal

is to improve the semantic matching between query and answer sentences, and this

is achieved by exploring three aspects: contextual information between adjacent

words in a sentence, an adaptive attention mechanism and the generative sentence

representation by pre-processing based bi-directional LSTM. Thereby, we examine

and analyze these specific skills are benefit for cQA matching.

A novel pair-wise attention mechanism is designed to produce the interactive

sentence representation, the first co-attention based on the sentence content, and the

second interactive attention depends on the similarities between question and answer.

In particular, we augment the existing techniques, which mainly use positional ques-

tion and answer representations, with word frequency and co-occurrence information

in order to improve the computation of attention weights. Further contributions of

this work, include the context information jump and the use of a generative sentence

representation. The former helps improving the computation of attention weights by

considering informativeness of different word positions, whereas the latter eases the

computation without sacrificing the representation quality.

Furthermore, to take into account adjacent context in sentence representation, the

bi-directional LSTM learning representation is not only based on the simple previous

or the next states in one direction propagation, but also on the use of the cross

states of the sentence in hand. This results in a context-aware inside the sentence

representation, which is self-adaptive to the sentence content.

Overall, we evaluated the proposed model with the aid of four datasets, using

a number of metrics and against a considerably large number of models from the

literature including state-of-the-art ones. Our results indicate that the proposed

Jinmeng Wu

5.6 Conclusion 98

attention mechanism, the proposed quantity of context information jump and the

generated sentence representation can help to improve the question answer matching

on a certain extent for different situations of datasets. The empirical results also

show that the proposed co-attention function improves matching performance for all

datasets by comparing with the self-attention function. Although further evaluations

may be needed to differentiate the benefits on well-written text, our results indicate

the proposed method is a very useful technique to improve the cQA process.

Jinmeng Wu

5.6 Conclusion 99

Table 5.5: Comparison of the top three answers returned by the proposed CABIN

and existing IWAN [1] architectures for an example question from the TREC dataset,

where the ground truth answer sentences are marked by (∗) in the end.

Example 1 (TREC Dataset)

Question Who is the president or chief executive of Amtrak?

Top 3

answers

by

CABIN

No.1: “ long-term success here has to do with doing it right,

getting it right and increasing market share,” said george war-

rington, amtrak ’s president and chief executive. (∗)
No.2: “ amtrak is committed to treating all employees fairly,”

amtrak president george warrington said in a statement. (∗)
No.3: amtrak is also upgrading the tracks between washington

and boston, said warrington, which should lead to improved

service even before the high-speed trains are introduced.

Top 3

answers

by

IWAN

[1]

No.1: amtrak will lose money again this year, but will meet

the congressional deadline of weaning itself from operating

subsidies by the fiscal year ending sept. 30 , 2002, officials

said.

No.2: “ amtrak is committed to treating all employees fairly,”

amtrak president george warrington said in a statement. (∗)
No.3: amtrak is offering a deal it hopes few travelers can resist:

get good service or a free ride.

Jinmeng Wu

5.6 Conclusion 100

Table 5.6: Comparison of the top three answers returned by the proposed CABIN

and existing CAM [2] architectures for an example question from the Yahoo! dataset,

where the ground truth answer sentences are marked by (∗) in the end.

Example 2 (Yahoo! Dataset)

Question how to push yourself to the limit during excercising?

Top 3

answers

by

CABIN

No.1: try wearing a bandana and looking really cool and

maybe you can “push yourself to the limit” in a top gun kind

of way. listen to some bon jovy music. (∗)
No.2: the answer to your question is no not necessarily. you

probably are suffering from a subluxation of the lumabr spine.

No.3: you have to break in a composite bat, which is what

rolling it does. it’s just like hitting a few hundred times. it

works just fine, but the bats pop will probably die out sooner.

but you will hit the ball harder and further.

Top 3

answers

by CAM

[2]

No.1: the red one is a shiny one meaning its rarer if i were

you i would go for the red. but blue is good too, that the only

difference is its colour.

No.2: “squidward you like crabby patties don’t you!?"

No.3: try wearing a bandana and looking really cool and

maybe you can “push yourself to the limit" in a top gun kind

of way. listen to some bon jovy music. (∗)

Jinmeng Wu

5.6 Conclusion 101

Table 5.7: Comparison of the top three salient word positions in answer captured

by the proposed CABIN and the second best models using two examples from the

TREC and Yahoo! datasets. The learned attention weight is reported in parenthesis

for each selected salient word.

Example 1 (TREC Dataset)

Question Who is the president or chief executive of Amtrak?

CABIN

“long-term success here has to do with doing it right , getting

it right and increasing market share , " said george (0.0751)

warrington, amtrak’s (0.0825) president and chief (0.0613) ex-

ecutive.

IWAN

[1]

amtrak (0.0612) will lose money again this year, but will meet

(0.0469) the congressional deadline of weaning itself from oper-

ating subsidies by the fiscal year ending sept. 30, 2002, officials

(0.0625) said.

Example 2 (Yahoo! Dataset)

Question how to push yourself to the limit during excercising?

CABIN

try wearing a bandana and looking really cool and maybe you

can “push (0.0754) yourself to the limit (0.0627)” in a top gun

kind of way. listen (0.0516) to some bon jovy music.

CAM

[2]

the red one is a shiny one meaning its rarer if i were you (0.0632)

i would go (0.0562) for the red. but blue is good (0.0415) too,

that the only difference is its colour.

Jinmeng Wu

5.6 Conclusion 102

Table 5.8: Illustration of answer word positions with either the largest two similarity

values of the context information jump ∇h̃(a)
t indicated by T@K for K=1,2 (high-

lighted in bold), or the smallest two similarity values of ∇h̃(a)
t indicated by B@K

for K=1,2 (underlined). We use Q, A+ and A− to distinguish the question, correct

answer and incorrect answer sentences.

Example 1

Q: what is eileen marie collins’ occupation ?

A+: selected by (B@1) nasa in

(B@2) January 1990, collins

(T@1) became an astronaut

(T@2) in July 1991.

A−: also, is she by any chance

from (B@1) the daughter (T@2)

of (B@2) michael collins, one of

the apollo (T@1) 11 astronauts?

Example 2

Q: what is the religious affiliation of the kurds ?

A+: most kurds (T@2) are secular

muslims who belong to (B@1) the

(B@2) main sunni (T@1) sect.

A−: about 2 million kurds live

(T@1) in northeastern syria near

its border with turkey (T@2)

and iraq, but the (B@1) kurdish

military presence there centered

mainly around (B@2) kurds from

iraq, not turkey.

Jinmeng Wu

5.6 Conclusion 103

Table 5.9: Comparison of the top three answers and salient word positions returned

by the two versions of CABIN-J and CABIN corresponding to ones with and without

using the context information jump. The same two example questions as in Table 5.8

are examined, where the ground truth answer sentences are marked by (∗) in the end.

Example 1

Question what is eileen marie collins’ occupation ?

Top 3

answers

by

CABIN

No.1: selected by nasa in January 1990, collins became an astronaut

in July 1991. (∗)
No.2: the five-member crew of the shuttle columbia that will launch

chandra is led by veteran astronaut eileen collins , who would become

the first woman of any nation to command a spaceflight. (∗)
No.3: also, is she by any chance from the daughter of michael collins,

one of the apollo 11 astronauts?

Top 3

answers

by

CABIN-

J

No.1: also, is she by any chance from the daughter of michael collins,

one of the apollo 11 astronauts?

No.2: the five-member crew of the shuttle columbia that will launch

chandra is led by veteran astronaut eileen collins, who would become

the first woman of any nation to command a spaceflight. (∗)
No.3: selected by nasa in January 1990, collins became an astronaut

in July 1991. (∗)
Example 2

Question what is the religious affiliation of the kurds ?

Top 3

answers

by

CABIN

No.1: most kurds are secular muslims who belong to the main sunni

sect. (∗)
No.2: now his capture gives ocalan the stature among other kurds he

never had before.

No.3: about 2 million kurds live in northeastern syria near its border

with turkey and iraq, but the kurdish military presence there centered

mainly around kurds from iraq, not turkey.

Top 3

answers

by

CABIN-

J

No.1: about 2 million kurds live in northeastern syria near its border

with turkey and iraq, but the kurdish military presence there centered

mainly around kurds from iraq, not turkey.

No.2: most kurds are secular muslims who belong to the main sunni

sect. (∗)
No.3: now his capture gives ocalan the stature among other kurds he

never had before.

Jinmeng Wu

Chapter 6

Attentive Memory Network For

Answer Selection

6.1 Introduction

QA is a challenging matching problem that is required to understand the un-

structured context and generate an answer for given inputs, not only selecting the

correct answers from candidate pools with a pure QA matching in answer selection

task. The text understanding task is refereed to MRC, which also is important part

as well as the answer selection in NLP tasks. The semantic matching as an efficient

approach accurately measuring the relevance between two portions of text and is

widely used in various NLP tasks, such as paraphrase identification [31,35], machine

translation [34, 61], image caption generation [27, 98], sentiment analysis [6, 36], etc.

In QA, the semantic matching is required to find the relationships between

question-answer (Q-A) or question-context (Q-C) pairs, whatever for MRC or answer

selection task. It is verified by the MRC example is shown in Figure 6.1. Given the

question and context, the generated answer consists of a segment text “Khartoum

killed Gordon”, which is a span of context. Since there appears a number of word

“Gorden” may disturb correct answer generation for given question, it is vital to find

the word-level semantic information between the question and context interaction,

especially for the multiple-words generation.

104

6.1 Introduction 105

Question Q1

• Which British general was killed at Khartoum in 1885?

Candidate Context:

• In February 1885 Gordon returned to the Sudan to evacuate Egyptian forces. Khartoum

came under siege the next month and rebels broke into the city. Khartoum killed Gordon

and the other defenders. The British public reacted to his death by acclaiming ‘Gordon

of Khartoum’, a saint. However, historians have suggested that Gordon defied orders and

refused to evacuate...

Answer Prediction:

• Khartoum killed Gordon

Figure 6.1: Example scenario for MRC. With respect to given question and context,

the spans answer is labeled by underline,

The traditional approach is query-based IR techniques [3] searches a text segment

from corpus to support QA matching. It is hard to capture the semantic relevance

between given sentence pair, and derive a useful contextual representation. An al-

ternative knowledge-based QA approach [8, 10] can be used to inform the matching

about the relationship between words or phrases, however, this requires additional

effort to manually create or curate a knowledge resource, and still requires a mecha-

nism to combine the word or phrase-level similarity. Thereby these works are not

able to provide sufficient information to improve semantic matching.

Replacing the manual feature engineering with a neural language model, memory

network-based model [58, 59], a type of neural networks with addressable memory

mechanism, has been recently proposed to measure and develop the progress of MRC

architecture. The main usage of the memory network is to store the intermediate

representations of the given context and return the meaningful information to support

answer prediction. Unlike the generic recurrent networks, since the memory network

is required to connect with the external resources from the input processing controller,

the number of parameters increase exponentially with the capacity size of memory.

In order to capture context information with fewer training parameters, several

memory networks [14, 15] have designed the memory as a vector that involves the

Jinmeng Wu

6.1 Introduction 106

representation of sentence contexts, this behavior may result in memory recording

only a small amount of external resources, e.g. portions of relevant content in inputs.

With regards to the memory storage limitation problem, our proposed model

utilized the memory matrix instead of vector to store entire semantic similarities based

on word-level for the interaction between question and context. Although previous

work NTM also designs the memory matrix for word recognition task, a large size of

memory network may lead to a burden on the training. Notably, considering the effect

of parameters, we make the memory network stores the information in separately two

steps at one iteration, without feeding the whole information to memory matrix once.

More precisely, the memory matrix stores information based on individual rows and

columns vectors. The row-based memory first stores the contextual information and

refines a new memory matrix, which is used in the column-based memory as the

second step. Besides, the attention mechanism is used to improve the interactive

content in the memory, it is helpful for generating multiple words with weakly

unsupervised training. We refer to the proposed approach as multi-dimensional

memory network model (MMN).

The context is composed of a set of sentences. In MRC task, it has enough content

information to memory. QA matching in answer selection without supported context

and the given input sentences in the answer selection dataset normally contain a few

useful words to perform semantic word-level similarities. Previous works [8, 44]

adopt knowledge-based resources to provide external information to support semantic

matching. Whereas it costs an expensive computation by collecting the sentences

from a web or large corpus. Therefore, the proposed model collects the relevant Q-A

pairs under the same category from the internal dataset corpus instead of external

knowledge-based resources to compute the distributed similarity matrix between

pair-wise words, where the similarity matrix contains relevant word pairs are used

to initialize memory network for answer selection. An attentive memory network

is represented by a matrix that stores the similarities and inputs based on internal

relevance of word pairs, which is adaptive for answer selection.

