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A More Robust Multigrid Algorithm for Diffusion Type
Registration Models

Tony Thompson* and Ke Chen*'

Abstract

Registration refers to the useful process of aligning two similar but dif .rent intensity image functions
in order to either track changes or combine information. Variation | model: are capable of finding
transform maps containing large and non-uniform deformations betwe n suct a pair of images. Since
finding a transform map is an inverse problem, as with all models, suitable regularisation is necessary
to overcome the non-uniqueness of the problem. In the case of diff* 5101 type models regularisation
terms impose smoothness on the transformation by minimising wue grs lient of the flow field. The
diffusion model also coincides with the basic model for optic.” flow frameworks of Horn-Schunck
(1981, AI). The biggest drawback with variational models is the larg » computational cost required to
solve the highly non-linear system of PDEs; Chumchob-Che. (2017, JCAM) developed a non-linear
multigrid (NMG) method to address this cost problem. he “ever, a closer look at the analysis of the
NMG scheme highlighted omissions which affected the canver- nce of the NMG scheme. Moreover,
the NMG method proposed by Chumchob-Chen did 1..* impose any control of non-physical folding
which invalidates a map. This paper has proposed several k. -ideas. First we re-evaluate the analysis
of the NMG method to show how the omissions i1 '10] .... . a noticeable impact on the convergence
of the NMG method. In addition, we also provide a w *, of estimating the convergence rate of a solver
on the coarsest grid in order to estimate the 1. . her «© iterations that will be required to obtain a
solution with appropriate accuracy. Secondly we , rop 3e an extension to the Chumchob-Chen NMG
method which controls any folding withir: .. Jefc. mation. Experimental results on the proposed
multigrid framework demonstrate improveme. "< in convergence and the accuracy of registrations
compared with previous methods.

Keywords. Variational model, Image re jistrati n, Fast Multigrid, Mesh folding control

1 Introduction

Image registration is the proc .ss ¢ aligning pairs, or sequences, of similar images. This alignment is
achieved by fixing one image -alled tie reference image, and then applying geometric transformations
on the remaining images, c .led the template images, such that the template images become similar to
the reference image. This . -} nique is a very powerful tool in many real world applications spanning
diverse areas such as cc aputer . naging, weather satellite imaging [19] and especially medical imaging
which is of interest to us [¢,12-14,23,24]. However, image registration is also one of the most difficult
tasks of image processing -ith nany challenges to be overcome. Generally image registration models can
be classified into t o main categories; parametric and non-parametric models. In parametric models,
the transformatior s are gibal and can be described by matching a finite number of features in the
images, leading to sc ~alle . landmark based registration [31,33], or the transformations are governed by
a small numbe . of parameters such as in the case of affine image registration [3,15] (with 6 parameters
in 2D and 12 | aramet: rs in 3D). However, the focus of this paper will be on the latter category, namely
non-parametric . ~7.s.

Denote resy. °cti sery a reference and a template image (both given as grey-scale images) R, T €  C R,
The aim of in. ‘ge registration is to transform this 7" to R such that they become similar to one another,

*Centre for Mathematical Imaging Techniques and Department of Mathematical Sciences, University of Liverpool,
United Kingdom. Emails: [anthony.thompson, k.chen|@liv.ac.uk

TCorresponding author. Web: http://www.liv.ac.uk/~cmchenke. The second author’s work is supported by the UK
EPSRC grant EP/N014499/1.



39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

or in other words we look to find the transformation ¢(x) : R? — R such that
Tow(x) =T (p(x)) ~ R(x) for © = (z1,...,24)" € Q C R (1.1)

In variational image registration the transformation () is equivalent to finding ne displacement of
every pixel @ in T to their corresponding pixel in R, and so we can define ¢(x) by the "~lowing

¢ = p@) = @+ u(z) (1.2)

where u = u(x) = (uy(x), . .., ug(x))” denotes the displacement field. Then v..~ bro..»m of determining
¢ is the same as finding u. From this point onward we shall consider onl- "he 2. case, that is d = 2,
however all ideas presented in this paper are readily extendible to the 37s ca: " = 3. Furthermore we
will also assume that the image domain €2 given by the unit square, that .. © = [0,1]?> C R?. In order to
determine w, the variational minimisation problem will take the follov ...g for1n.

min E(u)=2(R,T,u) + aZ(u) (1.3)
where in the energy functional Z(R,T,w) is a distance measw 3, ¢ (u) is the regularisation term and
o € RT is a weighting parameter. Note that inclusion of the re~ularisati- n term is a necessity as without
it the minimisation would be ill-posed in the sense of Hadamard. ™or the purpose of this paper we shall
consider only mono-modal images, that is images taken usi: ~ the sai 1e imaging modality (e.g. CT), this
means that image intensities are comparable. In the mc. o-mc '»! case, the typical choice of similarity
measure is the sum of squared distances (SSD) measure given. “w

.@(R,T,u):%/Q<T(m+U) R(:c))2dQ. (1.4)

Here SSD is only one of many choices of similar’ ~ mec ure [34]. Moreover, the choice of regularisation
term is less straightforward as there is a large sele “ti» to choose from [1,6,17,18,20-22,34-36] and no
one is yet the best. In this paper we will or'v con.‘der one regularisation term, namely the diffusion
regulariser and focus on optimal solution. As . * numerical implementation, the common approach is
to use an optimise-discretise approach, and indeed chis is the approach we will adopt throughout this

paper.

Solutions of variational models can be ~mput tionally intensive, but such non-parametric models are
worth the effort as they can producr very a. > .rate results and are able to deal with local deformations
effectively; the high computational expr ase ‘s due to the need of determining the displacement of every
pixel in the image. Multigrid te~hn.._'es -5 known fast solvers have been used in previous works [20,
21, 25,2729, 32, 37,40] to grea ‘v reduce the computational cost and produce more accurate results,
however few of these directly dea: ~ith the non-linearity resulting from the similarity measure (1.4).
The reason for this is that. = “ile muttigrid techniques and theories have been established for linear
equations for a long time, ichic ving optimal convergence in a non-linear multigrid framework is never
automatic and still poses a g. > .t challenge. However, the work done by Chumchob-Chen [16] introduced
a robust multigrid fram work for liffusion type variational models that treats the non-linearity directly.
We propose to improvr the conv rgence problems of the NMG method from [16] through a more in-depth
and accurate analysis of v. ~ r altigrid framework as well as using an alternate coarsest solver to obtain
a more efficient so'ation, *hus resulting in a better method. Next we address how to overcome mesh
folding by incorpor wing ar additional constraint into the diffusion model presented in [16], this idea can
be thought of as = su. ~'*“.cation of the hyper-elastic model introduced in the work by Burger et al. [11].
The addition c¢ . this ¢ nstraint imposes that the transformation produced is regular and diffeomorphic i.e.
there is no folc ing. Tt : production of diffeomorphic transformations lead to more physically meaningful
results, which is p. ‘icularly useful in medical imaging. In this paper, we consider one specific (yet widely
used) moa. ', u ... 'y the diffusion model to focus on our main aims: (i) improving the convergence of
the NMG me ".od from [16] ; (ii) development of a fast NMG method for a refined diffusion model which
controls folding

There are, however, many other choices for the regularisation term [1,6,17,18,20-22,34-36], each offering
a different model and with their own distinct benefits and drawbacks. In particular, we mention

2
Total Variation (TV) [20,21,35,36]: #""(u) = > / |Vus| d where | - | denotes the Euclidean
s=17%
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2
K 2 A 2
1 E (Op ug + Op,us)” + ) (V-u)” dQ where p, A

s,t=1

Linear Elastic (LE) [1] [6] [22] [34]: Z"F (u

:o\

are Lamé constants;
2
Mean Curvature (MC) [17,18]: %’Mc / Z V- o Vus dC  -here 3 18 some small
V. +
positive quantity.

