
1 INTRODUCTION 

1.1 Human Reliability Analysis (HRA) 

Human reliability analysis can have three objectives: 
identify human performance (as failures and their 
consequences), quantify the likelihood of failure (and 
error recovery) and to reduce or remediate those er-
rors in the system (Kirwan, 1997).   

The expected results of such study can be either 
qualitative or quantitative, depending on the industry 
sector best practice, data availability and regulatory 
requirements.  

Quantitative results for HRA means giving the 
human performance a number, a probability of occur-
rence – the so-called Human Error Probability (HEP).  
This gives decision-makers the opportunity to de-
crease the HEP to as low as practicable by tackling 
the factors that impact it, or to check if a certain risk 
criteria is met. 

 HRA research, practice and regulatory require-
ments are currently focused on operation and mainte-
nance workers – called ‘sharp-end’ workers – those 
who actually interact with the processes (Reason, 
1990; Hollnagel, 1998).  

1.2 HRA in Design phase 

Can human reliability analysis be applied in other 
phases of an industrial project, such as design, con-
struction, commissioning and decommissioning? 

Theoretically speaking, it is possible: where there 
is human action, there is the possibility to model, an-
alyse and measure performance (Hollnagel, 1998). 

This research will focus on the design phase and 
design changes during other phases, as there is 
evidence from previous studies that design failure is 
the organisational factor that most triggers human 
failure actions (Moura et al., 2016).  

One of the constraints of this approach is that hu-
man (engineers and managers) performance in the de-
sign stage has limited public data, preventing detailed 
task analyses.  

However, it is also known that design failures 
identified in latter stages of the lifecycle (i.e. opera-
tional phase) are much more expensive to correct, 
compared to those detected during the design stage 
(Kohler and Moffatt, 2003).  

Thus, it is believed that understanding engineers 
and managers performance during the design phase 
would have the potential to motivate improvements in 
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ABSTRACT: Airplanes, ships, nuclear power plants and chemical production plants (including oil & gas 
facilities) are examples of industries that depend upon the interaction between operators and machines. Conse-
quently, to assess the risks of those systems, not only the reliability of the technological components has to be 
accounted for, but also the ‘human model’. For this reason, engineers have been working together with psy-
chologists and sociologists to understand cognitive functions and how the organisational context influences 
individual actions.  

Human reliability analysis (HRA) identifies and analyses the causes, consequences and contributions of hu-
man performance (including failures) in complex sociotechnical systems. Generally, HRA research is 
concentrated in modelling workers’ performance in the “sharp-end”, assessing the ones directly involved in 
handling the system, especially operators. However, in theory, a reliability analysis can be applied to any kind 
of human action, including those from designers and managers. 

This research will evaluate a way of conducting HRA in the design process, as previous research has demon-

strated that design failure is the predominant contributor to human errors (Moura et al., 2016).  
Bayesian network (BN) – a systematic way of learning from experience and incorporating new evidence 

(deterministic or probabilistic) – is proposed to model the complex relationships within cognitive functions, 
organisational and technological factors. Conditional probability tables have been obtained from a dataset of 
major accidents from different industry sectors (Moura et al. 2017), using a classification scheme developed by 
Hollnagel (1998) for an HRA method called CREAM - Cognitive Reliability and Error Analysis Method.  

The model allows to infer which factors most influence human performance in different scenarios. Also, we 
will discuss if the model can be applied to any human actions through the project life cycle – since the design 
phase to the operational phase, including their management. 

 



organisational design procedures, based on overall 
accident patterns.  

It is a trade-off between having perfect data but not 
sufficient resources to make design changes in the op-
erational phase and having imperfect data but 
sufficient resources to improve the design in earlier 
stages of the lifecycle. 

 
1.1 Can human performance influence design? 

 
Design failure is often considered an 

organisational factor in HRAs, as the methods and as-
sessors take into account that it influences human per-
formance and not the opposite. 

