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Due to the restricted intrinsic capacity of resident chondrocytes to regenerate the lost cartilage postinjury, stem cell-based therapies
have been proposed as a novel therapeutic approach for cartilage repair. Moreover, stem cell-based therapies using mesenchymal
stem cells (MSCs) or induced pluripotent stem cells (iPSCs) have been used successfully in preclinical and clinical settings. Despite
these promising reports, the exact mechanisms underlying stem cell-mediated cartilage repair remain uncertain. Stem cells can
contribute to cartilage repair via chondrogenic differentiation, via immunomodulation, or by the production of paracrine factors
and extracellular vesicles. But before novel cell-based therapies for cartilage repair can be introduced into the clinic, rigorous
testing in preclinical animal models is required. Preclinical models used in regenerative cartilage studies include murine, lapine,
caprine, ovine, porcine, canine, and equine models, each associated with its specific advantages and limitations. This review
presents a summary of recent in vitro data and from in vivo preclinical studies justifying the use of MSCs and iPSCs in cartilage
tissue engineering. Moreover, the advantages and disadvantages of utilizing small and large animals will be discussed, while also
describing suitable outcome measures for evaluating cartilage repair.

1. Introduction

Articular cartilage covers the ends of the bone; due to its
slightly compressible and elastic nature and lubricated
surface, it provides the joint with shock absorption and
lubrication [1, 2]. Hyaline cartilage is comprised of 95%
extracellular matrix (ECM) (dry weight) and only 5% of
sparsely distributed chondrocytes [3]. This matrix primar-
ily consists of type II collagen and proteoglycans (PGs).
Negatively charged glycoproteins are able to attract water,
allowing the cartilage to resist compressive forces [4].
Despite the fact that chondrocytes only make up about
5% of hyaline cartilage tissue, they are integral for carti-
lage function and homeostasis [4]. These cells are of

mesenchymal origin and are responsible for synthesizing
cartilage ECM [3]. Hyaline cartilage is an avascular tissue
which, in part, explains the limited regeneration capacity
following injury. The lack of vasculature makes it difficult
for progenitor cells to be recruited to the site of injury
and hinders the supply of nutrients necessary for tissue
regeneration [1, 5].

Cartilage loss can occur as a consequence of traumatic
injury, leading to focal defects or through chronic degenera-
tion. Both partial thickness and full thickness cartilage
defects occur [6]. Since full thickness lesions extend into
the subchondral bone, they have access to bone marrow cells
and therefore have a higher probability of spontaneous
regeneration than partial thickness lesions, which only
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involve the avascular cartilage tissue [6]. Eventually, cartilage
defects will lead to activity-related pain, swelling, and
decreased mobility and will frequently progress to osteoar-
thritis [1, 7]. In the United States alone, over 27 million
adults suffer from osteoarthritis, leading to a substantive clin-
ical and financial burden [8, 9].

There are currently no drugs available to effectively heal
cartilage defects. When cartilage defects develop into osteoar-
thritis, the condition can only bemanaged by amultidisciplin-
ary approach including pharmacotherapy, physiotherapy, or
joint replacement surgery [10]. However, several surgical
interventions can be performed in order to prevent
progression towards osteoarthritis [1]. Current techniques
include arthroscopic lavage and debridement, microfracture
induction, and autologous chondrocyte implantation [11].
Although these techniques have been proposed to restore
normal joint function and minimize further degeneration,
they often do not offer a long-term clinical solution. There is
a clinical need to develop regenerative medicine approaches
to permanently restore articular cartilage [11].

Both adult mesenchymal stem cells (MSCs) and induced
pluripotent stem cells (iPSCs) are promising stem cell sources
to achieve cartilage regeneration [5, 7, 12–14]. However, the
use of adult MSCs still faces considerable challenges such as
cell senescence and donor variability [7, 15]. iPSCs may pro-
vide a suitable alternative in order to overcome the limitations
of adult MSCs [7]. iPSCs possess unlimited self-renewal and
pluripotency, similar to embryonic stem cells (ESCs), but lack
the ethical concerns associated with the use of ESCs [1]. How-
ever, it remains to be determinedwhether differentiated iPSCs
are able to form a bona fide cartilage [1]. Furthermore, more
research is required to alleviate any concerns for tumorigenic
effects before this technology can progress to preclinical and
clinical usage [16, 17]. Before any of these possible treatment
options can be introduced into the clinic, they first have to be
tested in suitable and translational animal models [9]. A wide
variety of animal models is available to investigate cartilage
regeneration ranging from small animal models, such as mice
and rats, to larger animals such as canine, porcine, caprine,
ovine, and equine models. Smaller animal models are cost-
effective and easy to house and offer a variety of genetically
modified or immunocompromised strains. However, due to
their small joint size and thincartilage, their translational value
is limited [9]. Larger animal models on the other hand more
accurately approximate thehumansituationbut are associated
withgreater logistical,financial, andethical considerations [9].

In this review, recent in vitro data and preclinical studies
justifying the use of MSCs and iPSCs in cartilage tissue
engineering are summarized. Since preclinical studies require
translational animal models, the advantages and disadvan-
tages of small and large animal models will be discussed,
while also focusing on suitable outcome measures for evalu-
ating cartilage repair.

2. In Vitro Evidence of Chondrogenic
Differentiation of Stem Cells

For stem cell-based cartilage regeneration, MSCs are of
particular interest because, in comparison to chondrocytes,

they have high availability and both easy isolation and expan-
sion [18]. In addition, their in vitro chondrogenic differenti-
ation has been proven [19]. More recently, in vitro studies on
iPSCs indicated promising results for their use in cartilage
repair [20, 21]. However, a number of challenges have to be
overcome and further optimization is still needed before both
stem cell types can be used as a safe and effective therapeutic
option for promoting cartilage repair [1, 14, 22–24].

2.1. Mesenchymal Stem Cells.AdultMSCswere first identified
in bone marrow [25], but afterwards, other MSC niches have
been discovered in both adult and fetal tissues, including
adipose tissue [26], placenta [27], umbilical cord [28], dental
pulp [29, 30], and peripheral blood [31], and in the synovial
membrane [32]. As defined by the International Society for
Cellular Therapy (ISCT), MSCs must be able to differentiate
into chondrocytes under specific in vitro conditions [33]. In
addition, MSCs possess additional properties making them
a suitable cell source for cartilage regeneration. High cell
numbers can be produced, and the immunomodulatory
characteristics of MSCs allow for their allogeneic use [34].

Pellet and monolayer cultures are the two main culture
systems that have been developed to study in vitro chondro-
genic differentiation. The 3D pellet system is the most
representative in vitromodel for the condensation of mesen-
chymal cells that is observed during the initiation phase of
chondrogenesis in the process of endochondral ossification
[35, 36]. Moreover, cocultures with chondrocytes in both
2D and 3D culture systems could push MSCs towards the
chondrogenic lineage [37–39] and growth factors, such as
insulin-like growth factor (IGF) [40] and members of the
fibroblast growth factor (FGF) [41] and transforming growth
factor-beta (TGF-β) [42–44] families, can be added to the
differentiation medium to enhance chondrogenic differentia-
tion. Additionally, the chondrogenic differentiation potential
of MSCs and the production of ECM proteins can also be
stimulated by combining MSCs and biomaterials in 3D scaf-
folds [45–52] or by manipulating the oxygen tension [53].

