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Abstract: In this paper a novel approach is presented for history matching mod-
els without making assumptions about the measurement error when the available
data is limited. Interval Predictor Models are used to robustly quantify the noise
in the observation data and a novel objective function is proposed to quantify
the quality of matches in a frequentist probabilistic framework. The method is
applied to a simple numerical example in order to evaluate its applicability and
efficacy, and the proposed method identifies a reasonably small feasible region
for the matched parameters. The effect of increasing the number of data points
on the history matching is also discussed.

1 Introduction
History Matching is a method of calibrating a model, with the aim of inferring unknown param-
eters of the model by matching real world observations to its output. We believe the model is
reasonably physically accurate, but some input parameters of the model are unknown. In many
circumstances we may not know the error in the observed data (known as the truth case) and we
are forced to make assumptions which may not be justified regarding the distribution of noise
in the data [1]. These assumptions may cause the derived values for the model parameters to be
biased or incorrect, and hence our predictions will have incorrect uncertainty bounds. In addi-
tion, our data may be limited in the sense that we do not have enough data to uniquely match the
model and hence, there may be many possible matches. Therefore, we may be unable to make
unique predictions regarding future behaviour of the system [7].
Bayesian Inference is a technique frequently used to allow data (sometimes known as the ev-
idence) to be combined with our prior belief in the model parameters. However it requires
that the likelihood of observing a particular set of data is known, given a particular model, in
addition to having a prior belief in the model parameters (although some techniques exist to
choose so-called non-informative priors) [6]. Determining these two pieces of information can
be challenging when the available data is limited.
In this paper, in order to quantify the noise in our data we will create a metamodel. Metamodels
(also known as surrogate models or emulators) are approximate, black box models which can
be constructed by fitting a model to training data or simulations. Metamodels are of use when
we have a model which is computationally expensive and it is therefore infeasible to run the
many simulations required to obtain samples for a Monte Carlo simulation, for example. An
approximate model is needed to perform many simulations quickly. In this context metamodels
are models of models. Metamodels are also of use when we have some data from a process
and we wish to construct an approximate black box model of the Data Generating Mechanism
(DGM), and this is the context in which metamodels will be mainly used in this paper.
Interval Predictor Models (IPMs) [2] are a type of metamodel well suited to dealing with scarce
and limited data. For each initialization of their input parameters, Interval Predictor Models
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output an interval rather than a single value, and hence their predictions reflect the data’s un-
certainty. Compared to conventional regression techniques less assumptions are made about the
data, and crucially no distribution is assumed for the errors.
Our proposed approach uses an Interval Predictor Model and a novel objective function to avoid
making the assumption that the error on the measurements is Gaussian when history matching.
To the authors’ knowledge this has not been achieved in any existing paper.
In Section 2 some background information about Bayesian analysis and a common objective
function used for history matching is described. In Section 3.1 an alternative method is pro-
posed, making use of Interval Predictor models to quantify the uncertainty in the observation
data. In Section 4 the proposed methodology is applied to solve a simple test case, where we
would like to fit a power law to the data is generated from a different analytic function with
added noise. A conclusion and recommendations for future research are given in Section 5.

2 History Matching Background
2.1 Existing Method
Bayesian Inference is a popular technique used as a tool for robust history matching when we
wish to determine unknown parameters of a model from observed data, in order to use the
model to make predictions about future observations [1]. These techniques will be outlined in
this section. An approximate model M is compared to observed measurements µo which are
produced when the error defined by parameter σ is applied to the unobserved true model output
µt . In history matching problems we wish to find the parameters m of M which are responsible
for producing output µo. Therefore we wish to find the value of m which is most likely given
the model and our observations, which is equivalent to finding the maxima of the function

P(m|µo,σ ,M) = P(m|M)
∫ P(µt |m,M)P(µo|µt ,σ)

P(µo|σ ,M)
dµt , (1)

where P(µo|µt ,σ) is the measurement error and is usually assumed to have a Gaussian distri-
bution in µo centred around µt , normalised by σ , i.e.