Specifically, in the proposed memory network scheme for MMN, we divide our

proposed model into the following multiple parts:

Jinmeng Wu

6.1 Introduction 107

• Similarity Construction: a distributed similarity matrix is computed by bilinear

function between the Q-A or Q-C pairs. The same similarity matrix generation

is used as in Chapter 4. A top number of significant word pairs are selected by

max-pooling function for question and answer, respectively.

• Pre-processing Layer: relevant Q-A pairs searching as the internal resources to

initialize memory network

• Memory Module: Attentive memory network stores the texts and meaningful

word pairs from similarity module to improve the context of memory using

proposed multi-dimensional approach. The memory update mechanism refines

the memory matrix according to the previous memory and the related inputs

information produced by the attention mechanism.

• Matching Layer: the refined memory focuses on combing the distributed

similarity matrix between question and answer interaction for answer selection

task. We utilize a bi-linear matching function to compute the relevance between

the question and memory representations for MRC.

• Prediction Layer: The word-level combined representation is applied to soft-

max function and trained based on a cross-entropy loss function for answer

selection. A pointer network is used to search the answer spans of context and

calculate a negative log-likelihood loss function for MRC.

In the experiments, we show empirical comparisons of the proposed MMN

method and various state-of-the-art matching models. The answer selection datasets

WikiQA and TREC, The MRC datasets TrivialQA and SQuAD are used to evaluate

the performance. In addition, we analyze the performance of variations of the

proposed model to empirically justify model design choices. The results show that

the proposed MMN model outperforms the state-of-the-art methods and demonstrate

that the model provides a robust approach for both answer selection and MRC tasks.

Jinmeng Wu

6.2 The Proposed Work 108

Q-A/Q-C
Pairs

Relevant
Q-A Pairs

Similarity Layer

Top-k Pooling

Attention
Mechanism

Memory Network

Matching Layer Prediction Layer

Figure 6.2: An illustration of the proposed model architecture.

6.2 The Proposed Work

Given a question q and answer a sentences, the goal is to rank and generate

the relevant answer sentences from a pool of candidates for the answer section and

machine comprehension tasks. In this work, we design a dynamic multi-dimension

memory network (MMN) that efficiently stores the relevant sentence pairs into a

memory matrix and individually refine it in two dimensions of memory according to

input sentences. Thus, the memory update mechanism learns the semantic informa-

tion between question and answer required to improve the matching performance.

The multi-dimension memory network architecture is illustrated in Figure 6.2. In this

section, we use the answer selection task as an example to describe the design of the

proposed model in detail.

6.2.1 Similarity Construction

Bilinear Similarity Computation

Given a question q = {wqi }mi , and a candidate answer a = {wci}ni , it is reasonable

to assume that the answer’s relevance depends on the semantic similarity between

Jinmeng Wu

6.2 The Proposed Work 109

the words they contain. A distributed vector representation is employed to model

the semantic similarity between words—each word is represented by d-dimensional

vector w = [w1, w2, . . . , wd]. Subsequently, if the question has m words it can

be represented as a m × d matrix X, likewise given the answer has n words it is

represented by an n× d matrix Y, where the rows of each matrix correspond to the

vector representations of the words appearing in the sentence. Defining the integers

m and n as the maximal lengths of a question sentence and an answer or context

sentence, variable length sentences can then be characterized by fixed-size matrices

by adding zero rows to fill up empty positions for shorter sentences: the m × d

matrix X denotes a question and the n×d matrix Y denotes an answer candidate. We

adopt the same similarity matrix formulation Eq. (4.2.1) in Chapter 4, it computes

the similarity for each pair of words, one from each sentence, and this results in the

m× n similarity matrix S between the query q and answer candidate a.

Top-k Max Pooling

To aggregate significant information and to reduce the size of the similarity

representation, we use a pooling process to select the number of top-ranked word pairs

in the similarity matrix S in row and column directions individually, corresponding

to word pairs importance between the question and answer. The pooling function

focuses on each column of similarity matrix is defined as

P(q) = top-k max pooling (S[:, j]) ;∀j ∈ [1, 2, . . . , n], (6.2.1)

with the pooling in each row of similarity matrix:

P(a) = top-k max pooling (S[i, :]) ,∀i ∈ [1, 2, . . . ,m], (6.2.2)

where P(q) is m× k matrix and P(a) is k × n matrix. The S[:, j] is a m dimensional

vector, and the S[i, :] is a n dimensional vector. The pooling operation compares the

semantic similarities between a word in the sentence and all the words in the other

corresponding sentence and returns an aggregated similarity measure for that word.

This results in the m-th element and n-th element of the similarity matrix P(q), P(a)

for the question and answer, respectively. The top-ranked number k can be arbitrarily

Jinmeng Wu

6.2 The Proposed Work 110

set to different values for questions and answers. In general, the value k of answer is

bigger than the one of question, since the answer contains more words.

The two motivations for pooling are (1) to extract influential combinations of

words for text pair so that the pooled vector can be conveniently fed into the next

layer, and (2) to reduce redundant information and the number of model parameters.

Commonly used pooling operations pooling include average, max, min, and stochas-

tic pooling [138, 139]. In this work, max pooling is applied since it can be seen as

searching for the best similarity matching for question and answer word.

6.2.2 Multi-dimensional Memory Network

In this section, we will build the proposed memory network for two parts: (1)

pre-processing step extracts the top matching relevant questions and answers. (2)

memory initialization. The architecture of initializing the proposed memory network

is illustrated in Figure 6.3.

...

...

...

...

...

...

...

...

...

...

𝐌"

......
......

...
...

...
...

...
...

...

...

...

...

...

...

...

...

...
...

...
...

...
...

...
...

...

...

...

...

...

...

...
...

...

...

...
...

...
...

...
...

...
...

Memory Pools

𝐗$

𝐘$

𝑎

𝑞′)

𝑞′*

𝑞′+

𝑎′)

𝑎′*

𝑎′+

𝑞

𝐗,

𝐘,

Similarity Construction

Figure 6.3: An illustration of memory initialization for matching a sentence pair.

Pre-Processing Sentence Representation

The relevant question and answer of corpus have the assistant information for

the similarity between the original question and answer. In the processing step, we

Jinmeng Wu

6.2 The Proposed Work 111

explore to collect a number of the relevant question and answer pairs that have the

top matching between relevant question Q’-Q pair and relevant answer A’-A pair.

Assuming the distributed embeddings of the question and answer are represented is

X, Y, the embedding representations of relevant question and answer are set as X′,

Y′. With respect to dimensional reduction, we convert the input representation from a

matrix to a vector by normalizing the columns of matrix corresponding to each word

in sentence. The l2-norm formulation is computed by: ||Z(l)|| =
(∑k

i

(
Z

(l)
i

)2) 1
2
,

where Z is represented by k-dimensional column vectors. Thus, the normalized

question representation x = [x1, x2, . . . , xd] is represented by a d-dimensional vector,

the element xl = ||X(l)|| where X(l) denotes the l-th element of the row vector

in question embedding matrix X, and l ∈ ∀[1, 2, . . . , d]. The same process with

normalizing question representation, we obtain the d-dimensional vectors of the

relevant question representation x′, the answer representation y and the relevant

answer representation y′, respectively.

In order to search the best Q’-A’ pairs, we employ the cosine similarity to

compute the similarity score cos[x,x′] between question and its relevant question,

and cos[y,y′] between answer and its relevant answer. A certain number of relevant

Q-A pairs are collected from dataset corpus under the same category with input Q-A

pair. We rank a top number lq, la of relevant questions and answers depending on the

magnitudes of similarity scores. Then we feed these specific relevant question and

answer embeddings into 3-dimensional memory pools Xm, Ym, where the entire

number of sentences in the memory pools is lq, la, separately.

Considering various approaches for dimensional reduction of sentence representa-

tion, the l2-norm combines all elements in column vector of sentence representation.

The commonly method used in option is to set weighted averaged function [34] as

dimensional reduction approach, the l-th element in sentence embedding vector is

computed by: zl = 1
k

∑k
i wiZ

(l)
i , where wi is the weight for the l-th element. Apart

from above approaches, a bi-linear function is used to transform sentence embedding

matrix to a vector representation by: zl = f(wTZ(l) + b), where the parameter w is

a m-dimensional row vector. Subsequently, we will compare and discuss these three

methods in the Section 6.4.2.

Jinmeng Wu

6.2 The Proposed Work 112

Memory Network Initialization

A series of relevant question and answer pairs contain enrich information that

relates to the original sentence pairs. Assuming a distributed memory representation

M0 set as a m × n matrix at time t = 0. We use the memory pools of relevant

question and answer sentences Xm, Ym to initialize the memory.

Memory pools store a number of related questions and answers. Prior to initializ-

ing memory matrix, we individually integrate the related lq questions and la answers

from the memory pools. The 2-dimensional matrices of memory slots are defined

by the weighted sum function: Xs =
∑lq

i ViX
(i)
m for question; Ys =

∑la
j UjY

(j)
m

for answer, where Vi denotes m×m matrix, and Uj is n× n matrix. X
(i)
m denotes

the i-th element m× d dimensional matrix of the memory pool Xm. Y
(j)
m denotes

the j-th element n× d dimensional matrix of the memory pool Ym. In the initializa-

tion process, we still follow the bi-linear similarity computation in Chapter 4. Two

memory slots Xs, Ys are used in Eq. (4.2.1) as the inputs. The similarity output is

computed as the initialized memory M0. This memory contains interactive infor-

mation between the relevant question and answer pairs. In the next step, we use the

initialized memory matrix to refine and update the memory matrix.

6.2.3 Memory Refinement

Recent QA models that use the memory [14, 15, 86] as a vector to store the

information from an external controller. In this work, we set a m× n dimensional

memory matrix Mt at the current time t in order to store not only the local inputs

information, but also the relevant questions and answers. A running example with

three QA sentence pairs in Figure 6.4 shows the effect of refinement operation with

three hops for WikiQA dataset. It can be seen from the figure that memory refinement

operation demonstrates the correct answer moves closer to the question in ranking

list while incorrect one moves further.

Consequently, it is difficult to update the entire memory matrix with less computa-

tion, NTM [85] has been designed to solve this issue by updating a vector from each

row element in memory matrix. To write the inputs and interactive similarities from

Jinmeng Wu

6.2 The Proposed Work 113

Question Q

• how does interlibrary loan work?

Candidate Answers: A1 and A2 (hop 1)

• A1: The lending library usually sets the due date and overdue fees of the material

borrowed. (A−)

• A2: In many cases, nominal fees accompany interlibrary loan services. (A−)

• A3: The user makes a request with their local library, which, acting as an intermediary,

identifies owners of the desired item, places the request, receives the item, makes it

available to the user, and arranges for its return. (A+)

Candidate Answers: A21 and A22 (hop 2)

• A21: The lending library usually sets the due date and overdue fees of the material

borrowed. (A−)

• A22: The user makes a request with their local library, which, acting as an intermediary,

identifies owners of the desired item, places the request, receives the item, makes it

available to the user, and arranges for its return. (A+)

• A23: In many cases, nominal fees accompany interlibrary loan services. (A−)

Candidate Answers: A31 and A32 (hop 3)

• A31: The user makes a request with their local library, which, acting as an intermediary,

identifies owners of the desired item, places the request, receives the item, makes it

available to the user, and arranges for its return. (A+)

• A32: The lending library usually sets the due date and overdue fees of the material

borrowed. (A−)

• A33: In many cases, nominal fees accompany interlibrary loan services. (A−)

Figure 6.4: Example scenario with three QA sentence pairs for memory refinement

operation with three hops. In the candidate answers ranking list with each hop, a

correct answer is labeled as A+, an incorrect one is marked as A−.

Jinmeng Wu

6.2 The Proposed Work 114

controller to memory matrix, we propose the rows and columns two writing heads to

update the memory matrix through involving the answer and question information,

respectively. The memory matrix updates twice with two writing heads at each time

t. The memory refinement structure of the proposed model for text matching is

illustrated in Figure 6.5. The memory updating process is a continuous mechanism,

once the row elements are updated, the new memory matrix would be used as the

input for renewing columns.

Assuming the m × n memory matrix at current episode t denotes Mt. The

i-th element row vector of memory matrix represents Mt[i, :], ∀i ∈ [1, . . . ,m],

where each row of memory matrix denotes n dimensional vector. The j-th element

column vector of memory matrix is Mt[:, j], ∀j ∈ [1, . . . , n], where each column of

memory matrix denotes m dimensional vector. To simply the notations convenient

for computation, we define the row vector Mt[i, :] = mi
t and the column vector

Mt[:, j] = mj
t of memory matrix at the t-th time.