In contrast, there are studies, outside the safety and 
engineering community, showing that organisations 
are not an unmanned box of procedures, but 
individuals deciding whether using them,  based on 
other factors like regulations, knowledge and 
resources (Rocha Fernandes et al., 2005). Besides, 
those individuals, usually middle and front-line 
managers, have a significant influence in all levels of 
the organisation, dictating and implementing the 
organisational strategy (Wooldridge et al., 2008; 
Purcell, 2007). 

Another key aspect of this discussion is recognis-
ing the difference between ‘managing the design’ and 
‘managing design changes’. First, because they can 
occur in different phases of a project and thus man-
aged by completely different team profiles.  

Second, because decision-making in engineering 
practice can have two distinct meanings: ‘design 
decisions’ are the ones about the design itself (e.g. 
which equipment to choose in a system), while 
‘management decisions’ are the ones about the team 
responsible for designing the system or issues that 
impact this team (Herrmann, 2015).  

Each of these different concepts leads to a different 
kind of performance to analyse.  

 
2 METHODOLOGY 

2.1 Classification scheme used  

The classification scheme is considered the collec-
tion of error modes (cognitive functions and human 
actions) and the performance shaping factors (PSFs) 
which shapes the context that triggers each error 
mode. 

To achieve the aim of this research, it is essential 
to use an HRA classification scheme that recognises 
cognitive functions, as both ‘design decisions’ and 
‘management decisions’ cannot be evidenced only by 
actions described in most classification schemes from 
the first generation of HRAs. 

 For this reason, a classification method of the sec-
ond generation of HRA was chosen (see Hollnagel, 
1998, to understand the differences between the first 
and the second HRA generation).  

From the publicly available ones, there are only 
two methods from the second generation that are con-
sidered useful to the Major Hazard Directorates of 
HSE, the UK safety regulator (Bell and Holroyd, 
2009): CREAM (Hollnagel, 1998) and ATHEANA 
(Forester et al., 2007).  

From these two choices, CREAM’s (i.e. the Cog-
nitive Reliability and Error Analysis Method) classi-
fication scheme was chosen to conduct this research, 
as it shows a clear distinction between causes and 
manifestations. This enables the application of the 
method in both directions: to analyse major accidents 
retrospectively and to predict events as a traditional 
HRA method. Therefore, this feature made it possible 
to use a pre-existent dataset from major industrial ac-
cidents (Moura et al., 2016) in the current work, as 
explained in the next section. 

This classification scheme splits cognitive func-
tions into two categories: analysis (the mental pro-
cesses used when someone tries to understand a prob-
lem) and synthesis (the mental processes used to 
solve the problem). Further, these are also split into 
subcategories, as summarized in Table 1. 

One of the problems that may be argued against 
this choice is that most HRA performed in practice 
are the ones from the first generation (Zwirglmaier et 
al., 2015, Henderson and Embrey, 2012), such as 
THERP, HEART and SPAR-H.  Also, according to 
CREAM’s creator, all the PSFs presented at the clas-
sification scheme are still useful, apart from the cog-
nitive reliability, that he considers a ‘misleading over-
simplification’ (Hollnagel, 2012). According to him, 
“explaining human performance as based on 'cogni-
tive processes' represents a myopic information pro-
cessing view, and talking about the reliability of such 
processes is an artefact of the PRA/PSA mindset”. 

However, the current research is not using 
CREAM as an HRA method, limiting the discussion 
to the assessment of the HEPs, as a way to disclose 
possible improvements. 

2.2 Data used 

To generate human error probabilities (HEP), or to 
validate HRA methods, different types of data are 
used. Kirwan (1997) classified them as:  (i) real or 
operationally derived data (i.e. from incidents and 
near misses), (ii) simulator derived data, (iii) data 
from the psychological and ergonomics performance 
literature, (iv) expert judgement, (v) other techniques. 

