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ABSTRACT 

Risk analyses require proper consideration and quantification of the interaction between humans, organisation 

and technology in high-hazard industries. Quantitative Human Reliability Analysis approaches require the 

estimation of human error probabilities, often obtained from human performance data on different tasks in 

specific contexts (also known as performance shaping factors). Data on human errors are often collected from 

simulated scenarios, near-misses report systems, and experts with operational knowledge. However, these 

techniques usually miss the realistic context where human errors occur.  

The present research proposes a realistic and innovative approach for estimating human error probabilities using 

data from major accident investigation reports. The approach is based on Bayesian Networks used to model the 

relationship between performance shaping factors and human errors.  

The proposed methodology allows minimising the expert judgement of human error probabilities, by using a 

strategy that is able to accommodate the possibility of having no information to represent some conditional 

dependencies within some variables. Therefore, the approach increases the transparency about the uncertainties 

of the human error probability estimations. The approach also allows identifying the most influential performance 

shaping factors, supporting assessors to recommend improvements or extra controls in risk assessments. Formal 

verification and validation processes are also presented. 

 

1. INTRODUCTION 

Despite the increasing level of automation and the advent of artificial intelligence [1], realistic 

risk assessments of high-hazard industries should ideally be performed through the analysis of 

the complex interaction between human, machine and organisational systems [2].  
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Human reliability analysis defines a collection of qualitative and quantitative methods 

used to account for human factors in social-complex industries in a systematic way [3]. Their 

main aims are to identify the possible human errors in a task (i.e. task analysis [4]), to quantify 

them (when needed) and to propose solutions to prevent or mitigate human errors [5]. The 

analysis uses the assumption that human errors are triggered by the interaction among 

individual, technological and organisational factors, the so-called performance-shaping factors. 

 Qualitative methods for human reliability provide only the identification of human 

errors and possible preventive or mitigation solutions. Quantitative human reliability methods 

provide the same functions as the qualitative methods, plus an estimation (or an adjustment) of 

the human error probabilities according to the defined performance shaping factors in a specific 

scenario. Different quantitative human reliability methods exist, including THERP [6], SPAR-

H [7], HEART [8], CREAM [9] and ATHEANA [10]. These quantitative methods allow to 

find or adjust human error probabilities according to the performance shaping factors in the 

specific industrial context being assessed (organisational, technological and individual factors). 

However, human error probabilities obtained with quantitative methods are often affected by 

imprecision, sparse and/or incomplete human error data [11,12] leading to under-estimated or 

over-estimated probabilities [5]. This uncertainty may be one of the causes that are preventing 

industries from adopting risk assessments that account for human errors [13]. Although some 

safety regulators do accept qualitative analysis on human errors (e.g. [14]), human error 

probabilities are required by probabilistic safety (risk) assessments.  

Ideally, a human error probability should be obtained by observing operators 

performing specific tasks and quantifying the frequency of their errors. 

𝐻𝑢𝑚𝑎𝑛 𝐸𝑟𝑟𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑙𝑖𝑡𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑒𝑟𝑟𝑜𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑖𝑒𝑠 𝑓𝑜𝑟 𝑒𝑟𝑟𝑜𝑟
 

Equation 1 
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However, this is often an impractical task due to the variability of human behaviour, 

industrial installations and tasks performed. The current research presents a novel methodology 

to estimate human error probabilities by collecting data from major accident reports. Bayesian 

networks are proposed to estimate human error probabilities to exploit information about the 

conditional dependencies among human errors and performance shaping factors. The present 

methodology also addresses the problem of working with sparse data, which eventually leads 

to incomplete conditional probability distributions for some nodes of the Bayesian networks. 

The approach consists of creating an additional state for those variables, in order to 

accommodate and account for the lack of information. It is believed that this strategy increases 

the transparency about the uncertainties of the human error probability estimation without the 

need of additional assumptions. This approach has the potential to better capture the interaction 

between human, machine and organisational systems, providing additional contexts and 

scenarios not fully achieved by simulators, near-misses and expert elicitation data. 

2. METHODOLOGY BACKGROUND 
 

This section presents the proposed approach and theoretical background for the estimation of 

human error probabilities, including data collection, data analysis, verification and validation. 

2.1. Data collection 

Data collected from real operations are considered the most credible human error data, 

followed by data derived from real operations (i.e. incidents, near-misses and accidents), 

simulators and expert judgement (Figure 1) [5]. 

 

Figure 1. Data credibility for Human Error Probability assessment (adapted from [5]) 
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A summarised description of the strengths and pitfalls of each type of data are described below. 

Expert judgement: Experts are individuals with recognised knowledge or skill in a specific 

domain. Sometimes expert elicitation is the only available data source [15] thus, their opinions 

are aggregated by adopting methods to reduce expert elicitation variability [16,17]. However, 

expert elicitation is considered the least credible source of data. This is because experts can be 

oriented by different sources of bias [15], be systematically overconfident about the accuracy 

of their judgements [18] and be experienced in the taxonomy used [5]. Ultimately, it is 

improbable to have a human reliability analysis that does not rely on expert judgement to some 

extent, as all methods start with a qualitative analysis of possible scenarios [19]. 

Simulators: Data from simulators are collected at mimicked control rooms or other workspaces 

where real operators perform specific tasks under normal or emergency scenarios. Data 

collected from simulators is often restricted to human-machine interfaces in control rooms. 

