Mathematical modeling and analysis of a meta-plate for very low-frequency band gap
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Abstract
	Aiming to attenuate very low-frequency flexural wave in a thin plate, this paper proposes a meta-plate model by periodically attaching high-static-low- dynamic-stiffness (HSLDS) resonators onto the thin plate. The HSLDS resonator consists of a linear spring with a negative stiffness mechanism (NSM) in parallel, and thus its stiffness can be adjusted to any low values within a range from zero to the stiffness of the linear spring. Using the plane-wave expansion (PWE) method, and considering the linearized stiffness of the resonator, the dispersion relation of the meta-plate can be derived and the band structure can be obtained. A dynamic model of the meta-plate with the original nonlinear stiffness under external excitations is also established. The numerical simulations are carried out by the Galerkin method to evaluate the band structure and study the propagation of the flexural wave along the meta-plate with different azimuth angles. The analytical results exhibit good agreement with the numerical ones, which indicates that the proposed meta-plate can create a very low-frequency band gap. 
 Keywords: high-static-low-dynamic-stiffness resonator; meta-plate; very low frequency band gap; plane-wave expansion method 
1. Introduction
	In recent years, manipulating elastic waves by using periodic structures which are named as phononic crystals or metamaterials has aroused great interest of scholars. There are two mechanisms for creating a band gap, namely, Bragg scattering (BS) and local resonance (LR). Since the BS mechanism fails to open a band gap in a low frequency region by means of a periodic structure with small size, there are fewer works about attenuating low-frequency elastic waves through such an avenue. Fortunately, the LR mechanism provides an opportunity to create a band gap in a low frequency region by using a small-size periodic structure, due to the fact that the central frequency of the band gap is only related to the resonant frequency.
	The advantage of the LR mechanism encourages many researchers to conduct extensive research, after it was firstly proposed by Liu et. al [1]. For 1-D LR metamaterials, a spring-mass chain [2] was put forward for attenuating longitudinal wave, a periodic beam [3] for flexural wave and a periodic shaft [4,5] for torsional wave. Their results showed that the central frequency of the band gap could be shifted from a high frequency region to a low one. Additionally, the wave attenuation performance in the band gap region created by LR mechanism is also better than that formed by BS mechanism. Therefore, the LR mechanism provides a useful way to control flexural wave propagation in a two-dimension plane. 
	Before the local resonator was used to construct a two-dimension periodic structure, many studies have been carried out on the scattering of elastic waves in a thin plate. Neill and Selsil [6] presented an active cloak by manipulating the propagating components of the scattered wave to obscure an inclusion included in a thin plate. Cai and Hambric [7] used a movable rigid scatterer to construct a sonic crystal and form a band gap, whose central frequency and bandwidth could be tunable. Aklouche et al. [8] studied the scattering of flexural wave in a thin plate with an acoustic black hole. Liu et al. [9] employed an invisibility cloak to control the flexural wave in a thin plate. Nevertheless, these 2D Bragg-scattering-type phononic crystals with small size are unable to open a band gap in low frequency region, which limits the application of the 2D phononic crystals in low-frequency vibration manipulation. 
In order to create low-frequency band gaps, a meta-plate was proposed by attaching local resonators onto a thin plate. The resonator can be realized by employing different design concepts, such as a spring-mass [10–13], a soft rubber cylinder in epoxy [14], a rubber-coated inclusion [15], a silicone rubber stub [16–18], a stepped cylinder [19], a spiral structure [20] and a beam-like structure [21]. These results showed that a meta-plate could create band gaps in low frequency region, but still fails to create band gaps in very low frequency region, since the mass of the resonator cannot be designed to be very large or the stiffness very small. Aiming to generate very low-frequency band gaps, in the authors’ previous works, a novel high-static-low-dynamic stiffness (HSLDS) local resonator was proposed by combining a negative stiffness mechanism (NSM) and a positive stiffness spring, which was used to construct a meta-beam [22,23] and a meta-shaft [5]. The results showed that the metamaterial with the HSLDS resonators could notably lower the location of the band gap, which can be utilized to mitigate low-frequency waves. 
Furthermore, whether for the BS mechanism or the LR mechanism, the band structure, obtained by calculating the dispersion relation, is utilized to evaluate the band gap and wave attenuation. There are many methods for determining the BS band gaps, such as the local radial basis function collocation method [24], the multi-scattering theory method [25], the Dirichlet-to-Neumann map method [26], the boundary element method [27], the transfer matrix method [28], the lumped-mass method [29] and the finite-difference time-domain method [30]. For the LR structure, the harmonic balance method [31,32], the finite element method [33–35], the PWE method [36,37], the lattice dynamics method [38] and the transfer matrix method [39,40] were utilized to obtain the dispersion relation and then to demonstrate the band structure. In addition, the wave propagation characteristics along a periodic structure are important to identify the band structure and the attenuation performance within the band gap region, which was revealed by numerical simulation [5,22,23,41] and experiments [37]. However, to the authors’ best knowledge, the mathematic modeling and numerical simulation on the wave propagation in a plate attached with nonlinear resonators are rare. 
In this paper, a two-dimensional meta-plate is designed by attaching HSLDS resonators onto a thin plate periodically. The stiffness of the resonator can be easily adjusted to any values from zero to the stiffness of the vertical spring by changing the stiffness or the pre-compression of the oblique springs. Firstly, the linearized stiffness of the resonator is utilized to reveal the dispersion relations of the meta-plate theoretically by using the PWE method. Then, considering the nonlinear stiffness and damping of the resonator, the dynamic model of the meta-plate under external excitations is established, which is resolved by the Galerkin method to analyze the flexural wave propagation along the meta-plate and evaluate the band structure. The meta-plate with HSLDS resonators is a new conceptual design for very low-frequency band gaps, which should be a promising solution to low-frequency vibration control in the engineering area of automobile, aerospace and underwater vehicle.
This paper is organized as follows: In section 2, the conceptual prototype of the nonlinear local resonator and the meta-plate are presented, and the static analysis of the resonator is also conducted in brief. In section 3, the analytical dispersion relation is derived by the PWE method, and the transmittance of the bending wave along the meta-plate, the ratio of the response at the receiver point to that at the source point, is obtained by the Galerkin method. The numerical examples about the band gap and wave transmittance and discussions on the results are presented in Section 4. Finally, some conclusions are drawn in Section 5.
2. Conceptual prototype and static analysis