Data from real operation are considered the one 
with highest quality, but also the more difficult to ob-
tain. That is because to achieve an absolute result for 
the HEP (number of observed errors by the number of 
opportunities for error) both the numerator and 
denominator of the equation should be assessed by 
the observation of each human action through an in-
dustry lifecycle. This is impractical, as one should 
count even the actions and errors that have not led to 
incidents. 



For this reason, much research is being conducted 
using operationally derived data as near misses (i.e. 
events with the potential for undesirable conse-
quences (CCPS, 2007) and accidents occurred in in-
dustrial installations.  

Preischl and Hellmich (2013) used data from near 
misses, occurred on German nuclear power plants, to 
construct their model to estimate HEPs, in order to 
check validation of THERP handbook estimates. 
Groth and Mosleh (2012) have used the HERA data-
base, from retrospective analyses of risk-significant 
events occurred on nuclear power plants, that contain 
at least one human error.  

In the current research, it was decided to use a da-
taset derived from major accidents from different in-
dustrial sectors, not yet tested as model to estimate 
HEPs: the MATA-D - Multi-attribute Technological 
Accidents Dataset, built by Moura et al. (2016).  

Differently from near misses reports, investigation 
reports of major accidents have the potential to 
uncover more PSFs that trigger a human error. This is 
because major accidents’ investigations usually use 
several man-hours of an expert team (Moura et al. 
2016)aiming to achieve an increased depth of 
analysis, eventually reaching root causes such as 
organizational issues (CCPS, 2007). 

 MATA-D has been derived from the analysis of 
238 accident reports from different industrial sectors 
using the same classification scheme, with the inten-
tion to optimise the learning from cross-sector acci-
dents. All the reports had evidence on the presence of 
organisational, technological and person-related fac-
tors, the PSFs described in Table 3. Also, nearly half 
of all the reports had indications about the cognitive 
functions and actions executed, described in Tables 1 
and 2.  

 

Table 1. Summary of errors of cognition used in CREAM  

 
The MATA-D dataset is a table of 238 accidents by 
fifty-three parameters (thirty-nine factors, ten cogni-
tive functions and four erroneous actions), where the 
number one represents the presence of a parameter in 
an accident report and the zero its absence. 

 
Table 2. Erroneous actions used in the classification scheme 

Errors of execution 

Wrong time Wrong type Wrong place Wrong object 

 
 

Table 3. PSFs from CREAM classification scheme 
Organisational factors Technological 

Factors 

Person Related 
Factors 

Communication failure 

Missing information 

Maintenance failure 

Inadequate quality control  
Management problem 

Design failure 

Inadequate task allocation 

Social pressure 

Insufficient skills 

Insufficient knowledge 

Temperature  
Sound 

Humidity 

 Illumination 

Other  
Adverse ambient conditions  
Excessive demand  
Inadequate workplace lay-
out  
Inadequate team support  
Irregular working hours 

Equipment failure 

Software fault 
Inadequate proce-
dure 

Access limitations 

Ambiguous 
information 

Incomplete 
information 

Access problems 

Mislabelling 

Memory failure 

Fear 
Distraction 

Fatigue 

Performance Varia-
bility 

Inattention 

Physiological stress 

Psychological stress 

Functional impair-
ment 
Cognitive style 

Cognitive bias 

 
 

  

  

  

  

  

  
    

  
For the reasons listed above, it has been decided to 

use the available MATA-D data to feed a model, in 
order to understand if the results could describe hu-
man performance in design and its management, in-
stead of modelling the whole process, developing 
PSFs, collecting data and creating a new method from 
scratch. 

 
2.3 Modelling method used – Bayesian network 

 The relationships between PSFs, cognitive func-
tions and human erroneous actions described above 
were modelled into a Bayesian network (BN). BN is 
known as a systematic way of learning from experi-
ence and to incorporate new evidence (deterministic 
or probabilistic), and it was chosen due to the possi-
bility of modelling those complex relationships 
within variables of different nature. 

