
Accepted Manuscript

A more robust multigrid algorithm for diffusion type registration models

Tony Thompson, Ke Chen

PII: S0377-0427(19)30186-4
DOI: https://doi.org/10.1016/j.cam.2019.04.006
Reference: CAM 12226

To appear in: Journal of Computational and Applied
Mathematics

Received date : 23 November 2017
Revised date : 14 August 2018

Please cite this article as: T. Thompson and K. Chen, A more robust multigrid algorithm for
diffusion type registration models, Journal of Computational and Applied Mathematics (2019),
https://doi.org/10.1016/j.cam.2019.04.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cam.2019.04.006


A More Robust Multigrid Algorithm for Di�usion Type

Registration Models

Tony Thompson∗ and Ke Chen∗†

Abstract1

Registration refers to the useful process of aligning two similar but di�erent intensity image functions2

in order to either track changes or combine information. Variational models are capable of �nding3

transform maps containing large and non-uniform deformations between such a pair of images. Since4

�nding a transform map is an inverse problem, as with all models, suitable regularisation is necessary5

to overcome the non-uniqueness of the problem. In the case of di�usion type models regularisation6

terms impose smoothness on the transformation by minimising the gradient of the �ow �eld. The7

di�usion model also coincides with the basic model for optical �ow frameworks of Horn-Schunck8

(1981, AI). The biggest drawback with variational models is the large computational cost required to9

solve the highly non-linear system of PDEs; Chumchob-Chen (2011, JCAM) developed a non-linear10

multigrid (NMG) method to address this cost problem. However, a closer look at the analysis of the11

NMG scheme highlighted omissions which a�ected the convergence of the NMG scheme. Moreover,12

the NMG method proposed by Chumchob-Chen did not impose any control of non-physical folding13

which invalidates a map. This paper has proposed several key ideas. First we re-evaluate the analysis14

of the NMG method to show how the omissions in [16] have a noticeable impact on the convergence15

of the NMG method. In addition, we also provide a way of estimating the convergence rate of a solver16

on the coarsest grid in order to estimate the number of iterations that will be required to obtain a17

solution with appropriate accuracy. Secondly we propose an extension to the Chumchob-Chen NMG18

method which controls any folding within the deformation. Experimental results on the proposed19

multigrid framework demonstrate improvements in convergence and the accuracy of registrations20

compared with previous methods.21

Keywords. Variational model, Image registration, Fast Multigrid, Mesh folding control22

1 Introduction23

Image registration is the process of aligning pairs, or sequences, of similar images. This alignment is24

achieved by �xing one image, called the reference image, and then applying geometric transformations25

on the remaining images, called the template images, such that the template images become similar to26

the reference image. This technique is a very powerful tool in many real world applications spanning27

diverse areas such as computer imaging, weather satellite imaging [19] and especially medical imaging28

which is of interest to us [4, 12�14, 23, 24]. However, image registration is also one of the most di�cult29

tasks of image processing with many challenges to be overcome. Generally image registration models can30

be classi�ed into two main categories; parametric and non-parametric models. In parametric models,31

the transformations are global and can be described by matching a �nite number of features in the32

images, leading to so called landmark based registration [31,33], or the transformations are governed by33

a small number of parameters such as in the case of a�ne image registration [3, 15] (with 6 parameters34

in 2D and 12 parameters in 3D). However, the focus of this paper will be on the latter category, namely35

non-parametric models.36

Denote respectively a reference and a template image (both given as grey-scale images) R, T ∈ Ω ⊂ Rd.37

The aim of image registration is to transform this T to R such that they become similar to one another,38
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or in other words we look to �nd the transformation ϕ(x) : Rd → Rd such that39

T ◦ϕ(x) = T (ϕ(x)) ≈ R(x) for x = (x1, . . . , xd)
T ∈ Ω ⊂ Rd. (1.1)

In variational image registration the transformation ϕ(x) is equivalent to �nding the displacement of40

every pixel x in T to their corresponding pixel in R, and so we can de�ne ϕ(x) by the following41

ϕ ≡ ϕ(x) = x+ u(x) (1.2)

where u ≡ u(x) = (u1(x), . . . , ud(x))
T
denotes the displacement �eld. Then the problem of determining42

ϕ is the same as �nding u. From this point onward we shall consider only the 2D case, that is d = 2,43

however all ideas presented in this paper are readily extendible to the 3D case d = 3. Furthermore we44

will also assume that the image domain Ω given by the unit square, that is Ω = [0, 1]2 ⊂ R2. In order to45

determine u, the variational minimisation problem will take the following form46

min
u
E(u) = D(R, T,u) + αR(u) (1.3)

where in the energy functional D(R, T,u) is a distance measure, R(u) is the regularisation term and47

α ∈ R+ is a weighting parameter. Note that inclusion of the regularisation term is a necessity as without48

it the minimisation would be ill-posed in the sense of Hadamard. For the purpose of this paper we shall49

consider only mono-modal images, that is images taken using the same imaging modality (e.g. CT), this50

means that image intensities are comparable. In the mono-modal case, the typical choice of similarity51

measure is the sum of squared distances (SSD) measure given by52

D(R, T,u) =
1

2

∫

Ω

(
T (x+ u)−R(x)

)2

dΩ . (1.4)

Here SSD is only one of many choices of similarity measure [34]. Moreover, the choice of regularisation53

term is less straightforward as there is a large selection to choose from [1, 6, 17, 18, 20�22, 34�36] and no54

one is yet the best. In this paper we will only consider one regularisation term, namely the di�usion55

regulariser and focus on optimal solution. As for numerical implementation, the common approach is56

to use an optimise-discretise approach, and indeed this is the approach we will adopt throughout this57

paper.58

Solutions of variational models can be computationally intensive, but such non-parametric models are59

worth the e�ort as they can produce very accurate results and are able to deal with local deformations60

e�ectively; the high computational expense is due to the need of determining the displacement of every61

pixel in the image. Multigrid techniques as known fast solvers have been used in previous works [20,62

21, 25, 27�29, 32, 37, 40] to greatly reduce the computational cost and produce more accurate results,63

however few of these directly deal with the non-linearity resulting from the similarity measure (1.4).64

The reason for this is that, while multigrid techniques and theories have been established for linear65

equations for a long time, achieving optimal convergence in a non-linear multigrid framework is never66

automatic and still poses a great challenge. However, the work done by Chumchob-Chen [16] introduced67

a robust multigrid framework for di�usion type variational models that treats the non-linearity directly.68

We propose to improve the convergence problems of the NMG method from [16] through a more in-depth69

and accurate analysis of the multigrid framework as well as using an alternate coarsest solver to obtain70

a more e�cient solution, thus resulting in a better method. Next we address how to overcome mesh71

folding by incorporating an additional constraint into the di�usion model presented in [16], this idea can72

be thought of as a simpli�cation of the hyper-elastic model introduced in the work by Burger et al. [11].73

The addition of this constraint imposes that the transformation produced is regular and di�eomorphic i.e.74

there is no folding. The production of di�eomorphic transformations lead to more physically meaningful75

results, which is particularly useful in medical imaging. In this paper, we consider one speci�c (yet widely76

used) model, namely the di�usion model to focus on our main aims: (i) improving the convergence of77

the NMG method from [16] ; (ii) development of a fast NMG method for a re�ned di�usion model which78

controls folding.79

There are, however, many other choices for the regularisation term [1,6,17,18,20�22,34�36], each o�ering80

a di�erent model and with their own distinct bene�ts and drawbacks. In particular, we mention81

Total Variation (TV) [20, 21, 35, 36]: RTV (u) =
2∑

s=1

∫

Ω

∣∣∇us
∣∣ dΩ where | · | denotes the Euclidean82
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norm;83

Linear Elastic (LE) [1] [6] [22] [34]: RLE(u) =

∫

Ω

µ

4

2∑

s,t=1

(∂xsut + ∂xtus)
2

+
λ

2
(∇ · u)

2
dΩ where µ, λ84

are Lamé constants;85

Mean Curvature (MC) [17,18]: RMC(u) =
1

2

∫

Ω

2∑

s=1

∇ ·


 ∇us√∣∣∇us

∣∣2 + β




2

dΩ where β is some small86

positive quantity.87

88

While each such models might be solved by a NMG framework, achieving optimal e�ciency would require89

further work and development.90

The remainder of this paper will be set out as followed. In �2 we will introduce the formulation of91

the registration model focusing speci�cally on the di�usion model. Next in �3 we will discuss the non-92

linear multigrid (NMG) framework applied to the di�usion model, along with a detailed analysis to93

highlight how we can improve the convergence of the Chumchob-Chen NMG method. Then in �4 we will94

formulate our non-folding constraint model, and also present an optimisation for the implementation of95

the constraint. �5 will comprise of tests and comparisons with our proposed work, and �nally in �6 we96

will present our conclusions.97

2 Review of the registration model and its algorithm of [16]98

The model. The di�usion regulariser is a popular choice among variational models [7�10,30], it imposes99

a simple smoothness constraint upon the displacement �eld and is given by the following100

RDi�(u) =
1

2

∫

Ω

2∑

s=1

∣∣∇us
∣∣2 dΩ . (2.1)

In fact, the di�usion model is one of the few models that coincides with models from optical �ow101

frameworks (see [8,9,30] as examples), which is particularly useful when registering sequences of images.102

The di�usion model is given by the following minimisation problem103

min
u
EDi�(u) = D(R, T,u) + αRDi�(u) =

1

2

∫

Ω

(Tu −R)
2

+ α
2∑

s=1

∣∣∇us
∣∣2 dΩ (2.2)

where Tu ≡ T (x + u) and R ≡ R(x). The corresponding Euler-Lagrange (EL) equations are derived104

from the following limits105

lim
ε1→0

EDi�(u1 + ε1φ1, u2)− EDi�(u1, u2)

ε1
= 0, lim

ε2→0

EDi�(u1, u2 + ε2φ2)− EDi�(u1, u2)

ε2
= 0 (2.3)

which eventually result in the following integrals106

∫

Ω

φm

[
∂umTu (Tu −R)− α∆um

]
dΩ + α

∫

∂Ω

φm (∇um · n) dS = 0 (2.4)

and thus, after the use of the fundamental lemma of calculus of variations, yield the EL equations107

−α∆um + Fm(u) = 0 (2.5)

with Neumann boundary conditions ∇um · n = 0 where n denotes the outward unit normal and108

Fm(u) = ∂umTu (Tu −R) (2.6)

denote the force terms, for m = 1, 2.109
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2.1 Optimise-discretise approach for di�usion model110

We consider a numerical approximation to the EL equations (2.5) by discretising the image domain Ω111

into a uniform n× n mesh with interval width h, using a �nite di�erence (FD) method. The size of the112

mesh is chosen to be equal to the dimension of the image (e.g. 512× 512 to coincide with resolution of113

given images) and in general need not be square, however in this paper we consider square images as114

this is common for medical image slices. Using the following central FD approximations115

(∂u1
Tu)i,j ≈

1

2h

(
(Tu)i+1,j − (Tu)i−1,j

)
, (∂u2

Tu)i,j ≈
1

2h

(
(Tu)i,j+1 − (Tu)i,j−1

)

(∆um)i,j ≈
1

h2

(
(um)i,j−1 + (um)i−1,j − 4(um)i,j + (um)i+1,j + (um)i,j+1

)
(2.7)

at a general discrete point (i, j), leads to the following discrete versions of the EL equations (2.5)116