P(µo|µt ,σ) =
1√

2πσ
exp

(
− [µo −µt ]

2

2σ2

)
. (2)

P(µo|σ ,M) may be taken to be constant. P(µt |m,M) represents the modelling error and various
assumptions can be made for this error as in [1], including no modelling error. In some works
(for example, [7]) the analyst simply found the minima of the function

Λ(m|µo) =
i=No

∑
i=1

[µio −ωi(m)]2

σ2
i

, (3)

where No is the total number of measurements to be used for history matching and ω(m) is
the prediction of µ by M. The subscripted i allow us to perform a summation for models with
more than one output. This approach is followed because thee minima of Λ(m|µo) coincide
with the maxima of P(µo|µt ,σ). In this paper we wish to avoid making the assumption that the
measurement error is Gaussian, and instead use Interval Predictor Models to give an unbiased
estimate of the measurement error.

3 New History Matching Approach
3.1 Interval Predictor Models
Let us consider a Data Generating Mechanism (DGM) which acts on a vector of input variables
x ∈ Rnx to produce an output y ∈ Rny . We will approximate the DGM with an Interval Predictor
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Model (IPM) which returns an interval for each vector x ∈ X , the set of inputs, given by

Iy(x,P) =
{

y = G(x, p), p ∈ P
}
, (4)

where G is an arbitrary function and p is a parameter vector. In order to be useful, the interval
we create should have the smallest range possible whilst still enclosing all data points generated
by the full model. The theory for the single output multi input case (nx ! 1, ny = 1) of IPMs
with a linear parameter dependency is described by Crespo in [2], and is summarised here. By
making an approximation for G Eqn. 4 becomes

Iy(x,P) =
{

y = pT φ(x), p ∈ P
}
, (5)

where φ(x) is a basis (polynomial and radial bases are commonly used), and p is a member of
the hyper-rectangular uncertainty set

P =
{

p : p ≤ p ≤ p̄
}
, (6)

where p and p̄ are parameter vectors specifying the defining vertices of the hyper rectangular
uncertainty set. The IPM is defined by the interval

Iy(x,P) = [y(x, p̄, p), ȳ(x, p̄, p)], (7)

where y and ȳ are the lower and upper bounds of the IPM, respectively. Explicitly, the lower
bound is given by

y(x, p̄, p) = p̄T
(

φ(x)− |φ(x)|
2

)
+ pT

(
φ(x)+ |φ(x)|

2

)
, (8)

and the upper bound is given by

ȳ(x, p̄, p) = p̄T
(

φ(x)+ |φ(x)|
2

)
+ pT

(
φ(x)− |φ(x)|

2

)
. (9)

An optimal IPM is yielded by minimising the expected value of

δy(x, p̄, p) = (p̄− p)T |φ(x)|, (10)

by solving the linear and convex optimisation problem
{

p̂, ˆ̄p
}
= argmin

u,v

{
Ex[δy(x,v,u)] : y(xi,v,u) ≤ yi ≤ ȳ(xi,v,u),u ≤ v

}
, (11)

where xi and yi for i= 1...N are training data points, which in the case of a metamodel should be
sampled from the full model. The constraints ensure that all data points to be fitted lie within the
bounds and that the upper bound is greater than the lower bound. This combination of objective
function and constraints is linear and convex, and is known as a Type-1 IPM. In the case of a
radial basis, more sophisticated constraints may be added to avoid over-fitting of the data [3].
In this work all Interval Predictor Models are Type 1 IPMs, with polynomial bases, i.e. φ(x) =[
1,xi2 ,xi3 , ...

]
with x = [xa,xb, ...] and i j = [i j,a, i j,b, ...] with i j ̸= ik for j ̸= k.
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3.2 Proposed Method
Consider a model which produces a time series of measurements as an output. Taking data
points consisting of input-output pairs from the model, with time as the input, a surrogate IPM
can be created for the model provided enough data points are available. The surrogate IPM will
provide a robust estimate of the range of possible measurements from the model, which follows
from Section 3.1. The reliability R of an IPM represents the probability that a future unobserved
data point (i.e. not contained in the training data set) is contained within the IPM. R is bounded
by