Mkrtchyan et al. (2015) had suggested that using 
BN, human reliability analysis also benefits from: 

(i) Its graphical formalism (Figure 1) of condi-
tional probability equations (Equation 1). Using the 
visual representation of BN is a practical way of dis-
cussing the relations between factors, facilitating the 
communication between the multidisciplinary team 
that should be involved in an HRA meeting analysis, 
such as engineers, psychologists and sociologists. 

 
 
                                                                     
 
 

 

 

 

 

 

 

Analysis Observation  

 

Observation missed  

False  observation 

Wrong identification 

 Interpretation  Faulty diagnosis 

Wrong reasoning  

Decision error  

Delayed interpretation 

Incorrect prediction 

Synthesis Planning  Inadequate plan 

Priority error 

P(C=c1 | A=a1,B=b1)  

P(C=c2 | A=a1,B=b1) = 1-P(C=c1 | A=a1,B=b1)       (Eq. 1)   



 

 

 

 

 

 

 

 

Figure 1 - Directed acyclic graphs typical of a Bayesian network 

 
(ii) A probabilistic representation of uncertainty, 

making it compatible with Probabilistic Safety As-
sessment. 

(iii) Combination of different sources of infor-
mation: empirical sources as databases of events, 
theoretical models of human cognition and expert 
judgement. 

 The mathematical background of Bayesian net-
works was described by Tolo et al. (2014) as statisti-
cal models used to represent probability distributions, 
that can provide combined probability distribution as-
sociated to an accident, exploiting information about 
the existing conditional dependencies, e.g. between 
PSFs and cognitive functions.   

BNs are represented by acyclic graphs, where 
nodes are connected to each other by arcs (Figure 1). 
Child nodes must have a causality relationship with 
each parent node.  

For example, consider in Figure 2, the child node 
‘cognitive function’.  The probability of its occur-
rence is conditioned to the occurrence of its parent 
nodes: organisation, technology and person-related 
functions. To have a proper causality, one has to 
know the answer to the question: what is the proba-
bility of occurring a cognitive function when the 
organisation, technology or person related factors 
occur altogether? What about when none of them 
occurs? And if only an organisational factor occurs, 
and no technology and person-related factor? All pos-
sible eight combinations from three parent nodes have 
to be answered, to establish a proper causality. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2 – example of a Bayesian network 

 
Generically speaking, the number of combinations 

a conditional probability table has to represent a child 
node is two (pair of combinations) to the power of the 
number of parent nodes (2^parent nodes).  

This means a high number of combinations if all 
the factors of the CREAM methodology are 
considered. The implications of this issue are 
discussed in the next section. 

 
3 MODEL 

3.1 Bayesian model of Human Reliability 

To build and test the human reliability model, it was 
used the summarised process represented by Figure 3. 
It was proposed by Mkrtchyan et al. (2015), through 
their review of HRA methods using BN models.  
First, the nodes and their states were defined. Then, 
the structure, which means the links between the 
nodes. After the structure, comes the assessment of 
conditional probability tables (CPT) for each node. 
Finally, a verification was conducted. The validation 
process will be conducted in a future work. 

 

3.2 Nodes and states  

The nodes used in the model are the sub-factors of 
CREAM classification scheme (Hollnagel, 1998), 
where the major factors are human, technology and 
organisation.  

The states of the nodes will be ‘presence’ or ‘ab-
sence’ of the sub-factors observed during the investi-
gation of major accidents.  

The result of the MATA-D dataset, presented in 
the methodology section of this paper, has fed our 
model as a matrix of zeros and ones of 53 rows x 238 
columns. At the dataset, the absence of a parameter 
(factor, cognitive function or action) is represented by 
the number zero and the presence of them in an 
accident represented by the number one. 

Only the factors, cognitive functions and actions in 
italic in tables 1 and 2 were used as nodes for the 
model. The reason is explained in the next section. 

 
3.3 Structure 

Basically, to create the structure of this BN model, 
parent nodes (organisational, technological and 
person-related factors) were linked by arrows to the 
child nodes (cognitive functions and human 
erroneous actions). 