−α (∆um)i,j + (Fm(u))i,j = 0 (2.8)

with117

(Fm(u))i,j = (∂umTu)i,j

(
(Tu)i,j − (R)i,j

)
(2.9)

for m = 1, 2 and i, j = 2, . . . , n− 1.118

2.2 The collective pointwise smoother119

The term smoother, which stems from multigrid theory, is nothing but an iterative solver. In [16] the120

lexicographic Gauss-Seidel (GS-LEX) method was employed to solve the linear part of the system (2.8)121

through an inner iteration loop, and a �xed point iteration scheme to solve the non-linear part through122

an outer iteration loop. In a lexicographical ordering system, a general discrete point (i, j) as in (2.9) is123

linked to the global index k = (j − 2)(n− 1) + (i− 1), with n the size of the discrete image dimensions;124

then for m = 1, 2, we get125

−α (∆um)k + (Fm(u))k = 0 (2.10)

as illustrated in Figure 1. Now to solve the non-linear part of this system, we employ the following126

semi-implicit �xed point iteration scheme127

−α (∆um)
(l+1)
k + (Fm(u))

(l+1)
k = 0 (2.11)

where128

(F1(u))
(l+1)
k =

(
∂u1

T (x1 + u
(l)
1 , x2 + u

(l)
2 )
)
k

((
T (x1 + u

(l+1)
1 , x2 + u

(l)
2 )
)
k
− (R(x1, x2))k

)

(F2(u))
(l+1)
k =

(
∂u2T (x1 + u

(l)
1 , x2 + u

(l)
2 )
)
k

((
T (x1 + u

(l)
1 , x2 + u

(l+1)
2 )

)
k
− (R(x1, x2))k

)
. (2.12)

The key question addressed in [16] was how to treat the non-linear terms
(
T (x1 + u

(l+1)
1 , x2 + u

(l)
2 )
)
k
,129 (

T (x1 + u
(l)
1 , x2 + u

(l+1)
2 )

)
k
in a GS-LEX scheme. It proposed to use the �rst order approximations:130

(
T (x1 + u

(l+1)
1 , x2 + u

(l)
2 )
)
k
≈
(
T (x1 + u

(l)
1 , x2 + u

(l)
2 )
)
k

+
(

(u1)
(l+1)
k − (u1)

(l)
k

)(
∂u1

T (x1 + u
(l)
1 , x2 + u

(l)
2 )
)
k(

T (x1 + u
(l)
1 , x2 + u

(l+1)
2 )

)
k
≈
(
T (x1 + u

(l)
1 , x2 + u

(l)
2 )
)
k

+
(

(u2)
(l+1)
k − (u2)

(l)
k

)(
∂u2

T (x1 + u
(l)
1 , x2 + u

(l)
2 )
)
k
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which are substituted back into the discrete force terms (2.10) leading to the following discrete system131

−α (∆um)
(l+1)
k + (∂umTu)

(l)
k

(
(Tu)

(l)
k +

(
(um)

(l+1)
k − (um)

(l)
k

)
(∂umTu)

(l)
k − (R)k

)
= 0 (2.13)

with (Tu)
(l)
k ≡

(
T (x+ u(l))

)
k
etc. for m = 1, 2. Using the FD approximations (2.7), we can write (2.13)132

in the following way133

− α

h2

(
(um)

(l+1)
k−n + (um)

(l+1)
k−1

)
+

((
(∂um

Tu)
2
)(l)

k
+

4α

h2

)
(um)

(l+1)
k

− α

h2

(
(um)

(l+1)
k+1 + (um)

(l+1)
k+n

)
=
(

(∂um
Tu)

2
)(l)

k
(um)

(l)
k − (∂um

Tu)
(l)
k

(
(Tu)

(l)
k − (R)k

)
(2.14)

for m = 1, 2. Then to compute the (l + 1) updates in (2.14), we use a GS-LEX based method.134

j=2

j=j

j=n-1

i=2 i=i i=n-1

1 3 n-2

k
1
(j) k

3
(j) k

n-2
(j)

(n-3)(n-2)+1 (n-3)(n-2)+3 (n-2)2

Figure 1: Illustration of how the domain Ω is discretised by n × n grid points. The dashed blue line
represents the boundary ∂Ω of the discrete domain, with the boxed points representing the used boundary
points, and the black lines show the (n− 2)× (n− 2) grid corresponding to the blue interior points. The
indexing on the interior points show how the global index k is ordered lexicographically.

However, such an iterative method is not e�ective as a standalone solver since solving the discrete system135

of PDEs (2.10) pixel-wise can lead to a very high computational cost, especially for big images. This136

fact is well-known for simpler PDEs such as the Poisson equation (corresponding to Fm = 0 and h→ 0).137

One natural way of reducing the cost of calculating the displacement �eld is a NMG method in which138

this (slow) iterative method is used as a smoother.139

There has already been a lot of work regarding the implementation of NMG methods [21,25,27,28,32] for140

related models, each having its own unigrid iterative solver, however most of these works do not address141

the non-linearity in the similarity measure directly, instead linear diagonal terms or augmented systems142

are used. Chumchob-Chen [16] proposed a robust solver which does directly deal with this non-linearity143

arising from the SSD term, however an inaccurate analysis of the NMG method lead to a less than144

optimal convergence rate for the NMG method which we will demonstrate in the next section.145

2.3 The NMG method146

There are two theoretical principles driving multigrid methods for linear PDEs. The �rst is that, although147

standard iterative methods such as the Jacobi and GS methods have poor convergence rates when used148

independently, they are e�ective at smoothing out any high frequency error components within a small149

number of iterations. This property leads to the second key principle of multigrid methods, namely low150

frequency error components can be well approximated on a coarser grid. Naturally an approximate and151

accurate solution on a coarser grid can then be interpolated back to the �ne grid to approximate the152

original problem; this two-grid approach is signi�cantly cheaper than working solely on the �ne grid.153
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In fact this strategy allows us to obtain a more accurate approximation e�ciently as we can perform a154

larger number of iterations on the coarser grid in less time when compared with iterating the �ne grid155

alone. This �ne-coarse-�ne strategy, known as the two-grid V-cycle (see [5] for details), can however be156

repeated on the coarse grid to interact with even coarser grids until some coarsest grid with few points.157

While multigrid frameworks are known, and indeed very easy to implement for linear cases, problems158

like (2.5) which are highly non-linear prove signi�cantly more di�cult to develop a converging NMG159

method. Now we present the FAS-NMG algorithm of [16] for (2.10) before we highlight the omissions160

in the analysis which resulted in an overestimated smoothing rate (thus leading to a less optimal NMG161

method with slower convergence rate), and include our more accurate analysis to overcome this problem.162

Here FAS stands for �full approximation scheme� by A. Brandt for solving a non-linear operator equation.163

First consider a two grid setting where Ωh denotes a �ne grid and ΩH a coarse grid with h = 1
n−1 , H = 2h.164

Also denote the system (2.10) by the operator notation on Ωh165

N h(uh) = Gh (2.15)

with166

N h =



(
N h

1

)
k

(
N h

2

)
k


 , uh =



(
uh1
)
k

(
uh2
)
k


 , Gh =



(
gh1
)
k

(
gh2
)
k


 . (2.16)

and where (N h
1 )k =

(
F1(uh)

)
k
− α

(
∆huh1

)
k
, (N h

2 )k =
(
F2(uh)

)
k
− α

(
∆huh2

)
k
, (gh1 )k = (gh2 )k = 0,167

k = 1, 2, . . . , (n− 2)2. The main steps of the FAS-NMG are as follows.168

Smoothing step. Apply the iterative method (2.14) on grid Ωh starting from some initial guess. This169

is the pre-smoothing step required to obtain a smooth approximation ūh = (ūh1 , ū
h
2 )T which has residual170

rh = Gh −N h(ūh).171

To improve this smooth approximation, it remains to compute the algebraic error (or the residual cor-172

rection) eh = (eh1 , e
h
2 )T = uh − ūh which cannot be computed directly on Ωh.173

Restriction. Since only smooth errors can be well approximated on a coarser grid, we �rst solve the174

FAS coarse grid residual equation175

NH(uH) ≡ NH(ūH + eH) = rH +NH(ūH) ≡ GH (2.17)

where ūH = RHh ūh, eH = RHh eh, rH = RHh rh and RHh is the restriction operator, which we take to be176

the full-weighted restriction operator, de�ned by the following stencil177

RHh =
1

16




1 2 1
2 4 2
1 2 1



H

h

(2.18)

Coarse grid solution. For a two-grid method (or in a multigrid setting where ΩH is the coarsest level178

and computations are inexpensive), the above coarse grid equation must be solved accurately to obtain179

solutions uH . Based on this uH and its initial guess ūH , we obtain the residual correction180

eH = uH − ūH . (2.19)

Interpolation. Now we wish to use (2.19) to correct the approximations on the �ner grid Ωh; we do181

this by interpolating the corrections using bilinear interpolation. That is we compute182

eh = IhHeH , IhH =
1

4




1 2 1
2 4 2
1 2 1



h

H

. (2.20)

Once the corrections have been interpolated to the next �ne grid level, we use them to update the183

current grid level approximations via uh = ūh + eh. After the approximations have been corrected, we184

use a post-smoothing step to remove any interpolation errors. This process of interpolation, correction185

and smoothing is repeated until the approximations on the original grid level have been corrected and186

smoothed, thus resulting in our �nal solutions uh.187
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Remark 2.1. According to the work done in [26], there are three conditions which need to be satis�ed188

regarding the orders of the restriction and interpolation methods for a convergent NMG. For an order M189

PDE, we require190

(i) mR +mI ≥M ; (ii) mI ≥M and mR ≥ 0; (iii) mR ≥M and mI ≥ 0191

where mR, mI denote the high frequency orders of the restriction and interpolation schemes respectively.192

In our case we have mR = 2, mI = 2, for the full-weighted restriction and bilinear interpolation operators193

respectively, and so all three conditions are satis�ed.194

Below the FAS-NMG algorithm has been summarised195

Algorithm 1 u
(k+1)
h ← FASNMG(Rh, Th, n, h, level,u

(k)
h ,Gh, α, ν1, ν2)

1: Pre-smoothing step by performing ν1 steps (relaxation sweeps) ū
(k)
h ← Smooth(Rh, Th,u

(k)
h ,Gh, α, ν1)

2: Coarse-grid correction

Compute the residual r
(k)
h = Gh −N h(u

(k)
h )

Restrict residual and smooth approximations r
(k)
H = RHh r

(k)
h , ū

(k)
H = RHh ū

(k)
h

Set level→ level − 1, H = 2h, nc = n
2

Form RHS of coarse grid PDEs GH = rH +NH(ū
(k)
H )

Solve residual equation on coarse grid to obtain approximations ũ
(k)
H

3: if level = 1 then

Solve to obtain solutions u
(k)
H to high accuracy using a coarsest grid solver.

4: else level > 1 Repeat the FAS-NMG procedure recursively to the next level i.e.

ū
(k)
H ← FASNMG(RH , TH , nc,H, level − 1, ũ

(k)
H ,GH , α, ν1, ν2)

5: end if

Compute the correction e
(k)
H = u

(k)
H − ū

(k)
H

Interpolate the correction to next �ne grid level e
(k)
h = IhHe

(k)
H

Update current grid level approximations using correction û
(k)
h = ū

(k)
h + e

(k)
h

6: Post-smoothing step by performing ν2 steps (relaxation sweeps) u
(k+1)
h ← Smooth(Rh, Th, û

(k)
h ,Gh, α, ν2)

Computes u
(k+1)
h by performing ν2 relaxation sweeps of a smoother.