While each such models might be solved by a NMG framework, achieving ¢ ytin =" ~fficiency would require
further work and development.

The remainder of this paper will be set out as followed. In §2 we wul introduce the formulation of
the registration model focusing specifically on the diffusion model. Jext in 3 we will discuss the non-
linear multigrid (NMG) framework applied to the diffusion model, .'"ne with a detailed analysis to
highlight how we can improve the convergence of the Chumchob-"_hen MG method. Then in §4 we will
formulate our non-folding constraint model, and also present an ~r’.mis tion for the implementation of
the constraint. §5 will comprise of tests and comparisons wit. our p=~ josed work, and finally in §6 we
will present our conclusions.

2 Review of the registration model »»-" its algorithm of [16]

The model. The diffusion regulariser is a popular ¢ *oicc  ~ong variational models [7-10,30], it imposes
a simple smoothness constraint upon the displacemen “.eld and is given by the following

Py -1y Y Vu,|* do . (2.1)

<
Jus 1

In fact, the diffusion model is one of th~ few models that coincides with models from optical flow
frameworks (see [8,9,30] as examples), * hich 1s varticularly useful when registering sequences of images.
The diffusion model is given by the foli. “ing 1 .nimisation problem

2
min EPHE () = 9(R, 7 ) 4 P () = / (Tu— B)’ +a 3 |Vu, 29 (2.2)
Q

u 2
s=1

where T,, = T(x + u) and R = R(. The corresponding Euler-Lagrange (EL) equations are derived
from the following limits

lim EPW () 4 e11.u5) - BDWE (4 0y) — 0, lim EPH (4 up + eagpa) — EPH(uy,up) 0 (23)
e1—0 €1 e2—0 &9
which eventually result i, “he .ollowing integrals
L e, T (T — R) - o] A+ o [ 6, (Vuy ) dS =0 (2.4)

$o o0

and thus, afte the us. of the fundamental lemma of calculus of variations, yield the EL equations
—aAUy, + Fp(u) =0 (2.5)
with Neumat. boundary conditions Vu,, - n = 0 where n denotes the outward unit normal and
Fp(u)=0,,, Ty (Tw — R) (2.6)

denote the force terms, for m =1, 2.
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2.1 Optimise-discretise approach for diffusion model

We consider a numerical approximation to the EL equations (2.5) by discretising the image domain Q
into a uniform n x n mesh with interval width h, using a finite difference (FD) meth .d. The size of the
mesh is chosen to be equal to the dimension of the image (e.g. 512 x 512 to coinci- .« with resolution of
given images) and in general need not be square, however in this paper we consider sq. “re images as
this is common for medical image slices. Using the following central FD approx’ ua ‘ons

1 1 -
(Ou,Tu); 5 = h ((Tu)m,j - (Tu)i—m) » (OusTu); ;= % ((Tu)i,ﬁ - %‘—1)
1 (
(Aum),; ; = 72 ((Um)i,jq + (Um)i-1,j — Hm)ij + (Um)iv1j Lm)i,j+1) (2.7)

at a general discrete point (4, j), leads to the following discrete versi ns of tL. » EL equations (2.5)
-« (Aum)m’ + (Fm(u))iJ‘ & (2.8)

with

form=1,2and i, j=2,...,n— 1.

2.2 The collective pointwise smoothe=

The term smoother, which stems from multigric *heor - is nothing but an iterative solver. In [16] the
lexicographic Gauss-Seidel (GS-LEX) method was <1.~loyed to solve the linear part of the system (2.8)
through an inner iteration loop, and a fixed r~int, it ~ation scheme to solve the non-linear part through
an outer iteration loop. In a lexicographical oru. ~ing system, a general discrete point (i, j) as in (2.9) is
linked to the global index k = (j — 2)(n — 1) + (i — 1), with n the size of the discrete image dimensions;
then for m = 1,2, we get

—a Aty g+ (F(), =0 (2.10)

as illustrated in Figure 1. Now t . sol e t} 2 non-linear part of this system, we employ the following
semi-implicit fixed point iteratior scu. ve

= (A (B ()Y =0 (2.11)
where

E@)Y = (007 @+ e+ ) (T +ul™ 2 +uf)), - (Rlar,x2),)

(Fy(u))Y = '3u2Tf”~71 g+ ug>))k ((T(x +ull g+ u(l+1)))k - (R(xth))k) . (212

\
The key questi-.. addiessed in [16] was how to treat the non-linear terms (T'(z1 + ugH' )

(T + 0 +ug ™

To + u(l))) 1
))k in a GS-LEX scheme. It proposed to use the first order approximations:

a

VRV u(1l+1) 9 +u(l)))k R~ (T(xl + ug),xg + u(l)))
+ ((ul)(l+1) )

( T(x +U1),$2 +“(l)))k
(T(xl + ugl),xg + ugﬂ)))k ~ (T(xl + “1 ,;vg + u2 )

k

141 ! !
—|—(( )(+) ()) Ou, T (71 —|—u1),x2—|—u()))k
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which are substituted back into the discrete force terms (2.10) leading to the following discrete system
—a (Bun){ ™+ @, T (@D + ()™ = @) @u, T = (R)) =0 (213)

with (Tu),(f) = (T(x+ u(l)))k etc. for m = 1,2. Using the FD approximations (2.7, w can write (2.13)
in the following way

@ ! ! 0 4o .
7 ()i + w))) + (((aumTuf)k 4 hz) (1) Y

— 5 ()P + wa)3Y) = ((%mTu)Q):) ()~ @0, L) (T~ (R)) (214)

for m = 1,2. Then to compute the (I 4+ 1) updates in (2.14), we use a GS-L. X based method.

S S tanls sl
A A N
et [:G“_-_ 3)(n-2)+1 e T P -[?
! (n-3)(n-2) (n-3)(n-2) ](. 2) ]
[ R—— c——
' '
: . :
g ?“--_ k, 0 k() N kn_'j'_'[?
- | ik
! !
I l I
2 [?--_-_ it [ ?3 [ |n'5_-_-[¥
! ! ! ' ! ! !
'—-—-—-i:(!;- ----- _‘<J ----- é}-—-—--g-_r-—-—'

Figure 1: Tlustration of how the domain Q is discretised by n x n grid points. The dashed blue line
represents the boundary 0f2 of the discre e don. in, with the boxed points representing the used boundary
points, and the black lines show the (n 2) x (r —2) grid corresponding to the blue interior points. The
indexing on the interior points show 10w ti.. < .obal index k is ordered lexicographically.