It would be that simple if there were no limitations 
from the algorithm used to build the model in Genie 
software. For the reason explained in section 2.2, the 
thirty-nine factors provided by the classification 
scheme would generate 549,755,813,888 combina-
tions (two to the power of thirty-nine) – more that was 
supported by the BN software used. 

The algorithm supports a large number of nodes, 
but not a large number of connections to one child 

Definition of the 
nodes and their 

states

Developme
nt of the BN 

structure

Assessment 
of CPT

Verification 
/ Validation

Figure 3 – Process to build a BN model to HRA 



node. Therefore, it was necessary to make 
assumptions to simplify the model structure.  

To make assumptions about connections between 
nodes, one must have a clear understanding of the 
causal relationship that factors transmit to cognitive 
functions.  

That is the reason why the most common way to 
simplify a model, for human reliability purpose, is us-
ing expert judgement, also known as expert elicitation 
(Mkrtchyan et al. 2015). However, it is also the stage 
where happens one of the most claimed disadvantages 
of using Bayesian networks for human reliability 
analysis: it is argued that experts can bring more un-
certainties to a model due to their personal bias.  

In an attempt to avoid this kind of uncertainty, the 
strategy was to let the data ‘speak’ for itself. This 
strategy has been already used by Groth and Mosleh’s 
(2012) at their BN model, where they had introduced 
nodes of ‘error context’ to align certain combinations 
of PIFs that are more likely to produce human errors 
than the individual PSFs acting alone.  

At the present work, the ‘error context’ was repre-
sented as the arcs of the BN model instead of the 
nodes. The context was imported from the treatment 
applied by Moura et al. (2017) to their dataset, to dis-
close common patterns and significant features 
among major accidents. They have used an artificial 
neural network approach to the dataset, a data mining 
process that translated the information into a graph-
ical interface, the self-organising maps (SOM). Ana-
lysing them, one can perceive that the 238 accidents 
are allocated into four different regions, shaped by the 
clustering of accidents with a similar profile and, 
thus, a similar combination of factors, cognitive func-
tions and actions. 

Summing up, the model connections were pro-
posed based on those SOM relations:  factors that 
were in the cluster #1 were linked only to cognitive 
functions located on the same cluster, and the same 
process was repeated for all the clusters. 

Simplifications to the network structure were ap-
plied not only to the connections but also to the num-
ber of nodes. Using previous research by Moura et al. 
(2017), the nodes were restricted to the factors, cog-
nitive functions and actions considered significant for 
the dataset of major accidents by the self-organising 
maps algorithm.  

Consequently, if a factor had represented negative 
or very low variations in the formation of one of the 
SOM clusters, it was interpreted that that factor was 
not significant to the causation pattern of major acci-
dents and, consequently, it was not included in the 
Bayesian model presented in this paper. The 
considered nodes are presented in italic in tables 1, 2 
and 3, and in the nodes represented in Figure 4. 

The model considers that cognitive functions are 
affected by each factor and that human erroneous ac-
tions are affected by the factors and by the cognitive 
functions. That is because the model assumes that 

workers have a mental process behind their actions 
(Hollnagel, 1998). 

 
3.4 Conditional probability tables (CPT) 

Conditional probability tables have been obtained 
from the dataset of major accidents from different in-
dustry sectors (Moura et al. 2017), using the CREAM 
classification scheme (Hollnagel, 1998).  

After the simplification on the network, the higher 
number of combinations to a child node reached was 
the node ‘wrong place’, with nineteen parent nodes 
combinations, considering the possibility of occur-
ring a ‘wrong place action’ influenced by sixteen fac-
tors and three cognitive functions. That means 
524,288 combinations, and thus 524,288 probabilities 
of an action to occur or not. 

The prior probabilities of the model were obtained 
by calculating how many times a specific combina-
tion occurred, divided by the total number of acci-
dents of the dataset. 

 

3.5 Software used  

The accident dataset developed by Moura et al. 
(2016) has been originally built as a table of zeros and 
ones, that was uploaded to the BN software.  