Often collected data needs to be calibrated by expert judgement adopting well kwown 

approaches, e.g. SACADA [20], HAMMLab [7, 21], HuREX [22], OPERA [23].  This 

approach is strong on detecting human errors, but weak on detecting all the performance 

shaping factors. This is due to the decontextualisation of the studied tasks [7], for instance 

operators know that their actions will not have any consequence and often know that their 

actions are being observed [5].  

Derived data from real operation: Data from real operations come from direct task monitoring, 

near-misses events and major accidents. 

The direct task monitoring is the method where a real operational task is observed at the 

moment it is performed by an assessor or recorded and analysed after the event. It is considered 

one of the best data sources but it lacks data for tasks rarely performed. For instance, the 
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database CORE-DATA has been partially generated with data derived from real operations 

[24].  

Data from near-misses events are those that collect human errors and performance shaping 

factors from events that had the potential to cause considerable damage to assets and people 

but they had no relevant consequence [25-27]. This kind of data has the benefit of describing 

more errors related to hardware (such as manually operated valves) and relating human errors 

to performance shaping factors. However, near-miss reports are generally restricted to what 

needs to be communicated to the regulator [26, 27], thus relevant factors may not always be 

reported [28]. 

Data from major accident reports have the potential to deliver stronger relation between 

performance shaping factors and human errors [29,30]. This is because detailed analyses of the 

causes that led to the accidents are required and performed [31]. Despite the potential benefits, 

the strategy of using major accident data to estimate performance shaping factors and human 

error probabilities is not yet fully explored.  

 

2.2. Bayesian networks  

 

Bayesian network is a powerful graphical tool that has received an increasing interest due to 

their capability of providing efficient factorization of joint probability distributions, exploiting 

information about the conditional dependencies among variables [32]. Bayesian networks have 

also been used for the estimation of Human Error Probability on different industrial sectors, as 

described by the thorough review of Mkrtchyan et al. [33]. 

Let consider a simplified Bayesian network for modelling human error as shown in 

Figure 2. Each ellipse called ‘node’ represents variables such as ‘organisational factors’, 

‘technological factors’, ‘person-related factors’, ‘cognitive errors’ and ‘execution errors’. The 

arrows represent the direction of the causal relationship between variables. In the model 
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presented, the ‘organisational factors’ is defined as the parent node of ‘cognitive errors’ and, 

likewise, ‘cognitive errors’ as the child node of ‘organisational factors’. The ‘organisational 

factors’ is denoted a root node of the network, as it does not have parents. The causal 

relationships between variables is defined by Conditional Probability Distributions (CPDs). 

These distributions are usually represented by crisp values numerically coded in Conditional 

Probability Tables (CPTs) [34]. 

 

Figure 2. Simplified Bayesian network for human error probability 

The main advantages of using Bayesian networks for Human Reliability Analysis are [33]: 

 Deal with lack or incomplete data of human errors in complex industries by integrating 

expert judgement and other different sources of information in the model; 

 Allow to consider dependencies among factors by using joint probabilities, to combat the 

frequent (and possibly mistaken) assumption of independencies between performance 

shaping factors and human errors. 

 The acyclic graphs are easy to understand and potentially facilitate the communication 

between engineers, psychologists and social scientists in multi-disciplinary risk analysis. 

 The possibility to update the marginal probabilities of the variables, when new information 

becomes available.  
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 Provide reasons for the results by allowing to identify which performance shaping factors 

are affecting individual human errors [35]; 

 The capability of performing “what if” scenarios analysis by fixing the state of variables, 

as well as to propagate the information in the direction of interest [36].  

2.3. Identifying conditional dependencies from sparse data 

Data for human error are usually sparse or missing. Although data can be collected from 

an increasing number and variability of accident reports (e.g. collecting reports from different 

safety regulators or from different industry sectors) some conditional dependencies might 

continuously fail to appear in the available data. Therefore, inferences of the human error 

probabilities are generally performed based on expert elicitation. Experts can contribute by 

providing direct probability values (‘direct elicitation’) or give their opinion through qualitative 

scales, questionnaires, relative judgements (‘indirect elicitation’) [33]. Alternative approaches 

are based on data derived from underling method relationships [37,38], or from specifically 

designed simulators [37, 39]. The discussion of the mathematical theory behind these 

approaches is beyond the scope of the present paper, however the interested reader can refer to 

[36, 40, 41]. Some basic background about conditional probability distributions (CPD) are 

provided in Appendix A. 

 

2.4. Verification and Validation 

Once the human error probabilities are obtained, they should be verified to test if the model 

works as it is supposed to work [33]. If the correct inputs are given, the appropriate outputs are 

seen [5]. In Jentsch words, we should ask ourselves: “Did we build the system right?” [42]. 

Verification can also be referred as ‘internal validation’, when used as a test to measure the 

variation between assessors, so the result can be repeated no matter the team or the day when 

the analysis is conducted [5].  
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Few published researches based on Bayesian network to infer human error probabilities 

have presented a verification process [33]. [43] have presented their verification results, after 

creating a set of hypothetical profiles at the extreme points, varying from the highest to the 

lowest level of each factor. [44] have conducted a sensitivity analysis focused on the ‘context 

control modes’ of the method CREAM, using expert judgement. They have suggested that in 

a successful model a slight change towards the negative effects of a ‘context control mode’ 

would result in the increment of the human error probability. 

The literature suggests that higher levels of performance shaping factors would result in 

higher levels of human error probability, and that combinations of performance shaping factors 

would result on greater adverse impact on human error probability [3]. That means that Human 

Reliability should reflect the features of a Coherent System with multi-states components, 

where the performance of a system improves whenever any component or subset of component 

improves, and vice-versa [45,46].  