	The schematic diagrams of the meta-plate, the physical and computational models of the HSLDS resonator are shown in Fig. 1. In the resonator, a mass is connected by a vertical spring (with stiffness kv) and four evenly distributed oblique springs (with stiffness kh), which can provide negative stiffness in the vertical direction, so that it acts as a negative-stiffness mechanism (NSM). The other ends of the oblique springs are hinged to the lightweight plastic frame. When there is no external force applied on the mass, the resonator is in a static equilibrium state, and all the oblique springs sit in the same horizontal plane and are perpendicular to the vertical spring. At such a position, the mass is supported by only the vertical spring and length of the deformed horizontal spring d is equal to the distance between the mass and the frame of the resonator. In addition, four guide rods are fixed to the mass with pin joints to avoid the possible bending and buckling of the oblique springs and ensure these springs are compressed only along the axial direction. Note that linear bearing is embedded into the mass to make the mass slide along the vertical guide rod; therefore, the mass can move in the z direction only, and the damping is substantially reduced by changing the sliding friction into rolling one. To ensure sufficient rigidity of the frame, rib plates are fixed at four corners of the frame. Attaching resonators periodically onto the thin plate, as shown in Fig. 1a, the meta-plate can be constructed. The first Brillouin zone of the meta-plate is exhibited in Fig. 1b, where the hatched area, also marked by three points of ,  and , denotes the irreducible range of the first Brillouin zone [36].
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[bookmark: OLE_LINK3][bookmark: OLE_LINK4]Fig. 1. (a) Schematic diagram of the meta-plate with periodically attached HSLDS resonators. (b) First Brillouin zone of this periodic structure where the hatched area represents the first irreducible Brillouin zone. The points in the first irreducible Brillouin zone are defined as ,  and . (c) Physical prototype of HSLDS resonators and (d) side view of the computational model of the HSLDS resonator, (e) top view (view A) of the computational model. 
In one previous work [23] by the authors, the static analysis of the HSLDS resonator was made. For convenience, non-dimensional expressions of the restoring force and stiffness are given directly as follows:
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[bookmark: OLE_LINK26][bookmark: OLE_LINK27]where  and  denote the non-dimensional restoring force and stiffness of the HSLDS resonator, respectively.  is the non-dimensional displacement of the mass in the z direction,  is the original length of the oblique spring,  is the non-dimensional pre-compression where  denote the pre-compression of the oblique spring at the static equilibrium position.  is the net stiffness ratio which is defined as the proportion of the targeted net stiffness of the resonator at the static equilibrium position () to the vertical spring . It should be noted that the restoring force and stiffness in Eq. (1) and Eq. (2) are achieved under the following condition [23]