P(R ≥ 1− ε) ≥ 1−β , (12)

for reliability parameter ε and confidence parameter β satisfying
(

k+d −1
k

) k+d−1

∑
i=0

(
D
i

)
ε i(1− ε)D−i ≤ β , (13)

where k is the number of discarded points, D is the total number of data points, and d is the
number of optimisation parameters required [2]. By taking the value of reliability as confidence
asymptotically approaches 1 we can be almost certain in our lower bound for reliability. In this
paper we will arbitrarily choose a 99% confidence level for the reliability and therefore the
value of 1− ε when β = 0.01 will be referred to as R∗ from here on. In principle a higher level
of confidence can be used, however for the examples in this paper a 99% confidence level is an
illustrative choice.
We will make the assumption that there is no model error i.e. our simulations were generated
by the same data generating mechanism represented by our IPM. Therefore, for any simulation,
the probability that Ĉ of D̂ simulated measurements fall inside the IPM is given by the binomial
distribution,

P(Ĉ =C) =

(
D̂
C

)
RC(1−R)D̂−C, (14)

where R is the true value for the reliability of the IPM which is not known. Using the lower
bound for R, R∗, and the cumulative density function for binomial distributions we can calculate
a bound for P(Ĉ ≤ C), the probability that the number of simulated measurements which fall
inside the IPM is less than a particular value C:

P(Ĉ ≤ C) ≤
C

∑
i=0

(
D̂
i

)
R∗i(1−R∗)D̂−i. (15)

P(Ĉ ≤ C), or alternatively C, provides a figure of merit for history matches. We can compute
Eqn. 15 for each simulation and discard any simulations achieving an unsatisfactory P(Ĉ ≤ C)
(P(Ĉ ≤ C) ≤ 0.05 for example). By using this method we simply search for feasible values
of the model parameters in a robust manner, rather than attempting to search for a most likely
estimate of the parameters. In other words we are attempting to find and discard values of the
model parameters which we are sure do not fall within the confidence interval. Depending on
the quality of our reliability bounds it may only be possible to identify a fraction of these values.
In this way the method may be seen as a way to use imprecise probabilities to compute bounds
on the p-values from frequentist inference. A Bayesian approach would not be applicable as we
only have a bound on the CDF, but not the likelihood function itself. In addition, to use Bayesian
inference we would require a prior distribution. Making assumptions about a prior distribution
would defeat the object of not making assumptions for the likelihood function. Therefore the
feasible parameter regions found in this paper are confidence intervals and not credible intervals.
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It should be noted that as the output from our simulations (µt) has not yet been distorted by the
error parameter (σ ), then the assumption that they are from the same DGM as the observations
used to construct the IPM (µo) may be unjustified. The uncertainty from the measurement error
is causing an uncertainty in the matched parameters of the model when we violate this assump-
tion. Although we can be reasonably sure that the samples of the input parameters we discarded
were not matches, the set of potential matches we have found is an overestimate. Running the
model forward with all of the matched parameter values will yield an interval µt , which will not
necessarily contain all of µo. A more robust approach could be achieved by training a second
IPM with the model parameters to be matched and time as inputs. Then robust predictions could
be made by propagating the matched parameter values through the second IPM.

3.3 Implementation
OpenCOSSAN is an open source and free toolbox for uncertainty quantification in MATLAB
[4] [5]. Users can download the engine, make modifications and easily quantify uncertainties in
many disciplines. An OpenCOSSAN class, inheriting the abstract metamodel class, was created
to implement the IPM as described in Section 3.1. The class constructor allows the user to
provide any data set or full model (with choice of sampling method) and generate an IPM.
The user must specify necessary parameters for the type of IPM being created. In this paper
the interior point linear optimisation algorithm in MATLAB was used to solve the optimisation
program in Eqn. 11.

4 Numerical Applications
4.1 Method
As in [1], the following function will be taken as a black box representing an unknown process

f (z) = (z2 +0.1z)2 +η1, (16)

where η1 is normally distributed noise with standard deviation 0.2 f (z). The history we will
attempt to match will be between the times z = 2 and z = 7, at intervals of 0.1 (i.e. z1 = 2,
z2 = 2.1 etc.). Therefore D = 51 data points are available for matching. We will attempt to fit
the function

g(q,z) = zq, (17)

where we wish to find the value of the parameter q which we believe will most successfully
allow us to reproduce unobserved f (z) with g(q,z). In practice g(q,z) would usually be a com-
plex computational model, chosen to represent the known physics of the process f (z) as closely
as possible.
We will vary q between 0 and 6, with an interval between samples of 0.001. The following
objective function was computed for all simulations in the data set to perform the match:

∆(q) =
C(q)

∑
i=0

(
D̂
i

)
R∗i(1−R∗)D̂−i, (18)

with

C(q) =
nz

∑
i=1

{
1 if g(q,zi) ∈ Ii

0 otherwise,
(19)

where Ii is the output interval for the IPM for quantised z, zi. In this example D̂ = 51.
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Figure 1: A history from f (z) with degree 2 IPM
fitted.
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Figure 2: Confidence Parameter - Reliability Pa-
rameter plots for polynomial IPMs of degree 2,
with D = 51 and k = 0.

