
Independent Sets in Line of Sight Networks

Pavan Sangha, Michele Zito

Department of Computer Science, University of Liverpool, United Kingdom

{p.sangha2,michele}@liverpool.ac.uk

March 22, 2019

Abstract

Line of Sight (LoS) networks provide a model of wireless communication
which incorporates visibility constraints. Vertices of such networks can be em-
bedded onto the cube {(x1, x2, ..., xd) : xi ∈ {1, ..., n}, 1 ≤ i ≤ d} so that two
vertices are adjacent if and only if their images lay on a line parallel to one of the
cube edges and their distance is less than a given range parameter ω. In this paper
we study large independent sets in LoS networks. We prove that the computational
problem of finding a maximum independent set can be solved optimally in poly-
nomial time for one dimensional LoS networks. However, for d ≥ 2, the (decision
version of) the problem becomes NP-complete for any fixed ω ≥ 3. In addition,
we show that the problem is APX-hard when ω = n for d ≥ 3. On the posi-
tive side, we show that LoS networks generalise chordal graphs. This implies that
there exists a simple d-approximation algorithm for the maximum independent set
problem in LoS networks. Finally, we describe a polynomial time approximation
scheme for the maximum independent set problem in LoS networks for the case
when ω is a constant and present an improved heuristic algorithm for the problem
in the case ω = n.

1 Introduction
Geometric graphs have become a popular tool for reasoning about wireless networks.
Typically, wireless devices positioned in some physical space can be represented by a
collection of vertices. A graph can then be constructed by representing communication
between pairs of vertices by edges. The disk intersection model is one of the com-
monly used model for representing wireless sensor networks [4]. Sensors are modelled
as vertices in some topological setting and their communication ranges are represented
by circles having some prescribed radius. Overlapping circles then represent commu-
nication between pairs of vertices and makes it possible to construct a graph. Unfor-
tunately in many real world applications of wireless networks, the environments often
come with a large number of obstacles which impose line of sight constraints on ver-
tices. These obstacles are difficult to incorporate in the geometric model described
above.

1

Frieze et al. [11] introduced the notion of a (random) 2-dimensional Line of Sight
(LoS) networks as a model of wireless networks which can incorporate visibility con-
straints, and they then studied connectivity problems in this setting. Since then con-
nectivity in higher dimensions, percolation and communication problems have been
analyzed [2, 6, 7] in the same model. In this paper we work with the following
variation of Frieze’s model. For positive integers d and n, let Zdn denote the cube
{(x1, x2, ..., xd) : xi ∈ {1, ..., n}, 1 ≤ i ≤ d}. Parameter d will be occasionally re-
ferred to as the set dimension, whereas, with a slight abus de langage, we will say that
n is the size of the given cube. In the rest of the paper, unless otherwise stated, the
distance between points x = (x1, x2, ..., xd) and x′ = (x′1, x

′
2, ..., x

′
d) in Zdn, denoted

by dist(x,x′), will be the sum
∑d
i=1 |xi−x′i| (also known as the Manhattan distance).

Note that this distance is not “wrapped around” as it was in [11] where a torus was
used to simplify calculations. We say that two distinct points x = (x1, x2, . . . , xd) and
x′ = (x′1, x

′
2, . . . , x

′
d) in Zdn share a line of sight if there exists j ∈ {1, . . . , d} such that

xi = x′i for all i ∈ {1, . . . , d}\{j}, moreover in this case we say that x and x′ share a
j-line. Let ω be a positive integer with 1 ≤ ω ≤ n. A graph G = (V,E) is said to be a
Line of Sight (LoS) network (with parameters d, n, and ω) if there exists an embedding
fG,w : V → Zdn such that {u, v} ∈ E if and only if fG,ω(u) and fG,w(v) share a line
of sight and the distance between them is strictly less than ω. The set Zdn, is the network
underlying cube. Given a LoS network G = (V,E), we denote by fG,ω(V) the set of
points in Zdn that are the images of vertices ofG under the embedding fG,ω . We say that
a LoS network G with parameters d, n and ω is d-dimensionally spanning if for each
j ∈ {1, 2, . . . , d} there exists an edge {u, v} ∈ E such that fG,ω(u) and fG,ω(v) share
a j-line. Let Ldn,ω denote the set of all graphs G which are d-dimensionally spanning
LoS networks with parameters n, d and ω and let Ldω = ∪n∈NLdn,ω .

The parameter ω, called the network range parameter, is used to model the usual
proximity constraint in a wireless network. The line of sight visibility constraint (two
vertices u and v cannot be connected by an edge unless fG,ω(u) and fG,ω(v) share
a line of sight) is the mechanism that allows modelling of obstacles. LoS networks
generalise various types of graphs. For example, LoS networks with parameter ω = 2
are (subgraphs of) grid graphs [5]: each vertex can only share an edge with any of the
vertices present in the 2d locations at distance one in Zdn. On the other hand, the graphs
admitting a d dimensional embedding, for some d, with ω = n are known as gridline
graphs [23]. As a final remark before moving to the description of the optimization
problem which is the main subject of this paper, we stress that our main concern here is
to understand to what extent the particular properties of the LoS networks help solving
difficult combinatorial problems. Clearly, every LoS network G that is embeddable
in Zdn is also embeddable in Zd′n , for every d′ > d (although G might not have a
d′-dimensionally spanning embedding) and, in general, G might even have several
different embeddings in Zdn. In what follows, when we will need to use any information
about the embedding, we will assume that fG,ω is an arbitrary fixed embedding of
G. (For completeness it should be mentioned that, since we started our work on this
model, others [19] have investigated the problem of deciding whether a graph admits a
particular line of sight embedding.) Because of this, unless ambiguity arises, we might
occationally abuse notation and denote by letters like u or v both the vertices of G

2

and the points that are images of these via the embedding fG,ω . We will also omit the
subscripts G and ω to simplify notations.

So far LoS networks have been studied in a randomized setting. Each point in Zdn
contains a node with probability p (so that the expected size of V (G) is n2p) and one
is interested in connectivity thresholds and other structural properties. The purpose of
our paper is to start the study of LoS networks combinatorial and algorithmic properties
from the worst-case point of view. In what follows we focus on the well known maxi-
mum independent set problem (MIS). An independent set in a graph is a set of vertices
which are pairwise non-adjacent. Let α(G) be the maximum size of an independent set
in G. Given a graph G = (V,E), MIS asks for an independent set in G of cardinality
α(G). Large independent sets in graphs have been the subject of significant study in
various branches of Mathematics as they provide a measure of network dispersion and
have a strong relation to other important graph structures such as vertex covers, cliques
and colourings [9]. It is well known that finding a largest independent set in a graph is
an NP-hard problem [12], and even good approximate solutions are hard to find [13].
In this paper we argue that working with LoS networks makes the problem more easily
approximable in many ways. Section 2 presents all our major results. The focus is
on the statements and their consequences, rather than the technicalities of their proofs.
The subsequent sections contain the details of the hardness results (Section 3 and 4)
and the algorithmic ones (Section 5). In what follows, if Π is a computational problem
and I is a particular set of instances for it, then Π(I) will denote the restriction of Π
to instances belonging to I. Unless otherwise stated we follow [9] for all our graph-
theoretic notations. Definitions and notations related to (approximation) algorithms
can be found in [14] or the more recent [10].