		

where  denotes the non-dimensional length of the oblique spring after being compressed at the static equilibrium position. The value of  is less than 1. Obviously, at the equilibrium position, the non-dimensional stiffness of the resonator (equation ) is . Therefore, the net stiffness of the resonator can be easily adjusted to any values from zero to the stiffness of the vertical spring by changing the stiffness of the oblique spring or altering its pre-compression. 




Fig. 2 shows the 3D plot of the non-dimensional stiffness of the resonator when the parameter  equals different values. From this figure, one can find that the stiffness is related to the displacement, and more importantly, it can be significantly impacted by the parameter . To maximize the displacement range where the stiffness is smaller than the vertical spring kv (or the dimensionless stiffness is less than 1), the optimization on  is conducted, as done in our previous work [23,32], and its optimal value is  , as shown in Fig. 2c. 


In addition, with the displacement increasing, the stiffness notably increases when the mass moves away from the equilibrium position, but it slowly increases in the vicinity of the equilibrium position. This is the same as the quasi-zero-stiffness characteristic [42]. Therefore, the non-dimensional stiffness can be linearized at the equilibrium position () to be , as long as the oscillation amplitude is not large, which is also used to derive the dispersion relation in the following theoretical analysis. 
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Fig. 2. 3D plot of the dimensionless stiffness of the HSLDS resonator with respect to the net stiffness ratio and dimensionless displacement when the deformed length of the inclined spring at the static equilibrium position is selected as different values.
3. Mathematical modeling and dispersion relation
[bookmark: _GoBack]	In this section, the dispersion relation of the meta-plate is derived by using the PWE method. In addition, numerical simulations are carried out to assess the wave attenuation performance of the meta-plate and to validate the band structure calculated by the analytical method.
3.1. The band structure
	From Fig. 1a, the vector coordinate of the location of the resonator can be given by [43]

	 	




where  and  are integers,  and  denote the basis vectors. According to the theory of thin plate, considering a simple harmonic bending wave travelling in it and neglecting the mass of the frame and guide rods of the resonator, the equations of motion of the thin meta-plate can be given by [44] 
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where  is the double Laplace operator

	 	















[bookmark: OLE_LINK1][bookmark: OLE_LINK2]and is the flexural rigidity of the plate,  is the mass density of the material， is the thickness of the plate,  is the position vector,  is the lateral displacement of the meta-plate at position ,  is the mass of the local resonator,  is the vertical displacement response of the resonator,  is the (dimensional) force applied on the plate by the resonator at location , and  is the frequency of the harmonic plane wave. In order to obtain the band structure of the meta-plate, the linearized stiffness of the resonator is used in the analysis for the dispersion relation. Hence, the force caused by the resonator can be approximated to be  , where  denotes the displacement of the meta-plate at location . In addition,  represents a two-dimensional Dirac delta function, as defined by

	 	





 	Here, the displacement of the meta-plate can be rewritten as an infinite order bending wave superposition by introducing the reciprocal vector  ( and  are basis vectors,  and  are integers) and given by 
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where  denotes the coefficient and the Bloch wave vector. Especially, it is noteworthy that the relationship between the reciprocal vectors and the direct lattice vector can be given by

	 	




[bookmark: OLE_LINK7][bookmark: OLE_LINK8]where  and . Hence, , . 
	According to the Bloch theorem and periodic condition, the displacement of the plate and the resonator can be rewritten as

[bookmark: ZEqnNum301001]	 	
Substituting Eq.  into Eq.  and Eq. , using the linearized stiffness of the resonator, and considering the property of the delta function

	 	
one can yield the equations of motion of the meta-plate
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In addition,  can be written as a Fourier series in the reciprocal space due to the periodicity of the delta function, as given by
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where 