𝜔1 𝜔2 𝜔3 𝜔𝑛

𝜔1

𝜔2

𝜔𝑚

𝜔1 𝜔2 𝜔3

𝜔1
⨂

𝛼)*

...

...

...

...

...
...

... ...

...

...

...

...

...

...

...

...

...

...

𝜔𝑚-1

𝜔n-1

𝜔𝑛-1 𝜔𝑛

𝜔𝐾

𝜔2...

...

...

...

𝑞

𝑎

𝜔1

𝜔2

𝜔𝑚

𝜔1 𝜔2 𝜔𝐾...

𝐏(0)

𝐏(2)

𝐌456

𝐌7)

𝐒

𝐌)9:

𝐌)
𝜔𝑚-1

......
......

...
...

...
...

...
...

...

...

...

...

...

...

...

...

......
......

...
...

...
...

...
...

...

...

...

...

...

...

...

...

......
......

...
...

...
...

...
...

...

...

...

...

...

...

...

...
Top-k max pooling

Memory
Refinement

Row-based
attention

𝛼)
;

𝐀(𝐦59:
𝔦 , 𝐦@

𝔦 , 𝐘)

𝐀(𝐦75
; ,𝐦@

; , 𝐗)

⨂

Column-based
attention 𝐌45C

Figure 6.5: An illustration of memory refinement for matching a sentence pair.

Jinmeng Wu

6.2 The Proposed Work 115

Row-based memory

We first update each row vector in the previous episode memory matrix mi
t−1,

The activation function Rectified Linear Unit (ReLU) [65] is applied to convert the

element to be sparse, we update the memory by using the following defined functions

M̄t = ReLU(WrM̃
r
t + br), (6.2.3)

where the Wr denotes a m × 4 dimensional matrix, br is m × n dimensional

matrix. Soft attention as given by a contextual matrix through a weighted summation

of vectors A(mi
t−1,m

i
0,Y) and attention weight αit. The contextual memory is

computed by using the attention function, given as

M̃r
t =

m∑
i=1

αitA(mi
t−1,m

i
0,Y), (6.2.4)

where the contextual memory matrix M̃r
t represents a 4× n matrix. The attention

mechanism is responsible for generating the contextual memory matrix M̃r
t based on

the previous episode memory vector mi
t−1, the initialized memory vector mi

0 and the

answer sentence representation Y. The attention function A(mi
t−1,m

i
0,Y) for each

row vector of memory is defined as

A(mi
t−1,m

i
0,Y) =

mi

t−1 �Ywy∣∣mi
t−1 −Ywy

∣∣
mi

t−1 �mi
0∣∣mi

t−1 −mi
0

∣∣

 , (6.2.5)

where wy is a d-dimensional row vector. The symbol � is element-wise product.

The symbol | · | is defined as the element-wise absolute value. The feature set

A(mi
t−1,m

i
0,Y) aggregates four vectors of n elements to a 4×nmatrix. The feature

vector captures a variety of similarities between input sentence and memory [14].

The feature set A(mi
t−1,m

i
0,Y) is composed of four different similarity vectors

between answer sentence representation, memory and initialized memory. The

similarity between related question and answer sentences representations is used as

an initialized memory to generate a feature vector instead of a single input sentence.

Jinmeng Wu

6.2 The Proposed Work 116

The attention weight is computed depends on the softmax function

αit =
exp(zit)∑m
l=1 exp(z

l
t)
. (6.2.6)

The attention weight is computed by the relational value zit, which depends on the

previous memory vector and the pooled similarity matrix of answer. The relational

function is defined as

zit = f((mi
t−1 + wp1P

(a))wa + ba), (6.2.7)

where the weight wa is a n-dimensional row vector, wp1 is a k-dimensional column

vector, and bias ba is a scalar.

Column-based memory

After updating the rows of episode memory matrix, we adopt the new m × n
dimensional memory matrix M̄t as the input to update the columns of memory matrix.

The j-th elements column vector of M̄t is set to m̄j
t . Subsequently, the memory

matrix at current time t is computed using the columns of memory matrix, given as

Mt = ReLU(M̃c
tWc + bc), (6.2.8)

where the weight Wc denotes a 4× n dimensional matrix, bc is m× n matrix. Next,

we follow the same steps as updating the row-based memory, but with different

inputs. The previous memory m̄j
t , initial memory vector mj

0 and question sentence

representation are used to compute the column-based contextual memory M̃c
t as the

inputs in Eq.(6.2.4).

6.2.4 Mnemonic Deep Similarity Matching

Above memory update mechanism produces the episodic memory matrix Mt at

current time t based on the contextual representations and memory matrix at previous

time t − 1. The memory network starts from row-based updating of the previous

memory Mt−1, and ends at completing the update of columns-based as one iteration.

Assuming that the number of iterations (’hops’) of the memory network is T times

Jinmeng Wu

6.2 The Proposed Work 117

(0≤ t ≤ T), the final episodic memory MT is able to include significant information

required to semantic matching between question and answer. We combine the mem-

ory matrix MT and the similarity matrix S by using the element-wise multiplication

function, given as

F = A(MT ,S) = MT � S. (6.2.9)

To aggregate significant information and to reduce the size of the similarity

representation, we apply a pooling process to the computed similarity matrix S. The

pooling function returns a similarity vector that contains the most important pairs

between question and answer, is defined as

s(l) = max-pooling
(
F(l1),F(l2), · · · ,F(ln)

)
, ∀l ∈ [1, 2, . . . ,m]. (6.2.10)

where s(l) denotes the l-th element of the similarity vector s, and F(lk) denotes the

lk-th element of the full m× n matrix F. The max-pooling operation compares the

semantic similarities between a word in the question sentence and all the words in

the answer candidate, and returns an aggregated similarity measure for that word.

This results in a length-m similarity vector s for each question.

6.2.5 Matching Prediction

Given the Q-A pair in answer selection task, the probability that an answer

candidate a is related to q can be modelled using two-way softmax based on the

encoding of the similarity representation h, given as

p(t = 1|s) =
exp

(
sTα1

)
exp (sTα0) + exp (sTα1)

, (6.2.11)

where the two column vectors α0 and α1 are softmax parameters with the same

dimensionality as the similarity vector s. The matching prediction task is formulated

as a binary classification problem, where the label t = 1 indicates that a is related to

q, while t = 0 otherwise.

In answer selection, given a collection of question and answer candidate sentences

with available ground truth knowledge of whether they are related, the traditional

training approach optimizes the model variables by minimizing the regularized

Jinmeng Wu

6.2 The Proposed Work 118

cross-entropy cost function as shown below

L(θ) =−
∑

(i,j)∈I

[tij log p(tij = k|sij) (6.2.12)

+(1− tij) log (1− p(tij = k|sij))] +
λ

2
‖θ‖22 ,

where the index set I denotes the used training sentence pairs, and λ > 0 is the

regularization parameter set by the user. The training of the proposed text matching

model involves the bilinear similarity weights and biases {p1,p2,bs}, a set of

memory network parameters {w1,w2,Wr,Wc,wp1 ,wp2wa,wq} , as well as the

softmax parameters α0 and α1. The proposed memory network is “end-to-end”

structure, thus the model training is direct and simpler than using the pre-prepared

external resource as memory network.

To train this model, we apply back-propagation to update model variables of

network [144, 145]. With many parameters in the neural network model, there is

the danger of overfitting on a small size of training data. To tackle the overfitting

issue, we use the dropout technique along with early stopping as surrogate forms

of regularization for the matching model [146, 147]. The dropout method prevents

feature co-adaption by randomly removing hidden units from the neural network

training process.

6.2.6 Model Specification for Machine Comprehension

Apart from answer selection, the proposed model is capable of completing

machine comprehension task. Given a question q = {wqi }mi and context c = {wcj}nj
pair, where the m,n is the number of words in question, and context. In general,

n ≥ m. The goal of this task is to predict an answer a that is constrained as a

segmented text of context. Subsequently, we set the question and context pair (q, c)

as inputs into the proposed model instead of question and candidate answer pair

(q, a).

In particular, to initialize memory network M0 in sub-section 6.2.2, we set the

memory slots Xs and Ys to question embedding X, and context embedding Y. Here,

we replace the pre-processing module for machine comprehension due to the context

Jinmeng Wu

6.2 The Proposed Work 119

contains a number of sequences related to question, and the length of context is much

longer than the one of a candidate answer. Subsequently, the question, context inputs

embeddings X, Y and the initial memory matrix M0 as the inputs into the memory

update mechanism. By the final hop T , the updated memory network MT captures

the semantic information from context required to answer the question.

In matching layer, different from the memory focuses interactive similarity pairs

between question and answer in answer selection, machine comprehension task

requires the model find a segment of sequence spans of the context to answer the

question. For machine comprehension task, a pointer networks [158] is a popular

decoding approach to predict the start and end position of the answer. We follow the

approach in [126] to compute the start and end distribution of words in context using

a bilinear matching between the question and current memory, given as

ps = softmax
(
(Xws)

TMT

)
, (6.2.13)

with the probability distribution of end index as

pe = softmax
(
(Xwe)

TMT

)
, (6.2.14)

where the trainable weights ws, we both are d-dimensional row vector. The notation

softmax(·) represents softmax function shown in Eq.(6.2.6). According to the

bilinear function, we obtain the n-dimensional distributed outputs ps, pe.

In training process, the boundary detecting method [159] is adopted for machine

comprehension task, it minimizes the sum of the negative log probabilities of the

true start and end position by the predicted distributions, the loss for start and end

position is defined as

L(θ) =−
∑
i∈D

log ps(y
s
i) + log pe(y

e
i), (6.2.15)

where the index set D denotes the training question and context pairs. ys
i and ye

i are

the ground-truth start and end position indices of i-th pair, respectively. The model

overall variable θ is the set of entire trainable weights and bias, including bilinear

similarity and multi-dimensional memory network parameters.

Jinmeng Wu

6.3 Experimental Analysis and Results 120

6.3 Experimental Analysis and Results

In this section, we empirically analyze and evaluate the design of the proposed

model MMN on two tasks: answer selection and machine comprehension. We first

introduce the experimental setting of the MMN model in sub-section 6.3.1, then

we compare the proposed model with multiple state-of-the-art models on various

benchmark datasets. Finally, we demonstrate the properties of the proposed model

through empirical analysis.

6.3.1 Datasets

In answer selection, we focus two benchmark datasets: TREC and WikiQA

datasets. TREC1 [148], is generated from TREC QA tracks 8-13, which each contain

a set of factoid questions and candidate answers [148]. The correct answers for each

question are manually labeled and ranked in the dataset. WikiQA2 [13], is the public

released QA dataset in which all answers are collected from Wikipedia.

In machine comprehension, we also adopt two authoritative datasets to evaluate

the proposed model: Stanford Question Answering Dataset (SQuAD) and TriviaQA

datasets. The SQuAD dataset [18] totally consists of more than 100k questions

manually annotated by crowd sourcing workers on 536 Wikipedia articles. Each

question corresponds to contexts is a paragraph collected from an article. The best

answer responses to question is a segment of text to be a span of contexts. The

dataset contains 87k question context tuples for training, 10k tuples for validation.

We follow the same experimental setting as in [160] by dividing 10% of training

samples as the test set, and computing performance when training on subsets of the

remaining samples of the entire dataset.

TriviaQA3 [161] is a recent popular machine comprehension dataset consisting

of over 650K question-answer-context triples, which consist of 95K Trivia QA pairs

with the average six contexts as supporting evidence for each question. A dataset of

questions in trivia question databases paired with contexts is collected from either

1http://trec.nist.gov/data/qa/t8qa_data.html
2https://aka.ms/WikiQA
3http://http://nlp.cs.washington.edu/triviaqa/

Jinmeng Wu

trec.nist.gov/data/qa/t8qa_data.html
aka.ms/WikiQA
http://nlp.cs.washington.edu/triviaqa/

6.3 Experimental Analysis and Results 121

Table 6.1: Dataset content statistics.

Parameter TREC WikiQA SQuAD TriviaQA Wiki

No. of Questions 1,505 3,047 97,000 77,400

No. of Answers 60,800 29,258 - -

No. of Contexts - - 20,800 138,538

Avg. Q-Length(words) 11.39 7.26 11.0 15.0

Avg. A-Length(words) 24.63 24.94 - -

Avg. C-Length(words) - - 122 495

Table 6.2: Benchmark data splits.

