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Pancreatic Ductal Adenocarcinoma (PDAC) is becoming a global health crisis.  In the 

Western countries death rates are stable or decreasing for most forms of cancer, largely 

due to advances in treatment. However, for PDAC increasing incidence more than 

compensates for any tiny improvement in survival and so despite accounting for less 

than 5% of all newly diagnosed cancers, PDAC has grown to become the 4th largest 

cancer killer(Siegel, Miller, & Jemal, 2015) and by 2030 is projected to become the 

2nd(Rahib et al., 2014). The worldwide incidence of pancreatic cancer is projected to be 

around 420,000 by 2020 with an associated mortality of 410,000(Ferlay et al., 2015). 

 

The most favourable prognosis is associated with early PDAC where chemotherapy 

with gemcitabine plus capecitabine following surgical resection of the primary tumour 

giving a 5-year survival of 28%(Neoptolemos et al., 2018). FOLFIRONOX (oxaliplatin, 

irinotecan, leucovorin, and 5FU) has also shown to be superior to gemcitabine alone in 

the adjuvant setting though 5-year survival data is not yet available(Conroy et al., 

2018). However, either because early PDAC is largely asymptomatic or because PDAC 

metastasises rapidly less than 20% of patients are suitable for surgical resection of their 

tumour at the time of diagnosis(Hackert, Schneider, & Büchler, 2015). For advanced 

disease gemcitabine has been shown to be slightly superiority to 5FU (Burris et al., 

1997). For patients with a high performance indicator FOLFIRONOX (oxaliplatin, 

irinotecan, leucovorin, and 5FU) has been shown to be superior to gemcitabine in 

patients with advanced disease (Conroy et al., 2011). Targeting cell division using 

albumin-bound paclitaxel (nab-paclitaxel) combined with gemcitabine gives modest 

improvement in overall survival (OS) (Von Hoff et al., 2013). Presentation at an 

advanced stage, and treatment resistance are two major factors contributing to the poor 

5-year survival of PDAC.  Screening individuals at high risk of PDAC addresses the 

former, and targeted therapy the latter. 

 

1.1 Screening in PDAC 
The only chance of a cure is with surgical resection. Resectability criteria are largely 

determined on the basis of vascular involvement and outlined in the European Society 

of Medical Oncology (ESMO) guidelines(Ducreux et al., 2015). Identifying PDAC 

earlier in the natural history is therefore an essential strategy for improving outcomes. In 

this context screening is a process of selecting asymptomatic individuals, who are at 
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increased risk of PDAC for further tests with the aim of improving outcome for the 

individual(Wald, 2008). Risk factors for PDAC include smoking, diabetes mellitus, 

obesity and chronic pancreatitis (Coughlin, Calle, Patel, & Thun, 2000; Larsson et al., 

2005; Malka, 2002; Michaud, 2004; Muscat, Steilman, & Wynder, n.d.). Up to 10% of 

PDAC have a hereditary component including in Familial Pancreatic Cancer (FPC), 

Hereditary Pancreatitis (HP) and other cancer syndromes such as Peutz-Jeghers (PJS), 

familial multiple mole melanoma (FAMMM) and breast ovarian cancer 

syndrome(Canto et al., 2013; Greenhalf et al., 2009; Hahn et al., 2003; Lj, Greenhalf et 

al., 2005; Miln et al., 2009; Vitoneet al., 2006). International consensus recommends 

screening only for specific groups with a genetic predisposition to PDAC calculated to 

have a >5% lifetime risk(Canto et al., 2013). 

PDAC arises through well-defined precursor lesions which offer an opportunity for 

earlier diagnosis. Intraductal papillary mucinous neoplasms (IPMN) and mucinous 

cystic neoplasm (MCN) are both macroscopic cystic lesions >0.5cm visible by standard 

imaging: computed tomography (CT), magnetic resonance imaging (MRI) and 

endoscopic ultrasound (EUS) and can therefore be identified in asymptomatic 

individuals. IPMN lesions are classified into three morphological types main duct 

(MD), branch duct (BD) and mixed(Tanaka et al., 2012). There is wide reported 

variation in the risk of malignant transformation of the three types but MD-IPMN 

represents the largest risk; surgical resection is recommended, if both clinically 

appropriate and high risk stigma of malignancy are present(Jang et al., 2017). 

Conversely, the annual rate of progression to high grade dysplasia or invasive cancer 

from BD-IPMN lesions is much lower between estimated between 1.4-6.9%(Jang et al., 

2017). In addition, the risk of malignancy associated with BD-IPMN has recently been 

shown by the EUROPAC group to be independent of the genetic risk, i.e. individuals 

with a higher inherited risk of PDAC are not at higher risk of developing BD-IPMN. As 

such the EUROPAC study does not support the inclusion of non-malignant pancreatic 

cystic lesions including BD-IPMN as positive findings on screening individuals from 

FPC families(Sheel et al., 2018). 

 

MCN lesions are defined by the presence of ovarian stroma and have a relatively low, 

but still significant incidence of invasive carcinoma (<15%). Given the relatively young 

age of most of the patients surgical resection is generally recommended in surgically fit 

patients(Tanaka et al., 2012) 
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Pancreatic intraepithelial neoplasia (PanIN), the most common and well characterised 

precursor lesion is classified into four groups microscopicaly: PanIN-1A, PanIN-1B, 

PanIN-2, and PanIN-3 according to the degree of atypia (R. Hruban et al., 2001). 

Evidence of a PanIN to PDAC progression includes increasing prevalence of PanIN 

with age(de Wilde, Hruban, Maitra, & Offerhaus, 2011), cancer incidence(Cubilla & 

Fitzgerald, 1976), physical proximity of  PanIN to PDAC in resected pancreata(Andea, 

Sarkar, & Adsay, n.d.; Furukawa et al., 1994) and the presence of all PanIN stages prior 

to tumour formation in genetically engineered mouse models of PDAC(Hingorani et al., 

2003; Perez-Mancera, Guerra, Barbacid, & Tuveson, 2012). In addition, the four 

mutation ‘mountains’ of PDAC: the near ubiquitous point mutation in the KRAS 

oncogene and inactivating mutations of three tumour suppressor genes TP53, SMAD4, 

and CDKN2A are all found in PanIN lesions Figure 1-1. KRAS is an early event found 

in PanIN1 lesions(Lüttges et al., 1999) followed by CDKN2A(Mosaluk, Hruban, & 

Kern, 1997; Wilentz et al., 1998). SMAD4 and TP53 are late events occurring in 

PanIN-3 lesions with high risk of progression to PDAC(Wilentz et al., 2006) Figure 1-1

 
Figure 1-1 PanIN to PDAC progression model 

PDAC initiation

KRAS TP53

PanIN-1a and 1b PanIN-2 PanIN-3 PADC

Adapted from Nat Rev Cancer © 2010 Nature Publishing Group

10 Years

p16INK4a
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Computational modelling based on the evolution of mutations detected by whole exome 

sequencing of PDAC estimates the time from the initial founder mutation 

(corresponding to PanIN-1) to PDAC development is 12 years, with an additional 7 

years before the development of metastasis(Campbell et al., 2010; S Yachida & 

Iacobuzio-Donahue, 2013; Shinichi Yachida et al., 2011) potentially offering a 19-year 

window to achieve curative resection if the genetic markers can be identified; although 

this may be a considerable overestimate, it does support the view that there is a 

considerable window of opportunity to detect PDAC in asymptomatic individuals. 

PDAC therefore meets several of the screening principles (Wilson & Jungner, 1968); it 

is an important health problem, has an adequately understood progression from latent 

phase to disease, with an accepted treatment more effective earlier in the natural history. 

There also exists an agreed policy on who to screen. However, the requirement for a 

suitable and acceptable test has arguably not yet been achieved and the further work, 

described in chapter one is sorely needed. 

The European Registry of Hereditary Pancreatitis and Familial Pancreatic Cancer 

(EUROPAC) is an on-going research study exploring the potential of various screening 

modalities including the molecular analysis of pancreatic juice in patients with FPC, HP 

and other cancer syndromes since 1999 (Grocock et al., 2007; Lj et al., 2005)(Yan et al., 

2005). The screening protocol includes serum tests for Ca19.9, and regular imaging of 

the pancreas with CT, MRI and EUS to identify macroscopic precursor lesions: IPMN 

and MCNs. In addition, molecular analysis of pancreatic juice to detect the genetic 

changes in the latent period before PDAC develops is also performed by EUROPAC 

and other groups. The simplest method of obtaining pure pancreatic juice is by 

endoscopic retrograde cholangiopancreatography (ERCP) and direct cannulation of the 

main pancreatic duct but this causes an unacceptably high rate of post-ERCP acute 

pancreatitis (PEP)(Freeman ML, DiSario JA, Nelson DB, 2001). The use of prophylaxis 

to reduce the risk of PEP and improve the clinical utility of pancreatic juice as a 

biospecimen has been examined by the EUROPAC group and found to be reasonably 

effective in doing so(Nicholson et al., 2015). In this paper there were 13 (16.3%) cases 

of post-ERCP acute pancreatitis (PEP) all of which occurred in the FPC cohort (23.2%). 

On 21st November 2008 the use of prophylaxis (self-expelling 5F plastic pancreatic 

stents and rectal diclofenac) was introduced in an attempt to reduce the rate of PEP. 

Prior to 21st November 2008 the incidence of PEP in the FPC group was 7/34 (21%) 

which subsequently fell to 6/40 (15%) following the introduction of prophylaxis 
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p=0.0347. Overall analysis of the 56 ERCP procedures performed in the FPC group 

showed that the omission of prophylaxis was the only significant association with PEP 

p=0.0347. Prophylaxis measures were not used in patients in the HP cohort as the risk 

of PEP was low (no events) in this study. However, the risk of PEP even with 

prophylaxis was deemed still too high to justify routine screening in clinical practice. 

The risk of PEP may be avoided altogether if the pancreatic juice sample is collected 

from the duodenum and cannulation of the main pancreatic duct is avoided. This 

method employs the use of a synthetic gut hormone Secretin, which is administered 

intravenously and stimulates the production and secretion of pancreatic juice. The 

stimulated juice is then collected within the duodenum, avoiding pancreatic duct 

cannulation and hence the associated risk of pancreatitis. However, sampling juice from 

the duodenum introduces variables such as contamination with gut flora, mixing with 

duodenal derived deoxyribonucleic acid (DNA) (and dilution with alimentary tract 

fluid, which may interfere with the downstream analysis and reduce the sensitivity and 

specificity for PDAC). The Secretin Stimulated Endoscopic Collection of Duodenal 

Aspirate for Analysis of Molecular Markers for the Early Detection of Pancreatic 

Cancer study (SSECRETIN) investigated the diagnostic value of pancreatic juice 

collected in this manner. The study initially evaluated the supernatant and pellet of 

pancreatic juice.  During the course of the study, the collection of whole pancreatic juice 

for this purpose was reported (M. Kanda et al., 2012; Mitsuro Kanda, Sadakari, et al., 

2013). A minor amendment to the SSECRETIN study protocol was made permitting 

collection of whole pancreatic juice in addition to the pellet and supernatant in order to 

make a direct comparison and maximize the potential of this biospecimen. The study 

recruited patients with a clinical and/or radiological diagnosis of pancreatic/biliary 

cancer or benign diseas who are undergoing ERCP for a clinical indication, such as 

histological sampling, stent insertion or bile duct stone removal. 

 

1.2 Targeted therapy 
In addition to improved screening and earlier diagnosis, improving response to 

chemotherapy and overcoming resistance is vital. The targeted therapy revolution, in 

which newly discovered signalling networks found to be altered in cancer cells are 

specifically targeted by small molecules (Hanahan & Weinberg, 2011)(Chabner & 

Roberts, 2005) has improved survival in many cancer types, but not PDAC. For 
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example, bevacizumab (a recombinant humanized anti- Vascular Endothelial Growth 

Factor (VEGF) monoclonal antibody) gave improved overall survival (OS) in phase III 

trials in advanced colorectal(Hurwitz et al., 2004) non-small cell lung(Sandler A, Gray 

R, Perry MC, 2006), renal cell(Escudier et al., 2007), and breast cancer(Miller et al., 

2007). Despite strong pancreas specific pre-clinical evidence(Bockhorn et al., 2003) and 

an encouraging phase II study(Hedy L Kindler et al., 2005) no improvement in OS was 

seen in a phase III study in advanced PDAC(H. L. Kindler et al., 2010). Unfortunately 

bevacizumab is just one example of many targeted therapies which follow this 

pattern(Bramhall et al., 2002; Gonçalves et al., 2012; Hedy L Kindler et al., 2011; 

Philip et al., 2010; Rougier et al., 2013; Van Cutsem, 2004). The problem is that all the 

targeted agents described above might be effective against PDAC in some patients, 

none of them is effective for the majority of patients and this means it is difficult to 

establish efficacy in a clinical trial. The genetic heterogeneity of PDAC responsible for 

these failures are discussed later. 

 

Current approaches to capitalise on advances in genomic medicine to improve outcomes 

in PDAC include Precision-Panc; a collection of phase two studies under the umbrella 

of Pancreatic cancer Individualised Multi-arm Umbrella Studies (PRIMUS)(UK, 2019). 

PRIMUS 001 is a phase two study comparing two chemotherapy regimens FOLFOX 

and nab-paclitaxel versus gemcitabine and nab-paclitaxel in patients with advanced 

PDAC focusing on in-depth molecular profiling and biomarker discovery. PRIMUS-2 

examines two neo-adjuvant regimes FOLFOX with nab-paclitaxel and gemcitabine with 

nab-paclitxel in resectable and borderline resectable PDAC focusing on biomarker and 

liquid biopsy development and opened at it’s first site in Glasgow, UK in March 2019. 

The end date of recruitment is expected to be September 2022. 

 

1.3 Genetic heterogeneity in PDAC 
The International Cancer Genome Consortium (ICGC) set up large-scale cancer genome 

studies to generate a comprehensive catalogue of somatic mutations from a variety of 

cancer types including PDAC(Hudson et al., 2010). The studies re-confirmed the 

importance of the mountain mutations in PDAC; TP53, KRAS, CDKN2A and SMAD4 

(Biankin et al., 2012; Nones et al., 2014; Waddell et al., 2015) but also promisingly in 

30% of patients many actionable mutations were discovered including: ERBB2 (HER2) 
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targeted by the monoclonal antibody trastuzumab(Slamon et al., 1987) focal 

amplification involving CDK4/6 targeted by palbociclib(Franco., et al 2014), PIK3CA 

mutations modulated by inhibitors of the mTOR pathway(Asano et al., 2005; Bondar et 

al., 2002; Bruns et al., 2004; Ito et al., 2006) MET mutations targeted by 

tivantinib(Perez-Ramirez et al., 2015) and finally mutations in the FGFR1 gene targeted 

with ponatinib(Gozgit et al., 2012). Despite this encouraging discovery, all these 

actionable mutations were identified at low individual prevalence (1-2% of 

patients)(Waddell et al., 2015). Such low frequency actionable mutations have 

significant implications for biospecimen interrogation in terms of sampling error. In 

addition, the marked heterogeneity has another consequence which promotes resistance 

to chemotherapy through clonal evolution. 

 

1.4 Clonal Evolution 
The traditional view of cancer has been that tumorigenesis is caused by the successive 

accumulation of a handful of mutations in oncogenes and tumour suppressor 

genes(Hanahan & Weinberg, 2000; Vogelstein & Kinzler, 2004). By re-considering 

cancer as inherently an evolutionary process, the development of chemotherapy 

resistance can be better understood(Greaves & Maley, 2012a)(Hanahan & Weinberg, 

2011). In the evolution model the accumulation of a few mutations in key genes results 

in genomic instability which contribute to the formation of multiple clonal 

subpopulations with distinct molecular profiles and therefore distinct sensitivities to 

chemotherapies. These have been confirmed by sequencing from multiple topographical 

sites within the same primary(Gerlinger et al., 2012; Martinez et al., 2013; Sottoriva et 

al., 2013). Linear evolution maintains that sub-clones in the primary are formed before 

cancer dissemination and simply enriched in metastasis based on selective 

pressure(Shinichi Yachida et al., 2011). In this scenario all mutations in the metastasis 

would be present in the primary tumour, so called ‘trunk’ mutations. During 

chemotherapy massive tumour cell death of sensitive clones occurs, but resistant sub-

clones of cancer cells remain: a clonal sweep(Beerenwinkel et al., 2007). These 

subclones no longer need to compete for the resources of the local microenvironment 

and rapidly multiply emerging as tumour recurrence, with a new, distinct, molecular 

profile. Support for the evolution model is  seen by observing the degree of initial 

primary genetic heterogeneity is an essential determinant of progression to cancer in 
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pre-malignant cells (Maley et al., 2006), to the development of  metastasis(Fidler, 2003; 

Greaves & Maley, 2012a; Gupta & Massagué, 2006) and the acquisition of treatment  

resistance(Korolev, Xavier, & Gore, 2014).  

Branched evolution implies that additional driver mutations (branch mutations) develop 

after the cancer dissemination; with significant implications for personalised therapy 

based on primary tumour analysis. This is supported by sequencing studies of multiple 

metastatic sites in PDAC demonstrating in 7/10 patients branch mutations were found 

exclusively in the metastasis(Campbell et al., 2010). The discrepancy between primary 

and metastasis was considerable with one patient having 8 genetic rearrangements in all 

metastatic sites not present in the primary inferring one of these at least is a driver 

mutation(Campbell et al., 2010).  

Personalised therapy based on any actionable mutations found in the primary will be 

futile in this scenario, where the driver of tumorigenesis has long been replaced. 

Theoretically, the latest dominant sub-clone harbouring the new branch mutation which 

is now driving tumourigenesis can be re-characterised and targeted with a different 

agent to which it is sensitive. However, there is currently no way of tracking the disease 

and its molecular profile in this way after successive clonal sweeps. This work focuses 

on developing such a method. 

1.5 Biospecimens in PDAC 
The marked genetic heterogeneity and propensity for branched clonal evolution alone 

place huge demands on a biospecimen for PDAC if personalised therapy is to be 

realised. It must accurately reflect the contemporaneous molecular composition of the 

tumour biology; be adequate for analysis (e.g. offers enough DNA of good enough 

quality for sequencing); and allow minimally invasive serial sampling to track branched 

clonal evolution Figure 1-2 
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Figure 1-2 Branched evolution in PDAC and various biospecimens. Incisional 

biopsy samples have only a fraction of primary tumour heterogeneity. Low 

frequency subclones (blue) enriched in metastasis, such that excisional biopsy is 

unrepresentative. 

1.5.1. Incisional biopsy 
In breast, colorectal and ovarian cancer the majority of patients undergo surgical 

resection, but in PDAC, patients undergoing resection are in the minority at 

17%(Speelman, Gestel, Rutten, & Hingh, 2015). As a result, in the majority of cases 

molecular profiling of primary PDAC is reliant on incisional rather than excisional 

biopsies. The pancreas however, occupies a retroperitoneal position, in close proximity 

to major vascular structures such that endoscopic ultrasound-guided fine-needle 

aspiration (EUS-FNA) is usually the sole method of obtaining a tissue diagnosis. The 

aspirate is often of limited or no cellularity and inadequate for diagnosis let alone Next 

Generation Sequencing (NGS)(Yadav, Li, Lavery, Yadav, & Tewari, 2015). Whilst 

successful NGS on pancreas FNA has been reported and in fact shown good 

concordance with paired formalin fixed paraffin embedded (FFPE) samples from the 

primary tumour, this approach has not been widely replicated(Young et al., 2013). 

However, this problem has been somewhat mitigated by modifications to sampling 

method. Fine needle biopsy (FNB) involves multiple non-parallel passes through the 

tumour using a fork shaped needle. Recent studies have shown that EUS-FNB can now 

obtain sufficient tissue for targeted NGS in pancreatic adenocarcinoma in over 70% of 
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cases(Elhanafi et al., 2018). Indeed currently underway are large scale whole genome 

sequencing projects which using this methodology. 

Core tissue biopsy is the gold standard incisional biopsy and often is a minimum 

requirement for clinical trials enrolment. EUS-guided Tru-Cut biopsies (EUS-TCB) of 

the pancreas was first reported in 2002(Wiersema et al., 2002), however, this is a 

technically difficult procedure and as a consequence improvement in diagnostic 

accuracy (over FNA) proved marginal in early studies(Shah et al., 2008) and EUS-TCB 

has not yet been adopted into routine clinical practice(Fuccio & Larghi, 2014). 

Regardless of feasibility, incisional biopsies are inherently limited in heterogeneous 

cancers only sampling a fraction of the most dominant sub-clones within the 

primary(Gerlinger et al., 2012), which in any case become irrelevant once branched 

evolution begins Figure 1-2. 

1.5.2. Excisional biopsy 
Excisional biopsies (resection) of the primary tumour fare little better not least because 

they are limited to only the 17% of patients undergoing resection(Speelman et al., 

2015). FFPE sections from tumour excision biopsy are by far the most commonly used 

material in routine diagnostic laboratories due to difficulties in collection and storage of 

fresh or fresh-frozen samples. The formalin fixation process however, damages DNA 

through a number of mechanisms including fragmentation and cross-linking to 

proteins(Auerbach, Moutschen-Dahmen, & Moutschen, 1977). It is fortunate that the 

fragmented nucleic acids typically extracted from FFPE specimens are ideally suited, in 

length at least, to NGS platforms which are restricted to reading short length nucleic 

acids sequences also of around 200-225 base pairs(Shaw, Bullock, & Greenhalf, 2016). 

Despite the DNA damage accrued during the fixation process, studies have shown 

comparable sequencing quality with FFPE derived DNA compared to the gold standard 

of fresh or fresh-frozen samples(Shaw, Bullock and Greenhalf, 2016)(Spencer et al., 

2013). A more significant problem of using FFPE for NGS is the tumour cellularity of 

the sample. Large scale sequencing studies using conventional approaches requires at 

least 80% tumour cellularity(Yadav et al., 2015). Dense desmoplastic stroma is a 

universal feature in PDAC which dilutes the mean tumour cellularity to between 38-

44%(Mahadevan & Von Hoff, 2007). To some extent this can be overcome by coring 

out areas of high tumour cell content(Weng et al., 2010), either on the basis of gross 

histology(Wagle et al., 2012) or using histological guided laser capture 
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microscopy(Shen et al., 2014), but this is operator dependant and adds time to the 

workflow which may threaten clinical utility. These difficulties are illustrated in the 

Individualised Molecular Pancreatic Cancer Therapy (IMPaCT) study, the only trial to 

date investigating personalised therapy in PDAC(Chantrill et al., 2015). Low frequency 

sub-clones in the PDAC primary have an apparent tendency to be enriched in metastatic 

lesions(Campbell et al., 2010; Yachida et al., 2011), this perhaps reflects the greater 

metastatic potential of relatively slow growing cancer stem cells(Nies et al., 2014) but 

more importantly questions the rationale of directing therapy according to primary 

tumour sequencing in PDAC. Most concerning, and the potential death knell for use of 

solid tumour as a biospecimen in PDAC,  is the demonstration that branched evolution 

produces driver mutations which are the most appropriate targets of therapy (Burrell et 

al.,, 2013; Maley et al., 2012b; Gupta et al., 2006)after cancer dissemination and 

therefore cannot be identified in the primary(Campbell et al., 2010). Despite these 

concerns sequencing of the primary tumour from FFPE is a useful exercise. It is not yet 

established that genomic information from CTCs can inform personalised therapy to 

improve outcomes in PDAC. Until this time, simultaneous sequencing of CTCs and 

FFPE primary tumour will be a useful correlation to direct future research efforts. 

Therefore, in this thesis, NGS of some primary tumour FFPE and CTCs is performed. 

1.5.3. Circulating tumour cells 
Given the limitations of solid tumour biospecimens, the use of blood as a biospecimen 

is highly attractive. Circulating tumour cells (CTCs) are cells shed from the primary 

tumour and found circulating in the vasculature, a sub-population of which may be 

capable of seeding distant metastasis(Gupta & Massagué, 2006). The dominant method 

for identification is the CellSearch™ system (Veridex) and because of this CTCs have 

come to be defined as cells isolated from blood with an intact nucleus, which stain 

positive for cytokeratin, epithelial cell adhesion molecule (EpCAM) and are negative 

for CD45(Andreopoulou et al., 2012). It has been over 10 years since CellSearchTM, the 

only FDA approved CTC technology, first demonstrated the prognostic significance of 

CTC enumeration in metastatic breast cancer(Cristofanilli et al., 2004) and this has 

since been confirmed for lung(Hou et al., 2009), prostate(Stott et al., 2010) and 

colorectal cancer(Cohen et al., 2009). Studies have yet to demonstrate that CellSearch™ 

can improve survival by guiding treatment decision making. The phase III SWOG 

S0500 trial failed to improve survival using enumeration as a method of determining 
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chemotherapy efficacy in advanced breast cancer(Smerage et al., 2014). The DETECT 

study currently underway aims to determine whether treatment intervention guided by 

the HER2 status of CTCs in HER negative metastatic breast cancer patients (determined 

by primary tumour assessment) is superior to physician assessment(Schramm et al., 

2015). 

CellSearch™ relies on the expression of EpCAM and detects far fewer CTCs in PDAC 

than other cancers(Allard et al., 2005).  EpCAM+ve CTCs are only found in 5% (4/75) 

of locally advanced PDAC (Bidard et al., 2013), 40% (21/53)(Khoja et al., 2012) and 

42% (11/26)(Khoja et al., 2012) in mixed early and advanced cohorts and 48% (23/48) 

in advanced PDAC (Dotan et al., 2016). With its propensity for early haematogenous 

metastasis CTCs should be more abundant and more easily identified in PDAC than in 

other cancer types.  Unfortunately, the converse is true; indeed, there is an inverse 

relationship between five-year survival in different types of cancer and EpCAM-based 

CTC recovery rates Figure 1-3 

 
Figure 1-3 Correlation between mean number of EpCAM +ve CTCs and 5-year 

survival of cancer type. *(Quaresma, Coleman, & Rachet, 2015) based on 2005-

2006 data, **(Allard et al., 2005) mean number of CTCs in metastatic cancer using 

CellSearch system 
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1.6 Epithelial mesenchymal transition (EMT) 
The paradox described in the last section may be explained by epithelial mesenchymal 

transition (EMT): a process that makes tumour cells both prone to metastasise and 

evade EpCAM dependent detection. EMT plays an essential role in physiological 

processes such as embryology and tissue repair but is also implicated in the rapid 

formation of primary tumours(Mani et al., 2008)(Castellanos, Merchant, & 

Nagathihalli, 2013) metastasis(von Burstin et al., 2009), acquisition of therapeutic 

resistance(Arumugam et al., 2009) and poor survival(Yamada et al., 2013) associated 

with PDAC. In this process cells shed their epithelial antigens including EpCAM and 

cytokeratin (CK) and acquire mesenchymal markers such as COL5A2, EGFR, MSN, 

PDGFRB and Twist(Gorges et al., 2012). In mice the shedding of EpCAM from cancer 

cell lines injected intravenously occurs within 4 hours(Gorges et al., 2012) perhaps by 

cleavage of the extracellular EpCAM domain (the intracellular domain translocates to 

the nuclease and drives cell proliferation) upon endothelial cell contact(Denzel et al., 

2009). A degree of phenotypic plasticity has been observed whereby cells may 

transition between epithelial and mesenchymal state with CTCs existing in both 

forms(Armstrong et al., 2011) with a purely mesenchymal phenotype predominating in 

the metastatic stages(Wu et al., 2015). This transient nature suggests that a reversible 

epigenetic mechanism rather than permanent genetic change is at play(Raimondi, 

Nicolazzo, Gradilone, Molecolare, & Università, 2015).  

The most widely used CTC enrichment systems including CellSearch™, Adna 

Test(Demel et al., 2004), Magnetic Activated Cell Sorting System (MACS®)(Griwatz, 

Brandt, Assmann, & Zänker, 1995) and microfluidic technologies(Nagrath et al., 2011) 

all require cell surface expression of EpCAM for CTC capture and are therefore largely 

redundant in PDAC. Gorges et al, have advocated the use of new mesenchymal cell 

surface markers currently being pursued by Adna(Kasimir-Bauer, Hoffmann, 

Wallwiener, Kimmig, & Fehm, 2012), CellSearch™(Kasimir-Bauer et al., 2012) and 

CanPatrol CTC(Wu et al., 2015). However, positive selection with surface markers 

requires a priori identification rendering it vulnerable to missing CTC sub-populations 

without said cell surface markers(Satelli et al., 2014). 

The only approach to overcome this is to adopt a method of CTC selection which avoids 

the fickle cell-surface markers completely. The genomic signature of the cancer cells 

are now well characterised in PDAC(Biankin et al., 2012; Campbell et al., 2010; 

Waddell et al., 2015) and can be used to both to distinguish CTCs from wild type cells 
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and potentially to guide therapy on the basis of actionable mutations. The main barrier 

to this approach is dilution of CTC genomic signal with wild type DNA from the vast 

excesses of nucleated white blood cells in the vasculature and a negative selection step, 

a means of removing white blood cells from a blood sample, is required. 