In vitro studies mainly focus on bone marrow-derived
MSCs (BM-MSCs), followed by MSCs derived from adipose
tissue and synovial membrane because of their easy isolation
and close proximity to cartilage and joints, respectively [16].
A correlation between the chondrogenic potential of MSCs
and their tissue source has been suggested. BM-MSCs
showed a superior chondrogenic differentiation capacity
compared to MSCs from other origins [54–56]. These differ-
ences might be explained by variations in gene expression
and pathway activation [57]. Therefore, an adapted differen-
tiation protocol could compensate for lower chondrogenic
differentiation capacities [57, 58].

Despite their promising chondrogenic potential in vitro,
several challenges are linked to the use of MSCs in cartilage
regeneration. The most common issue is terminal differenti-
ation towards hypertrophic cells [36]. Moreover, mineraliza-
tion and vascularization have also been reported after
transplantation [35, 59]. In addition, cartilage tissue derived
from in vitro differentiated MSCs resembles fibrocartilage
with inferior mechanical properties and healing capacity
[22]. Another limitation is the inter- and intradonor
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heterogeneity of MSCs which could influence chondrogenic
differentiation potential of cells [60], depending on
comorbidities, tissue source, and culture methods [24]. Fur-
thermore, serial passaging, needed to obtain sufficient cell
numbers for in vivo studies, has been reported to affect
chondrogenic differentiation of BM-MSCs [61]. Finally, sup-
plementation of the culture media with high and repeated
doses of growth factors does increase the costs of stem cell-
based therapy and might be associated with several side
effects including synovial fibrosis, osteophyte induction,
and other osteoarthritic-like symptoms [62, 63].

2.2. Induced Pluripotent Stem Cells. Part of the issues associ-
ated with MSCs can be circumvented by using iPSCs. iPSCs
are an ideal patient-specific unlimited cell source for autolo-
gous tissue regeneration. Promising in vitro results have
already been demonstrated in the cartilage engineering field
for iPSCs generated from various cell types [20, 21, 23, 64,
65]. Nevertheless, Guzzo et al. stressed the influence of cell
type origin on their chondrogenic capacity, where superior
properties could be assigned to iPSCs from chondrogenic
origin [66], which may be due to the preservation of the
epigenetic memory [67].

Analogous to MSCs, indirect cocultures of iPSCs with
primary chondrocytes could directly induce the formation
of chondrocytes [20]. Furthermore, iPSCs could be commit-
ted to the chondrogenic lineage in high-density pellet culture
systems, enhanced by the addition of growth factors from the
TGF-β superfamily. Nevertheless, the resulting cartilage is a
heterogeneous combination of hypertrophic, articular, and
fibrocartilage [68]. This heterogeneity could be reduced by
first differentiating iPSCs towards an intermediate cell
population, such as MSCs [68, 69] or embryonic cell types
[23, 65, 70]. An alternative approach to further enhance the
chondrogenic potential is seeding iPSCs into scaffolds [71].

Although iPSCs express higher proliferation rates [72]
and similar or superior chondrogenic differentiation poten-
tial [14, 64] compared to MSCs, other limitations remain
associated with these stem cells. Patient-specific autologous
iPSC generation and transplantation are very expensive.
Allogeneic therapy would be more attractive, but immune
rejection cannot be excluded [73]. Analogous to MSCs, it
remains uncertain whether the regenerated cartilage induced
by iPSCs preserves the mechanical and functional properties
of native articular cartilage. Furthermore, also for iPSCs, the
presence of hypertrophic signals under in vitro conditions,
even though to a lesser extent than for MSCs, might indi-
cate the formation of low-quality cartilage tissue by iPSCs
[14, 23]. Safety issue is the most important concern that ham-
pers their general use [74]. The potential reactivation of plur-
ipotency in iPSCs or iPSC-derived chondrocytes should be
addressed [75]. Moreover, when using retrovirally trans-
duced iPSCs, where the retroviral gene is integrated in the
host, a higher risk for teratoma formation in cell transplants
is reported [76]. Therefore, adequate phenotyping of (fully)
chondrogenic committed iPSCs is needed before transplanta-
tion of cells in (pre)clinical use. Several approaches have been
proposed to develop iPSCs with a lower risk for tumorigenic-
ity [69, 75, 77–79]. Nakagawa et al. generated iPSCs without

Myc from mouse and human fibroblasts and reduced the
tumorigenicity of cells [77]. Fusaki and colleagues induced
transgene-free human pluripotent stem cells by means of a
vector based on the Sendai virus, which does not integrate into
the host [78]. Nejadnik et al. used the integration- and viral-
free minicircle reprogramming technique to reduce the
reactivation of pluripotency in the used human iPSC-derived
chondrocytes [69]. Alternatively, transgene-free iPSCs can be
used as generated by Wu and colleagues [80]. Additionally,
iPSC-derived chondrocytes could be engineered to express a
suicide gene in order to eliminate the cells, whichwas reported
to be efficient in ESCs and BM-MSCs [81, 82].

3. Mechanisms of Action of Stem Cell-Based
Therapies for Cartilage Regeneration

Stem cell-based therapies were initially developed as a cell
replacement therapy due to the chondrogenic differentiation
potential of stem cells [14, 23, 52, 83, 84]. Moreover, differen-
tiated MSCs, ESCs, and iPSCs secrete PGs and collagen II
[23, 85–88] which are essential components of cartilage
tissue. However, it has been shown that upon intra-articular
transplantation, MSCs induce cartilage replacement, but the
principal source of repair tissue is derived from endogenous
cells [89]. Therefore, it is postulated that the paracrine effect
of the transplanted cells on the damaged host environment is
mainly responsible for stimulating cartilage regeneration
(Figure 1). MSCs that were exposed to tumor necrosis factor
alpha (TNF-α) and IL-1β were shown to upregulate the
expression of several growth factors, anti-inflammatory
mediators (vide infra), and anticatabolic factors ultimately
leading to (stem) cell-mediated cartilage regeneration
(reviewed in [90, 91]). The main growth factors associated
with cartilage regeneration that are secreted by MSCs
belong to the TGF-β superfamily [92]. Moreover, adipose
tissue-derived mesenchymal stem cells (AT-MSCs) were
demonstrated to diminish MMP-13 expression upon trans-
plantation, potentially counteracting collagen degeneration
in pathological cartilage [93]. In addition to the paracrine
effect of soluble factors, extracellular vesicles (EVs), released
by MSCs, have been shown to influence cartilage regenera-
tion (Figure 1). Reports on stem cell EV-mediated cartilage
repair are scarce. Studies showed that MSC-EVs promoted
the formation of new cartilage and the deposition of collagen
II and glycosaminoglycans (GAGs) [94]. Additionally, EVs
from MSCs that overexpressed miR-140-5p stimulated
chondrocyte migration and proliferation [95]. Moreover, it
was recently reported that BM-MSCs secrete hyaluronan-
(HA-) coated EVs [96], which may allow MSC homing to
cartilage defects in a receptor-mediated way via CD44.
Although stem cell EVs have shown beneficial effects in
cartilage repair, it should be noted that EVs may also have
damaging effects in arthritis [13].