Data Set Q/A Pairs Development Training Testing

TREC [32] 8,997 1,148 4,718 1,517

WikiQA [13] 29,258 2,733 20,360 6,165

SQuAD [18] 100,000 10,000 78,300 8,700

TriviaQA Wiki [161] 78,582 7,900 61,800 7,700

Wikipedia (Wiki) or Web search results. TriviaQA web dataset is derived from

TriviaQA database with unfiltered strings in each question context pair. Different

with TriviaQA web, TriviaQA Wiki ensures each document has a segment of text

as the answer label. The mean length of original contexts contains 2,895 words is

much larger than the one in SQuAD dataset. Thus, we truncate the contexts followed

with [125], and reduce the average length of contexts to 495 words. We will test

the full and verified subsets of TriviaQA Wiki dataset in experimental evaluation,

where the verified subsets contains the part of full dataset correctly answered question

context pairs in [161]. More detailed data information for datasets is shown in Table

6.1.

6.3.2 Performance Measures

To report model performance using the test set, we use three performance metrics

to measure the performance in answer selection, namely mean reciprocal rank (MRR)

Jinmeng Wu

6.3 Experimental Analysis and Results 122

and mean average precision (MAP), as in [150]. The MRR metric focuses on the

order of the correct answers, and is formulated as

MRR =
1

|Q|

|Q|∑
i=1

1

r1i
, (6.3.1)

where rji denotes the computed ranking of the j-th correct answer in the ground truth

ranking list for the i-th question, and |Q| denotes the total number of questions tested.

In other words, with j = 1, r1i denotes the best possible answer. MAP accumulates

the mean ranking of all the correct answers in each question, expressed as

MAP =
1

|Q|

|Q|∑
i=1

1

ni

ni∑
j=1

nji
rji
, (6.3.2)

where rji is the computed ranking of the j-th correct answer from the ground truth

ranking list for the i-th question, nji is the number of truly correct answers in the

computed ranking list of the j-th correct answer, and ni denotes the number of truly

correct answers for the i-th question.

In machine comprehension, we use two different performance metrics to evaluate

the model accuracy. Exact match (EM) [159] measures the precision of predicted

answer that match any one of the groundtruth answers exactly over all test question

context pairs. The exact match score is equal to 1 when the prediction is exactly the

same as groundtruth or 0 otherwise. Alternative metric is F1 score [162] that indicates

the average of word overlap between the prediction and ground truth answer, where

the predicted answer and groundtruth are treated as bags of words. In evaluation, we

adopt the maximal F1 score over all of the possible ground truth answers for a given

question, and then average it over all of test questions.

6.3.3 Experimental Configuration

Experimental platform and recordings: All the training and testing were carried

on a Barkla HPC cluster with two 40-cores, 1 TB shared memory system for large

memory jobs along with one GPU node equipped with four Nvidia NVLink P100

GPUs, and running the new version of the Tensor Flow Framework (v1.6) supported

by Nvidia CUDA library (v.8.0).

Jinmeng Wu

6.3 Experimental Analysis and Results 123

Neural network configurations: In answer selection task, considering the top-k

max pooling process, the number of top ranked word pairs k is set to 10 for question,

and 30 for answer. In pre-processing step, the number of relevant questions lq=10,

and the number of relevant answers la=50. The total number of iterations or hops

is defined as T=3 for memory update mechanism. In machine comprehension, the

number k is set to 15 for question, and 150 for context. The total number of iterations

is T=4 for memory update mechanism.

Training preparation and initialization: In preparing the dataset for training and

testing, we followed the same text pre-processing procedures described in [33]. More

specifically, the out-of-vocabulary words are mapped to a special token symbol

〈_UNK〉. Wherever the sentence lengths fall below the minimum threshold, a special

symbol, 〈_PAD〉, is added to the end of the sentence, so as to pad them with extra

characters (e.g. zeros) to meet the processing requirements. Furthermore, the basic

pre-training model is Glove [142] using a a corpus containing 27B words from 2B

Tweets. The Tweets have been filtered by removing infrequent words, resulting

in 1.2M words from the English vocabulary. The dimensionality of each word

embedding vector is set as 100. For words appearing in each dataset, but out of

vocabulary, a random value uniformly sampled from the interval of [−0.3, 0.3] is

assigned to each embedding dimension. For model variables to be initialized, a

normal distribution N(0, 0.1) is used.

Training / testing process: For model optimization, a root mean square propagation

(RMSProp) optimizer is used. The process includes a mini-batch containing 50

training examples, a learning rate of 0.1, and a dropout rate of 0.5 [146]. The learning

rate is halved after 10 epochs. Gradient clipping [157] is used to scale the gradient

when the norm of gradient exceeds a threshold of five. The overall datasets have

been split for training, testing and development purposes as suggested by the original

datasets [13, 19, 21, 32]. These are given in Table 6.2. The parameters adopted above

were selected using the development set based on a coarse manual tuning.

Jinmeng Wu

6.3 Experimental Analysis and Results 124

6.3.4 Baselines

To compare with the proposed method, the following ten models, stemming from

the space of CNN, RNN and conventional/traditional techniques, are considered.

Baseline Models:

1. Random Guess (RandomGuess) [56]: A random ranking list for the test sam-

ples without training process.

2. Word Embedding (WordEmbed) [90]: This model uses the Glove tool to obtain

the word embedding representation of a sentence. The matching score of two

short-texts are calculated with MLP, taking two sentence embeddings as inputs.

3. Classifier [161]: A linear classifier to classify the sentence pairs for answer.

Comparison Models:

4. IARNN [40]: The model learns an answer sentence representation using an

attention mechanism to involve a question hidden representation from an RNN

network, which then generates a high-level answer sentence representation as

the input to the RNN network.

5. BiMPM [119]: The model first encodes two sentences with a bi-directional

LSTM, the encoded output of a sentence match each hidden representation of

the other sentence in two directions. The sequences of matching vectors are

aggregated into a vector as an input to prediction layer.

6. IWAN [1]: The model builds an alignment layer depends on a word-level

similarity matrix to compute attention weight of each word, where the similarity

matrix is computed by the sentence encoded outputs from bi-directional LSTM.

7. CAM [2]: The model proposes the model performs different comparison match-

ing functions to match the sentences based on word-level, where the similarity

outputs from the function are aggregated into a vector by a convolution layer.

The convolved vector as the input into the final prediction layer to compute the

matching score.

Jinmeng Wu

6.4 Results and Analysis 125

8. MEMEN [59]: The model designs a hierarchical attentive memory to learn an

alignment memory matrix, which contains the syntactic and semantic informa-

tion of the words returned by skip-gram model.

9. SLQA [126]: The model provides the fusion functions to combine self-attention

and similarity matrix to complete the machine comprehension.

10. M-Reader [125]: The model uses re-attention mechanism to refine current

attentions for machine comprehension.

For the purpose of evaluation, we collect the reported results from the published

works of these models, wherever possible. Wherever this was not feasible, we imple-

mented them to match with the reported specification and experimental evaluation of

these models.

6.4 Results and Analysis

6.4.1 Comparison with State-of-the-art Methods

Answer Selection

We first evaluate the performance of proposed MMN model in QA task, the

proposed method is compared with seven state-of-the-art approaches using the bench-

mark TREC and WikiQA datasets. For evaluation, we compare the performance of

the proposed model across a number of techniques using the MAP and MRR metrics

in previous Section 6.3.2. Table 6.3 reports the MRR and MAP metrics for different

models evaluated using the two datasets mentioned above. It can be seen from Table

that the proposed MMN model with designed memory network provides the best

performance under all the evaluation setups. In the following, we report a number of

more specific observations from Table 6.3:

• With respect to the MRR result, where a higher value indicates better perfor-

mance, the proposed approach outperforms all models when evaluated against

the TREC and WikiQA datasets. In particular, the proposed outperforms

Jinmeng Wu

6.4 Results and Analysis 126

Table 6.3: Performance comparison using TREC and WikiQA data for different

models. The best results are highlighted and the second best results are underlined.

TREC WikiQA

Models MRR MAP MRR MAP

Random Guess [96] 0.8511 0.7530 0.6957 0.6886

WordEmbed [96] 0.8511 0.7530 0.6957 0.6886

AP-CNN [96] 0.8511 0.7530 0.6957 0.6886

Ab-CNN [37] 0.8539 0.7741 0.7108 0.6921

KV-MemNNs [128] 0.8523 0.7857 0.7265 0.7069

IARNN [40] 0.8208 0.7369 0.7418 0.7341

BiMPM [119] 0.8750 0.8020 0.7310 0.7180

IWAN [1] 0.8890 0.8220 0.7500 0.7330

CAM [2] 0.8659 0.8145 0.7545 0.7433

MMN 0.8865 0.8390 0.7752 0.7545

the second best performing CNN-based model CAM, by 2.06%, and 2.07%

respectively.

• When considering the MAP performance, the proposed approach outperforms

the CAM model, when compared against the TREC and WikiQA datasets, by

2.45%, and 1.12% respectively.

Although most recent works are likely to use structured CNN or RNN-based

models into answer selection, there is a memory network called KV-MemNNs in the

Table offers a good performance on both two datasets. With respect to KV-MemNNs

model using the external knowledge database, our proposed memory network focuses

on utilizing the related internal sentences to input Q-A pair, it aims to reduce the

larger computation and manual data creation caused by the external information

resource. Additionally, different with KV-MemNNs model discards the original input

information to help memory network updating, we prefer to explore the combination

approach to involve the input sentences in order to prevent the information loss

Jinmeng Wu

6.4 Results and Analysis 127

after several iterations. Besides, it is significant to examine the combination method

between similarity and the current memory matrix. In proposed MMN model, we

adopt an element-wise multiplication function in sub-section 6.2.4, which provides

the best performance than other combination functions, such as, add, subtraction

and bilinear. Regard to this point, CAM model verifies the multiplication function

provides a satisfied result to improve the model performance, especially on TREC

and Wiki datasets. Overall, the proposed model outperforms all the existing deep

learning works in answer selection.

In fact, we observed that not all relevant question-answer pairs can provide useful

information to the input question-answer pair. We analyze an example where the

proposed model fails to handle the relevant question-answer pairs with a small amount

of information from TREC dataset. For the question of "during what war did Nimitz

serve ?", the ground truth answer is "Conant had been a photographer for Adm.

Chester Nimitz during World War II.". However, when tested, the proposed model

chose " Yuengling served as a staff sergeant with the U.S. Army Air Corps during

World War II." as the correct answer. In this example, the relevant question is "what

town was Nimitz native of ?" and its correct available answer is "Fredericksburg

native Admiral Chester Nimitz, under whom bush served." The relevant question-

answer pair has less information that relates to the input sentence pair, the proposed

model can not encode the information to select the ground truth answer.

Machine comprehension

To analyze the proposed model effectiveness in machine comprehension, we

test the model performance using TriviaQA Wikipedia dataset. Table 6.4 illustrates

that the EM and F1 scores for different models evaluated on two types datasets of

TriviaQA Wikipedia dataset: Full, Verified. A baseline based on Classifier model is

included to provide a general view of the problem. With respect to SQuAD dataset, a

longer length of context increases the complexity to memory the long-term sentences

information, and search the answer spans of context for the TriviaQA Wikipedia

dataset. From the results in Table, the proposed MMN model shows the state-of-

art performance among the comparison models on more complex dataset. In the

Jinmeng Wu

6.4 Results and Analysis 128

Table 6.4: Performance comparison on the TriviaQA Wikipedia data for different

models. The best results are highlighted and the second best results are underlined.

Full Verified

Models EM(%) F1(%) EM(%) F1(%)

Classifier [161] 23.40 27.70 23.6 27.90

BiDAF [43] 40.26 45.74 47.47 53.70

MEMEN [59] 43.16 46.90 49.28 55.83

M-Reader [125] 46.94 52.85 54.45 59.46

QANet [153] 51.10 56.60 53.30 59.20

document-qa [163] 63.99 68.93 67.98 72.88

BiDAF+SA [160] - - 69.03 74.61

SLQA [126] 66.56 71.39 74.83 78.74

MMN 68.69 73.57 75.95 79.67

following, we report a number of specific points from Table 6.4:

• With respect to both EM and F1 scores, the proposed approach outperforms all

models when evaluated against the Full and Verified datasets. When consider-

ing the EM performance, the proposed outperforms the second best performing

hierarchical attentive model SLQA, by 2.13%, and 1.12% respectively, on Full

and Verified datasets.

• When considering the F1 performance, the proposed approach outperforms the

SLQA model, by 2.18%, and 0.93% respectively, on Full and Verified datasets.

• With respect to the primary baseline, the proposed approach performs a much

better than the Classifier model, where EM performance is improved by

45.29%, and 52.35% respectively, and F1 performance is improve by 45.87%,

and 51.77% respectively, on Full and Verified datasets.