To validate a model, one should test if the system does what is supposed to do in the real 

world: if the outputs have a good correlation to ‘real world data’ [5]. In Jentsch words, we 

should ask ourselves: “Did we built the right system?” [42]. 

A common method to validate a model is to conduct cross-validation, splitting available 

data sets into training and test sets. However, this approach is adopted in data-rich applications 

which is not the case presented in rare events such as human errors in major accidents [33]. For 

these events, Kirwan suggests the comparison of the new results with existing human error data 

of better or similar credibility level [5]. The measurable criteria used are correlation, accuracy, 

the degree of optimism/pessimism, and precision [5]. 

(i) Correlation: The degree of the predictive relationship is usually presented via a scatterplot 

of predicted versus actual human error probability.  Although validations usually try to express 

parametric correlation (with the square of the correlation coefficient), the majority of validation 
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research conducted by the human reliability community have been expressed via non-

parametric correlation [5,8,47], assuming that human behaviour does not rely on any 

assumption of the distribution function or the joint distribution of performance shaping factors.  

The non-parametric correlation tests are Spearman’s rank correlation coefficient [48] 

and Kendal's coefficient of concordance (Kendal’s τ) [49]. Although both tests are different, 

the interpretation of both coefficients are similar: the correlation between the two variables will 

be high when observations have a similar (or equal) correlation of one. Likewise, if the 

coefficient value is next to zero, the correlation between the results from the model and the 

reference is small. 

(ii) Accuracy: In risk assessment, an ideal accuracy level is when estimates lie within a factor 

of three of the ‘true’ values, but it is acceptable if falls within a factor of ten [5].  Model 

accuracies are often represented graphically in a scatterplot of the results against reference data 

using logarithms scale.  

(iii) Precision: An aspect of precision is the degree to which the technique, when not accurate, 

is pessimistic rather than optimistic [5]. Pessimistic estimate is a prediction that goes into a 

more conservative direction. Conservative estimates lead to safer but at the same time more 

expensive design. Therefore, it is important to find strategies that provide more realistic HEPs 

to the industry. Histograms are also plotted to present how human error estimates were 

distributed into accuracy bands within pessimistic and optimistic factors of 3, 10 and 100.  

3. PROPOSED APPROACH:  USING DATASETS OF MAJOR ACCIDENTS 

REPORTS 

3.1. Bayesian Network definition  

All the steps required to build a Bayesian network from major accident reports are described 

below.  
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Definition of the nodes: Bayesian network nodes represent the variables obtained from any 

taxonomy able to classify performance shaping factors and human errors. The chosen 

taxonomy must be able to classify the performance shaping factors and human errors at a level 

that is common for all the sectors. 

States of the nodes: Root nodes have only two states: the state ‘0’ and state ‘1’ representing 

the logical entries of the accident dataset during data collection, i.e. ‘0’ when a variable (e.g. 

performance shaping factor or human error) is absent or not observed on the accident by the 

investigator, and ‘1’ when the variable has been observed.  

Child nodes have been augmented with an additional state called ‘no data’. This state is used 

to handle cases where specific combinations of events (i.e. the conditional probabilities) are 

not observed in the dataset. This strategy not only permits the assessment of the conditional 

probability tables without expert judgement but also increases the transparency on the 

uncertainties of the result (i.e. human error probability).  

Definition of the structure: The Bayesian network structure (Figure 3) has the objective of 

capturing the dependencies between performance shaping factors and human errors, but also 

among performance shaping factors and human errors, and explicitly modelling their multi-

level, hierarchical influences on each other.  

 

Figure 3. Example of a structure reflecting the causal relationships within variables 

PSF 1 PSF 2 PSF 3 

PSF 4 PSF 5 

Human error 1 

Human error 2 
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Experts with psychology and sociology knowledge might be elicited to obtain this type of 

structure (e.g. to identify the causal relationships of cognitive errors and organisational factors). 

Although one of the aims of this research was to avoid expert biases, it is acknowledgeable that 

at some level of the assessment the experts are essential – if not for eliciting the prior 

probabilities, they will be for the model structure or for the taxonomy used. 

3.2. Assessment of the Conditional Probability Tables 

In order to avoid experts’ biases on eliciting probabilities, the present work uses solely the 

information from dataset in order to obtain the conditional probability distributions. Let 

consider a dataset from accident reports able to classify human errors and corresponding 

performance shape factors as shown in Table 1. Conditional probability tables for root nodes 

are defined as the frequencies for each performance shaping factor obtained in the data 

collection, and  presented in Table 2a and 2b.  

Table 1. Example of a dataset with human errors and performance shaping factors (PSFs) identified for each accident.  

Accident 
Human 

error 1 

Human 

error 2 
PSF 1 PSF 2 PSF 3 PSF 4 PSF 5 

Accident #1 1 0 0 1 1 1 0 

Accident #2 0 1 0 0 0 0 0 

Accident #3 0 0 0 0 0 0 0 

Accident #4 1 0 0 0 0 0 0 

Accident #5 1 0 0 1 1 1 0 

Accident #6 1 1 0 0 0 0 0 

Accident #7 1 0 0 1 0 1 0 

Accident #8 1 0 0 0 0 0 0 

Accident #9 1 0 0 0 0 1 1 

 

Table 2 (a,b). Example of prior probabilities of root nodes PSF 1 and PSF 2. 