In [16], the coarsest solver that was adopted was an additive operator splitting (AOS) method. For the196

di�usion model, it takes the following form u
(k+1)
m = 1

2

∑2
s=1

[
I − 2ταLxs

]−1(
u

(k+1)
m + τgm − τFm(u)

)
197

where I denotes the identity operator, τ > 0 the time-step, gm the RHS coming from the NMG frame-198

work, Fm(u) the force terms given in (2.6) for m = 1, 2 and Lxs = ∂xsxs denote the parts of the discrete199

Laplace operator in the xs directions for s = 1, 2 respectively. The above equations are updated along200

the x1, x2 directions separately, thus leading to the system201





[
I − 2ταLx1

]
u

(k+ 1
2 )

m,p1 = u
(k)
m + τgm − τFm(u),

[
I − 2ταLx2

]
u

(k+ 1
2 )

m,p2 = u
(k)
m + τgm − τFm(u)

(2.21)

with the updates u
(k+1)
m =

1

2

(
u

(k+ 1
2 )

m,p1 + u
(k+ 1

2 )
m,p2

)
for m = 1, 2.202

Remark 2.2. In [16], the h-ellipticity for the proposed smoother was computed in order to check whether203

the smoother was suitable for use in the NMG method. From the resulting calculation, the h-ellipticity204

was found to have a value of 1
16 , and it was concluded that the smoother was suitable for use in the NMG205

method. By performing the same calculation for our proposed smoother in �2.2, which is similar to the206

one used in [16], we also obtained a value of 1
16 and thus reached the same conclusion.207

3 An improved analysis of the NMG algorithm of [16]208

As mentioned, the above Algorithm 1 as implemented by Chumchob-Chen [16] could still be slow to209

converge to a solution from new experiments. We found that a major part of this convergence problem210

was a result of an inaccurate analysis of the smoothing rate, which lead to an overestimation of the rate.211

By re-evaluating the analysis of the NMG method, as well as building in some new components, lead to212

our NMG algorithm with a vastly improved convergence rate.213
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In this section we will outline our more detailed and accurate analysis of the NMG framework. We do214

this by analysing two key components of the NMG algorithm (namely the smoothing rate of the smoother215

and the coarsest grid solver), which leads to an optimal NMG method.216

3.1 Smoother analysis using Local Fourier Analysis (LFA)217

We begin our analysis of the NMG method by showing an improved, and more accurate, LFA of the218

smoother scheme that was described in [16]. A discrete error (e.g. residual) function on a grid can be219

written as a sum of two terms:220

• high frequency error components (are not visible if the problem is restricted to a coarser grid);221

• low frequency error components (that can be accurately represented on a coarser grid).222

The sole purpose of the smoother, within a MG framework, is to remove any high frequency error223

components. Local Fourier Analysis (LFA) is used to measure how e�ective a given smoother scheme is.224

Although LFA was originally designed to analyse discrete linear operator equations, it was extended by225

A. Brandt (see [38]) to study non-linear operators via a 'freezing' of localised coe�cients. To start we226

�rst assume that we are working on an in�nite grid, this then allows us to remove any in�uence from227

the boundary conditions. Next we assume that the discrete form of a non-linear operator, with variable228

coe�cients, can be replaced locally by an operator with constant coe�cients and extended to the in�nite229

grid. We need to ensure all high frequency error components are removed prior to restriction to a coarse230

grid. As a result it is imperative that we know how e�ective our relaxation scheme is at smoothing out231

the errors so we can adjust the number of sweeps required for the pre- and post-smoothing steps. Using232

LFA we obtain a value µ which is de�ned to be the smoothing factor for a given relaxation scheme.233

LFA for pointwise smoother from [16]. While the smoother we described in �2.2 is similar to the234

one used in [16], we found that the smoother analysis in [16] contained an omission which lead to a very235

over-optimistic smoothing rate (practically to a slow convergence if using it as a guide). In [16], the236

discrete system (2.10) was written in the following way237

N h
+u

h
new +N h

0 u
h
new +N h

−u
h
old = Gh (3.1)

where uhnew, u
h
old denote the current and previous approximations of uh respectively, and238

N h
+ =

(
−αL h

+ 0
0 −αL h

+

)
, N h

0 =

(
−αL h

0 + σh11 σh12

σh12 −αL h
0 + σh22

)

N h
− =

(
−αL h

− 0
0 −αL h

−

)
, Gh =

(
gh1 − Fh1
gh2 − Fh2

)
(3.2)

with σhpq = ∂up
Thu∂uq

Thu , g
h
m denote the RHS coming from the NMG scheme, Fhm are the discrete force239

terms as given in (2.9) and where L h
+ , L h

0 , L h
− de�ne the following stencils240

L h
+ =

1

h2




0 0 0
1 0 0
0 1 0


 , L h

0 =
1

h2




0 0 0
0 −4 0
0 0 0


 , L h

− =
1

h2




0 1 0
0 0 1
0 0 0


 . (3.3)

for p, q, m = 1, 2. The smoothing rate in [16] was then calculated on a 32 × 32 grid after a total of 5241

outer and 5 inner iteration loops had been performed, thus resulting in an average smoothing rate of242

µavg ≈ 0.5 when taking α = 1
10 . However, in the analysis of [16] we notice that the (um)

(l)
k terms, which243

result from the linearisation of the SSD term, where not included in the smoothing rate calculation. This244

omission meant that the obtained rate of 0.5 was a vast overestimation of the actual smoothing rate,245

and as a result this lead to an underestimation of the number of pre-smoothing steps required before246

restriction. This means that when we restrict the problem to a coarser grid, there are still high frequency247

error components on the �ne grid which have not been removed, and so the coarse grid correction that248

we obtain is much less accurate thus leading to more NMG cycles being required to reach an accurate249

solution. This omission, as we will now show, has a noticeable e�ect on the smoothing rate.250
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Revised LFA for pointwise smoother from �2.2. Here we will repeat the analysis of the smoothing251

rate, with the (um)
(l)
k terms included, in order to illustrate the impact the addition of these terms have252

on the smoothing rate. We begin by writing the discrete equations (2.10) in the following form253

N huh +Mhuh = Gh (3.4)

where Gh is as in (3.2), and254

N h =

(
−α∆h + σh11 0

0 −α∆h + σh22

)
,Mh =

(
−σh11 0

0 −σh22

)
(3.5)

using the following representation of the discrete Laplace operator ∆h ≡ L h
++L h

0 +L h
− , with L h

+ , L h
0 , L h

−255

as de�ned in (3.3), then we can express (3.4) in the following way256

N h
+u

h
new +N h

0 u
h
new +N h

−u
h
old +Mhuhold = Gh (3.6)

and subtracting (3.6) from (3.4) yields the local error equation given by257

[
N h

+ +N h
0

]
ehnew = −

[
N h
− +Mh

]
ehold (3.7)

where N h
+, N h

0 , N h
− are as de�ned in (3.2) and258

ehnew =
(
eh1new, e

h
2new

)T
, ehold =

(
eh1 old, e

h
2 old

)T
. (3.8)

Using Fourier components, we can rewrite (3.7) in the following way259

[
N̂ h

+(θ) + N̂ h
0 (θ)

]
ψnewθ exp

(
2iθ1iπ

n
+

2iθ2jπ

n

)
= −

[
N̂ h
−(θ) + M̂h(θ)

]
ψoldθ exp

(
2iθ1iπ

n
+

2iθ2jπ

n

)
(3.9)

where i =
√
−1, θ ∈ Θ = [−π, π)2 and ψ∗θ are Fourier coe�cients. From here we determine the local260

smoothing rate µloc using the following261

µmax = max
loc

µloc, µloc ≡ µloc(θ) = sup
{
ρ
(
Ŝh(θ)

)∣∣θ ∈ Θhigh

}
(3.10)

where Θhigh = Θ \
[
−π2 , π2

)2
, ρ(·) denotes the spectral radius, and the ampli�cation matrix Ŝh(θ) is262

given by263

Ŝh(θ) = −
[
N̂ h

+(θ) + N̂ h
0 (θ)

]−1[N̂ h
−(θ) + M̂h(θ)

]
(3.11)

with264

N̂ h
+(θ) =

(
− α
h2

(
e−iω1 + e−iω2

)
0

0 − α
h2

(
e−iω1 + e−iω2

)
)
, N̂ h

0 (θ) =

(
4α
h2 + σh11 0

0 4α
h2 + σh22

)
,

N̂ h
−(θ) =

(
− α
h2

(
eiω1 + eiω2

)
0

0 − α
h2

(
eiω1 + eiω2

)
)
, M̂h(θ) =

(
−σh11 0

0 −σh22

)
(3.12)

where ωm = 2θmπ
n for m = 1, 2. Implementing the revised local smoothing rate formulae, under the same265

conditions that were used in [16], we obtained an average and maximum smoothing rate of µavg ≈ 0.69854266

and µmax ≈ 0.74762 respectively. By the smoothing rate of 0.5 in [16] within each outer iteration, 5267

inner iterations would result in reduction of the error by 0.0313 which appeared satisfactory. However268

5 inner iterations would reduce only by 0.17 and 0.23 respectively using our new smoothing rates µavg269

and µmax. In order to reduce to the level of error claimed in [16], we estimate that we would require up270

to 12 inner iterations. So we see that the original analysis in [16] resulted in the estimated number of271

pre-smoothing steps being roughly half of the number of steps that would actually be required to reduce272

the error to quoted level.273
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3.2 Convergence analysis of two coarsest grid solvers by LFA274

Next we give a simple solution to the challenging problem of getting the convergence rate of a non-linear275

iterative method. Here we remark that this analysis was not performed in [16]. Consequently, we can276

compare methods and guide the number of iterations to be prescribed on the coarsest grid. Recall that277

the AOS solver (2.21) was used by Chumchob-Chen [16]. Here we shall propose to use a �xed point type278

solver on the coarsest grid instead.279

Our coarsest grid solver. From �2.2 we have the following lexicographically ordered discrete system280

of linear equations281

− α

H2

(
(um)

(l+1)
k−n + (um)

(l+1)
k−1

)
+

((
(∂um

Tu)
2
)(l)

k
+

4α

H2

)
(um)

(l+1)
k

− α

H2

(
(um)

(l+1)
k+1 + (um)

(l+1)
k+n

)
=
(

(∂um
Tu)

2
)(l)

k
(um)

(l)
k − (∂um

Tu)
(l)
k

(
(Tu)

(l)
k − (R)k

)
(3.13)

for m = 1, 2. In matrix notation, we can express these equations as matrix equations Amum = fm,282

where um, fm ∈ R(n−2)2×1 are column vectors and Am ∈ R(n−2)2×(n−2)2 are the block tridiagonal283

system matrices with the following structure284

Am =




Am2
I1

I1
. . .

. . .

. . .
. . . I1
I1 Amn−1



, um =




(um)k2(2)

...
(um)ki(j)

...
(um)kn−2(n−2)



, fm =




(fm)k2(2)

...
(fm)ki(j)

...
(fm)kn−2(n−2)




(3.14)

where Amj
, I1 ∈ R(n−2)×(n−2) are matrices with structure285

Amj
=




(am)k2(j) − α
H2

− α
H2

. . .
. . .