• From the observations in Table, EM and F1 scores perform a better improve-

ment on Full dataset, when comparing with the above scores in Verified dataset

Jinmeng Wu

6.4 Results and Analysis 129

Table 6.5: Performance comparison on the SQuAD data for various competitive

models. The best results are highlighted and the second best results are underlined.

Dev Set Test Set

Models EM(%) F1(%) EM(%) F1(%)

LR Baseline [18] 40.0 51.0 40.4 51.0

Match-LSTM [159] 64.1 73.9 64.7 73.7

DCN+ [164] 74.5 83.1 75.1 83.1

Interactive AoA Reader [165] - - 73.6 81.9

FusionNet [166] - - 76.0 83.9

SAN [167] 76.2 84.0 76.8 84.4

BiDAF + SE [168] - - 78.6 85.8

MEMEN [59] - - 75.4 82.7

R-Net+ [169] - - 79.9 86.5

QANet [153] - - 76.2 84.6

M-Reader [125] 78.9 86.3 79.5 86.6

MMN 79.8 87.1 80.2 87.3

for the proposed MMN model.

Above results verify the proposed model not only offers a good performance on a

small subset of dataset, e.g. Verified datset. It also shows the proposed is capable of

performing a robust performance with a large scale dataset, e.g. the Full TriviaQA

Wikipedia dataset. The second best model SLQA stacks the intermediate repre-

sentations of question and context pair using multiple attention functions, without

considering the order of words in a long context situation. In summary, the result

shows that the proposed model offers the best performance among another published

results on TriviaQA Wikipedia dataset.

To further examine the robustness of the proposed model, we conduct the evalu-

ation using the popular SQuAD dataset. The proposed model is compared with

ten state-of-art neural network models for this dataset, including recent model

Jinmeng Wu

6.4 Results and Analysis 130

QANet [153], BiDAF+SE [168], and Match-LSTM [159]. A LR baseline model

based on linear regression is given to provided a standard view among all results. For

evaluation, we use two different dataset to test model: Dev and Test sets. The same

performance matrics EM and F1 as used in existing works. The performance for

different models along with the proposed MMN model are reported in Table 6.5. It

can be seen from Table that the proposed model preforms better than the competing

models on both Dev and Test sets, demonstrating the superiority of the proposed

model and its memory network strategy.

6.4.2 Empirical Analysis of Memory Network

In this section, we investigate different components of the proposed MMN model

and compare them with alternative design options, to analyze the effectiveness of the

proposed model. Specifically, a number of following experiments are explored.

• Experiment 1: An attentive memory update mechanism in proposed model

based on the multi-dimension strategy, which refines the memory matrix from

two sides individually. We analyze the memory network under the four com-

pared conditions: memory only updates the column side but without updating

the row side, referred to as MMN-Mr. Oppositely, memory only updates the

row side but without updating the column side, referred to as MMN-Mc. An

alternative choice is to update the two sides in a meanwhile by refining a

memory matrix directly, referred to as MMN-Md. The last compared option

is the proposed model without the memory network, which is referred to as

MMN-M. The goal is to demonstrate the effect of the designed memory update

mechanism of the proposed model.

• Experiment 2: The attention mechanism contributes to the memory update

in both row and column sides. Here, we examine the usage of attention

mechanism under the three different conditions: the proposed model only uses

the attention mechanism in column-based memory update, but not in row-based

memory update, referred to as MMN-Ar. On the contrast, the proposed model

applies attention mechanism in column-based memory update, referred to as

Jinmeng Wu

6.4 Results and Analysis 131

MMN-Ac. Another approach of the proposed model is to remove the attention

mechanism in both two sides, referred to as MMN-A.

• Experiment 3: In the pre-processing stage of memory network for answer

selection, we investigate the advantage of learning distributed sentence embed-

ding vector based on l2-norm algorithm. An alternative bilinear function is

used to transform the sentence embedding matrix to a vector instead of l2-norm

algorithm referred as MMN-bilinear. Another general method of reducing a

sentence representation dimension based on averaged sum weighted function

by stacking the elements in sentence embedding matrix, which is referred to as

MMN-avg.

• Experiment 4: The effect of memory update is investigated by examining

different numbers of iterations T , e.g., T ∈ {1, 2, 3}, referred as DSSM-HOP-1

when T = 1 for instance. These are compared to MMN that employs T = 4

memory update mechanism.

Table 6.6 summarizes performance of these compared settings over WikiQA and

SQuAD datasets for answer selection and machine comprehension, respectively.

In experiment 1, we compare different memory update approaches. It can be seen

from Table 6.6 that the proposed memory network update in both row and column

dimensions results in the best performance, followed by the memory without row

update MMN-Mc. Such a result represents that refining the memory with two dimen-

sions is benefit for the proposed model, where the performance of memory update

in row side MMN-Mc is better than the one in column side MMN-Mr. Whereas the

proposed model without memory network MMN-M offers the worst performance,

leads to both MRR and MAP results decrease by approximate 2.5%. As mentioned in

previous sections, one contribution of this work is to update the memory network in

multi-dimension. Instead, a memory matrix MMN-Md is directly updated based on

the previous memory, initialized memory, and answer representation, which provides

a worse performance than the proposed MMN model. The computational time of

MMN approximately costs 15 hours for WikiQA dataset, it is less than 10 hours of

MMN-Md due to the specific memory refining structure of MMN. From the empirical

Jinmeng Wu

6.4 Results and Analysis 132

Table 6.6: Comparison of the proposed method with alternative designs and model

settings, evaluated using the WikiQA and SQuAD datasets. The best performance is

highlighted in bold and second best underlined.

WikiQA SQuAD

Experimental settings MRR MAP EM(%) F1(%)

MMN-Mc 0.7596 0.7380 78.6 85.8

MMN-Mr 0.7572 0.7378 78.1 85.3

MMN-M 0.7300 0.7105 77.5 84.1

MNN-Md 0.7563 0.7340 78.4 85.6

MMN-Ac 0.7650 0.7442 79.1 86.2

MMN-Ar 0.7601 0.7395 78.7 85.9

MNN-A 0.7548 0.7343 78.0 85.5

MMN–avg 0.7690 0.7485 - -

MMN-bilinear 0.7672 0.7467 - -

DSSM-hop-1 (T=1) 0.7486 0.7212 77.5 84.3

DSSM-hop-2 (T=2) 0.7635 0.7389 78.8 85.7

DSSM-hop-3 (T=3) 0.7752 0.7545 79.7 86.8

MMN (T=4) 0.7748 0.7541 80.2 87.3

observation, a similar performance situation happens on the SQuAD dataset.

In experiment 2, we compare various designs of attention mechanism in memory

network. As can be seen from Table 6.6, the proposed model uses attention mecha-

nisms on the row and column sides of the memory matrix to cause the performance

of the WikiQA dataset to increase by at least 1% compared to the MMN-Ac method.

Such a result represents that the attention mechanism on each dimension is important

for improving the matching performance, where the contextual information as the

input into attention function. The proposed model without the attention mechanism

MMN-A offers the worst performance, it leads to a performance decrease of at least

2% by comparing with the proposed model.

Experiment 3 compares three design options of learning d-dimensional sentence

representation vector for answer selection, where non-parametric l2-norm function

Jinmeng Wu

6.5 Conclusion 133

of our proposed model aggregates the word elements in sentence embedding matrix.

As seen from Table 6.6 that, by using neither bi-linear or average weighted sum

as an transformation function, a fairly low performance is obtained since the lack

of regularization of distributed sentence presentation. In details, the performance

of the model with average weighted sum function MMN-avg and bilinear function

MMN-bilinear are less than our proposed deign by 0.6% and 0.8%, respectively.

Experiment 4 compares the number of iteration in the memory update mechanism

is increased from 1 to 4. It can be seen from Table 6.6 that the matching performance

MAP and MRR increases until T = 3 over the WikiQA dataset, and then starts

to be flat when T = 4. Different from WikiQA dataset, the predictive accuracy

performance EM and F1 score continue to grow until T = 4 over the SQuAD dataset.

Based on this empirical observation, a middle iteration number T = 3 for answer

selection, and a larger number T = 4 for machine comprehension task are sufficient

to achieve robust performance of the proposed model.

6.5 Conclusion

In this section, we have proposed a novel memory network architecture MMN is

capable of completing multi-tasks in QA field: answer selection for semantic match-

ing between the question and answer pairs; machine comprehension for generating

an answer in a span of context by given question. The key idea of our proposed

memory approach is to efficiently store and extract the semantic information re-

lated to question and answer or context pairs as an internal knowledge resource for

the memory network, rather than construct the memory according to the external

knowledge database. To achieve the goal, we search the certain number of relevant

queries and answers, and compute the interactive similarities of word pair in order to

initialize a memory matrix.

In memory update mechanism, since the computation of entire memory matrix

update is expensive, we prefer to refine the memory matrix based on its row and

column sides, respectively. Typically, the row and column of the memory matrix

separately correspond to the importance of word pairs for the question and answer

Jinmeng Wu

6.5 Conclusion 134

sentences. Therefore, we utilize the pair-wise attentive mechanisms to explicitly

involve the question and answer or context into the corresponding side of the memory

matrix for supporting the similarity matching between word pairs.

Additionally, the refined memory matrix with rich information as a flexible tool

uses to improve the performance of different tasks. For instance, in answer selection,

the memory matrix combines similarity representation focuses the word-level based

interactive matching between question and answer. Differently, in machine compre-

hension, the memory matrix provides the contextual information required to question

for predicting the answer.

In the experiment of four datasets for two different tasks, the experimental results

indicate that our proposed method improves the matching performance over methods

using the benchmark QA datasets. Besides, it also offers good predictive performance

when generating an answer for given question in machine comprehension. Multiple

performance comparisons with the state-of-art approaches also demonstrate the

superiority of the proposed model.

The important challenge for semantic matching is to improve the task performance

with relevant information that is easy to access. Overall, our proposed model finds a

certain relevant quires and answers from data corpus, and adopts a multi-dimensional

memory matrix to collect these relevant information. Thus, in future work, we aim to

explore architectures that can utilize a simpler and efficient network to store a large

number of input relevant information.

Jinmeng Wu

Chapter 7

Conclusion

In this thesis, we have proposed three different deep neural networks for handling

semantic text matching problem for three types of QA tasks. Here we want to recap

our contribution in this thesis and discuss some promising research directions in field.

7.1 Summary

In this thesis, we have researched the QA sentence matching with the proposed

neural networks. Generally, the semantic sentence matching corresponds to the rela-

tionship between question and answer can be defined as the similarity representation

learning for neural networks. The research work aims to design and employ the

proposed neural networks to learn the high-level semantic similarity for QA tasks.

Specifically, we have focused our model on three different learning approaches of

semantic sentence matching in this thesis: a) distributed similarity based on word-

level b) interactive sentence representation c) semantic similarity representation

enhanced by memory network. According to these learning approaches, the proposed

neural networks overcome the specific problems with different matching algorithms,

including the semantic information loss of word pairs, the expensive computation

cost, and low storage capacity of neural networks. Extensive experiments on multiple

datasets and comparative analysis with the state-of-art existing methods in QA task

demonstrate the superiority of our proposed neural networks.

135

7.1 Summary 136

The proposed models offers good performance and verifies the hypotheses of

thesis come from varied aspects: a) In the first deep semantic matching model,

we investigate to learn the distributed similarity representation by passing a entire

sentence worth of word-level similarities. Designed bilinear matching function with

parameter constraints controls the matching impact of each word in sentence for

improving the distributed similarity learning. The proposed model benefits from its

design of a pair-wise training method that combines an unsupervised training for

the DAE network and an supervised training for semantic matching. The ranking

measurements, e.g. MAP and MRR, experimentally report the proposed model

outperforms the previous models. The proposed model with above quantities offers

the best performance among all comparison variants. b) The second matching

model learns the context-aware sentence representation for overcoming the similarity

information loss between sentences, where the interactive similarity information may

loss or be damaged during learning sentence representation at early step in deep

neural networks. Thereby the specific attention mechanisms based on bi-directional

LSTM are designed to continuously join the contextual and interactive information to

this sentence representation. The proposed model is experimentally verified that the

interactive sentence representation is helpful for semantic QA matching, especially

for cQA dataset. c) The third model is extended to accomplish a more complex

QA task – understanding context and generating the answer sentences in MRC. The

proposed memory network model enables a large capacity of memory to store all

interactive similarities of all word pairs. Subsequently, the memory returns these

information to improve the initial similarity between a pair of sentence. The memory

refinement individually stores sentences in row and column sides of the memory

matrix, avoiding the proposed model trains the large dimensional parameters in the

meantime. The proposed model is experimentally shows that the memory refinement

is able to provide important word pairs to improve the semantic matching for both

answer selection and MRC tasks.