Furthermore, it has been demonstrated that MSCs pos-
sess immunomodulatory properties (Figure 1) [97]. Given
the immune component underlying cartilage degeneration,
modulating the immune response might contribute to reduc-
ing cartilage loss in diseases where an uncontrolled immune
response is detrimental [98, 99]. BM-MSCs, for example,
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have been shown to suppress T-cell proliferation [100, 101]
and to induce T-cell apoptosis [102]. The resulting debris
stimulated phagocytes to produce TGF-β which increased
the number of regulatory T cells [102]. Moreover, T-cell
proliferation was inhibited by BM-MSCs that produced pros-
taglandin E2 (PGE2) and indoleamine 2,3-dioxygenase
(IDO) [103, 104]. These factors were also shown to inhibit
NK cell activation [105]. Also, MSCs derived from the dental
pulp possess immunomodulatory properties [106, 107]. The
proliferation, activation, maturation, and antigen presenta-
tion of dendritic cells were also inhibited by MSC subtypes
[108–112], and macrophage/microglia polarization was
shifted towards an anti-inflammatory phenotype after
exposure to MSCs, their secretome, or EVs [110–115]. Addi-
tionally, MSCs were able to modulate the B cell response by
paracrine actions [116, 117]. Next to MSCs, iPSC- or ESC-
derived MSCs could also inhibit lymphocyte proliferation
and function [118–121] and NK cell function [120].

4. The Importance of a Translational Animal
Model and Appropriate Outcome Measures

While in vitro studies and models offer a substantial amount
of information about the potential of stem cells for cartilage
repair [122, 123], more in-depth knowledge about their

behavior in vivo should be derived from immunocompetent
animal models [124]. In orthopedic research, to move new
technologies from bench to bedside, strict preclinical studies
using translational animal models are required [125]. Pre-
clinical studies evaluating the healing of cartilage defects
have been performed using both small and large animal
models including murine, lapine, porcine, caprine, ovine,
canine, and equine models [16, 124]. The following section
will focus on the advantages and disadvantages of utilizing
small and large animals for cartilage repair studies as well
as some key factors in study design and the usage of val-
idated outcome measures.

4.1. Choice of Animal Model: Small versus Large Animal
Models. Articular cartilage defects have been created in
small animals, such as mice [84], rats [126–129], and rab-
bits [130–132]. Smaller animal models are cost-effective
and easy to house, and rodents are available in a variety
of genetically modified strains with minimal biological
variability [9, 124]. However, the small joint size, the thin
cartilage [133, 134], altered biomechanics [135, 136], and
increased spontaneous intrinsic healing [137] hamper the
study of the regenerative capacity of stem cells and these
mechanisms of healing cannot be fully extrapolated to
human cartilage repair [9, 124]. Rodents have mainly been

Figure 1: Mechanisms of action of stem cell-based therapies in cartilage regeneration. First, stem cells could be applied as cell replacement
therapy because of their chondrogenic differentiation potential. Differentiated mesenchymal stem cells (MSCs) and induced pluripotent stem
cells (iPSCs) secrete proteoglycans and collagen II. Secondly, it is suggested that the tissue is regenerated by endogenous cells under the
influence of paracrine factors secreted by stem cells. Extracellular vesicles (EVs) contribute to stem cell-mediated cartilage regeneration by
promoting the formation of new cartilage and the deposition of collagen II and GAGs. Finally, immunomodulatory effects are also
observed. This image was created using Servier Medical Art.
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used to assess chondrogenesis of cell-based therapies by
subcutaneous [138], intramuscular [139], and intra-
articular [140] implantations of cells [9]. Of all small animals,
the rabbit model is the most utilized model in cartilage
regeneration studies because of the slightly larger knee
joint size in comparison to rodents [16]. Despite their
limited translational capacity, small animals can be very
useful as a proof-of-principle study and to assess therapy
safety before moving on to preclinical studies using larger
animals [9, 125].

Large animal models play a more substantial role in
translational research because of a larger joint size and
thicker cartilage; however, their preclinical use is often
hindered by high costs and difficulties in animal handling.
A variety of large animal models have been used to investi-
gate cartilage repair strategies, including horses [141–143],
dogs [144], sheep [145–149], goats [150, 151] and (mini)pigs
[152–155], each with their own strengths and limitations.

The knee anatomy [156–158], cartilage thickness
[133, 159], biomechanical loading environment [124] and
the subchondral bone properties [136] of the above-
mentioned species differ variously from the human condition
[124, 160]. An advantage of using the porcine model is the
cartilage thickness of 1.5mm–2mm, compared to human
cartilage thickness of 2.4mm–2.6mm [152, 159]. Dogs, in
contrast, have thinner cartilage (0.95mm–1.3mm) compared
to human cartilage [124, 159]. For the goat, cartilage
thickness has been reported between 0.8mm and 2mm,
whereas cartilage thickness in sheep ranges from 0.4mm
to 1.7mm [124, 159]. Of all animal models used in carti-
lage regeneration studies, the horse’s cartilage thickness
(1.75mm–2mm) provides the closest approximation to
the human situation [133, 136, 159, 161].

In a comparative anatomical analysis, the goat stifle
displayed strong anatomic similarities to the human knee
except for a long trochlear groove with medial and lateral
ridges and the intercondylar notch width [124, 156]. Accord-
ing to Osterhoff et al., the ovine stifle is very similar to the
human knee except for the femoral intercondylar notch
width, the patellofemoral joint’s biomechanics, and the
proximal tibia’s cortical bone stock [158]. More recently,
Vandeweerd and colleagues described several anatomical
features in the ovine stifle [157]. Although the goat and ovine
stifles are very similar to the human knee, these few
anatomical differences remain and should be taken under
consideration when selecting them as a suitable animal
model [156–158], which, for instance, can have an impact
on the volume of the synovial cavity. In addition to similar
knee anatomy, the caprine model has been reported to
have similar stifle biomechanics compared to human knees
[124, 162]. While the horse model offers defect sizes compa-
rable to human defect dimensions, the increased weight and
the fact that the horse spends much of its time in standing
position place defects under significant loading and this
continuous loading cannot be diminished [159]. Neverthe-
less, this constant loading environment in the horse stifle
joint could be argued to be beneficial for translational
cartilage repair studies since the human knee provides a less
challenging load environment [163].

Moreover, since numerous repair strategies rely on the
subchondral repair mechanisms, subchondral bone proper-
ties must be considered when selecting the appropriate repair
model [136]. According to Chevrier et al., the subchondral
properties of the rabbit trochlea are similar to the human
medial femoral condyle (MFC) [136]. The goat offers
advantages in subchondral bone consistency, thickness,
and trabecular structure, which are more similar to the
human structure in comparison to either small animals,
ovine models, or canine models [9, 124]. A major disad-
vantage of the ovine and equine models is the dense and
hard subchondral bone, while the caprine model has a
softer subchondral bone [9, 159]. In addition, subchondral
bone cysts in sheep [145, 164] and goat [165] have been
reported when the subchondral bone is involved in carti-
lage repair mechanisms [166].