. . .
. . . − α

H2

− α
H2 (am)kn−1(j)



, I1 = − α

H2




1
. . .

1


 (3.15)

with (am)ki(j) =
(

(∂um
Tu)

2
)
ki(j)

+ 4α
H2 and where ki(j) = (j − 2)(n − 1) + (i − 1) denotes a general286

lexicographically ordered discrete point (i, j), as shown in Figure 1. Also287

(fm)ki(j) =
(

(∂um
Tu)

2
)
ki(j)

(um)ki(j) − (∂um
Tu)ki(j)

(
(Tu)ki(j) − (R)ki(j)

)
(3.16)

for m = 1, 2 and i, j = 2, . . . , n− 1. Then our proposed algorithm is as shown in Algorithm 2288

In order to demonstrate the improvement in convergence rate of our proposed coarsest grid solver over289

the AOS scheme used in [16], we �rst need a way to measure the convergence rate. To do this we290

shall employ LFA to estimate the convergence rates of both of our proposed solver and the AOS solver.291

The purpose is to discriminate these two estimations. Unfortunately due to the non-linearity of the292

problem we are unable to obtain a sharp measure of the convergence rate, and so using LFA to obtain293

an approximation is the best option. It should be remarked that LFA used for this convergence analysis294

is only viable on a coarse grid (e.g. 8 × 8 mesh) as the rate is not sharp especially on a �ne grid (e.g.295

128× 128 mesh).296

Analysis of the proposed coarsest grid solver. To estimate the convergence rate P of a given297

solver, we follow a similar method to that in the smoother analysis shown in �3.1. That is we must298

evaluate the ampli�cation matrix ŜH(θ) at every discrete interior point (i, j) for i, j = 2, . . . , n− 1 and299

where n denotes the size of the image dimensions. However, where we restricted θ to only consider the300

high frequency range Θhigh in the smoother analysis, now we consider θ over the entire Fourier domain301

Θ. Since our proposed direct solver is based upon the pointwise smoother shown in �2.2, the derivation302

of the ampli�cation matrix ŜH(θ) is very similar to that shown in �3.1. Then, the convergence rate for303

our proposed direct solver can be estimated locally by the following304

PD max = max
loc
PD loc, PD loc ≡ PD loc(θ) = sup

{
ρ
(
ŜH(θ)

)∣∣θ ∈ Θ
}

(3.17)
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where Θ ∈ [−π, π)2, ρ(·) denotes the spectral radius and ŜH(θ) is the ampli�cation matrix as given by305

ŜH(θ) = −
[
N̂H

+ (θ) + N̂H
0 (θ) + N̂H

− (θ)
]−1M̂H(θ)

with N̂H
+ (θ), N̂H

0 (θ), N̂H
− (θ), M̂H(θ) as in (3.12) and H = 2h.306

Algorithm 2 u
(l+1)
H ← DirectSolve(RH , TH ,u

(k)
H ,GH , α, IMAX, Tol)

1: Initialise u
(l)
H = u

(k)
H

Construct discrete Laplacian parts of sparse matrices Am

2: for l = 1, · · · , IMAX do

Deform template image using u
(l)
H → THu

Compute FD approximations for derivatives of THu → ∂u1T
H
u , ∂u2T

H
u

Compute RHS fm (matrices) and then convert to column vectors fm
Add remaining diagonal parts to Am

Compute u
(l+1)
mH → u

(l+1)
mH = A−1

m fm

Reshape u
(l+1)
mH to matrices u

(l+1)
mH

3: if
∥∥u(l+1)

1H − u
(l)
1H

∥∥2
2
< Tol and

∥∥u(l+1)
2H − u

(l)
2H

∥∥2
2
< Tol then

Exit for loop
4: end if

5: end for

Analysis of the block formulation of our proposed coarsest grid solver. Previously in order307

to estimate the convergence rate for the pointwise case, we would have a single equation of the form308

shown in (3.9) for each discrete interior point from which we would determine the ampli�cation matrix,309

now however we construct the ampli�cation matrix from a single system of equations with the following310

structure311

BΨnew
θ = CΨold

θ (3.18)

where B, C ∈ R2(n−2)2×2(n−2)2 and Ψ∗θ ∈ R2(n−2)2×1 are block matrices and block column vectors312

respectively with structure313

B =

(
B1 D
D B2

)
, C =

(
C1 D
D C2

)
, Ψ∗θ =

(
ψ∗θ
ψ∗θ

)
(3.19)

with Bm, Cm, D ∈ R(n−2)2×(n−2)2 and ψ∗θ ∈ R(n−2)2×1 given by314

Bm =




Bm2
J1

J2
. . .

. . .

. . .
. . . J1

J2 Bmn−1



, C =



Cm2

. . .

Cmn−1


 , D =



D2

. . .

Dn−1


 , ψ∗θ =




(ψ∗θ)1
...

(ψ∗θ)k
...

(ψ∗θ)(n−2)2




(3.20)

and where Bmj
, Cmj

, Dj , Jm ∈ R(n−2)×(n−2) are given by315

Bmj
=




(bm)k2(j) − α
H2 e

iω1

− α
H2 e

−iω1
. . .

. . .

. . .
. . . − α

H2 e
iω1

− α
H2 e

−iω1 (bm)kn−1(j)



, Cmj

=




(cm)k2(j)

. . .

(cm)kn−1(j)


,

D =




(d)k2(j)

. . .

(d)kn−1(j)


 , J1 =



− α
H2 e

iω2

. . .

− α
H2 e

iω2


 , J2 =



− α
H2 e

−iω2

. . .

− α
H2 e

−iω2


 (3.21)

with (bm)ki(j) =
(

(∂um
Tu)

2
)
ki(j)

+ 4α
H2 , (cm)ki(j) =

(
(∂um

Tu)
2
)
ki(j)

, (d)ki(j) = (∂u1
Tu)ki(j) (∂u2

Tu)ki(j),316

ωm = 2θmπ
n and ki(j) = (j−2)(n−1)+(i−1) for m = 1, 2 and i, j = 2, . . . , n−1. Then the convergence317

rate PB for the block formulation of our direct solver is estimated from the following318

PB ≡ PB(θ) = sup
{
ρ
(
ŜH(θ)

)∣∣θ ∈ Θ
}

(3.22)
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with ampli�cation matrix ŜH(θ) = B−1C. On this coarsest grid, n is small so estimating PB is feasible.319

Convergence analysis for AOS solver. We again remark that an analysis to estimate the convergence320

of the coarsest solver in [16] was not performed. From [16], the AOS scheme for the di�usion model is321

shown in (2.21) form = 1, 2. We use a similar method to the one shown in �3.1 to derive the ampli�cation322

matrix for the AOS method. However, since the AOS scheme solves along the x1 and x2 directions323

separately, we will obtain two convergence rates PA1
, PA2

for these directions respectively. We start by324

expressing the discrete versions of (2.21) by the following system325

NH
mu

H
pm +MH

mu
H
pm = GHm (3.23)

with326

NH
m =

(
1− 2τα∂Hxmxm

0
0 1− 2τα∂Hxmxm

)
,MH

m =

(
−1 0
0 −1

)
, GHm =

(
τgH1 − τFH1 (u)
τgH2 − τFH2 (u)

)
(3.24)

where gHm are the discrete RHS coming from the NMG method and FHm (u) are the discrete force terms327

given in (2.9). The x1, x2 directions of the discrete Laplace operator can be represented by ∂Hxmxm
=328

LH
m+ + LH

m 0 + LH
m−, where LH

m+, LH
m 0, LH

m− de�ne the following stencils329

LH
1 + =

1

H2




0 0 0
1 0 0
0 0 0


 , LH

1 0 =
1

H2




0 0 0
0 −2 0
0 0 0


 , LH

1− =
1

H2




0 0 0
0 0 1
0 0 0




LH
2 + =

1

H2




0 0 0
0 0 0
0 1 0


 , LH

2 0 =
1

H2




0 0 0
0 −2 0
0 0 0


 , LH

2− =
1

H2




0 1 0
0 0 0
0 0 0


 (3.25)

then we can write (3.23) in the following way330

NH
m+u

H
pm new +NH

m 0u
H
pm new +NH

m−u
H
pm old +MH

mu
H
pm old = GHm (3.26)

where uHpm new, u
H
pm old denote the current and previous approximations of uHpm in the xm directions331

respectively, and332

NH
m+ =

(
−2ταLH

m+ 0
0 −2ταLH

m+

)
, NH

m 0 =

(
1− 2ταLH

m 0 0
0 1− 2ταLH

m 0

)

NH
m− =

(
−2ταLH

m− 0
0 −2ταLH

m−

)
,MH

m =

(
−1 0
0 −1

)
(3.27)

for m = 1, 2. Using a similar process to that shown in �3.1, for computing the smoothing rate, we333

estimate the convergence rate from the following334

PA max = max
loc
PA loc, PA loc =

1

2
(PA1 loc + PA2 loc) ,

PAm loc ≡ PAm loc(θ) = sup
{
ρ
(
ŜHm(θ)

)∣∣θ ∈ Θ
}

(3.28)

where ρ(·) again denotes the spectral radius, and Ŝhm(θ) denote the ampli�cation matrices given by335

ŜHm(θ) = −
[
N̂H
m+(θ) + N̂H

m 0(θ)
]−1[N̂H

m−(θ) + M̂H
m(θ)

]
(3.29)

and where336

N̂H
m+(θ) =

(
− 2τα
H2 e

−iωm 0
0 − 2τα

H2 e
−iωm

)
, N̂H

m 0(θ) =

(
1 + 4τα

H2 0
0 1 + 4τα

H2

)

N̂H
m−(θ) =

(
− 2τα
H2 e

iωm 0
0 − 2τα

H2 e
iωm

)
, M̂H

m(θ) =

(
−1 0
0 −1

)
(3.30)
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Comparison of convergence rates for two coarsest grid solvers. Once we have an estimate of337

the convergence rate P, we can compute the number of iterations l required to reach a desired tolerance338

10−k using the following339

l = −k ln(10)

ln(P)
(3.31)

Grid Size α
AOS Solver Direct Solver (Pointwise) Direct Solver (Block)

PA Tol 10−1/10−2/10−3 PD Tol 10−1/10−2/10−3 PB Tol 10−1/10−2/10−3

4× 4

1
10 0.99915 2709/5417/8124 0.40511 3/6/8 0.14573 2/3/4
1
20 0.99957 5355/10708/16062 0.51635 4/7/11 0.26136 2/4/6
1
30 0.99971 7940/15879/23817 0.61297 5/10/15 0.35084 3/5/7

8× 8

1
10 0.99937 3655/7309/10962 0.82924 13/25/37 0.41411 3/6/8
1
20 0.99968 7195/14390/21584 0.90661 24/47/71 0.63061 5/10/15
1
30 0.99979 10965/21928/32892 0.93578 35/70/105 0.76812 9/18/27

16× 16

1
10 0.99947 4344/8688/13031 0.97391 88/175/262 0.99636 632/1262/1894
1
20 0.99973 8528/17055/25582 0.98679 174/647/520 1.00000 -
1
30 0.99982 12792/25583/38374 0.99116 260/519/778 1.00000 -

Table 1: Comparison 2 of convergence rates (averaged over 5 FAS-NMG cycles) for the Chumchob-Chen
AOS solver and our direct solver. For each solver the convergence rates and number of iterations required
to reach tolerances of 10−1, 10−2, 10−3 are shown for multiple α values on various coarsest grid sizes for
the lung CT example (Example 2 in Figure 3).