2 Statement of Results

Figure 1: A 1-dimensional line of sight network (n = 15 and ω = 4). The dashed part
represents Z1

15. The big dark vertices form a maximum independent set.

One dimensional LoS networks (see Figure 1) are very simple objects indeed, for
any ω. It is not difficult to see that the collection of (independent) vertices added
greedily moving left to right is optimal (indeed the algorithm hinted to in the proof of
Theorem 9 below returns such a set when applied to a one dimensional LoS network).
At another extreme of the parameter space when ω ≤ 2 (for any d), the network is
bipartite (Figure 2 describes a small example in three dimensions) and MIS is again
easily solvable. One additional special case admits a polynomial time computable
optimal solution. When d = 2 and ω = n all nodes mapped to the same row (column)
of Z2

n are connected by edges in G. In such case, as observed by Peterson [23], MIS
reduces to the maximum matching problem in a bipartite graph having an edge {x1, x2}
for each point (x1, x2) in Z2

n that belongs to f(V).

3

Figure 2: A small 3-dimensional line of sight network (n = 3 and ω = 2). The dashed
part represent points that are not in f(V).

In higher dimensions (d ≥ 3) or when ω ∈ {3, . . . , n − 1} the problem becomes
more difficult and the overall picture is less clear cut. We prove the following (here IS
is the decision version of MIS).

Theorem 1. IS(Ldω) is NP-complete, for each fixed integer d ≥ 2 and ω ≥ 3.

The proof of Theorem 1 holds even for ω = ω(n) at least if ω = O(n1−ε) for
any fixed ε ∈ (0, 1) (see the argument at the beginning of Section 4). However, it
cannot be extended to cover the case of very large range parameters. A different re-
duction allows us to prove the following stronger result for a particular extreme case
(here GRIDLINEd is the class of all gridline graphs which admit a d-dimensional em-
bedding, and, to avoid trivialities, are d-dimensionally spanning).

Theorem 2. MIS(GRIDLINEd) is APX-hard for each fixed integer d ≥ 3.

Thus, for ω = n, we have a perfect dychotomy: MIS is solvable in polynomial time
for d = 2, while it is APX-hard (and therefore NP-hard a fortiori) for d > 2.

In the final part of the paper we complement these negative results by studying the
performance of various algorithmic strategies. First, we prove the following general
result.

Theorem 3. Let d be a positive integer. There is a polynomial time d-approximation
algorithm for MIS(Ldω) for any positive integer ω.

The result can be obtained by a direct analysis of a greedy algorithm based on a
technique used by Marathe et al. [18] in the context of unit disk graphs. However, in
Section 5, we will argue that in fact the proof of Theorem 3 hinges on two different
structural properties of the LoS networks which may be of independent interest.

For small ranges, a second type of approximation result can also be proved.

Theorem 4. Let d be a positive integer. MIS(Ldω) admits a polynomial time approxi-
mation scheme for any fixed positive integer ω.

4

The algorithm used in Theorem 4 is in fact an efficient polynomial time approxima-
tion scheme (or EPTAS, a la [3]); its running time depends exponentially on the inverse
of the sought approximation ratio as a function of ω, but it is fully polynomial in n, the
size of the given grid, for fixed ω (see details in Section 5.2).

In the light of Theorem 2, unless P=NP, Theorem 4 cannot be extended, for d ≥ 3,
to cover the case ω = n. However, the additional structural constraints on the gridline
graphs enable us to prove the following improved approximation result.

Theorem 5. Let

ρ(d, t) =
d− c/(d− 1)bt/2c

2− c/(d− 1)bt/2c

where c = d− (d−2)(1− (t mod 2)). For each positive integers d and t, with d ≥ 3,
there is a ρ(d, t)-approximation algorithm for MIS which runs in time O(|V (G)|2t+1)
for any G ∈ GRIDLINEd.

For completeness it is worth pointing out that our focus in this paper is on robust al-
gorithms. This concept (introduced by Raghavan and Spinrad [24]) is somehow related
to the possible hardness of the recognition problem for LoS networks. Informally, an
algorithm is robust on a certain graph class C if it works as expected for every G ∈ C
and for every other G either works or correctly certifies that G 6∈ C. Approximation
algorithms beating the results presented here have recently been proposed in [25], but
those crucially exploit the given embedding and therefore are not robust.

3 Hardness for Short Ranges
In this section we prove Theorem 1. Membership in NP is obvious therefore we focus
on the hardness result. For d = 2 (resp. d ≥ 3) we describe explicit embeddings in
Zdn of graphs which are subdivisions of planar graphs with maximum degree at most
4 (resp. of bounded degree graphs). We start by embedding a graph G = (V,E) with
the required degree bound orthogonally in Zdn (see Section 3.1). We then add further
vertices toG to obtain the graphG′ which is a d-dimensionally spanning LoS network.
Once this is done, to complete our NP-hardness proof, we show the existence of a linear
relationship between the size of an independent set in G and the size of an independent
set in the resulting LoS network G′. The result follows as the independent set problem
is NP-hard for both planar graphs of maximum degree four and bounded degree graphs.

3.1 Embeddings
Graph embedding has been an active research area for quite some time (the interested
reader is referred to survey papers like [8, 20] for additional bibliographic details).
Here we will be interested in particular embeddings of bounded degree graphs in Zdn.
Define a path (in Zdn) to be any sequence of distinct points in Zdn such that any two
consecutive points in the sequence have distance equal to one. If P is a path, |P | will
denote its length, the number of points in P minus one. An orthogonal embedding ΓG
of a graph G = (V,E) in Zdn is an embedding where the vertices v ∈ V are mapped to

5

points in Zdn denoted ΓG(v) and the edges {u, v} ∈ E to paths in Zdn with end-points
ΓG(u) and ΓG(v), respectively. Paths representing distinct edges can only intersect at
their end-points. An orthogonal embedding of G in Zdn requires d ≥ d∆(G)/2e (since
otherwise there is not enough directions to route all the edges out of each vertex of
degree ∆(G)) and, for general graphs, the bound is tight except for ∆(G) ≤ 4. In this
work we will use the following two results, dealing with the case d = 2 and d ≥ 3,
respectively.

Theorem 6. [26] Any planar graph G = (V,E) with ∆(G) ≤ 4 and |E| = m admits
an orthogonal embedding in Z2

3m.

Theorem 7. [28] Any simple graph G = (V,E) with ∆(G) ≥ 5 admits an orthogonal
embedding in Zdk|V |, where d = d∆(G)/2e and k is a positive integer constant.

We point out that the embeddings in the theorems above can be constructed in
polynomial time.

3.2 Full Reduction
Recall that we refer to a sequence of distinct points P = x1, . . . ,xk as a path in Zdn
if and only if xi ∈ Zdn and for all i ∈ {1, . . . , k} and dist(xi,xi+1) = 1 for all
i ∈ {1, . . . , k − 1}. We now describe how to transform certain graphs of bounded
degree into LoS networks. In general, edges of the given graph G are independently
processed one at a time. An example of the transformation applied to a single edge
{u, v} of G is described in Figure 3, while Figure 4 sketches a full example of the
construction for d = 2.

(36,19)

(30,12) (33,12)

(36,24)

(36,15)

(36,18)

(36,21)

(12,12) (15,12) (18,12) (21,12) (36,12)(24,12) (27,12) (30,12) (33,12)

(1,1) (2,1) (3,1)

(3,2)

(36,16)

Pu,v P’u,v
(36,24)

(36,15)

(36,21)

(12,12) (15,12) (18,12) (21,12) (36,12)(24,12) (27,12)

Figure 3: On the left we have the orthogonally embedded path Puv , in the middle we
have the stretched path P ′uv obtained by stretching Puv by a factor 4(ω − 1) = 12.
Finally on the right we construct a LoS path from P ′uv by placing an even number of
sensor nodes on P ′uv in accordance with our method.