It can be seen that the powerful performance of the proposed semantic matching

models in different types of QA tasks and datasets, e.g., answer selection task in

structured QA and cQA datasets, MRC task in QA with inferential context dataset. It

Jinmeng Wu

7.2 Future Work 137

is meaningful to learn a sentence representation using the deep neural network, since

the deep neural network is efficient to learn the semantic meaning of word according

to its deep layered architecture and flexible designed algorithms. The proposed

methods in this thesis are able to improve and extend such semantic information.

7.2 Future Work

There are several possible extended directions for the future research. We briefly

outline two interesting directions as follows.

Answer Generation In Dialogue System

Conversational modeling is an important task in natural language understand-

ing and machine intelligence. Interactive conversational agents, virtual agents and

sometimes chatter-bots, are used in a wide set of applications ranging from technical

support services to language learning tools and entertainment [170]. In this work,

we investigate the task of building open domain, conversational dialogue systems

based on large dialogue corpora using generative models. Generative models pro-

duce system responses that are autonomously generated word-by-word, opening

up the possibility for realistic, flexible interactions. The proposed model is built in

the direction of end-to-end trainable, non-goal-driven systems based on generative

probabilistic models. Here, the hierarchical recurrent neural networks are used as

the generative model. The recurrent neural network has two main functions: encod-

ing the question and decoding or generating the answer. The network would store

information after encoding question, so that the information would be passed to the

next conversation by building hierarchical structure. Furthermore, the attentional

mechanism is considered to improve this generative model.

Image description for Visual Question Answering

As for Visual Question Answering (VQA) task, the goal is to generate answer

according to the given image and question, hence, it is significant to investigate the

joined representation of image and sentence. A new deep learning model is proposed

Jinmeng Wu

7.2 Future Work 138

to VQA that incorporates explicit spatial attention, the proposed model is based on

memory network, which has been proposed in [86]. The memory network combines

learned text embeddings with an attention mechanism and multi-step inference.

For the sentences matching, the memory network stores textual knowledge to the

memory in the form of sentences, and returns the relevant sentences to infer the

answer. Nevertheless, once the matching object is changed to image, the knowledge

is in the form of an image type, where the memory and question consists of different

representation types. In this work, our proposed attentive memory network in

Chapter 6 is employed to build the interaction between partial regions of image and

question, which provides the specific information for answering the given question.

An attention mechanism attentions to the partial region of image that joins with each

word in question, then this combined inputs is fed to LSTM for generating encoded

the representation of image and question. After encoding the joined representation,

Generative Adversarial Nets (GAN) recently offers a well performance on image

reconstruction [171]. The proposed model adopts it to generates the answer instead

of traditional probability cross-entropy approach at the decoding stage.

.

Jinmeng Wu

References

[1] G. Shen, Y. Yang, and Z.-H. Deng, “Inter-weighted alignment network for

sentence pair modeling,” in Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing, 2017, pp. 1179–1189.

[2] S. Wang and J. Jiang, “A compare-aggregate model for matching text se-

quences,” in Proceedings of the 5th ICLR International Conference on Learn-

ing Representations, 2017.

[3] M. Paşca, “Open-domain question answering from large text collections,”

Studies in computational linguistics. CSLI Publications, 2003.

[4] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-

based neural machine translation,” in EMNLP, 2015, pp. 1412–1421.

[5] B. Hu, Z. Lu, H. Li, and Q. Chen, “Convolutional neural network architectures

for matching natural language sentences,” in Proceedings of NIPS Conference

on Advances in Neural Information Processing Systems, 2014, pp. 2042–2050.

[6] I. V. Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. C. Courville,

and Y. Bengio, “A hierarchical latent variable encoder-decoder model for

generating dialogues.” in AAAI, 2017, pp. 3295–3301.

[7] X. Shen, H. Su, Y. Li, and W. Li, “A conditional variational framework

for dialog generation,” in Proceedings of the 55th ACL Conference on the

Association for Computational Linguistics, 2017, pp. 504–509.

139

REFERENCES 140

[8] R. Mihalcea, C. Corley, and C. Strapparava, “Corpus-based and knowledge-

based measures of text semantic similarity,” in Proceedings of the 20th AAAI

Conference on Artificial Intelligence (AAAI-06), 2006, pp. 775–780.

[9] A. Islam and D. Inkpen, “Semantic similarity of short texts,” Recent Advances

in Natural Language Processing V, vol. 309, pp. 227–236, 2009.

[10] J. Berant, A. Chou, R. Frostig, and P. Liang, “Semantic parsing on freebase

from question-answer pairs,” in Proceedings of the 2013 Conference on Em-

pirical Methods in Natural Language Processing, 2013, pp. 1533–1544.

[11] X. Qiu and X. Huang, “Convolutional neural tensor network architecture for

community-based question answering,” in Proceedings of the 24th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), 2015, pp. 1305–

1311.

[12] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and M. Gat-

ford, “Okapi at TREC-3,” Nist Special Publication SP, vol. 109, p. 109, 1995.

[13] Y. Yang, W.-t. Yih, and C. Meek, “Wikiqa: A challenge dataset for open-

domain question answering,” in Proceedings of ACL-EMNLP Conference on

Empirical Methods on Natural Language Processing, 2015, pp. 2013–2018.

[14] A. Kumar, O. Irsoy, and P. Ondruska, “Ask me anything: Dynamic memory

networks for natural language processing,” in Proceedings of the 33rd ICML

International Conference on Machine Learning, 2016, pp. 1378–1387.

[15] F. Ma, R. Chitta, S. Kataria, J. Zhou, P. Ramesh, T. Sun, and J. Gao,

“Long-term memory networks for question answering,” arXiv preprint

arXiv:1707.01961, 2017.

[16] H. Hu, B. Liu, B. Wang, M. Liu, and X. Wang, “Multimodal DBN for predict-

ing High-quality answers in cQA portals,” in Proceedings of the 51st Annual

Meeting of the Association for Computational Linguistics. Association for

Computational Linguistics, 2013, pp. 843–847.

Jinmeng Wu

REFERENCES 141

[17] M. J. Cafarella and O. Etzioni, “A search engine for natural language appli-

cations,” in Proceedings of the 14th international conference on World Wide

Web. ACM, 2005, pp. 442–452.

[18] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+ questions

for machine comprehension of text,” in arXiv preprint arXiv:1606.05250,

2016.

[19] G. Zhou, Y. Zhou, T. He, and W. Wu, “Learning semantic representation with

neural networks for community question answering retrieval,” Knowledge-

Based Systems, vol. 93, pp. 75–83, 2016.

[20] G. Wang, K. Gill, M. Mohanlal, H. Zheng, and B. Y. Zhao, “Wisdom in the

social crowd: an analysis of quora,” in Proceedings of the 22nd international

conference on World Wide Web. ACM, 2013, pp. 1341–1352.

[21] A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec, “Discovering

value from community activity on focused question answering sites: a case

study of stack overflow,” in Proceedings of the 18th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining. ACM, 2012, pp.

850–858.

[22] Y. Bengio, Y. LeCun et al., “Scaling learning algorithms towards ai,” Large-

scale kernel machines, vol. 34, no. 5, pp. 1–41, 2007.

[23] T. S. Lee and D. Mumford, “Hierarchical bayesian inference in the visual

cortex,” JOSA A. Optical Society of America, vol. 20, no. 7, pp. 1434–1448,

2003.

[24] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep

belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[25] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural network

learning for speech recognition and related applications: An overview,” in 2013

IEEE International Conference on Acoustics, Speech and Signal Processing.

IEEE, 2013, pp. 8599–8603.

Jinmeng Wu

REFERENCES 142

[26] Q. V. Le, “Building high-level features using large scale unsupervised learning,”

in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE Interna-

tional Conference on. IEEE, 2013, pp. 8595–8598.

[27] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural

image caption generator,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2015, pp. 3156–3164.

[28] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural probabilistic

language model,” Journal of Machine Learning Research, vol. 3, pp. 1137–

1155, Feb 2003.

[29] Z. Lu and H. Li, “A deep architecture for matching short texts,” in Advances

in Neural Information Processing Systems, 2013, pp. 1367–1375.

[30] R. Collobert and J. Weston, “A unified architecture for natural language

processing: Deep neural networks with multitask learning,” in Proceedings of

the 25th International Conference on Machine Learning. ACM, 2008, pp.

160–167.

[31] R. Socher, E. H. Huang, J. Pennin, C. D. Manning, and A. Y. Ng, “Dynamic

pooling and unfolding recursive autoencoders for paraphrase detection,” in

Advances in Neural Information Processing Systems, 2011, pp. 801–809.

[32] L. Yu, K. M. Hermann, P. Blunsom, and S. Pulman, “Deep learning for answer

sentence selection,” arXiv preprint arXiv:1412.1632, 2014.

[33] A. Severyn and A. Moschitti, “Learning to rank short text pairs with convolu-

tional deep neural networks,” in Proceedings of the 38th International ACM

SIGIR Conference on Research and Development in Information Retrieval,

New York, NY, USA, 2015, pp. 373–382.

[34] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly

learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

Jinmeng Wu

REFERENCES 143

[35] J. Cheng and D. Kartsaklis, “Syntax-aware multi-sense word embeddings for

deep compositional models of meaning,” arXiv preprint arXiv:1508.02354,

2015.

[36] M. Yang, Q. Qu, Y. Shen, Q. Liu, W. Zhao, and J. Zhu, “Aspect and senti-

ment aware abstractive review summarization,” in Proceedings of the 27th

International Conference on Computational Linguistics, 2018, pp. 1110–1120.

[37] W. Yin, H. Schütze, B. Xiang, and B. Zhou, “Abcnn: Attention-based convo-

lutional neural network for modeling sentence pairs,” TACL Transactions of

the Association for Computational Linguistics, vol. 4, pp. 259–272, 2016.

[38] W. Yin, M. Yu, B. Xiang, B. Zhou, and H. Schütze, “Simple question answer-

ing by attentive convolutional neural network,” in Proceedings of the 26th

ACL-COLING International Conference on Computational Linguistics, 2016,

pp. 1746–1756.

[39] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur, “Recur-

rent neural network based language model,” in Proceedings of Interspeech

Conference on International Speech Communication Association, 2010, pp.

1045–1047.

[40] B. Wang, K. Liu, and J. Zhao, “Inner attention based recurrent neural networks

for answer selection,” in Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), vol. 1,

2016, pp. 1288–1297.

[41] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-

putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[42] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn

encoder-decoder for statistical machine translation,” in Proceedings of ACL-

EMNLP Conference on Empirical Methods on Natural Language Processing,

2014, pp. 1724–1734.

Jinmeng Wu

REFERENCES 144

[43] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirectional attention

flow for machine comprehension,” in Proceedings of the 5th ICLR Interna-

tional Conference on Learning Representations, 2017.

[44] Y. Hao, Y. Zhang, K. Liu, S. He, Z. Liu, H. Wu, and J. Zhao, “An end-to-

end model for question answering over knowledge base with cross-attention

combining global knowledge,” in Proceedings of the 55th ACL Conference on

Annual Meeting of the Association for Computational Linguistics, 2017, pp.

221–231.

[45] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learning,”

Machine learning, vol. 3, no. 2, pp. 95–99, 1988.

[46] P. C. Nielson and W. Kaufman, “Machine visual inspection device and method,”

1988, uS Patent 4,760,444.

[47] G. G. Chowdhury, “Natural language processing,” Annual review of informa-

tion science and technology, vol. 37, no. 1, pp. 51–89, 2003.

[48] B. Pang, L. Lee et al., “Opinion mining and sentiment analysis,” Foundations

and Trends R© in Information Retrieval, vol. 2, no. 1–2, pp. 1–135, 2008.

[49] I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau, “Building

end-to-end dialogue systems using generative hierarchical neural network

models,” in Proceedings of the 30th AAAI Conference on Artificial Intelligence

(AAAI-16), 2016, pp. 3776–3783.

[50] A. Farzindar and D. Inkpen, “Natural language processing for social media,”

Synthesis Lectures on Human Language Technologies, vol. 8, no. 2, pp. 1–166,

2015.

[51] J. Ko, L. Hiyakumoto, and E. Nyberg, “Exploiting multiple semantic resources

for answer selection,” in Proceedings of LREC, 2006, pp. 1139–1142.

[52] L. Meng, R. Huang, and J. Gu, “A review of semantic similarity measures

in wordnet,” International Journal of Hybrid Information Technology, vol. 6,

no. 1, pp. 1–12, 2013.