Figure 4 – Bayesian model considered 



If the number of combinations was small, an Excel 
spreadsheet could be used to find the CPT and export 
to GeNIe software. However, as presented in the pre-
vious section, the dataset generated conditional prob-
ability tables of 524,288 probabilities for some child 
nodes. This row (or vector) of data extrapolates Excel 
software limits, and thus Matlab had to be used. Also, 
to optimise the data gathering, it was necessary some 
coding skills to create the Conditional Probability Ta-
bles – as ‘filtering’ the combinations in Excel would 
consume too much time. 

The BN model was built in GeNIe Modeler for ac-
ademic use (BayesFusion, LLC). The clustering 
algorithm embedded in the software was used to 
calculate the posterior probabilities, and the node type 
used was ‘chance – general’.  

Useful explanations of how to use the GeNIe soft-
ware can be found in the manual provided by the de-
veloper and also by the authors of an evacuation time 
analysis of ships using BN (Sarshar et al., 2013).  

 
4 RESULTS 

After building the model, inserting the prior 
probabilities of parent and child nodes (through their 
conditional probability tables), the marginal 
probability distributions were calculated using Genie 
software, as presented in table 4: 
 
Table 4. Marginal probabilities of human performance  

Cognitive functions Actions 

Observation Wrong time 4.21e-04 

Observation missed 8.12e-05 Wrong type 1.73e-04 

Interpretation Wrong place 4.64e-04 

Faulty diagnosis 1.05e-03   

Wrong reasoning 1.05e-03   

Decision error 6.35e-04   

Planning   

Inadequate plan 1.22e-03   

Priority error 6.50e-04   

 
Although a validation was not yet conducted, the 

order of magnitude of the HEPs (cognitive functions 
and erroneous actions) is consistent with HRA 
directives from the Oil & Gas industry (OGP, 2010), 
and HRA documents obtained at the website of the 
Environmental Protection Department of The Gov-
ernment of the Hong Kong (2017). A validation is 
needed to understand if the model is optimistic or 
pessimistic, according to validation criteria discribed 
by Kirwan (1997). 

 
4.1 Verification step  

To verify if the model behaves according to its 
specifications, some scenarios were created, changing 
the factors to its extremes. It means that each parent 
node was assumed to be 0 and 1 separately. In other 

words, each factor (organisational, personal and tech-
nological) was assumed to be absent or present in an 
industrial scenario. 

To achieve that, after changing the factors, the pos-
terior probabilities of the human performance nodes 
were calculated, updating the Bayesian network. 

4.2 Sensibility of human performance to each factor 

To infer which factors most influence human 
performance, the results from the verification process 
have been used. 

When a factor node was set as present in a scenario 
(state 1 of the node), it was assumed that the variation 
caused to the posterior probability of a human perfor-
mance node is the sensibility of this parameter to that 
change. Note that the parameters are represented by 
small probabilities, so changes in their marginal 
probability are also expected to be small. Thus, for 
better visualisation of the sensibility, the variation in 
percentage has been calculated. 

As can be noticed in Table 5, there is a slight in-
crease in the presence of missed observations when 
Inadequate Quality Control and Design Failure, both 
organizational factors, are present in a scenario. 
Moderated positive variation is also perceived when 
the technological factors equipment failure and inad-
equate procedure are present. Interpretation functions 
(faulty diagnosis, wrong reasoning and decision er-
ror) are the most influenced parameters by changes in 
organisational and technological factors. 

Errors in design and equipment failures also in-
crease errors in interpretation functions (mainly in 
wrong reasoning), but the results show a more 
accentuated positive variation at interpretation when 
changes of quality control, task allocation and 
knowledge (related to training) occurs.  

While interpretation has its presence affected by 
training (knowledge), planning incidence seems to be 
more related to experience (skills). 

Failures in equipment increase the possibility of 
poor planning in an accident scenario, but not as 
much as the inadequate quality control and design 
failure, both organisational factors.  