	 	



whereis the area of the unit cell of the meta-plate. According to Eq. , one can easily obtain the relationship between  and  
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Hence, substituting Eq.  into Eq.  and Eq. , one can obtain the expression of the force caused by the resonator
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According to Eq. , it is clear that
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Substituting Eq. , Eq. , Eq.  and Eq.  into Eq. , one can rewrite the equation of motion
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[bookmark: OLE_LINK10][bookmark: OLE_LINK11][bookmark: OLE_LINK12]where . It should be noted that it is difficult to solve Eq.  when it contains an infinite series. Hence, to obtain the solutions, Eq.  is truncated. In this paper, a parameter  is selected for constructing a parameter scope  to truncate the infinite series, and thus the number of harmonic waves involved is . Then Eq.  is rewritten as a matrix form
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And is the identity matrix. Then the dispersion relation of the meta-plate can be given by

[bookmark: ZEqnNum629871]	 	
For a given frequency, one can obtain the real solution of the wave vector k from Eq. . However, the dispersion relation obtained by the PWE method can only predict the width and location of the band gap, it fails to show the actual wave attenuation in the band gap region. To predict the width, location of the band gap and wave attenuation simultaneously, the PWE method is extended to obtain a complex band structure, which is named as expanded plane-wave expansion (EPWE) method in this paper. The procedure of deriving the dispersion relation of the meta-plate by the EPWE method is given as follows.

    Considering an azimuth angle , the Bloch vector can be rewritten as
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Substituting Eq.  into Eq. , the vector matrix can be given by
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where in which  are the lattice constant and

	 	
and

	 	
Substituting Eq.  into Eq. , one can rewrite the matrix as 
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where

	 	


	For a given frequency, the wave vector  can be obtained by solving the characteristic polynomial equation . The lowest real part of the  sits inside the first Brillouin zone, which is considered the accurate solution and used to demonstrate the band structure [36].
3.2. Numerical simulation by Galerkin method

 Considering a random (white noise) force with a bandwidth from 1 to 800 Hz applied at the origin of the plate, the governing equations of the forced meta-plate can be given by

[bookmark: ZEqnNum401005]	 	

where w(r,t) is the lateral displacement at this point on the meta-plate and z(t) is the vertical displacement of the resonator at R. According to the Galerkin method [22,45], the transverse displacement of the meta-plate can be assumed to be
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whereand  are the order of the eigenfunction.  denotes the mode function of the plate with free-free boundary condition, as given by [45] 

	 	


where the eigenvalueandcan be obtained by solving the following eigenequations

	 	



where  and  denote the length and width of the meta-plate. Substituting Eq.  into the equations of motion of the meta-plate in Eq. ，multiplying it by the weight function  which is also selected as the mode function, and then integrating it over the surface of the meta-plate, Eq.  can be rewritten in a discrete form
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wheredenotes the surface of the meta-plate.  and  are integers and their values are selected from 1 to P and Q，respectively. For a square meta-plate, P should be equal to Q. The restoring force  caused by the resonator at point  is given by

	 	
	
By introducing the following parameters

	 	
Eq.  can be rewritten in a simple form

[bookmark: ZEqnNum659178]	 	


The detailed expressions of  and  are given in Appendix A.
In order to make the transient response die away quickly in the numerical simulation, both the modal damping of the thin plate and the damping of the resonator are considered. 
By using the orthogonality of mode functions, Eq.  can be rewritten as

[bookmark: ZEqnNum361512]	 	
where

	 	
	

	 	


where is the modal damping ratio, and  is damping ratio of the resonator. Note that both the damping of the plate and the resonator are difficult to determine practically. Thus, a linear viscous damping is used to take into account the energy dissipation in the meta-plate. By solving Eq.  and substituting the solutions in generalized coordinates into Eq. , the displacement response of the meta-plate can be directly obtained. In addition, the number of the terms in the Galerkin method, P and Q, should be large enough to meet the requirement of computational accuracy.
4. Results and analysis
	In this section, the band structure is calculated by both the PWE method and EPWE method, and the characteristics of flexural wave propagating along the infinite meta-plate are studied by numerical simulation. In order to highlight the advantage of the HSLDS resonator over the traditional linear resonator in creating a low-frequency band gap, some parameters of the meta-plate are selected from Reference [36], in which linear resonators are used to construct a meta-plate. All the parameters of the meta-plate are tabulated in Table 1.