PSF 1   PSF 2  

State 0 1  State 0 6/9 = 0.7 

State 1 0  State 1 3/9 = 0.3 

 

The conditional probabilities for child nodes depend on the structure defined on the 

network and are obtained by counting the frequency of all the possible combinations of the 

parent node’s states in the dataset. The frequency is the number of accidents that present a 
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specific combination divided by the number of accidents in the dataset. The frequencies 

obtained (Table 3) are then normalised, as the prior probabilities of the set of states of the child 

node must sum to one (Table 4). The same process is repeated for each combination of the 

conditional probability table. When this process is complete it is possible to compute the 

posterior probabilities for each node. The posterior probabilities of the state ‘1’ of the child 

nodes designated to human errors will be the human error probabilities. 

 
Table 3. Example of the conditional probability table for node ‘Human error 1’ 

 

 

 

 

 

 

Table 4. Normalised conditional probability table 

 

 

 

 

 

 

When the dataset used does not provide information for defining conditional distributions 

within certain variables states, the variable state “no data” is set to ‘1’. If this strategy were not 

used, the prior probabilities of states ‘0’ and state ‘1’ of the child node for that given 

combination would have both probabilities set equal to zero, making it impossible to compute 

the conditional probability table. In Ref  [41] it is suggested to  assigning equal probability to 

all the unknown combination of events. However, using the latter strategy, a researcher loses 

the information of what combinations do not lead to human errors according to the dataset, 

which can be potentially used in the future. 

PSF 1  State 0 (…) 
PSF 2  State 0 (…) 
PSF 3  State 0 (…) 
PSF 4   State 0 State 1 (…) 
PSF 5  State 0 State 1 State 0 State 1 (…) 

Human 

error 1 

State 0 2/9 = 0.2 0 0 0 (…) 

State 1 3/9 = 0.3 0 0 1/9 = 0.1 (…) 

No data 0 1 1 0 (…) 
 

PSF 1  State 0 (…) 
PSF 2  State 0 (…) 
PSF 3  State 0 (…) 
PSF 4   State 0 State 1 (…) 
PSF 5  State 0 State 1 State 0 State 1 (…) 

Human 

error 1 

State 0 0.4 0 0 0 (…) 
State 1 0.6 0 0 1 (…) 
No data 0 1 1 0 (…) 
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3.3. Validation and verification 
 

The verification of the models is performed through what-if analysis, to test how the model 

behaved when analysing well-known scenarios [36]. To achieve that, some hypothetical 

scenarios have been created by fixing each state of each performance shaping factor node of 

the Bayesian network, and observing how the changes affected the human error probabilities. 

Results from the what-if analysis are used to verify the model but also to obtain the 

maximum and minimum bounds of human error probabilities after varying each performance 

shaping factor to its maximum and minimum values. The validation process is performed by 

comparing the results obtained by the constructed model against data provided by references 

using the same taxonomy.  

4. CASE STUDY  

4.1. MATA-D dataset 

For the present research, the MATA-D dataset is adopted [29]. The dataset contains 238 

major accident reports classified under the CREAM taxonomy [9]. A single taxonomy is used 

to describe both human errors and performance shaping factors for a variety of industrial 

sectors. Only trusted investigation boards have been used to build the dataset. Logical values, 

i.e. binary code of 1s or 0s, are used to designate whether or not a human error or factor was 

observed. This resulted in a matrix of zeros and ones with 238 rows (the number of accidents) 

by 53 columns formed by 39 performance shaping factors (Table 5) and 14 different type of 

human errors (Table 6). 
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Table 5. Performance shaping factors used in MATA-D dataset 

Organisational Factors Technological Factors  Person related factors 

Communication failure Equipment failure Permanent related 

Missing information  Software fault Functional impairment 

Maintenance failure Inadequate procedure  Cognitive style  

Inadequate quality control Access limitations Cognitive bias 

Management problem Ambiguous information Temporary 

Design failure Incomplete information Temporary related 

Inadequate task allocation Access problems Memory failure 

Social pressure  Mislabelling Fear  

Insufficient skills  Distraction 

Insufficient knowledge   Fatigue 

Adverse ambient conditions   Performance Variability 

Excessive demand  Inattention 

Inadequate work place layout  Physiological stress 

Irregular working hours  Psychological stress 

 
Table 6. Human errors used in the MATA-D dataset 

Cognitive Errors Execution Errors 

Observation errors Interpretation errors Planning errors Wrong time  

Observation missed  Faulty diagnosis  Inadequate plan  Wrong type  

False Observation  Wrong reasoning  Priority error  Wrong Object  

Wrong Identification  Decision error   Wrong place 

 Delayed interpretation   

 Incorrect prediction   

 

 

4.2. Bayesian Network 

 

The methodology presented in Section 3 has been used to construct a Bayesian Network 

model from the MATA-D dataset and summarised in Table 7. The resulting structure of the 

Bayesian network is shown in Figure 4. 
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Table 7. Summary of the methodology to build the Bayesian Network model  

Nodes and states Structure Conditional probability table 
Verification and 

Validation 

The nodes are 

variables defined in 

CREAM taxonomy 

[9]. 

 

From 39 possible 

performance 

shaping factors and 

14 possible human 

errors, only six 

were not used, due 

to their absence on 

the accident 

reports.  

 

The root nodes 

have two states: ‘0’ 

and ‘1’ (following 

the logical entries 

of the MATA-D 

dataset) and child 

nodes have ‘0, ‘1’ 

and ‘no data’.  