Errors of execution (wrong time, type and place) 
are triggered by quality control, design failure, task 
allocation and, with fewer effect, equipment failure. 

The results suggest that some factors do not make 
cognitive functions vary positively, possibly meaning 
that an error on cognitive functions would not occur 
with a scenario with errors in factors as maintenance, 
management, social pressure and irregular working 
hours.  

5 CONCLUSION AND DISCUSSIONS 

The Bayesian model proposed was built to serve 
as a tool to predict human performance in industrial 



scenarios, i.e. the human failure probability, with the 
potential to be applied in different sectors such as 

chemical (including oil & gas processing), nuclear 
and aviation. 

The novelty of the present model is the use of a 
dataset of major accidents to define the basic aspects 
of a Bayesian network HRA model: nodes, states, 
structure and prior probabilities (conditional proba-
bility table). The model was developed as one of the 
objectives to achieve the aim of understanding hu-
man performance in the design phase. 

Some discussions are developed below in the form 
of answers to questions proposed for this research. 

5.1 Can this model be used for HRA purposes? 

Not yet. All the steps of the model were executed, 
apart from the validation. The intention is to validate 
the model against data from recent major accident 
that are not yet covered by the original dataset, to 
measure if the model describes other real operational 
data.  

In future works, the dataset can be adapted to PSFs 
of classification schemes from other HRA methods. 

5.2 Is the model able to describe human actions 
through all the project life cycle? 

Although the verification step suggests the model 
is capable of inferring which factors most influence 
human performance, the model still interprets design 
as a PSF affecting human performance in other stages 
– and do not consider PSFs affecting designers. In 
addition, it is believed that some factors may influ-
ence design phase in a different way from the prior 
probability extracted from the dataset of major acci-
dents 

Although it is believed that this model cannot de-
scribe the design phase, it has the potential to 
describe changes in design during the operational 
phase. In fact, that is one of the uncertainties that 
need to be investigated in the dataset used, as some 
situations described as a design failure can be at-
tributed to changes in the initial design during latter 
phases. This can also change part of the prior proba-
bilities considered in this model. 

Further development must consider the creation of 
new PSFs, with new organisational factors that 
should be considered during design. It seems that ex-
pert elicitation will have to be considered phase – as 
there is few public evidence of this process. 

5.3 Can this model be used to understand decision-
makers performance during design? 

The model has the potential to describe front-line 
and middle managers’ routine and emergency perfor-
mance, during the operational phase. It is expected 
that it will give a better description of cognitive func-
tions than actions, as a reflection of the decision-mak-
ers typical job description. 
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However, further investigation should be 
conducted to understand how specific factors affect 
different people in the organisation, specially for 
organisational factors for which  results suggested 
that the impact in cognitive function is marginal, such 
as social pressure and irregular working hours. These 
factors, for instance, are reported in the literature 
(Thomas et al., 1999) to affect middle-managers in a 
different way, compared to sharp-end employees. 

The importance of understanding managers’ safety 
performance is part of the present research, as a way 
of investigating if improving their performance on 
safety issues has the potential to lead industries to bet-
ter organisational factors and fewer accidents. Man-
agers are linked at the same time to top management 
and operational teams – having the opportunity to sell 
new ideas to top management and to promote strate-
gic change to employees (Wooldridge et al., 2008; 
Purcell, 2007). 

For this reason, it is recommended that further 
models consider all factors proposed by CREAM’s 
classification scheme, instead of only using the 
significant ones according to previous research 
(Moura et al., 2017). Accounting for factors like ‘ex-
cessive demand’ and ‘cognitive style’ might give an 
improved model for managers’ roles. With this pur-
pose, different software and algorithms to calculate 
posterior probabilities have to be tested, to support 
more links between nodes. Therefore, Cossan (Patelli 
et al., 2018), a software for Uncertainty Quantifica-
tion and its Bayesian network toolbox will be tested 
in the future.  
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