Table 1 Parameters of the meta-plate
	Parameters
	Descriptions
	Values

	

	Modulus of thin plane
	


	

	Poisson’s ratio
	


	

	Density of the thin plate
	


	

	Thickness of the thin plate
	


	

	Length of unit cell
	


	

	Mass of resonator
	


	

	Stiffness of the vertical spring
	


	

	Model damping ratios
	


	

	Damping ratio of resonator
	


	

	Amplitude expectation
	




4.1. Analytical results on band structure
4.1.1. Theoretical band structures

Fig. 3 shows band structures calculated by solving Eq.  with the PWE method for different net stiffness ratios . In this figure, shaded areas represent band gaps, ‘BG-A’ and ‘BG-B’ denote the directional band gap, and ‘BG-C’ the complete band gap. Additionally, the directional band gap appears only when the bending wave propagates with a zero azimuth angle, while the complete one can be created whether the bending wave propagates with a non-zero azimuth angle or not. From Fig. 3, it can be found that the band gap is notably shifted from a high frequency region towards a low one as the net stiffness ratio decreases.
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Fig. 3. Real band gap structures calculated by Eq.  of the meta-plate when the net stiffness ratio is (a) , (b) ,(c) , (d) . 




As shown in Fig. 3 (a), the meta-plate opens two band gaps in the direction  , and a complete band gap in both directions  and , when the net stiffness ratio is 1. Under such a circumstance, the negative stiffness mechanism does not work, and the meta-plate degrades into a traditional 2D linear phononic crystal, which is the same as that proposed by Xiao et al. [36]. One also can find that, as the net stiffness ratio decreases, the width of the directional band gap becomes narrow. When the net stiffness ratio is reduced to 0.01, the stiffness of the local resonator is very small but strongly dependent on the displacement, which presents a strong nonlinear feature, and the directional band gap ‘BG-A’ disappears. Interestingly, as the stiffness of the local resonator is decreased, the beginning frequency of the low frequency band gap remains unchanged. That is because the directional band gap ‘BG-A’ is induced by Bragg scattering, and its beginning frequency is not related to the stiffness of the local resonator. 

According to the Bragg condition along the direction , the beginning frequency of the directional band gap BG-A can be calculated by [10]

	 	
For the parameters listed in Table 1, the beginning frequency of band gap ‘BG-A’ is 484 Hz. As shown in Fig. 3, the band structure obtained by the PWE method can only predict the width and location of the band gap, but fails to demonstrate the wave attenuation performance of the meta-plate in the band gap. However, by using the extended PWE (EPWE) method, the complex band structure can be obtained by solving the characteristic equation , and the bandwidth and wave attenuation can be illustrated by real and imaginary parts of the solution, respectively. 
4.1.2. Effect of the resonator mass on the band gaps
Fig. 4 shows the effect of the mass of the resonator on the theoretical band gap predicted by the PWE method. Clearly, with the increase of the mass, both the directional band gap ‘BG-A’ and the complete band gap ‘BG-C’ moves to a lower frequency region, while the directional band gap ‘BG-B’ keeps unchanged. It can be attributed to a fact that the locally resonant band gap is related to the resonant frequency but the Bragg scattering band gap is not. Therefore, in the engineering practice, it is an ideal way to create a low-frequency band gap by increasing the mass of the resonator, when the host plate is strong enough to carry those resonators. 
[image: ]
Fig. 4. The effect of the mass of the resonator on the directional band gap and the complete band gap. Symbols ‘BF’ and ‘EF’ denote the beginning frequency and ending frequency of the band gap, respectively. 
4.1.3. Effect of the net stiffness ratio and azimuth angle on the band gaps

Fig. 5 shows the influences of the net stiffness ratio and the azimuth angle  on the beginning and ending frequencies of the band gap. From this figure, one can find that, with the net stiffness ratio decreasing, both the ending and beginning frequencies move from high frequencies to low ones, but the decreasing rate of the ending frequency is higher than that of the beginning frequency, which leads to a narrow band gap in low frequency region.
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[bookmark: OLE_LINK5][bookmark: OLE_LINK6][bookmark: OLE_LINK9]Fig. 5. Beginning frequency (shadow area) and ending frequency (meshed area) of the band gap calculated by Eq.  for different net stiffness ratios and azimuth angles.