Depending on d, we use Theorem 6 or Theorem 7 to obtain an orthogonal embed-
ding ΓG of the appropriate bounded degree graph G = (V,E) in Zdk|V |, for some fixed
k. We then obtain another, stretched, orthogonal embedding Γ′G in Zd4(ω−1)·k|V |, by

6

defining Γ′G(u) = 4(ω − 1) · ΓG(u) for each u ∈ V . Notice that we effectively stretch
the length of each path Puv in ΓG by a factor 4(ω−1) to obtain the corresponding path
P ′uv in Γ′G, hence

|P ′uv| = 4(ω − 1) · |Puv|

for every {u, v} ∈ E. For any two points u′ and v′ on a path Puv , we refer to the length
of the sub-path of Puv with the end-points u′ and v′ as the path distance from u′ to v′

on Puv .
Next, we discuss how we place the additional vertices along each path P ′uv ∈ Γ′G

to obtain a LoS network G′ from G. Start by lexicographically ordering the d-tuples
of the vertices Γ′G(u). Suppose without loss of generality that Γ′G(u) < Γ′G(v) in this
ordering. Consider the 4 · |Puv| − 1 internal points on the path P ′uv , if any, whose path
distance to Γ′G(u) on P ′uv are

(ω − 1), 2 · (ω − 1), 3 · (ω − 1), . . . , (4 · |Puv| − 1) · (ω − 1).

Number these internal points 1, 2, . . . , 4 · |Puv| − 1, respectively. We now place 4 ·
|Puv| − 2 additional vertices on each path P ′uv ∈ Γ′G at the internal points numbered
1, 2, . . . , 4 · |Puv| − 3, and 4 · |Puv| − 1 (all numbered internal points apart from 4 ·
|Puv| − 2). Finally, we place two additional vertices at points on P ′uv whose distance
from Γ′G(u) are (4 · |Puv|−3) · (ω−1)+1 and (4 · |Puv|−2) · (ω−1)+1, respectively
(either side of the internal point numbered 4 · |Puv| − 2. This ensures we have added
4 · |Puv| additional vertices to each path P ′uv . Furthermore notice that all bends on P ′uv
are covered by additional vertices as the distance from any bend to Γ′G(v) is a multiple
of 4(ω − 1) and so any such bend must belong to the set of internal points numbered
1, . . . , 4·|Puv|−1. In this set the only point which is not covered by an additional vertex
is the point numbered 4 · |Puv| − 2. Such point has distance 2(ω − 1) from ΓG(v) and
so cannot contain a bend. Finally we ensure that for any vertex in u ∈ V (G) ∩ V (G′)
the two additional vertices in G′ placed either side of u (on different paths), which
share a line of sight, are at a distance at least 2(ω−1), and therefore are not at distance
less than ω, thus avoiding adding any unwanted edge after the placement of the extra
vertices.

3.3 Correctness
Given a graph G = (V,E), let r : E → Z+ be a function defined over G’s edges. Let
G′ be a subdivision of G formed by replacing each edge e = {u, v} in E by the path
u,we1, . . . , w

e
2·r(e), v containing 2 · r(e) new vertices wei all of degree 2. Thus G′ has

the vertex set V ′ = V ∪ (∪e∈EVe) where Ve = {we1, . . . , we2·r(e)} and the edge set
E′ = ∪e∈EEe, where Ee = {{u,we1}, {we1, we2}, . . . , {we2·r(e), v}}.

Lemma 1. Let G = (V,E) be a graph and r : E → Z+ be a function. Then G has
an independent set of size at least k if and only if G′ has an independent set of size at
least k +

∑
e∈E r(e).

Proof. The only if part is easy. An independent set S′ in G′ is good if S′ ∩ V is an
independent set in G and S′ uses half of the vertices on each of the paths in G′. The

7

Figure 4: A 2-dimensionally spanning LoS network G′ constructed from an orthogo-
nal embedding of the planar graph G of maximum degree four with eight vertices (in
white). The vertices added to complete V (G′) are in black.

argument is now split in two cases. If S′ is good then we are done: S′ ∩ V is an
independent set inG of size |S′|−

∑
e∈E r(e). If S′ is not good, then two further cases

arise. If S′ ∩ V is an independent set in G, then it follows from the construction that
its size is |S′| minus the number of path vertices in S′, and this number is clearly at
least |S′| −

∑
e∈E r(e). Finally, if S′ ∩ V is not an independent set in G, some edge

e = {u, v} in E has both its end-points S′ ∩ V . But then rearranging the elements in
S′ belonging to u,we1, . . . , w

e
2r(e), v so that only one of u or v is in the new S′ cannot

reduce the size of the resulting independent set. Thus after this is done for all edges
{u, v} in E that have both u and v in S′ ∩ V , we are left with the case when S′ ∩ V is
independent, which has already been handled.

Note that Lemma 1 holds for any graph, it allows complete freedom in the def-
inition of the mapping r, and it preserves the maximum vertex degree of the given
graph. Therefore we can apply it to the graphs G and G′ in the previous section thus
completing the proof of Theorem 1.

4 APX-hardness for Gridline Graphs
The careful reader will realize that the proof of Theorem 1 goes through even when
ω is not a fixed constant, but depends on n, when working with embeddings in Zdn.
However when, say, ω > n/ log n, the size of the cube used to embed G′ satisfies

n > k ω |V | > k
n

log n
|V |

for some fixed constant k only depending on d, assuming G′ is obtained from G =
(V,E) via the reduction described in Section 3. But this implies that n > ek|V |. In

8

other words G′ is embedded in a cube that is exponentially bigger than G, and it is
not obvious whether the reduction can be carried out in polynomial time. While we
are not able to extend Theorem 1 to all values of ω, in this section we show that a
different hardness proof works when ω = n showing that, in fact, MIS(GRIDLINEd)
is also hard to approximate. Let MAX 3SC-d denote the following optimization prob-
lem: given a collection C of subsets of size three of a set X , with each element of X
belonging to at most d elements of C, find the largest number of disjoint subsets in C.
The problem has been shown to be MAX SNP-complete for any (fixed) constant d ≥ 3
[17]. Theorem 2 will follow once we prove that there is an approximation preserving
reduction from MAX 3SC-d to MIS(GRIDLINEd). We will use the following notion
of reducibility.

Definition 1. Let Π1 and Π2 be two optimisation problems and kΠ1 and kΠ2 their
corresponding cost functions. There exists an L-reduction from Π1 to Π2 (denoted
Π1 ≤L Π2) if there exist two polynomial time computable functions g and h and two
constants α1 and α2 such that

1. If I is an instance of problem Π1 then g(I) is an instance of problem Π2.

2. If S is a solution to g(I) then h(S) is a solution to I .

3. optΠ1
(g(I)) ≤ α1 · optΠ2

(I).

4. |optΠ1
(I)−kΠ1

(h(S))| ≤ α2|optΠ1
(g(I))−kΠ2

(S)| for every solution S to
g(I).

In this section we prove the following

Theorem 8. MAX 3SC-d ≤L MIS(GRIDLINEd) for each fixed integer d ≥ 3.