1.7 CTC Enrichment 

1.7.1. Negative selection 
Whole blood is composed of red blood cells (RBC), white blood cells (WBC) and 

platelets suspended in plasma. Neither RBC nor platelets contain a nuclei or DNA and 

so will not contribute to the dilution of mutant DNA signal from CTCs. In health, there 

are between 4-11 million nuclei containing white blood cells per mL of whole 

blood(McKenzie SB, 1996) which vastly outnumber the 1-10 CTCs per mL which are 

typically quantified by EpCAM based technologies in cancer patients(Allard et al., 

2005). The aim of a negative depletion is to reduce the WBC:CTC ratio from 6 

logarithms, down to a level at which the CTC mutant signal can be detected; this will 

depend on the sensitivity of the detection instrument. The cluster of differentiation (CD) 

classification defines cells according to the molecules on their surface. CD45 is a  

receptor-linked protein tyrosine phosphate that is expressed, albeit in different isoforms 

on all nucleated WBC. CD45 has an extracellular domain of 400-550 amino acids(Altin 

& Sloan, 1997). The principle of negative depletion using magnetic antibodies involves 

the covalent coupling of anti-CD45 antibodies to streptavidin-coated magnetic beads, 

followed by mixing with whole blood to bind CD45 expressing WBC and finally 

extraction of WBC-bead complex from the sample with a magnetic field. 

Rosette SepTM is an example of a non-magnetic negative depletion CTC enrichment 

which uses tetrameric antibody complexes against a variety of CD markers present on 

WBC at one end and glycophorin A on RBC at the other. The increased density of the 

bound cell complex (rosette) permits separation when centrifuged over a density 

gradient. The rossettes sediment with the RBC and the CTCs are negatively enriched in 

the CD45 negative mononuclear layer(Naume et al., 2004).  

1.7.2. Selection by physical characteristics of CTCs 
Other methods to enrich CTCs independent of EpCAM markers are by exploiting 

differences in size between WBC and CTCs. Solid tumour cell lines are generally 
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between 11.7µm and 23.8µm(Harouaka, Nisic, & Zheng, 2013) and even larger 

epithelial CTCs ranging from 29.8 to 33.9µm have been observed in metastatic breast 

cancer(Meng et al., 2004). WBC are generally smaller between 6.2-9.4µm(Harouaka et 

al., 2013). The CellSieveTM CTC isolation kit, (Creatv MicroTech, Canada) uses a 7µm 

filter pores in a micro filter created by the photolithographic fabrication method (D. 

Adams et al., 2015) trapping the CTCs. Caution should be exercised as CTCs from 

clinical samples may be smaller than those of cancer cell lines and the heterogeneity of 

cell surface markers is also likely to extend to cell size. To date this method has only 

been assessed with respect to cell line spiking experiments(D. L. Adams et al., 2014). 

CTCs are believed to derive from two sources, firstly, via passive shedding directly 

from the primary tumour directly into the blood stream. These are likely to be large 

epithelial CTCs expressing EpCAM and fairly easily captured with size-based methods 

described above due to their greater diameter compared to WBCs. However their 

clinical significance is doubtful, not least because they will be too large to traverse the 

capillary bed (typically around 10 micrometers in diameter) and seed distant 

metastasis(Brabletz, Kalluri, Nieto, & Weinberg, 2018)(Nagrath, Jack, Sahai, & 

Simeone, 2016). Secondly, CTCs may derive by acquiring specific characteristics via 

the process of epithelial-mesenchymal transition (EMT)(Brabletz et al., 2018) discussed 

further in section 1.6. There is now mounting evidence that tumour cells acquiring the 

mesenchymal phenotype is an essential step in tumourigenic process(Brabletz et al., 

2018). The smaller size of mesenchymal CTCs may enable them to pass through the 

capillary bed to seed distant metastasis(Brabletz et al., 2018) yet will escape capture by 

size based CTC enrichment techniques. Studies using sized-based CTC enrichment 

methods should therefore be interpreted with caution(Shibue & Weinberg, 2017). 

The OncoQuik® system exploits the greater buoyancy of CTCs compared to other blood 

components by centrifugation over an optimized liquid separation medium. In 

validation studies with spiked cell lines it performed 100 times better at enriching 

spiked cells than standard Ficoll density gradient centrifugation(Gertler et al., 2003b). 

This method was outperformed by CellSearch™ in a small head to head study with low 

methodology quality(Balic et al., 2005) but CTC detection using this method was linked 

to disease progression in advanced breast cancer(Muller et al., 2005). 
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1.8 Biospecimen preparation 
Regardless of the technical challenges of biospecimen optimisation, for clinical utility 

the institutional workflow must be conducive. Where batch processing of samples is a 

necessity to make the workflow viable, cryopreservation of fresh samples is needed. 

Cryopreservation is a reliable and convenient alternative to the use of fresh whole blood 

allowing optimal viability and functionality of cells and may be valuable when logistics 

require batch processing of samples(Ramachandran et al., 2012). There is a general 

consensus that gradual freezing leads to optimal viability of cells by minimising the 

formation of ice crystals both within and outside cells(Birkeland, 1976). There is less 

literature comparing the thawing conditions of cryopreserved cells with published 

protocols diverging after samples have been thawed in a 37°C water bath. The wash 

medium is added once the last remaining ice crystals are visible in some methods, and 

once thawing is completed in others. There is also wide variation in the temperature of 

washing medium, number of washes and speed at which washing medium is added. The 

optimum variables have been described in a systematic review of published protocols 

(Ramachandran et al., 2012).  

1.9 Approaches to sequencing 

1.9.1. Benchtop next generation sequencing 
Identifying the cancer genome amongst the vast excesses of wild type (WBC) genomes 

is now feasible due to recent advances in sequencing technology. Massively parallel 

next generation sequencing (NGS) sequences millions of DNA templates 

simultaneously in a fraction of the time taken for Sanger sequencing. The two main 

NGS benchtop platforms, Ilumina and Ion Torrent™, both sequence DNA by recording 

the addition of nucleotides during DNA synthesis. Ion Torrent™ differs by monitoring 

pH rather than fluorescence during this process. A broad overview of the Ion Torrent™ 

sequencing platform used in this work is given here. Firstly, a specific known single 

stranded DNA sequence is attached many times to millions of beads, or Ion Sphere™ 

Particles (ISP). A complementary sequence is then used as an adapter and ligated onto 

the single stranded fragments in the library. They are then incorporated such that each 

ISP has its own DNA fragment. Clonal amplification is then performed by emulsion 

Polymerase chain reaction (PCR) for each fragment within the micro droplets, resulting 

in each ISP being covered by millions of copies of the same fragment. The ISPs are then 
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loaded onto the ion 316™ chip which contains 3 million microwells, ideally, one ISP is 

loaded per well. Data from polyclonal (more than one ISP per well) readings is 

discarded and empty wells produce no data. During the sequencing process, the chip, 

and therefore, each well is flooded with one of the four DNA nucleotides. If the 

nucleotide is complimentary to the next base in the fragment, the base is incorporated 

into the sequence by DNA polymerase, releasing a hydrogen ion in the process. When 

the base is not complimentary, no incorporation occurs and no hydrogen ion is released. 

If two (or x) bases are adjacent, twice (or x-fold) the number of hydrogen ions are 

released. Beneath each well is a metal oxide sensing layer overlying a sensing plate and 

floating metal gate that records the change in pH resulting from the hydrogen ion 

release and transmits the electrical signal to the semiconductor. This process occurs in 

parallel for each of the 3 million wells (assuming 100% loading) with a different 

nucleotide washing over the chip every 15 seconds. The error rates in this process are 

approximately 1% but maybe higher in high homopolymer (multiple consecutive 

nucleotides) DNA regions where it cannot distinguish the voltage of x base 

incorporations from x-1 bases incorporations.  

 

1.9.2. Limiting dilution 
When attempting to sequence low frequency variants such as seen in negatively 

depleted enriched CTCs, distinguishing low frequency variant signal from the inherent 

PCR and sequencing error described above becomes problematic. Limiting dilution is a 

method designed to overcome this problem and is used throughout this work, the 

concepts of which are described here. Suppose an enriched sample contains 1 CTC for 

every 100 WBC, the resulting DNA mixture would give a genuine variant frequency of 

1%. If sequenced at 100% concentration, the 1% variant frequency would be 

indistinguishable from artefactual variants also at around 1% frequency. The limiting 

dilution method first dilutes the sample down to 10 genomes per µL and then aliquots 

1µL into 10 separate wells. There are now 100 genomes, given a 1% genuine variant 

frequency, by chance there should be one genuine variant genome in one of the wells. 

All 10 wells are then sequenced. Artefactual variants will be expected across all 10 

wells at the 1% frequency. Nine of the ten wells with only wild type genomes will show 

0% genuine variant frequency; the one well containing the variant genome amongst 9 

other wild type genomes will yield a variant frequency of 10%, referred to as the 
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‘Jackpot’ effect. Thus, by setting a variant threshold at 10% or above a genuine variant 

at 1% may be distinguished from artefacts. This example may be adapted to use 

different number of wells, dilutions and variant thresholds as required. 

1.9.3. NGS structure 
The sequencing capacity of a chip is finite, for example the ion 316™ chip has a 3 

million microwells and each one of these can theoretically sequence a ~200bp DNA 

fragment; a ‘read’ (1/3 redundancy is typical). Whether one DNA fragment is 

sequenced 3 million times, or 3 million different DNA fragments are sequenced once 

can be tailored according to the clinical/scientific need. Other chips available for use on 

the Ion Personal Genome Machine (PGM)™ System include the Ion 318™ chip with 

5.5 million wells and Ion 314™ chip with 0.5 million wells. A larger chip, Ion PI™ 

Chip has 80 million wells but requires the Ion Proton™ sequencing system. The three 

main categories of NGS sequencing are whole genome sequencing (WGS), whole 

exome sequencing (WES), and targeted sequencing.  

WGS and WES permit a hypothesis free approach to somatic variant identification and 

have given valuable exploratory information for PDAC(Biankin et al., 2012; Nones et 

al., 2014; Waddell et al., 2015) and many other cancers. The vast amount of data 

dictates that a shallow depth of <100 reads is achieved and therefore demands a tumour 

cellularity of >70% which is challenging enough for primary PDAC but will not be 

possible with negatively enriched CTCs.  

Targeted sequencing ranges from a single DNA fragment covering a SNP of choice to a 

comprehensive gene panel covering the exons from hundreds of genes. A narrower 

focus will permit a greater depth and therefore greater sensitivity.  Targeting a gene that 

is mutated late in PanIN to PDAC progression has the advantage of improving 

specificity for cancer in analysis of circulating cells. TP53 is ideal for PDAC as it 

occurs late and occurs in up to 70% of PDAC (R. H. Hruban, Goggins, Parsons, & 

Kern, 2000). The vast majority of mutations are found in exons 5-8(Rivlin, Brosh, Oren, 

& Rotter, 2011) allowing an even more focused approach and therefore much greater 

sequencing depth. As a frequent driver mutation TP53 will more than likely maintain its 

presence through clonal sweeps as a trunk mutation(Greaves & Maley, 2012a), but 

despite its frequent presence in the primary, it is susceptible to  being replaced as the 

dominant driver mutation by additional branch mutations(Campbell et al., 2010) thus 

limiting the single gene assay. Personalised therapy will only be possible if a selection 
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of genes which encompass the known heterogeneity of the tumour uncovered in 

WGS/WES studies can be made, preferably all the known actionable mutations. 

Oncology consortiums have recently developed custom gene panels using multiplex 

PCR combined with amplicon-based NGS from as little as 10ng of DNA derived from 

FFPE(Tops et al., 2015). The composition of the gene panels reflects both the frequency 

of mutated genes and oncogenes with potentially actionable mutations. Emphasis 

remains on validating diagnostic tests across multiple clinical laboratories(Dijkstra, 

Tops, Nagtegaal, van Krieken, & Ligtenberg, 2015; Tops et al., 2015), allowing in-

house downstream bioinformatic analysis. For trials such as the National Cancer 

Institute (NCI) MATCH trial, larger custom panels including up to 200 genes are used 

on easily accessible platforms (such as the Ion Torrent PGM)(Redig & Janne, 2015). 

Though these panels are designed for sequencing of the primary tumour, application to 

alternative biospecimens such as enriched CTCs could be considered, and indeed is in 

this work, in PDAC. Expected tumour cellularity maybe as low as between 0.1-1% and 

depths of >500 will be required to differentiate from wild type DNA and inherent 

sequencing error. The downstream analysis for detecting the genomic signature of 

CTCs needs to be sensitive enough to overcome the diluting signal from wild type DNA 

regardless of enrichment type. 

1.9.4. Variant assessment and nomenclature 
In this thesis the human genome version 19 is used as a reference against which variants 

are called. However, this fails to account for individual variation of human genome. 

Variant filters are required to exclude synonymous likely benign variants and those, 

likely germline variants which occur frequently within the general population (minor 

allele frequency < 0.3). However, there still remains a significant number of non-

synonymous variants which are not present to any degree in the general population 

which do not contribute to carcinogenesis. Secondly, the classification of variants as 

either driver or passenger(Stratton, Campbell, & Futreal, 2009) must be attempted as 

therapy directed on the basis of passenger mutations will be futile. Currently, only a 

qualitative assessment of the likelihood of pathogenicity is possible and is performed in 

three areas. Firstly using scores; the Sorting Intolerant from Tolerant (SIFT) score 

which uses sequence homology to predict whether such non-synonymous variants affect 

protein function(J. Zhang et al., 2014). Quality scoring tools such as the P value and its 

logarithmically related Phred quality score estimate the chance of the variant being due 
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to base calling error and hence reduce the number of variants included due to 

sequencing artefact. Secondly, determination of the change in protein effected by the 

variant. Ion Reporter™ software reports this automatically as either REF (sense), 

missense, or nonsense. Finally, cross referencing with the ever expanding variant 

databases such as COSMIC(Bamford et al., 2004) and dbSNP(Sherry, Ward, & 

Sirotkin, 1999). 
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1.10 Aims 
 

1. Develop and optimise a technology to enrich and molecularly characterise CTCs 

in PDAC. 

 

2. Use the technology developed to track the mutational profile of CTCs through a 

patient’s treatment. 
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2 PATIENTS, MATERIALS AND 
METHODS 
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2.1 Pancreatic Juice as a potential source of biospecimen 

2.1.1 Prophylaxis in ERCP and pancreatic juice collection 
UK residents of the EUROPAC registry were invited to take part in the EUROPAC 

screening programme, a study approved by the relevant research ethics committees 

(LREC, AAGPM97199 [1998]; MREC, 07/H1211/96 [2007], Protocol Version 2 

[2008]) and co-sponsored by the University of Liverpool and the Royal Liverpool and 

Broadgreen University National Health Service (NHS) Hospitals Trust. As part of the 

screening protocol, in addition to annual measurements of serum Ca 19-9 and regular 

imaging of the pancreas (computed tomography, magnetic resonance imaging and 

endoscopic ultrasound) patients were offered ERCP and collection of pancreatic juice 

for molecular analysis to stratify PDAC risk. 

Between 6th January 1999 and 1st December 2013, 60 individuals at high risk of PDAC, 

48 from FPC kindreds and 12 from HP kindreds underwent 80 ERCPs and collection of 

pancreatic juice for molecular analysis to stratify their PDAC risk further. This is in 

contrast to a later cohort of patients in the SSECRETIN study who underwent 

pancreatic juice collection using the duodenal aspiration method described later 

avoiding pancreatic duct cannulation.  

 

ERCP was performed by consultant gastroenterologists at the Royal Liverpool and 

Broadgreen NHS Trust. 750 mg ciprofloxacin was given both before and after ERCP to 

minimise infective complications such as acute cholangitis(Raty S, Sand J, Pulkkinen 

M, 2001). Sedation was administered in the form of midazolam (1–5 mg) with hyoscine 

butyl-bromide (20–40 mg) as an antiperistaltic agent and either fentanyl (50–100 μg) or 

pethidine (25–50 mg). Selective cannulation of the pancreatic duct was confirmed by 

radiological screening without contrast followed by administration of 10 IU/kg secretin 

(Sanochemia, Germany) intravenously. After 2 minutes, pancreatic juice was collected 

by gentle aspiration from the pancreatic catheter. Pancreatic juice was analysed for 

TP53 and KRAS2 mutation and quantification of CDKN2a promoter methylation by Dr. 

Li Yan and described in detail in the groups paper(Yan et al., 2005). 

Post-ERCP acute pancreatitis (PEP) was defined as a rise in serum amylase to at least 3 

times (>450 IU/L) the upper limit of normal (150 IU/L) associated with epigastric pain 

within 48 hours of the ERCP procedure. Prophylaxis consisted of a 3-cm 5F self-

expelling stent (Zimmon single pig-tail, no flap; Cook Medical) deployed using a 5F 
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introducer after aspiration of pancreatic juice and diclofenac administered per rectum 

within 30 minutes of the procedure. 

Continuous data are presented as median and interquartile ranges (IQRs); categorical 

data are displayed as tables of counts and associated percentages. Associations of 

factors across patient groups were carried out using a 2-tailed Mann-Whitney U test for 

continuous data and Fisher’s exact test for categorical variables. Risks are presented as 

odds ratio with associated 95% confidence intervals and are obtained from the 

parameters of univariate logistic regression models. 

As EUROPAC research fellow from May 2013 to September 2014 my role in this study 

was to counsel and consent patients in the EUROPAC screening clinic. Following 

recruitment, I was responsible for the clinical supervision of patients undergoing ERCP, 

the injection of secretin, collection and processing (but not molecular analysis) of 

pancreatic juice and post procedure clinical care. I was involved in the collection of data 

for this study, but the primary analysis was performed by my EUROPAC research 

fellow predecessor Mr. James Nicholson. Within the EUROPAC study group it is 

accepted that EUROPAC research fellows work together and ensure their respective 

research interests overlap to a degree to ensure continuity of the project. I worked 

closely with both my EUROPAC processor Mr James Nicholson and EUROPAC 

successor Mrs Andrea Sheel to ensure continuity but have explicitly highlighted my role 

in the projects. 

 

The samples collected within the SSECRETIN study are all analysed within a few days 

of collection. However, as stated previously, collection of pancreatic juice samples for 

the EUROPAC study began in 1999.These historic samples have always been collected 

and stored strictly within the GCLP guidelines and described in the study protocol. To 

ensure these samples have not degraded over the years to a degree which could affect 

their validity, historic samples underwent repeat testing at various subsequent time 

points using the same methodology and found to be concordant. This would  suggest 

contemporary analysis and interpretation of these historic samples is valid. 

2.1.2 Comparison of pancreatic juice supernatant vs pellet for biospecimen 
use. 

The SSECRETIN study received ethical approval from the Haydock NRES Committee 

North West (REC 10/H1010/19). Patients undergoing an ERCP or endoscopic 
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ultrasound (EUS) procedure for suspected PDAC, chronic pancreatitis or biliary duct 

stones at the Royal Liverpool and Broadgreen NHS Trust were prospectively recruited 

between 2011 and 2015. 

Following endoscopic intubation of the duodenum (no pancreatic duct cannulation) any 

fluid present was aspirated and discarded. 1 IU/kg secretin (Sanochemia, Germany) was 

then administered intravenously. After 2 minutes, pancreatic juice was collected by 

aspiration from the duodenum for either 10 minutes or until 10 mL of fluid was 

aspirated whichever came first. The ERCP/EUS then proceeded as per the initial 

indication. The pancreatic juice was then transferred to up to 10 Eppendorf 1.5 ml 

microcentrifuge tubes (Sigma-Aldrich, referred to from here on as Eppendorf tubes) and 

centrifuged at 300g for 10 minutes. The supernatant was transferred to Nunc cryotubes 

(Thermofisher, referred to from here on as Nunc tubes) and both supernatant and pellet 

were stored at -80◦C. My role in this study was patient identification, recruitment, 

administration of secretin and collection of pancreatic juice in a proportion of the 

patients. I processed the pancreatic juice and stored it in a -80oC freezer. Molecular 

analysis was performed by Dr. Li Yan postdoctoral researcher and Miss Hollie Pufal 

undergraduate student. 

The pellet was thawed and re-constituted with 200µL of PBS, the supernatant was 

thawed without dilution. 200µL of the each was inputted to the MagNA Pure Compact 

Instrument (cat. no. 03731146001, Roche, UK) to elute DNA according to 

manufacturer’s instructions. Molecular analysis was carried out for KRAS by 

Amplification Refractory Mutation System (ARMS) PCR, and real time PCR 

measurement of CDKN2a promoter methylation, described in full in the group’s 

previous publication(Yan et al., 2005) and described in brief below. 

2.1.2.1 KRAS ARMS PCR 

Real-time polymerase chain reaction (PCR) was performed using the LightCycler 480 

with SYBR Green detection (Roche Diagnostics, Pinzberg, Germany). Because there is 

amplification of the wild-type sequence with mutation-specific primers, the threshold 

cycles with mutant-specific primers were plotted against threshold cycles using control 

primers that amplified both wild-type and mutant sequences. PCR of 100 blood samples 

allowed 98% confidence intervals to be produced on a linear regression curve for each 

mutation-specific primer. Samples were analysed in triplicate; if all 3 points were less 
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than the 98% confidence limit then the sample was classified as mutant(Yan et al., 

2005). 

2.1.2.2 CDK2Na promoter methylation 

Pancreatic juice DNA was sodium-bisulfite modified. PCR amplification was 

performed again using the LightCycler 480. The methylation index was [M/(M + U)] x 

100%, where M is the quantity of methylated CDKN2a promoter and U is the quantity 

of un-methylated CDKN2a promoter measured by real-time PCR. 

2.1.3 Comparison of the molecular profile of whole pancreatic juice to the 
pellet and supernatant 

Whilst the SSECRETIN study was underway and during my time as EUROPAC 

research fellow studies emerged suggesting that the use of whole duodenal juice was the 

optimal biospecimen to use in this context(Mitsuro Kanda, Knight, et al., 2013) A 

modification to the processing of collected pancreatic juice was made in July 2014 to 

allow comparison of whole juice with that of pellet and supernatant; a minor 

amendment which I submitted was accepted by the ethics committee (protocol version 

2). After collection of the sample, 2mL of whole juice was placed into two Nunc tubes 

and stored at -80◦C. The remainder to the juice was processed in the manner described 

previously i.e. transferred to up to 8 Eppendorf tubes and centrifuged at 300g for 10 

minutes. The supernatant was transferred to Nunc tubes and both supernatant and pellet 

stored, along with the whole juice at -80◦C. 

 

2.2 A negative depletion approach to using blood as a 
biospecimen 

2.2.1 Small volume spiking experiments 
All depletions were performed by Dr. Nick Bryan at the Department of Clinical 

Engineering, Liverpool University. For peripheral blood mononuclear cell(PBMC) 

harvesting, 7mL of healthy volunteer whole blood was obtained with informed consent 

in a 7.5mL Ethylenediaminetetraacetic acid (EDTA) tube (cat. no. 7mL 01.1605.001, 

Sarstedt, UK) and diluted 1:2 in phosphate buffered saline (PBS) (Sigma-Aldrich, UK), 

layered over 15mL of lymphoprepTM (cat. no. 07811, Stem cell technologies, UK) and 

centrifuged at 400g for 30 minutes at 20 ○C. The monocyte layer at the interphase was 
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carefully removed into a 50mL tube, topped up with PBS and centrifuged once more at 

300g for 10 minutes at 20○C discarding the supernatant.   

The PANC-1 cell line (cat. no. 87092802, Sigma-Aldrich, UK) was prepared and cell 

culture maintained by colleague Dr. Li Yan. The cells were cultured in RPMI-1640 

Medium (cat. No. R8758, Sigma-Aldrich, UK) supplemented with Foetal Bovine Serum 

(FBS, cat.no. 12003C, Sigma-Aldrich, UK) and glutamate. At approximately 80% 

confluency the cells were trypsinised, washed and pelleted by spinning at 1000 x g for 

10 minutes. Mycoplasma testing was not routinely performed. Genomic sequencing of 

the cell line was performed at various dilutions using NGS and confirmed the expected 

mutations and purity of the cell line and described in full in 2.4.1. All other cell lines 

including MIA-Pa-Ca-2 (cat. no. 85062806, Sigma-Aldrich, UK) and SUIT-2 

Cell counting for both PANC-1 and PBMCs were performed using a Nucleocounter 

according to manufactures guidelines. Two spiked sample groups were prepared; 

30,000 PANC-1 cells spiked into 200,000 PBMCs and 15,000 PANC-1 cells spiked into 

30µL whole blood diluted 1:10 with PBS Table 2-1. 

Anti-human CD45 antibodies were covalently coupled to streptavidin-coated magnetic 

beads (Dynabeads M-280 Streptavidin, Dynal, Oslo, Norway) according to 

manufacturer’s guidelines by Dr. Nick Bryan. For red blood cell depletions, the protocol 

above was followed substituting a red blood cell antibody for the CD45 antibody.  

The bead and antibody complex was then added to the samples and briefly vortexed. 

Following 20 minutes incubation at room temperature a magnet was passed slowly over 

the sample visibly removing the magnetic beads. The samples and various depletion 

types are described in Table 2-1. 
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Table 2-1. Experimental set-up of small volume spiked experiments. 

No. of PANC-1 cells Sample Depletions 

30,000 200,000 PBMCs No depletion 

1 x CD45 

2 x CD45 

3 x CD45 

15,000 30µLwhole blood 

(1:10 PBS) 

No depletion 

1 x RBC & 1 x CD45 

2 x RBC & 1 x CD45 

3 x RBC  

3 x RBC & 1 x CD45 

 

Following the CD45 depletions DNA elution was performed by placing 200µL of each 

sample directly into the MagNA Pure compact instrument (cat.no. 03731146001, 

Roche, UK) according to manufacturer’s guidelines. Standard real time PCR was then 

performed on the eluted DNA using the LightCycler480 (cat. no. 5015278001, Roche, 

UK). For each 25µL reaction the following reagents were used: 2.5µL of Gold Buffer 

(cat. no. P2317, Sigma, UK), 1.56µL of MgCl2 (cat. no. M8787, Sigma, UK), 0.52µL of 

dNTP mix (cat. no. dNTP100A, Sigma, UK), 0.4µL forward primer (wild type KRAS: 

5’TGA CTG AAT ATA AAC TTG TGG TAG TTG GCG3’), 0.4µL common reverse 

primer (5’CTC ATG AAA ATG GTC AGA GAA ACC TTT ATC3’), 17.491µL of 

molecular grade DNA free water (cat. no. W4502-11, Sigma, UK) and 2µL of DNA. 

The PCR parameters were as follows: pre-incubation for 13 minutes at 95°C, DNA 

amplified for 40 cycles of 95°C for 50 seconds, 54°C for 45 seconds, 72°C for 1 minute, 

and finally 10 minutes at 72°C. Each sample was amplified in triplicate for wild type 

KRAS, triplicate for p.G12D (PANC-1) KRAS and triplicate for p.G12R KRAS as a 

negative control. Water controls were also used for each 96-well plate. 
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2.2.2 Antibody and bead ratio 
 

Healthy volunteer whole blood was obtained in the same manner and prepared into 

aliquots of 30µL. The same anti-human CD45 antibodies were covalently coupled once 

again to streptavidin-coated magnetic beads but with 5 different antibody volume 

variables: 0µL, 10µL, 50µL, 100µL and 120µL and two different bead volume 

variables: 20µL and 40µL to make 10 separate bead-antibody complexes. CD45 

depletion was otherwise performed in the same manner on 10 x 30µL aliquots of whole 

blood. For each sample, both the beads and the remaining supernatant were kept making 

20 samples. The beads and supernatant samples were suspended in 200µL of PBS and 

placed into the MagNA pure system to elute DNA into 100µL. DNA was then 

quantified, each sample in triplicate using the Qubit 2.0 fluorimeter. Linear regression 

analysis was used to study the antibody volume relationship. Students paired t test was 

used to compare concentration of DNA according to bead volumes. 

2.2.3 Ion Torrent™ sensitivity  
The sensitivity of the Ion Personal Genome Machine® (PGM™) System was 

investigated by Mr. James Nicholson. PANC-1 DNA from the same source was made 

into experimental samples by 10-fold serial dilution with wild type DNA. The ratio of 

Wild type:PANC1 DNA of the samples was pure PANC-1, 900:100, 990:10 and 999:1. 

Each sample was then diluted to 10 genomes/µL and sequenced for TP53 as described 

in full later. The frequency of the known PANC-1 variant p.R273H for each of the 

samples was compared with the proportion of PANC-1 DNA in the sample in each of 

the 10 barcodes. 

2.2.4 Limiting dilution assessment 
The effect of limiting dilution on variant frequency in the setting of detecting a CTC 

variant signal in whole blood was investigated separately. 1,000, 100 and 10 PANC-1 

cells were spiked into 7 mL of healthy volunteer whole blood. A standard CD45 

depletion (described earlier) was performed and DNA eluted. The control samples were 

sequenced, 10 barcodes each at a standard concentration of 5ng/µL. For the comparator, 

the same DNA was diluted to 10 genomes/µL (0.06ng/µL). Sequencing was performed 
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in the same way with 10 barcodes for each of the three samples. The frequency of the 

p.R273H variant was compared in each of the barcodes between standard and diluted 

samples. The means of the highest barcode frequencies were compared between groups 

using the paired t-test. 

2.2.5 Large volume spiked CD45 depletions 
7mL aliquots of healthy volunteer whole blood were spiked with 1,000, 100 and 10 

PANC-1 cells and gently vortexed. A standard CD45 depletion was performed on each 

using CD4 antibody and the magnetic beads. Three controls were used: pure PANC-1 

cells, 7mL blood with no spiked PANC-1 cells and 7mL blood with 1,000 spiked 

PANC-1 cells and depletion performed omitting the CD45 antibody component. 