However, such an iterative methr d is no. - fective as a standalone solver since solving the discrete system
of PDEs (2.10) pixel-wise can .e.' to a very high computational cost, especially for big images. This
fact is well-known for simpler PDEs su_h as the Poisson equation (corresponding to F,, = 0 and h — 0).
One natural way of reducir ;5 th ' cost of calculating the displacement field is a NMG method in which
this (slow) iterative metho. is ised as a smoother.

There has already been .lot of work regarding the implementation of NMG methods [21,25,27,28,32] for
related models, each k ~in | its ,wn unigrid iterative solver, however most of these works do not address
the non-linearity in the si..'» 1ty measure directly, instead linear diagonal terms or augmented systems
are used. Chumchc o-Che: [16] proposed a robust solver which does directly deal with this non-linearity
arising from the S3D tern , however an inaccurate analysis of the NMG method lead to a less than
optimal converg~—ce ... . 1or the NMG method which we will demonstrate in the next section.

2.3 The N..” method

There are twe * neoretical principles driving multigrid methods for linear PDEs. The first is that, although
standard iterat. e methods such as the Jacobi and GS methods have poor convergence rates when used
independently, they are effective at smoothing out any high frequency error components within a small
number of iterations. This property leads to the second key principle of multigrid methods, namely low
frequency error components can be well approximated on a coarser grid. Naturally an approximate and
accurate solution on a coarser grid can then be interpolated back to the fine grid to approximate the
original problem; this two-grid approach is significantly cheaper than working solely on the fine grid.
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In fact this strategy allows us to obtain a more accurate approximation efficiently as we can perform a
larger number of iterations on the coarser grid in less time when compared with iterating the fine grid
alone. This fine-coarse-fine strategy, known as the two-grid V-cycle (see [5] for details), can however be
repeated on the coarse grid to interact with even coarser grids until some coarsest gr'd with few points.

While multigrid frameworks are known, and indeed very easy to implement for I’ 1ea. ~ases, problems
like (2.5) which are highly non-linear prove significantly more difficult to devel~» a converging NMG
method. Now we present the FAS-NMG algorithm of [16] for (2.10) before we higl light the omissions
in the analysis which resulted in an overestimated smoothing rate (thus leading “~ a less optimal NMG
method with slower convergence rate), and include our more accurate analysis ~ ove. ome this problem.
Here FAS stands for “full approximation scheme” by A. Brandt for solving a - =-linc ~ operator equation.
First consider a two grid setting where Q" denotes a fine grid and Q7 a coa se g i« “ith h = ﬁ, H = 2h.

Also denote the system (2.10) by the operator notation on Q"

N (uhy = gh (2.15)
with
(Nlh)k (u}ll)k /iv? k
Nh = ,ul = , G ‘ . (2.16)
(N2h)k: (ué)k \\Jél)k

and where (N7)y, = (Fi(u")), —a (AMf), , (N3 = (T2(u?)), —a (AMg),, (91 = (95)k = O,
k=1,2,...,(n—2)2 The main steps of the FAS-NMG a. as 1. ows.

Smoothing step. Apply the iterative method (2.14) _ _.l10 .. starting from some initial guess. This
is the pre-smoothing step required to obtain a smooth app. ~ximation u" = (a?,u4)” which has residual

rl = gh — N (ah).

To improve this smooth approximation, it remains to ompute the algebraic error (or the residual cor-

rection) e" = (e}, e5)T = u" — w" which cannot . = ~mjy uted directly on Q".
Restriction. Since only smooth errors can = . —=ll ~pproximated on a coarser grid, we first solve the
FAS coarse grid residual equation

Ny = NH =0 ey = pH 4 NH (g = g1 (2.17)

where uf = RhHﬁh, efl = RhHeh, rfi Rfrh nd RhH is the restriction operator, which we take to be
the full-weighted restriction operator, definc ' Ly the following stencil

H

L2
,,7/1[:176 2 4 2 (2.18)
12 1],

Coarse grid solution. Fo' a t ro-grid method (or in a multigrid setting where Q is the coarsest level
and computations are inex, "ns.ve), the above coarse grid equation must be solved accurately to obtain
solutions u*. Based on  his w ~ ~nd its initial guess @, we obtain the residual correction

el =uf —a', (2.19)

Interpolation. N)w we -ish to use (2.19) to correct the approximations on the finer grid Q"; we do
this by interpolatir. ~ the cr rrections using bilinear interpolation. That is we compute

o2
eh=1hef, Th="12 4 2| . (2.20)
4
12 1|,

Once the cure :tions have been interpolated to the next fine grid level, we use them to update the
current grid lc el approximations via u” = u” + e”. After the approximations have been corrected, we
use a post-smoothing step to remove any interpolation errors. This process of interpolation, correction
and smoothing is repeated until the approximations on the original grid level have been corrected and

smoothed, thus resulting in our final solutions u".
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Remark 2.1. According to the work done in [26], there are three conditions which need to be satisfied
regarding the orders of the restriction and interpolation methods for a convergent NMG. For an order M
PDE, we require

(i) mrp+m;>M; (i) m; > M and mg >0; (i) mgp > M andm,; >0
where mp, my denote the high frequency orders of the restriction and interpolation .“emes respectively.
In our case we have mgr = 2, my = 2, for the full-weighted restriction and bilinear interpo.. *ion operators
respectively, and so all three conditions are satisfied.

Below the FAS-NMG algorithm has been summarised

Algorithm 1 uglkﬂ) — FASNMG(Rh,Th,n,h,level,uék),gh,a,ul,z/g)

1: Pre-smoothing step by performing v steps (relaxation sweeps) ﬁ;lk) ~ 9 /woth(Rh,Th,ugc)7 Gh, a,v)
: Coarse-grid correction
Compute the residual r'* = G" — N (u{")
Restrict residual and smooth approximations rgf) = RhHr,(lm, ﬂ(}?’ =REa /")
Set level — level — 1, H = 2h, nc = %
Form RHS of coarse grid PDEs G7 = »" 4 N ¥ (ﬂg))
Solve residual equation on coarse grid to obtain approximatio... o
3: if level = 1 then
Solve to obtain solutions ug@) to high accuracy using a coarsest  vid solver.
4: else level > 1 Repeat the FAS-NMG procedure recursively "2 the n xt level i.e.
a¥) « FASNMG(R",T" ne, H, level — 1, @\, G", . w1, 0.
5: end if
Compute the correction eg_];) = u(;) - aﬁ?

N

(k)
H

Interpolate the correction to next fine grid level e;k) = fr’}reg?

Update current grid level approximations using ~o... "1 ﬁ;lk) = ’;k) + e;f)
6: Post-smoothing step by performing v, steps (relaxatio. sweeps) uglkﬂ) — Smooth(Rh,Th,ﬂzk), G" a, )
(k+1) . g
Computes u,, by performing v» relaxatio.. . eep. of a smoother.