Jinmeng Wu

REFERENCES 145

[53] W.-t. Yih, M.-W. Chang, C. Meek, and A. Pastusiak, “Question answering

using enhanced lexical semantic models,” in Proceedings of the 51st Annual

Meeting of the Association for Computational Linguistics. Association for

Computational Linguistics, 2013, pp. 1744–1753.

[54] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word

representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[55] A. Mnih and K. Kavukcuoglu, “Learning word embeddings efficiently with

noise-contrastive estimation,” in Advances in Neural Information Processing

Systems, 2013, pp. 2265–2273.

[56] S. Wan, Y. Lan, J. Guo, J. Xu, L. Pang, and X. Cheng, “A deep architecture for

semantic matching with multiple positional sentence representations,” arXiv

preprint arXiv:1511.08277, 2015.

[57] Y. Zhang, S. He, K. Liu, and J. Zhao, “A joint model for question answering

over multiple knowledge bases.” in AAAI, 2016, pp. 3094–3100.

[58] M. Tan, B. Xiang, and B. Zhou, “Memory networks,” in Proceedings of the

3th ICLR International Conference on Learning Representations, 2015.

[59] B. Pan, H. Li, Z. Zhao, B. Cao, D. Cai, and X. He, “Memen: multi-layer em-

bedding with memory networks for machine comprehension,” arXiv preprint

arXiv:1707.09098, 2017.

[60] H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, and R. Ward,

“Deep sentence embedding using long short-term memory networks: Analysis

and application to information retrieval,” IEEE/ACM Trans. Audio, Speech

and Lang. Proc., vol. 24, no. 4, pp. 694–707, 2016.

[61] J. Li, M.-T. Luong, and D. Jurafsky, “A hierarchical neural autoencoder for

paragraphs and documents,” arXiv preprint arXiv:1506.01057, 2015.

[62] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning, “Semi-

supervised recursive autoencoders for predicting sentiment distributions,” in

Jinmeng Wu

REFERENCES 146

Proceedings of the Conference on Empirical Methods in Natural Language

Processing EMNLP. Association for Computational Linguistics, 2011, pp.

151–161.

[63] J. Han and C. Moraga, “The influence of the sigmoid function parameters

on the speed of backpropagation learning,” in International Workshop on

Artificial Neural Networks. Springer, 1995, pp. 195–201.

[64] T. M. Mitchell, Machine Learning. WCB/McGraw-Hill Boston, MA:, 1997.

[65] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S.

Seung, “Digital selection and analogue amplification coexist in a cortex-

inspired silicon circuit,” Nature, vol. 405, no. 6789, p. 947, 2000.

[66] H. Bourlard and Y. Kamp, “Auto-association by multilayer perceptrons and

singular value decomposition,” Biological cybernetics, vol. 59, no. 4-5, pp.

291–294, 1988.

[67] Y.-l. Boureau, Y. L. Cun et al., “Sparse feature learning for deep belief net-

works,” in Advances in neural information processing systems, 2008, pp.

1185–1192.

[68] C. Poultney, S. Chopra, Y. L. Cun et al., “Efficient learning of sparse repre-

sentations with an energy-based model,” in Advances in neural information

processing systems, 2007, pp. 1137–1144.

[69] S.Kullback and R.A.Leibler, On Information and Sufficiency. The Annals of

Math. Statistics, 1951, vol. 22.

[70] B. Olshausen and D. Field, Sparse Coding with an Over-complete Basis Set:

A Strategy Employed by VI? Vision Research, 1997, vol. 37.

[71] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked

denoising autoencoders: Learning useful representations in a deep network

with a local denoising criterion,” Journal of machine learning research, vol. 11,

no. Dec, pp. 3371–3408, 2010.

Jinmeng Wu

REFERENCES 147

[72] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and

composing robust features with denoising autoencoders,” in Proceedings of

the 25th International Conference on Machine Learning. ACM, 2008, pp.

1096–1103.

[73] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[74] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex,” The Journal of physiology,

vol. 160, no. 1, pp. 106–154, 1962.

[75] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly

learning to align and translate,” in Proceedings the 6th ICLR International

Conference on Learning Representations, 2015.

[76] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in

Neural Information Processing Systems, 2017, pp. 5998–6008.

[77] M. Hu, Y. Peng, Z. Huang, X. Qiu, F. Wei, and M. Zhou, “Reinforced

mnemonic reader for machine reading comprehension,” arXiv preprint

arXiv:1705.02798, 2017.

[78] D. Wang and E. Nyberg, “A long short-term memory model for answer sen-

tence selection in question answering,” in Proceedings of the 53th ACL Annual

Meeting of the Association for Computational Linguistics, 2015, pp. 707–712.

[79] T.Mikolov, S.Kombrink, and L.Burget, “Extensions of recurrent neural net-

work language model,” in 2011 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 2011.

[80] H. Zimmermann, R. Grothmann, A. Schaefer, and C. Tietz, “Identification

and forecasting of large dynamical systems by dynamical consistent neural

Jinmeng Wu

REFERENCES 148

networks,” New Directions in Statistical Signal Processing: From Systems to

Brain, pp. 203–242, 2006.

[81] R. J. Williams and D. Zipser, “Gradient-based learning algorithms for recurrent

networks and their computational complexity,” Backpropagation: Theory,

architectures, and applications, vol. 1, pp. 433–486, 1995.

[82] A. Robinson and F. Fallside, The utility driven dynamic error propagation

network. University of Cambridge Department of Engineering, 1987.

[83] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,”

IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681,

1997.

[84] J. Chen and N. S. Chaudhari, “Capturing long-term dependencies for pro-

tein secondary structure prediction,” in International Symposium on Neural

Networks. Springer, 2004, pp. 494–500.

[85] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” in arXiv

preprint arXiv:1410.5401, 2014.

[86] S. Sukhbaatar, J. Weston, and R. Fergus, “End-to-end memory networks,” in

Advances in Neural Information Processing Systems, 2015, pp. 2440–2448.

[87] L. Qiu, M.-Y. Kan, and T.-S. Chua, “Paraphrase recognition via dissimilarity

significance classification,” in Proceedings of the 2006 Conference on Empiri-

cal Methods in Natural Language Processing. Association for Computational

Linguistics, 2006, pp. 18–26.

[88] Y. Zhang and J. Patrick, “Paraphrase identification by text canonicalization,”

in Proceedings of the Australasian language technology workshop, vol. 2005,

2005, pp. 160–166.

[89] Z. Kozareva and A. Montoyo, “Paraphrase identification on the basis of su-

pervised machine learning techniques,” in Advances in Natural Language

Processing. Springer, 2006, pp. 524–533.

Jinmeng Wu

REFERENCES 149

[90] L. Kang, B. Hu, X. Wu, Q. Chen, and Y. He, “A short texts matching method

using shallow features and deep features,” in Natural Language Processing

and Chinese Computing. Springer, 2014, pp. 150–159.

[91] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A.

Harshman, “Indexing by latent semantic analysis,” Journal of the American

Society for Information Science, vol. 41, no. 6, pp. 391–407, 1990.

[92] S. Fernando and M. Stevenson, “A semantic similarity approach to paraphrase

detection,” in Proceedings of the 11th Annual Research Colloquium of the UK

Special Interest Group for Computational Linguistics, 2008, pp. 45–52.

[93] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural

network for modelling sentences,” arXiv preprint arXiv:1404.2188, 2014.

[94] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with

neural networks,” in Advances in Neural Information Processing Systems,

2014, pp. 3104–3112.

[95] H. Li, M. R. Min, Y. Ge, and A. Kadav, “A context-aware attention network

for interactive question answering,” in Proceeding of the 23nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2017.

[96] C. d. Santos, M. Tan, B. Xiang, and B. Zhou, “Attentive pooling networks,” in

CoRR, vol. abs/1602.03609, 2016.

[97] C. Xiong, S. Merity, and R. Socher, “Dynamic memory networks for visual

and textual question answering,” in Proceedings of the 33rd ICML Conference

on International Conference on Machine Learning, 2016, pp. 2397–2406.

[98] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for generating

image descriptions,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2015, pp. 3128–3137.

[99] C. Shah and J. Pomerantz, “Evaluating and predicting answer quality in com-

munity QA,” in Proceedings of the 33rd International ACM SIGIR Conference

Jinmeng Wu

REFERENCES 150

on Research and Development in Information Retrieval. ACM, 2010, pp.

411–418.

[100] C. Shah, S. Oh, and J. S. Oh, “Research agenda for social Q&A,” Library &

Information Science Research, vol. 31, no. 4, pp. 205–209, 2009.

[101] W. Wu, S. Xu, and W. Houfeng, “Question condensing networks for answer

selection in community question answering,” in Proceedings of the 56th

Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), vol. 1, 2018, pp. 1746–1755.

[102] X. Zhang, S. Li, L. Sha, and H. Wang, “Attentive interactive neural networks

for answer selection in community question answering.” in Proceeding of the

31th AAAI Conference on Artificial Intelligence, 2017, pp. 3525–3531.

[103] D. Chen, J. Bolton, and C. D. Manning, “A thorough examination of the

cnn/daily mail reading comprehension task,” in Proceedings of 54th ACL

Annual Meeting of the Association for Computational Linguistics, 2016.

[104] L. Vilnis and A. McCallum, “Word representations via gaussian embedding,”

in Proceedings of the 4th ICLR Conference on International Conference on

Learning Representations, 2015.

[105] A. Severyn and A. Moschitti, “Automatic feature engineering for answer

selection and extraction,” in Proceedings of the 2013 Conference on Empirical

Methods in Natural Language Processing. Association for Computational

Linguistics, 2013, pp. 458–467.

[106] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A. Kalyanpur,

A. Lally, J. W. Murdock, E. Nyberg, and J. Prager, “Building watson: An

overview of the DeepQA project,” AI Magazine, vol. 31, no. 3, pp. 59–79,

2010.

[107] P. N. Klein, “Computing the edit-distance between unrooted ordered trees,” in

European Symposium on Algorithms. Springer, 1998, pp. 91–102.

Jinmeng Wu

REFERENCES 151

[108] M. Wang and C. D. Manning, “Probabilistic tree-edit models with structured

latent variables for textual entailment and question answering,” in Proceedings

of the 23rd International Conference on Computational Linguistics. Associ-

ation for Computational Linguistics, 2010, pp. 1164–1172.

[109] X. Yao, B. Van Durme, C. Callison-Burch, and P. Clark, “Answer extraction

as sequence tagging with tree edit distance,” in Proceedings of NAACL-HLT.

Association for Computational Linguistics, 2013, pp. 858–867.

[110] M. Heilman and N. A. Smith, “Tree edit models for recognizing textual en-

tailments, paraphrases, and answers to questions,” in Human Language Tech-

nologies: The 2010 Annual Conference of the North American Chapter of the

Association for Computational Linguistics. Association for Computational

Linguistics, 2010, pp. 1011–1019.

[111] W. Yin and H. Schütze, “Convolutional neural network for paraphrase identifi-

cation,” in Proceedings of the NAACL HLT Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies, 2015, pp. 901–911.

[112] Z. Wang, H. Mi, and A. Ittycheriah, “Sentence similarity learning by lexical

decomposition and composition,” in Proceeding of the 25th ACL-COLING

International Conference on Computational Linguistics, 2016, pp. 1340–1349.

[113] R. Socher, C. D. Manning, and A. Y. Ng, “Learning continuous phrase rep-

resentations and syntactic parsing with recursive neural networks,” in Pro-

ceedings of the NIPS Deep Learning and Unsupervised Feature Learning

Workshop, 2010, pp. 1–9.

[114] T. Dozat and C. D. Manning, “Deep biaffine attention for neural dependency

parsing,” In Proceeding of the 5th ICLR International Conference on Learning

Representations, 2017.

[115] X. Zhou, B. Hu, Q. Chen, and X. Wang, “Recurrent convolutional neural

Jinmeng Wu

REFERENCES 152

network for answer selection in community question answering,” Neurocom-

puting, Elsevier, vol. 274, pp. 8–18, 2017.

[116] B. Wang, X. Wang, C. Sun, B. Liu, and L. Sun, “Modeling semantic relevance

for question-answer pairs in web social communities,” in Proceedings of

the 48th Annual Meeting of the Association for Computational Linguistics.

Association for Computational Linguistics, 2010, pp. 1230–1238.

[117] M. L. Littman, S. T. Dumais, and T. K. Landauer, Automatic Cross-Language

Information Retrieval Using Latent Semantic Indexing. Boston, MA: Springer

US, 1998, pp. 51–62.