To simplify the presentation the proof is split in two parts. In the first one (Section
4.1) we reduce MAX 3SC-d to MIS in graphs of bounded degree d + 1. In fact we
obtain a family of reductions parameterized by a certain path length parameter t. Then
we prove that, for a particular value of t, the graphs resulting from such reduction are
in fact elements of GRIDLINEd. This is done in two steps. In Section 4.2 we describe
our main technical tools while in Section 4.3 these are applied to the appropriate graphs
and the description of the embedding and its correctness is completed.

4.1 Reinventing the Wheel: APX-hardness of MIS in Bounded De-
gree Graphs

The outcome of this section is an alternative proof that MIS is APX-hard on bounded
degree graphs. The original proof [22], involved an approximation preserving reduc-
tion from a bounded version of MAX 3SAT (the definition of this classical optimization
problem can be found in standard textbooks like [12, 14]). The particular feature of our
construction is that we obtain a family of L-reductions parameterized by a certain pa-
rameter t, a positive integer. Choosing t in a particular way will complete the proof of
Theorem 8.

9

Figure 5: The graph GI corresponding to an instance I where X = {V,W,X ,Y,Z}
and C = {{V,W,X}, {V,W,Y}, {V,Y,Z}}. Here d might be any fixed value
greater than two and t = 5.

Each instance I of MAX 3SC-d is a triple formed by d, a set X , and a collection
C = {c1, . . . , cr} of three element subsets of X such that each X ∈ X is contained in
occ(X) ≤ d elements of C. We construct the graphGI as follows. For each X ∈ X ,G
contains the clique on occ(X) vertices, denoted Kocc(X)(X) (cliques corresponding to
distinct elements ofX are vertex disjoint). The elements ofC will become paths inGI .
Assume the elements of X are ordered arbitrarily. For each set c = {X ,Y,Z} ∈ C
assume, without loss of generality, that X < Y < Z . The graph GI contains the
path, denoted Pc, of even length which contains a vertex u ∈ Kocc(X)(X), a vertex
v ∈ Kocc(Y)(Y), and a vertex w ∈ Kocc(Z)(Z). Vertex u (resp. v) is then connected
to v (resp. w) by a path of length 2t. We refer to u, v, and w as the base vertices of Pc.
Distinct elements of C get associated with distinct triples of base vertices and vertex
disjoint paths. This complete the definition of the function g in Definition 1. Figure 5
shows a small example for d = 3 and t = 5.

Next we show that, given any independent set S in GI , we can construct a cover of
C. The elements of C correspond to paths in GI . We say that S covers Pc for some
c ∈ C if the three base vertices of Pc belong to S. It is easy to see that any independent
set of GI can be converted in polynomial time in a (possibly larger) independent set S′

such that for any Pc, either S′ covers Pc or it contains none of the three base vertices
(we call good such independent sets). Define CS ⊆ C to be the collection of those
elements of C corresponding to paths that are covered by S′.

Consider now an optimal cover of C. Then we can construct an independent set in
GI of size (2t + 1)opt(I) + 2t(|C| − opt(I)) and thus opt(GI) ≥ opt(I) + 2t|C|.
Conversely, any maximum independent set Smax in GI must be good. Thus we can

10

Figure 6: A largest independent set in GI . The path contributing 2t+ 1 = 11 vertices
corresponds to the cover {V,W,X} in I .

define a cover CSmax that satisfies:

opt(GI) = (2t+ 1)|CSmax
|+ 2t(|C| − |CSmax

|) = |CSmax
|+ 2t|C|.

Hence
|CSmax

| = opt(GI)− 2t|C| ≤ opt(I)

and we have therefore proved

opt(I) = opt(GI)− 2t|C|. (1)

This equality can be used to complete the reduction. Since each element X ∈ X ap-
pears in at most d sets, it follows that opt(I) ≥ |C|3d . By substituting this into equation
(1), we obtain

opt(GI) ≤ (6dt+ 1) · opt(I).

Finally, given an instance I of MAX 3SC-d, our reduction defines GI , and for each
independent set S in such graph a cover CS in I . Because of (1) we have

opt(I)− |CS | = opt(GI)− 2t|C| − |CS | ≤ opt(GI)− |S|

as CS is always derived from a good independent set whose size is at least |S|. Thus
we have verified the fourth condition in Definition 1, with α2 = 1, and the proof is
complete.

4.2 Embedding Cliques and Paths
So far we have presented a reduction showing the APX-hardness of MIS in graphs
of bounded degree d + 1. Note that the reduction goes through as long as the paths

11

Figure 7: The path P = p0, p1, p2, p3, p4, p5, p6 embedded using the path rotation with
initial d-tuple (1, 1, 1, 1, 1) assigned to p0, list L = [2, 2, 2, 2, 2], and k = 2. The
updated lists are also displayed.

connecting the cliques are of even length. In the rest of this section we assume that
d > 2, 2t = 3d + d mod 2 and we prove that for each instance I = (d,X,C) of
MAX 3SC-d, GI belongs to GRIDLINEd. Note that each GI is the union of |X|
cliques and |C| paths. Thus, to complete our argument, we need a systematic way
to embed cliques and paths in a sufficiently large d-dimensional cube. Embedding
cliques is straightforward. Namely, let CLIQUE EMBED(b,x) denote the embedding
of a copy of Kb, with b ≤ d, in a d-dimensional cube starting at point x. Specifically,
if x = (x1, . . . , xd), the clique is embedded to points

(x1, . . . , xd), (x1 + 1, . . . , xd), . . . , (x1 + b− 1, . . . , xd).

Paths are a bit more complicated. However, their particular length plays an impor-
tant role. In what follows, if u is a vertex in a given LoS network, let f(u)i denote
the ith coordinate value of an embedding function f(u). Given two vertices u and v
which are embedded in Zdn, if f(u) and f(v) share a line of sight, let ⊕(u, v) denote
the co-ordinate position 1 ≤ i ≤ d such that f(u)i 6= f(v)i.

Path Rotation. The path rotation embedding works for an arbitrary finite path P =
p0, p1, p2, . . . and assigns a d-dimensional point to each vertex of P sequentially, start-
ing from a point x which is initially set to be f(p0). The embedding uses a d element
tuple of positive integers (with L[i] 6= xi for every i), and an integer k. The algorithm
return an embedding of P . The structure L is accessed by reference. This implies that
any change to L during the execution of ROTATION EMBED is permanent (this will be
used further down when we will discuss embedding paths with pre-specified milestone
points). Figure 7 gives an example of a short path and its rotation embedding. The idea
is that P is embedded, starting from p0, by iteratively defining f(pl) from f(pl−1) so
that for each l, f(pl) and f(pl−1) share a line of sight but, say, f(pl+1) and f(pl−1) do
not, as their coordinates differ in two positions. The structure L is used to make sure
that the embedding (at least for the types of paths used in our reduction) is injective.
Algorithm 1 formally describes the embedding process.

Path Connection. The second embedding algorithm is used to deal with paths of
length d. Figure 8 gives an example. The process takes four parameters: the given path
P , two points x and y used to embed the path’s two end-points, and a permutation σ
of (1, . . . , d). Starting from p0 and its image x, the algorithm defines the embedding

12

Algorithm 1 ROTATION EMBED(P,L, k,x, d)

1: set f(p0) = x
2: for l = 1, . . . , |P | do
3: f(pl) = f(pl−1)
4: f(pl)(l+k) mod d = L[(l + k) mod d]
5: L[(l + k) mod d] = L[(l + k) mod d] + 1
6: end for

Figure 8: The path P = p0, p1, p2, p3, p4 embedded using the path connection
method with initial d-tuples (1, 1, 1, 1) and (2, 2, 2, 2) assigned to p0 and p4, and
σ = (1, 2, 3)(4)

of vertex pl by changing the position of f(pl−1) from the value in x to that in y. The
permutation σ is used to decide which position to change. In our application of this
method we will impose restrictions on σ. Note that the points used in a call of the form
CONNECTION EMBED(P,x,y, σ, d) all belong to a cube of size equal to max |xi−yi|
and only involve co-ordinate values belonging either to x or y. Algorithm 2 formally
describes the embedding process.