In [16], the coarsest solver that was adopted was a. additive operator splitting (AOS) method. For the
diffusion model, it takes the following for .. R %Zizl [I— QTaLmS]fl(uyi—H) + Tgm — TFm(u))
where I denotes the identity operator, - > 0 t. = time-step, ¢,, the RHS coming from the NMG frame-
work, F,(u) the force terms given in (2..) for -2 = 1,2 and L, = 0, ,. denote the parts of the discrete
Laplace operator in the x4 directior s for s = L, 2 respectively. The above equations are updated along
the z1, xo directions separately, tl ‘s le .din | to the system

. 1
[f = “TaLxIJuy(:;f) = ugf) + Tgm — T (u),

1 (2.21)
k4L
[’ — 2704%2]%(,1;;) = u%c,) + 7gm — TFn(u)
with the updates ug,]fﬂ) = 5 \ gf-;f) + u,&fi?) for m =1, 2.

Remark 2.2. In [16], .he | -elli~ticity for the proposed smoother was computed in order to check whether
the smoother was suitav. for .se in the NMG method. From the resulting calculation, the h-ellipticity
was found to have ¢ vulue of |z, and it was concluded that the smoother was suitable for use in the NMG
method. By perfor ning th. same calculation for our proposed smoother in §2.2, which is similar to the
one used in [16], we 2lso otained a value of 1—16 and thus reached the same conclusion.

3 An imp-~.ed analysis of the NMG algorithm of [16]

As mentionea, the above Algorithm 1 as implemented by Chumchob-Chen [16] could still be slow to
converge to a solution from new experiments. We found that a major part of this convergence problem
was a result of an inaccurate analysis of the smoothing rate, which lead to an overestimation of the rate.
By re-evaluating the analysis of the NMG method, as well as building in some new components, lead to
our NMG algorithm with a vastly improved convergence rate.
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In this section we will outline our more detailed and accurate analysis of the NMG framework. We do
this by analysing two key components of the NMG algorithm (namely the smoothing rate of the smoother
and the coarsest grid solver), which leads to an optimal NMG method.

3.1 Smoother analysis using Local Fourier Analysis (LFA)

We begin our analysis of the NMG method by showing an improved, and m- ce a curate, LFA of the
smoother scheme that was described in [16]. A discrete error (e.g. residual) func 'on on a grid can be
written as a sum of two terms:

e high frequency error components (are not visible if the problem is r sstri .. to a coarser grid);
e low frequency error components (that can be accurately represented « a coarser grid).

The sole purpose of the smoother, within a MG framework, is tc remov. any high frequency error
components. Local Fourier Analysis (LFA) is used to measure how el.~ctive ; given smoother scheme is.

Although LFA was originally designed to analyse discrete linear oper~’ ~r equations, it was extended by
A. Brandt (see [38]) to study non-linear operators via a ’freezir. =’ .r loc alised coefficients. To start we
first assume that we are working on an infinite grid, this the. allov -~ us to remove any influence from
the boundary conditions. Next we assume that the discrete form o. 2 non-linear operator, with variable
coeflicients, can be replaced locally by an operator with cons. ‘nt coe ficients and extended to the infinite
grid. We need to ensure all high frequency error componewn. - are .cmoved prior to restriction to a coarse
grid. As a result it is imperative that we know how effective n.  relaxation scheme is at smoothing out
the errors so we can adjust the number of sweeps requir. ? for the pre- and post-smoothing steps. Using
LFA we obtain a value p which is defined to be the emoothi.. 3 factor for a given relaxation scheme.

LFA for pointwise smoother from [16]. While t. e smoother we described in §2.2 is similar to the
one used in [16], we found that the smoother anc. , “is in "16] contained an omission which lead to a very
over-optimistic smoothing rate (practically to a s.»w _onvergence if using it as a guide). In [16], the

discrete system (2.10) was written in the foll .z w. v
h, h h h, h h
NJru’new +NO ’U’Zew +N7uold = g (31)
where u”,,,, u", denote the current a- d previc 1s approximations of u” respectively, and

h *O[f_ﬁ O \ h *Oéfoh + O'{Ll 0?2
Ny = ( 0 —c L N = aly —a Ll + ob,

n_ [(—aZl 0 n_ (v —F
M= ( . —Oé-i””) S <g§ - F} (3:2)

with o), = 0., T0u, T}, g;, ' mote the RHS coming from the NMG scheme, F are the discrete force

Up - uTUg " u?

terms as given in (2.9) .nd ~vhere L, LI, £" define the following stencils

1l”\00 1OOO 1010

h h _ h _

.i”_r—ﬁ 1 00 ,.fo—ﬁ 0 -4 0 "f—_ﬁ 0 0 1 (3.3)
‘\O 1 0 0 0 0 0 0 O

for p, g, m = ", 2. T"e smoothing rate in [16] was then calculated on a 32 x 32 grid after a total of 5

outer and 5 i1 ner iter ition loops had been performed, thus resulting in an average smoothing rate of

ftavg ~ 0.5 when .. ug o = {5. However, in the analysis of [16] we notice that the (um),(f) terms, which

result from *he .._ risation of the SSD term, where not included in the smoothing rate calculation. This

omission meew ¢ that the obtained rate of 0.5 was a vast overestimation of the actual smoothing rate,
and as a result shis lead to an underestimation of the number of pre-smoothing steps required before
restriction. This means that when we restrict the problem to a coarser grid, there are still high frequency
error components on the fine grid which have not been removed, and so the coarse grid correction that
we obtain is much less accurate thus leading to more NMG cycles being required to reach an accurate
solution. This omission, as we will now show, has a noticeable effect on the smoothing rate.
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Revised LFA for pointwise smoother from §2.2. Here we will repeat the analysis of the smoothing
rate, with the (um),(cl) terms included, in order to illustrate the impact the addition of these terms have
on the smoothing rate. We begin by writing the discrete equations (2.10) in the following form

Nyl 4 Miuh = gh (3.4)

where G" is as in (3.2), and

h —OéAh—f—O'{ll 0 h —O'{Ll 0 A
N = ( 0 —aA" + o,  ME = 0  —o ) (3.5)

using the following representation of the discrete Laplace operator A" = Ly “h with iﬂh, Lh, L
as defined in (3.3), then we can express (3.4) in the following way

NPl + Noule,, + NVulyy + Muly = G" (3.6)
and subtracting (3.6) from (3.4) yields the local error equation gi- .1 by
[VE + Nglenew = —[NE+ M gy (3.7)
where V7', Nf', N"* are as defined in (3.2) and

h

h h T h h h \T
€rew = (61 new762new) y €old = (O‘ old> €2 old) . (38)

Using Fourier components, we can rewrite (3.7) in the t¢'~wing way

[N (6) + A (8)] 5 exp (”Tﬂ N m> _

n

— .7 8) + M"(8)] g exp (Lanl” + Lajj ’7) (3.9)

where ¢ = /=1, 0 € ® = [—m,7)? and 1} are Fo.-ier coefficients. From here we determine the local
smoothing rate py,. using the following