From Fig. 6, one can find a weak effect of the azimuth angle on the beginning frequency in low frequency region, but a distinct influence in high frequency region. However, for the ending frequency, the azimuth angle has little effect whether in low or high frequency region. These results match well with those demonstrated in Fig. 3. In fact, band gaps in directions , XM and  are for waves propagating along the meta-plate with different azimuth angles. When the azimuth angle is zero, the meta-plate opens a directional band gap; otherwise it forms a complete band gap. However, as shown in Fig. 3c and d, the directional band gap ‘BG-A’ in the direction  disappeares and ‘BG-B’ becomes a complete one in low frequency region, which indicates that the azimuth angle has a minuscule effect on the band structure in low frequency region.
[image: ]
Fig. 6. Band structures influenced by (a) net stiffness ratio and (b) azimuth angle.


Fig. 6a shows the imaginary part of the complex band structure obtained by solving Eq. ，and Fig. 6b illustrates the effect of the azimuth angle on the wave attenuation performance in the band gap region when the net stiffness ratio is 0.5. From Fig. 6a, one can find that, as the net stiffness ratio decreases, the width of the band gap becomes narrower, but the wave attenuation performance in the band gap region remains unchanged. In fact, it is an intrinsic feature for the locally resonant band gap that both the beginning and ending frequencies of the band gap are proportional to the square root of the resonant frequency. Therefore, reducing the net stiffness would narrow the bandwidth. It is also a challenge to broaden the bandwidth for the very low-frequency locally resonant band gap. In addition, as shown in Fig. 6b, with the azimuth angle increasing, the imaginary part of the complex band gap decreases, which implies that the wave attenuation performance in the band gap region becomes less effective, that is, the wave attenuation performance along the direction  is best.
4.1.4. Effect of geometrical asymmetry of the resonator on the band gaps

In practical application, due to the manufacturing and assembling errors, the deformed length d for all the four inclined springs (springs 1~4 in Fig. 1) would deviate from the designed values, and the ideal symmetrical resonator becomes an asymmetrical one. To demonstrate the effect of the geometrical asymmetry of the resonator on the band structure, assume that there exist errors  of the deformed length d for all the four inclined springs, the restoring force of the resonator in horizontal direction (along the direction of spring 1 and spring 2 in Fig. 1) and vertical direction can be given by

	 	

[bookmark: ZEqnNum132832]	 	

where denote the geometrical errors of the parameter d for spring1, spring2, spring3 and spring4, respectively. Note that, the restoring force feature in another horizontal direction (along the direction of spring 3 and spring 4 in Fig. 1), including the derivation and the effect on the band gap, are identical to the that caused by spring 1 and spring 2, which is, therefore, not presented in detail.






Clearly, when all of the errors , ,  and  are equal to zero, the resonator is a symmetrical one, and the restoring force in the horizontal direction is zero. For an asymmetrical resonator, the geometric errors are not identical to each other, and thus the horizontal restoring force is no longer equal to zero. However, the mass is limited by the guide rod to move along the vertical direction only, and the horizontal restoring force induced by the geometrical asymmetry is not large compared with the vertical one. For example, the maximum horizontal restoring force is less than 70 N but the vertical one is larger than 4000 N when  and . Therefore, the horizontal restoring force caused by the geometrical asymmetry is not considered here. However, the imbalance of the restoring force in the horizontal direction could increase the friction between the linear bearing and the guide rod, which would enhance the damping and thus broaden the band gap but degrade the wave attenuation [46].
Differentiating the restoring force, Eq. , with respect to the vertical displacement z, the dimensionless stiffness of the HSLDS resonator in the vertical direction can be given by

	 	









where . The stiffness is presented in Fig. 7, where “Symmetry” denotes the symmetrical resonator, “Case1” represents the asymmetrical resonator with positive geometrical errors , , , , and “Case2” denotes the asymmetrical resonator with negative geometrical errors , ,  and . 
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Fig. 7. The vertical stiffness of the resonator in different cases when .