The identified set of possible q was then used to compare g(q,10) with f (10), by comparing the
output interval for g(q,10) with 1000 realisations of f (10). The output interval for g(q,10) was
computed by taking the maximum and minimum values of g(q,10) for all feasible q. If the set
of q is large and g(q,10) is a monotonically increasing function of q then this procedure may
be completed more efficiently by only using the minimum and maximum values for q.

4.2 Results
A plot of the history data with the fitted IPM of degree 2 is shown in Fig. 1, with the correspond-
ing reliability plot shown in Fig. 2. In this example, Fig. 2 shows that R > 0.76 with confidence
0.99 and so R∗ = 0.76. If a more robust prediction interval was desired then the analyst could
simply choose a higher confidence and consequently a lower reliability (for example, R > 0.711
with confidence 0.999).
Fig. 3 shows ∆(q), the objective function, plotted against q for D̂ = 51. It was found that ∆(q)>
0.01 in the interval between q = 3.557 and q = 4.229, and therefore values of q inside this
interval were possible matches for the model parameters.
As g(q,z) is monotonically increasing in q, it is acceptable to use an interval for q, i.e. q= 3.557
and 4.229. For g(10) this gives a prediction of ḡ(10) = 16943 and g(10) = 3605.8. Fig. 4 shows
a comparison between the obtained prediction interval for D̂ = 51 and 1000 sampled values of
f (10). All of the samples fall inside the prediction interval, which is an unexpectadly good
result for two reasons. Firstly, the confidence in the reliability of the IPM was only 0.99 and
the probability threshold we use for ∆(q) was 0.01. Therefore at each of these stages of the
calculation we will lose 1% of feasible matches. Secondly, we should note that we have made
the assumption that there is no model error which is clearly not true in this example as f (z) has
a different functional form to g(z). Even if this assumption were true, using the feasible values
of q to give an interval for g(10) corresponds to a feasible interval for µt , which is not the same
as our samples of f (10) (which correspond to µo). Crucially, and as discussed in the Section
3.2, µt is yet to be affected by the error defined by the parameter σ . Consequently, the interval
we have found should be regarded as a prediction interval for µt , and not µo.

4.3 Discussion
The IPM illustrates the effect of taking more data as the analyst will be able to calculate how
many more data points are required to increase the value of R∗ to a particular value, and therefore
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Figure 3: Plot of history matching figure of merit
for uniform sample of q when matching f (z) to
g(q,z) for D̂ = 51.
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Figure 4: Plot to compare 1000 samples of f (10)
(red) with a prediction interval of g(q̄,10) and
g(q,10) (blue) for D̂ = 51.

improve the method’s ability to discriminate between different potential values for the matched
parameters. In the case that a large number of measurement data points are available, the analyst
could also remove outliers from the IPM using the procedure described in [2], if the reduction
in R∗ was acceptable.

5 Conclusions
A method for history matching has been proposed which does not require the analyst to make the
assumption that the measurement error has a Gaussian distribution. Instead, Interval Predictor
Models have been used to robustly quantify the measurement error in observation data. The
method relies on our ability to bound the reliability of an IPM, and hence to calculate bounds on
the p-values for potential matches using a bound for the binomial CDF. The proposed method
has been applied successfully to a simple test case where a feasible parameter interval was
identified. The proposed method is general and could be applied to other history matching
problems, regardless of the amount of measurement error.
The technique would also be of use if some data has been lost, for example if a reading at
a particular period in time is not available. In this case the IPM should provide an unbiased
estimate of the lost reading and so the history match would still be possible.
Currently the discrepancy between the functional form of the matched model and the true data
generating mechanism is not accounted for in this framework and the technique is most ap-
plicable in cases where this error is small or not present. It would be desirable to integrate a
technique to account for this error into the framework in order to achieve more accurate values
for the matched parameters.
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