2.2.6 Large volume clinical CD45 depletions 
All clinical blood samples were obtained by myself under the framework of the study:  

‘Comparison of techniques for detection of circulating tumour cells in peripheral blood 

‘with the Research Ethics Committee reference: 08/H1011/36, amendment 4, dated 11th 

June 2013. The samples were obtained with informed consent using the patient 

information sheet version 5, dated 11th June 2103 (appendix 1) and the consent form 

version 5, dated 9th August 2013 (appendix 2). Sodium Heparin tubes 7.5 mL (cat. no. 

01.1613.100, Sarstedt, UK) were used for blood sample collection and all patients were 

current in-patients at the Royal Liverpool University Hospital at the time of recruitment. 

Standard CD45 depletions were performed by Dr. Nick Bryan within 4 hours of 

collection. To accommodate larger blood volumes the volume of beads and antibody 

were scaled up accordingly. Various experimental controls were used by omitting the 

antibody and/or beads. 

2.2.7 TP53 NGS library preparation and downstream analysis 
DNA is initially eluted from the sample using the MagNA pure system. Where whole 

blood is used the sample is first diluted 1:1 with PBS to make a 400µL starting volume 

eluted to 200µL of DNA. DNA is then quantified using the Qubit 2.0 fluorimeter in 

triplicate with the mean calculated. The DNA is then diluted to 10 genomes/µL 

(0.06ng/µL) with nuclease free water (cat. No. AM9939, AmbionTM, UK) and re-

quantified to ensure appropriate dilution. Typically, a 700µL 10 genome/µL diluted 
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sample was prepared for downstream analysis. The nuclease free water volume:sample 

volume ratio for such a dilution was calculated by: 

𝑊𝑎𝑡𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 = 700 − (
700

𝐷𝑁𝐴 𝑐𝑜𝑛𝑐
0.06⁄

) 

then, 

𝑆𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 = 700 − 𝑊𝑎𝑡𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 

 

Primers for TP53 NGS were designed and ordered by Mr. James Nicholson from 

Eurofins genomics, UK. Considered in the design of primers is optimal length of DNA 

fragment for NGS which is approximately 220 base pairs (bp). As 30 patients are 

multiplexed onto one chip, each fragment must have a unique barcode which can be 

recognised by the Ion Torrent™ software and each barcode is ligated onto the fragment 

via an adapter, typically 5-6 base pairs long. Exons 5, 7 and 8 of the TP53 gene are all 

longer than 200bp and therefore had to amplified in overlapping fragments. As each 

fragment of DNA consists of two complimentary strands, primers for both strands were 

designed and labelled, according to convention as ‘A’ and ’P’.  

The product length of each of the fragments (including primers) is shown in Table 2-2. 

Each of the 16 fragments Table 2-2 had 30 unique barcodes incorporated into the 

forward primer such that 480 distinct sequences were amplified. 
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Table 2-2. Product length of all TP53 fragments amplified by the designed primers 

TP53 Primer Product length 

Exon 5 Fragment 1 A 217 

Exon 5 Fragment 1 P 210 

Exon 5 Fragment 2 A 227 

Exon 5 Fragment 2 P 220 

Exon 5 Fragment 3 A 191 

Exon 5 Fragment 3 P 186 

Exon 6 Fragment A 218 

Exon 6 Fragment P 211 

Exon 7 Fragment 1 A 196 

Exon 7 Fragment 1 P 189 

Exon 7 Fragment 2 A 215 

Exon 7 Fragment 2 P 208 

Exon 8 Fragment 1 A 200 

Exon 8 Fragment 1 P 193 

Exon 8 Fragment 2 A 221 

Exon 8 Fragment 2 P 214 

 

 

The PCR parameters were as follows: pre-incubation for 13 minutes at 95°C, DNA 

amplified for 60 cycles of 92°C for 15 seconds, 64°C (for exons 5 and 6) or 55°C (for 

exons 7 and 8) for 15 seconds, 72°C for 10 seconds, and finally 10 minutes at 70°C. The 

reagents used were 2.5µL of AmpliTaq Gold® with Buffer (cat. no. P2317, Sigma, UK), 

1.56µL of MgCl2 (cat. no. M8787, Sigma, UK), 0.52 µL of dNTP mix (cat. no. 

dNTP100A, Sigma, UK), 0.4µL of forward primer, 0.4µL of reverse primer, 17.49µL of 

molecular grade nuclease free water (cat. no. W4502-11, Sigma, UK) and 2µL of DNA. 

For every 96-well plate a negative control column was used substituting nuclease free 

water for DNA. Following amplification, 5µL of product (one of ten barcodes only) was 

combined with 2µL of loading dye (cat. no. R0631, Thermo Fisher, UK) and run on a 

1.8% agarose gel at 400mA for 20 minutes with an appropriate ladder (cat. no. 
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11336045001, Roche, UK) to confirm amplification of product at an expected size and 

absence of water control well amplification to exclude DNA contamination Figure 2-1. 

 

 
Figure 2-1. Agarose gel shows bands at expected size for amplification of exon 

fragments ~ 200bp (white dotted line) with absence of product in the H20 control 

well. Exon 5 fragment 1 has not sufficiently amplified in this instance. More distal 

bands represent shorter products of unwanted primer-dimer products and are 

discarded 

Purification was then performed on the remaining 20µL of product. All 10 barcodes and 

both A and P directions were pooled for each fragment making 8 separate pools of 

200µL. 150µL of each pool (2 x 75µL) was loaded into a large 1.8% agarose gel 

combined with 10µL of loading dye at 400mA for 40 minutes with an appropriate 

ladder. The band of interest Figure 2-1 white dotted line, was then excised with a 

scalpel. DNA was extracted using the Agarose Gel DNA Extraction Kit (cat. no. 11 696 

505 001, Roche, UK) according to manufacturer’s guidelines. Each fragment was then 

quantified using the Qubit 2.0 fluorimeter. Appropriate volumes of each fragment were 

then combined according to their concentration to ensure an equal concentration of 

DNA for each fragment such that no fragment dominates the chip. 

The sequencing was kindly performed by technician Miss Katie Bullock on the Ion 

Personal Genome Machine® (PGM™) System (cat. no 4462921, Life Technologies, 
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UK) Figure 2-2B according to manufacturer’s guidelines and detailed in the Standard 

Operating Procedure (SOP) GCLPEQU022 - Use of the Ion Torrent™ (this and other 

SOPs are document controlled as part of Good Clinical Practice by the Cancer Research 

UK Liverpool Cancer Trials Unit). The following kits and reagents were used:  Ion 

PGM™ Sequencing 200 v2 Kit (cat. no. 4482002, Life Technologies, UK) Figure 2-2A, 

Ion 316™ Chip v2 (cat. no. 4483188 Life Technologies, UK) C, Ion PGM Hi-Q OT2 

Kit (cat. no. A27739, Life Technologies, UK) Figure 2-2D.  

 

 
Figure 2-2. Ion Torrent™ equipment and reagents. A) Ion PGM™ Sequencing 200 

v2 Kit, B) Ion Personal Genome Machine® (PGM™) System, C) Ion 316™ Chip 

v2, D) Ion PGM Hi-Q OT2 Kit 

Sequencing runs were each downloaded individually to the Integrative Genomics 

Viewer (IGV), a visualization tool for genomic interrogation(Robinson et al., 2012). 

Each base pair for every barcode was individually reviewed, with variants occurring at 

greater than 10% considered significant where the limiting dilution parameters were set 

to 10genomes/µL and 10 replicates. Where the presence of a known variant is sought, 

such as repeat samples then a lower threshold is accepted. Variants were then cross 

referenced with the International Agency for Research on Cancer (IARC) TP53 

B
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database available at http://p53.iarc.fr/ which compiles all reported TP53 mutations in 

sporadic cancers and describes, the expected tumour phenotype and functional and 

structural impact of variants. 

 

2.3 Assessment of three commercial CTC enrichment methods 

2.3.1 Patient recruitment 
All patients were recruited under the auspices of the study: ‘Comparison of techniques 

for detection of circulating tumour cells in peripheral blood’ with the Research Ethics 

Committee reference: 08/H1011/36, amendment 4, dated 11th June 2013 and informed 

consent outlined in chapter 2. Sodium Heparin tubes 7.5 mL (cat. no. 01.1613.100, 

Sarstedt, UK) were used for blood sample collection and all patients were current 

surgical in-patients at the Royal Liverpool NHS Trust at the time of recruitment. 

2.3.2 CellSieveTM 
The CellSieveTM CTC isolation kit(D. L. Adams et al., 2014), (Creatv MicroTech, 

Canada) was performed by post-doctoral researcher Dr. Nick Bryan according to 

manufacturer’s guidelines. In brief, 7.5 mL of fresh whole blood was used for each 

sample and processed within 4 hours of collection. The filter membrane was assembled 

into the filter holder shiny side up as shown in Figure 2-3A. 5mL of Foetal Bovine 

Serum (FBS, cat. no. 12003C, Sigma-Aldrich, UK) was drawn into the 50mL ‘waste 

syringe’ and attached to the syringe pump Figure 2-3B. The filter holder was then 

secured with a twisting motion on top of the waste syringe.  The plunger was removed 

from a 30mL ‘input’ syringe and securely attached to the filter apparatus above Figure 

2-3B, again, with a twisting motion. The blood sample was pipetted into the 30mL input 

syringe on top. The sample was drawn through the filter by the syringe pump set at 

5mL/minute with a target volume of 16 mL, and force limit of 20%. After 1-2 minutes 

an additional 5mL of PBS was added to the input syringe and allowed to pass through at 

the same rate. This process was repeated twice before stopping the pump.  
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Figure 2-3. Arrangement of apparatus for the CellSieve™ micro filter. A) The 

filter (red circle) was mounted into the filter holder as shown. B) The apparatus 

set-up is shown with the input and waste syringe separated by the filter holder. C) 

The filter holder was inverted over a collection tube and the back wash syringe 

containing 5mL of PBS was used to flush any remaining enriched cells into the 

collection tube. 
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The filter holder was then removed and a 10mL ‘backwash syringe’ containing 5mL of 

PBS was attached to the side formerly occupied by the waste syringe Figure 2-3C. The 

filter holder was inverted over a collection tube and the syringe depressed at 

approximately 5mL/15 seconds flushing the enriched cells back from the filter and 

washing into the collection tube. The enriched sample was centrifuged at 1,200g for 10 

minutes, the supernatant discarded and the pellet reconstituted in 200µL of PBS. The < 

10µm non-enriched fraction beneath was collected from the waste syringe. DNA elution 

was performed by placing 200µL of each fraction directly into the MagNA pure system. 

The concentration of eluted DNA was then measured using the Qubit Fluorimeter 2.0 

and diluted to 10 genomes/µL with nuclease free water (cat. No. AM9939, AmbionTM, 

UK) and 5 sequencing replicates were performed for each sample for TP53 analysis. 

KRAS analysis was performed using ARMS PCR, described previously, with undiluted 

DNA by Dr. Li Yan. 

2.3.2 RosetteSepTM 

Three different RosetteSepTM enrichment cocktails were used: RosetteSepTM CTC 

Enrichment Cocktail Containing Anti-CD 36 (cat. No. 15167, Stemcell technologies, 

UK), Anti-CD 45 (cat. No. 15122, Stemcell technologies, UK) and Anti-CD 56 (cat. 

No. 15177, Stemcell technologies, UK) each containing various tetrameric antibody 

complexes recognizing glycophorin on red blood cells and a selection of antigens 

present on white blood cells shown in Table 2-3. 

 

Table 2-3. Antibody complexes contained within each of the three varieties of 

Rosette Sep™ CTC enrichment cocktails. 

Rosette SepTM 

CTC Enrichment 

Cocktail 

CD antigen 

45 66b 38 16 19 36 2 3 14 56 61 

Anti-CD 45 
  

         

Anti-CD 36 
       

    

Anti-CD 56 
     

  
    

 

The method for each kit is identical except for the addition of the different CTC 

enrichment cocktail. 350µL (50µL/mL blood) of the cocktail was added to the 7mL 
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blood aliquot Figure 2-4A, briefly vortexed and incubated at room temperature for 20 

minutes. The sample was then combined with an equal volume (7mL) of 2% foetal calf 

serum (FCS, Sigma-Aldrich, UK)/ phosphate buffered saline (PBS, Sigma-Aldrich, UK) 

and layered carefully on top of 15mL of lymphoprepTM (cat. no. 07811, Stem cell 

technologies, UK) in a SepMateTM blood separation tube (cat. No. 15450, Stem cell 

technologies, UK) Figure 2-4C. The tube was centrifuged at 1200g for 20 minutes with 

a brake setting of 5. The enriched fraction, above the SepMateTM tube filter Figure 2-4D 

was removed and placed into a clean 15mL falcon tube and further washed with 2% 

FCS/PBS. The washed cells were then centrifuged at 300g for 8 minutes and the 

supernatant was discarded. The pellet of enriched cells was reconstituted in 200 µL of 

PBS and used directly to elute DNA using the MagNA pure system described 

previously. The pellet at the bottom of the falcon tube Figure 2-4D, representing the 

non-enriched fraction was mixed 1:1 with PBS. DNA was eleuted in the same way 

using 200µL. DNA was quantified using the Qubit 2.0 fluorimeter and subsequently 

diluted to 20 genomes/µL. 



 

Page 58 of 173 

 

 
Figure 2-4. Method for RosetteSepTM CTC enrichment. A) RosetteSepTM CTC 

enrichment cocktail incubated with whole blood. B) Density gradient 

(Lymphoprep) added to SepMate tube. C) Whole blood layered in the upper 

compartment of the SepMate tube on top of Lymphoprep. D) Enriched visible 

layer (red arrow) after centrifugation. E) Enriched CTC fraction removed to clean 

tube. 

2.3.3 OncoQuik® 
OncoQuik® samples were processed according to manufacturer’s guidelines. In brief, 

OncoQuik® tubes (cat. no. 227250, Greiner bio-one, Germany) were chilled on ice 

A B

C D E
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Figure 2-5A. Whole blood was layered gently into the upper compartment above the 

porous filter Figure 2-5B. The tube was centrifuged at 1398g at 4oC for 20 minutes with 

acceleration = 3 and no brake. The enriched portion (at the interphase between the 

plasma above and separation medium below) arrowed Figure 2-5C was then transferred 

to a clean falcon tube  

 
Figure 2-5. OncoQuik® enrichment protocol. A) OncoQuik® tube after chilled on 

ice. B) Whole blood layered in top tube compartment. C) After centrifugation, 

enriched CTC layer seen at interphase between plasma and density medium. D) 

Enriched cells with additional washing buffer up to 50mL. 

 

A B

C D
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and made up to 50mL with washing buffer, 0.5% (w/v) bovine serum albumin (BSA, 

Sigma-Aldrich, UK) and phosphate buffered saline (PBS, Sigma-Aldrich, UK) Figure 

2-5D and pelleted by centrifuging at 200g for 10 minutes. The supernatant was 

discarded and the pellet reconstituted with 200µL PBS. The pellet at the bottom of the 

OncoQuik® tube, representing the non-enriched portion Figure 2-5C was mixed 1:1 with 

PBS. 200µL of both enriched and non-enriched fractions were used directly to elute 

DNA using the MagNA pure system. 

2.3.4 Fractionation experiment 
15 mL of whole blood was sampled pre-operatively from patient 10 on the morning of 

surgery for borderline resectable PDAC. This was divided into two equal aliquots of 

7.5mL. The first aliquot underwent standard enrichment with OncoQuik®  Figure 2-5. 

The second aliquot underwent a fractionation process described here: The 7.5 mL of 

whole blood was carefully layered over 15mL Lymphoprep™ Figure 2-6A and 

centrifuged at 1200g for 20 minutes with the brake on Figure 2-6B. Following 

centrifugation, 1 mL aliquots were aspirated from the very top of the tube and placed in 

a separate Eppendorf tube. This was repeated until 21 separate samples were obtained 

Figure 2-6C. 
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Figure 2-6. First fractionation process. A) Whole blood layered over 

Lymphoprep™. B) 1mL aliquots taken from top layer down into 21 separate 

Eppendorfs C. 

The process of OncoQuik® enrichment and fractionation was repeated for the same 

patient on the first post-operative day. In both instances, the enriched OncoQuik® pellet 

was re-suspended in 400µL of PBS before DNA elution with MagNa pure system. It 

was then diluted to 10 genomes/µL and 2µL used in each sequencing replicate. 9 

replicates were used for each of the OncoQuik® samples (permitting a total of 30 

barcodes to be used including the 21 aliquots). DNA concentration was measured for 

each of the 21 fractionated samples using the Qubit 2.0 fluorimeter. 400µL of each of 

the fractionations was used without dilution for DNA elution using the MagNa pure 

system. A total of 10ng of DNA was used for each of the 21 fractions with no replicates 

(one barcode each). 

 

2.3.5 OncoQuik® and RosetteSep™ comparison 
19mL of whole blood was divided into 3 aliquots and underwent the following 

enrichments: 

1. 7mL RosetteSepTM CTC enrichment using cocktail Anti-CD56  

2. 7mL RosetteSepTM CTC enrichment using cocktail Anti-CD36  

3. 5mL OncoQuik® enrichment 

A B

C

1 2111
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The enriched cells were sequenced in the manner described previously, they were 

diluted to 10 genomes/µL with 5 replicates per sample making 30 barcodes in total. 

Primers for the TP53 variants identified from sequencing were designed with the aim to 

confirm their presence using mutation specific PCR. 

2.3.6 TP53 primer design 
Software from the primer design website available at www.primer3plus.com was used. 

The TP53 sequence including the variant site was copied and pasted into the template 

sequence box. The forward primer was selected by identifying the variant nucleotide of 

interest and including the preceding 19 base pairs. An example for forward primer for 

the variant c.814G>A, p.V272M is shown in Figure 2-7. 

 

 
Figure 2-7. Example of forward primer for wild type and mutant of variant 

p.V272M TP53 

 

The most appropriate common reverse primers are then calculated and displayed. The 

chosen primers were ordered from Eurofins Genomics at 

http://www.eurofinsgenomics.eu/ Figure 2-8. 

Wild type: GGGACGGAACAGCTTTGAGG 
 
 
 
Mutant:     GGGACGGAACAGCTTTGAGA 
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Figure 2-8. Screenshot of order page from Eurofins Genomics showing the wild 

type and mutant primers for 4 TP53 variants. 

2.3.7 TP53 primer optimisation 
Optimisation of the TP53 primers was kindly performed by Miss Hollie Pufal, an 

undergraduate biochemistry student at York University under my supervision. In the 

absence of known cell lines harbouring the variants, positive controls were developed 

by performing quantitative PCR using the original DNA from which the variant was 

first identified with the respective mutant primers. The resulting PCR product was then 

run on a 1.8% agarose gel at 400mA for 40 minutes with an appropriate ladder. The 

region of gel corresponding to the expected product length was then cut out using a 

scalpel and DNA extracted using the methods previously described. This extracted 

DNA was then re-amplified by PCR with the same conditions. For negative controls 

DNA derived from PDAC cell lines used in chapter 4.2.1 was used. 

The first stage of optimisation was to determine the most efficient annealing 

temperature for each primer by using temperature gradient PCR. The following 

annealing temperatures were investigated: 55.0°C, 58.2°C, 61.8°C and 63.7°C for 

primers p.V272M and p.L265Q and 68.8°C, 70.2°C, 73.4°C and 75.0°C for the 

p.E271G primer. For each 12.5µL reaction the following reagents were used: 1.25µL of 
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Gold Buffer (cat. no. P2317, Sigma, UK), 0.78µL of MgCl2 (cat. no. M8787, Sigma, 

UK), 0.26 µL of dNTP mix (cat. no. dNTP100A, Sigma, UK), 0.26µL forward primer, 

0.26µL reverse primer, 8.625µL of molecular grade DNA free water (cat. no. W4502-

11, Sigma, UK) and 1µL of DNA. The PCR parameters were as follows: pre-incubation 

for 13 minutes at 95°C, DNA amplified for 45 cycles of 94°C for 50 seconds, the 

variable temperature for 15 seconds, 72°C for 1 minute, and finally 10 minutes at 72°C. 

The product was then run on a 1.8% agarose gel at 400mV for 40 minutes to assess 

product amplification. If a product of appropriate size was clearly amplified in the 

absence of negative control DNA bands, this annealing temperature was taken forward 

to quantitative PCR.  

To optimise cycle number, minimise primer dimer formation and determine the optimal 

cut off temperature at which quantification is calculated various PCR parameters were 

tested. The Light cycler® 480 instrument (cat. no. 051015278001, Roche, UK) was used 

with 10µL reactions made up with 3.5µL molecular grade DNA free water, 5µL Roche 

Master Mix containing FastStart Taq DNA Polymerase, reaction buffer, dNTPs, MgCl2 

and SYBR Green I dye (Cat. No. 04707516001, Roche, UK), 0.25µL of forward primer, 

0.25µL of reverse primer and 1µL DNA. The PCR parameters were: 95°C for 13 

seconds, 45 cycles of: 94°C for 50 seconds, various temperatures for 15 seconds, 72°C 1 

minute and finally 72°C for 10 minutes. Various parameters were assessed by running 

PCR products on a 1.8% agarose gel at 400mV for 18 minutes with an appropriate 

ladder and then assessing amplification at the expected base pair length. 

To test the primer specificity quantitative PCR was performed for various dilutions 

shown in Table 2-4. Each dilution was run on the Lightcycler® with the same reagents 

and the optimised PCR conditions. The recorded Cp values for both positive and 

negative controls were compared with that of the mutant. 

Table 2-4. Dilutions of mutant and wild type DNA used to test specificity of 

primers 

 Volume of Mt DNA (µL) Volume of Wt DNA (µL) 

Pure Wt 0 100 

1 in 100 1 99 

1 in 1,000 0.1 99.9 

1 in 10,000 0.01 99.99 

Pure Mt 100 0 
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2.3.8 TP53 NGS development  
To assess the consistency and accuracy of the Ion torrent™ variant caller software a 

library preparation was duplicated on a separate chip. Variants and their reported 

frequencies were compared between the two runs. 

2.3.9 FFPE tumour sampling 
For each patient undergoing FFPE tumour analysis the full set of H&E stained slides 

including all sections of the resected specimen were microscopically reviewed by 

specialist histopathologist Dr Zainab Abdul-Rahman. Following examination of the 

slides, one slide was selected which was deemed to have the highest tumour cell content 

of the specimen. Upon this slide an area was marked with red pen corresponding again 

to the region of highest tumour cellularity as shown in Figure 2-10. For each sample the 

corresponding formalin fixed paraffin embedded (FFPE) block was obtained. 

Correlation was made between the marked area of interest on the selected slide and the 

FFPE block. The region of interest was then carefully excised with a scalpel 

macroscopically. This tumour tissue was then remounted into another paraffin 

embedded block. Five to ten 7 µm sections were cut from this block and loaded into an 

Eppendorf tube. DNA was eluted from these sections using the QIAamp DNA FFPE 

Tissue Kit (Cat. No. 56404, Qiagen, UK) according to the manufacture’s guidelines. 

The eluted DNA was quantified using the Qubit 2.0 fluorimeter and diluted to 10 

genomes/µL with molecular grade DNA free water (cat. no. W4502-11, Sigma, UK). 

 

As mentioned in the introduction, NGS of primary tumour FFPE has some limitations 

and has not yet been shown to improve outcomes in PDAC. However, until the role of 

CTCs in PDAC has been clearly defined simultaneous sequencing of FFPE and CTCs 

may help guide future research projects. As such, in this thesis, some patients have both 

the primary tumour FFPE and enriched CTCs sequenced for comparision. 

 

2.3.10 NGS set-up for cell culture 
Blood from 5 patients (1,2,3,6 and 7) underwent cell culture by Dr Nick Bryan. The 

cells were trypsinised, washed and eluted using the MagNa pure system. The TP53 gene 

was amplified by PCR by Dr Li Yan. The PCR parameters were as follows: pre-

incubation for 13 minutes at 95°C, DNA amplified for 40 cycles of 94°C for 50 
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seconds, 54°C for 45 seconds, 72°C for 1 minute, and finally 10 minutes at 72°C. The 

reagents used were 2.5µL of AmpliTaq Gold® with Buffer (cat. no. P2317, Sigma, UK), 

1.56µL of MgCl2 (cat. no. M8787, Sigma, UK), 0.52 µL of dNTP mix (cat. no. 

dNTP100A, Sigma, UK), 0.4µL of forward primer, 0.4µL of reverse primer, 17.49µL of 

molecular grade DNA free water (cat. no. W4502-11, Sigma, UK) and 2µL of DNA. 

The single bands were excised from the gel and DNA was extracted using the Agarose 

Gel DNA Extraction Kit (cat. no. 11 696 505 001, Roche, UK) according to 

manufacturer’s guidelines. The samples were sent to Source BioScience, Nottingham, 

UK for Sanger sequencing. KRAS analysis was performed by arms PCR also by Dr Li 

Yan as described in chapter one. 

 

Cell culture of CTCs appears to be a very attractive option as it would overcome the 

main barrier to the utility of CTCs; the rarity of CTCs amongst vast quantities of WBC 

and would bypass the need for an enrichment process. Despite the attractiveness of this 

method successful culture of CTCs has not yet been achieved. Here, an attempt is made 

to culture CTCs and I describe the process to test whether it was successful. 

 

2.4 Application of CTC technologies to PDAC cohorts 

2.4.1 PDAC cell line mixing for Oncomine™ Solid Tumour DNA panel 
evaluation 
The OncomineTM panel contains multiplex primers for the hotspots of 22 frequency 

mutated genes. A list of the genes and their reported frequency in PDAC is listed in 

Table 2-5 
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Table 2-5 Full list of the 22 genes in the OncomineTM panel and their reported 

frequency in PDAC 

Mutation frequency of PDAC samples on OncomineTM panel 

Gene No. of 

samples 

tested 

Samples 

with 

mutation 

% in PDAC Function Chromosome 

KRAS 6314 4265 67.55 Oncogene 12 

TP53 2104 887 42.16 TS 17 

SMAD4 1854 227 12.24 TS 18 

CTNNB1 1654 131 7.92 Oncogene 3 

PIK3CA 1499 29 1.93 Oncogene 3 

ERBB4 1310 20 1.53 Oncogene 2 

BRAF 1696 22 1.30 Oncogene 7 

FBXW7 1361 15 1.10 TS 4 

ERBB2 1373 15 1.09 Oncogene 17 

NOTCH1 1352 11 0.81 Oncogene 9 

STK11 1482 12 0.81 TS 19 

PTEN 1389 11 0.79 TS 10 

FGFR1 1318 7 0.53 Oncogene 8 

NRAS 1453 7 0.48 Oncogene 1 

EGFR 1781 7 0.39 Oncogene 7 

MET 1380 5 0.36 Oncogene 7 

DDR2 1287 4 0.31 Oncogene 1 

MAP2K1 1314 3 0.23 Oncogene 15 

FGFR3 1358 3 0.22 Oncogene 4 

AKT1 1389 3 0.22 Oncogene 14 

FGFR2 1620 3 0.19 Oncogene 10 

ALK 2 0 0  Oncogene 2 

Data was extracted from the COSMIC database. Tumour Suppressor (TS) 

(http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/) 17th September 2015 
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Three PDAC derived cell lines: PANC-1 (cat. no. 87092802, Sigma-Aldrich, UK), 

MIA-Pa-Ca-2 (cat. no. 85062806, Sigma-Aldrich, UK) and SUIT-2 were cultured by 

Dr. Victoria Shaw in RPMI-1640 Medium (cat. No. R8758, Sigma-Aldrich, UK) 

supplemented with Foetal Bovine Serum (FBS, cat.no. 12003C, Sigma-Aldrich, UK) 

and glutamate. At approximately 80% confluency the cells were trypsinised, washed 

and pelleted by spinning at 1,000g for 10 minutes, the supernatant was removed and the 

cell pellet stored at -80oC until used for DNA extraction. The pellet was then re-

suspended in 400 µL PBS and DNA eluted using the MagNA Pure instrument 

previously described. The concentration of DNA was equalised by adding nuclease-free 

water (cat. No. AM9939, AmbionTM, UK) as appropriate to all three to achieve a 

concentration of 100ng/µL using the Qubit 2.0 fluorimeter described previously. 

Different volumes of the cell line DNA were combined in the ratios shown in Figure 2-9 

to make 11 separate samples. Mycoplasma testing was not routinely performed. 

Genomic sequencing of the cell line was performed at various dilutions using NGS and 

confirmed the expected mutations and purity of the cell line. 

 
Figure 2-9. Various mixtures of cell lines used to make up 11 separate samples. 

Box sizes are not to scale 

Each of the 11 samples, were then diluted to 5ng/µL and 2µL aliquots (10ng total DNA) 

of the cell line mix were used for library preparation using Oncomine™ Solid Tumour 

DNA kit (Life technologies, A26761, UK) in manner described later in this chapter. 

 

2.4.2 Blood sample collection  
All clinical blood samples were obtained by myself under the framework of the study: 

‘Comparison of techniques for detection of circulating tumour cells in peripheral 

blood’, Research Ethics Committee reference: 08/H1011/36 with informed consent. 
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Two Sodium Heparin tubes 7.5 mL (cat. no. 01.1613.100, Sarstedt, UK) were used for 

blood sample collection in all patients. In the OncoQuik® cohort, blood was drawn on 

the morning of the day of surgery by the on-duty Clinical Research Fellow. The sample 

was then processed by technician Mr Neal Rimmer and stored within 4 hours as 

described in the section 4.2.3.1. Follow up samples were acquired when patients came 

for their postoperative check at the surgical outpatient clinic at the Royal Liverpool 

NHS Trust and processed in the same manner. 