 

The root nodes 

have two states: ‘0’ 

and ‘1’, to 

designate whether 

or not an evidence 

was encountered on 

an accident report. 

 

The child nodes 

have the states ‘0, 

‘1’ and ‘no data’. 

The latter state is 

used when the 

dataset does not 

provide a specific 

combination 

between the parent 

nodes. 

 

 

The connections 

between the nodes 

were defined 

according to relations 

based on expert 

judgement, from the 

same author of the 

taxonomy used to 

define the nodes [9]. 

He has named it the 

‘antecedent-

consequence relation’. 

A different structure 

less reliant on expert 

judgement was 

proposed at [50], by 

using common 

patterns of PSFs and 

human errors 

identified on [51]. 

 

The structure depicts 

the influence between 

performance shaping 

factors, which means 

that some performance 

shaping factors are 

also child nodes. 

 

 

The structure 

represents the 

influence that 

performance shaping 

factors have upon each 

other. Eventually, this 

means that some 

performance shaping 

factors are also child 

nodes. 

 

All human errors are 

child nodes of the 

performance shaping 

factors. 

The conditional probability tables for 

the root nodes were obtained directly 

from the frequencies of each 

performance shaping factor 

according to [29], e.g. design failure 

is equal to 66%, so at the conditional 

probability table the state ‘1’ of the 

root node ‘design failure’ is 0.66 and 

the state ‘0’ is the complement to 

one: 0.34. 

 

The frequency for combinations 

between factors and errors for the 

child nodes have been extracted from 

the dataset entries. 

 

Due to the high number of 

combinations between the states of 

the parent nodes that a child node has 

reached, obtaining the frequencies 

per combination from the dataset was 

not a trivial task. A code was used to 

read the table and extract the 

probability for each combination. For 

more information on the code and on 

how to use it, please contact the 

authors. 

 

The conditional probability tables for 

the root nodes are obtained directly 

from the frequencies of each 

performance shaping factor 

according to the dataset. 

 

The frequency for combinations 

between factors and errors are 

obtained also from the dataset 

inputs for each accident. 

To verify any 

incoherence in the 

model, a what-if 

analysis was 

conducted by 

fixing the states 

of the variables. 

 

To validate the 

model, the  

estimates were 

tested against 

reference data 

published on [9] 

according to 

correlation, 

accuracy and 

precision. 

 

To verify any 

incoherence in the 

model, a what-if 

analysis is 

conducted by 

fixing the states 

of the variables. 

 

To validate the 

model, the 

estimates are 

tested against 

reference data  

according to 

correlation, 

accuracy and 

precision. If 

possible, the 

reference data 

should be 

obtained from 

operational 

experience. 
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Figure 4. Model for predicting human error probabilities 

 

4.3. Human Error Probabilities 
 

The Human Error Probabilities (HEP) obtained analysing the MATA-D dataset are presented 

in Table 8 and graphically represented in a scatter plot in Figure 5. The state ‘0’ indicates the 

probability of a specific human error not being triggered by a specific combination of 

performance shaping factors. The state ‘no data’ indicates the number of times a combination 

of those factors has not occurred in the dataset. 
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For the purpose of verification, the obtained probabilities have been compared against data 

from Ref. [9]. The interval of the reference is described by the lower and upper bounds for each 

human error. 

Table 8. Human error probabilities from model compared with data reference [9] 

Human cognitive 

and execution errors 

Lower bound  

from reference 

Basic value 

from reference 

Upper bound 

from reference 

Human error 

probability 

O
b

se
rv

a
ti

o
n

 

Observation missed 2.00 x 10-2 7.00 x 10-2 *1.70 x 10-1 1.57 x 10-1 

False Observation 3.00 x 10-4 1.00 x 10-3 3.00 x 10-3 3.54 x 10-2 

Wrong Identification 2.00 x 10-2 7.00 x 10-2 *1.70 x 10-1 1.54 x 10-2 

In
te

r
p

r
et

a
ti

o
n

 

Faulty diagnosis 9.00 x 10-2 2.00 x 10-1 6.00 x 10-1 1.30 x 10-1 

Wrong reasoning Not provided Not provided Not provided 1.13 x 10-1 

Decision error 1.00 x 10-3 1.00 x 10-2 1.00 x 10-1 9.14 x 10-2 

Delayed interpretation 1.00 x 10-3 1.00 x 10-2 1.00 x 10-1 5.19 x 10-2 

Incorrect prediction Not provided Not provided Not provided 3.90 x 10-2 

P
la

n
n

in
g
 

Inadequate plan 1.00 x 10-3 1.00 x 10-2 1.00 x 10-1 9.89 x 10-2 

Priority error 1.00 x 10-3 1.00 x 10-2 1.00 x 10-1 6.55 x 10-2 

E
x

e
cu

ti
o
n

 

Action at wrong time 1.00 x 10-3 3.00 x 10-3 9.00 x 10-3 1.24 x 10-1 

Action of wrong type 1.00 x 10-3 3.00 x 10-3 9.00 x 10-3 1.02 x 10-1 

Action on wrong object 5.00 x 10-5 5.00 x 10-4 5.00 x 10-3 2.34 x 10-2 

Action of wrong place 1.00 x 10-3 3.00 x 10-3 9.00 x 10-3 3.01 x 10-1 

*The literature provides 1.7 x 10-2. However, this value is lower than the lower bound. In this paper, the authors decided to 

replace this value to 1.7 x 10-1. 
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Figure 5. Human error probabilities from the proposed approach and from reference [9] plotted in  a logarithmic scale 

Figure 5 shows higher human error probabilities than the reference data. A possible 

interpretation of this trend might be attributed to the methods used to collect reference data [9], 

where all human errors were accounted for, including those that have not produced an accident.  