Ultimately, when selecting the best repair model, compa-
rable anatomy and joint function are not the only important
aspects, but other factors need to be taken into consideration
when performing translational preclinical studies (Table 1).
A factor requiring major consideration is the choice of defect
location [124]. Clinically, most defects are made on the fem-
oral condyles or the trochlear groove [160]. However, defect
position influences cartilage repair response as demonstrated
in caprine and ovine models leading to contradictory results
[147, 162]. These differences in repair potential are due to
differences in cartilage thickness, loading mechanics, and
subchondral bone properties within the knee and between
species [136, 147, 162]. In addition, defects may occur where
higher loads are expected [167]. Ideally, these areas should be
used when defects are induced. Therefore, it is important to
identify the prevalence of naturally occurring defects in ani-
mal models and to assess where the lesion should be created
based on the biomechanics of the joint of the animal [124,
167]. The ovine model is a well-documented model, where
the most frequent naturally occurring cartilage defects in
the ovine knee occur on the axial aspect of medial tibial con-
dyle (MTC) and on theMFC [167]. Critical size chondral and
osteochondral defects have been reported in rats, rabbits,
dogs, (mini)pigs, sheeps, goats, and horses (as shown in
[125, 159, 168]). Skeletal maturity and animal age also affect
repair mechanisms of cartilage defects, especially when the
subchondral bone is fractured for induction of repair [136,
137, 166, 169, 170]. Experimental models in animals that
have reached skeletal and articular cartilage maturity are
needed before the effect of any novel regenerative strategies
on adult cartilage repair can be clinically evaluated. Accord-
ing to the International Cartilage Repair Society (ICRS)
recommendations, selection of the age of an experimental
animal should be based on cartilage maturity rather than
on skeletal maturity (closure of the growth plate) [166].
Cartilage maturity can be defined as the time point where a
cartilage defect is not spontaneously repaired and at the
presence of a well-defined zonal architecture, an intact con-
tinuous layer of calcified cartilage, and minimal vascular
penetration in the subchondral bone plate [166]. This would
confirm that the articular cartilage has the adequate cellular,
biomechanical, and biochemical properties. Therefore, in
preclinical cartilage repair studies, animals at the age of
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cartilage maturity, defined based on the aforementioned
conditions, should be used (Table 1) [166].

While the choice of animal age, critical defect dimen-
sions, and location in preclinical studies is often justified,
gender selection is frequently overlooked. Regenerative strat-
egies to address cartilage lesions and osteoarthritis have not
sufficiently considered possible gender differences [171].
Therefore, potential gender effects must be taken more into
consideration during analysis. Epidemiological studies dem-
onstrated the presence of sex differences in osteoarthritis
prevalence and incidence with females being at a higher risk
to develop more severe knee osteoarthritis after reaching
menopausal age [171]. Several researchers examined the role
of sex hormones in osteoarthritis, including in ovine and
murine models [167, 172–174]. Ma and colleagues showed

that sex hormones, both testosterone and oestrogen, have a
crucial influence on the advancement of osteoarthritis in
mice. Testosterone aggravated the disease in male mice evi-
denced by the fact that orchiectomized mice showed a less
severe osteoarthritis than intact males. Healthy female mice
showed less severe osteoarthritis than ovariectomized
females, demonstrating the protective role of female hor-
mones [174]. In a biomechanical study in sheep, ovariectomy
in females induced a detrimental effect on the intrinsic prop-
erties of the articular cartilage in the knee [172]. In human
subjects, differences in knee joint volume and articular
surface areas between men and women have been described
[175]. Moreover, gender differences in cartilage composition
and gait mechanics in young healthy, middle-aged healthy,
and osteoarthritis cohorts are reported [176]. These

Table 1: Key factors for the selection of a translational animal model for cartilage repair.

Aspect Remark/recommendation

Anatomy and biomechanics (i) Large difference in anatomy and biomechanics remains between animal models and humans

Cartilage thickness
(i) Large animals provide closer proximity to the human condition
(ii) Depends on topographic location in joint

Subchondral bone properties
(i) Effect on repair mechanisms
(ii) Depends on topographic location in joint

Defect dimensions and
location

(i) Critical size chondral or osteochondral
(ii) Location of defect influences cartilage repair
(iii) Femoral condyles or trochlea
(iv) Defect should be made based on the biomechanics of the joint of the animal

Age and gender

(i) Age and gender may have effect on repair mechanism
(ii) Inclusion of skeletally mature animals with mature cartilage (human—near puberty)

(a) Rabbit—8 months
(b) Dog—24 months
(c) Pig—18 months
(d) Sheep—24 months
(e) Goat—24 months
(f) Horse—24 months

(iii) Gender effects must be taken into consideration
(iv) Use animals with short range of ages and with similar sex

Study duration
(i) Depends on type of study
(ii) Proof-of-principle (<6 months) versus late-stage study (6 months–12 months)

Surgical and practical
considerations

(i) Unilateral versus bilateral repair models
(a) Unilateral models: evaluation of locomotion, range of motion and gait, better immobilization, and

no influence of contralateral technique
(b) Bilateral models: minimize interanimal variability

(ii) Postoperative management should be tolerated
(iii) Ethical permission for small animals and ruminants is easier to obtain
(iv) Surgical feasibility must be taken into account
(v) Financial costs to house and handle differ variously between animals
(vi) Availability of facilities, competent personnel, and equipment

Validated outcome measures

(i) At baseline, in vivo and post mortem
(ii) Clinical response and kinematics
(iii) Biological fluid collection
(iv) Noninvasive compositional imaging MRI
(v) Ex vivo high resolution magnetic resonance imaging (MRI) or microcomputed tomography (μCT)
(vi) Tracking and monitoring
(vii) Macroscopic/arthroscopic scoring
(viii) Histological and histomorphometric scoring
(ix) Mechanical testing
(x) Biomolecular and biochemical testing
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differences might influence functional outcome after repair
[177]. Thus, effective and well-designed regenerative preclin-
ical studies are required and should lead to a better under-
standing of gender-specific differences in the mechanisms
involved in cartilage re- and degeneration. Since
osteoarthritis and cartilage biology are reported to be sex-
dependent, the inclusion of female animals is essential for
preclinical cartilage repair studies. If both sexes are included,
an equal number of males and females per study group with
short ranges of ages should be used. Moreover, results should
be reported for both genders and per study group [171]. In
addition, for large animals, it is more difficult to manage male
animals, since sexual behaviour and mounting may increase
loads on high limbs.

Obviously, the recommended study duration for evaluat-
ing cartilage repair in preclinical animal models is different
for proof-of-concept or pilot studies (<6 months) versus
late-stage preclinical studies in large animal models (>6
months) [124, 125, 166]. However, for late-stage preclinical
studies, caution must be exercised when the study ends
within a year or when no interval follow-up investigations
are implemented since the repaired tissue can vary at earlier
phases of healing and the sustainability of the repaired tissue
is time-dependent [148, 153, 166]. Follow-up methods of
noninvasive imaging are necessary [178, 179]. Ovine models
allow for imaging techniques such as magnetic resonance
imaging (MRI) [166, 180], while the equine model is much
more difficult, or impossible, due to the size of animal versus
size and costs of high-field MRI. Furthermore, the nature of
the regenerative strategy, such as the use of autologous or
allogeneic cell therapy, also needs to be considered. Other
key issues in cartilage repair models are the choice of bilateral
versus unilateral surgery and acute versus chronic defects
[148, 166]. Bilateral repair models are suitable to minimize
interanimal variability and to increase the number of treated
limbs but are only useful if the treatments are not reciprocally
influencing the opposite limbs [181]. Unilateral models, in
contrast, ensure that the treatment is not influenced by the
contralateral technique. In addition, these models allow
easier joint immobilization and are exposed to less initial
weight bearing on the operated limb. More importantly,
unilateral models permit better evaluation of locomotion,
range of motion, and gait [166].