Grid Size α
AOS Solver Direct Solver (Pointwise) Direct Solver (Block)

PA Tol 10−1/10−2/10−3 PD Tol 10−1/10−2/10−3 PB Tol 10−1/10−2/10−3

4× 4

1
10 0.99915 2708/5416/8123 0.65472 6/11/17 0.32791 3/5/7
1
20 0.99957 5355/10708/16061 0.79307 10/20/30 0.51094 4/7/11
1
30 0.99971 7940/15879/23817 0.85177 15/29/44 0.62553 5/10/15

8× 8

1
10 0.99937 3655/7309/10962 0.94157 39/77/115 0.70146 7/13/20
1
20 0.99968 7195/14390/21584 0.96925 74/148/222 0.88868 20/40/59
1
30 0.99979 10965/21928/32892 0.97894 109/217/325 0.97361 87/173/259

16× 16

1
10 0.99947 4344/8688/13031 0.98925 214/427/640 1.00000 -
1
20 0.99973 8528/17055/25582 0.99463 428/856/1283 1.00000 -
1
30 0.99982 12792/25583/38374 0.99643 644/1288/1932 1.00000 -

Table 2: Comparison 1 of convergence rates (averaged over 5 FAS-NMG cycles) for the Chumchob-Chen
AOS solver and our direct solver. For each solver the convergence rates and number of iterations required
to reach tolerances of 10−1, 10−2, 10−3 are shown for multiple α values on various coarsest grid sizes for
the hand example (Example 3 in Figure 3).

From Tables 1 and 2 we see that our direct solver converges much faster than the Chumchob-Chen AOS340

solver on several di�erent coarsest grid sizes for both Hand and Lung CT examples (Examples 1 and 2 in341

Figure 3) respectively, especially on the 4× 4 and 8× 8 grids; this improvement has a signi�cant impact342

on the number of iterations required to reach a desired tolerance, which in turn will have a noticeable343

e�ect on the number of FAS-NMG cycles needed to obtain a good registration result as well as the time344

taken. As is also clear from both tables, the rates are too high and both solvers are not e�ective on the345

less coarse 16× 16 grid, possibly due to limitation of the analysis; we would conclude that the coarsest346

grid is kept as 8× 8.347

Hence the improved NMG method, to be denoted by unconstrained INMG, is taken as Algorithm 1348

equipped with the coarsest grid solver by Algorithm 2 and the predicted number of smoothing steps of349

ν1, ν2 ≥ 8 since µ8
max = 0.747628 < 0.1 is believed to be small enough.350

4 Non-folding constraint model351

We now present another model to deliver di�eomorphic transforms. Folding in the transformation is a352

problem which can occur in image registration, unless it is speci�cally controlled. In real applications353

the presence of folding would suggest an inaccurate registration result as such transformations are non-354

physical. In this section we will �rst introduce our proposed improved di�usion model, which removes355

13



any folding that may occur in the transformation ϕ, as well as including a NMG scheme (Algorithm 1).356

Then we will extend this model to increase robust with respect to the weighting parameter α.357

4.1 Improved di�usion model formulation and optimise-discretise approach358

In the work by Burger et al. [11], it was explained that the sign of the determinant det∇ϕ can indicate359

the presence of any folding in the transformation ϕ = x+ u, or more speci�cally the sign of360

det∇ϕ =
(
1 + u1x1

) (
1 + u2x2

)
− u1x2

u2x1
. (4.1)

If det∇ϕ ≤ 0 then this indicates that folding in the transformation is present, while if det∇ϕ > 0 then361

no folding occurs in the transformation. In [11] this information was used to add an additional term into362

the di�usion energy functional (2.2) which penalises this determinant in order to produce di�eomorphic363

image registrations, thus resulting in the following 2D hyper-elastic energy functional364

EHyper(u) =
1

2

∫

Ω

(Tu −R)
2

+ α
2∑

s=1

∣∣∇us
∣∣2 + β

(
(det∇ϕ− 1)

2

det∇ϕ

)2

dΩ, (4.2)

where α ∈ R+, 0 ≤ β ∈ R are weighting parameters. Although it may be possible to develop an e�ective365

smoother for solving (4.2), which has a strong non-linearity, in this paper however we instead propose an366

extension to the di�usion model (2.2) as a simpli�cation of the hyper-elastic model (4.2) to control any367

folding. We propose to introduce a constraint into the di�usion model which ensures a positive value of368

the determinant (4.1). In other words, we aim to solve the following minimisation problem369

min
u
EDi�(u), s. t. det∇ϕ > 0 (4.3)

or equivalently, using an optimise-discretise approach, we look to solve the following EL equations370

−α∆um + Fm(u) = 0 s. t. det∇ϕ > 0 (4.4)

with Neumann boundary conditions ∇um · n = 0 and where Fm(u) are as in (2.6) for m = 1, 2.371

4.2 Estimating the determinant using �nite elements372

In order for us to be able to impose the constraint in (4.4), we must �rst obtain an approximation of the373

determinant at every discrete interior point of Ωh, that is we need to compute374

Q ≡ (Qij) = (det∇ϕ)i,j =
(
1 + (u1x1

)i,j
)(

1 + (u2x2
)i,j
)
− (u1x2

)i,j(u2x1
)i,j (4.5)

where Q ∈ R(n−2)×(n−2) is the matrix consisting of determinant values at the discrete interior points375

(i, j) for i, j = 2, . . . , n − 1. To compute the entry (Qij), we need to determine the discrete partial376

derivatives (umx1
)i,j , (umx2

)i,j for m = 1, 2. We do this by splitting our discrete domain Ωh into a mesh377

of �nite elements consisting of piecewise linear triangular basis functions as shown in Figure 2(a). In fact378

for each interior point (i, j), we need to compute the determinant in each of the four triangles T1, . . . , T4379

as shown in Figure 2(b). Doing this gives us a clearer picture of the local geometry surrounding the380

(i, j) point, thus allowing us to better detect any mesh folding of the transformation. Once we have381

determinant values for each of the triangles, we assign the smallest value to be our (Qij) entry, this382

in essence considers the worst possible case for each (i, j) allowing us to better detect and correct all383

potential folding in the transformation. Now for linear triangular basis functions, we can approximate384

um(x) by the following linear functions385

Lm(x) = aum
+ bum

x1 + cum
x2 (4.6)

where aum
, bum

, cum
∈ R are coe�cients to be determined for m = 1, 2. From (4.6) we see that the386

partial derivatives umx1
, umx2

are given by the coe�cients bum
, cum

respectively. Then looking at the387

�rst triangle T1, at a general discrete interior point (i, j), we have the following system388

Triangle T1 :




1 xi yj
1 xi+1 yj
1 xi yj+1





a1u1

b1u1

c1u1


 =




(u1)i,j
(u1)i+1,j

(u1)i,j+1


 ,




1 xi yj
1 xi+1 yj
1 xi yj+1





a1u2

b1u2

c1u2


 =




(u2)i,j
(u2)i+1,j

(u2)i,j+1


 ;
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(b) Local mesh of �nite elements at a general discrete point
(i, j)

Figure 2: Finite element splitting of the discrete domain Ωh using linear triangle basis functions

we obtain similar systems for each of the remaining triangles T2, T3 and T4. Then, to compute the390

coe�cients al um , bl um , cl um , we solve391

sl = A−1
l v1 l, tl = A−1

l v2 l (4.7)

where sl = (al u1 , bl u1 , cl u1)T , tl = (al u2 , bl u2 , cl u2)T are the column vectors of coe�cients for (u1)i,j , (u2)i,j392

respectively, A−1
l are the inverses of the matrices corresponding to the edges of the triangles Tl and393

vml = (um 1, um 2, um 3)T are the values of um at each vertex of the triangles Tl for l = 1, . . . , 4, m = 1, 2.394

Then, once all elements of Q have been computed, we take the minimum value of the matrix Q to be395

used to see if the constraint has been satis�ed. This method can be summarised by Algorithm 3. Once396

we have a value for Qmin, we use Algorithm 4 to impose the constraint and determine whether we accept397

the updated transformation or not.398

In practice, Algorithm 3 can be computationally expensive on larger grid sizes owing to the fact that we399

must solve eight inverse problems at every discrete interior point in the discrete domain Ωh, consequently400

this has a severe impact on the CPU time of the NMG scheme for our constrained model. In Appendix A401

we demonstrate how Algorithm 3 can be optimised to signi�cantly decrease CPU cost for each iteration402

of the determinant computation. The method outlined in Algorithm 8 is how we actually compute the403

determinant in practice, and the results shown in �5.2 are also obtained using this algorithm.404

4.3 Numerical solution and NMG algorithm for a constrained di�usion model405

Based on our NMG framework unconstrained INMG, we will solve our constrained di�usion model406

by NMG. Adding a constraint, the same pointwise smoother as the one shown in �2.2 and the same407

coarsest grid solver as the one described in �3.2 are used. Then our proposed NMG algorithm is shown408

in Algorithm 6, which we denote constrained INMG.409

4.4 An adaptive α constrained di�usion model410

While our constrained INMG does ensure that the deformations obtained are non-folding, in cases411

where folding is severe the deformation �eld u can be penalised so heavily that the deformed template412

image Tu may have moved very little when compared with the original template image T . To overcome413

this problem we propose an extension to our constrained INMG model, whereby we re-initialise the414

NMG method using a larger value of α if the constraint has not been satis�ed within a small number of415

iterations. To construct this adaptive α scheme, we modify the determinant check shown in Algorithm416
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4 as seen in Algorithm 5. From Algorithm 5 we see that if we reach the iteration limit LMAX, we417

exit out of the FAS-NMG algorithm and this is when we re-initialise the NMG with a larger weighting418

parameter α. This process can be summarised by Algorithm 7, and where the algorithm AdaptFASNMG419

is the same as Algorithm 6 except now Algorithm 5 is used to check the constraint instead of Algorithm420

4. Another advantage of the adaptive α scheme shown in Algorithm 7 is its robustness to the choice421

of parameter α. Even if the initial α is set too small such that severe folding would normally occur,422

because we keep re-initialising the problem with new values of α, we automatically �nd a pseudo-optimal423

α value where folding is avoided. This will be shown in the next section. Using the pointwise smoother424

from �2.2, and the coarsest grid solver from �3.2 along with Algorithm 7, then we denote our adaptive425

α model by adaptive INMG.426

Algorithm 3 Qmin ← ComputeQ(uh, n, h)

1: for i = 2, . . . , n− 1 do

2: for j = 2, . . . , n− 1 do

3: for l = 1, . . . , 4 do

Compute the vectors sl, tl using (4.7)
Compute determinant for triangle Tl → Q̃l = (1 + bl u1)(1 + cl u2)− cl u1bl u2

4: end for

Assign minimum Q̃ to be entry (Qij)→ (Qij) = min {Q̃1, . . . , Q̃4}
5: end for

6: end for

Take minimum entry in Q to be minimum determinant value → Qmin = min {Q}

Algorithm 4 u
(k+1)
h ← ConstrainU(u

(k)
h , h, λ, LMAX)

1: for l = 1, · · · , LMAX do

2: Compute minimum value of determinant Qmin using Algorithm 3
3: if Qmin > 0 and l ≤ LMAX then