Hmax = MaX Ujoc, .= Mloc(e) = sup {p(srh(e)) |0 € ehigh} (310)
loc

where @pg, = O\ [-Z, %)2 , p(+) @ mote. *F - spectral radius, and the amplification matrix S"(6) is
given by

SO, = —|~T8) + NI ()] T [N(0) + M (0)] (3.11)
with
~h B _% (6_7:0‘-1-’ —in) 0 o B 4%+0'h 0
wtio) = (T (i) SO = (F D),

N (0) = <‘f512(6~ W ) 0 >,Mh(e) (‘”?1 0 > (3.12)

n (e g i) 0 —ob,

where w,, = 29”—” fo. m = 1,2. Implementing the revised local smoothing rate formulae, under the same
conditions tha’ were 1 sed in [16], we obtained an average and maximum smoothing rate of /4,4 =~ 0.69854
and fimar &~ ( 74762 1 3spectively. By the smoothing rate of 0.5 in [16] within each outer iteration, 5
inner iterations . ~'. result in reduction of the error by 0.0313 which appeared satisfactory. However
5 inner ite. . rould reduce only by 0.17 and 0.23 respectively using our new smoothing rates pgyg
and fmaz- Lo 7 cder to reduce to the level of error claimed in [16], we estimate that we would require up
to 12 inner ite. ‘tions. So we see that the original analysis in [16] resulted in the estimated number of
pre-smoothing steps being roughly half of the number of steps that would actually be required to reduce
the error to quoted level.
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3.2 Convergence analysis of two coarsest grid solvers by LFA

Next we give a simple solution to the challenging problem of getting the convergence rate of a non-linear
iterative method. Here we remark that this analysis was not performed in [16]. Cec .sequently, we can
compare methods and guide the number of iterations to be prescribed on the coars .. © grid. Recall that
the AOS solver (2.21) was used by Chumchob-Chen [16]. Here we shall propose to use a 1.. ~d point type
solver on the coarsest grid instead.

Our coarsest grid solver. From §2.2 we have the following lexicographically .~ ered discrete system
of linear equations

« 1 1 @) 4oy 1
— 5 (@) + (wn)10) + (((aumTuf)k + H) (1))

a O] '
5 ()P + @n)()) = (00, T)?) | ) = @0, " (1) = (R),) (313)

for m = 1,2. In matrix 2notation, we can express these equations a. matr;x equations A, U, = fim,
where w,, f, € R*=27%1 are column vectors and A,, € RC =)"*("=4 are the block tridiagonal
system matrices with the following structure

A, L (“m)_kz<2> (fm)'mz)
[ : :
A, = 1 Uy = (um)k““.\  fm = (fm)ki(j) (3.14)
R . Il - .
L A ) ’
b (Um), s 2 (fn) ke _a(n—2)

where Amj, I} € R=2)%(n=2) 416 matrices with stru e
(@m)ia() — 772

_a . '
A, = 2 ' _ I = —— (3.15)
e 1
5 (@m)k,_1()

with (am )k, ) = ((a“””Tuf)k‘(j) + 4 nd waere k;i(j) = (j — 2)(n — 1) + (i — 1) denotes a general

lexicographically ordered discrete p sint ,7), as shown in Figure 1. Also
(frm)aiy = ((%/ﬁ)zjk_(]) (Wm) ks () — Oum Tk () ((Tu)ki(j) - (R)ki(j)> (3.16)

form=1,2and 4, j =2,...,n— 1. ."en our proposed algorithm is as shown in Algorithm 2

In order to demonstrate th . im' rovement in convergence rate of our proposed coarsest grid solver over
the AOS scheme used in |27' we first need a way to measure the convergence rate. To do this we
shall employ LFA to est mate the convergence rates of both of our proposed solver and the AOS solver.
The purpose is to dis rim’aate these two estimations. Unfortunately due to the non-linearity of the
problem we are unable to ~bt .un a sharp measure of the convergence rate, and so using LFA to obtain
an approximation i, the b-st option. It should be remarked that LFA used for this convergence analysis
is only viable on a coarse rid (e.g. 8 x 8 mesh) as the rate is not sharp especially on a fine grid (e.g.
128 x 128 mesh)

Analysis of he pr.posed coarsest grid solver. To estimate the convergence rate P of a given
solver, we follc = a si-ailar method to that in the smoother analysis shown in §3.1. That is we must
evaluate t! - ~mplincation matrix S (6) at every discrete interior point (4, j) for 4, j = 2,...,n — 1 and
where n dei Hte ;s the size of the image dimensions. However, where we restricted 6 to only consider the
high frequency range @4, in the smoother analysis, now we consider 8 over the entire Fourier domain
©. Since our proposed direct solver is based upon the pointwise smoother shown in §2.2, the derivation
of the amplification matrix SH (0) is very similar to that shown in §3.1. Then, the convergence rate for
our proposed direct solver can be estimated locally by the following

PD max — I{IOaCX,PD locy PD loc = PD loc(0> = sup {p(S’H(B)) |0 € @} (317)

10



s0s  where © € [—7,7)2, p(-) denotes the spectral radius and S¥ () is the amplification matrix as given by
ST(0) = —[NT(0) + NJ () + N7 (0)] " M7 ()

s with N (0), NJ'(8), N (0), M (0) as in (3.12) and H = 2h.

Algorithm 2 U%H) + DirectSolve(R" , TH ug_];), G o, IMAX,Tol)
1: Initialise u(}) = ug)
Construct discrete Laplacian parts of sparse matrices A,
2: forli=1,--- ,IMAX do

Deform template image using ug) —TH

Compute FD approximations for derivatives of T — 0, T, 0u, T
Compute RHS f,, (matrices) and then convert to column vectors f.
Add remaining diagonal parts to A,

Compute ugrlf}}) — ui,l,ﬁ) = A fm

(I+1)
m H

Reshape ugff}) to matrices u

3: if Huil;;l) - ui%”i < Tol and Hug;}l) - uél}{Hz < Tol then
Exit for loop

4: end if

5: end for

soz  Analysis of the block formulation of our proposea ~arsest grid solver. Previously in order
ss  to estimate the convergence rate for the pointwise case -~ -~ 4ld have a single equation of the form
s00  shown in (3.9) for each discrete interior point from whic.. ve would determine the amplification matrix,
;10 now however we construct the amplification matrix “~m a siu.gle system of equations with the following
31 structure

BUy . Cug (3.18)

22 where B, C € R2=2°x2(n=2)% apd ¥y € o= ™ < are block matrices and block column vectors