Thus more opportunities of errors were accounted on the denominator of Equation 1, making 

the resulting probabilities lower than those obtained with the present approach.  

The human error estimates are the values obtained for the probabilities of the state ‘1’ 

of each child node. The results of state ‘0’ and the state ‘no data’ are presented in Table 9. A 

comparison of the results obtained for each state is also presented in Figure 6. 
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Table 9. Results of all states of human error probability nodes on the proposed model 

Cognitive and execution errors State ‘0’ State ‘1’ (HEP) State ‘no data’ 

Observation missed 8.22  x  10-1 1.57  x  10-1 2.07  x  10-2 

Wrong Identification 9.58  x  10-1 3.54  x  10-2 6.62  x  10-3 

False Observation 9.71  x  10-1 1.54  x  10-2 1.38  x  10-2 

Faulty diagnosis 8.70  x  10-1 1.30  x  10-1 0.00   

Wrong reasoning 8.87  x  10-1 1.13  x  10-1 0.00   

Decision error  8.96  x  10-1 9.14  x  10-2 1.24  x  10-2 

Delayed interpretation 9.45  x  10-1 5.19  x  10-2 2.71  x  10-3 

Incorrect prediction 9.61  x  10-1 3.90  x  10-2 0.00   

Inadequate plan 8.85  x  10-1 9.89  x  10-2 1.65  x  10-2 

Priority error  9.31  x  10-1 6.55  x  10-2 3.92  x  10-3 

Action at wrong time 8.27  x  10-1 1.24  x  10-1 4.89  x  10-2 

Action of  wrong type 7.68  x  10-1 1.02  x  10-1 1.30  x  10-1 

Action on wrong object 9.05  x  10-1 2.34  x  10-2 7.16  x  10-2 

Action of wrong place 6.49  x  10-1 3.01  x  10-1 5.06  x  10-2 

 

 

 

Figure 6. States estimates for the proposed model 

To test if the model outputs work as they were supposed to work, a what-if analysis was 

conducted, by fixing the states of sets of performance shaping factors one-at-the-time and 

summarised graphically in Figure 7. In Figure 7, the black bars in the charts represent the values 

estimated for the model; the green and red bars can be interpreted as a spectrum of human error 

probabilities after varying all performance shaping factors to their best and worst-case 

scenarios. The green bars represent the expected results for a specific variation, whereas the 
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red bars represent the unexpected results. The expected results represent those values that are 

expected from a coherent system according to the formal definition used for reliability 

technological systems.  For instance, in a coherent system, the probability of having a human 

error decreases if a set of performance shaping factors are set to zero (best-case scenario), and 

increases in case of performance shaping factors increased to 100% (worst-case scenario). The 

obtained figures show that in the scenario of having all the organisational factors failing to 

work, the cognitive error of missing an observation (i.e. ‘Observation missed’) would in fact 

decrease. This is possibly be explained by an increase in performance that humans might be 

using to compensate organisational errors. This reinforces the theory that humans are not only 

probable initiators of an event, but also the last chance to recover a problem initiated by 

organisational and technological factors [9]. 
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Figure 7 (a-n). Variation of the sets of PSFs for each HEP estimates 

Variations of some sets of performance shaping factors had also resulted in zero 

probability human errors, as presented in Table 10. This shows that some human errors are 

impossible to occur under the specific conditions of performance shaping factors present in the 

MATA-D database.  
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Table 10. Sets of performance shaping factors variations producing  zero human errors probability. 

Human error Probability = 0 Simulated Scenarios (sets of PSFs at their worst case 

scenarios) 

Observation missed When All Temporary Person Related Factors = 1  

False Observation All organisational factors = 1 

Wrong Identification Functional impairment (a permanent person related factor) = 1 

All organisational factors = 1 

Missing information (an organisational factor) = 1 

 

Faulty diagnosis --  

Wrong reasoning --  

Decision error All organisational factors = 1                                   Social pressure 

(an organisational factor) = 1 

 

Delayed interpretation All organisational factors = 1 

Incorrect prediction All Permanent Person Related Factors = 1 

Cognitive bias (a permanent person related factor) = 1 

All technological factors = 1 

Ambiguous information (a technological factor) = 1 

 

Inadequate plan ALL Temporary Person Related Factors = 1 

Memory failure (a Temporary Person Related Factor) = 1 

 

Priority error --  

Wrong time ALL Temporary Person Related Factors = 1 

Wrong type ALL Temporary Person Related Factors = 1 

Performance Variability (a Temporary Person Related Factor)= 1 

ALL Permanent Person Related Factors = 1 

Functional impairment (a Permanent Person Related Factor) = 1  

Wrong Object ALL Temporary Person Related Factors = 1 

Inattention (a Temporary Person Related Factor)= 1 

ALL Permanent Person Related Factors = 1 

Functional impairment (a Permanent Person Related Factor) = 1 

All technological factors = 1 

Access problems (a technological factor) = 1 

 

Wrong place ALL Temporary Person Related Factors = 1 

ALL Permanent Person Related Factors = 1 

 

To validate the model, its outputs had been tested on the correlation, accuracy and 

precision to existing data obtained at [9]. The reference data were collected from simulators, 

expert judgement, laboratory controlled cognitive experiments and simulation studies of 

inspection tasks, (from simulated process plant and training schools). According to Hollnagel 

[9], data sources for human errors such as observation and execution were relatively well 

established at the time they were collected (approximately 1998). On the other hand, the author 
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declared that interpretation and planning behaviours were mostly based on expert judgements. 