Algorithm 2 CONNECTION EMBED(P,x,y, σ, d)

1: set f(p0) = x and f(pd) = y
2: for l = 1, . . . , d− 1 do
3: f(pl) = f(pl−1)
4: f(pl)σ(l) = yσ(l)

5: end for

Embedding Paths With Prescribed Milestones. When constructing the appropriate
embedding, we do not have complete freedom associating integer tuples to vertices, in
particular, the embedding must touch certain specific points. When the length of the
path is at most d, path connection is sufficient to enforce such condition, but in general
we need to use a method that combines rotations and connections.

Assume that we need to embed a long path P , and that the start and end vertices
must have prescribed images x and y, respectively. We can then pick an index s and

13

embed P ′ = p0, . . . , ps and then P ′′ = p|P |, . . . , ps+d using path rotation (we use
a single list L but, in general, two distinct values for the parameter k in the rotation
process). This will define f(ps) and f(ps+d). Clearly these are two points in a d-
dimensional cube, therefore at most d flips of the coordinates of f(ps) are sufficient
to change that to f(ps+d). Therefore we can complete the embedding of P using
path connection to deal with P ′′′ = ps, . . . , ps+d. We emphasize that when selecting
the permutation σ in the final part of the embedding, σ must be chosen so that σ(1) 6=
⊕(ps−1, ps) and σ(d) 6= ⊕(ps+d, ps+d+1). This is to avoid adding any unwanted edges
between the pairs of vertices ps−1 and ps+1, and ps+d−1 and ps+d+1, respectively. The
resulting process, which we call LONG EMBED, is formally described by Algorithm 3.
As already mentioned, notice that, in general, the content of the list L resulting after the
execution of ROTATION EMBED on line 1 may be different from that at the beginning
of the process.

Algorithm 3 LONG EMBED(P, s, L, k,x,y, σ, d)

1: ROTATION EMBED(P ′, L, k,x, d)
2: ROTATION EMBED(P ′′, L, k,y, d)
3: CONNECTION EMBED(P ′′′, f(ps), f(ps+d), σ, d)

It is easy to verify that in all embeddings presented so far, vertices u and v are
adjacent in the given path P if and only if their embedding share a line of sight.

4.3 Overall Embedding
The main result of this section is the following:

Lemma 2. Let d ≥ 3 be a (fixed) integer. Given an instance I = (d,X,C) of MAX
3SC-d, the graph GI defined according to the reduction described in Section 4.1 for
2t = 3d + d mod 2 is a LoS network with parameters d, N , and ω = N , where
N ≤ |X| · d+ 10 · |C|.

Proof. Given an instance I = (d,X,C) of MAX 3SC-d, we embedGI by first looking
at its cliques Kocc(X)(X), and then at the paths Pc for all c ∈ C. Embedding the
cliques is quite straightforward. For the jth clique we use a sub-cube1 isomorphic to
Zdd, starting from

xj = ((j − 1)d+ 1, . . . , (j − 1)d+ 1).

Figure 9 gives an example.
Embedding the paths is slightly more involved. We can use rotations and connec-

tions, but we need to be careful. Note that for each c ∈ C, the path Pc has length
3d+d mod 2 > d, thus the path connection method on its own does not suffice. Also,
each Pc involves three distinct base vertices, therefore we cannot use the path rotation
method as it is as that would make it hard to control the embedding of the base ver-
tices. However, we can rely on a combination of the two. Assume that the elements of

1In fact the embedding aligns the images of the vertices of the clique on a single 1-dimensional line.

14

Figure 9: An embedding of the vertices of the cliques in the graph GI , corresponding
to an instance I of MAX 3SC-3.

C are ordered arbitrarily. We embed, one after the other, all paths Pc1 , Pc2 , . . . in the
following manner. For each j ∈ {1, . . . , |C|}, let

Pcj =

P ′cj︷ ︸︸ ︷
u, p1

j , . . . , p
3d−1+d mod 2
j , v, p1

j , . . . , p
3d−1+d mod 2
j , w︸ ︷︷ ︸
P ′′cj

.

Path Pcj is embedded using lists L2j−1, L2j through:

LONG EMBED(P ′cj , d+ d mod 2, L2j−1, 0,x,y, σ, d)

and then

LONG EMBED(P ′′cj , d+ d mod 2, L2j , 1,y, z, σ
′, d)

where x, y, and z are the images of the three base vertices of Pc, permutations σ and
σ′ are chosen as described at the end of Section 4.2 to avoid unwanted edges, and the
jth list Lj is set to

[|X|d+ 5j − 4, . . . , |X|d+ 5j − 4]

for each j ∈ {1, . . . , 2|C|}. Figure 10 shows a small example.
To argue that the overall embedding works note that, if N is at least |X|d, the dis-

tinct cliques are embedded to disjoint parts of ZdN . Also, the lists Lj are well separated
in the sense that, for every j, the largest value in Lj after a call to LONG EMBED in-
volving Lj is smaller than the smallest value in Lj+1. This implies that, if N is at least
|X|d + 10|C|, the embeddings of the paths Pc (each involving four path rotation and
two path connection embeddings), for different values of c, span disjont parts of ZdN .
To be more specific, given Pc and Pc′ for c 6= c′ ∈ C, the paths’ base vertices are
all distinct, and they are all mapped to distinct points. Furthermore, it is easy to see

15

Figure 10: An embedding of the path with base vertices (1, 1, 1), (4, 4, 4) and (7, 7, 7)
for the graphGI in Figure 5, 6, and 9. Let P ′ denote the path between vertices (1, 1, 1)
and (4, 4, 4) and P ′′ denote the path between vertices (4, 4, 4) and (7, 7, 7). The yellow
vertices on each path correspond to the initial path rotation embedding on P ′ and P ′′,
respectively, the blue vertices correspond to the next path rotation embedding, and fi-
nally, the red vertices are those whose image is defined via the path connection embed-
ding. Vertices surrounded by a red square are assigned an image first by path rotation,
then by path connection. As |X| = 5, we use L1 = [16, 16, 16] and L2 = [21, 21, 21].

that any pair of intermediate vertices p and p′ (one in Pc, the other in Pc′) excluding,
for now, those adjacent to the base vertices, must be mapped to points that differ in at
least two positions from any base vertex and, because of the well separatedness of the
lists used to embed Pc and Pc′ , the images of p and p′ cannot share a line of sight. Fi-
nally, we mention that some care is necessary, when embedding Pc, with base vertices
u ∈ Kocc(X)(X), v ∈ Kocc(Y)(Y) and w ∈ Kocc(Z)(Z) as this may create unwanted
edges between vertices on a path and any (other) vertex in Kocc(X)(X), Kocc(Y)(Y),
or Kocc(Z)(Z). Parameters k, σ and σ′ in the calls to LONG EMBED prevent such
patological cases.