313 respectively with structure
_(B1 ) _(C1 D « _ (Yo
B_(D Qo)’(“_<D CQ>,\IIQ_(; (3.19)

ne with By, Cp,, D € ROD7X(=2% 419 g = R("=2)*X1 given by

Bm2 Jl (¢9)1
. . /sz D, :
J B - * *
B, = ? . . ‘,C: , D= Yy = (¥3), (3.20)
- J BJ / \ Cmn—l Dn—l
S~ (65) (n—2y2
sis and where By, Cyyj, 775, T € R(=2)x(n=2) zre given by
(Om)yr — 70 i
o : (em)i,3)
—a5e 1 .
ij = A . . . ; Cm, = 5
" — et (Cm)kn,1(')
— a2 e w1 (bm)kn,l(]‘) J
(Dr) — et — peiwn
D= _ LI = Ty = (3.21)
\ COPNe — et — G i

: 2 2
316 with (bm)k7(]) = ((8umTu) )ki(j)—i_%, (Cm)ki(j) = ((aumTu) >ki(j), (d)k,(]) = (au1Tu)ki(j) (auzTu)ki(j)a

a7 Wy = 22T and k;(j) = (j—2)(n—1)+(i—1) form = 1,2 and 4, j = 2,...,n— 1. Then the convergence
s1s  rate Pp for the block formulation of our direct solver is estimated from the following

Pr = Pp(0) = sup {p(SH(e)) 6 c @} (3.22)

11
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with amplification matrix $7 (@) = B~'C. On this coarsest grid, n is small so estimating Pp is feasible.

Convergence analysis for AOS solver. We again remark that an analysis to estimate the convergence
of the coarsest solver in [16] was not performed. From [16], the AOS scheme for the diffusion model is
shown in (2.21) for m = 1,2. We use a similar method to the one shown in §3.1 to deri /e the amplification
matrix for the AOS method. However, since the AOS scheme solves along the :; «°d x5 directions
separately, we will obtain two convergence rates Pa,, Pa, for these directions resm=ctively. We start by
expressing the discrete versions of (2.21) by the following system

NHuwll + MIEu] =gl (3.23)
with
" 1-2radf 0 g_ (-1 0 g gl — 7'F1 (u)
N = ( 0 1-2radf » Mo = 0 -1 97 = \ 7 2’ —7Ff(u) (3.24)

where gZ are the discrete RHS coming from the NMG method and : % (u) re the discrete force terms
given in (2.9). The z, 2 directions of the discrete Laplace op’.avor can be represented by 8fmxm =
LH + 2H + 2 where L1 2H  #H  define the follo rin- stei cils

1 0 0 0 1 0 0 0 1 0 0 0
Adi=—1t oo, L=—0 20|, 27=—1001
B \o 0 0 B \o v, Ao 0 0
1 0 0 O 1 /O >0 1 01 0
z{izﬁ 00 0], 21= -2 ) 7$2H_:ﬁ 00 0 (3.25)
1 0 \\ 0 0 0 0 0
then we can write (3.23) in the following way
NrITLLI+u new + Nm Oupm ne. T““ ,’Ziuglm old + Mmupm old — gH (326)
where w/f . wll . denote the currert and previous approximations of )/ in the z,, directions
respectively, and
NH . = —2ra Ll L NH 1-2raH, 0
m+ 0 —2 oyt ) Tmo 0 1-2raZH,
—2ra?, _ 0 -1 0
N = ( 0 ) “Ta$H> LMy = (0 —1) (3.27)

for m = 1,2. Using a sir .ilar process to that shown in §3.1, for computing the smoothing rate, we
estimate the convergence rate rom the following

1
% max — Hax PAloc» PAloc =3 (PAl loc + PAQ loc) 5
loc 2
Pa toe = Pa. 10c(8) = sup {p(sg(a)) 6 e @} (3.28)

where p(-) aga’ 1 aenctes the spectral radius, and S’ () denote the amplification matrices given by

SH(0) = —[NH,(0) + NH(0)] ' [NE_(0) + ME(0)] (3.29)

and where

27’0{6710.}," 0 . 1+ 4T 0
'/V.TIZ—}-(Q) = ( HZO 2T zwm> ) Mgo(g) = ( 0H2 47'04)

—Hz €

R 2T L tWom O . -1 O
wo = (TR ) e = (1) (3.30)
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Comparison of convergence rates for two coarsest grid solvers. Once we have an estimate of
the convergence rate P, we can compute the number of iterations [ required to reach a desired tolerance
10~* using the following

k1n(10)
= (3.31)
In(P)
Grid Size | AOS Solver ) Direct Solver (Pointwise) ‘ Direc. " ver (Block) ‘
Pa Tol 1071/1072/107% | Pp  Tol 1071/1072/107% | Pp Tol 1. 71/1072/1073
15 | 0.99915 2709/5417/8124 0.40511 3/6/8 0.14573 2/3/4
4x4 | 5 | 099957  5355/10708/16062 | 0.51635 4/7/11 0.2 150 2/4/6
o | 099971  7940/15879/23817 | 0.61297 5/10/15 0 ,5084 3/5/7
L70.99937  3655/7309/10962 | 0.82924 13/25/37 v A 3/6/8
8x8 55 | 0.99968  7195/14390/21584 | 0.90661 24/47/71 N.630u. 5/10/15
3% 0.99979  10965/21928/32892 | 0.93578 35/70/105 0.76812 9/18/27
15 | 0.99947  4344/8688/13031 0.97391 88/175/262 0.996 632/1262/1894
16 x 16 2% 0.99973  8528/17055/25582 | 0.98679 174/647/520 1.0000 -
= | 0.99982  12792/25583/38374 | 0.99116 260/519/77° | - 7700 -

Table 1: Comparison 2 of convergence rates (averaged over 5 FA,' MJIG ycles) for the Chumchob-Chen
AOS solver and our direct solver. For each solver the convergewn. ~ ratc~ .ad number of iterations required
to reach tolerances of 10~%, 1072, 103 are shown for multiple « va. 1es on various coarsest grid sizes for
the lung CT example (Example 2 in Figure 3).

Grid Size | o AOS Solver ] Direct So. ~r (Pointwise) ; Direct Solver (Block)
Ps Tol1071/10°2/103 | Pp  Tollu '/1072/10~3 | Pp  Tol 10~1/10-2/10~3
I710.99915  2708/5416/8123 | 0.6547 aN1/17 0.32791 3/5/7
4x4 | 4| 099957  5355/10708/16061 | 0.79307 10/20/30 0.51094 4/7/11
3—10 0.99971  7940/15879/23817 | 0.85177 15/29/44 0.62553 5/10/15
T770.99937  3655/7309/10962 | 0.9 ' 39/77/115 0.70146 7/13/20
8 x8 % 0.99968 7195/14390/21584 0.969. ~ 74/148/222 0.88868 20/40/59
% 0.99979  10965/21928 /32892 " 7894 109/217/325 0.97361 87/173/259
L710.99947  4344/8688/13031 | « "8925 214427 /640 1.00000 -
16 x 16 210 0.99973 8528/17055/25582 0.992.7 428/856/1283 1.00000 -
% 0.99982  12792/25583/38374 | 0.99643 644/1288/1932 1.00000 -

Table 2: Comparison 1 of convergence ates (av raged over 5 FAS-NMG cycles) for the Chumchob-Chen
AOS solver and our direct solver. For zach . ~lv r the convergence rates and number of iterations required
to reach tolerances of 107!, 1072, 1,73 - re shown for multiple o values on various coarsest grid sizes for
the hand example (Example 3 in }. ¢ 3)

From Tables 1 and 2 we see that our . vect solver converges much faster than the Chumchob-Chen AOS
solver on several different cc arse 't grid sizes for both Hand and Lung CT examples (Examples 1 and 2 in
Figure 3) respectively, esp -iall on the 4 x 4 and 8 x 8 grids; this improvement has a significant impact
on the number of iterati ms re vired to reach a desired tolerance, which in turn will have a noticeable
effect on the number of FAS -NMG cycles needed to obtain a good registration result as well as the time
taken. As is also clear ..~ 1 bo’ a tables, the rates are too high and both solvers are not effective on the
less coarse 16 x 16 « .11, pos. oly due to limitation of the analysis; we would conclude that the coarsest
grid is kept as 8 x 3.