For the Rosette SepTM cohort, patients were recruited at the Linda McCartney Oncology 

Unit in the Royal Liverpool University Hospital (RLUH) using the study framework. 

Blood was drawn immediately prior to administration of chemotherapy. The control 

samples were obtained from patients undergoing routine blood tests for non-cancer 

related conditions in the phlebotomy department of the RLUH Trust. A brief clinical 

history was taken to ensure there was no personal history of cancer. All samples in this 

cohort were processed directly with Rosette SepTM within four hours, without freezing.  

2.4.2.1 OncoQuik® blood sample processing 

A two-step freezing protocol was used SOP GCLPTSS105/2  (Rimmer, Greenhalf, & 

Flaherty, 2014). In brief, after mixing by 10 blood tube inversions the tubes were 

centrifuged at 2,000g or 10 minutes. The plasma layer was removed and stored (green 

top cryovial) at -80°C. An equal amount of freeze media (mixture of 25% Dimethyl 

sulfoxide (DMSO) and 75% FBS) was added and the mixture re-suspended. The 

mixture was then aliquoted in up to 16 x 1.5mL blue top cryovial tubes and stored 

initially in a Mr Frosty container (cat. no. 5100-0001, ThermoFisher Scientific, UK) for 

24-72 hours at -80°C and then transferred to -150°C for long-term storage.  

For sample thawing the cryopreserved samples were incubated minimally for 10 

minutes and maximally for 30 minutes in a water bath at 37°C. Washing buffer, 0.5% 

(w/v) bovine serum albumin (BSA, Sigma-Aldrich, UK) and phosphate buffered saline 

(PBS, Sigma-Aldrich, UK) mix was pre-warmed in water bath to 37°C. Once fully 

thawed all cryovial tubes (up to 16) were inverted twice to re-suspend cells and pooled 

into a 50 ml Falcon tube using a 1 mL pipette. Warmed washing buffer was added 

slowly at a rate of 1 mL per 5 seconds to equal volume, then more rapidly to make the 

final volume of 50mL. This was then centrifuged at 1398g for 10 minutes and the 

supernatant discarded (the purpose of this was to remove DMSO). The pellet was 

reconstituted with an equivalent volume of washing buffer to that from which it was 
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derived, e.g. 12 vials = 12mL of washing buffer. This was then layered in the upper 

compartment of the OncoQuik® tube (cat.no. 227250, Greiner bio-one, Germany) and 

proceeded as per the protocol described in chapter 3.2.4.  

2.4.2.2 Rosette SepTM blood sample processing 

The samples from this cohort were processed using 9mL of fresh whole blood divided 

into three aliquots of 3mL. 150 µL (50µL/mL) of the respective RS anti-body cocktail: 

RS-36, RS-45 and RS-56 were added to the 3mL blood aliquot and processed according 

to manufacturer’s guidelines described in chapter 3.2.3. The pellet of enriched cells was 

reconstituted in 400 µL of PBS and used directly to elute DNA using the MagNA pure 

system described previously. DNA was quantified using the Qubit 2.0 fluorimeter and 

subsequently diluted to 20 genomes/µL. 

2.4.3 Library preparation and sequencing 
Library preparation was performed using the Oncomine™ Solid Tumour DNA kit (Life 

technologies, A26761, UK) according to manufacturer’s guidelines. In brief there were 

4 steps. Firstly, batches of 16 separate samples were used. DNA targets from each were 

amplified using PCR with the OncomineTM Solid tumour DNA Panel primers and 

accompanying reagents provided. Secondly, the primer sequences were partially 

digested. Thirdly, adapters and barcodes were ligated onto the amplicons, using a 

separate barcode (1-16) for each sample Table 2-6. Finally, the library was equalised by 

first measuring the concentration of DNA in each barcoded sample with the Qubit 2.0 

Fluorimeter. Each sample was then diluted as required with nuclease-free water. 10µL 

of each of the 16 equalised barcoded samples was then combined into a single 

Eppendorf tube and the concentration of the combined samples was again measured.  

NGS was again perfomed by technician Miss Katie Bullock on the Ion Personal 

Genome Machine® (PGM™) System (cat. no 4462921, Life Technologies, UK) 

according to manufacturer’s guidelines and detailed in the SOP GCLPEQU022 - Use of 

the Ion Torrent™. The following kits and reagents were used: Ion PGM™ Hi-Q™ 

Sequencing Kit (cat. no. A25592, Life Technologies, UK), Ion PGM™ Template OT2 

200 Kit (cat. no. 4480974, Life Technologies, UK), Ion Torrent 316 V2 chip (cat. no. 

4483188, Life Technologies, UK) 
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Table 2-6. Sequence of barcode and adapter for each of the 16 barcodes used in the 

Oncomine™ Solid Tumour DNA kit 

BARCODE ADAPTER SEQUENCE 

1 GAT CTAAGGTAAC 

2 GAT TTACAACCTC 

3 GAT CCTGCCATTCGC 

4 GAT TGGAGGACGGAC 

5 GAT TGAGCGGAAC 

6 GAT CCTTAGAGTTC 

7 GAT TCCTCGAATC 

8 GAT AACCTCATTC 

9 GAT CGGACAATGGC 

10 GAT TCCTGAATCTC 

11 GAT TAAGCCATTGTC 

12 GAT CTGAGTTCCGAC 

13 GAT CGGAAGAACCTC 

14 GAT TCTTACACAC 

15 GAT AAGGAATCGTC 

16 GAT TAGGTGGTTC 

 

In previous chapters the concept of limiting dilution was described to distinguish 

genuine somatic variants from sequencing artefact. Dilutions of 10 genomes/µL were 

used in library preparation with between 5 to 10 sequencing replicates per each sample. 

Based on calculations of the typical mutation frequencies seen from OncoQuik® and 

Rosette SepTM enriched blood in chapter three and on PDAC cell-line experiments in 

this chapter it was possible to lower the number of replicates and partially compensate 

for the reduction in total DNA by reducing the dilution. In both cohorts dilutions of 20 

genomes/µL (40 genomes as 2µL per well) were used with two replicates/duplicates for 

each sample (80 genomes per sample in total). Such that an actual enriched sample 
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mutation frequency of 2.5% (2/80) would yield a measured 5% variant frequency from 

one of two duplicates. This arrangement was used where variants were required to be 

discovered a priori; in all OncoQuik® samples and for the first Rosette SepTM (S1) 

samples. For the Rosette SepTM follow up samples (S2 and S3) and all FFPE tumour 

samples tracking of the previously identified variants was required and so the standard 

10 ng DNA was used without duplication according to manufacturer’s guidelines.  

2.4.4 FFPE Tumour sampling 
The methods for FFPE tumour DNA extraction are described in chapter 2.3.9. In 

addition, where patients had a lymph node or an intraabdominal biopsy infiltrated with 

cancer this section of the slide was also marked Figure 2-10 and excised as described 

previously. The eluted DNA was quantified using the Qubit 2.0 fluorimeter and diluted 

to 5ng/µL with nuclease free water. 2µl or 10ng of DNA was used in the library 

preparation using only one barcode per sample.

 
 

Figure 2-10. Tumour identification in primary and lymph node. The largest red 

dotted area represents highest tumour cellularity of primary PDAC in patient 5. 

The smaller red dotted area identifies involved lymph node in the same slide. Scale 

bar = 4mm 

4mm
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2.4.5 Variant characterisation  
 

The Ion Reporter™ Software 5.0 bioinformatics tool available at 

https://ionreporter.thermofisher.com/ir was used. The human genome version 19 was 

used as the reference against which variants were called. Variant assessment was 

performed in 3 stages: 

1. Ion reporter™ 5.0 filters: 

a. Minor Allele Frequency (MAF): <0.3 

b. Variant Effect: exclude ‘refAllele’ and ‘synonymous’ 

c. Variant Type: exclude ‘REF’ and ‘NOCALL’ 

d. P value: < 0.1 

The P value represents the probability that the variant call is incorrect and is a 

logarithmic transformation of the Phred quality score value discussed below. The 

conventional value of P < 0.1 was used here to reduce the number of variants included 

due to errors in ion torrent base calling and alignment.  

2. Post analysis assessment of scores: 

a. Sorting Intolerant from Tolerant (SIFT)  

b. Phred quality score 

Filtered variants were then scored using the SIFT score which uses sequence homology 

to predict whether non-synonymous variants affect protein function and the Phred 

quality score Q. Q is defined as a property which is logarithmically related to the base-

calling error probabilities P (Ewing 1998) where: 

𝑄 = −10 𝑙𝑜𝑔10𝑃 

or 

𝑃 = 10(−𝑄
10 ) 

such that a Phred quality score of 60 gives the chance of that base being incorrectly 

called as 1 in 1,000,000. 

Finally, variants were cross-referenced with three variant databases. 

3. Cross referencing with databases: 

a. Catalogue of Somatic Mutations (COSMIC) 

b. International Agency for Research on Cancer (IARC) TP53 database 

c. Single Nucleotide Polymorphism Database (dbSNP) 
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Presence in the Catalogue of Somatic Mutations (COSMIC) database confirms that the 

variant has previously been implicated as a somatic mutation in cancer (mutation 

present in tumour DNA and absent from matched normal DNA). For TP53 mutations 

the International Agency for Research on Cancer (IARC) TP53 database available at 

http://p53.iarc.fr/ compiles all reported TP53 mutations in sporadic cancers and 

describes, where available the expected tumour phenotype and functional and structural 

impact of mutations. Finally, the Single Nucleotide Polymorphism Database (dbSNP) 

compiles all reported germline polymorphisms and their minor allele frequency 

available at http://www.ncbi.nlm.nih.gov/SNP/. 

Where a visual representation of the variant was required the intergrative genomic 

viewer (IGV) was used. Variants were excluded where there was clear evidence of mall-

alignment or base calling errors particularly in insertion and deletion (indel) variants 

identified in higher polymer regions. 

2.4.6 Statistical analysis 
Differences in mutation frequency were tested between groups using, Pearson’s chi 

squared and Fisher’s exact tests as appropriate. Kaplan-Meier curves with log-rank test 

were used to compare outcome data such as survival. 

 

2.4.7 List of Reagents 
 

The list of reagents used, how they are made and their supplier are shown in Table 2-7. 
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Table 2-7 List of reagents used and their supplier 

Reagent Dilution/preparation Supplier Catalogue No. 
Secretin 1 IU/Kg Sanochemia, 

Germany 
 111527 

AmpliTaq Gold® with Buffer  Undiluted Sigma-Aldrich, 
UK 

P2317 

DNA Molecular Weight 
Marker VIII 

Undiluted Roche, UK   

dNTP mix  Undiluted Sigma-Aldrich, 
UK 

dNTP100A 

Foetal Bovine Serum (FBS) dissolved in 1L of 
deionized water 

Sigma-Aldrich, 
UK 

12003C 

Ion PGM™ Hi-Q™ 
Sequencing Kit  

Undiluted Life technologies, 
UK 

A25592 

Ion PGM™ Template OT2 
200 Kit  

Undiluted Life technologies, 
UK 

4480974 

Ion Torrent 316 V2 chip  Undiluted Life Technologies, 
UK 

4483188 

Lymphoprep Undiluted Stem cell 
technologies 

7811 

MgCl2 Undiluted Sigma-Aldrich, 
UK 

M8787 

MIA-Pa-Ca-2 cell line Undiluted Sigma-Aldrich, 
UK 

85062806 

Molecular grade DNA free 
water  

Undiluted Sigma-Aldrich, 
UK 

W4502-11 

Oncomine™ Solid Tumour 
DNA kit 

Undiluted Life technologies, 
UK 

A26761 

PANC-1 cell line  Undiluted Sigma-Aldrich, 
UK 

87092802 

Phosphate Buffered Saline 
(PBS)  

dissolved in 1L of 
deionized water 

Sigma-Aldrich, 
UK 

P3818 

RosetteSepTM CTC 
Enrichment Cocktail 
Containing Anti-CD 36 

Undiluted Stemcell 
technologies, UK 

15167 

RosetteSepTM CTC 
Enrichment Cocktail 
Containing Anti-CD 45 

Undiluted Stemcell 
technologies, UK 

15122 

RosetteSepTM CTC 
Enrichment Cocktail 
Containing Anti-CD 56 

Undiluted Stemcell 
technologies, UK 

15177 

RPMI-1640 Medium  Undiluted Sigma-Aldrich, 
UK 

R8758 

SYBR Green I dye  Undiluted Roche, UK 4707516001 
Thermo Scientific™ 6X 
Orange DNA Loading Dye 

Dilute 1:6 with water Thermo Fisher, 
UK 

R0631 
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3 PANCREATIC JUICE AS A 
POTENTIAL SOURCE OF 
BIOMARKERS FOR PDAC 
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3.1 Introduction 
 

The collection of pancreatic juice by endoscopic retrograde cholangiopancreatography 

(ERCP) and direct cannulation of the main pancreatic duct risks post-ERCP acute 

pancreatitis (PEP)(Freeman ML, DiSario JA, Nelson DB, 2001). An alternative method 

of pancreatic juice collection from the duodenum and three different components of 

pancreatic juice are trialled, to determine if their sensitivity and specificity for PDAC is 

maintained 

3.2  Results 
 

3.2.1. Comparison of pancreatic juice supernatant vs pellet for 
biospecimen use 

Pancreatic juice, analysed in both pellet and supernatant forms was collected from 35 

patients with PDAC, 23 with chronic pancreatitis and 108 patients with gallstones 

(controls). The patient demographics are shown in Table 3-1 and the outcome of the 

molecular analysis according to group is shown in Table 3-2. 

 

 

 

 

 

 

 

 

 

Table 3-1. Patient demographics of patients in SSECRETIN study 
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  Cancer 

n=35 

CP 

n=23 

Control 

n=108 

p 

value 

 

Age Median 

(IQR) 

71 (63-

75.5) 

60 

(42-

67) 

66 (56-

77.3) 

0.0014 (Cancer vs CP) 

    0.0169 (Control vs CP) 

    0.171 (Cancer vs 

Control) 

Bilirubin Median 

(IQR) 

219 

(64-

316) 

9 

(5.5-

13) 

13.5 (6-

44.5) 

<0.001 (Cancer vs CP) 

    0.0295 (Control vs CP) 

    <0.001 (Cancer vs 

Control) 

 

 
Table 3-2. Molecular analysis of the supernatant and pellet of pancreatic juice 

 Supernatant Pellet 

 n % CDKN2a 

meth, 

median 

(IQR) 

n KRAS 

mutant: 

wild 

type 

(% 

Mutant) 

n % CDKN2a 

meth, 

median 

(IQR) 

n KRAS 

mutant: 

wild 

type 

(% 

Mutant) 

PDAC 34 7.7 (0.5-

30.2) 

35 14:21 

(40.0) 

24 22.9 (4.31-

72.3) 

26 16:10 

(61.5) 

CP 21 6.01 (0.88-

52.3) 

23 10:13 

(43.5) 

20 9.75 (1.83-

21.4) 

21 8:13 

(38.1) 

Control 107 27.4 (15.3-

38.5) 

106 64:42 

(60.4) 

38 4.72 (1.02-

16.7) 

35 9:36 

(20.0) 
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Figure 3-1. Mutant KRAS was significantly more frequent in PDAC patients compared 

to controls in pellet but not supernatant. P value calculated by Chi-square. 

 

The supernatant samples performed badly in discriminating cancer from controls. In 

fact, the supernatant control samples had significantly more KRAS mutant (60% vs 

40%, p=0.036) Figure 3-1A and higher % CDKN2a promoter methylation (27.4 vs 7.7, 

p=0.031) than supernatant cancer samples Figure 3-3 and Table 3-4. The pancreas juice 

pellet proved a better biospecimen with both KRAS and % CDKN2a promoter 

methylation significantly discriminating cancer from controls (p=0.004 and p=0.015 

respectively) and trending towards significance in discriminating from cancer from CP 

(p=0.101 and p=0.051 respectively).  

In previous work the optimal cut-off for % CDKN2a promoter methylation was 

determined to be 12%. This threshold was applied to the cohort, the resulting 

sensitivities and specificities in addition to KRAS is shown in Figure 3-2. In Figure 

Figure 3-2 three separate specificity values are shown. The ability to discriminate 

cancer samples from just the control samples, excluding CP is shown as Specificity 

(Control). Specificity (CP) represents the discrimination of cancer from CP alone 

(excluding control samples). And finally, Specificity (Control and CP) represents the 

ability to discriminate cancer samples from both control and CP samples combined. 
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Figure 3-2. Sensitivity and specificity of KRAS and % CDKN2a methylation in 

supernatant and pellet. 

 

The % of CDKN2A promoter methylation was significantly elevated in caner patients 

compared to control patients (P=0.015) and trended towards significance in 

discriminating from CP patients. It was surprising to observe that % of CDKN2A 

promoter methylation was significantly elevated in control patients compared to cancer 

patients (p=0.031)Figure 3-3.  
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Figure 3-3. % CDKN2a promoter methylation is significantly elevated in cancer 

compared to control groups in pellet, but the reverse association is seen in supernatant. 

The ability to discriminate CP from cancer in the pellet trended towards significance. 

Error bars display median and inter-quartile range, p values calculated by Mann 

Whitney U. 

 

The clinical utility of % CDKN2a promoter methylation alone in the pellet of pancreatic 

juice was limited with a relatively low area under the curve (AUC) of 0.684 in 

discriminating PDAC from controls blue line Figure 3-4. In an attempt to improve the 

discriminatory value of the test, the analysis was repeated with samples which were 

only KRAS mutant (green line Figure 3-4) and only KRAS  The AUC was improved 

when combined with samples which were KRAS mutant (AUC=0.796) 
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Figure 3-4. Receiver operating characteristic (ROC) curve analysis of % CDKN2a 

promoter methylation in discriminating PDAC from controls (no CP). Blue line shows 

all samples, PDAC n=24, controls n=38. Green line shows KRAS mutant only, PDAC 

n=14, controls n=7. Red line shows wild type KRAS only, PDAC n==10 and controls 

n=31 

3.2.2. Comparison of the molecular profile of whole pancreatic juice 
to the pellet and supernatant 

In previous the sections we have seen the results obtained using the supernatant and 

pellet of pancreatic juice. Since this time, the Goggins group have shown improved 

results using whole juice. (Kanda, et al., 2013) We didn’t have whole juice samples for 

the previous dataset as the samples were spun down directly into supernatant and pellet 

immediately after collection. We therefore conducted a new study prospectively 

collecting secretin stimulated pancreatic juice from the duodenum as before, but with 

the aspirate split into two; the first part spun into supernatant and pellet, and the second 

part stored as whole juice. 

 

To date in this on-going study 7 patients have been recruited to the PDAC group, and 28 

to the control group (consisting of 25 patients with gallstones and 3 with chronic 

pancreatitis). For whole juice the median % CDKN2a promoter methylation was higher 

in the cancer group, this did not reach significance, but in this relatively small group of 

patients no significance was seen with pellet either (which we saw in the analysis above 

was significant with larger numbers). In this small group supernatant had a slightly 

higher median level of methylation with cancer than with controls, but again this was 
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not significant Figure 3-5. Therefore, whole pancreatic juice may be better than pellet or 

supernatant at differentiating cancer, but the difference is not very great, for individual 

samples there is not a great benefit of using whole juice rather than pellet Figure 3-6. 

 

 
Figure 3-5. % CDKN2a promoter methylation is not significantly elevated in 

cancer compared to control groups in supernatant, pellet or whole pancreatic 

juice. Error bars display median and inter-quartile range, p values calculated by 

Mann Whitney U. *One cancer sample not yet had %CDKN2A promotor 

methylation analysed and so excluded 
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Figure 3-6. Matched samples from Figure 3-5 are linked showing that there is no 

significant trend for cancer pellet to have lower methylation than in whole juice 

from cancer (or vice versa for controls) 

 

 
Figure 3-7. Mutant KRAS was not significantly more frequent in whole juice from 

cancer compared to controls.  

Pairing of control samples

Pairing of cancer samples

2 curve up (benefit for 
using whole juice ) and 2 
curve down (benefit for 
using pellet)

6 curve up (benefit for 
using pellet ) and 4 curve 
down (benefit for using 
pellet)
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As in the previous section sensitivity and specificity was again low for KRAS mutation 

status in supernatant (57.1% and 44.0% respectively), pellet (71.4% and 63.0% 

respectively) and whole juice (57.1%, 40.7% respectively)Figure 3-7. 

Though the KRAS mutation in the pellet trended towards significant association with 

cancer, p=0.103, none of the sample types reached significance Table 3-3. 

 

Table 3-3. KRAS mutation was not significantly associated with cancer in any of the 

sample types. P value calculated by Chi-square. 

 

Pancreatic 

juice 

component 

KRAS Cancer Control Total p value 

Supernatant Mutant 4 14 18 0.819 

Wild type 3 13 14 

Total 7 27* 32 

Pellet Mutant 5 10 15 0.103 

Wild type 2 17 19 

Total 7 27* 34 

Whole juice Mutant 4 16 20 0.919 

Wild type 3 11 14 

Total 7 27* 34 

*One control patient excluded as did not have KRAS mutation performed. 

3.3  Discussion 
 

The retroperitoneal position of the pancreas and the low resection rates of PDAC make 

acquisition of a biospecimen for PDAC challenging(Speelman et al., 2015). Pancreatic 

juice is an attractive option as PDAC arises from ductal cells, shed tumour cells are 

therefore likely to be contained within the juice which can be obtained endoscopically. 

Indeed, it has been shown that molecular analysis of pancreatic juice can be used to 

stratify risk of PDAC(Yan et al., 2005). ERCP however is invasive and is associated 

with a significant risk of PEP(Cheng et al., 2006). Studies from our group have shown 

that prophylaxis (stent and diclofenac) can reduce the risk of PEP(Nicholson et al., 
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2015). Despite this, the risk is still too high for routine clinical use. A modification to 

the collection technique (collection from the duodenum) essentially eliminates the risk 

of PEP associated with pancreatic duct cannulation but compromises the biospecimen. 

Of the three components of pancreatic juice, the cell pellet was superior to supernatant 

in discriminating PDAC from control samples and no evidence was found that pellet 

was inferior to whole juice.  KRAS mutation status was superior to the percentage of 

CDKN2a methylation. The sensitivity and specificity of KRAS status for PDAC in the 

pellet of pancreatic juice was 83.3% and 64.3% respectively, but was still insufficient 

for routine use. 

It is known that iron-containing proteins and their breakdown products, such as 

bilirubin, and bile salts are major inhibitors of PCR which may affect assays in some 

jaundice patients when performed on blood, stool and urine where by-products of 

bilirubin are found(Schrader, Schielke, Ellerbroek, & Johne, 2012). However, there has 

been no report to date of the serum bilirubin interference on PCR assays performed on 

pancreatic juice despite many groups using this biospecimen(Yan et al., 2005)(Mitsuro 

Kanda, Sadakari, et al., 2013)(Fukushima et al., 2003). No modification to the PCR 

assays on pancreatic juice were therefore used. 

 

Despite the described technique modification avoiding pancreatic duct cannulation, 

endoscopy in itself is still an invasive and expensive investigation requiring specialist 

equipment and skilled endoscopists. Serial sampling in this instance is not feasible. 

The use of blood as a biospecimen in this respect has many obvious advantages over 

pancreatic juice in that it is relatively non-invasive, cheap, safe and permits serial 

sampling. It is also a route by which PDAC along with most other cancers metastasise 

and therefore potentially offers a more complete picture of the systemic disease than 

just the primary tumour alone. The remaining chapters evaluate blood as a biospecimen. 
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4  NEGATIVE DEPLETION 
APPROACH TO USING BLOOD 
AS A BIOSPECIMEN 
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4.1 Introduction 
 

Whole blood allows minimally invasive serial sampling and is therefore an attractive 

biospceimen in PDAC given the biological and physical flaws associated with 

interrogation of solid primary tumour. Here, both an in-house method of CTC 

enrichment using negative depletion and the sensitivity of low frequency variant 

detection using next generation sequencing (NGS) and limiting dilution is evaluated. 

4.2  Results 

4.2.1 A single CD45 depletion is optimal in small volume spiked samples 
 

The enrichment capabilities of a CD45 depletion was first investigated using PANC-1 

cells spiked into peripheral blood mononuclear cells (PBMCs) thus removing the 

variable of other blood constituents such as platelets, red blood cells and 

polymorphonuclear white blood cells. Following one CD45 depletion the mean Cp 

value (n=3) of wild type DNA increased from 26.8 (SD=0.71) to 32.7 (SD=0.89) 

p=0.02 Figure 4-1A representing a 59.3 (2 x 105.89) fold reduction in wild type DNA. 

There was an increase in mutant (p.G12D, PANC-1) DNA concentration observed with 

the mean (n=3) Cp value falling from 29.4 (SD=0.38) to 27.6 (SD=0.56) p=0.02 Figure 

4-1A equating to  a 3.4 (2 x 101.8) fold enrichment. This suggests that the CD45 

antibody and bead complex are specifically binding PBMCs but not PANC-1 cells, as 

expected. Further CD45 depletions did not lead to further reductions of wild type DNA 

p=0.592 or enrichment of mutant DNA p=0.135 Figure 4-1A. Indeed, three CD45 

depletions removed the mutant signal altogether, suggesting serial depletions eventually 

have a non-specific binding effect depleting PANC-1 cells as well. 

Next, the experiment was repeated using whole blood incorporating the additional 

factors of red blood cells and polymorphonuclear white blood cells. The whole blood 

was diluted 1:10 with PBS to remove the variable of blood viscosity, in particular the 

ability of the large ferrous beads to traverse through densely packed RBC. Again, a 

74.0-fold (2 x 106.2) reduction in wild type DNA was achieved with 1 x CD45 and 1 x 

RBC depletions from a  Cp of 26.4 (n=3) to 32.61 (n=3) p=0.007 Figure 4-1B with a 

corresponding 3.5-fold (2 x101.8) enrichment of mutant DNA from mean  Cp value 30.0 

(n=3) to 28.2 (n=3) p=0.011 Figure 4-1B. Additional RBC depletions further reduced 
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the wild type DNA on both the second (P=0.0629) and third depletions (P=0.0265) but 

the mutant signal was not enriched on the second (P=0.920) and completely removed on 

the third Figure 4-1B. Thus, a single CD45 depletion appeared optimal in both PMBCs 

and in diluted whole blood, whilst RBC depletion appeared to have non-specific 

binding. We next investigated, whether single or multiple CD45 depletions were 

optimal in whole blood and whether the addition of a RBC depletion to a single CD45 

depletion improved enrichment in whole blood. Neither the addition of a second, nor a 

third CD45 depletion improved the enrichment of the mutant signal of various numbers 

of PANC-1 cells spiked into 30µL of undiluted whole blood.  
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Figure 4-1 CD45 depletions significantly reduce wild type DNA and enrich PANC-

1 signal in both PBMCs and (1:10) diluted whole blood experiments. Subsequent 

depletions reduce and eliminate PANC-1 signal altogether A) 30k PANC-1 cells 

spiked into 200k PBMCs. B) 15k 
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The addition of a RBC depletion to a single CD45 depletion also did not have a 

significant effect on the enrichment of the mutant signal in any of the experimental set-

ups Figure 4-2A-D. 

 

 

 

 

Figure 4-2. Increasing the number of CD45 depletions beyond the first does not 

improve PANC-1 enrichment when spiked into 30µL of whole blood. The addition 

of a RBC depletion to the first CD45 depletion also did not improve enrichment. 

Various quantities of PANC-1 cells A) 10,000, B) 1,000, C) 110, D) 8, were spiked 

into 30µL of whole blood. P values were derived from paired t test, error bars 

display mean and standard deviation. 
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4.2.2. Increases in both antibody and bead volume improve 
efficiency of CD45 depletions 

Having defined the optimal number and type of depletions (1 x CD45) the efficiency of 

this depletion in terms of bead and antibody volume was investigated. Liner regression 

analysis showed a strong relationship between antibody volume and amount of DNA 

removed from the sample attached to the beads. This was true for both 80µL (R2=0.949, 

p<0.0001) and 40µL (R2=0.703, p=0.010) bead volume variable Figure 4-3A. In 

addition, using 80µL of beads removed significantly more DNA from the samples than 

using 40µL of beads (p=0.0251) Figure 4-3A. As expected, the amount of DNA 

remaining in the supernatant of the sample was greater when using the smaller volume 

(40µL) of beads though this did not reach statistical significance (p=0.223) Figure 4-3B. 