5 Approximation Algorithms
The results described so far show that in many cases MIS is not likely to be solved
efficiently even if we know that the input graph is in fact a LoS network. In this section
we further exploit the computational properties of MIS in LoS networks by focusing
on a number of algorithmic results. We first show that LoS networks belong to classes
of graphs that generalise chordal graphs. Theorem 3 can then be seen as a special
case of a more general result valid for graphs in these classes. The hardness proofs
of Section 3 and 4 will then be complemented by two additional algorithmic results.
First, we propose a polynomial time approximation scheme that works for fixed ω.
This will prove Theorem 4. Then we describe a local improvement strategy that beats
the approximation guarantee of Theorem 3 for the extreme case ω = n. This will lead
to the proof of Theorem 5.

16

5.1 Clique Neighbourhoods in LoS Networks
Kammer et al. [16] proposed a few classes of graphs that generalise chordal graphs, and
argued about the existence of good approximation algorithms for a few problems that
admit exact polynomial time computable solutions on chordal graphs, when restricted
to instances in these new classes. We introduce two of the complexity parameters
studied by these authors, and prove that different types of LoS networks belong to
the classes of graphs defined by these parameters. As a consequence we will obtain
constant factor approximations results promised in Section 2.

Definition 2. A graph G is k-perfectly groupable if the neighbors of each vertex v can
be partitioned into k sets S1, . . . , Sk (possibly empty) such thatG[Sh∪{v}] is a clique
for each h ∈ {1, . . . , k}.

For example, unit disk graphs are 6-perfectly groupable while graphs of maximum
degree k are k-perfectly groupable.

Definition 3. A graph G is k-simplicial if there is an ordering vj1 , . . . , vj|V (G)| of the
vertices of G such that for each vertex vjl , 1 ≤ l ≤ |V (G)|, the set of neighbors of vjl
among vjl+1

, . . . , vj|V (G)| can be partitioned into k sets S1, . . . , Sk (possibly empty)
such that G[Sh ∪ {vjl}] is a clique for each h ∈ {1, . . . , k}. Each neighbour of vjl
among vjl+1

, . . . , vj|V (G)| is called a successor of vjl , and the aforementioned ordering
of the vertices in G is called a k-simplicial elimination order.

Note that all k-perfectly groupable graphs are also k-simplicial (any ordering of the
vertices is a k-simplicial elimination ordering) while the opposite implication is false:
the n vertex tree with n − 1 leaves is 1-simplicial but NOT k-perfectly groupable for
any k < n− 1. The following is the general algorithmic result that implies Theorem 3
and 5.

Theorem 9. [1] MIS is k-approximable on k-simplicial graphs.

As we pointed out in the introduction, the proof of Theorem 9 is based on a simple
greedy strategy that had been successfully applied in the context of unit disk graphs
(Algorithm 4 describes such strategy for the problem at hand). The merit of Kammer,
and other people who have studied the parameters above (see [1, 16, 27]) was to real-
ize that the same algorithm had much more general applicability: the resulting greedy
process peels off the vertices of the given graph G following some k-simplicial elim-
ination ordering. A recursive process ensures that a feasible solution can be retrieved
as the vertices are then put back into the graph in reverse order.

To complete our argument, we will now prove two results that characterize LoS
networks with respect to the two parameters above. For any vertex u ∈ G, let f(u) =
x = (x1, . . . , xd). Also, for each i ∈ {1, . . . , d} let Ni(u) denote the subset of
neighbours v of u whose d-tuples share an i-line (i.e. those vertices v for which
f(v) = (x1, . . . , xi−1, y

v, xi+1, ldots, xd), for some yv). Also, let

N−i (u) = Ni(u) ∩ {v | yv < xi},

N+
i (u) = Ni(u) ∩ {v | yv > xi}.

17

Algorithm 4 GREEDY IS WITH NO EMBEDDING(G, k)

1: Initialise S to be the empty set
2: while V (G) 6= ∅ do
3: select u ∈ V (G) such that α(G[N(u)]) ≤ k
4: add u to S
5: remove u ∪N(u) from G
6: end while

Lemma 3. Let d, n and ω be positive integers with 1 ≤ ω ≤ n. Any graph G ∈ Ldn,ω
is 2d-perfectly groupable (resp. d-perfectly groupable) if ω < n (resp. ω = n).

Proof. If ω = n, the vertices in Ni(u) ∪ {u} all share a line of sight and there is an
edge connecting any two elements of the set. Thus G[{u} ∪Ni(u)] forms a clique for
each i ∈ {1, . . . , d}. For ω < n, for each vertex u, we consider the 2d sets N−i (u) and
N+
i (u), and a similar argument shows that G is 2d-perfectly groupable.

Taking into account Theorem 9, Lemma 3 implies Theorem 3 for ω = n. When
ω < n we need to work a bit harder: the graphs considered may not be d-perfectly
groupable as pairs of elements in a set Ni(u) for some u ∈ V (G) might be at distance
2(ω − 1). However, it is possible to define a d-simplicial elimation ordering in these
graphs and Theorem 9 applies with k = d. In what follows a corner in a LoS network
G is a vertex u such that Ni(u) = N−i (u) or N+

i (u), for each i ∈ {1, . . . , d}.

Lemma 4. Let d, n and ω be positive integers with 1 ≤ ω ≤ n. Any graph G ∈ Ldn,ω
is d-simplicial.

Proof. The result follows from Lemma 3 for ω = n. Here we present an argument that
is valid for every ω.

Let G be a LoS network with parameters d, n, and ω < n. If the points of Zdn
are ordered lexicographically, the extrema (i.e. maximal or minimal elements) of such
ordering that are images of elements of V (G) define corner vertices. We claim that
any sequence vj1 , . . . , vj|V (G)| in which vjl is a corner vertex for each l defines a d-
simplicial elimination ordering. Indeed, if vjl is a corner vertex, then Ni(vjl), for each
l is a clique, for each i ∈ {1, . . . , d}.

Robustness. Note that all algorithmic results in this Section are robust, in the sense
of the definition discussed in Section 2. Algorithm 4 does not require any knowledge
of the embedding of the input graph. Lemma 3 and 4 imply that Algorithm 4 works
corrrectly on any LoS network.

5.2 An Efficient Polynomial Time Approximation Scheme
In this section we describe an algorithm, which we call PTAS IS, that accepts as input
any d-dimensional LoS network G = (V,E) with the (constant) range parameter ω
and a parameter ε > 0, and returns an independent set in G of size at least α(G)/(1 +
ε). The algorithm does not rely on a geometric representation, it accepts any graph

18

as an input-instance. However, the statements concerning the running time depend
on the assumption that the graph is a LoS network. The proposed algorithm mimics
an approximation scheme [21] used to approximate MIS in unit disk graphs. The
algorithm in this section however (see Theorem 10 below) has a running time that, for
any fixed ω, is linear in the number of vertices of the input graph (although the constant
hidden in the big-Oh notation depends exponentially on ε−1). Algorithms of this type
have been referred to as efficient polynomial time approximation schemes [3].