Accept update u
(k+1)
h = u

(k)
h

4: else if Qmin ≤ 0 and l < LMAX then

Reject update and set u
(k)
h = λu

(k)
h , λ ∈ (0, 1)

5: else if Qmin ≤ 0 and l = LMAX then

Error → Constraint failed
6: end if

7: end for

Algorithm 5
[
u

(k+1)
h , c, done_alpha

]
← AdaptiveU(u

(k)
h , h, λ, LMAX)

1: Save current `good' approximation → û
(k)
h = u

(k)
h , c = 0

2: for l = 1, · · · , LMAX do

3: Compute minimum value of determinant Qmin using Algorithm 3
4: if Qmin > 0 and l ≤ LMAX then

Accept update u
(k+1)
h = u

(k)
h , û

(k)
h = u

(k)
h , c = c+ 1, done_alpha = 1, break

5: else if Qmin ≤ 0 and l < LMAX then

Reject update and set u
(k)
h = λu

(k)
h , λ ∈ (0, 1), c = c+ 1

6: else if Qmin ≤ 0 and l = LMAX then

Reset to `good' approximation → c = LMAX, u
(k+1)
h = û

(k)
h , done_alpha = 0

7: end if

8: end for
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Algorithm 6 u
(k+1)
h ← ConstFASNMG(Rh, Th, n, h, level,u

(k)
h ,Gh, α, ν1, ν2)

1: Pre-smoothing step by performing ν1 steps (relaxation sweeps) ū
(k)
h ← Smooth(Rh, Th,u

(k)
h ,Gh, α, ν1)

2: Coarse-grid correction

Compute the residual r
(k)
h = Gh −N h(u

(k)
h )

Restrict residual and smooth approximations r
(k)
H = RHh r

(k)
h , ū

(k)
H = RHh ū

(k)
h

Set level→ level − 1, H = 2h, nc = n
2

Form RHS of coarse grid PDEs GH = rH +NH(ū
(k)
H )

Solve residual equation on coarse grid to obtain approximations ũ
(k)
H

3: if level = 1 then

Solve to obtain high accuracy solutions u
(k)
H using a coarsest grid solver.

4: Use Algorithm 4 to determine whether update is accepted
5: else level > 1 Repeat the FAS-NMG-CONST procedure recursively to the next level i.e.

ū
(k)
H ← ConstFASNMG(RH , TH , nc,H, level − 1, ũ

(k)
H ,GH , α, ν1, ν2)

6: end if

Compute the correction e
(k)
H = u

(k)
H − ū

(k)
H

Interpolate the correction to next �ne grid level e
(k)
h = IhHe

(k)
H

Update current grid level approximations using correction û
(k)
h = ū

(k)
h + e

(k)
h

7: Post-smoothing step by performing ν2 steps (relaxation sweeps) u
(k+1)
h ← Smooth(Rh, Th, û

(k)
h ,Gh, α, ν2)

Computes u
(k+1)
h by performing ν2 relaxation sweeps of smoother

8: Use Algorithm 4 to determine whether update is accepted if on �nest grid level Ωh

Algorithm 7 u
(k+1)
h ← Adaptiveα

(
Rh, Th, n, h,u

(k)
h , α, iαmax

)

1: Set done_NMG = 0, done_alpha = 0
2: while done_NMG 6= 1 do

3: if iα = iαmax then

LMAX = 100
4: end if

5: while done_NMG 6= 1 do

6: Set previous `good' approximation → u
(k)
h = û

(k)
h

7: Perform FAS-NMG →
[
u

(k+1)
h , c

]
← AdaptFASNMG

(
Rh, Th, n, j, level, û

(k)
h ,Gh, α, ν1, ν2

)

8: if c ≤ LMAX and done_alpha 6= 1 then

break
9: end if

10: if NMG convergence criteria satis�ed then

done_NMG = 1
11: end if

12: end while

13: if c ≤ LMAX and done_alpha 6= 1 then

14: Set α = 2α, iα = iα + 1, u
(k)
h = û

(k)
h

15: end if

16: end while

5 Experimental results427

Here we will present and compare the results of four models428

• M1 � the NMG method CCNMG from [16] i.e. Algorithm 1;429

• M2 � the improved NMG method unconstrained INMG of �3.2;430

• M3 � the NMG method constrained INMG of �4.3 i.e. Algorithm 6;431

• M4 � the NMG method adaptive INMG of �4.4 i.e. Algorithm 7.432

Firstly we will demonstrate how our more accurate analysis of the smoothing rate, along with our433

new coarsest grid solver, impact the number of NMG cycles required for the method to converge when434

compared with M1. In addition we will also show how this improved convergence of our NMG method435

M2 results in a signi�cant decrease in CPU time, as well as an improvement in the accuracy of the436

registration, when compared with M1.437
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Secondly, we will show how our methodM3 overcomes the issue of transformation folding while still main-438

taining good accuracy and CPU times compared with our unconstrained model M2 and the Chumchob-439

Chen model M1.440

Thirdly we will show how our methodM4 not only overcomes the problem of mesh folding while keeping441

a good level of accuracy and CPU times, but also how it can maintain these good transforms while being442

robust to parameter choice when compared with the other models.443

To gain a quantitative measure of the accuracy of the NMG methods, we use Structural Similarity444

(SSIM) [39] as well as the relative error given by Err =
‖Tu−R‖22
‖R‖22

. Moreover, in order to highlight the445

convergence problem of the M1, and for fairness, we will consider a method to have converged only if446

any of the following stopping criteria has been satis�ed:447

• The average relative residual of the EL equations reaches a tolerance of ε1 = 10−2
448

• The maximum relative residual of the EL equations reaches a tolerance of ε2 = 10−2
449

• The number of NMG cycles reaches the maximum number of ε3 = 25.450

We shall take 3 pairs of test images (shown in Fig.3) to experiment and compare registrations:451

Example 1 � a pair of CT images from Fig.3(a, d),452

Example 2 � a pair of CT images from Fig.3(b, e),453

Example 3 � a second pair of Hand images from Fig.3(c, f).454

Moreover, in Tables 5-6 we indicate whether a test has been `successful' (results highlighted in green) or455

whether it has `failed' (results highlighted in red). We say that a test has `failed' if the maximum number456

of NMG cycles ε3 has been reached, or if there is folding in the result (i.e. Qmin < 0). Additionally bold457

values indicate the results which give the best SSIM and relative error values for each test.458

5.1 Comparative results of models M1 and M2459

Here we will demonstrate the improvement of the new M2 over M1. As mentioned in �3, our improve-460

ment is to overcome the convergence problem that was present in the former method.461

Test on Example 1. From Figures 8 and 9, we see that our M2 produces visually similar deformed462

template images Tu and �nal error images |Tu −R| when compared with those obtained from M1. The463

�rst two columns of Table 5 show several test results of varying resolutions and parameters α. There,464

abbreviations 'SSIM', 'Err', 'NMG', 'CPU' represent the �nal structural similarity, �nal relative error,465

number of multigrid cycles performed and CPU time respectively. When we look at the table we see466

that our M2 requires consistently fewer NMG cycles to produce these accurate results. In fact, the M1467

method almost always fails to converge within the allowed number ε3 of NMG cycles to the required468

tolerances. This con�rms our statements earlier on the convergence problem of M1. Moreover, this also469

leads to a drastic improvement in CPU time, especially in the 5122 and 10242 cases where theM1 model470

requires a much larger number of NMG cycles.471

Test on Example 2. Although visual di�erences between the models are small in Figures 6 and 7,472

in Table 4, we see that M2 is better than M1 (in all indicators: SSIM/Err/NMG cycles/CPU) for the473

�rst α value, but for the other two cases of α both models failed to give di�eomorphic maps due to474

det∇ϕ < 0.475

Test on Example 3. For the second lung CT example visual di�erences between the models are small476

in Figures 4 and 5. We can see that, from Table 3, M2 is successful for all cases of α but M1 failed in477

several cases. On convergence alone, M1 is not as fast as M2 because it takes many NMG cycles.478

We remark that, in the M1 method tested above, we have used the original CCNMG AOS solver on479

the coarsest grid but the (new) updated smoothing rates to predict the number of smoothing steps480

required on �ne grids; that is to say, the NMG cycles displayed are better than the original work. To481

illustrate the importance of our re-analysis in LFA, we will give a brief comparison using the old and482

new smoothing rates for a speci�c test. Considering Example 1 from Figure 8 of size 1282 with α = 1
10 ,483

we obtained SSIM/Err(%)/NMG/CPU(s) values of 0.774/1.48/21/1.169 using the M1 method with484

smoother steps based upon the rate µ = 0.5. However if we perform the same test with smoother steps485

based upon our re-calculated rate µ = 0.74762, we obtain values of 0.775/1.46/10/0.959. Clearly there486
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is a vast improvement (reduction) in the number of NMG cycles required with small improvements in487

the other three values and the overall improvement of M2 over M1 is also due to the new coarsest grid488

solver.489

5.2 Comparative results of models M2 and M3490

In �4 we introduced our constrained version M3 in order to prevent any folding from occurring in the491

transformation. This was achieved by ensuring det∇ϕ > 0 for every discrete interior point in Ωh. Here492

we will present results comparing M2 and M3 to show how this constraint does indeed prevent folding493

while still maintaining good accuracy and CPU time using the same three examples from �5.1. The494

abbreviation Qmin represents the minimum determinant value det∇ϕ. Here small `Err' means a small495

�tting error while Qmin > 0 implies a correct registration transformation.496

Test on Example 1. From columns 2 and 3 of Table 5 we see that our M2 always produces positive497

Qmin values; as a result we obtain the exact same results with ourM3 method with very small increases498

in CPU times owing to the constraint checking. This also translates to Figures 8 and 9 where we see499

that all images look very similar visually.500

Test on Example 2. From Table 4 we see that M3 has overcome the mesh folding problems of M2 by501

positive Qmin values in all cases. In achieving this convergent non-folding result, the number of NMG502

cycles taken by M3 is more than M2. Although the CPU times in these cases also increase noticeably,503

we do however still see a reduction and consistency in the number of NMG cycles when compared504

with the M1 method. The CPU time increase could be reduced by a more computationally e�cient505

implementation of our smoother code to penalise the transformation only in regions where folding is506

present.507

Test on Example 3. Here we see the exact same pattern as in Example 1 since our M3 produces508

positive determinant values in all cases and identical results to M2 with small increases in CPU times509

as shown in Table 3, with improvements in all categories over the M1 method especially in convergence510

and CPU times.511

5.3 Comparative results of models M3 and M4512

Additionally in �4 we introduce and extension to our M3 model to be robust to parameter choice while513

maintaining a non-folding transformation. Here we will consider a case where severe folding would occur514

and our M3 model, while producing a non-folding deformation, performs poorly in terms of registration515

accuracy whereas our M4 model also avoids folding while producing good registration accuracy.516

From Table 6 we see that although we obtain very good accuracy from our M2 model, we also have517

severe folding in the transformations in all tests as indicated by the negative Qmin values. Looking at518

the results for ourM3 model we see that the folding problem has been overcome and all Qmin values are519

now positive, however we also see that we have lost the accuracy of the result with regard to error when520

compared with the M2 results, especially on the 1272 and 2562 images. Our M4 model on the other521

hand no only produces non-folding results like with our M3 model, but also maintains a similar level522

of accuracy when compared with the results from our M2 model. In addition we also see that our M4523

model achieves this with only a slight increase in CPU time when compared with those from the M2524

model, and is over twice as fast as our M3 model. From Figures 10 and 11 we see that visually there is525

a noticeable di�erence between the deformed template from our M3 model compared with those from526

our M2 and M4 models, especially in the error images.527

5.4 Test on NMG e�ciency and parameter robustness528

NMG e�ciency. In this work, we are concerned with transforms' quality and fast solution by529

a NMG. For the latter, we expect the optimal e�ciency of O(N logN) complexity in achieving a530