An unexpected relationship was observed between increasing volume of antibody and 

increasing amount of DNA remaining in the supernatant with both 40µL of beads 

(R2=0.530, p=0.0021) and 80µL of beads (R2=0.581, p=0.0025), this was a significant 

relationship albeit weak. This relationship however was not as strong as that seen with 

DNA removed with the beads and may, in part, be due to the greater proportion of DNA 

remaining behind in the sample. An explanation for this may be that volume was lost in 

the supernatant and therefore the sample contained more cells per microliter. 
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Figure 4-3. Liner regression analysis shows a strong relationship between antibody 

volume and amount of DNA removed from the sample for both 80µL and 40µL 

volume of beads. A) Concentration of DNA attached to the beads removed from 

the sample. B) Concentration of DNA remaining in the supernatant after removal 

of beads. 
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4.2.3. Ion torrent™ is sensitive down to a variant frequency of 0.1% 
where coverage is greater than 500 

 

Before proceeding with spiked samples into clinical blood volumes (>7mL) the  

sensitivity of the Ion Torrent™ NGS platform in conjunction with limiting dilution was 

assessed Table 4-1 and demonstrates that the Ion Torrent™ base calling software 

accurately identified the serial 10-fold dilutions in the PANC-1 cell line. It can be seen 

that where the total coverage is below 500, the ability to identify very low frequency 

variants is diminished . It can be seen that the total percentage of mutant sequence in the 

Pure PANC-1 sample was only around 70%. Clearly some PANC-1 cells contain some 

wild type TP53 sequence. This finding has not previously  been reported in the 

literature. It is known that PANC-1 is polyploid and our data indicates that 1 

chromosome 17 out of 5 may have a wild type sequence. Conventional Sanger 

sequencing is not accurate below 25% which may explain why this has not been 

reported previously. Note that the p.R273H mutation is dominant, hence 1 wild type 

copy in 5 would still give a mutant phenotype.  

 

 
Figure 4-4  The Ion Torrent™ PGM platform identifies the appropriate variant 

frequency for PANC-1 cell lines serially diluted 10-fold down to 0.1%. Y axis is log 

base 10 scale
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 Table 4-1 Frequency of TP53 variant p.R
173H

 (PA
N

C
-1) reported by Ion T

orrent™
 for serial 10-fold dilutions of PA

N
C

-1 D
N

A
. Each 

barcode represents a sam
pling replicate, each diluted to 10 genom

es/µL
 

 
Pure PAN

C-1 
10%

 PAN
C-1 

1%
 PAN

C-1 
0.1%

 PAN
C-1 

barcode 
Variant 

Total 
%

 
Variant 

Total 
%

 
Variant 

Total 
%

 
Variant 

Total 
%

 

1 
89 

110 
80.9 

241 
3013 

8 
4 

493 
0.8 

3 
868 

0.35 

2 
67 

92 
72.8 

1354 
18965 

7.1 
2 

275 
0.7 

5 
4362 

0.11 

3 
142 

197 
72.1 

462 
6598 

7 
58 

7784 
0.7 

2 
2520 

0.08 

4 
720 

1023 
70.4 

998 
14170 

7 
18 

2550 
0.7 

6 
8450 

0.07 

5 
3795 

5404 
70.2 

3664 
52401 

7 
1012 

156771 
0.6 

8 
11605 

0.07 

6 
2581 

3694 
69.9 

1420 
20495 

6.9 
25 

3884 
0.6 

0 
191 

0 

7 
5071 

7256 
69.9 

41 
615 

6.7 
24 

3858 
0.6 

0 
46 

0 

8 
268 

384 
69.8 

600 
9379 

6.4 
21 

4227 
0.5 

0 
144 

0 

9 
559 

815 
68.6 

200 
3135 

6.4 
1 

392 
0.3 

 
 

 

10 
1320 

2007 
65.8 

11 
190 

5.8 
0 

10 
0 

 
 

 

Total 
14612 

20982 
69.6 

8991 
128961 

7.0 
1165 

180244 
0.6 

24 
28186 

0.09 
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4.2.4. CD45 depletions are ineffective in large whole blood volumes 
 

Further experiments sought to clarify the enrichment capability of a single CD45 

depletion in whole blood. Unexpectedly, only the control sample with 1,000 spiked 

PANC-1 cells and no antibody used in the CD45 depletion showed an enrichment effect 

compared to the negative control of no spiked PANC-1 cells though this did not reach 

significance (p=0.136) .Error! Reference source not found. 

4.2.5. CD45 depletion is inconsistent when used in larger volumes of 
blood from cancer patients 

 

Further clarification of this anomaly was sought using four clinical samples. The patient 

and tumour characteristics are described in Table 4-2. 

 

Table 4-2. Patient and tumour characteristics of four patients undergoing CD45 

depletion of whole blood. The TP53 variants identified in the corresponding 

samples are also shown.  

Pt 

No 

Diagnosis Stage  Experimental Set-up 

Rep

s 

 

CD45 

depletion 

No 

Beads 

No 

Antibody 

No 

depletion 

1 PDAC Unavailable; 

not resected 

8 p.L188R 

18% 

(419/2,383)  

   

2 PDAC Unavailable; 

not resected 

7     

3 PDAC T3,N0,M0 10 p.E271V 

32.9% 

(1126/3423) 

   

4 PDAC Unavailable; 

not resected 

6    p.L257P 

13% 

(348/2305) 
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In Patient 3 the TP53 variant p.E271V (SIFT class: deleterious) was identified in two 

out of ten barcodes of the positive control; 32.9% (1126/3423) and 2.88% (82/2848) but 

not identified in any barcodes of the two negative control samples Figure 4-4. 

Considered in isolation, this result would be consistent with a CD45 depletion that 

removes sufficient wild type DNA to enrich CTC derived mutant DNA above the 

threshold for detection. However, a TP53 variant was also detected exclusively in the 

non-depleted whole blood of both patient 4 (p.L257P), the significance of this is 

unclear. 

 

 
 

Figure 4-4. IGV screenshot showing p.E271V, c.812A>T variant identified only in 

CD45 depleted sample. 

 

 

 

 

 

 

Next the requirement for the limiting dilution component of the methodology was 

confirmed. DNA from three experimental samples with low frequency variants were 
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sequenced, either at a standard concentration of 5ng/µL or diluted to 10 genomes/µL 

(0.06ng/µL). In all three samples a jackpot effect was seen with elevated variant 

frequencies observed in the first replicate of samples diluted to 10 genomes Figure 4-5 

A-C and Figure 4-6. The fact that the 10 genome samples reached approximately 1% 

variant frequency, and not 10%, would suggest that perhaps the dilution of samples was 

not adequate, and more likely represent a dilution of around 100 genomes/µL. 
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Figure 4-5. The ‘Jackpot effect’ of limiting dilution demonstrated by the elevated 

variant frequency seen in barcode 1 of the 10 genome samples. Various numbers of 

PANC-1 cells: A) 1,000 B) 100 and C) 10 were spiked into 7mL of whole healthy 

volunteer blood and 1 standard CD45 depletion was performed. The DNA from 

the enriched sample was either sequenced at a standard dilution of 5ng/µL in 10 

replicates (black) or first diluted to 10 genomes/µL (0.06ng/µL) and then 

sequenced 10 replicates (grey). 



 

Page 100 of 173 

 

 

 

 
Figure 4-6. Variant frequency is significantly higher at its maximum level when 

limiting dilution to 10 genome/µL is used compared to standard concentration. 

Mean frequencies of the three experimental setups Figure 4-5A-C were compared. 

P value calculated by paired t-test. 
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4.3 Discussion 
In this chapter a method of negative depletion of white blood cells from blood using 

magnetic ferrous beads covalently bonded to anti CD45 antibodies was developed and 

assessed. The depletion method showed promise when used in the medium of PBMCs 

and diluted whole blood by significantly enriching spiked PANC-1 DNA by a 

demonstrable reduction in wild type DNA (white blood cells). Various combinations of 

depletions were trialled with the optimal strategy being a single CD45 depletion. 

Further progress was made by demonstrating improvements in the efficiency of the 

CD45 depletion by increasing the volume of both the CD45 antibody and the volume of 

magnetic beads used.   

Next, the two components of downstream analysis, limiting dilution and Ion Torrent™ 

NGS platform were assessed. The limiting dilution methodology was employed to 

overcome the difficulty of discerning a genuine low frequency variant from an artefact 

of PCR or sequencing inherent in all sequencing systems. A conservative calculation 

suggested that 10 replicate samples would be required, and so, 480 primer pairs each 

with inbuilt barcodes covering the TP53 gene were designed. The barcodes permit 

multiplexing of 30 sequencing replicates per sequencing chip, making this a viable 

approach. With a priori knowledge of the variant (p.R273H) detection down to the 0.1% 

frequency level was achieved providing a coverage of at least 500 was maintained. 

Sequencing 10 replicates of standard sample concentration alone was significantly less 

effective than 10 replicates of 10 genome/µL diluted sample. 

The promising results of low volume CD45 depletion were not replicated when the 

blood volume was scaled up to 7mL of whole blood. A curious anomaly was observed 

in that the only sample to adequately enrich the PANC-1 signal was the control sample 

with 1,000 PANC-1 cells and no antibody used in the CD45 depletion. This suggests 

that at larger volumes the beads are binding to white blood cells in preference of PANC-

1 cells and depleting in a manner that is independent of CD45 antibody. Further 

inconsistencies were seen when clinical samples underwent CD45 depletion, with a 

TP53 variant being identified in a non-depleted sample.  

 

The change from small to large clinical blood (7mLs) samples presented resource 

challenges. The volume of reagents (antibodies and ferrous beads etc) were 

exponentially greater in the latter. Though only a few patients were trialled the number 

of samples was much larger as several controls were used for each. A large quantity of 
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downstream sequencing reagents was also required as each sample required up to 10 

serial repeats (10 genome dilutions) to achieve the required threshold of detection. It 

was pragmatic grounds of resource preservation that a decision was made to move to 

pre-existing commercial CTC enrichment technologies as alternatives to CD45 

depletion.  

 

The use of Ion Torrent NGS and limiting dilution which showed promise here will be 

continued and used to assess the CTC technologies.   
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5 ASSESSMENT OF THREE 
COMMERCIAL CTC 
ENRICHMENT METHODS 
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5.1 Introduction 
In-house negative depletion strategies for CTC enrichment described in Chapter 2 

showed promise in small volumes of blood but were ultimately inconsistent when 

scaled up to larger volumes. In this chapter three different commercial EpCAM 

independent CTC enrichment technologies CellSieve™, RosetteSep™ and OncoQuik® 

which enrich whole blood for CTCs based on size, negative depletion and buoyancy 

respectively are assessed. 

Interrogation of both enriched and non-enriched fractions was performed to investigate 

the phenotype and genotype of CTCs without a priori selection. Other techniques 

including CTC cell culture and whole blood fractionation were also used.  
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5.2 Results 

5.2.1. CTC enrichment component analysis 
The concentration of DNA in both enriched and non-enriched components for all three 

enrichment methods is shown in Figure 5-1. The CellSieveTM filtration process 

enrichment process yielded a differential of between 6.39 and 87.7-fold increase in 

DNA concentration comparing the non-enriched to the enriched fractions Figure 5-1A. 

The corresponding differentials for Rosette Sep and OncoQuik® were 1.45 to 214-fold 

(Figure 5-1B) and 18.0 fold (Figure 5-1C) respectively.  

  

 
Figure 5-1. Comparison of DNA depletion capacities of three CTC enrichment 

methods: A) CellSieve™, B) RosetteSep™ and C) OncoQuik®.  Patient 7 and 8 

were performed in triplicate and Patient 9 was enriched with both RosetteSep™ 

and OncoQuik®.  Error bars representing Mean with SD are shown in B and C as 

three measurements were taken for each sample. Figures in black boxes represent 

the factor difference between enriched and non-enriched fractions i.e. 

concentration of non-enriched/concentration of enriched. 

NGS of TP53 was performed on both enriched and non-enriched fractions.  
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5.2.2. CellSieve™ 
Non-synonymous variants in the TP53 gene were identified in 4 out of the 5 patients 

Table 5-1 and Table 5-2, but in three of these patients the variant was identified in the 

<10µm non-enriched fraction. Variants were identified in only one of five sequencing 

replicates in all cases (Table 5-2). KRAS mutations were identified in 3 out of 5 patients. 

All KRAS mutations occurred in the enriched > 10µm fraction with the exception of 

patient 4 who had KRAS mutations in both enriched and non-enriched fractions (Table 

5-1).  

Table 5-1. Mutations in the KRAS and TP53 gene identified on either side of the 

CellSieve™ filter 

 

 

In patient 5 the two TP53 variants identified in the non-enriched fraction of the 

CellSieve™ were sought in the corresponding primary FFPE tumour and additional un-

enriched whole blood which was sequenced. The first variant, p.N288S was not present 

in either the primary tumour or the whole blood, however the second TP53 variant, 

p.E294K was present at low frequency (0.5%) in the primary tumour, whole blood 

diluted to 10 genomes/µL (0.3%) and the whole undiluted blood (0.5%) (Table 5-3). 

The variant p.E294K was looked for in the three cell lines sequenced and identified at a 

lower level of 2/2,760 (0.07%) in PANC-1, 0/1,166 (0%) in SUIT-2 and 3/2,034 (0.1%) 

in Mia-Pa-Ca-2.

 >10µm enriched <10µm un-enriched 

Patient No. KRAS TP53 KRAS TP53 

1    p.K132Q 

2     

3 p.G12V p.L257P   

4 p.G12V  p.G12V p.R282W 

p.G12A   p.K132N 

   p.Q167X 

   p.K350E 

5 p.G12V   p.N288S 

   p.E294K 
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 Table 5-2. D
escription of all TP53 variants identified in patients. 

Pt N
o. 

M
ethod 

Fraction 
Protein 

V
ariant 

C
overage 

%
 

Effect 
SIFT 

Som
atic 

C
ount  

1 
C

S 
N

on-enriched 
p.K

132Q
 

194 
1930 

10.1 
M

issense 
D

eleterious 
19 

3 
C

S 
Enriched 

p.L257P 
2685 

7195 
37.3 

M
issense 

D
eleterious 

16 
4 

C
S 

N
on-enriched 

p.R
282W

 
139 

848 
16.4 

M
issense 

D
eleterious 

577 
C

S 
N

on-enriched 
p.K

132N
 

44 
544 

8.1 
M

issense 
D

eleterious 
30 

C
S 

N
on-enriched 

p.Q
167Ter 

96 
890 

10.8 
N

onsense 
N

/A
 

43 
C

S 
N

on-enriched 
p.K

350E 
17 

156 
10.9 

M
issense 

D
eleterious 

1 
5 

C
S 

N
on-enriched 

p.N
288S 

254 
1938 

13.1 
M

issense 
D

eleterious 
6 

C
S 

N
on-enriched 

p.E294K
¥ 

161 
1143 

14.1 
M

issense 
N

eutral 
5 

7 
R

S-45 
Enriched 

p.T221Ter 
71 

387 
18.3 

M
issense 

D
eleterious 

6 
R

S-45 
Enriched 

p.N
200S 

186 
913 

20.4 
M

issense 
D

eleterious 
3 

R
S-45 

Enriched 
p.R

175H
 

260 
2255 

11.5 
M

issense 
D

eleterious 
1210 

9 
O

C
 

Enriched 
p.K

164R
 

472 
2685 

16.1 
M

issense 
D

eleterious 
2 

R
S-45 

Enriched 
p.E271G

 
59 

343 
17.2 

M
issense 

D
eleterious 

5 
10 

R
S-56 

Enriched 
p.E271G

 
46 

590 
7.7 

M
issense 

D
eleterious 

5 
R

S-36 
Enriched 

73 
2199 

3.3 
  

11 
O

C
 

Enriched 
p.L265Q

 
16 

129 
12.4 

M
issense 

D
eleterious 

4 
R

S-56 
Enriched 

84 
1234 

6.8 
  

R
S-36 

Enriched 
12 

133 
9.9 

  
O

C
 

Enriched 
p.V

272M
 

170 
508 

33.5 
M

issense 
D

eleterious 
114 

12 
O

C
 

Enriched 
p.K

132Q
 

194 
1231 

15.8 
M

issense 
D

eleterious 
19 

13 
C

ell culture only - N
/A

 
14 

C
ell culture only - N
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Table 5-3. Frequency of variant TP53 p.E294K identification in patient 5 in FFPE 

tumour, whole blood and diluted blood 

 

 

5.2.3. RosetteSepTM 
Patients 7 to 9 underwent whole blood CTC enrichment with the RosetteSep™ anti-CD 

45 kit with both fractions sequenced. Patient 7 was performed in triplicate using three 

separate anti-CD 45 kits. Three non-synonymous variants were identified in the 

enriched layer in only one of these triplicates (Table 5-2). No variants were identified in 

either enriched or non-enriched layer in patient 8. The variant p.E271G was identified in 

two of the five replicates in the enriched layer of patient 9 (Table 5-2). 

  

5.2.4. OncoQuik® 
Patient 9 (above) had whole blood enriched with OncoQuik® as well as Rosette Sep in 

the same experiment. Enriched and non-enriched fractions were sequenced in both 

instances. Non-synonymous variants were identified exclusively in the enriched 

fractions using both methods however the variants were different. The OncoQuik® 

 FFPE primary tumour Whole blood 10 genome diluted blood 

Barcode Variant Coverage % Variant Coverage % Variant Coverage % 

1 115 33104 0.3 85 25332 0.3 194 998145 0.0 

2 126 31391 0.4 2 2020 0.1 12 6113 0.2 

3 155 48177 0.3 26 13120 0.2 13 5348 0.2 

4 94 31223 0.3 9 5241 0.2 34 20404 0.2 

5 71 22159 0.3 1 773 0.1 1 707 0.1 

6 16 7522 0.2 2 1029 0.2 11 3479 0.3 

7 10 2803 0.4 2 902 0.2 11 2479 0.4 

8 28 13244 0.2 0 345 0.0 30 10264 0.3 

9 65 18154 0.4 1 1446 0.1 59 23325 0.3 

10 1303 264990 0.5 10 1968 0.5 6 2898 0.2 
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sample identified a p.K164R variant in one of five replicates and the RosetteSepTM 

identified the p.E271G variant described above Table 5-2. 

 

The diagnosis of the 14 patients recruited for this chapter are shown in Table 5-4. All 14 

patients were recruited and sampled on the ward in the Royal Liverpool NHS Trust in 

accordance with the study protocol described in the methods section. The timing of 

sampling in relation to their surgery and treatment is also shown in Table 5-4. Patient 

and tumour characteristics of 14 patients recruited to study  
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Table 5-4. Patient and tumour characteristics of 14 patients recruited to study 

Pt No. Enrichment Diagnosis Resected Post 

surgery 

(days) 

1 CellSieveTM and Cell 

culture 

PDAC Yes 3 

2 CellSieveTM and Cell 

culture 

PDAC Yes 5  

3 CellSieveTM and Cell 

culture 

IPMN tumour Yes 9  

4 CellSieveTM NET pancreas Yes 3  

5 CellSieveTM Ampullary 

adenocarcinoma 

Yes 14 

6 CellSieveTM Metastatic PDAC Yes 3 

7 Rosette SepTM Metastatic gastric 

adenocarcinoma 

No, palliative 

bypass 

6 months 

8 Rosette SepTM Locally advanced 

PDAC 

No, palliative 

bypass 

6 months 

9 Rosette SepTM, 

OncoQuik® 

Locally advanced 

PNET 

No, locally 

advanced 

 

10 Rosette SepTM, 

OncoQuik®   

PDAC Yes 8  

11 Rosette SepTM, 

OncoQuik®   

PNET Yes 10  

12 OncoQuik®  and 

Fractionation 

PDAC No, locally 

advanced 

 

13 Cell culture Intra-hepatic 

cholangio 

No, locally 

advanced 

 

14 Cell culture PDAC No, locally 

advanced 
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5.2.5. OncoQuik® and RosetteSep™ comparison 
Since variants were exclusively identified in the enriched fractions of RosetteSep™ and 

OncoQuik® but not CellSieve™ further direct comparisons were performed analysing 

just the enriched fractions for RosetteSep™ and OncoQuik®. Patients 10 and 11each 

had OncoQuik®, RosetteSep™ anti-CD 36, and RosetteSep™ anti-CD 56 enrichment 

performed. 

In patient 10 the variant p.E271G was identified in 4 out of 5 replicates in the RS-56 

enrichment (ranging from 1.8 to 7.8%). This variant could also be found in 3 out of 5 

replicates in RS-36 but at lower frequencies (range: 0.7 to 3.3%). There was no 

evidence of this variant in the OncoQuik® enrichment Table 5-2.  

In patient 11 however the variant p.L265Q was detected in all 5 replicates of the 

OncoQuik® enrichment (range: 5.5 to 12.4%), in two of five replicates in RS-56 (6.8 

and 4.8%) and in one of five replicates in RS-36 (9.0%) Table 5-2. Patient 11 also had 

the variant p.V272M exclusively detected in one of five replicates in the OncoQuik® 

enrichment but was not found in either RosetteSep™ enrichment. 

These variants identified in the OncoQuik® vs RosetteSep™ comparison were taken 

forward for confirmation using mutation specific PCR. Both p.L265Q Figure 5-2A, 

which was present in all three enrichment methods of patient 11 and p.V272M Figure 

5-2B variants were confirmed using mutation specific PCR in the OncoQuik® enriched 

sample from patient 11, though p.E271G could not be reproduced with the designed 

primers in patient 10. 
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Figure 5-2. Relationship shows good specificity of primers designed for three 

variants: A) p.E271V, B) p.L257 and C) p.V272M.  
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5.2.6. Fractionation experiments 
Patient 12 underwent OncoQuik® enrichment and fractionation of whole blood into 21 

aliquots both pre and post operatively. The pre-operative OncoQuik® enrichment and 21 

fractions did not identify any variants.  The post-operative sample (unresectable PDAC 

so tumour remained in situ) identified the variant p.K132Q in the OncoQuik® 

enrichment in 3 of 9 replicates at the following frequencies: 194/1231 (15.8%), 

130/1132 (11.5%) and 342/3305 (10.3%). The same variant p.K132Q was also detected 

in aliquot numbers 1 (132/1189, 11.1%), 2 (47/365, 12.9%), 3 (67/108, 62.0%) and 10 

(63/602, 10.5%) Figure 5-3.  

 

 
Figure 5-3. Graph showing frequency of p.K132Q variant and concentration of 

DNA in each of the 21 aliquots from patient 10 

5.2.7. Downstream NGS of Cell Culture 
Cells isolated from patients 1,2,3,13 and 14 underwent cell culture by Dr. Nick Bryan. 

Exons 5,6,7 and 8 of the TP53 gene were successfully amplified by PCR from the 5 

samples Figure 5-4. All samples were wild type for both KRAS and TP53 with clean 

sequence seen on Sanger sequencing Figure 5-5. 
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Figure 5-4. 1.8% agarose gel showing bands at expected positions for Exons 5, 6, 7 

and 8 of the TP53. 

 
Figure 5-5. Screenshot of Sanger sequencing analysis from patient 1 showing 

section of Exon 5 of TP53 gene using software Chromas version 2.4. 

 

1 2 3 13 14

Exon 5 Exon 6

Exon 7 Exon 8

Patient No. Patient No.

Patient No. Patient No.

1 2 3 13 14

1 2 3 13 14 1 2 3 13 14
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5.2.8. TP53 NGS development 
 

Sequencing an identical library preparation consisting of 30 barcoded TP53 amplicons 

on another date and chip, showed 100% concordance with variant identification. The 

mean difference in variant frequency between the first and second run was 3.09%, 95% 

CI [1.67, 4.51] Table 5-5. 

 

Table 5-5 Comparison of the variant reads of the same library on two separate 

dates 

Date run Patient 

ID 

Variant Variant 

reads  

Total 

reads 

% 

variant  

∆% 

03/12/2014 4 p.K132N 42 438 9.59 1.49 

17/12/2014 44 544 8.10 

03/12/2014 4 p.Q167X 106 767 13.82 3.03 

17/12/2014 96 890 10.79 

03/12/2014 4 p.K305E 21 304 6.91 3.99 

17/12/2014 17 156 10.90 

03/12/2014 4 p.R282W 128 815 15.71 0.69 

17/12/2014 139 848 16.39 

03/12/2014 5 p.N288S 254 1938 13.10 3.77 

17/12/2014 196 1162 16.87 

03/12/2014 5 p.E294K 372 1891 19.67 5.57 

17/12/2014 161 1143 14.10 
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5.3 Discussion 
In this chapter three commercial CTC enrichment products were investigated. It is 

acknowledged that there is heterogeneity with respect to both histology and peri-

operative timing of sample collection in some of the patients. However, in this chapter 

the aim was to select the most appropriate technologies for a further and more detailed 

assessment, in a more homogeneous patient population in chapter six. Limited resources 

meant that it would not have been possible to interrogate all three technologies in the 

larger patient population and hence a degree of heterogeneity was accepted here. With 

regards to histology, patient samples were collected and analysed in the peri-operative 

period, in some instances, before the final histology results were available. As samples 

were required to be processed fresh (within 4 hours) it was not possible to know the 

histology result at the time of analysis; therefore a pragmatic approach was taken to 

include these samples in the assessment of CTC technology despite being strictly non-

PDAC. As all these different histological cancer types are known to have CTCs which 

behave in a similar fashion they represent a suitable sample to assess the technology, 

though, of course, PDAC would have been preferable. In the next chapter where whole 

patient cohorts are assessed, and the need for homogeneity is greater, such patients were 

excluded. 

 

With regards to the peri-operative timing of sample collection, again, a pragmatic 

approach was necessary. Sample processing could only be performed at specific times 

of the week as it required the additional expertise of the technician Mr Neal Rimmer 

and Clinical engineer Dr. Nick Bryan until the methods were established and I could 

perform the enrichment independently. Whilst sample analysis was scheduled for the 

morning of surgery, inevitable cancelations of surgical lists associated with real life 

clinical practice meant that, on some occasions, post-operative patients available on the 

ward had to be sampled instead.  

 

The exact relationship between CTCs and surgery has not been clearly defined. Some 

studies have shown that manipulation of the tumour during surgical resection 

significantly increases the number of CTCs detectable in the blood (S. Ito et al., 

2002)(Park et al., 2012). An increase in CTCs after surgery has also been associated 

with early recurrence of gastric cancer(Q. Zhang et al., 2018) and another recent 

prospective trial demonstrated that CTCs detected post-operatively, but not those 
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detected pre-operatively, were associated with a higher risk of recurrence(Yang et al., 

2018). Whilst the clinical question of the presence of CTCs and their correlation with 

recurrence is a valid one, it was not the purpose of this chapter to investigate it, nor 

would it have been possible to do so with such small numbers. As previously stated, the 

aim was to select the most appropriate CTC enrichment technology for a further and 

more detailed assessment in chapter six. The available research suggests that both pre-

operative and post-operative CTC sampling is valid in this setting and provides 

justification for doing so in this chapter. Homogenous sampling would have been 

preferable, but for the logistical reasons discussed was not possible in this chapter. In 

chapter six the timing of sampling in the peri-operative period is standardised 

throughout the cohort.  

 

Patient blood samples produced two fractions from whole blood, generating a 

differential in DNA concentration but by different mechanisms. Sequencing both of 

these fractions gave additional information upon which to judge its performance. 

CellSieve™ appeared to give inconsistent results with variants being identified in the 

non-enriched fractions in 3 out of 6 patients. This could perhaps be due to the 

increasingly recognised presence of mesenchymal sub-populations of CTCs(Kalluri & 

Weinberg, 2009) which are smaller than the conventional epithelial CTCs which the 

filter is designed for(D. L. Adams et al., 2014) and these mesenchymal cells might have 

been able to pass through the 10µm pores of the filter. However, the non-enriched 

fraction contains the WBCs and one would expect the wild type signal from these to 

mask any variant signal from mesenchymal CTCs, unless CTCs are present in much 

higher quantities than previously thought(Gorges et al., 2012). Evidence that the 

variants identified in the non-enriched (< 10µm portion) are tumour derived was 

provided by identifying the identical non-synonymous TP53 variant in the primary 

tumour. Yachida et al showed that a 64% of  mutations were “founder” mutations 

(present in primary and metastasis) whereas “progressor” mutations, which evolved 

after leaving the primary tumour, and therefore not identified in the primary, were less 

frequent (36%)(Shinichi Yachida et al., 2011). The very low frequency of variant seen 

in whole blood also confirms that it is not currently possible to identify variants in blood 

without a priori knowledge of the variant and an enrichment step.  
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The OncoQuik® enrichment system is based on the assumption that CTCs are more 

buoyant than WBCs and RBCs(Gertler et al., 2003a). The results of the fractionation 

experiment were consistent with a population of less buoyant CTCs. The variant 

frequency peak was identified in the 3rd fraction out of 21, just above the 4th fraction 

corresponding to the PBMC layer (shown by a peak in DNA concentration). In this 

experiment no variants were identified on the pre-operative sample, but were identified 

on the first post-operative day where the tumour was dissected but not removed. Studies 

have shown that intra-operative tumour handling increases the quantity of CTCs 

identified intra and post-operatively, perhaps by the dislodgment of tumour cells from 

the primary tumour(Papavasiliou, Fisher, Kuhn, Nemunaitis, & Lamont, 2010)(Pesta, 

Fichtl, Kulda, Topolcan, & Treska, 2013)(Sawabata, Funaki, Hyakutake, & Shintani, 

2016)(Juratli et al., 2014). Though this was only investigated in a single patient the 

outcome is consistent with this theory. 

RosetteSep™ and OncoQuik® showed promise yielding cells with TP53 variants in 

enriched fractions, though such variants were not seen in every sample, and could not be 

replicated in some experimental repeats. Head to head comparisons showed different 

variants were identified within the same patient. RosetteSep™ employs a purely 

negative selection approach whilst OncoQuik® enriches on the basis of CTC density. It 

has been experimentally demonstrated that CTCs are heterogeneous in both genotype 

and phenotype. It is feasible that part of this heterogeneity are separate populations 

associated with different TP53 mutations, each population having different physical 

characteristics, some more likely to be enriched by RosetteSepTM and some more likely 

to be enriched by OncoQuik®. 

