Body condition impacts blood and muscle oxygen storage capacity of free-living beluga whales (Delphinapterus leucas)



Choy, Emily S, Campbell, Kevin L, Berenbrink, Michael ORCID: 0000-0002-0793-1313, Roth, James D and Loseto, Lisa L
(2019) Body condition impacts blood and muscle oxygen storage capacity of free-living beluga whales (Delphinapterus leucas). The Journal of Experimental Biology, 222 (11). jeb191916-.

[img] Text
Choy et al 2019_May52019Final_MB13May19.docx - Author Accepted Manuscript

Download (199kB)

Abstract

Arctic marine ecosystems are currently undergoing rapid environmental changes. Over the past 20 years, individual growth rates of beluga whales (Delphinapterus leucas) have declined, which may be a response to climate change; however, the scarcity of physiological data makes it difficult to gauge the adaptive capacity and resilience of the species. We explored relationships between body condition and physiological parameters pertaining to oxygen (O2) storage capacity in 77 beluga whales in the eastern Beaufort Sea. Muscle myoglobin concentrations averaged 77.9 mg g−1, one of the highest values reported among mammals. Importantly, blood haematocrit, haemoglobin and muscle myoglobin concentrations correlated positively to indices of body condition, including maximum half-girth to length ratios. Thus, a whale with the lowest body condition index would have ∼27% lower blood (26.0 versus 35.7 ml kg−1) and 12% lower muscle (15.6 versus 17.7 ml kg−1) O2 stores than a whale of equivalent mass with the highest body condition index; with the conservative assumption that underwater O2 consumption rates are unaffected by body condition, this equates to a >3 min difference in maximal aerobic dive time between the two extremes (14.3 versus 17.4 min). Consequently, environmental changes that negatively impact body condition may hinder the ability of whales to reach preferred prey sources, evade predators and escape ice entrapments. The relationship between body condition and O2 storage capacity may represent a vicious cycle, in which environmental changes resulting in decreased body condition impair foraging, leading to further reductions in condition through diminished prey acquisition and/or increased foraging efforts.

Item Type: Article
Uncontrolled Keywords: Arctic climate change, Cetacean, Aerobic dive time, Haemoglobin, Marine mammals, Myoglobin
Depositing User: Symplectic Admin
Date Deposited: 15 May 2019 07:59
Last Modified: 19 Jan 2023 00:45
DOI: 10.1242/jeb.191916
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3041272