�xed accuracy (with N = n2 for n × n images). Let tn denote the CPU times required by regis-531

tering two n × n images. Then for an optimal NMG, we expect the CPU increase to be of ratio532

tn/tn/2 = Cn2 log n2/(C(n/2)2 log(n/2)2) = 4 + 4 log 4/ log(n/2)2 ≈ 4.5. In Table 7, we show test533

results of all four NMG methods for varying resolutions, where inM1 we use the original analysis of [16]534
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to set the number of smoothing steps. Clearly M2, M3 and M4 exhibit nearly optimal complexity but535

M1 shows irregular patterns, which justify our re-analysis for Algorithm 1.536

Finally to give an indication of the convergence history of M1 and M2, we plot in Fig.12 the residuals537

for more NMG cycles. Evidently M2 has faster convergence plot than M1.538

Parameter robustness. In the di�usion model, the weighting parameter α indicates how strongly we539

wish to enforce smoothness on the deformation from the regularisation term. Speci�cally, a larger value540

of α will impose a strong penalisation on non-smooth deformations leading to no folding, however this541

also leads to a less accurate registration with regards to error. On the other hand, a smaller value of542

α will lead to a more accurate registration in terms of error, but will also increase the likelihood of543

folding occurring. Moreover, selecting a `good' value for α can be very time consuming as in general a544

pre-multigrid routine is usually required to �nd this `best' α (for example the cooling process in [16]),545

which can noticeably increase the computational work and CPU time. For this reason, having a model546

which is robust to the choice of weighting parameter is very useful as the need for �nding the `best' value547

for α is less important. Here we will compare how the value of α impacts the relative error (denoted548

`Err') and minimum determinant value (denoted `Qmin') for models M2 and M4. From Figure 13(a)549

we see that as α gets smaller the error also decreases, however looking at Figure 13(b) we see that the550

value of Qmin is also decreasing to a point where it is always negative as highlighted by the dotted551

line. This suggests that our model M2 has a limit where it maintains physically accurate non-folding552

deformations, and once past this point folding always occurs. Looking at Figure 14(a) we see that our553

M4 model follows a similar pattern with regard to a decreasing error as α decreases like with our M2554

model, however from Figure 14(b) we see that our M4 model always maintains the physical integrity of555

the deformation with Qmin > 0 for all tested values of α. From this we can conclude that our adaptive α556

model M4 is very robust to the initial value of α, even for small values, while maintaining a consistently557

good registration accuracy in terms of error.558

(a) Reference R of Example 1 (b) Reference R of Example 2 (c) Reference R of Example 3

(d) Template T of Example 1 (e) Template T of Example 2 (f) Template T of Example 3

Figure 3: Three Pairs of Test Images.

6 Conclusions559

In this paper we have �rst presented an improved NMGmethod, with regard to convergence and accuracy,560

over that proposed by Chumchob-Chen through a more detailed and accurate analysis of the multigrid561

method, as well as a di�erent coarsest grid solver. Secondly we proposed an extension to our NMG562

method with the aim of producing non-folding transformations, which was achieved by imposing an563

additional constraint into our improved NMG method. Next we extended our constrained INMG564

to be more robust to parameter choice while keeping non-folding deformations and good registration565
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accuracy. We then used three examples to demonstrate the improvement in accuracy and NMG cycles566

required for convergence over the Chumchob-Chen NMG, as well as how our constrained INMG and567

adaptive INMG overcame folding by ensuring det∇ϕ > 0.568

Image Size n2 α
M1 M2 M3

SSIM/Err (%)/NMG/CPU (s)/Qmin SSIM/Err (%)/NMG/CPU (s)/Qmin SSIM/Err (%)/NMG/CPU (s)/Qmin
1282

1
5

0.930/0.54/2/0.391/0.797 0.943/0.41/1/0.333/0.819 0.943/0.41/1/0.439/0.819
2562 0.943/0.45/5/1.512/0.715 0.951/0.42/2/1.927/0.803 0.951/0.42/2/2.051/0.803
5122 0.959/0.44/13/22.387/0.854 0.964/0.43/2/9.426/0.801 0.964/0.43/2/9.721/0.801
10242 0.972/0.44/25/196.585/0.872 0.975/0.43/3/66.178/0.822 0.975/0.43/3/69.500/0.822
1282

1
10

0.931/0.52/1/0.316/0.612 0.945/0.39/1/0.425/0.694 0.945/0.39/1/0.437/0.694
2562 0.945/0.43/25/6.887/0.464 0.953/0.40/1/1.090/0.660 0.953/0.40/1/1.164/0.660
5122 0.961/0.43/10/17.204/0.734 0.965/0.41/1/5.057/0.668 0.965/0.41/1/5.250/0.668
10242 0.974/0.43/23/180.785/0.745 0.976/0.42/1/22.972/0.685 0.976/0.42/1/24.182/0.685
1282

1
15

0.937/0.45/25/1.919/0.619 0.947/0.38/3/0.976/0.559 0.947/0.38/3/1.010/0.559
2562 0.948/0.40/25/6.820/0.230 0.954/0.39/1/1.080/0.511 0.954/0.39/1/1.146/0.511
5122 0.962/0.41/12/20.657/0.631 0.966/0.40/1/4.886/0.526 0.966/0.40/1/5.150/0.526
10242 0.975/0.41/18/141.395/0.644 0.977/0.40/1/24.642/0.554 0.977/0.40/1/25.546/0.554

Table 3: Example 2 � Registration comparison of 3 methods on multiple image sizes for di�erent α
values, with an initial relative error of 0.60% and initial SSIM values of 0.933, 0.942, 0.957, 0.972 for the
1282, 2562, 5122, 10242 images respectively.

Image Size n2 α
M1 M2 M3

SSIM/Err (%)/NMG/CPU (s)/Qmin SSIM/Err (%)/NMG/CPU (s)/Qmin SSIM/Err (%)/NMG/CPU (s)/Qmin
1282

1
5

0.750/1.28/4/0.530/0.642 0.764/1.17/2/0.586/0.664 0.764/1.17/2/0.603/0.664
2562 0.752/1.35/11/3.102/0.640 0.786/1.14/3/2.926/0.645 0.786/1.14/3/3.015/0.645
5122 0.806/1.32/25/42.794/0.618 0.832/1.18/4/18.561/0.683 0.832/1.18/4/19.188/0.683
10242 0.860/1.34/25/199.920/0.640 0.883/1.20/4/89.853/0.701 0.883/1.20/4/94.397/0.701
1282

1
10

0.766/1.04/3/0.456/0.406 0.783/0.95/2/0.636/0.070 0.783/0.95/2/0.715/0.070
2562 0.768/1.11/7/2.038/0.344 0.803/0.91/3/2.879/− 0.028 0.800/0.95/6/6.251/0.027
5122 0.819/1.07/20/34.047/0.280 0.847/0.95/3/14.244/0.091 0.847/0.95/3/14.784/0.091
10242 0.873/1.06/25/195.431/0.271 0.893/0.96/4/68.196/0.145 0.893/0.96/4/71.186/0.145
1282

1
15

0.774/0.89/3/0.488/0.080 0.791/0.81/3/0.920/− 0.687 0.757/1.18/8/3.424/0.015
2562 0.802/0.77/6/1.786/− 0.165 0.811/0.76/2/1.952/− 0.862 0.772/1.23/5/8.047/0.024
5122 0.826/0.91/15/25.598/− 0.122 0.854/0.79/3/13.750/− 0.680 0.827/1.18/6/40.789/0.012
10242 0.880/0.89/25/195.370/− 0.156 0.899/0.80/3/69.076/− 0.584 0.881/1.16/6/182.460/0.011

Table 4: Example 2 � Registration comparison of 3 methods on multiple image sizes for di�erent α
values, with an initial relative error of 1.99% and initial SSIM values of 0.667, 0.704, 0.769, 0.838 for the
1282, 2562, 5122, 10242 images respectively. Clearly although M2 does converge quickly, the M3 o�ers
both speed and correct transforms.

Image Size n2 α
M1 M2 M3

SSIM/Err (%)/NMG/CPU (s)/Qmin SSIM/Err (%)/NMG/CPU (s)/Qmin SSIM/Err (%)/NMG/CPU (s)/Qmin
1282

1
5

0.742/2.42/16/1.464/0.665 0.717/3.30/2/0.633/0.554 0.717/3.30/2/0.644/0.554
2562 0.743/2.61/25/7.017/0.701 0.725/3.24/2/1.959/0.517 0.725/3.24/2/2.093/0.517
5122 0.748/3.68/25/45.542/0.717 0.750/3.24/2/9.397/0.498 0.750/3.24/2/9.691/0.498
10242 0.747/6.85/25/195.731/0.648 0.784/3.24/2/45.445/0.486 0.784/3.24/2/47.728/0.486
1282

1
10

0.775/1.46/10/0.959/0.600 0.758/1.89/3/0.868/0.420 0.758/1.89/3/0.892/0.420
2562 0.776/1.46/25/6.787/0.639 0.760/1.87/2/1.984/0.376 0.760/1.87/2/2.118/0.376
5122 0.778/2.02/25/42.149/0.602 0.778/1.86/2/9.350/0.348 0.778/1.86/2/9.706/0.348
10242 0.780/3.63/25/195.403/0.532 0.807/1.87/2/45.620/0.332 0.807/1.87/2/48.026/0.332
1282

1
15

0.790/1.13/8/0.814/0.563 0.783/1.33/3/0.891/0.324 0.783/1.33/3/0.922/0.324
2562 0.791/1.10/22/5.992/0.561 0.781/1.31/3/2.907/0.266 0.781/1.31/3/3.086/0.266
5122 0.786/1.40/25/42.225/0.539 0.794/1.31/3/13.786/0.246 0.794/1.31/3/14.526/0.246
10242 0.789/2.36/25/194.026/0.390 0.819/1.31/3/66.949/0.235 0.819/1.31/3/69.405/0.235

Table 5: Example 3 � Registration comparison of 3 methods on multiple image sizes for di�erent α
values, with an initial relative error of 13.25% and initial SSIM values of 0.551, 0.587, 0.639, 0.693 for
the 1282, 2562, 5122, 10242 images respectively.

Image Size n2 α
M2 M3 M4

SSIM/Err (%)/NMG/CPU (s)/Qmin SSIM/Err (%)/NMG/CPU (s)/Qmin SSIM/Err (%)/NMG/CPU (s)/Qmin
1282

1
40

0.812/0.95/2/0.686/− 3.078 0.630/7.56/6/2.676/0.032 0.758/1.91/3/0.711/0.554
2562 0.816/0.74/2/2.458/− 0.463 0.630/9.59/3/5.076/0.060 0.815/0.82/2/2.178/0.168
5122 0.824/0.82/2/9.729/− 0.132 0.805/1.10/4/27.558/0.025 0.824/0.74/2/10.318/0.351
10242 0.832/0.78/2/45.762/− 0.163 0.812/1.64/4/121.546/0.086 0.842/0.73/2/58.604/0.358

Table 6: Example 3 - Registration comparison of 3 methods on multiple image sizes for a `bad' choice
of α, with an initial relative error of 13.25% and initial SSIM values of 0.551, 0.587, 0.639, 0.693 for the
1282, 2562, 5122, 10242 images respectively.
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(a) M1 Tu α = 1
10

Err = 0.43% (b) M2 Tu α = 1
10

Err = 0.41% (c) M3 Tu α = 1
10

Err = 0.41%

Figure 4: Example 1 � Registration of 3(a) R and 3(d) T of size 512 × 512 by 3 methods. Image (a)
shows the deformed template image Tu obtained using the M1, while image (b) shows the deformed
template image Tu for our M2 and image (c) shows the deformed template image Tu for our M3 for the
parameter value α = 1

10 .