Obviously, the geometrical asymmetry can induce stiffness change of the resonator by more than 10% in these two numerical cases, as shown in Fig. 7. It is interesting that the positive geometrical errors increase the stiffness of the resonator (red line in Fig. 7), while the negative geometrical errors reduce the stiffness (blue line in Fig. 7). This can be attributed to a fact that the error of the parameter d results in a change of the pre-compression of the inclined springs at the static equilibrium position. The positive and negative errors imply reduction and enhancement of the pre-compression, respectively, and thus result in increase and decrease in the stiffness of the resonator, respectively. 
In addition, although the geometrical asymmetry of the resonator can induce a stiffness change in the vicinity of the static equilibrium position, the stiffness curve is still symmetrical with respect to the static equilibrium position (z=0). Because all the inclined springs in the same horizontal plane perpendicular to the vertical spring, when the resonator reaches its static equilibrium position under payload, and the static equilibrium position cannot be influenced by the geometry asymmetry of the resonator configuration. 
The comparison of the band structure between the meta-plates with symmetrical and asymmetrical resonators is presented in Fig. 8, where the red dotted line denotes positive geometrical errors, the black solid line represents no errors and the blue dashed line denotes negative errors. Clearly, the positive errors make the band gap move toward high frequency (red dotted line in Fig. 8a). On the contrary, the negative errors shift the band gap from high-frequency region to a low one, as shown by the blue dashed line in Fig. 8a. Additionally, as shown in Fig. 8b, the geometrical asymmetry also can influence the bandwidth. The positive errors increase the bandwidth, but the negative errors reduce the bandwidth. In fact, the effects of the geometrical asymmetry on both the central frequency and bandwidth can be attributed to the stiffness change induced by the geometrical asymmetry. In other words, the positive errors cause an increase in the stiffness of the resonator, leading to a higher and wider band gap, while the effect of the negative errors is opposite.
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Fig. 8. (a) Analytical band gaps of the meta-plate along the direction of and (b) the central frequency and bandwidth of the band gap in different cases. Along the direction of the arrow, the red dotted line, the black solid line and the blue dashed line denote “Case1”, “Symmetrical” and “Case2”, respectively.
4.2. Wave transmittance
In section 3, band structures are predicted from the derived dispersion relation with the linearized stiffness of the resonator. In this section, taking into account the original nonlinear stiffness of the resonator, numerical simulations are conducted to verify the band structures predicted by the analytical method. Meanwhile, the effect of the nonlinearity of the resonator on the wave transmittance are also analyzed in this section.
4.2.1. Verification of the band structures 


 Considering a random force applied at the origin of the plate (‘Source Point’ in Fig. 9), solving Eq.  using the Runge-Kutta method and substituting these solutions into Eq. , the responses of the forced vibration of the meta-plate can be obtained. In addition, in Fig. 9, ‘Receiver Point’ denotes the measuring point of responses for calculating wave transmittance, ‘Point 1’ and ‘Point 2’ represent the measuring points for calculating the wave transmittance along direction of  and , respectively. The wave transmittance is used to assess the wave attenuation performance of the meta-plate. 
[image: ]

Fig. 9. Schematic diagram of the numerical simulation model of the meta-plate with  unit cells. 
	The comparison between the band structure predicted theoretically by PWE method and that by the Runge-Kutta method is shown in Fig. 10. In this figure, the left panel of each subfigure presents the real part of the Bloch wave vector, and the right one shows the wave transmittance calculated numerically by using the Galerkin method. The wave transmittances of the meta-plate and the plain plate without any resonators are denoted by solid and dotted curves, respectively. The minus transmittance in dB means flexural wave attenuation, and the corresponding frequency region represents a band gap. However, due to the effect of damping, the wave transmittance may be totally less than zero in high frequency region, which does not mean a band gap. Therefore, if there is a frequency region in which the wave transmittance curve has a sharp drop, such a region is considered a band gap [47].
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[bookmark: OLE_LINK13][bookmark: OLE_LINK14]Fig. 10. Comparison of the band structures predicted theoretically by PWE method with those demonstrated by the wave transmittance, when the net stiffness ratio (a) and (b) , (c) and (d) , (e) and (f) , (g) and (h) . The blue solid lines denote results of the meta-plate and the rad dotted lines represent results of a plain plate. The shading areas on the left panels are band gaps.