The choice of animal model is also influenced by practical
aspects such as ethical considerations, costs, and availability
of housing accommodations, materials, and competent
personnel [160]. Nowadays, it is increasingly difficult to
obtain ethical permission for the usage of dogs and horses,
while working with reformed sheep or goats is much easier
to justify. Surgical limitations, such as the ability of the ani-
mal to tolerate anaesthesia and postsurgical recovery proto-
cols or the possibility of second-look access, could influence
the choice of a specific animal model [141, 142, 166, 182].
The ovine model, for instance, is particularly easy to handle,
cost-effective, and easy to anaesthetize.

4.2. Follow-Up and Outcome Measures. Preclinical animal
studies analyzing the capacity of new technologies in carti-
lage regeneration frequently suffer from a lack of noninvasive

follow-up and outcome measures and are therefore often
forced to use endpoint outcome measures such as histology
and destructive mechanical testing (Table 1). Additionally,
there is an increasing need for standardized technologies
with a diagnostic significance over the whole defect and adja-
cent tissues, while incorporating reflections of costs, care, and
ethics and mimicking the clinical investigations in human
clinical trials [166, 178].

For longitudinal in vivo studies, it is advised to assess the
animal at baseline and at different time points. Depending on
the animal, healthy joint status at the start of the study should
be evaluated via diagnostic imaging modalities since variabil-
ity in cartilage thickness, bone structure, and the prevalence
of naturally occurring cartilage defects and other lesions
associated with osteoarthritis can occur among species
[167, 183–185]. More specifically, spontaneously occurring
cartilage lesions have been described in canine, equine, and
aging ovine models [9, 166, 167]. Canine and equine models
should be screened for naturally occurring osteoarthritis,
since they can have lesions associated with osteoarthritis or
osteochondritis dissecans [9, 166]. Noninvasive imaging of
articular cartilage defects can be performed by magnetic res-
onance imaging (MRI) [186–188] or computed tomography
arthrography (CTA) [185, 189, 190]. CTA has been shown
to be more accurate than MRI to detect cartilage defects in
humans [185, 191]. Recently, Hontoir et al. described CTA
to be an accurate imaging method for detecting articular car-
tilage defects in the ovine stifle [185]. Additionally, the same
authors compared the sensitivity and specificity of 3-Tesla
(3-T) MRI and CTA to identify structural cartilage defects
in the equine metacarpo/metatarsophalangeal. Hontoir and
colleagues showed that CTA is superior to MRI due to its
shorter acquisition time, enhanced correlation to macro-
scopic assessment, and its specificity and sensitivity in identi-
fying articular cartilage defects; nonetheless, MRI has the
advantage to assess soft tissues and subchondral bone [189].

For the visualization of cartilage, diagnostic imaging
techniques such as ultrasound, computed tomography
(CT), and MRI can be used [125, 178]. More recently, novel
quantitative MRI and CT techniques are being adopted as
outcome measures after cartilage repair [178, 188, 190].
Compositional imaging MRI is being progressively applied
to assess the biochemical composition of cartilage for the
longitudinal follow-up of cartilage repair studies [179]. More
specifically, T2 mapping combined with delayed gadolinium-
enhanced MRI of cartilage (dGEMRIC) seems to be a good
compositional imaging modality to monitor cartilage repair
and to discriminate between a collagen network with zonal
organization and healthy cartilage [179, 192]. Combining
multiple imaging techniques may yield a better understand-
ing of both the collagen and PG content of the repaired defect
[193]. T2 mapping provides information about the interac-
tion of water molecules and the collagen network, while
dGEMRIC evaluates GAG concentration within the cartilage
[194]. In human patients, Kurkijarvi et al. demonstrated that
combining datasets from dGEMRIC and T2 relaxation time
mapping provides additional information on cartilage repair
[192]. Recently, T2 mapping and dGEMRIC were used for
assessing cartilage repair after allograft chondrocyte
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implantation in a rabbit model, where dGEMRIC data
showed a high correlation with histological and biochemical
data [194]. In goat models, T2 mapping and dGEMRIC have
also been used as outcome measures in a study evaluating
cartilage repair after microfracture in an osteochondral
defect of both the medial and lateral femoral condyles
[195]. Alternatively, T1ρ has been used as a complementary
imaging tool to T2 mapping which allows for the examina-
tion of PGs and the collagen organization [179]. However,
one of the major issues of using T1ρ is reaching an adequate
resolution with an acceptable acquisition time [179]. More
recently, van Tiel and colleagues showed that dGEMRIC is
more robust in accurately measuring cartilage GAGs in vivo
in patients compared to T1ρ mapping [196].

Although substantial progress has been made in real-time
in vivo cartilage imaging, spatiotemporal tracking of stem
cells in vivo using MRI, bioluminescence imaging (BLI), fluo-
rescence imaging (FLI), or nuclear imaging methods should
be the focus when developing novel imaging techniques
[178]. Superparamagnetic iron oxide (SPIO) particles are
used for cartilage tissue engineering to monitor transplanted
cells [197, 198]. However, SPIO particles are associated with
several drawbacks such as the inability to distinguish viable
cells from dead cells and from cells engulfed by phagocytes
[199]. One of the possibilities to minimize particle transfer
to other cells is the use of reporter genes. BLI compatible
reporter genes such as red/green luciferases have already
been used for cartilage tissue engineering to track
transplanted cells [200]. In addition, by labeling cells with
an additional chondrogenic reporter gene, cell differentiation
can be monitored by means of dual bioluminescence labeling
[201]. While this optical imaging method offers a sensitive
technique to track stem cells, its use in larger animal models
is limited because of a loss of signal intensity from deeper
tissues due to scattering [202].

At baseline and at longitudinal intervals, clinically rel-
evant examinations of cartilage repair and functional
improvement should be carried out. These should be per-
formed by a veterinary surgeon familiar with observing
clinical signs and locomotion by assessment of changes
in joint palpation, quantitative monitoring of pain, and
changes in joint function or locomotion by gait analysis
[125, 166, 203–206]. In rats, several scoring systems have
been published to measure lameness, stride length and limb
rotation, dynamic force application, and hind limb motion
[206]. Moreover, for large animal models, kinematic marker
analysis, ground reaction force measurements, and obser-
vational gait assessment have been progressively used in
osteoarthritis-related gait alterations in canine, ovine, and
equine models [206]. Several scaling systems have been
documented in the literature, such as the American Asso-
ciation of Equine Practitioners (AAEP) lameness scale in
the horse ranging from zero to five [207]. In ovine models,
a numeric ranking scale can be used to determine comfort,
movement, and flock behaviour [204]. A more detailed
lameness scoring system has been published by Kaler et al.
ranging from “normal” (0) to “unable to stand or move”
(6) [203]. Overall, clinical assessment and gait monitoring
are indispensable in order to increase the translational

value of preclinical animal studies to human clinical trials
and to the clinic.