PTAS IS works in iterations, by assembling an independent set as the union of
partial solutions from disjoint portions of G. Namely, let r be a non-negative in-
teger. For any u ∈ V (G), we denote by Nr[u] the so called r-th closed neigh-
bourhood of u, the set of vertices at (graph) distance at most r from u. Note that
N0[u] = u, and in general Nr[u] contains all vertices whose embedding lays within
distance r(ω − 1) from the embedding of u. Starting from an arbitrary u ∈ V (G),
the algorithm computes (by complete enumeration) a maximum independent set Sr in
each of G[N0[u]], G[N1[u]], G[N2[u]], . . . as long as

|Sr+1| ≥ (1 + ε)|Sr|. (2)

Let r̄ denote the smallest positive value of r that violates this constraint. Once the
algorithm reaches r̄, it stops, adds Sr̄ to the independent set that is being built and then
starts a new iteration that will work on G′ = G \N r̄+1[u]. The process terminates as
soon as G′ becomes empty.

Correctness. The set Sr̄ is an independent set of G[N r̄[u]]. To achieve an indepen-
dent set for the graph G, the basic process described above is iteratively applied to
the graph G′ = G \ N r̄+1[u]. The correctness of the overall process follows from an
inductive proof based on the following statement.

Claim 1. Suppose inductively that we can compute an independent set S′ ⊂ V \
N r̄+1[u] for G′ of size at least α(G′)/(1 + ε)s. Then S = Sr̄ ∪ S′ is an independent
set for G that satisfies:

α(G)

|S|
≤ 1 + ε.

Proof. Since each v ∈ V \N r̄+1[u] has no neighbour in N r̂[u] it follows that S is an
independent set in G as required. Furthermore, by the definition of r̄, it follows that

|Sr̄+1| ≤ (1 + ε) · |Sr̄|.

In other words
α(G[N r̄+1[u]]) ≤ (1 + ε) · |Sr̄|.

The result follows then from the assumption on |S′| and by the sub-additivity of α(G):

α(G) ≤ α(G[N r̄+1[u]]) + α(G[V \N r̄+1[u]])

≤ (1 + ε) · |Sr̄|+ (1 + ε) · |S′|
= (1 + ε) · |S|.

19

Time Complexity. To complete the proof of Theorem 4 one needs to bound the run-
ning time of the algorithm. The main statement of this part is the following theorem.

Theorem 10. Let d, and ω be fixed positive integer constants, let n be a positive integer,
and let ε be an arbitrary positive real number. There is a function Td(ω, ε) such that the
running time of algorithm PTAS IS when applied to a LoS network G with parameters
d, n and ω, is bounded by Td(ω, ε) · |V (G)|.

Algorithm PTAS IS runs for at most |V (G)| iterations. During each iteration, the
process computes (by brute force enumeration) r̄+1 optimal independent sets in small
subsets of V (G). The next two results provide the additional details needed to define
Td(ω, ε).

Lemma 5. Let d, and ω be fixed positive integer constants, let n and r be positive
integers, and ε and arbitrary positive real number. Define

bd(ω, r) = (2r(ω − 1) + 1)d−1

⌈
2r(ω − 1) + 1

ω

⌉
.

Let G be a LoS network with parameters d, n and ω. For any u ∈ V (G), a maximum
cardinality independent set in Nr[u] can be found in time (2r(ω − 1) + 1)d·bd(ω,r).

Proof. It follows from the definition of Nr[u] that the smallest portion of Zdn that is
guaranteed to contain Nr[u] is the ball

Br(u) = {y | dist∞(y, f(u)) ≤ r(ω − 1)}

(here dist∞(x,y) = max |xi − yi|). For each j ∈ {1, . . . , d} at most⌈
2r(ω − 1) + 1

ω

⌉
independent vertices inBr(u) can share a j-line and, in d dimensions, there is (2r(ω−
1) + 1)d−1 such lines in Br(u). Hence, a crude upper bound on |Sr| is

bd(ω, r) = (2r(ω − 1) + 1)d−1

⌈
2r(ω − 1) + 1

ω

⌉
.

Therefore, the time needed to find a maximum independent set in Nr[u] is at most

bd(ω,r)∑
i=1

(
(2r(ω − 1) + 1)d

i

)

Finally, we look at the length of each iteration. It follows from (2), the definition
of r̄, and the fact that |S0| = 1 that for each r < r̄,

|Sr| ≥ (1 + ε)r. (3)

20

Furthermore, as we have seen in the proof of Lemma 5.

|Sr| ≤ (2r(ω − 1) + 1)d−1

⌈
2r(ω − 1) + 1

ω

⌉
(4)

Equations (3) and (4) along with the definition of r̄ imply that r̄ is bounded by the
smallest integer r∗ satisfying

(2r(ω − 1) + 1)d−1

⌈
2r(ω − 1) + 1

ω

⌉
< (1 + ε)r. (5)

Lemma 6. The integer r∗ defined above satisfies:

r∗ ≤ ω ·
(

2d(2d− 1)!

(ε− ε2/2)2d−1

) 1
d−1

.

Proof. Equation (5) is satisfied if

ωd−1(2r)d < (1 + ε)r.

Using the Taylor expansion of the exponential function we can write

(1 + ε)r = er log(1+ε) =

∞∑
k=0

(r log(1 + ε))k

k!
>

(r log(1 + ε))t

t!

for any t ≥ 0. Thus equation (5) is satisfied if

ωd−1(2r)d <
(r log(1 + ε))t

t!
.

Note that, if ε ≥ 2, choosing t = 2d − 1, and performing simple rearrangements we
get that (5) is satisfied if

r >

(
2dωd−1(2d− 1)!

(log 3)2d−1

) 1
d−1

= ω ·
(

2d(2d− 1)!

(log 3)2d−1

) 1
d−1

.

On the other hand, for any ε ∈ (0, 2),

log(1 + ε) > ε− ε2/2 > 0.

Thus, if t = 2d− 1, equation (5) is satisfied if

r > ω ·
(

2d(2d− 1)!

(ε− ε2/2)2d−1

) 1
d−1

and the result follows.

21

Robustness. Observe that neither the description of PTAS IS at the beginning of the
section nor the subsequent correctness argument use any properties of the embedding
of the given LoS network. The algorithm thus always returns a (1 + ε)-approximate
independent set, in any graph G. However, the running time analysis hinges on the
fact that the size of the independent sets computed in each iteration is polynomially
bounded in r. For a general graph, the running time may thus not be polynomial. So,
during the execution of the algorithm, if an independent set of size greater than⌈

2r(ω − 1) + 1

ω

⌉
can be found, this set is returned as certificate of non-membership in the given class of
LoS networks.

5.3 An Improved Approximation Algorithm
In this section we describe an improved approximation strategy for MIS which works
for any d-perfectly groupable graph. This improves the result stated in [16] and allow
us to prove Theorem 5. Consider the following algorithm:

Algorithm 5 BETTER IS(G, t)

1: set S′ to be any element of V (G) and S to be the empty set
2: while S 6= S′ do
3: replace the content of S with that of S′

4: set S′ to the result of IMPROVE(G,S, t)
5: end while

where IMPROVE(G,S, t) is defined as follows:

IMPROVE(G,S, t):
1: for p = 1 to t do
2: for each set U with p elements in S do
3: for each set W with p+ 1 elements in V (G) \ S do
4: set S′ to (S \ U) ∪W
5: if S′ is an independent set then
6: return S′
7: end if
8: end for
9: end for

10: end for
11: return S

Observe that the larger values of the parameter t lead to better solutions at the price of a
significant increase in the algorithm running time (each iteration of IMPROVE(G,S, t)
runs in timeO(|V (G)|2t)). The algorithm main computation loop (implemented by the

22

function IMPROVE(G,S, t)) attempts to increase the size of the current independent set
S by swapping p-tuples of elements in the set with (p+ 1)-tuples of “new” nodes. The
process stops, in less than |V (G)| iterations, if no improvement involving at most t+ 1
vertices has been found. The following general result can be used to argue about the
approximation ratio of BETTER IS.