(a) Original |T −R| (b) M1 |Tu −R| α = 1
10

(c) M2 |Tu −R| α = 1
10

(d) M3 |Tu −R| α = 1
10

Figure 5: Example 1 � Di�erence images corresponding to registrations of Fig.4. Image (a) shows the
initial error between T and R, while images (b), (c), (d) show the �nal errors between Tu and R for M1,
our M2 and our M3 respectively.

(a) M1 Tu α = 1
10

Err = 1.07% (b) M2 Tu α = 1
10

Err = 0.95% (c) M3 Tu α = 1
10

Err = 0.95%

Figure 6: Example 2 � Registration of 3(b) R and 3(e) T of size 512×512 by 3 methods. Image (a) shows
the deformed template image Tu obtained using the M1, while image (b) shows the deformed template
image Tu for our M2 and image (c) shows the deformed template image Tu for our constrained NMG
for the parameter value α = 1

10 .

22



(a) Original |T −R| (b) M1 |Tu −R| α = 1
10

(c) M2 |Tu −R| α = 1
10

(d) M3 |Tu −R| α = 1
10

Figure 7: Example 2 � Di�erence images corresponding to registrations of Fig.6. Image (a) shows the
initial error between T and R, while images (b), (c), (d) show the �nal errors between Tu and R for the
M1, our M2 and our M3 respectively.

(a) M1 Tu α = 1
10

Err = 2.02% (b) M2 Tu α = 1
10

Err = 1.86% (c) M3 Tu α = 1
10

Err = 1.86%

Figure 8: Example 3 � Registration of 3(c) R and 3(f) T of size 512 × 512 by 3 methods. Image (a)
shows the deformed template image Tu obtained using the M1, while image (b) shows the deformed
template image Tu for our M2 and image (c) shows the deformed template image Tu for our M3 for the
parameter value α = 1

10 .

(a) |T −R| (b) M1 |Tu −R| α = 1
10

(c) M2 |Tu −R| α = 1
10

(d) M3 |Tu −R| α = 1
10

Figure 9: Example 3 � Di�erence images corresponding to registrations of Fig.8. Image (a) shows the
initial error between T and R, while images (b), (c), (d) show the �nal errors between Tu and R for the
M1, our M2 and our M3 respectively.

23



(a) M2 Tu α = 1
40

Err = 0.82% (b) M3 Tu α = 1
40

Err = 1.10% (c) M4 Tu α = 1
40

Err = 0.74%

Figure 10: Example 3 � Registration of 3(c) R and 3(f) T of size 512 × 512 by 3 methods. Image (a)
shows the deformed template image Tu obtained using the M2, while image (b) shows the deformed
template image Tu for our M3 and image (c) shows the deformed template image Tu for our M4 for the
`bad' parameter value α = 1

40 .

(a) Original |T −R| (b) M2 |Tu −R| α = 1
40

(c) M3 |Tu −R| α = 1
40

(d) M4 |Tu −R| α = 1
40

Figure 11: Example 3 � Di�erence images corresponding to registrations of Fig.10. Image (a) shows the
initial error between T and R, while images (b), (c), (d) show the �nal errors between Tu and R for our
M2, M3 and M4 respectively.

Figure 12: Comparison of the number of NMG cycles required for the maximum relative residual to
reach a tolerance of 10−10 between our M2 method and the M1 method
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(a) Plot of relative error vs parameter α of model M2 for
Example 1
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(b) Plot of minimum determinant value vs parameter α of
model M2 for Example 1

Figure 13: Test of robustness of model M2 to the choice of parameter α (50 values).
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(a) Plot of relative error vs parameter α of model M4 for
Example 1
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(b) Plot of minimum determinant value vs parameter α of
model M4 for Example 1

Figure 14: Test of robustness of model M4 to the choice of parameter α (50 values).

Image Size n2 Image Example α
M1 M2 M3 M4

CPU (s) Ratio CPU (s) Ratio CPU (s) Ratio CPU (s) Ratio
1282

Example 1 (CT) 1
10

0.316 � 0.425 � 0.437 � 0.452 �
2562 6.887 21.794 1.090 2.565 1.164 2.666 1.304 2.885
5122 17.204 2.498 5.057 4.639 5.250 4.510 6.202 4.756
10242 180.785 10.508 22.972 4.543 24.182 4.606 29.072 4.688
1282

Example 2 (CT) 1
10

0.456 � 0.636 � 0.715 � 0.831 �
2562 2.038 4.469 2.879 4.527 6.251 8.743 3.874 4.662
5122 34.047 16.706 14.244 4.948 14.784 2.365 18.768 4.845
10242 195.431 5.740 68.196 4.788 71.186 4.815 87.203 4.646
1282

Example 3 (Hand) 1
10

0.959 � 0.868 � 0.892 � 0.845 �
2562 6.787 7.077 1.984 2.286 2.118 2.374 2.582 3.059
5122 42.149 6.210 9.350 4.713 9.706 4.089 12.340 4.779
10242 195.403 4.636 45.620 4.879 48.026 4.948 58.466 4.738

Table 7: Test on optimal complexity in CPU time ratio for 4 NMG methods. The optimal ratio is 4 for
an O(N) method (with N = n2). Clearly the newer NMGs are better.
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A Optimised version of Algorithm 3655

In our constrained NMG, we check to see whether the constraint in (4.4) has been satis�ed after the656

�nal post-smoothing step and solver step. While checking the constraint after the coarsest solver step is657

inexpensive computationally owing to the very small grid size, this is not the case when checking after the658

post-smoothing step. For each interior point Algorithm 3 needs to solve eight inverse problems which,659

27



even though we are only using 3 × 3 matrices, become very expensive on larger grids thus leading to a660

signi�cant increase in CPU time. We will now look to exploit the structure and commonality between661

di�erent interior points, of the matrices Al, to create an optimised version of Algorithm 3. First we will662

look at the relation of the matrices Al at the �rst interior point (2, 2) and a general interior point (i, j).663

Looking at the matrix A1, we see that664

At (2, 2) : A1 =




1 h h
1 2h h
1 h 2h


 , At (i, j) : Ã1 =




1 (i− 1)h (j − 1)h
1 ih (j − 1)h
1 (i− 1)h jh




since
(
(x1)2, (x2)2

)
= (h, h) and

(
(x1)i, (x2)j

)
=
(
(i − 1)h, (j − 1)h

)
, then Ã1 can be written in the665

following way666

Ã1 =




1 (x1)2 + (i− 1)h (x2)2 + (j − 1)h
1 (x1)3 + (i− 1)h (x2)2 + (j − 1)h
1 (x1)2 + (i− 1)h (x2)3 + (j − 1)h


 = A1 +




1
1
1


(0, (i− 1)h, (j − 1)h

)

= A1 + pqT (A.1)

with p = (1, 1, 1)T , q =
(
0, (i − 1)h, (j − 1)h

)T
. The matrices Ãl for the remaining triangles can be667

written in similar ways to (A.1), then we have668

Ãl = Al + pqT (A.2)

with p, q as before, and so the inverse Ã−1
l = (Al + pqT )−1, at a general discrete interior point, can be669

computed using the Sherman-Morrison formula [2] given by the following theorem670

Theorem A.1. (Sherman-Morrison) Suppose A ∈ Rn×n is an invertible matrix, and p, q ∈ Rn×1 are671

column vectors. Then
(
A+ pqT

)
is invertible ⇐⇒ 1 + qTA−1p 6= 0. If

(
A+ pqT

)
is invertible, then672

its inverse is given by673

(
A+ pqT

)−1
= A−1 − A−1pqTA−1

1 + qTA−1p
(A.3)

where pqT denotes the outer product of the vectors p, q.674

It can be shown that the multiplication qTA−1
l p = 0 ∀ l = 1, . . . , 4, therefore the invertibility condition675

from Theorem A.1 holds for every interior (i, j) for i, j = 2, . . . , n−1 and thus the matrices (Al+pq
T )−1

676

are invertible for each l = 1, . . . , 4. Then we can use Theorem A.1 to rewrite the inverses (Al + pqT )−1
677

as678

(
Al + pqT

)−1
= A−1

l −
A−1
l pq

TA−1
l

1 + qTA−1
l p

. (A.4)

Next we use the fact that we need only determine the bl um , cl um coe�cients where m = 1, 2, and so our679

original inverse problem (4.7) reduces to the following scalar equations680

bl u1 = ωu1 l(2)− µlωu1 l(2), cl u1 = ωu1 l(3)− µlωu1 l(3),

bl u2 = ωu2 l(2)− µlωu2 l(2), cl u2 = ωu2 l(3)− µlωu2 l(3), (A.5)

where µl =
(ωp l(2)q2+ωp l(3)q3)

1+(ωp l(2)q2+ωp l(3)q3) and ωp l(2), ωp l(3), q2, q3, ωum l(2), ωum l(3) denote the second and third681

components of ωp l = A−1
l p, q

T and ωum l = A−1
l vml respectively.682

Therefore the key message is that per checking step across the entire grid only simple matrix-vector683

products are needed, if we invert matrices A−1
l at the �rst pixel and then re-use them. Hence our684

optimised version of Algorithm 3 can be expressed by the following685
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Algorithm 8 Qmin = FEMOpt(uh, n, h)

1: for l = 1, . . . , 4 do

Compute matrices Al corresponding to �rst interior point (2, 2)
Compute inverse matrices A−1

l

Compute second and third components of A−1
l p→ ωp l(2), ωp l(3)

2: end for

3: for i = 2, . . . , n− 1 do

4: for j = 2, . . . , n− 1 do

Compute second and third components of qT → q2 = (i− 1)h, q3 = (j − 1)h
5: for l = 1, . . . , 4 do

Compute µl
Compute second and third components of ωu1 l, ωu2 l → ωu1 l(2), ωu1 l(3), ωu2 l(2), ωu2 l(3)
Determine coe�cients bl u1 , cl u1 , bl u2 , cl u2 using (A.5)
Compute determinant for triangle Tl → Q̃l = (1 + bl u1)(1 + cl u2)− cl u1bl u2

6: end for

Assign minimum Q̃ to be entry (Qij)→ (Qij) = min {Q̃1, . . . , Q̃4}
7: end for

8: end for

Take minimum entry in Q to be minimum determinant value → Qmin = min {Q}

Finally we show in Table 8 how much speed up can be achieved for a simple example. Clearly Algorithm686

8 uses up to 30 times less CPU than Algorithm 3.687

Image Size n Unoptimised Time (s) Optimised Time (s)
2562 4.46 0.17
5122 17.87 0.61
10242 71.53 2.40
20482 306.23 9.90

Table 8: Table showing the comparison of CPU times per iteration between old unoptimised FEM code
and new optimised FEM code.
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