Hence the improved 2™ method, to be denoted by unconstrained INMG, is taken as Algorithm 1
equipped with che cc ‘vsest grid solver by Algorithm 2 and the predicted number of smoothing steps of
vi,ve > 8sinc pb . = 0.74762% < 0.1 is believed to be small enough.

4 Non-“lding constraint model

We now present another model to deliver diffeomorphic transforms. Folding in the transformation is a
problem which can occur in image registration, unless it is specifically controlled. In real applications
the presence of folding would suggest an inaccurate registration result as such transformations are non-
physical. In this section we will first introduce our proposed improved diffusion model, which removes
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any folding that may occur in the transformation ¢, as well as including a NMG scheme (Algorithm 1).
Then we will extend this model to increase robust with respect to the weighting parameter «.

4.1 Improved diffusion model formulation and optimise-discr ‘tise approach

In the work by Burger et al. [11], it was explained that the sign of the determins .. let V¢ can indicate
the presence of any folding in the transformation ¢ = & + u, or more specifica’.y tf : sign of

det Ve = (1 + U111> (1 + Ugmz) — U1, U2, - (41)

2

If det Vo < 0 then this indicates that folding in the transformation is pre ent -hile if det V¢ > 0 then
no folding occurs in the transformation. In [11] this information was usec +o 7 dd an additional term into
the diffusion energy functional (2.2) which penalises this determinant in orac. to produce diffeomorphic
image registrations, thus resulting in the following 2D hyper-elastic ¢ aergy " nctional

EHyPer (4, 1/ (Tw — R)> + §2 v |2+5/7/def7 -1 2dQ (4.2)
u) = — u « Ug ) .
2 Q =1 \ uﬁV(p

where a € R*, 0 < 3 € R are weighting parameters. Although .. may e possible to develop an effective
smoother for solving (4.2), which has a strong non-linearity. in this | yper however we instead propose an
extension to the diffusion model (2.2) as a simplification of 1.~ hyr r-elastic model (4.2) to control any
folding. We propose to introduce a constraint into the diftu.’~n model which ensures a positive value of
the determinant (4.1). In other words, we aim to solve +»~ -~ ing minimisation problem

min EDiﬁ(u), ot dev Ve >0 (4.3)
u
or equivalently, using an optimise-discretise approach, ‘e look to solve the following EL equations

— AUy + Fp(u) =9 . t. detVe >0 (4.4)

with Neumann boundary conditions Vu,, - n = and where F,,(u) are as in (2.6) for m = 1, 2.

4.2 Estimating the determi-.ant using finite elements

In order for us to be able to impose .he ronstiaint in (4.4), we must first obtain an approximation of the
determinant at every discrete inte: ~v r oint of Q”, that is we need to compute

Q = (Qij) = (det 7¢), , = (1 + (u1,, )ig) (1+ (u2m2)i,j) = (u1,, )ij(uz,, )ij (4.5)

where Q € R("=2)x("=2) ig +1~ matrix consisting of determinant values at the discrete interior points
(¢,7) for 4,5 = 2,...,n — .. 1) compute the entry (Q;;), we need to determine the discrete partial
derivatives (um, )i.j, (Um,,,. - tor m =1,2. We do this by splitting our discrete domain Q" into a mesh
of finite elements consist ng of pi sewise linear triangular basis functions as shown in Figure 2(a). In fact
for each interior point 4,7, we .eed to compute the determinant in each of the four triangles 77, ..., Ty
as shown in Figure 2(b). Noi .g this gives us a clearer picture of the local geometry surrounding the
(,4) point, thus a’.owing us to better detect any mesh folding of the transformation. Once we have
determinant value, for eac1 of the triangles, we assign the smallest value to be our (Q;;) entry, this
in essence considers “e - orst possible case for each (7,;) allowing us to better detect and correct all
potential foldi.g in t™e transformation. Now for linear triangular basis functions, we can approximate
um () by the ollowin  linear functions

Lo () = ay,, + by, x1 + Cy,, T2 (4.6)

Um

where ay,,, b, , ¢,,, € R are coeflicients to be determined for m = 1,2. From (4.6) we see that the
partial derivatives up, , um,, are given by the coefficients b,,,, cy,, respectively. Then looking at the
first triangle 77, at a general discrete interior point (i, j), we have the following system

1z Y a1y, (u1); 1z Yj a1, (u2);
Triangle T : |1 zi41 ¥y biu, | = (ul)i+1,j s T iy biu, | = (u2)i+1,j )
Iz yjr1) \Ciu (u1); j41 L2 yjr1) \Cru (u2); j41

14
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Figure 2: Finite element splitting of the discrete domain Q" usii g linear triangle basis functions

we obtain similar systems for each of the remaining tvi~»~'-~ 75 T3 and T,. Then, to compute the
coefficients a;,, , biw,,, Ciu,,, We solve

S8 = Al_l’l)ll, tl - 4 nl'l’vgl (47)

where 8; = (a1uy,b1uys Clus )L s 81 = (A1uys Diugs Clu, ' Te vhe column vectors of coefficients for (u1); ;5 (u2); ;
respectively, Al_1 are the inverses of the metrices  rresponding to the edges of the triangles 7; and
Vmi = (Um 1, Uma,Um3)? are the values of u,, a. acn vertex of the triangles Tj for [l = 1,...,4, m = 1,2.
Then, once all elements of @ have been computed, we take the minimum value of the matrix Q to be
used to see if the constraint has been sa*’,... 7 This method can be summarised by Algorithm 3. Once
we have a value for Q,,;n, we use Algor’ .hm 4 t¢ impose the constraint and determine whether we accept
the updated transformation or not.

In practice, Algorithm 3 can be cor .put .tiorally expensive on larger grid sizes owing to the fact that we
must solve eight inverse problems at . ry .screte interior point in the discrete domain Q", consequently
this has a severe impact on the € €U time of the NMG scheme for our constrained model. In Appendix A
we demonstrate how Algorithr. 3 ¢.~ be optimised to significantly decrease CPU cost for each iteration
of the determinant computat’ ». The method outlined in Algorithm 8 is how we actually compute the
determinant in practice, ar « th: results shown in §5.2 are also obtained using this algorithm.