Biomarkers represent an additional tool to evaluate
normal and pathological processes or to evaluate the inter-
ventional repair strategies [208, 209]. These biomarkers
may be identified and quantified via enzyme-linked immu-
nosorbent assays (ELISA) or other protein assays in synovial
fluid or other biological fluids such as in the blood and urine
[208, 209]. Synovial and other biological fluid collections
should be performed at baseline and multiple time points
[166], since synovial fluid biomarkers have the capacity to
reflect the articular environment before treatment and could
possibly inform on postoperative outcomes [208]. In small
animal models, however, it can be difficult to obtain sufficient
amounts of biological fluid at multiple time points necessary
for biomarker analysis [210]. To solve this, the use of paper
or alginate to obtain small amounts of synovial fluid has been
described to be successful and effective [211]. Because of the
relatively larger joint size in large animal models, a collection
of synovial fluid and serum biomarkers can be more easily
performed [161]. Nevertheless, a major difficulty to perform
repeated collections is the increased inflammation in the
joint due to iatrogenic damage. Biomarkers of particular
interest are markers for cartilage or synovium metabolism
or markers involved in pathological pathways, such as
inflammation [209]. Recently, biological (synovial) fluid
markers in osteoarthritis were thoroughly reviewed by
Nguyen and colleagues [209]. Besides analyte quantifications
to assess changes in inflammation and cartilage turnover,
volume and physical characteristics of the synovial fluid, such
as viscosity, could also be used as an outcome measure in
preclinical studies [166].

At the end of in vivo studies, cadaver tissue can undergo
ex vivo high-resolution MRI [212, 213] and μCT [214] to
evaluate structural improvements. Hereafter, macroscopic/
arthroscopic scoring, histological and histomorphometric
scoring methods, quantification of collagen and GAG expres-
sion by immunohistochemistry, collagen organization by
polarized light microscopy and subchondral bone, and
adjacent tissue integration are all outcome methods that
should ideally be performed [214–218].

Nowadays, many histological scoring systems are
available, contributing to the confusion on the use of an
appropriate scoring method for a specific research question
and study settings [219]. Moreover, it is unclear which scor-
ing systems are validated and how study results can be com-
pared between studies using different scoring methods [219].
The variety of histological scoring systems for the analysis of
normal or osteoarthritic in vivo repaired or in vitro tissue-
engineered cartilage was thoroughly reviewed by Rutgers
et al. [219]. Normal cartilage can be distinguished from
osteoarthritic cartilage via the Histological-Histochemical
Grading System (HHGS) or HHGS-related systems and the
Osteoarthritis Research Society International (OARSI)
scoring method [219]. Of the various scoring systems avail-
able for the analysis of in vivo repaired cartilage, the ICRS
II score seems most suitable in humans. In preclinical carti-
lage repair studies, the validated Pineda score or O’Driscoll
score is advisable [219]. Other histological scoring systems
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for preclinical cartilage repair are widely used. In addition to
the Pineda score, the Wakitani score is an elementary scoring
system, reflecting not more than five parameters [220]. The
Pineda score assesses four histological parameters: cell mor-
phology, matrix staining, lesion filling, and osteochondral
junction [220]. The O’Driscoll score is a more complex histo-
logical scoring method which also assesses surface regularity,
structural integrity, cellularity, chondrocyte clustering, adja-
cent bonding, and adjacent cartilage degeneration. In addi-
tion to the O’Driscoll score, also the Fortier and Sellers
scores are more comprehensive scoring systems [220]. Orth
et al. showed that both elementary and comprehensive histo-
logical scoring systems are appropriate to quantify articular
cartilage repair [220]. However, complex scoring systems
provide more descriptive data about the character of the
repair tissue [220]. The use of validated scores, such as the
Pineda score or the O’Driscoll score, may significantly
increase comparability of information and should thus stim-
ulate consistency between studies. Importantly, histological
and biochemical evaluations are complementary tools to
assess experimental articular cartilage repair in vivo [219].
A key goal of regenerating mature cartilage tissue is to regen-
erate a tissue with biochemical/biomolecular and mechanical
properties resembling those of native cartilage tissue. Small
biopsies for biochemistry (water content, GAGs/PG content,
and collagen content) and/or biomechanical testing should
ideally be gathered before fixation of the repaired tissue for
histology [217]. In addition to typical end-point destructive
measures to assess mechanical properties, indentation testing
provides a nondestructive compressive technique for in situ
mechanical evaluation [178, 221]. Large animal models allow
the harvest of a large amount of repaired tissue in order to
have parallel histological, biochemical, and biomechanical
analyses of the repaired area postmortem [166, 222].

Finally, the combined utilization of in vivo clinical tests
and assessment of locomotion, in vivo noninvasive imaging
methods, and postmortem evaluation of tissue structure with
validated scoring systems, biochemical composition, and
mechanical properties will deliver a robust outcome analysis
in order to improve the translational value of animal models
in cartilage repair.

5. In Vivo Evidence of Stem Cells in Cartilage
Regeneration

Within the field of cartilage regeneration, numerous preclin-
ical studies have been published demonstrating the favorable
effects of cell-based approaches on the repair of cartilage
defects. Although the cartilage contains an inherent progen-
itor cell population [223–225], to our knowledge, robust
scientific reports describing their in vivo regenerative poten-
tial in particular defects are currently lacking. Given their
aforementioned in vitro properties, certain pluripotent and
multipotent stem cell populations are considered to be
credible candidates for stem cell-based repair and regenera-
tion of cartilage tissue. iPSCs, for example, have been shown
to successfully repair cartilage defects in a variety of rat
models, following predifferentiation towards a chondrogenic
lineage [14, 69, 226]. However, due to their pluripotent

nature, the use of these stem cells still bears the risk of tumor-
igenesis [1]. Saito and coworkers, for instance, reported the
formation of an immature teratoma in one animal, following
a prolonged transplantation period of predifferentiated iPSCs
in the knee joints of immunocompromised mice [74].

With regard to multipotent stem cell populations, one of
the most frequently applied stem cell sources in the repair
and regeneration of articular cartilage defects are MSCs.
BM-MSCs in particular have been used in a wide variety
of small and large animal models [16, 227]. Zhang et al.,
for example, recently demonstrated the regeneration of
meniscal tissue after transplantation of BM-MSC-seeded
poly(ε-caprolactone) (PCL) scaffolds in rabbits [228]. Forma-
tion of hyaline-like cartilage tissue was also observed after the
treatment of a canine osteochondral defect with autologous
BM-MSCs [144]. Sridharan and coworkers reported the suc-
cessful repair of a rat trochlear knee defect after transplanta-
tion of high density BM-MSC/fibrin aggregates [229].
Similar results were found by Itokazu et al., indicating osteo-
chondral repair in nude rats after transplantation of human
BM-MSC cell sheets [230].

Although BM-MSCs are reported to have a predomi-
nantly positive effect on cartilage repair and regeneration,
their invasive collection as well as the limited yield of stem
cells during this procedure encourages the search for alterna-
tive tissue sources of MSCs [231, 232]. Substantial amounts
of AT-MSCs, for example, can be relatively easy to be
obtained through liposuction, and their intrinsic behavior
does not seem to be affected by donor-related characteristics,
such as age [231, 233]. Recent work of Mehrabani and
coworkers demonstrated the successful formation of hyaline
cartilage tissue after intra-articular injection of AT-MSCs in
the knee joints of rabbits [234]. Implantation of scaffold-
free spheroids of AT-MSCs into an osteochondral defect in
two adult (mini)pigs led to the regeneration of the original
cartilage tissue [235]. While hypoxic preconditioning of
AT-MSCs had no effect on their in vivo chondrogenic poten-
tial [236], pretreatment of these stem cells with activated
platelet-rich plasma substantially improved articular healing
after transplantation in immunocompromised mice [237].
However, in comparison to BM-MSCs, AT-MSCs exhibit a
significantly lower osteogenic and chondrogenic differentia-
tion potential both in vitro and in vivo [55, 238–240].