[118] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,” Journal

of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[119] Z. Wang, W. Hamza, and R. Florian, “Bilateral multi-perspective matching for

natural language sentences,” in Proceedings of the 26th IJCAI International

Joint Conference on Artificial Intelligence, 2017, pp. 4144–4150.

[120] M. Tan, B. Xiang, and B. Zhou, “Lstm-based deep learning models for non-

factoid answer selection,” in Proceedings of the 4th ICLR International Con-

ference on Learning Representations (Workshop track), 2016.

[121] W.-N. Hsu, Y. Zhang, and J. Glass, “Recurrent neural network encoder with at-

tention for community question answering,” arXiv preprint arXiv:1603.07044,

2016.

[122] S. Romeo et al., “Neural attention for learning to rank questions in com-

munity question answering,” in Proceeding of the 26th ICLR Conference on

International Conference on Computational Linguistics, 2016, pp. 1734–1745.

[123] C. Xiong, V. Zhong, and R. Socher, “Dynamic coattention networks for

question answering,” in Proceeding of the 5th ICLR International Conference

on Learning Representations, 2017.

Jinmeng Wu

REFERENCES 153

[124] M. Zhang and Y. Wu, “An unsupervised model with attention autoencoders

for question retrieval,” in arXiv preprint arXiv:1803.03476, 2018.

[125] M. Hu, Y. Peng, Z. Huang, X. Qiu, F. Wei, and M. Zhou, “Reinforced

mnemonic reader for machine reading comprehension,” in Proceedings of the

27th IJCAI International Joint Conference on Artificial Intelligence, 2018, pp.

4099–4106.

[126] W. Wang, M. Yan, and C. Wu, “Multi-granularity hierarchical attention fusion

networks for reading comprehension and question answering,” in Proceedings

of the 56th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), vol. 1, 2018, pp. 1705–1714.

[127] T. Shen, T. Zhou, G. Long, J. Jiang, S. Pan, and C. Zhang, “Disan: Direc-

tional self-attention network for rnn/cnn-free language understanding,” in

Proceedings of the 32th AAAI Conference on Artificial Intelligence, 2018, pp.

5446–5455.

[128] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston, “Key-

value memory networks for directly reading documents,” in Proceedings of

the 2016 Conference on Empirical Methods in Natural Language Processing,

2016, pp. 1400–1409.

[129] D. Li and A. Kadav, “Adaptive memory networks,” arXiv preprint

arXiv:1802.00510, 2018.

[130] T. Kenter and M. de Rijke, “Attentive memory networks: Efficient machine

reading for conversational search,” arXiv preprint arXiv:1712.07229, 2017.

[131] A. Neelakantan, Q. V. Le, and I. Sutskever, “Neural programmer: Inducing

latent programs with gradient descent,” arXiv preprint arXiv:1511.04834,

2015.

[132] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck, “Learning

deep structured semantic models for web search using clickthrough data,” in

Jinmeng Wu

REFERENCES 154

Proceedings of the 22nd ACM International Conference on Conference on

Information & Knowledge Management. ACM, 2013, pp. 2333–2338.

[133] X. Xue, J. Jeon, and W. B. Croft, “Retrieval models for question and answer

archives,” in Proceedings of the 31st Annual International ACM SIGIR Con-

ference on Research and Development in Information Retrieval. ACM, 2008,

pp. 475–482.

[134] L. Shang, Z. Lu, and H. Li, “Neural responding machine for short-text conver-

sation,” arXiv preprint arXiv:1503.02364, 2015.

[135] H. Amiri, P. Resnik, J. Boyd-Graber, and H. Daumé III, “Learning text pair

similarity with context-sensitive autoencoders,” in Proceedings of the 54th

Annual Meeting of the Association for Computational Linguistics. Association

for Computational Linguistics, August 2016, pp. 1882–1892.

[136] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise

training of deep networks,” in Advances in neural information processing

systems, 2007, pp. 153–160.

[137] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.

7553, pp. 436–444, 2015.

[138] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature

pooling in visual recognition,” in Proceedings of the 27th International Con-

ferenceon machine learning (ICML-10), 2010, pp. 111–118.

[139] M. D. Zeiler and R. Fergus, “Stochastic pooling for regularization of deep

convolutional neural networks,” arXiv preprint arXiv:1301.3557, 2013.

[140] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends R© in

Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[141] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed

representations of words and phrases and their compositionality,” in Advances

in Neural Information Processing Systems, 2013, pp. 3111–3119.

Jinmeng Wu

REFERENCES 155

[142] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word

representation.” in Proceedings of the 2014 Conference on Empirical Methods

in Natural Language Processing, vol. 14. Association for Computational

Linguistics, 2014, pp. 1532–43.

[143] P.Lamblin and Y. Bengio, “Important gains from supervised fine-tuning of

deep architectures on large labeled sets,” in Proceedings of NIPS*2010 Deep

Learning and Unsupervised Feature Learning Workshop, 2010, pp. 1–8.

[144] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online

learning and stochastic optimization,” Journal of Machine Learning Research,

vol. 12, no. Jul, pp. 2121–2159, 2011.

[145] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint

arXiv:1212.5701, 2012.

[146] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting.” Journal

of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[147] R. C. S. L. L. Giles, “Overfitting in neural nets: Backpropagation, conjugate

gradient, and early stopping,” in Advances in Neural Information Processing

Systems 13: Proceedings of the 2000 Conference, vol. 13. MIT Press, 2001,

p. 402.

[148] M. Wang, N. A. Smith, and T. Mitamura, “What is the jeopardy model? a

quasi-synchronous grammar for QA,” in Conference on Empirical Methods

on Natural Language Processing, vol. 7. Association for Computational

Linguistics, 2007, pp. 22–32.

[149] Y. Yao, L. Rosasco, and A. Caponnetto, “On early stopping in gradient descent

learning,” Constructive Approximation, vol. 26, no. 2, pp. 289–315, 2007.

[150] R. Baeza-Yates and B. Ribeiro-Neto, Modern information retrieval. New

York: ACM Press; Harlow, England: Addison-Wesley, 2011.

Jinmeng Wu

REFERENCES 156

[151] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. S. Zemel,

and Y. Bengio, “Show, attend and tell: Neural image caption generation with

visual attention,” in Proceedings of the International conference on machine

learning, 2015, pp. 2048–2057.

[152] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Su-

leyman, and P. Blunsom, “Teaching machines to read and comprehend,” in

Proceedings of the 28th NIPS Conference on Advances in Neural Information

Processing Systems, 2015, pp. 1693–1701.

[153] A. W. Yu, D. Dohan, M.-T. Luong, R. Zhao, K. Chen, M. Norouzi, and Q. V.

Le, “Qanet: Combining local convolution with global self-attention for reading

comprehension,” arXiv preprint arXiv:1804.09541, 2018.

[154] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent neural

network architectures for large scale acoustic modeling,” in Proceedings of

the 15th INTERSPEECH Annual Conference of the International Speech

Communication Association, 2014, pp. 338–342.

[155] G. P. Styan, “Hadamard products and multivariate statistical analysis,” Linear

algebra and its applications, vol. 6, pp. 217–240, 1973.

[156] S. Dreiseitl and L. Ohno-Machado, “Logistic regression and artificial neural

network classification models: a methodology review,” Journal of biomedical

informatics, vol. 35, no. 5, pp. 352–359, 2002.

[157] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent

neural networks.” in Proceedings of the 30th ICML International Conference

on Machine Learning, vol. 28, 2013, pp. 1310–1318.

[158] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Advances in

Neural Information Processing Systems, 2015, pp. 2692–2700.

[159] S. Wang and J. Jiang, “Machine comprehension using match-lstm and answer

pointer,” arXiv preprint arXiv:1608.07905, 2017.

Jinmeng Wu

REFERENCES 157

[160] B. Dhingra, D. Pruthi, and D. Rajagopal, “Simple and effective semi-

supervised question answering,” in Proceedings of the 16th NAACL-HLT

Annual Conference, 2018, pp. 582–587.

[161] M. Joshi, E. Choi, D. S. Weld, and L. Zettlemoyer, “Triviaqa: A large scale

distantly supervised challenge dataset for reading comprehension,” in Proceed-

ings of the 55th ACL Annual Meeting of the Association for Computational

Linguistics, 2017, pp. 1601–1611.

[162] Y. Sasaki et al., “The truth of the f-measure,” Teach Tutor mater, vol. 1, no. 5,

pp. 1–5, 2007.

[163] C. Clark and M. Gardner, “Simple and effective multi-paragraph reading

comprehension,” arXiv preprint arXiv:1710.10723, 2017.

[164] C. Xiong, V. Zhong, and R. Socher, “Dcn+: Mixed objective and deep residual

coattention for question answering,” arXiv preprint arXiv:1711.00106, 2017.

[165] Y. Cui, Z. Chen, S. Wei, S. Wang, T. Liu, and G. Hu, “Attention-over-attention

neural networks for reading comprehension,” in Proceedings of the 55th ACL

Conference on the Association for Computational Linguistics, 2017, pp. 593–

602.

[166] Y. Shen, P.-S. Huang, J. Gao, and W. Chen, “Reasonet: Learning to stop

reading in machine comprehension,” in Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. ACM,

2017, pp. 1047–1055.

[167] X. Liu, Y. Shen, K. Duh, and J. Gao, “Stochastic answer networks for machine

reading comprehension,” in Proceedings of the 56th ACL Conference on the

Association for Computational Linguistics, 2018, pp. 1694–1704.

[168] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and

L. Zettlemoyer, “Deep contextualized word representations,” in Proceedings

of the 56th ACL Conference on the Association for Computational Linguistics,

2018, pp. 2227–2237.

Jinmeng Wu

REFERENCES 158

[169] W. Wang, N. Yang, F. Wei, B. Chang, and M. Zhou, “Gated self-matching

networks for reading comprehension and question answering,” in Proceedings

of the 55th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), vol. 1, 2017, pp. 189–198.

[170] M. Gašić, C. Breslin, M. Henderson, D. Kim, M. Szummer, B. Thomson,

P. Tsiakoulis, and S. Young, “On-line policy optimisation of bayesian spoken

dialogue systems via human interaction,” in IEEE International Conference

on Acoustics, Speech and Signal Processing, 2013, pp. 8367–8371.

[171] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in

neural information processing systems, 2014, pp. 2672–2680.

Jinmeng Wu

	List of Figures
	List of Tables
	Introduction
	Semantic Sentence Matching
	Question Answering Tasks
	Deep Learning Methods
	Motivation and Main Contributions
	Motivation
	Contribution

	Thesis Outline and Related Publications

	Deep Learning Methods for Sentence Matching
	Auto-encoders
	Theoretical Foundations
	Sparse Auto-encoder
	De-noising Auto-encoder
	Stacked Auto-encorders

	Convolution Neural Network
	Theoretical Foundations
	Convolutional Layer
	Subsampling Layer

	Recurrent Neural Networks
	Theoretical Foundations
	Forward Propagation
	Backward Propagation
	Bi-directional RNNs

	Neural Turing Machines
	Theoretical Foundations
	Data Extraction
	Memory Updating
	Addressable system

	Conclusion

	Semantic Sentence Matching
	Semantic Matching
	Community Question Answering
	Traditional Approaches
	Neural Semantic Models
	Attention Mechanisms for cQA
	Memory Networks
	Conclusion

	Greedy Word-level Semantic Similarities
	Introduction
	The Proposed Semantic Matching Model
	Distributed Similarity
	Deep Similarity Enhanced by Word Overlapping
	Matching Prediction
	Proposed Greedy Layer-wise Model Training Scheme

	Experimental Analysis and Results
	Datasets and Experiment Setup
	Empirical Analysis of DSSM
	Comparison with State-of-the-art Methods

	Conclusion

	Context-aware Neural Network for Interactive Matching
	Introduction
	Preliminaries
	Proposed Method
	Co-attention Sentences Mechanism
	Positional Word-Sentence Level Similarity
	Interactive sentence Representation
	Model Training and Initialization

	Experimental Analysis and Results
	Datasets
	Performance Metrics
	Experimental Configuration
	Baselines

	Results and Analysis
	Quantitative Evaluation
	Example Demonstration

	Conclusion

	Attentive Memory Network For Answer Selection
	Introduction
	The Proposed Work
	Similarity Construction
	Multi-dimensional Memory Network
	Memory Refinement
	Mnemonic Deep Similarity Matching
	Matching Prediction
	Model Specification for Machine Comprehension

	Experimental Analysis and Results
	Datasets
	Performance Measures
	Experimental Configuration
	Baselines

	Results and Analysis
	Comparison with State-of-the-art Methods
	Empirical Analysis of Memory Network

	Conclusion

	Conclusion
	Summary
	Future Work

	References