In addition, Ref [9] does not provide probabilities for ‘wrong reasoning’ and ‘incorrect 

prediction’. To validate the model only the basic values provided in [9] are used.   

Figure 8 shows a scatter plot of human error probability predicted from the model versus 

human error probability from the reference [9]. The present research has also tested non-

parametric correlation, as human behaviour does not rely on any assumptions on the 

distribution function. The non-parametric correlation tests of Spearman’s correlation 

coefficient and Kendal's coefficient of concordance are both presented in  

Table 11. Both correlation coefficients are very small and not statistically significant.  

As shown on the scatterplot in Figure 8, seven of the human error probabilities estimated lied 

within a factor of 10 and five within a factor of 100 of the reference. To evaluate their accuracy 

within a factor of 3, the results were also plotted in a histogram (Figure 9). When not accurate, 

the histograms also illustrate if the estimates are pessimistic or optimistic if compared to the 

reference. 

 

 

Figure 8. Human error probabilities (HEPs) from model versus HEPs from the reference in a logarithmic scale 
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Table 11. Non-parametric correlation results 

Correlation between model 

outputs and values in the 

reference 

Spearman’s correlation coefficient ( s)= 0.20115 

Kendal's coefficient of concordance (Kendal's ) = 0.3333 

 

 

Figure 9. Histogram with accuracy bands 

The model outputs had presented more pessimistic estimates rather than optimistic 

ones, meaning that the majority of HEPs estimated through both models tend to be higher than 

the reference. The histogram provided in Figure 9 shows how spread the results are. Table 12 

presents the lower and upper bounds of human error probabilities after varying all performance 

shaping factors to their minimum and maximum values.  

 
Table 12. Human error probability uncertainty after varying performance shaping factors 

Cognitive and 

execution errors 

Lower bound Human error 

probability 

Upper bound 

Observation missed 5.30 x 10-3 1.57 x 10-1 7.75 x 10-1 

False Observation 1.00 x 10-3 3.54 x 10-2 3.27 x 10-1 

Wrong Identification 5.00 x 10-4 1.54 x 10-2 1.98 x 10-1 

Faulty diagnosis 9.15 x 10-2 1.30 x 10-1 4.69 x 10-1 

Wrong reasoning 9.95 x 10-2 1.13 x 10-1 2.94 x 10-1 

Decision error  1.40 x 10-3 9.14 x 10-2 2.72 x 10-1 

Delayed interpretation 2.10 x 10-2 5.19 x 10-2 7.10 x 10-1 

Incorrect prediction 2.30 x 10-3 3.90 x 10-2 8.49 x 10-2 
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Inadequate plan 2.20 x 10-3 9.89 x 10-2 3.88 x 10-1 

Priority error  2.03 x 10-3 6.55 x 10-2 1.02 x 10-1 

Action at wrong time 3.20 x 10-3 1.24 x 10-1 3.52 x 10-1 

Action of wrong type 1.00 x 10-4 1.02 x 10-1 1.91 x 10-1 

Wrong Object 7.10 x 10-3 2.34 x 10-2 7.65 x 10-2 

Action of wrong place 1.30 x 10-6 3.01 x 10-1 4.73 x 10-1 

 

 

4.4. Discussion  
 

The case study shows the applicability of the approach for the available datasets of 

major accidents. These databases are capable to describe the interaction between human, 

machine and organisational systems and that the human error probabilities obtained have a 

similar order of magnitude of those used by industry to feed real risk assessments. However, 

some aspects brought by the verification and validation steps have to be better understood 

before considering the probabilities ready to be used to feed risk assessments. 

The verification applied to the case study shows some human errors increasing if one 

or a set of performance shaping factor are decreased (and vice-versa). This may suggest and 

inadequacy of the used model or may also indicate that complex socio-technical systems do 

not necessarily behave as a coherent system. If right, the results of the case study suggest that 

some degraded performance shaping factors (or the combination of them) may cause also 

positive effects on human behaviour. Similar behaviour has been described by psychology 

research, which described that vigilance (the ability to maintain concentrated attention over 

prolonged periods of time) can actually decrease due to low levels of workload, an 

organisational shaping factor [52]. The verification step also has demonstrated that some 

human errors are unlikely to happen for specific states of performance shaping factors, as can 

be observed from some null human error probabilities.  

The validation step has exposed a low correlation between the results obtained with the 

Bayesian network and the reference, as the model do not provide a predictive relationship with 
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data from the reference used [9]. However, a new validation process must be conducted with 

data with similar source quality as the dataset (i.e. operational experience), as the data used as 

reference was partially obtained from simulators and expert elicitation.  

The human error probabilities obtained from the model tend to be higher than the 

reference, meaning that if they are used to feed risk assessments they will lead to a safer design. 

The majority of results falls within a factor of 3 and 10 than within a factor of 100, which is 

normally acceptable to feed risk assessments. This validation aspect is important to develop 

because although higher than the real probabilities lead to safer design, they are not desirable 

as it can direct resources to the wrong risks. 