Synovium-derived MSCs, on the other hand, not only
display a higher proliferation potential in comparison to
other sources of MSCs but also show a more pronounced
production of cartilage-specific ECM when transplanted into
an osteochondral defect in rabbits [238, 241, 242]. Similar
findings were reported by Nakamura and coworkers, indicat-
ing the successful formation of cartilage tissue after intra-
articular injection of allogeneic synovium-derived MSCs in
the knee joints of pigs [243].

With regard to the mechanisms underlying the favorable
effects of MSCs in cartilage repair, it remains unclear whether
chondrogenic differentiation is a necessary prerequisite for
cartilage tissue engineering as an increasing amount of
evidence suggests that both the secretion of paracrine factors
and the subsequent attraction of resident cells can also
mediate tissue regeneration [7, 244]. In order to promote
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these complex interactions, MSCs may be combined with
chondrocytes in coculture systems, supported by exogenous
growth factors and/or biomaterials to recreate the most opti-
mal microenvironment for cartilage repair and regeneration
[245]. Sabatino et al., for example, reported the successful
production of cartilage grafts in a proof-of-principle mouse
model. After subcutaneous transplantation of (precultured)
collagen sponges containing BM-MSCs and articular chon-
drocytes, an increased GAG and collagen type II content
was observed [246]. Similar results were found by Cai et al.,
indicating the formation of cartilage-specific ECM after sub-
cutaneous transplantation of AT-MSCs and auricular chon-
drocytes supported by Pluronic F-127 [247]. In addition to
subcutaneous transplantation, cocultures have also been
directly applied in cartilage defects. Successful regeneration
of meniscus tissue was demonstrated after transplantation
of a polyvinyl alcohol/chitosan scaffold containing an
AT-MSC/chondrocyte coculture in New Zealand rabbits
suffering from a unilateral, medial meniscectomy. How-
ever, no significant differences were observed between the
coculture scaffolds and the scaffolds merely containing
articular chondrocytes [248].

In terms of delivery methods, numerous researchers used
a scaffold-free intra-articular injection of stem cells. Nam and
colleagues conducted a pilot study to test the effects of an
intra-articular injection of autologous mesenchymal stromal
cells on the repair outcomes of bone marrow stimulation
(BMS) surgery in a caprine model. Results showed that the
intra-articular injection of BM-MSCs following BMS inter-
vention induced better cartilage repair outcomes [150]. In
another study, MSCs were injected with hyaluronic acid
(HA) and this resulted in good defect coverage at 12 weeks
postinjection in a pig model [249]. The major advantage of
an intra-articular injection of stem cells is the simplicity of
the administration, but it would only be useful in early stages
of cartilage injury. Additionally, intra-articular injection can
lead to cell dispersion and an insufficient amount of cells
reaching the defect required for repair [227]. One way to
solve this is by using a local adherent technique for trans-
planting MSCs to the cartilage defect. Koga et al. showed in
a pig model that placing an MSC suspension on the cartilage
lesion for 10 minutes resulted in adherence of more than 60%
of cells to the defect and induced cartilage regeneration [250].
Similarly, Nakamura and colleagues recently showed the
same adherent technique with synovial MSCs in a pig model
[243]. Unfortunately, by using these techniques, the trans-
planted cells lack an ECM, which makes it challenging to
exploit the function of cells since the 3D environment is
reported to be crucial in the processes of cell proliferation
and differentiation [251]. To address this, a novel scaffold-
free 3D tissue-engineered construct (TEC) has recently been
developed, composed of native ECM, synthesized by MSCs
[251]. In addition, MSCs seeded in acellular cartilage matri-
ces/sheets also showed successful cartilage repair [252, 253].

Scaffolds are preferably biocompatible or biodegradable
and can be implemented via a minimally invasive surgical
procedure. Furthermore, they should provide rigid mechani-
cal properties and offer some additional advantages such as
adequate nutrient transport and adhesion to the defect

[254]. Stem cells have been combined with a wide variety of
natural and synthetic biomaterials to support and promote
cartilage repair and regeneration [16, 231, 255–257]. This
combinatorial approach has led to several successful in vivo
applications of cell-seeded biomaterials for cartilage repair
[14, 51, 52]. Of the various scaffold materials, the most
commonly explored are hydrogels, which are cross-linked
water-swollen systems [254]. Hydrogels gained a lot of inter-
est because of their ability to homogeneously contain cells in
a 3D environment and the minimal invasive injection proce-
dure [254, 258, 259]. Natural hydrogels based on polysaccha-
rides, such as chitosan, HA, alginate, and agarose, have been
reported to support cartilage regeneration [254]. Recently, it
was shown that MSCs isolated from the dental pulp cultured
in an alginate scaffold successfully regenerated articular
cartilage [260]. HA-based hydrogels are one of the most
extensively used hydrogels in cartilage repair [254] and have
been reported to improve cartilage specific-matrix deposition
of MSCs [254, 259, 261]. In a direct comparative study in rats
between several hydrogels such as alginate, pluronic, HA,
and chitosan with human umbilical cord blood derived mes-
enchymal stem cells (hUCB-MSCs), the combination of
hUCB-MSCs-HA resulted in superior cartilage repair on a
macroscopic and histological level [262]. Similarly, combin-
ing hUCB-MSCs with a HA hydrogel promoted cartilage
regeneration in an osteochondral defect minipig model
[155]. With regard to natural biomaterials and hydrogels
based on proteins such as collagen, gelatin, fibroin, and
fibrin, Wilke et al. described an early chondrogenic response
after intra-articular injection of a fibrin gel containing BM-
MSCs in horses [142]. Fibrin is a commonly used natural
protein with chondrogenic-inducing properties [254, 259].
However, one of the major disadvantages of using fibrin gels
is the fast degradation [263], resulting in less beneficial
results in vivo [264]. More recently, platelet-rich fibrin
(PRF) has gained more interest to provide a 3D environment
for stem cells, consisting a strong fibrin network and sup-
portive platelets. PRF has the ability to support the prolifera-
tion of MSCs and favors cytokine enmeshment and cellular
migration [144]. Kazemi and colleagues showed that the
use of BM-MSCs seeded on PRF could be a novel method
for articular cartilage regeneration, where the PRF creates a
suitable environment for stem cell proliferation and differen-
tiation by secreting growth factors [144]. Alternatively, colla-
gen is abundant in native articular cartilage and is therefore
widely used in preclinical animal studies as a stem cell carrier
[254]. The application of collagen combined with BM-MSCs
led to fully repaired cartilage tissue in a porcine model [265].
However, the softness of collagen gels is one of the major
concerns for in vivo cartilage repair [254]. Recently, a natural
type II collagen hydrogel, fibrin sealant, and adipose-derived
stem cells have been recommended as a positive combination
for articular cartilage repair in rabbits [266]. In addition,
transplantation of synovium-derived MSCs in a combination
of collagen type I/HA/fibrinogen composite gel induced the
formation of hyaline cartilage tissue in a lapine osteochon-
dral defect model [242]. One of the major limitations of
natural hydrogels is the low mechanical strength [259],
which needs further modifications or combinations with
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other natural or synthetic polymers (composite scaffold). A
number of advantages were also reported for synthetic poly-
mers, such as a controlled degradation and good mechano-
physical properties [267]. Poly-(lactic-(co-glycolic)) acid
(PL(G)A), for example, is one of the most widely applied syn-
thetic scaffold materials in stem cell-based cartilage tissue
engineering [16]. Recent work of Yin et al. showed the regen-
eration of articular cartilage after transplantation of a TGF-
β1-immobilized PLGA scaffold seeded with AT-MSCs into
a full-thickness cartilage defect in New Zealand white rabbits
[268]. Similar findings of successful cartilage engineering
were reported earlier for BM-MSCs, indicating the successful
formation of hyaline cartilage tissue by connective tissue
growth factor- (CTGF-) modified stem cells contained within
a sodium hydroxide-treated PLGA scaffold [269]. Caminal et
al., however, only demonstrated a transient improvement
caused by BM-MSC-seeded PLGA scaffolds in sheep with a
critical size chondral defect [270]. Recently, hiPSCs-MSCs
were seeded onto a PLGA scaffold and transplanted into a
cartilage defect in a rabbit model. Results showed that the
hiPSCs-MSCs-PLGA scaffold experimental group had the
potential to repair cartilage defects in vivo [132]. One of the
major disadvantages of using such synthetic polymers is the
possibility to elicit an immune response [267]. Moreover,
synthetic biomaterials lack biocompatibility and biological
activity [259]. As previously mentioned, it is better to com-
bine a synthetic polymer with a natural polymer to improve
biological activity [259]. Many other scaffold materials have
been tested in an attempt to improve cartilage repair by using
MSCs. A wide overview of most used scaffolds can be found
in the review article published by Goldberg and colleagues
[16].