The wave transmittance shown in the right half in each subplot of Fig. 10 is calculated numerically by using the Galerkin method, as presented in Section 3.2, when the nonlinear stiffness and damping of the resonator are taken into account. Nevertheless, the result in the left half represents the band structure obtained by using the PWE method, when the linearized stiffness of the resonator is used. By comparing the right half and the left one of the subplot, one can observe excellent agreement between the theoretical prediction and the numerical simulation along the direction . However, in the direction , the analytic results cannot completely match with numerical results for the directional band gap ‘BG-A’, because the point excitation can cause many waves to propagate freely along other directions [36]. Therefore, the linearized stiffness can be utilized to predict the band structure of the proposed meta-plate with nonlinear resonators.







   In addition, the subplots in the left column present the band structures and wave transmittances along the direction (Point 1 in Fig. 10) for different net stiffness ratios, while subplots in the right column show results along the direction  (Point 2 in Fig. 10). Obviously, the band structure and wave transmittance for the wave propagating along direction  is different from those along the direction . Specifically, the wave attenuation performance in the band gap along the  direction is superior to those along the direction, but the bandwidth along the  direction is narrower. For the directional band gap ‘BG-B’, the wave transmittance is not obvious because the excited wave may propagate along the free edge of the meta-plate with partial attenuation [36]. 
In the left half of each subplot in Fig. 10, the solid lines denote the wave transmittance of the meta-plate, and the dotted lines represent those of a plain plate (without any resonator). It can be seen that, compared with the plain plate, the proposed meta-plate can open a very low-frequency band gap and attenuate the bending wave in the band gap. With the decrease in the net stiffness ratio, the location of the band gap can be notably shifted from a high frequency region into a low one.
4.2.2 Effect of nonlinearity on the band gaps 
As mentioned above, the stiffness of the HSLDS resonator is nonlinear. More importantly, with the decrease of the net stiffness ratio, the nonlinearity obviously becomes stronger. Therefore, it is necessary to validate the assumption that the linearized stiffness at the equilibrium position can be used to predict the band gap theoretically when the displacement in the vicinity of the equilibrium position. The theoretical band gap by employing the linearized stiffness is shown in Fig. 11a, and the numerical band gaps by using the exact nonlinear stiffness under the excitation with different amplitudes are demonstrated in Figs. 11b-d, when the net stiffness is equal to 0.1. Clearly, comparing Fig. 11a with Figs. 11b-d, it can be seen that the band gap theoretically predicted by the PWE method matches well with that reveled by the numerical wave transmittance. Moreover, as the excitation amplitude increases, the wave attenuation in the band gap would get worse even disappear at some certain frequency, such as 104 Hz. It can be ascribed to a fact that some complicated dynamic behaviors caused by the large-amplitude excitation, such as double period motion and chaotic motion. These complicated behaviors could counteract or amplify the responses at certain frequencies. 
[image: ]




Fig. 11. Effects of the excitation amplitude on the band gap of the meta-plate when the net stiffness ratio equals 0.1. Theoretical band structure (a) and numerical ones under the excitation with different amplitudes (b), (c) , (d)  and (e) .
5. Conclusions
	In this paper, the high-static-low-dynamic-stiffness (HSLDS) resonator is periodically attached onto a thin plate to construct a meta-plate to achieve a very low-frequency band gap for bending waves propagating along the plate. The HSLDS resonator is composed of a negative stiffness mechanism (NSM) realized by four inclined springs, and a vertical spring that provides positive stiffness. The mathematical model of the meta-plate is established, and the dispersion relation is derived with the assistance of both the PWE method and EPWE method. Moreover, numerical simulations are also carried out to validate the band structures predicted by the PWE method and EPWE method and to demonstrate the wave propagation characteristics along the meta-plate. Some conclusions can be drawn as follows.
	The stiffness of the resonator is effectively reduced by the neutralization from the NSM, which provides a way to design a resonator with a very low resonant frequency, and thus the meta-plate with such resonators can achieve very low-frequency band gaps. Both real and complex band structures are obtained by solving the dispersion relations, to show the advantages of the proposed meta-plate over the traditional locally resonant plate. The theoretical results show that the dispersion relation of the linearized meta-plate solved by the PWE method can effectively predict the band gap, and the proposed meta-plate can effectively shift the band gap from a high frequency region to a low one, which provides a promising solution for low-frequency vibration control in plates.
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