Theorem 11. [15] Let E1, . . . , Em be subsets of a set T of n elements. Assume that:

1. Each element of T is contained in at most k ≥ 3 of the sets E1, . . . , Em;

2. For any p ≤ t, any p sets among E1, . . . , Em cover at least p elements of T .

Then:

m

n
≤ k(k − 1)r − k

2(k − 1)r − k
if t = 2r − 1,

m

n
≤ k(k − 1)r − 2

2(k − 1)r − 2
if t = 2r.

In our application V plays the role of T and k = d. Next, if U = {u1, . . . , uα(G)}
is a maximum independent set in G, we define Ei = {v ∈ S : {v, ui} ∈ E(G)} for
each i ∈ {1, . . . , α(G)}. Finally, note that ondition 2in Theorem 11 is satisfied by
construction when the algorithm terminates. This proves the following Theorem Note
that the result is valid for any d-perfectly groupable graph, but the statement below
suffices for our purposes.

Theorem 12. Let t be a positive integer, and d ≥ 3 be an integer. LetG ∈ GRIDLINEd

and let S be the independent set returned by BETTER IS(G, t). Then

α(G)

|S|
≤ d− c/(d− 1)bt/2c

2− c/(d− 1)bt/2c

where c = d− (d− 2)(1− (t mod 2)).

Robustness. Note that the result works for any d-perfectly groupable graph (as per
Definition 2) and it does not use the LoS network geometry.

6 Conclusion
This paper studies the worst-case complexity of the MIS problem in LoS networks with
parameters d, n and ω. We show that the problem is NP-hard in many cases, and even
difficult to approximate when the range parameter ω is maximized. We also describe
some positive algorithmic results. Perhaps the most interesting questions left open by
our work concerns the complexity of MIS on LoS networks with ω = n− 1. We know
that MIS can be solved in polynomial time for gridline graphs (i.e. when ω = n) in
two dimensions, but MIS could be NP-hard for d = 2 when ω = n− 1. For d > 2, we
know that MIS is APX-hard for gridline graphs and yet it could admit a PTAS when
ω = n− 1.

23

Acknowledgement. The authors are endebted to the anonymous reviewers for read-
ing the paper and providing numerous comments that have helped improving greately
the quality of the presentation.

References
[1] K. Akcoglu, J. Aspnes, B. DasGupta, and M.-Y. Kaos. Opportunity cost algo-

rithms for combinatorial auctions. Computational Methods in Decision-Making,
Economics and Finance, 74:455–479, 2002.

[2] B. Bollobás, S. Janson, and O. Riordan. Line-of-sight percolation. Combina-
torics, Probability and Computing, 18(1-2):83–106, 2009.

[3] M. Cesati and L. Trevisan. On the efficiency of polynomial time approximation
schemes. Information Processing Letters, 64(4):165–171, 1997.

[4] S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke. Stochastic geometry and its
applications. John Wiley & Sons, 2013.

[5] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete
mathematics, 86(1-3):165–177, 1990.

[6] A. Czumaj and X. Wang. Communication problems in random line-of-sight ad-
hoc radio networks. In International Symposium on Stochastic Algorithms, pages
70–81. Springer, 2007.

[7] L. Devroye and L. Farczadi Connectivity for line-of-sight networks in higher
dimensions. Discrete Mathematics & Theoretical Computer Science, 15(2):71–
86, 2013.

[8] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for draw-
ing graphs: an annotated bibliography. Computational Geometry, 4(5):235–282,
1994.

[9] R. Diestel. Graph theory. Springer, 2000.

[10] D.-Z. Du, K.-I Ko, and X. Hu Design and Analysis of Approximation Algorithms
Springer, 2012.

[11] A. Frieze, J. Kleinberg, R. Ravi, and W. Debany. Line-of-sight networks. Com-
binatorics, Probability and Computing, 18(1-2):145–163, 2009.

[12] M. R. Garey and D. S. Johnson. Computers and intractability: A Guide to the
Theory of NP-completeness, 1979.

[13] J. Håstad. Clique is hard to approximate within n1−ε. Acta Mathematica,
182(1):105–142, 1999.

[14] D. Hochbaum (ed.) Approximation Algorithms for NP-Hard Problems PWS,
1997

24

[15] C. A. J. Hurkens and A. Schrijver. On the size of systems of sets every t of which
have an sdr, with an application to the worst-case ratio of heuristics for packing
problems. SIAM Journal on Discrete Mathematics, 2(1):68–72, 1989.

[16] F. Kammer and T. Tholey. Approximation algorithms for intersection graphs.
Algorithmica, 68:312–336, 2014.

[17] V. Kann. Maximum Bounded 3-Dimensional Matching is MAX SNP-complete
Information Processing Letters, 37:27–35, 1991.

[18] M. V. Marathe, H. Breu, H. B. Hunt, S. S. Ravi, and D. J. Rosenkrantz. Simple
Heuristics for Unit Disk Graphs Networks, 25:59–68, 1995.

[19] M. Milanič, P. Muršič, and M. Mydlarz. Induced embeddings into hamming
graphs. In K. G. Larsen, H. L. Bodlaender, and J.-F. Raskin, editors, 42nd
International Symposium on Mathematical Foundations of Computer Science
(MFCS 2017), Leibniz International Proceedings in Informatics, pages 28:1–
28:15. Dagstuhl Publishing, Germany, 2017.

[20] B. Mohar and C. Thomassen. Graphs on surfaces, volume 2. John Hopkins
University Press, 2001.

[21] T. Nieberg, J. Hurink, and W. Kern. A robust ptas for maximum weight inde-
pendent sets in unit disk graphs. In J. Hromkoviš, M. Nagl, and B. Westfech-
tel, editors, Graph Theoretic Concepts in Computer Science; 30th International
Workshop, WG 2004, volume 3353 of Lecture Notes in Computer Science, pages
214–221. Springer-Verlag, 2004.

[22] C. H. Papadimitriou and M. Yannakakis Optimization, Approximation and Com-
plexity Classes Journal of Computer and System Sciences, 43:425–440, 1991.

[23] D. Peterson. Gridline graphs: a review in two dimensions and an extension to
higher dimensions. Discrete applied mathematics, 126(2):223–239, 2003.

[24] V. Raghavan and J. Spinrad. Robust algorithms for restricted domains. In Pro-
ceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms,
pages 460-467. Society for Industrial and Applied Mathematics, 2001.

[25] P. Sangha, P. W. H. Wong, and M. Zito Dynamic Programming Optimization in
Line of Sight Networks. ArXiV preprint arXiv:1806.01581, submitted for
journal publication (June 2018).

[26] L. G. Valiant. Universality considerations in vlsi circuits. IEEE Transactions on
Computers, 100(2):135–140, 1981.

[27] Y. Ye and A. Borodin. Elimation graphs. In S. Albers, A. Marchetti-Spaccamela,
Y. Matias, S. Nikoletseas, and W. Thomas, editors, Automata, Languages and
Programming: 36th International Colloquium, ICALP 2009, volume 5555 of
Lecture Notes in Computer Science, pages 774–785. Springer Verlag, 2009.

25

[28] D. R. Wood. On higher-dimensional orthogonal graph drawing. In Proc. Com-
puting: the Australasian Theory Symp.(CATS’97), volume 19, pages 3–8, 1996.

26