In order to make human stem cells applicable to human
clinical translation, more in-depth knowledge about their
in vivo behaviour should be derived from larger immuno-
competent animals. Several researchers used human MSC
transplantation in smaller nonimmunosuppressed animals
and reported no graft rejection [271, 272]. Transplantation
studies in larger animal models such as immunocompetent
dog and swine reported similar results and even point out
immunosuppressive capacities which are related to the
MSC transplantation [273, 274]. Dayan and colleagues
demonstrated that transplantation of human MSCs in ovine
immunocompetent animal models showed clinical safety
and efficacy suggesting that immunocompetent sheep can
serve as a suitable preclinical large animal model for testing
human stem cells [275]. In the unfortunate case of detecting
an immunogenic response following human stem cell trans-
plantation into the animal model, generally known immuno-
suppressive drugs can be administered at the time of
transplantation. Alternatively, autologous transplantation of
stem cells can be considered. However, one of the disadvan-
tages of using autologous stem cells isolated from larger
animals is the lack of well-characterized species-specific stem
cells and protocols for their culturing and differentiation
[276]. For autologous iPSCs in preclinical research in animal
models, it appears that iPSCs in farm animals have not yet
received the deserved attention [277]. Ogorevc et al.
described only 32 studies addressing the development of

iPSCs in pig, cattle, horse, sheep, goat, and rabbit [277]. In
addition, large animal commercial products, such as antibod-
ies, reagents, and microarrays, are not widely available [276].
Nevertheless, beyond any doubt, for translational research in
cell therapy, testing human stem cells in preclinical animal
models which are immunocompetent should gain more
attention.

6. Conclusion

Despite the multiple promising mechanisms of action of
stem cell-based therapies for cartilage repair, supported
by advances in bioengineering and biomaterials to exploit
the full potential of stem cells, it is not yet possible to
achieve engineered cartilage possessing identical properties
as native cartilage [17, 278]. Several concerns have to be
addressed when considering these therapies for large-
scale human translation.

Before moving to the clinic with a universally applicable
therapy, issues involving the heterogeneity of MSC sources
as well as the heterogeneity within MSC populations,
isolation methods, and differentiation protocols should be
addressed [24]. Other factors such as aging [279], serial
passaging [61], and the presence of comorbidities in the
donor [60] can restrict the chondrogenic differentiation
potential of MSCs. Furthermore, MSCs mainly produce col-
lagen type I, while the main collagen subtype in the cartilage
is collagen II. This needs to be taken into account to avoid the
production of fibrocartilage or ossified hypertrophic cartilage
[280]. Biomaterials can be used in combination with stem
cells in order to support and promote cartilage repair and
regeneration [16, 278]. In the future, biomaterials can offer
enhanced control of cell fate, enable sustained and localized
release of paracrine factors, and facilitate remodeling of
newly formed tissue [7].

Despite conflicting preclinical results, the use of alloge-
neic MSCs is gaining support as it avoids donor site morbid-
ity and allows for single-stage procedures, thereby reducing
the financial burden and increasing the simplicity of cell-
based therapies [16]. Since different stem cell sources show
inherent differences in their differentiation potential, secre-
tome, and ECM profile, various MSC sources should be
compared to select the most promising one for allogeneic
therapies [7]. However, applying therapies involving alloge-
neic MSCs on a large scale requires cell banking possibilities
and long-term safety and efficacy studies in order to assess
possible immune rejection.

iPSCs have been explored as a possible alternative to
MSCs due to their superior self-renewal capacity [1], prolif-
eration rate [72], and chondrogenic differentiation potential
[14, 64]. However, the most important obstacle in the use
of iPSCs is the risk for teratoma formation after transplanta-
tion [1]. Therefore, before this technology can progress to
clinical translation, research into the control of cell pheno-
type and cell fate is required in order to alleviate the concerns
for tumorigenesis [16].

Under ideal circumstances, novel therapies would reach
the market after in vitro data were used to inform preclinical
studies, which in turn led to human clinical trials [16].
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Researchers should be aware that every animal model is asso-
ciated with its advantages and disadvantages and the choice
of the model should match the research hypothesis and is
important to ensure the translation to the clinic [9, 124].
Furthermore, the current lack of standardized protocols
(i.e., cell delivery route and number of transplanted cells) as
well as the wide variety of different outcome measures used
to evaluate preclinical studies makes it difficult to draw
definite conclusions regarding the potential use of stem
cell-based approaches in cartilage tissue engineering through
direct comparison of studies. Furthermore, gender differ-
ences in most animal studies have not been adequately inves-
tigated and should gain more attention. Moreover, the same
applies for in vitro studies, where researchers, using primary
cells or cell lines, often do not compare results between sexes.
For cell lines, the gender of the cell line provided is frequently
not mentioned, leading to conclusions which cannot be
drawn for the whole population [171].

Despite these hurdles, at least 19 clinical trials have been
registered using stem cell-based therapies for cartilage repair
procedures [278]. Unfortunately, the quality of the existing
clinical data is rather limited, but more recently registered
clinical trials are showing improvement in the study design
and methodology. This might in part be explained by the
methodical recommendations developed by the ICRS [281].
This consensus statement includes guidelines for the statisti-
cal study design, patient recruitment, and considerations for
appropriate control groups in order to help clinicians achieve
high-quality data [281].
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