Consistency was demonstrated in patient 11 with the same non-synonymous TP53 

deleterious variant being identified in two different RosetteSep™ enrichments and 

OncoQuik® which was subsequently confirmed with mutation specific PCR. 

Consistency was also seen in the Ion torrent™ calling software, with 100% concordance 

for variants and broadly similar frequencies. 

The elusive goal of culturing CTCs from whole blood was not realised in this chapter. A 

population of cells which do not appear to be haemopoetic in origin grew out but were 

excluded as CTCs on the basis that no mutations in TP53 or KRAS were identified. 

Restraints on laboratory and personnel availability combined with the requirement to 

process all clinical samples within 4 hours limited patient samples to surgical inpatients 
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with Hepatobiliary type cancer. Consequently, the cohort of patients in this chapter are a 

little heterogeneous.  

Given these promising result both RosetteSep™ and OncoQuik® were taken forward to 

investigate a larger more homogenous cancer cohort with appropriate controls in the 

next chapter. 
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6 APPLICATION OF CTC 
TECHNOLOGIES TO PDAC 
COHORTS 
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6.1 Introduction 
 

In Chapter 5, three methods of CTC enrichment were assessed; Rosette SepTM and 

OncoQuik® performed best and were taken forward to examine CTCs in two cohorts of 

patients with PDAC. Comparison with primary and metastatic tumour, as well as serial 

sampling was performed. The two main aims of this chapter were firstly to determine if 

variants could be tracked across multiple samples of the same patient and secondly, to 

determine if clonal sweeps (cycles of chemotherapy) affected the mutational profile of 

CTCs.  

 

  



 

Page 122 of 173 

 

6.2 Results 

6.2.1 The OncomineTM solid tumour DNA panel identifies low frequency 
mutations present in PDAC. 
 

The three cell lines used are known to have mutations in both TP53 and KRAS 

genes(Moore et al., 2001) outlined in Table 6-1. 

Table 6-1. Mutations present in the three cell lines used. 

Cell line KRAS  TP53 

PANC-1 p.G12D p.R273H 

Mia-Pa-Ca-2 p.G12C p.R248W 
SUIT-2 p.G12D p.R273H 

 

The Oncomine™ Solid Tumour DNA panel identified all the mutations present in Mia-

Pa-Ca-2, SUIT-2 and PANC-1 in addition to 21 other genes commonly mutated in 

PDAC Error! Reference source not found.. The coverage was such that mutations 

could be consistently identified without drop-out down to a frequency of 1% (Table 6-2 

and Figure 6-1). 
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Table 6-2 Expected versus observed mutation in MIA-PA-CA-2 cell line  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Expected % TP53 p.R248W 

 

 KRAS p.G12C  

  Variant Total %  Variant Total  % 

100 2999 3072 97.6 4250 4285 99.2 

99.99 257 261 98.5 379 379 100 

1819 1859 97.8 2430 2445 99.4 

99.9 334 343 97.4 605 610 99.2 

1050 1082 97 1146 1152 99.5 

99 418 437 95.7 428 437 97.9 

770 802 96 802 821 97.7 

90 249 290 85.9 317 354 89.5 

235 268 87.7 262 330 79.4 

0 0 1053 0 1 1405 0.1 

35 3214 1.1 3 6146 0 
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Figure 6-1. Identification of known mutations present in SUIT-2 and PAC-1 cell 

lines using the OncomineTM Solid tumour DNA panel. X-axis is logarithmic scale 

With the exception of KRAS p.G12D in the pure PANC-1 sample Figure 6-2A, all 

mutations were identified at broadly the expected frequency. In this example, 3,930 

variant reads were called out of a total of 6140 (64%).  

Figure 6-2A. In the pure SUIT-2 sample the same KRAS mutation was called very close 

to 100% with 1385 variant calls out of a total of 1,406 reads (98.5%)  

Figure 6-2B. Equally, the TP53 mutation p.R273H in the pure PANC-1 was sample was 

also very close to 100% with 2728 calls out of a total of 2,744 reads (99.4%)  

Figure 6-2C. Of note, in chapter 4 Table 4-1 the TP53 sequencing data revealed only 

70% mutant sequence. For this section a different batch was used which would explain 

the discrepancy observed. 
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Figure 6-2. IGV screenshots of mutations identified in cell lines. A) Pure PANC-1 

sample showing KRAS p.G12D at 65%, B) Pure SUIT-2 sample showing KRAS 

p.G12D at 99% and C) Pure PANC-1 sample showing TP53 p.R273H at 99%. 

 

 

 
 

6.2.2 Patient characteristics of cancer and control patients in OncoQuik® 
cohort 
 

A B C 

   
Pure PANC-1 sample.  

KRAS p.G12D 

Pure SUIT-2 sample. 

KRAS p.G12D 

Pure PANC-1 sample. 

TP53 p.R273H 
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Overall 35 patients who were undergoing pancreatic resection were selected for the 

OncoQuik® cohort. All these patients had blood taken pre-operatively on the morning of 

surgery which was enriched using OncoQuik®  and subsequently sequenced as 

described. Once the histology was available in the post-operative period 6 patients were 

excluded as histological examination did not confirm PDAC. The flow diagram 

describes which patients were excluded from the study with reasons Figure 6-3.  

 

 
Figure 6-3 Flow diagram of samples collected for the OncoQuik® cohort 

 

 

 

 

 

 

 

 

 

 

The OncoQuik® cohort consists of 16 patients in the cancer group and 13 patients in the 

control group. Patient characteristics are described in Table 6-3. 
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Table 6-3. Characteristics of cancer and control patients in the OncoQuik® cohort 

  
Cancer Control 

p RosetteSepTM 

(n=15) (n=10) 

Female 7 5 1 

Median age years (range) 69 (55-84) 67.5 (41-
89) 0.3848 

Histology PDAC 15 

n/a 

Resected 
Yes 7 
No 8 

Grade 

Well 2 
Moderate 0 

Moderate-poor 3 
Poor 1 

Unknown 1 

T stage* 

T1 0 
T2 1 
T3 8 
T4 6 

N stage* 
N0 6 
N1 9 

Not reported 0 

M stage* 
M0 14 
M1 1 

R status 
R0 4 
R1 0 

Unknown 11 
 

* The number of non-diabetics will include a number of Type 3c diabetic patients who 

were undiagnosed at time of diagnosis with cancer. Up to 60% of patients with PDAC 

are estimated to have type 3c diabetes (Chari, et al., 2008). P values determined by 

Mann Whitney U, Pearson’s chi-squared or Fisher’s Exact tests as appropriate. The 

tumour characteristics of the OncoQuik® cancer group are described in Table 6-4. 

 

Table 6-4. Tumour characteristics of cancer patients in OncoQuik® and Rosette 

SepTM cohort 
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  OncoQuik®  

(n=16) 

RosetteSepTM 

(n=15) 
Histology PDAC 16 13 

Resected Yes 11 7 

No 5 8 

Grade Well 0 2 

Moderate 6 0 

Moderate-poor 2 3 

Poor 3 1 

Not 

reported/Unknown 

0 1 

Un-resected 5 8 

T stage T1 2 0 

T2 0 1 

T3 10 8 

T4 4 6 

N stage N0 4 6 

N1 11 9 

Not reported 0 0 

M stage M0 11 14 

M1 5 1 

R status R0 2 4 

R1 8 0 

Unknown 1 3 

Un-resected 0 8 

6.2.3 Identification of mutations in Cancer and Control groups 
 

Variants with a frequency greater than 5% were identified in 3/16 (18.8%) cancer 

patients. Mutations were only identified in the cancer group, but with such small 

numbers this did not reach significance (P=0.162).Table 6-5 

 

Table 6-5. Comparison of number of patients with variants >5% in the OncoQuik® 

cohort. P=0.162 using Fisher's exact. 
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 >5% mutation No mutation >5 % Total 
Cancer 3 13 16 
Control 0 13 13 
Total 5 30 35 
 

When the 5% frequency threshold was removed, variants were identified in 6/16 (40%) 

cancer patients compared with 2/13 (15.4%) control patients showing a trend towards 

significance (P=0.18) (Table 6-6 and Figure 6-4). 

 

Table 6-6. Comparison of variants at ANY frequency in cancer and control 

patients in the OncoQuik® cohort. P=0.07 using Fischer's exact 

 Any mutation No mutation Total 
Cancer 6 10 16 
Control 2 11 13 
Total 8 21 29 
 

 
Figure 6-4. Comparison of mutation frequency identified between cancer and 

control groups in the OncoQuik® cohort 

No mutations were identified in both replicates of the same patient. A description of all 

the mutations over the 5% threshold from Table 6-5 is shown in Table 6-7. 
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Table 6-7 Descriptions of mutations over the 5% threshold in the OncoQuik® 

cohort 

Patient 
number 

Gene DNA Protein Variant Total % 

3 STK11 c.817G>A p.Ala273Thr 6 98 6.1 

4 
ERBB2 c.2543C>T p.Ala848Val 80 1309 6.1 
CSDE1 c.82T>C p.Phe28Leu 32 587 5.5 
TP53 c.1001G>A p.Gly334Glu 46 607 7.6 

10 

ALK c.3604G>A p.Gly1202Arg 78 1465 5.3 
TP53 c.997C>T p.Arg333Cys 60 1009 5.9 

SMAD4 c.1529G>A p.Gly510Glu 61 304 20.1 
STK11 c.1043A>G p.Asp348Gly 32 512 6.3 
DDR2 c.298G>A p.Val100Met 92 646 14.2 

 

6.2.4 Serial sampling of OncoQuik® cohort shows mutations no longer 
present after resection in cancer patients. 
 

Only one cancer patient had repeat blood sampling and OncoQuik® enrichment 

performed in the follow-up period after resection Table 6-8. Three patients in the 

control group had repeat blood sampling after resection for benign disease  

Table 6-9. In the cancer patient (patient 7), no variant was identified either in the pre or 

post-operative sample, however this patient had a borderline resectable tumour and 

received pre-operative chemotherapy in an attempt to render the tumour resectable. 

Subsequent histological examination of the resected pancreas revealed only a ‘tiny’ 

focus of PDAC remaining. In these patients it is possible to speculate the proportion of 

cancer of the total in the sample. For example in patient number 5 Table 6-11 a total of 

8% cancer cells is estimated, with a homozygous mutation in TP53 (7.6%) and 

heterozygous mutation in  MAP2K1 gene (3.8%). Again, in patient 10 Table 6-11 one 

could speculate a total of 9% cancer cells with heterozygous TP53 (4.3%) and 

homozygous FGFR3 (9.7%). 

In the control group, none of the three patients had variants identified pre-operatively. 

In one patient however, after resection of a duodenal gastro-intestinal stromal tumour 

(GIST), a KRAS mutation variant p.Leu23Gln was identified at 30/346 (8.7%). 

In all patients with serial sampling, polymorphisms could be tracked across patients to 

confirm sample identity. 
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Table 6-8. Mutation identified in blood using OncoQuik® enrichment and NGS 

with OncomineTM panel before and after surgery in cancer patient 

   Before resection Interval 
(days) 

After resection 

Diagnosis Pt No. Stage Mutation  Mutation  

PDAC 7 T1  N0  M0 None 31 None 

 

Table 6-9. Comparison of mutations identified in blood using OncoQuik® depletion 

and NGS with OncomineTM panel before and after surgery in control patients 

  Before 
resection 

Interval 
(days) After resection 

Diagnosis Mutation    Mutation identified 

  Gene  Protein description Variant Total % 

Duodenal 
GIST 

None 121 KRAS p.Leu23Gln 30 346 8.7 

IPMN None 76 None         
Duodenal 
GIST 

None 144 None         

6.2.5. Sequencing of primary tumour and metastasis in the OncoQuik® 
cohort 
 

Variants of any frequency were identified in 6 patients in the OncoQuik® cohort. FFPE 

tumour samples were available for analysis in 5 of these. A metastatic peritoneal nodule 

was sequenced in patient 4 who had un-resectable disease. The primary tumour was 

analysed in 4 patients and all had nodal disease (N1), in these patients the involved 

lymph node was also identified and sequenced. Comparisons of the mutations found in 

the solid tumour were made to that of mutations found in the corresponding OncoQuik® 

enriched blood and vice versa. None of the mutations identified in the solid tumour 

were identified in the corresponding OncoQuik® enriched blood samples Table 6-11. 

Equally, none of the variants identified in the OncoQuik® enriched samples were seen 

in the corresponding solid tumour Table 6-12. Clearly, these results show very poor 

correlation between primary tumour and OncoQuik® enriched samples of the peripheral 

blood. The solid tumour samples are derived from FFPE of the resected specimen. As 

described in the methods chapter, attempts were made to maximize the percentage of 
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tumour DNA within the sample by scalpel dissection of the block guided by 

histopathological targeting. It is possible to estimate the percentage tumour cells in the 

sample by examining the sequence results by taking into account possible filed 

cancerization and heterozygous and homozygous mutations. 

Primary tumour and metastatic lymph node pairs were available for comparison in three 

patients (patient 2, 12 and 17), as the sequencing for the lymph node sample failed in 

two patients (patient 5 and 22). In all three primary versus lymph node comparisons, the 

same mutations identified in the primary tumour were also present in the lymph node. In 

patient 2 however an additional mutation was superimposed in the lymph node (TP53 

p.Arg196Ter) which was not present in the primary tumour. This additional mutation 

could represent a branched evolution facilitating the step to lymph metastasis. 

In patient 17 two additional variants in the SMAD4 gene (p.Tyr353Asn and 

p.Tyr353Ter) were identified in the primary tumour but not in the lymph node. 

However, on examining these variants in the integrative genomic viewer they appear to 

be due to an alignment errors. The two variants are both caused by two ‘A’ nucleotides 

separated by a T nucleotide, a shift of the reference genome by one nucleotide. 
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Figure 6-5. Intergrative genomic viewer (IGV) screenshot of two false positive 

mutations in SMAD4 gene of primary tumour of patient 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In all patients with multiple samples, linking polymorphism were sought and identified, 

for example Table 6-10. 

 

Table 6-10 Example of linking polymorphism (heterozygous for p.Glu168Asp in 

MET gene) across all biospecimens in Patient 17. 

  Variant Coverage % 

Blood rep 1  362 811 44.6 

Blood rep 2 526 1079 48.7 

Primary 511 1157 44.2 

Lymph node 455 1344 33.6 
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6.2.6 Survival analysis 
Identification of mutations over the 5% threshold or of ANY frequency was not 

associated with a difference in overall survival Error! Reference source not found.. 

Figure 6-6 Kaplan-Meier analysis for overall survival of OncoQuik® cohort. A) 

Comparison of patients with mutations identified over 5% threshold versus those 

patients with no mutations over 5%. B) Comparision of patients with mutations 

identified at ANY threshold. 
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6.2.7 Patient characteristics of cancer and control patients in Rosette 
SepTM cohort 

 

The characteristics of cancer and control patients in the Rosette SepTM cohort are shown 

in Table 6-13. As patients in the RosetteSepTM cohort were recruited on an individual 

basis by the investigator and not from the generic PBRU Biobank, complete 

demographic information is not available. 
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Table 6-13. Characteristics of cancer and control patients in the Rosette SepTM 

cohort 

*Stage reported according to histology if resected or according to radiology if not 

resected. 

 

 

 

There were significantly more patients with variants of greater than 5% frequency in the 

cancer group compared to the control group (P=0.005) Table 6-14. There were also 

significantly more patients with variants at any frequency in the cancer compared to the 

control group (P=0.0215) 

Table 6-15 and Figure 6-7. 

 

 

Table 6-14. Compariosn of mutations >5% in cancer and control patients in the 

Rosette SepTM cohort. P=0.005 using Fischer's exact 

 >5% mutation No mutation >5 % Total 

Cancer 8 7 15 

Control 0 9 9 

Total 8 16 24 

 

Table 6-15. Comparison of mutations at ANY frequency in cancer and control 

patients in the Rosette SepTM cohort. P=0.0215 using Fischer's exact 

 Any mutation No mutation Total 

Cancer 13 2 15 

Control 3 6 9 

Total 16 8 24 
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Figure 6-7. Comparison of mutation frequency identified between cancer and 

control groups in the Rosette SepTM cohort 

One control patient was excluded from analysis due to the identification of a previously 

unknown germline mutation (p.Arg283Cys) in the TP53 gene, Li-Fraumeni Syndrome. 

This patient however did not have any mutations identified over the 5% threshold with 

the exception of the germline TP53 described. A mutation with a frequency greater than 

5% identified in the control group was excluded on the basis that it was an INDEL 

(EGFR: c.1431_1432insA) in a high homopolymer region of the epidermal growth 

factor receptor (EGFR) gene with 6 consecutive ‘A’s. The ion torrent platform is 

notoriously susceptible to miscalling in this setting and therefore the mutation is 

assumed to be a false positive Figure 6-8.  
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Figure 6-8. Mutation in the EGFR gene identified in a control patient and 

subsequently excluded from analysis. The insertion of an ‘A’ base pair after a run 

of 6 consecutive ‘A’s is most likely due to base miss-calling by the ion torrent 

platform. 

A insertion
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6.2.8 Analysis of the mutations identified by Rosette SepTM enrichment 
method. 
 

RosetteSep™ CTC Enrichment Cocktail Containing Anti-CD36 (RS-36) performed the 

best overall identifying 6 mutations with a frequency >5% in 5 patients Figure 6-9. 

Comparison of mutations >5% identified according to Rosette SepTM enrichment 

method 

 
Figure 6-9. Comparison of mutations >5% identified according to Rosette SepTM 

enrichment method 

6.2.9 Comparison of mutations from Rosette SepTM enriched blood with 
primary tumour. 
 

Of the seven patients who underwent resection in the Rosette SepTM cancer cohort only 

one (patient 6) had FFPE tumour material available for sequencing. This sample was a 

moderate and focally poorly differentiated PDAC and staged at pT3,N1,M0,R1. KRAS 

and TP53 mutations were identified; p.Gly12Cys and p.Gly199Val respectively. These 

mutations were not identified in any of the RS enriched blood samples for that patient. 

Similarly, none of the 8 variants identified in the RS enriched blood sample were found 

in the primary tumour.  
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6.2.10 Tracking mutational profile across serial blood samples. 
 

Serial blood samples were acquired from 10 of the 15 cancer patients. Three samples 

were taken in total from each patient during the course of their treatment. All samples 

were separated by administration of chemotherapy representing a potential clonal sweep 

of CTCs. The treatment timelines for the 10 patients indicating the timing of the sample 

collection in relation to their treatment is shown in Figure 6-10. The variants identified 

and their presence or absence across the three separate samples is shown in Figure 6-11. 

Of the 47 variants identified, 37 were identified exclusively in the first sample (S1), 8 

exclusively in the second sample (S2), 1 exclusively in the third sample (S3) and 1 was 

identified in all three samples. With the exception of this trans-sample mutation, none of 

the mutations identified were present in both duplicates for S1 samples or present in the 

other two corresponding RS enrichments. 

In patient 3 the TP53 mutation p.Arg267Trp was identified in all three serial samples 

(S1,S2 and S3), and, in the second sample (S2), in all three RS enrichment samples 

(albeit at low coverage in RS-56 and RS-36) (Figure 6-12). The principle identification 

of this variant was in the patient’s 1st sample (S1), RS-56 enrichment in the second 

duplicate (Figure 6-12A). Here, a very high Phred quality score (Q) of 250.2 infers the 

probability that this variant was incorrectly called due to sequencing error is 1 in 1x1025. 

The Phred quality scores for this variant in the subsequent samples (Figure 6-12B and 

C) were 111.1, 10.6, 11.96, 7.405 and 103.6. The SIFT score for this variant is 0.0 

suggesting the amino acid change has a ‘deleterious’ effect on TP53 function. The 

variant has been confirmed as a somatic mutation in the COSMIC database with 

reference COSM11183 and the IARC TP53 database which has compiled 33 reported 

cases in the literature of this mutation in association with cancer. 
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Figure 6-10. Treatment and blood sampling timeline of 10 cancer patients in 

Rosette SepTM cohort undergoing serial sampling. A) patient 1, B) patient 2 etc. 

through to J) patient 10. S1, S2 and S3 represent the first, second and third 
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sampling of blood for Rosette Sep enrichment respectively. Gemcitabine 

chemotherapy given in 28-day cycle with treatment on days 1, 8 and 15. 

FOLFIRINOX (Oxaliplatin, Irinotecan and Fluorouracil) and FOLFIRI 

(Irinotecan and Fluorouracil) given in 14 day cycle with treatment on day 1 and 

5FU pump for 46hrs. Md Grammont -  Modified DeGrammont (Fluorouracil) 

given in 14 day cycle with treatment on day 1 and 5FU pump for 46hrs. 

 

 
Figure 6-11. Tracking of mutations identified in Rosette SepTM enriched blood 

samples taken at three separate time points during the course of patients’ 

chemotherapy treatment for PDAC. 
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Figure 6-12. The TP53 mutation p.Arg267Trp identified in all three serial samples 

from patient 3. 
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6.3 Discussion 
 

In this chapter the two most promising CTC enrichment technologies OncoQuik® and 

Rosette SepTM were taken forward and applied to two separate cohorts of patients, those 

undergoing pancreatic surgery for PDAC and those receiving chemotherapy for PDAC 

respectively.  

 

The first aspect of this work involved switching from ‘in-house’ primers, covering just 

exons, 5 to 8 of the TP53 gene, to a panel covering the hotspots of 22 cancer related 

genes. PDAC is well represented in this panel with all the mountain mutations with the 

exception of CDKN2A covered (TP53, KRAS and SMAD4) and a large number of lower 

frequency mutations, comprising the long genomic tail of PDAC as shown in The 

OncomineTM panel contains multiplex primers for the hotspots of 22 frequency mutated 

genes. A list of the genes and their reported frequency in PDAC is listed in Table 

2-5Error! Reference source not found.. A number of the genes have actionable 

phenotypes vastly increasing the scope for personalised therapy compared to sequencing 

TP53 alone. The PDAC cell line spiking experiments were an important step to confirm 

that an adequate depth >1,000 reads could be achieved within the new sequencing 

parameters. It also confirmed that common mutations in both TP53 and KRAS could be 

accurately and consistently identified.  

 

Differences in tumour stages, treatments and sample processing methods make direct 

comparison between the OncoQuik® and RosetteSepTM cohort difficult, though this was 

not the aim of the thesis. The RosetteSepTM Cohort identified significantly more 

variants both above and below the 5% frequency threshold when compared to age 

matched controls. Comparison with primary tumour was only possible in one patient in 

this cohort, and, as with the OncoQuik® cohort no variants were found in both. Also 

concerning is the fact that the nearly ubiquitous KRAS mutations (e.g. p.G12D or 

p.G12C) were not found in any of the samples which would be expected if their origin 

was PDAC. 

In patient 2 an additional mutation was superimposed in the lymph node (TP53 

p.Arg196Ter) which was not present in the primary tumour. This could be an example 

of  branched evolution, with p.Arg196Ter being ‘private’ (i.e. late) mutation(Gerlinger 

et al., 2012) 
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The profiles of the 10 serially sampled patients in the Rosette SepTM cohort shows that 

variants emerge and drop out at all time points. This is consistent with theories that 

clonal diversity is driven by branched tumour evolution, responding to selective 

pressure from the local microenvironment including chemotherapy(Burrell et al., 2013; 

Greaves & Maley, 2012b). Though the first S1 stage identified most, and the S3 stage 

least variants. Variant changes were seen within the same gene, for example different 

variants were detected in TP53 and SMAD4 between the first and second samples in 

patient 2 Figure 6-11. Similarly, significant genetic disparity, so called ‘micro 

heterogeneity’ has been demonstrated between positively (EpCam) selected CTCs in 

cancer patients(Polzer et al., 2014). Whilst the origin of these variants cannot be proven 

due to the nature of the negative selection enrichment it is feasible that these changes 

reflect changes of the dominant clone of CTC following clonal sweeps with 

chemotherapy treatment. The clinical application of this is potentially large with 

personal selection of chemotherapy being possible based on the molecular profile of the 

dominant clone at the time of treatment and not that of the primary tumour or even 

initial CTC profile. 

 

Additionally, it was shown that a somatic, deleterious mutation widely implicated in 

carcinogenesis(TP53, p.Arg267Trp) (AlHarbi et al., 2018) could be identified in the 

peripheral blood without a priori knowledge, and subsequently tracked across three 

serial samples during the course of treatment. This mutation was detected in all three RS 

enrichment methods and satisfied all the requirements for a disease causing mutation. 

That it was not detected in both replicates of the first S1 sample also adds weight the 

utility of the limiting dilution method used. A germline variant would be expected to be 

present in every sample. A sequencing artefact would not be reproduced in multiple 

samples of only one patient in the low homopolymer regions. This phenomena of 

tracked mutation throughout a patient’s samples was only seen in this one patient. One 

may speculate that the presence of disease progression whilst on chemotherapy, and 

death due to cancer metastasis less than 50 days after the third sample (S3) (Figure 

6-10C) observed in this patient is a reflection of a higher burden of CTCs thus 

permitting detection and tracking. If this is the case, and the issue is remains one of 

contaminating wild type DNA, then perhaps reverting to 10 genomes per/µL with 10 

replicates (as opposed to two duplicates and 20 genomes per/µL) may overcome this 
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issue. The importance of this finding is that it is the first step towards the ultimate goal 

of personalised therapy based on CTCs rather than primary tumour. 

 

Other cancer types have successfully used personalised therapy based on the molecular 

analysis of the primary tumour; it has been the mainstay of breast cancer treatment since 

the 1980s(Ross et al., 2009) and lung(Kim et al., 2011; Pao & Chmielecki, 2010), 

colorectal(Kocarnik, Shiovitz, & Phipps, 2015) and prostate cancer(Den et al., 2015) 

appear set to benefit in the near future. Unfortunately, efforts to date of personalised 

therapy in PDAC have been unsuccessful. The Individualised Molecular Pancreatic 

Cancer Therapy (IMPaCT) study randomised patients between standard chemotherapy 

or personalised chemotherapy based on 4 sub-groups of actionable mutations uncovered 

by sequencing of the primary tumour. A pilot study failed to recruit a single patient, and 

serves to emphasise the difficulties: that poor quality, inaccessible, untimely, 

heterogeneous bio-specimens would make molecular characterisation of the primary 

tumour to guide therapy impractical in an adequately powered trial(Chantrill et al., 

2015). The National Cancer Institute's Molecular Analysis for Therapy Choice (NCI-

MATCH) studies include pancreatic cancer as a priority area and have shown the 

feasibility of recruitment of pancreatic cancer patient for clinical trials of precision 

medicine, albeit that to date no clinical benefit has been shown (Coyne, Takebe, & 

Chen, 2017). There are numerous barriers to personalised therapy in PDAC related to 

genetic heterogeneity, clonal evolution, and biospecimen acquisition and composition. 

Unfortunately, because of these barriers the use of personalised therapy in pancreatic 

cancer remains at the proof of concept stage. The ability to extract relevant genomic 

material from the CTCs in patients with pancreatic cancer is key to reaching the “holy 

grail” of personalised therapy. 

 



Chapter 7: Discussion 

Thomas A R Hanna - May 2019   150 

7 DISCUSSION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 7: Discussion 

Thomas A R Hanna - May 2019   151 

The first aim of the thesis was to develop and optimise a technology to enrich and 

molecularly characterise CTCs in PDAC. To this end we began with examining the 

molecular changes in pancreatic juice. The EUROPAC group, with which I was 

affiliated had already established a research programme of pancreatic juice analysis for 

risk stratification in patients with a genetic predisposition for PDAC(Grocock et al., 

2007). This was an opportunity to develop downstream molecular analysis which could 

later be applied to CTCs as well as optimise pancreatic juice as a source of biospecimen. 

We established that whole juice was superior to supernatant in discriminating PDAC 

from control samples and no evidence was found that pellet was inferior to whole juice. 

The sensitivity and specificity of KRAS status for PDAC in the pellet of pancreatic juice 

was 83.3% and 64.3% respectively. 

 

We then turned to developing an in-house method of CTC enrichment using negative 

depletion combined with low frequency variant detection using NGS and limiting 

dilution. In various small-scale spiking experiments, a single CD45 depletion was found 

to be the optimal strategy for CD45 depletion and ultimately CTC enrichment. This was 

then taken forward for further assessment of four clinical samples. Developing the 

technology using clinical volumes (7mLs) of blood required an exponential scale-up of 

reagents. For example, a significantly larger volume of reagents (antibodies and ferrous 

beads etc) were required for each depletion compared to earlier spiking experiments. 

Each patient also had typically three additional experimental controls with each of these 

undergoing multiple repeats (up to 10), which were then sequenced using in-house 

TP53 primers and NGS technology. The in-house primers did not use the multiplex 

PCR methods of the OncomineTM panel used later in the thesis and was therefore an 

extremely labour-intensive process. The implication of this arrangement was that it was 

not feasible to increase the number of patients beyond four given the limited resources 

of time and money available. Whilst the in-house CD45 depletion and TP53 primers 

showed promise and appeared to significantly enrich CTCs in half of the patients, there 

were some inconsistencies. We therefore decided not to take this technology into the 

next phase of development and instead looked towards established CTC technologies to 

develop further. 