 The what-if analysis undergone in the verification and validation steps has also 

provided a spectrum of human error probability variations that can be seen as the uncertainty 

of estimates from different scenarios. In other words, varying the performance shaping factors 

in the Bayesian networks provides a distribution of human error probabilities, where 

uncertainty boundaries can be obtained. 

To better capture the uncertainty associated with the dataset, two aspects of the data 

collection are suggested for future research. First, the data collection should be conducted by 

at least three experts, to improve the quality of the measure [17]. Second, the number of 

publicly available reports should be increased, allowing more experts to improve and test the 

dataset.  

5. CONCLUSIONS 

 

This research has presented a robust approach based on Bayesian network to obtain human 

error probabilities by using data from major accident reports. As major accidents attract the 

attention of the media, society, governments and regulators – generating prosecutions that 
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demand more investigation time and larger teams of skilled and (ideally) independent and 

dedicated investigators. The proposed approach allows to: 

 Provide human error probabilities with a deeper understanding of the performance shaping 

factors involved.  

 Use data from different tasks (e.g. inspection and maintenance), rather than focusing on 

control room operations’ tasks. 

 Use data from all human-machine interfaces, including hardware (e.g. manually operated 

valves) and not only focused on control-room screens. 

 Analyse human errors and performance shaping factors in different sectors of complex 

social-technical industries, if the same taxonomy is used. 

The probabilistic method  proposed allows not only to deal with scarce data but also to 

quickly update the values when a specific set of performance shaping factors is observed during 

the operational phase (e.g. through safety audits or equipment inspection). By introducing an 

additional state in the node of the Bayesian Network, the proposed approach allows to address 

the problem of lack of information about specific conditional probability thus increasing the 

transparency about the uncertainties of the human error probability estimation. 

Verification and validation steps are provided to assess the accuracy of the estimated 

human error probabilities and the uncertainty related to the model or dataset used. 

The approach presented in this paper have the potential to minimise the use of human 

reliability analysis methods to quantify and calibrate human error probabilities, thus 

minimising the need of expert elicitation – leaving for them the important mission of 

identifying critical tasks and the possible types of human errors associated, discussing possible 

controls and developing mitigation actions.   
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6. Nomenclature 

ATHEANA – Technique for Human Error Analysis  

CORE-DATA - Computerised Operator Reliability and Error Database 

CREAM – Cognitive Reliability and Error Analysis Method 

HAMLAB - HAlden Man-Machine LABoratory 

HEART – Human Error Assessment & Reduction Technique  

HuREX - Human Reliability data Extraction 

SACADA - Scenario Authoring, Characterization, and Debrief Application 

 

Appendix 
 

BNs can be represented by acyclic graphs, where nodes are connected to each other by arcs 

expressing dependencies among variables. The arcs directions must be coherent with the causal 

relationship of the connected variables. In the BN represented in Figure 10, the nodes A and B 

are called parent nodes of C, which is referred to as their child node. A and B are also called 

root nodes, as they do not have parents  [36]. 

 

Figure 10. Directed acyclic graph of a Bayesian network 

 

Figure 10 is the graphic representation of the conditional probability expressed in   

     Equation 2 and          Equation 3. 

 

P(C=c1 | A=a1,B=b1)       Equation 2 
                                                                                                           

P(C=c2 | A=a1,B=b1) = 1-P(C=c1 | A=a1,B=b1)                                        Equation 3 
 

The Bayes’ theorem expressed in Equation 3 provides the mathematical background 

for joint probabilities modelled by a generic BN with nodes X1, X2,…,Xn, where 𝑝𝑖refers to 
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the outcomes assumed by the parents of the node Xi, which state is represented by 𝑥𝑖. The joint 

probability associated with this generic BN is represented by Equation 4. 

 

𝑃(𝑥1, … , 𝑥𝑛) = ∏ 𝑃(𝑥𝑖|𝑝𝑖)

𝑖

 

Equation 4 

If all nodes have a binary state, the number of combinations to consider in order to generate a 

child’s node conditional probability is two (a pair of combinations) to the power of the number 

of states of the parent nodes (2states of the parent nodes). These possible combinations are usually 

organised in conditional probability tables, as the one represented in Table 13. 

Table 13. Example of Conditional Probability Table for the BN of Figure 10 

 
A State 1 State 2 

B State 1 State 2 State 1 State 2 
State 

1 of C 

P(C=c1 | A=a1,B=b1)  

 

P(C=c1 | A=a1,B=b2)  

 

P(C=c1 | A=a2,B=b1)  

 

P(C=c1 | A=a2,B=b2) 

State 

2 of C 

P(C=c2 | A=a1,B=b1) 

Or 

1-P(C=c1 | A=a1,B=b1) 

P(C=c2 | A=a1,B=b2)  

Or 

1- P(C=c1 | A=a1,B=b2)  

P(C=c2 | A=a2,B=b1)  

Or 

1- P(C=c1 | A=a2,B=b1)  

P(C=c2 | A=a2,B=b2) 

Or 

1-P(C=c1 | A=a2,B=b2) 

 

The conditional probabilities represent the strength of the dependencies associated with 

each cluster of parent-child nodes and it will depend on the structure of the BN, specifically on 

how the nodes are connected to each other.  

The inference computation in BNs can be obtained through some software packages, 

which allow the adoption of several algorithms, whether exact or approximate [53-55]. Those 

algorithms and modelling techniques are used as a starting basis and supporting tool for our 

development, which extrapolates towards an enhanced approach with novel features. 
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