 

Three commercial CTC enrichment technologies were selected for assessment to cover 

a variety of enrichment methods; CellSieveTM using size, OncoQuik® using buoyancy 

and RosetteSepTM using negative selection. In several clinical samples using appropriate 



Chapter 7: Discussion 

Thomas A R Hanna - May 2019   152 

controls, repeats and head to head comparisons OncoQuik® and RosetteSepTM out 

performed CellSieveTM. The majority (8/9) of TP53 mutations were identified in the 

non-enriched portion <10Pm using CellSieveTM suggesting that a smaller phenotype of 

CTCs capable of passing through the filter may predominate in these samples consistent 

with recent reports of EMT(Brabletz et al., 2018)(Alix-Panabières, Mader, & Pantel, 

2017). RosetteSepTM and OncoQuik® showed promise with consistency both within and 

across enrichment methods. For example, in patient 11 the TP53 non-synonymous 

deleterious mutation p.L265Q was identified using OncoQuik® (all 5 repeats at a 

mutation frequency of 12%), RosetteSepTM-56 (3 out of 5 repeats at a mutation 

frequency of 6.8%) and RoesetteSepTM-36 (1 out of 5 repeats at a mutation frequency of 

9.9%) and subsequently confirmed using mutation specific PCR. These results satisfy 

the first aim of the thesis to develop and optimise a technology to enrich and 

molecularly characterise CTCs in PDAC. 

 

The second aim of the thesis was to use the technology developed to track the 

mutational profile of CTCs through a patient’s treatment. In the final chapter this was 

attempted using two different cohorts of patients (OncoQuik® and RosetteSepTM) with 

PDAC and appropriate controls. The OncoQuik® enrichment was performed pre-

operatively on the day of pancreatic surgery on 29 patients. 16 patients underwent 

surgery for PDAC in the cancer group and 13 patients underwent surgery for benign 

conditions in the benign group. 

 

An attempt was made track mutations in the OncoQuik® cohort from pre-operative 

sampling through to post-operative sampling. Following up patients for serial sampling 

of blood proved a significant logistical challenge. Some patients had follow-up at their 

referring hospital which I did not have access to, and on many occasions, technical 

support to process the samples fresh on the day of clinic follow up was not available. 

Consequently, in the OncoQuik® cohort only four patients underwent sequencing of 

enriched CTCs in the post-operative follow up period, and unfortunately, three of these 

patients were excluded from analysis as they had non-PDAC pathology. Clearly it is not 

possible to draw conclusions from such limited data. Whilst this follow up sequencing 

data would have been interesting, lack of it does not detract from the aims of the thesis 

which was achieved in the RosetteSepTM cohort. 
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Several questions were raised in this chapter about the ability of OncoQuik® to enrich 

whole blood for CTCs. Only a trend towards significance once the 5% variant 

frequency threshold had been removed was found and there was not enough data to 

show significance with the 5% threshold. There was also no correlation between the 

variants identified in the blood and that of the solid tumour material (albeit that the 

sequence data on the tissue at the corresponding sites was in most cases poor). The 

mutation status was not shown to have a bearing on overall survival with a trend for 

better survival with samples where mutation positive CTCs were isolated. There are 

several potential explanations for this. The OncoQuik® contained patients with the 

earliest stages of various cancers when levels of CTCs are expected to be at their lowest, 

perhaps below the threshold for detection at this stage. The freezing and storing process 

permitted batch processing of these relatively rare samples which took many months to 

obtain. However, this process may have reduced the viability of CTCs or altered their 

buoyancy such that the enrichment process became ineffective. Perhaps the buoyancy of 

CTCs in early cancers is different to that found in more advanced cancers and hence 

evaded isolation. One drawback of this method of negative selection of CTCs is that it 

is not possible to confirm the presence of CTCs in the sample before processing. It is 

possible therefore that the variants identified were from other sources of DNA such as 

circulating free DNA (cfDNA) found in plasma: although by pelting the cells before 

processing most of the plasma should have been discarded, it is inevitable that a small 

volume will get carried over with the pellet. A number of studies have described the use 

of cfDNA to screen for cancer(Bianchi et al., 2015; Heitzer, Ulz, & Geigl, 2015; 

Szpechcinski et al., 2015), recurrence(Bratman, Newman, Alizadeh, & Diehn, 2015; 

Olsson et al., 2015; Stremitzer et al., 2015)and response. Plasma contains approximately 

1µg/ml of free DNA(Bagul, Pushpakom, Boylan, Newman, & Siriwardena, 2006), most 

comes from leukocytes and endothelial cells, but in cancer patients the levels can rise by 

as much as 10 fold; even more during chemo and radio therapy(Holdenrieder et al., 

2001). Some of this increase may be due to release of DNA from lysed apoptotic or 

necrotic tumour cells but the largest proportion results from active secretion from 

macrophages; work in mouse models suggests that this cancer induced increase includes 

nucleosomes that have not come from cancer cells(Pisetsky, 2004).  

 

In the second cohort of patients RosetteSepTM was used to enrich CTCs and included 15 

patients with PDAC undergoing chemotherapy (10 of whom were sampled serially on 

three separate occasions between cycles of chemotherapy) and 10 controls patients 
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without cancer. This group represented a significantly easier group to serially sample as 

their timings of chemotherapy treatments offered an ideal opportunity to take repeat 

samples. The RosetteSepTM samples were also able to be processed fresh and so I was 

not limited by the availability of technical support staff.  

 

In the final chapter I demonstrated that it was possible to track a non-synonymous, 

deleterious TP53 mutation (p.R267W) identified in an enriched blood sample across 

three serial time-points in the patient’s treatment; thus satisfying the second aim of the 

thesis: to use the CTC and NGS technology developed to track the mutational profile of 

CTCs through a patient’s treatment. 

 

I recommend that future research be directed towards determining the prognostic 

significance mutations in CTCs persisting during treatment with a larger and more 

homogeneous cohort of PDAC patients. Having established an optimal enrichment 

method and suitable downstream analysis, resources in these studies could be more 

focused than that used here in the development phase. This would permit each sample to 

have a greater number of serial repeats, permitting a more dilute concentration of 

sample and potentially increasing the sensitivity of mutation detection further. If future 

trials demonstrated the prognostic significance of the persistence of CTCs during 

chemotherapy treatment then further clinical trials could examine whether switching 

chemotherapy agents in this scenario (a potential surrogate marker of chemo resistance) 

improved overall survival.  

 

Personalised therapy is the natural progression from targeted therapy, whereby the 

targeted therapy is selected for a patient based on actionable mutations found in the 

patient’s tumour(Tran et al., 2016). Ultimately the goal would be to use the molecular 

profile of CTCs in a PDAC patient upfront to select the most appropriate chemotherapy 

agent, and then switch agents when chemoresistance is identified though there are many 

barriers including CTC enrichment technology, genetic heterogeneity, clonal evolution 

and biospecimen type which need to be overcome first.  

 

 

 



Chapter 8: References 

Thomas A R Hanna - May 2019   155 

8 REFERENCES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8: References 

Thomas A R Hanna - May 2019   156 

 

 

 

 

Adams, D. L., Martin, S. S., Alpaugh, R. K., Charpentier, M., Tsai, S., Bergan, R. C., 

… Cristofanilli, M. (2014). Circulating giant macrophages as a potential 

biomarker of solid tumors. https://doi.org/10.1073/pnas.1320198111 

Adams, D., Zhu, P., Makarova, O. V, Martin, S., Charpentier, M., Chumsri, S., … Tang, 

C. (2015). The systematic study of circulating tumor cell isolation using 

lithographic microfilters. Rsc Advances, 9, 4334–4342. 

https://doi.org/10.1039/c3ra46839a 

AlHarbi, M., Mubarak, N., AlMubarak, L., Aljelaify, R., AlSaeed, M., Almutairi, A., … 

Abedalthagafi, M. (2018). Rare TP53 variant associated with Li-Fraumeni 

syndrome exhibits variable penetrance in a Saudi family. Npj Genomic Medicine, 

3(1). https://doi.org/10.1038/s41525-018-0074-3 

Alix-Panabières, C., Mader, S., & Pantel, K. (2017). Epithelial-mesenchymal plasticity 

in circulating tumor cells. Journal of Molecular Medicine, 95(2), 133–142. 

https://doi.org/10.1007/s00109-016-1500-6 

Allard, W. J., Matera, J., Miller, M. C., Repollet, M., Connelly, M. C., Rao, C., … 

Terstappen, L. W. M. M. (2005). Tumor Cells Circulate in the Peripheral Blood of 

All Major Carcinomas but not in Healthy Subjects or Patients With Nonmalignant 

Diseases Tumor Cells Circulate in the Peripheral Blood of All Major Carcinomas 

but not in Healthy Subjects or Patients With Non. 6897–6904. 

Altin, J. G., & Sloan, E. K. (1997). The role of CD45 and CD45-associated molecules 

in T cell activation. 430–445. 

Andea, A., Sarkar, F., & Adsay, V. N. (n.d.). Clinicopathological Correlates of 

Pancreatic Intraepithelial Neoplasia : A Comparative Analysis of 82 Cases With 

and 152 Cases Without Pancreatic Ductal Adenocarcinoma. (3). 

https://doi.org/10.1097/01.MP.0000087422.24733.62 

Andreopoulou, E., Yang, L. Y., Rangel, K. M., Reuben, J. M., Hsu, L., Krishnamurthy, 

S., … Cristofanilli, M. (2012). Comparison of assay methods for detection of 

circulating tumor cells in metastatic breast cancer: AdnaGen AdnaTest 

BreastCancer Select/Detect versus Veridex CellSearch system. International 

Journal of Cancer.Journal International Du Cancer, 130(7), 1590–1597. 

https://doi.org/10.1002/ijc.26111 [doi] 



Chapter 8: References 

Thomas A R Hanna - May 2019   157 

Armstrong, A. J., Marengo, M. S., Oltean, S., Kemeny, G., Bitting, R. L., Turnbull, J. 

D., … Garcia-Blanco, M. a. (2011). Circulating tumor cells from patients with 

advanced prostate and breast cancer display both epithelial and mesenchymal 

markers. Molecular Cancer Research : MCR, 9, 997–1007. 

https://doi.org/10.1158/1541-7786.MCR-10-0490 

Arumugam, T., Ramachandran, V., Fournier, K. F., Wang, H., Marquis, L., Abbruzzese, 

J. L., … Choi, W. (2009). Epithelial to mesenchymal transition contributes to drug 

resistance in pancreatic cancer. Cancer Research, 69(14), 5820–5828. 

https://doi.org/10.1158/0008-5472.CAN-08-2819 

Asano, T., Yao, Y., Zhu, J., Li, D., Abbruzzese, J. L., & Reddy, S. a. (2005). The 

rapamycin analog CCI-779 is a potent inhibitor of pancreatic cancer cell 

proliferation. Biochemical and Biophysical Research Communications, 331(1), 

295–302. https://doi.org/10.1016/j.bbrc.2005.03.166 

Auerbach, C., Moutschen-Dahmen, M., & Moutschen, J. (1977). Genetic and 

cytogenetical effects of formaldehyde and related compounds. Mutation Research, 

39(3–4), 317–361. https://doi.org/10.1016/0165-1110(77)90011-2 

Bagul, A., Pushpakom, S., Boylan, J., Newman, W., & Siriwardena, A. K. (2006). 

Quantitative analysis of plasma DNA in severe acute pancreatitis. JOP : Journal of 

the Pancreas, 7(6), 602–607. 

Balic, M., Dandachi, N., Hofmann, G., Samonigg, H., Loibner, H., Obwaller, A., … 

Bauernhofer, T. (2005). Comparison of two methods for enumerating circulating 

tumor cells in carcinoma patients. Cytometry.Part B, Clinical Cytometry, 68(1), 

25–30. https://doi.org/10.1002/cyto.b.20065 [doi] 

Bamford, S., Dawson, E., Forbes, S., Clements, J., Pettett, R., Dogan, A., … Wooster, 

R. (2004). The COSMIC (Catalogue of Somatic Mutations in Cancer) database and 

website. Br J Cancer, 91(2), 355–358. https://doi.org/10.1038/sj.bjc.6601894 

Beerenwinkel, N., Antal, T., Dingli, D., Traulsen, A., Kinzler, K. W., Velculescu, V. E., 

… Nowak, M. A. (2007). Genetic progression and the waiting time to cancer. 

PLoS Computational Biology, 3(11), 2239–2246. 

https://doi.org/10.1371/journal.pcbi.0030225 

Bianchi, D. W., Chudova, D., Sehnert, A. J., Bhatt, S., Murray, K., Prosen, T. L., … 

Halks-Miller, M. (2015). Noninvasive Prenatal Testing and Incidental Detection of 

Occult Maternal Malignancies. Jama, 314(2), 162. 

https://doi.org/10.1001/jama.2015.7120 

Biankin, A. V., Waddell, N., Kassahn, K. S., Gingras, M.-C., Muthuswamy, L. B., 



Chapter 8: References 

Thomas A R Hanna - May 2019   158 

Johns, A. L., … Grimmond, S. M. (2012). Pancreatic cancer genomes reveal 

aberrations in axon guidance pathway genes. Nature, 491(7424), 399–405. 

https://doi.org/10.1038/nature11547 

Bidard, F. C., Huguet, F., Louvet, C., Mineur, L., Bouche, O., Chibaudel, B., … 

Hammel, P. (2013). Circulating tumor cells in locally advanced pancreatic 

adenocarcinoma: the ancillary CirCe 07 study to the LAP 07 trial. Annals of 

Oncology : Official Journal of the European Society for Medical Oncology / 

ESMO, 24(8), 2057–2061. https://doi.org/10.1093/annonc/mdt176 [doi] 

Bondar, V. M., Sweeney-Gotsch, B., Andreeff, M., Mills, G. B., & McConkey, D. J. 

(2002). Inhibition of the phosphatidylinositol 3’-kinase-AKT pathway induces 

apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol Cancer Ther, 

1(12), 989–997. Retrieved from 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt

=Citation&list_uids=12481421 

Brabletz, T., Kalluri, R., Nieto, M. A., & Weinberg, R. A. (2018). EMT in cancer 

metastasis. Nature Reviews Cancer, 18, 129–135. 

Bratman, S. V, Newman, A. M., Alizadeh, A. a, & Diehn, M. (2015). Potential clinical 

utility of ultrasensitive circulating tumor DNA detection with CAPP-Seq. Expert 

Review of Molecular Diagnostics, 15(6), 1–5. 

https://doi.org/10.1586/14737159.2015.1019476 

Bruns, C. J. (2004). Rapamycin-Induced Endothelial Cell Death and Tumor Vessel 

Thrombosis Potentiate Cytotoxic Therapy against Pancreatic Cancer. Clinical 

Cancer Research, 10(6), 2109–2119. https://doi.org/10.1158/1078-0432.CCR-03-

0502 

Burrell, R. a, McGranahan, N., Bartek, J., & Swanton, C. (2013). The causes and 

consequences of genetic heterogeneity in cancer evolution. Nature, 501(7467), 

338–345. https://doi.org/10.1038/nature12625 

Campbell, P. J., Yachida, S., Mudie, L. J., Stephens, P. J., Pleasance, E. D., Stebbings, 

L. a, … Futreal, P. A. (2010). The patterns and dynamics of genomic instability in 

metastatic pancreatic cancer. Nature, 467(7319), 1109–1113. 

https://doi.org/10.1038/nature09460 

Canto, M. I., Harinck, F., Hruban, R. H., Offerhaus, G. J., Poley, J.-W., Kamel, I., … 

Bruno, M. (2013). International Cancer of the Pancreas Screening (CAPS) 

Consortium summit on the management of patients with increased risk for familial 

pancreatic cancer. Gut, 62(3), 339–347. https://doi.org/10.1136/gutjnl-2012-



Chapter 8: References 

Thomas A R Hanna - May 2019   159 

303108 

Castellanos, J. a., Merchant, N. B., & Nagathihalli, N. S. (2013). Emerging targets in 

pancreatic cancer: Epithelial-mesenchymal transition and cancer stem cells. 

OncoTargets and Therapy, 6, 1261–1267. https://doi.org/10.2147/OTT.S34670 

Chantrill, L. a, Nagrial, A. M., Watson, C., Johns, A. L., Martyn-Smith, M., Simpson, 

S., … Biankin, A. V. (2015). Precision Medicine for Advanced Pancreas Cancer: 

The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) Trial. Clinical 

Cancer Research : An Official Journal of the American Association for Cancer 

Research, 21(9), 2029–2037. https://doi.org/10.1158/1078-0432.CCR-15-0426 

Cheng, C.-L., Sherman, S., Watkins, J. L., Barnett, J., Freeman, M., Geenen, J., … 

Lehman, G. a. (2006). Risk factors for post-ERCP pancreatitis: a prospective 

multicenter study. The American Journal of Gastroenterology, 101(1), 139–147. 

https://doi.org/10.1111/j.1572-0241.2006.00380.x 

Cohen, S. J., Punt, C. J., Iannotti, N., Saidman, B. H., Sabbath, K. D., Gabrail, N. Y., … 

Meropol, N. J. (2009). Prognostic significance of circulating tumor cells in patients 

with metastatic colorectal cancer. Annals of Oncology : Official Journal of the 

European Society for Medical Oncology / ESMO, 20(7), 1223–1229. 

https://doi.org/10.1093/annonc/mdn786 [doi] 

Conroy, T., Hammel, P., Hebbar, M., Ben Abdelghani, M., Wei, A. C., Raoul, J.-L., … 

Bachet, J.-B. (2018). FOLFIRINOX or Gemcitabine as Adjuvant Therapy for 

Pancreatic Cancer. New England Journal of Medicine, 379(25), 2395–2406. 

https://doi.org/10.1056/nejmoa1809775 

Coughlin, S. S., Calle, E. E., Patel, A. V., & Thun, M. J. (2000). Predictors of 

pancreatic cancer mortality among a large cohort of United States adults. Cancer 

Causes and Control, 11(10), 915–923. https://doi.org/10.1023/A:1026580131793 

Cristofanilli, M., Budd, G. T., Ellis, M. J., Stopeck, A., Matera, J., Miller, M. C., … 

Hayes, D. F. (2004). Circulating tumor cells, disease progression, and survival in 

metastatic breast cancer. The New England Journal of Medicine, 351(8), 781–791. 

https://doi.org/10.1056/NEJMoa040766 [doi] 

Cubilla, A. L., & Fitzgerald, P. J. (1976). Morphological Lesions Associated with 

Human Primary Invasive Nonendocrine Pancreas Cancer1. 36(July), 2690–2698. 

de Wilde, R., Hruban, R., Maitra, A., & Offerhaus, G. (2011). Reporting precursors to 

invasive pancreatic cancer : pancreatic intraepithelial neoplasia , intraductal 

neoplasms and mucinous cystic neoplasm. Diagnostic Histopathology, 18(1), 17–

30. https://doi.org/10.1016/j.mpdhp.2011.10.012 



Chapter 8: References 

Thomas A R Hanna - May 2019   160 

Demel, U., Tilz, G. P., Foeldes-Papp, Z., Gutierrez, B., Albert, W. H., & Bocher, O. 

(2004). Detection of tumour cells in the peripheral blood of patients with breast 

cancer. Development of a new sensitive and specific immunomolecular assay. 

Journal of Experimental & Clinical Cancer Research : CR, 23(3), 465–468. 

Den, R. B., Yousefi, K., Trabulsi, E. J., Abdollah, F., Choeurng, V., Feng, F. Y., … 

Karnes, R. J. (2015). Genomic classifier identifies men with adverse pathology 

after radical prostatectomy who benefit from adjuvant radiation therapy. Journal of 

Clinical Oncology, 33(8), 944–951. https://doi.org/10.1200/JCO.2014.59.0026 

Denzel, S., Maetzel, D., Mack, B., Eggert, C., Bärr, G., & Gires, O. (2009). Initial 

activation of EpCAM cleavage via cell-to-cell contact. 14, 1–14. 

https://doi.org/10.1186/1471-2407-9-402 

Dijkstra, J. R., Tops, B. B. J., Nagtegaal, I. D., van Krieken, J. H. J. M., & Ligtenberg, 

M. J. L. (2015). The homogeneous mutation status of a 22 gene panel justifies the 

use of serial sections of colorectal cancer tissue for external quality assessment. 

Virchows Archiv, 467(3), 273–278. https://doi.org/10.1007/s00428-015-1789-5 

Dotan, E., Alpaugh, R. K., Ruth, K., Benjamin, P., Denlinger, C. S., Hall, M. J., … 

Cohen, S. J. (2016). Prognostic Significance of MUC-1 in Circulating Tumor Cells 

in Patients With Metastatic Pancreatic Adenocarcinoma. 00(00), 1–5. 

Ducreux, M., Cuhna, A. S., Caramella, C., Hollebecque, A., Burtin, P., Goéré, D., … 

ESMO Guidelines Committee. (2015). Cancer of the pancreas: ESMO Clinical 

Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology : 

Official Journal of the European Society for Medical Oncology, 26 Suppl 

5(Supplement 5), v56-68. https://doi.org/10.1093/annonc/mdv295 

Elhanafi, S., Mahmud, N., Vergara, N., Kochman, M. L., Das, K. K., Ginsberg, G. G., 

… Chandrasekhara, V. (2018). Comparison of endoscopic ultrasound tissue 

acquisition methods for genomic analysis of pancreatic cancer. Journal of 

Gastroenterology and Hepatology (Australia), (Irb 829027), 1–7. 

https://doi.org/10.1111/jgh.14540 

Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., … Bray, F. 

(2015). Cancer incidence and mortality worldwide: sources, methods and major 

patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359-86. 

https://doi.org/10.1002/ijc.29210 

Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis 

revisited. NATURE REVIEWS, 3(June), 1–6. 

Franco, J., Witkiewicz, A. K., & Knudsen, E. S. (2014). CDK4/6 inhibitors have potent 



Chapter 8: References 

Thomas A R Hanna - May 2019   161 

activity in combination with pathway selective therapeutic agents in models of 

pancreatic cancer. Oncotarget, 5(15), 6512–6525. Retrieved from 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4171647&tool=pmcent

rez&rendertype=abstract 

Freeman ML, DiSario JA, Nelson DB,  et al. (2001). Risk factors for post-ERCP 

pancreatitis: a prospective, multicenter study. Gastrointest Endosc, 54, 425–434. 

Fuccio, L., & Larghi, A. (2014). Endoscopic ultrasound-guided fine needle aspiration: 

How to obtain a core biopsy? Endoscopic Ultrasound, 3(2), 71–81. 

https://doi.org/10.4103/2303-9027.123011 

Fukushima, N., Walter, K. M., Ueki, T., Sato, N., Matsubayashi, H., Cameron, J. L., … 

No, C. (2003). Diagnosing Pancreatic Cancer Using Methylation Specific PCR 

Analysis of Pancreatic Juice nd sc ie nc e . ot fo r d is t rib ut n . (February), 78–

83. 

Furukawa, T., Chiba, R., Kobari, M., Matsuno, S., Nagura, H., & Takahashi, T. (1994). 

Varying grades of epithelial atypia in the pancreatic ducts of humans. 

Classification based on morphometry and multivariate analysis and correlated with 

positive reactions of carcinoembryonic antigen. Archives of Pathology & 

Laboratory Medicine, 118(3), 227–234. 

Gerlinger, M., Andrew, M., Horswell, S., Larkin, J., Endesfelder, D., Math, D., … Ph, 

D. (2012). Intratumor Heterogeneity and Branched Evolution Revealed by 

Multiregion Sequencing. NEJM, 366(10), 883–892. 

Gertler, R., Rosenberg, R., Fuehrer, F., Dahm, M., Nekarda, H., & Siewert, J. (2003a). 

Detection of circulating tumor cells in blood using an optimized density gradient 

centrifugation. Recent Results Cancer Res., 162, 149–155. 

Gertler, R., Rosenberg, R., Fuehrer, K., Dahm, M., Nekarda, H., & Siewert, J. R. 

(2003b). Detection of circulating tumor cells in blood using an optimized density 

gradient centrifugation. Recent Results in Cancer Research.Fortschritte Der 

Krebsforschung.Progres Dans Les Recherches Sur Le Cancer, 162, 149–155. 

Gorges, T. M., Tinhofer, I., Drosch, M., Rose, L., Zollner, T. M., Krahn, T., & von 

Ahsen, O. (2012). Circulating tumour cells escape from EpCAM-based detection 

due to epithelial-to-mesenchymal transition. BMC Cancer, 12, 178. 

https://doi.org/10.1186/1471-2407-12-178 [doi] 

Gozgit, J. M., Wong, M. J., Moran, L., Wardwell, S., Mohemmad, Q. K., Narasimhan, 

N. I., … Rivera, V. M. (2012). Ponatinib (AP24534), a Multitargeted Pan-FGFR 

Inhibitor with Activity in Multiple FGFR-Amplified or Mutated Cancer Models. 



Chapter 8: References 

Thomas A R Hanna - May 2019   162 

Molecular Cancer Therapeutics, 11(3), 690–699. https://doi.org/10.1158/1535-

7163.MCT-11-0450 

Greaves, M., & Maley, C. C. (2012a). Clonal evolution in cancer. Nature, 481(7381), 

306–313. https://doi.org/10.1038/nature10762 

Greaves, M., & Maley, C. C. (2012b). Clonal evolution in cancer. Nature, 481(7381), 

306–313. https://doi.org/10.1038/nature10762 

Greenhalf, W., Grocock, C., Harcus, M., & Neoptolemos, J. (2009). Screening of high-

risk families for pancreatic cancer. Pancreatology : Official Journal of the 

International Association of Pancreatology (IAP) ... [et Al.], 9(3), 215–222. 

https://doi.org/10.1159/000210262 

Griwatz, C., Brandt, B., Assmann, G., & Zänker, K. S. (1995). An immunological 

enrichment method for epithelial cells from peripheral blood. Journal of 

Immunological Methods, 183(2), 251–265. https://doi.org/10.1016/0022-

1759(95)00063-G 

Grocock, C., Vitone, L., Harcus, M., Neoptolemos, J., Raraty, M., & Greenhalf, W. 

(2007). Familial Pancreatic Cancer : a review and latest advances. 52, 37–49. 

Gupta, G. P., & Massagué, J. (2006). Cancer Metastasis: Building a Framework. Cell, 

127(4), 679–695. https://doi.org/10.1016/j.cell.2006.11.001 

Hahn, S. A., Greenhalf, B., Ellis, I., Sina-frey, M., Rieder, H., Korte, B., … Bartsch, D. 

K. (2003). BRCA2 Germline Mutations in Familial Pancreatic Carcinoma. 95(3). 

Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70. 

https://doi.org/10.1007/s00262-010-0968-0 

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. 

Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013 

Harouaka, R. A., Nisic, M., & Zheng, S. Y. (2013). Circulating tumor cell enrichment 

based on physical properties. Journal of Laboratory Automation, 18(6), 455–468. 

https://doi.org/10.1177/2211068213494391 [doi] 

Heitzer, E., Ulz, P., & Geigl, J. B. (2015). Circulating Tumor DNA as a Liquid Biopsy 

for Cancer. Clinical Chemistry, 61(1), 112–123. 

Hingorani, S. R., Iii, E. F. P., Maitra, A., Rajapakse, V., King, C., Jacobetz, M. A., … 

Tuveson, D. A. (2003). Preinvasive and invasive ductal pancreatic cancer and its 

early detection in the mouse. 4(December), 437–450. 

Holdenrieder, S., Stieber, P., Bodenmüller, H., Busch, M., Fertig, G., Fürst, H., … 

Seidel, D. (2001). Nucleosomes in serum of patients with benign and malignant 

diseases. International Journal of Cancer. Journal International Du Cancer, 95(2), 



Chapter 8: References 

Thomas A R Hanna - May 2019   163 

114–120. https://doi.org/10.1002/1097-0215(20010320)95:2<114::AID-

IJC1020>3.0.CO;2-Q 

Hou, J. M., Greystoke, A., Lancashire, L., Cummings, J., Ward, T., Board, R., … 

Blackhall, F. H. (2009). Evaluation of circulating tumor cells and serological cell 

death biomarkers in small cell lung cancer patients undergoing chemotherapy. The 

American Journal of Pathology, 175(2), 808–816. 

https://doi.org/10.2353/ajpath.2009.090078 [doi] 

Hruban, R., Adsay, V., Saavedra, J. A., Compton, C., Ph, D., Garrett, E. S., … Ph, D. 

(2001). Pancreatic Intraepithelial Neoplasia. A New Nomenclature and 

Classification System for Pancreatic Duct Lesions. The American Journal of 

Surgical Pathology, 25(5), 579–586. 

Hruban, R. H., Goggins, M., Parsons, J., & Kern, S. E. (2000). Progression Model for 

Pancreatic Cancer Progression Model for Pancreatic Cancer 1. 6(August), 2969–

2972. 

Hudson, T. J., Anderson, W., Aretz, A., Barker, A. D., Bell, C., Bernabé, R. R., … 

Yang, H. (2010). International network of cancer genome projects. Nature, 

464(7291), 993–998. https://doi.org/10.1038/nature08987 

Ito, D., Fujimoto, K., Mori, T., Kami, K., Koizumi, M., Toyoda, E., … Doi, R. (2006). 

In vivo antitumor effect of the mTOR inhibitor CCI-779 and gemcitabine in 

xenograft models of human pancreatic cancer. International Journal of Cancer. 

Journal International Du Cancer, 118(9), 2337–2343. 

https://doi.org/10.1002/ijc.21532 

Ito, S., Nakanishi, H., Hirai, T., Kato, T., Kodera, Y., Feng, Z., … Tatematsu, M. 

(2002). Quantitative detection of CEA expressing free tumor cells in the peripheral 

blood of colorectal cancer patients during surgery with real-time RT-PCR on a 

LightCycler. Cancer Letters, 183(2), 195–203. 

https://doi.org/S030438350200157X [pii] 

Jang, J. Y., Tada, M., Salvia, R., Levy, P., Shimizu, Y., Wolfgang, C. L., … Fernández-

del Castillo, C. (2017). Revisions of international consensus Fukuoka guidelines 

for the management of IPMN of the pancreas. Pancreatology, 17(5), 738–753. 

https://doi.org/10.1016/j.pan.2017.07.007 

Juratli, M. A., Sarimollaoglu, M., Siegel, E. R., Nedosekin, D. A., Galanzha, E. I., Suen, 

J. Y., & Zharov, V. P. (2014). Real-time monitoring of circulating tumor cell 

release during tumor manipulation using in vivo photoacoustic and fluorescent 

flow cytometry. Head and Neck-Journal for the Sciences and Specialties of the 



Chapter 8: References 

Thomas A R Hanna - May 2019   164 

Head and Neck, 36(8), 1207–1215. https://doi.org/10.1002/hed.23439 

Kalluri, R., & Weinberg, R. a. (2009). The basics of epithelial-mesenchymal transition. 

Journal of Clinical Investigation, 119(6), 1420–1428. 

https://doi.org/10.1172/JCI39104.1420 

Kanda, M., Knight, S., Topazian, M., Syngal, S., Farrell, J., Lee, J., … Goggins, M. 

(2012). Mutant GNAS detected in duodenal collections of secretin-stimulated 

pancreatic juice indicates the presence or emergence of pancreatic cysts. Gut, 

1024–1033. https://doi.org/10.1136/gutjnl-2012-302823 

Kanda, Mitsuro, Knight, S., Topazian, M., Syngal, S., Farrell, J., Lee, J., … Goggins, 

M. (2013). Mutant GNAS detected in duodenal collections of secretin-stimulated 

pancreatic juice indicates the presence or emergence of pancreatic cysts. Gut, 

62(7), 1024–1033. https://doi.org/10.1136/gutjnl-2012-302823 

Kanda, Mitsuro, Sadakari, Y., Borges, M., Topazian, M., Farrell, J., Syngal, S., … 

Goggins, M. (2013). Mutant TP53 in duodenal samples of pancreatic juice from 

patients with pancreatic cancer or high-grade dysplasia. Clinical Gastroenterology 

and Hepatology, 11(6), 719-730.e5. https://doi.org/10.1016/j.cgh.2012.11.016 

Kasimir-Bauer, S., Hoffmann, O., Wallwiener, D., Kimmig, R., & Fehm, T. (2012). 

Expression of stem cell and epithelial-mesenchymal transition markers in primary 

breast cancer patients with circulating tumor cells. Breast Cancer Research : BCR, 

14(1), R15. https://doi.org/bcr3099 [pii] 

Khoja, L., Backen, A., Sloane, R., Menasce, L., Ryder, D., Krebs, M., … Dive, C. 

(2012). A pilot study to explore circulating tumour cells in pancreatic cancer as a 

novel biomarker. British Journal of Cancer, 106(3), 508–516. 

https://doi.org/10.1038/bjc.2011.545 [doi] 

Kim, E. S., Herbst, R. S., Wistuba, I. I., Jack Lee, J., Blumenschein, G. R., Tsao, A., … 

Hong, W. K. (2011). The BATTLE trial: Personalizing Therapy for Lung Cancer. 

Cancer Discovery, 1(1), 44–53. https://doi.org/10.1158/2159-8274.CD-10-0010 

Kocarnik, J. M., Shiovitz, S., & Phipps, A. I. (2015). Molecular phenotypes of 

colorectal cancer and potential clinical applications. Gastroenterology Report, 

3(September), 1–8. https://doi.org/10.1093/gastro/gov046 

Korolev, K. S., Xavier, J. B., & Gore, J. (2014). Turning ecology and evolution against 

cancer. Nature Publishing Group, 14(5), 371–380. https://doi.org/10.1038/nrc3712 

Larsson, S. C., Permert, J., Håkansson, N., Näslund, I., Bergkvist, L., & Wolk,  a. 

(2005). Overall obesity, abdominal adiposity, diabetes and cigarette smoking in 

relation to the risk of pancreatic cancer in two Swedish population-based cohorts. 



Chapter 8: References 

Thomas A R Hanna - May 2019   165 

British Journal of Cancer, 93(11), 1310–1315. 

https://doi.org/10.1038/sj.bjc.6602868 

Lj, V., Greenhalf, W., Nr, H., & Jp, N. (2005). Hereditary pancreatitis and secondary 

screening for early pancreatic cancer. 50. 

Lüttges, J., Schlehe, B., Menke, M. a. O. H., Vogel, I., Henne‐ Bruns, D., & Klöppel, 

G. (1999). The K‐ ras mutation pattern in pancreatic ductal adenocarcinoma 

usually is identical to that in associated normal, hyperplastic, and metaplastic 

ductal epithelium. Cancer, 85(8), 1703–1710. https://doi.org/10.1002/(SICI)1097-

0142(19990415)85:8<1703::AID-CNCR9>3.3.CO;2-I 

Mahadevan, D., & Von Hoff, D. D. (2007). Tumor-stroma interactions in pancreatic 

ductal adenocarcinoma. Molecular Cancer Therapeutics, 6(4), 1186–1197. 

https://doi.org/10.1158/1535-7163.MCT-06-0686 

Maley, C. C., Galipeau, P. C., Finley, J. C., Wongsurawat, V. J., Li, X., Sanchez, C. A., 

… Reid, B. J. (2006). Genetic clonal diversity predicts progression to esophageal 

adenocarcinoma. 38(4), 468–473. https://doi.org/10.1038/ng1768 

Malka, D. (2002). Risk of pancreatic adenocarcinoma in chronic pancreatitis. Gut, 

51(6), 849–852. https://doi.org/10.1136/gut.51.6.849 

Mani, S. a., Guo, W., Liao, M.-J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., … 

Weinberg, R. a. (2008). The Epithelial-Mesenchymal Transition Generates Cells 

with Properties of Stem Cells. Cell, 133(4), 704–715. 

https://doi.org/10.1016/j.cell.2008.03.027 

Martinez, P., Birkbak, N. J., Gerlinger, M., McGranahan, N., Burrell, R. A., Rowan, A. 

J., … Swanton, C. (2013). Parallel evolution of tumour subclones mimics diversity 

between tumours. Journal of Pathology, 230(4), 356–364. 

https://doi.org/10.1002/path.4214 

McKenzie SB. (1996). Textbook of hematology. Baltimore: Williams and Wilkins. 

Meng, S., Tripathy, D., Frenkel, E. P., Shete, S., Naftalis, E. Z., Huth, J. F., … Uhr, J. 

W. (2004). Circulating tumor cells in patients with breast cancer dormancy. 

Clinical Cancer Research : An Official Journal of the American Association for 

Cancer Research, 10(24), 8152–8162. https://doi.org/10/24/8152 [pii] 

Michaud, D. S. (2004). Epidemiology of pancreatic cancer. 59, 99–111. 

Milne, R. L., Greenhalf, W., Murta-Nascimento, C., Real, F. X., & Malats, N. (2009). 

The inherited genetic component of sporadic pancreatic adenocarcinoma. 

Pancreatology : Official Journal of the International Association of Pancreatology 

(IAP) ... [et Al.], 9(3), 206–214. https://doi.org/10.1159/000210261 



Chapter 8: References 

Thomas A R Hanna - May 2019   166 

Moore, P. S., Sipos, B., Orlandini, S., Sorio, C., Real, F. X., Lemoine, N. R., … Scarpa,  

a. (2001). Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, 

p53, p16 and DPC4/Smad4. Virchows Archiv : An International Journal of 

Pathology, 439, 798–802. https://doi.org/10.1007/s004280100474 

Mosaluk, C., Hruban, R. H., & Kern, S. E. (1997). p16 and K-ras Gene Mutations 

Adenocarcinoma ’ in the Intraductal Precursors of Human Pancreatic. Cancer 

Research, 57, 2140–2144. 

Muller, V., Stahmann, N., Riethdorf, S., Rau, T., Zabel, T., Goetz, A., … Pantel, K. 

(2005). Circulating TumorCells in BreastCancer:Correlation to Bone Marrow 

Micrometastases, Heterogeneous Response to Systemic Therapy and Low 

Proliferative Activity. Clinical Cancer Research, 11(5), 3678–3686. 

Muscat, E., Steilman, D., & Wynder, E. L. (n.d.). Smoking and Pancreatic Cancer in 

Men and Women ’. 

Nagrath, S., Jack, R. M., Sahai, V., & Simeone, D. M. (2016). REVIEWS IN BASIC 

AND CLINICAL GASTROENTEROLOGY Opportunities and Challenges for 

Pancreatic Circulating. Gastroenterology, 151(3), 412–426. 

https://doi.org/10.1053/j.gastro.2016.05.052 

Nagrath, S., Sequist, L. V, Maheswaran, S., Bell, D. W., Ryan, P., Balis, U. J., … 

Haber, D. A. (2011). Isolation of rare circulating tumour cells in cancer patients by 

microchip technology. Nature, 450(7173), 1235–1239. 

https://doi.org/10.1038/nature06385.Isolation 

Naume, B., Borgen, E., Tossvik, S., Pavlak, N., Oates, D., & Nesland, J. M. (2004). 

Detection of isolated tumor cells in peripheral blood and in BM: evaluation of a 

new enrichment method. Cytotherapy, 6(3), 244–252. 

https://doi.org/10.1080/14653240410006086 [doi] 

Neoptolemos, J. P., Kleeff, J., Michl, P., Costello, E., Greenhalf, W., & Palmer, D. H. 

(2018). Therapeutic developments in pancreatic cancer: Current and future 

perspectives. Nature Reviews Gastroenterology and Hepatology, 15(6), 333–348. 

https://doi.org/10.1038/s41575-018-0005-x 

Nicholson, J. A., Greenhalf, W., Jackson, R., Trevor, F., Hanna, T., Harrison, S., … 

Evans, J. C. (2015). Incidence of Post-ERCP Pancreatitis From Direct Pancreatic 

Juice Collection in Hereditary Pancreatitis and Familial Pancreatic Cancer Before 

and After the Introduction of Prophylactic Pancreatic Stents and Rectal Diclofenac. 

Pancreas, 44(2), 260–265. 

Nies, H., P, C., A, R., I, I., Y, Z., S, K., … CJ, B. (2014). Side population cells of 



Chapter 8: References 

Thomas A R Hanna - May 2019   167 

pancreatic cancer show characteristics of cancer stem cells responsible for 

resistance and metastasis. Target Oncology. 

Nones, K., Waddell, N., Song, S., Patch, A. M., Miller, D., Johns, A., … Grimmond, S. 

M. (2014). Genome-wide DNA methylation patterns in pancreatic ductal 

adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET 

signaling. International Journal of Cancer, 135(5), 1110–1118. 

https://doi.org/10.1002/ijc.28765 

Olsson, E., Winter, C., George, A., Chen, Y., Howlin, J., Tang, M. E., … Saal, L. H. 

(2015). Serial monitoring of circulating tumor DNA in patients with primary breast 

cancer for detection of occult metastatic disease. EMBO Molecular Medicine, 7(8), 

1–15. https://doi.org/10.15252/emmm.201404913 

Pao, W., & Chmielecki, J. (2010). Rational, biologically based treatment of EGFR-

mutant non-small-cell lung cancer. Nat Rev Cancer, 10(11), 760–774. Retrieved 

from http://dx.doi.org/10.1038/nrc2947 

Papavasiliou, P., Fisher, T., Kuhn, J., Nemunaitis, J., & Lamont, J. (2010). Circulating 

tumor cells in patients undergoing surgery for hepatic metastases from colorectal 

cancer. 20(1), 11–14. 

Park, S. Y., Choi, G.-S., Park, J. S., Kim, H. J., Ryuk, J.-P., & Choi, W.-H. (2012). 

Influence of surgical manipulation and surgical modality on the molecular 

detection of circulating tumor cells from colorectal cancer. Journal of the Korean 

Surgical Society, 82(6), 356–364. https://doi.org/10.4174/jkss.2012.82.6.356 

Perez-Mancera, P. a., Guerra, C., Barbacid, M., & Tuveson, D. a. (2012). What We 

Have Learned About Pancreatic Cancer From Mouse Models. Gastroenterology, 

142(5), 1079–1092. https://doi.org/10.1053/j.gastro.2012.03.002 

Perez-Ramirez, Canadas-Garre, Jimenez-Varo, Faus-Dader, & Calleja-Harnandez. 

(2015). Pharmacogenomics MET : a new promising biomarker in. 

Pharmacogenomics, 719, 631–647. 

Pesta, M., Fichtl, J., Kulda, V., Topolcan, O., & Treska, V. (2013). Monitoring of 

circulating tumor cells in patients undergoing surgery for hepatic metastases from 

colorectal cancer. Anticancer Research, 33(5), 2239–2243. 

https://doi.org/33/5/2239 [pii] 

Pisetsky, D. S. (2004). The immune response to cell death in SLE. Autoimmunity 

Reviews, 3(7–8), 500–504. https://doi.org/10.1016/j.autrev.2004.07.010 

Polzer, B., Medoro, G., Pasch, S., Fontana, F., Zorzino, L., Pestka, A., … Klein, C. a. 

(2014). Molecular profiling of single circulating tumor cells with diagnostic 



Chapter 8: References 

Thomas A R Hanna - May 2019   168 

intention. EMBO Molecular Medicine, 6(11), 1371–1386. 

https://doi.org/10.15252/emmm.201404033 

Raimondi, C., Nicolazzo, C., Gradilone, A., Molecolare, D. M., & Università, S. (2015). 

Circulating tumor cells isolation : the “ post-EpCAM era .” 27(5), 461–470. 

https://doi.org/10.3978/j.issn.1000-9604.2015.06.02 

Raty S, Sand J, Pulkkinen M,  et al. (2001). Post-ERCP pancreatitis: reduction by 

routine antibiotics. J Gastrointest Surg, 5, 339–345. 

Redig,  a. J., & Janne, P. a. (2015). Basket Trials and the Evolution of Clinical Trial 

Design in an Era of Genomic Medicine. Journal of Clinical Oncology, 33(9), 975–

978. https://doi.org/10.1200/JCO.2014.59.8433 

Rimmer, N., Greenhalf, W., & Flaherty, L. (2014). SOP GCLPTSS105/2 Processing 

and storing blood for the livc3 study. 

Rivlin, N., Brosh, R., Oren, M., & Rotter, V. (2011). Mutations in the p53 Tumor 

Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. 

Genes & Cancer, 2(4), 466–474. https://doi.org/10.1177/1947601911408889 

Robinson, J., Thorvaldsdóttir, H., W, W., Guttman, M., Lander, E., Getz, G., & 

MEsirov, J. (2012). Integrative Genomics Viewer James. Nat Biotechnol, 29(1), 

24–26. https://doi.org/10.1038/nbt.1754.Integrative 

Ross, J. S., Slodkowska, E. A., Symmans, W. F., Pusztai, L., Ravdin, P. M., & 

Hortobagyi, G. N. (2009). The HER-2 receptor and breast cancer: ten years of 

targeted anti-HER-2 therapy and personalized medicine. The Oncologist, 14(4), 

320–368. https://doi.org/10.1634/theoncologist.2008-0230 

Satelli, A., Mitra, A., Brownlee, Z., Xia, X., Bellister, S., Overman, M. J., … Li, S. 

(2014). Epithelial – Mesenchymal Transitioned Circulating Tumor Cells Capture 

for Detecting Tumor Progression. 1–9. https://doi.org/10.1158/1078-0432.CCR-

14-0894 

Sawabata, N., Funaki, S., Hyakutake, T., & Shintani, Y. (2016). Perioperative 

circulating tumor cells in surgical patients with non ‑  small cell lung cancer : does 

surgical manipulation dislodge cancer cells thus allowing them to pass into the 

peripheral blood ? Surgery Today, 2–9. https://doi.org/10.1007/s00595-016-1318-4 

Schrader, C., Schielke, A., Ellerbroek, L., & Johne, R. (2012). PCR inhibitors - 

occurrence, properties and removal. Journal of Applied Microbiology, 113(5), 

1014–1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x 

Schramm, A., Friedl, T. W. P., Schochter, F., Scholz, C., de Gregorio, N., Huober, J., … 

Fehm, T. (2015). Therapeutic intervention based on circulating tumor cell 



Chapter 8: References 

Thomas A R Hanna - May 2019   169 

phenotype in metastatic breast cancer: concept of the DETECT study program. 

Archives of Gynecology and Obstetrics. https://doi.org/10.1007/s00404-015-3879-

7 

Shah, S. M., Ribeiro, A., Levi, J., Jorda, M., Rocha-Lima, C., Sleeman, D., … Barkin, J. 

(2008). EUS-guided fine needle aspiration with and without trucut biopsy of 

pancreatic masses. JOP : Journal of the Pancreas, 9(4), 422–430. 

https://doi.org/v09i04a08 [pii] 

Shaw, V., Bullcok, K., & Greenhalf, W. (2016). Single-Nucleotide Polymorphism to 

Associate Cancer Risk. Methods in Molecular Biology (Clifton, N.J.), 1381, 93–

110. 

Sheel, A. R. G., Harrison, S., Sarantitis, I., Nicholson, J. A., Hanna, T., Grocock, C., … 

Greenhalf, W. (2018). Identification of Cystic Lesions by Secondary Screening of 

Familial Pancreatic Cancer (FPC) Kindreds Is Not Associated with the Stratified 

Risk of Cancer. American Journal of Gastroenterology, 155–164. 

https://doi.org/10.1038/s41395-018-0395-y 

Shen, K., Luk, S., Hicks, D. F., Elman, J. S., Bohr, S., Iwamoto, Y., … Parekkadan, B. 

(2014). Resolving cancer–stroma interfacial signalling and interventions with 

micropatterned tumour–stromal assays. Nature Communications, 5, 5662. 

https://doi.org/10.1038/ncomms6662 

Sherry, S., Ward, M., & Sirotkin, K. (1999). dbSNP-database for single nucleotide 

polymorphisms and other classes of minor genetic variation. Genome Res, 8(9), 

677–679. 

Shibue, T., & Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: The 

mechanistic link and clinical implications. Nature Reviews Clinical Oncology, 

14(10), 611–629. https://doi.org/10.1038/nrclinonc.2017.44 

Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A., & Mcguire, W. L. 

(1987). Human Breast Cancer: Correlation of Relapse and Survival with 

Amplification of the HER-2lneu Oncogene. Science, 235(21), 0–5. 

Smerage, J. B., Barlow, W. E., Hortobagyi, G. N., Winer, E. P., Leyland-jones, B., 

Srkalovic, G., … Schott, A. F. (2014). J OURNAL OF C LINICAL O NCOLOGY 

Circulating Tumor Cells and Response to Chemotherapy in Metastatic Breast 

Cancer : SWOG S0500. 1–8. https://doi.org/10.1200/JCO.2014.56.2561 

Sottoriva, A., Spiteri, I., Piccirillo, S. G. M., Touloumis, A., Collins, V. P., Marioni, J. 

C., … Tavaré, S. (2013). Intratumor heterogeneity in human glioblastoma reflects 

cancer evolutionary dynamics. Proceedings of the National Academy of Sciences of 



Chapter 8: References 

Thomas A R Hanna - May 2019   170 

the United States of America, 110(10), 4009–4014. 

https://doi.org/10.1073/pnas.1219747110 

Speelman, A. D., Gestel, Y. R. B. M. Van, Rutten, H. J. T., & Hingh, I. H. J. T. De. 

(2015). Changes in gastrointestinal cancer resection rates. Bristish Journal of 

Surgery, 102(9), 1114–1122. https://doi.org/10.1002/bjs.9862 

Spencer, D. H., Sehn, J. K., Abel, H. J., Watson, M. a., Pfeifer, J. D., & Duncavage, E. 

J. (2013). Comparison of Clinical Targeted Next-Generation Sequence Data from 

Formalin-Fixed and Fresh-Frozen Tissue Specimens. The Journal of Molecular 

Diagnostics, 15(5), 623–633. https://doi.org/10.1016/j.jmoldx.2013.05.004 

Stott, S. L., Lee, R. J., Nagrath, S., Yu, M., Miyamoto, D. T., Ulkus, L., … 

Maheswaran, S. (2010). Isolation and Characterization of Circulating Tumor Cells 

from Patients with Localized and Metastatic Prostate Cancer. Science 

Translational Medicine, 2(25), 25ra23--25ra23. 

https://doi.org/10.1126/scitranslmed.3000403 

Stratton, M. R., Campbell, P. J., & Futreal, P. A. (2009). The cancer genome. Nature, 

458(7239), 719–724. https://doi.org/10.1038/nature07943 

Stremitzer, S., Zhang, W., Yang, D., Ning, Y., Stintzing, S., Sebio, A., … Lenz, H.-J. 

(2015). Genetic variations in angiopoietin and pericyte pathways and clinical 

outcome in patients with resected colorectal liver metastases. Cancer, 1–8. 

https://doi.org/10.1002/cncr.29259 

Szpechcinski,  a, Chorostowska-Wynimko, J., Struniawski, R., Kupis, W., Rudzinski, 

P., Langfort, R., … Orlowski, T. (2015). Cell-free DNA levels in plasma of 

patients with non-small-cell lung cancer and inflammatory lung disease. British 

Journal of Cancer, 113(3), 476–483. https://doi.org/10.1038/bjc.2015.225 

Tanaka, M., Fernández-Del Castillo, C., Adsay, V., Chari, S., Falconi, M., Jang, J. Y., 

… Yamao, K. (2012). International consensus guidelines 2012 for the management 

of IPMN and MCN of the pancreas. Pancreatology, 12(3), 183–197. 

https://doi.org/10.1016/j.pan.2012.04.004 

Tops, B. B., Normanno, N., Kurth, H., Amato, E., Mafficini, A., Rieber, N., … Laurent-

Puig, P. (2015). Development of a semi-conductor sequencing-based panel for 

genotyping of colon and lung cancer by the Onconetwork consortium. BMC 

Cancer, 15(1), 1–9. https://doi.org/10.1186/s12885-015-1015-5 

UK, P. C. (2019). No Title. Retrieved April 20, 2019, from 

https://www.pancreaticcancer.org.uk/information-and-support/clinical-trials/find-a-

clinical-trial/open-clinical-trials/primus-002/ 



Chapter 8: References 

Thomas A R Hanna - May 2019   171 

Vitone, L. J., Greenhalf, W., McFaul, C. D., Ghaneh, P., & Neoptolemos, J. P. (2006). 

The inherited genetics of pancreatic cancer and prospects for secondary screening. 

Best Practice and Research: Clinical Gastroenterology, 20(2), 253–283. 

https://doi.org/10.1016/j.bpg.2005.10.007 

Vogelstein, B., & Kinzler, K. W. (2004). Cancer genes and the pathways they control. 

Nat. Med., 10(8), 789–799. https://doi.org/10.1038/nm1087 

von Burstin, J., Eser, S., Paul, M. C., Seidler, B., Brandl, M., Messer, M., … Saur, D. 

(2009). E-Cadherin Regulates Metastasis of Pancreatic Cancer In Vivo and Is 

Suppressed by a SNAIL/HDAC1/HDAC2 Repressor Complex. Gastroenterology, 

137(1), 361-371.e5. https://doi.org/10.1053/j.gastro.2009.04.004 

Waddell, N., Pajic, M., Patch, A., Chang, D. K., Kassahn, K. S., Bailey, P., … 

Grimmond, S. M. (2015). Whole genomes redefine the mutational landscape of 

pancreatic cancer. Nature. https://doi.org/10.1038/nature14169 

Wagle, N., Berger, M. F., Davis, M. J., Blumenstiel, B., DeFelice, M., Pochanard, P., … 

Garraway, L. a. (2012). High-Throughput Detection of Actionable Genomic 

Alterations in Clinical Tumor Samples by Targeted, Massively Parallel 

Sequencing. Cancer Discovery, 2(1), 82–93. https://doi.org/10.1158/2159-

8290.CD-11-0184 

Wald, N. J. (2008). Guidance on terminology. Journal of Medical Screening, 15(1), 50. 

https://doi.org/10.1258/jms.2008.008got 

Weng, L., Wu, X., Gao, H., Mu, B., Li, X., Wang, J.-H., … Wu, H. (2010). MicroRNA 

profiling of clear cell renal cell carcinoma by whole-genome small RNA deep 

sequencing of paired frozen and formalin-fixed, paraffin-embedded tissue 

specimens. The Journal of Pathology, 222(1), 41–51. 

https://doi.org/10.1002/path.2736 

Wiersema, M. J., Levy, M. J., Harewood, G. C., Vazquez-Sequeiros, E., Jondal, M. 

Lou, & Wiersema, L. M. (2002). Initial experience with EUS-guided trucut needle 

biopsies of perigastric organs. Gastrointestinal Endoscopy, 56(2), 275–278. 

https://doi.org/10.1016/S0016-5107(02)70193-4 

Wilentz, R. E., Geradts, J., Maynard, R., Offerhaus, G. J. A., Kang, M., Goggins, M., … 

Hruban, R. H. (1998). Inactivation of the p16 ( INK4A ) Tumor-suppressor Gene in 

Pancreatic Duct Lesions : Loss of Intranuclear Expression1. 16. 

Wilentz, R. E., Iacobuzio-donahue, C. A., Argani, P., Mccarthy, D. M., Parsons, J. L., 

Yeo, C. J., … Hruban, R. H. (2006). Loss of Expression of Dpc4 in Pancreatic 

Intraepithelial Neoplasia : Evidence That DPC4 Inactivation Occurs Late in 



Chapter 8: References 

Thomas A R Hanna - May 2019   172 

Neoplastic Progression 1. (410), 2002–2006. 

Wilson, J., & Jungner, G. (1968). Principles and practice of screening for disease. 

Retrieved April 1, 2016, from WHO website: 

http://whqlibdoc.who.int/php/WHO_PHP_34.pdf 

Wu, S., Liu, S., Liu, Z., Huang, J., Pu, X., Li, J., … Xu, J. (2015). Classification of 

circulating tumor cells by epithelial-mesenchymal transition markers. PloS One, 

10(4), e0123976. https://doi.org/10.1371/journal.pone.0123976 

Yachida, S, & Iacobuzio-Donahue, C. a. (2013). Evolution and dynamics of pancreatic 

cancer progression. Oncogene, 32(45), 5253–5260. 

https://doi.org/10.1038/onc.2013.29 

Yachida, Shinichi, Jones, S., Bozic, I., Antal, T., Leary, R., Kamiyama, M., … 

Iacobuzio-, C. A. (2011). Distant Metastasis Occurs Late during the Genetic 

Evolution of Pancreatic Cancer. Nature, 467(7319), 1114–1117. 

https://doi.org/10.1038/nature09515.Distant 

Yadav, S. S., Li, J., Lavery, H. J., Yadav, K. K., & Tewari, A. K. (2015). Next-

generation sequencing technology in prostate cancer diagnosis, prognosis, and 

personalized treatment. Urologic Oncology: Seminars and Original Investigations, 

33(6), 1–13. https://doi.org/10.1016/j.urolonc.2015.02.009 

Yamada, S., Fuchs, B. C., Fujii, T., Shimoyama, Y., Sugimoto, H., Nomoto, S., … 

Nakao, A. (2013). Epithelial-to-mesenchymal transition predicts prognosis of 

pancreatic cancer. Surgery (United States), 154(5), 946–954. 

https://doi.org/10.1016/j.surg.2013.05.004 

Yan, L., McFaul, C., Howes, N., Leslie, J., Lancaster, G., Wong, T., … Greenhalf, W. 

(2005). Molecular Analysis to Detect Pancreatic Ductal Adenocarcinoma in High-

Risk Groups. Gastroenterology, 128(7), 2124–2130. 

https://doi.org/10.1053/j.gastro.2005.03.006 

Yang, C., Shi, D., Wang, S., Wei, C., Zhang, C., & Xiong, B. (2018). Prognostic value 

of pre-and post-operative circulating tumor cells detection in colorectal cancer 

patients treated with curative resection: A prospective cohort study based on iset 

device. Cancer Management and Research, 10, 4135–4144. 

https://doi.org/10.2147/CMAR.S176575 

Young, G., Wang, K., He, J., Otto, G., Hawryluk, M., Zwirco, Z., … Ross, J. S. (2013). 

Clinical next-generation sequencing successfully applied to fine-needle aspirations 

of pulmonary and pancreatic neoplasms. Cancer Cytopathology, 121(12), 688–

694. https://doi.org/10.1002/cncy.21338 



Chapter 8: References 

Thomas A R Hanna - May 2019   173 

Zhang, J., Liu, J., Sun, J., Chen, C., Foltz, G., & Lin, B. (2014). Identifying driver 

mutations from sequencing data of heterogeneous tumors in the era of personalized 

genome sequencing. Briefings in Bioinformatics, 15(2), 244–255. 

https://doi.org/10.1093/bib/bbt042 

Zhang, Q., Shan, F., Li, Z., Gao, J., Li, Y., Shen, L., … Lu, M. (2018). A prospective 

study on the changes and clinical significance of pre-operative and post-operative 

circulating tumor cells in resectable gastric cancer. Journal of Translational 

Medicine, 16(1), 1–12. https://doi.org/10.1186/s12967-018-1544-1 

 

 