4.3 Numerical solu ior and NMG algorithm for a constrained diffusion model

Based on our NMC' rramework unconstrained INMG, we will solve our constrained diffusion model
by NMG. Adding 1 constiint, the same pointwise smoother as the one shown in §2.2 and the same
coarsest grid solver . - the one described in §3.2 are used. Then our proposed NMG algorithm is shown
in Algorithm €, which we denote constrained INMG.

4.4 Ar _'antive o constrained diffusion model

While our coi ‘trained INMG does ensure that the deformations obtained are non-folding, in cases
where folding is severe the deformation field w can be penalised so heavily that the deformed template
image T, may have moved very little when compared with the original template image 7. To overcome
this problem we propose an extension to our constrained INMG model, whereby we re-initialise the
NMG method using a larger value of « if the constraint has not been satisfied within a small number of
iterations. To construct this adaptive o scheme, we modify the determinant check shown in Algorithm

15
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4 as seen in Algorithm 5. From Algorithm 5 we see that if we reach the iteration limit LM AX, we
exit out of the FAS-NMG algorithm and this is when we re-initialise the NMG with a larger weighting
parameter «. This process can be summarised by Algorithm 7, and where the algorithm AdaptFASNMG
is the same as Algorithm 6 except now Algorithm 5 is used to check the constraint in tead of Algorithm
4. Another advantage of the adaptive o scheme shown in Algorithm 7 is its robi . mess to the choice
of parameter a. Even if the initial « is set too small such that severe folding would 1. ~mally occur,
because we keep re-initialising the problem with new values of a, we automatical’, 1. d a pseudo-optimal
« value where folding is avoided. This will be shown in the next section. Usin the pointwise smoother
from §2.2; and the coarsest grid solver from §3.2 along with Algorithm 7, then w. denote our adaptive
a model by adaptive INMG.

Algorithm 3 Qi  ComputeQ(u”, n, h)

1: fori=2,...,n—1do
for j=2,...,n—1do
3: for(=1,...,4do
Compute the vectors s;, ¢; using (4.7)
Compute determinant for triangle T; — Q= (T 4+brw) A+ iug) - ubiug
4: end for ~ -
Assign minimum @ to be entry (Q:;) — (Qij) = min{Q1, .,Qa}
5: end for
6: end for
Take minimum entry in @ to be minimum determinant v.' e = Qmin = min {Q}

N

Algorithm 4 u(k+ ) C’onstrainU(uELk), h,\, LM AX)

1: forl=1,--- ,LMAX do
2: Compute minimum value of determinant (- usin, Algorithm 3
3 if Qmin >0andl < LMAX then

Accept update u(k‘H) (k)
else if Qmin <0 cmd I < LMAX then

Reject update and set u(k) Au&bk), A€ (0,1,
5: else if Qmin < 0andl = LMAX then

Error — Constraint failed

6: end if
7: end for

o

Algorithm 5 (k—H , ¢, done_ 'lphaJ — AdaptweU(uh ) b, LMAX)

1: Save current ‘good’ approxi—ation — &gﬂ = u<k), c=0
2: forl=1,--- ,LMAX do
3: Compute minimum v '1e ¢ determinant Q,n using Algorithm 3
4: if Qmin > 0 and l < LM _.'X then
Accept update v | (D) u“ ! A;k) ;L ) e=c+ 1, done_alpha =1, break

5: else if Qmin <C "nr’ [ < MAX then
Reject update and s ' 7 h'“ = Auék), Ae(0,1),c=c+1
6: else if Qmin ~0an’l=LMAX then
Reset to ‘g »d’ appr ximation — ¢ = LM AX, u;kﬂ) = ﬁ;lm, done__alpha =0
7: end if
8: end for
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Algorithm 6 ugkﬂ) < ConstFASNMG(R", T", n,h, level,ugk),gh,oz,ul, V)

1: Pre-smoothing step by performing v steps (relaxation sweeps) ﬁl(f) +— Smooth(R", T", ug“)7 Gh a,v)
2: Coarse-grid correction
Compute the residual r'*) = g" — A" (ugk))

Restrict residual and smooth approximations rgf) = RhHr,(Lk>, ﬁg) = ’Rffﬁgf)
Set level — level — 1, H = 2h, nc = %
Form RHS of coarse grid PDEs G¥ = »# 4 N ¥ (ﬁgc))
Solve residual equation on coarse grid to obtain approximations aﬁf)
3: if level =1 then
Solve to obtain high accuracy solutions ug) using a coarsest grid solver.
4: Use Algorithm 4 to determine whether update is accepted
5: else level > 1 Repeat the FAS-NMG-CONST procedure recursively to t' @ ne ¢ level i.e.
ﬁg) — ConstFASNMG(R¥ , T¥ nc, H,level — 1711%)79117047 v1,U2)
6: end if

Compute the correction eg) = 'u,g?

_a®
H
Interpolate the correction to next fine grid level eglk) = Z}Ze%€>

Update current grid level approximations using correction al = 5P 4 ezk)

7: Post-smoothing step by performing v» steps (relaxation sweeps) ""(LV o Smooth(Rh,Th,ﬂg“), G" a, )

Computes ugbkﬂ) by performing v, relaxation sweeps of su. ~ther
8: Use Algorithm 4 to determine whether update is accepted if on fines grid level Q"

Algorithm 7 ugbk'H) +— Adaptivea (Rh,Th,n, h, uglk), Lmaz\}

1: Set done_ NMG = 0, done__alpha =0
2: while done_ NMG # 1 do

3: if i% =i}, then
LMAX =100

4: end if

5: while done_ NMG # 1 do

6: Set previous ‘good’ approximation — wu,, - ﬁ;f)

7: Perform FAS-NMG — [ugﬁ'l), c} + AdaptFASNMG (Rh,Th,mj, level, ﬁ;lk), G" a, v, V2>

8: if c < LMAX and done_alpha £1 th.oa
break

9: end if

10: if NMG convergence criteri- sat’sfied vhen
done_ NMG =1

11: end if

12: end while

13: if c < LMAX and done_ alp,. - # 1 then

14: Set a = 2, 1% =% - 1, uglk) = ﬁgm

15: end if
16: end while

5 Experimenta. r.sults

Here we will presen. and compare the results of four models
e M1 — ne NNG method CCNMG from [16] i.e. Algorithm 1;
e M2 — 1. = imr . oved NMG method unconstrained INMG of §3.2;
e M3 — .. " "MG method constrained INMG of §4.3 i.e. Algorithm 6;
e M4 — . ¢ NMG method adaptive INMG of §4.4 i.e. Algorithm 7.

Firstly we will demonstrate how our more accurate analysis of the smoothing rate, along with our
new coarsest grid solver, impact the number of NMG cycles required for the method to converge when
compared with M1. In addition we will also show how this improved convergence of our NMG method
M2 results in a significant decrease in CPU time, as well as an improvement in the accuracy of the
registration, when compared with M1.
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Secondly, we will show how our method M3 overcomes the issue of transformation folding while still main-
taining good accuracy and CPU times compared with our unconstrained model M2 and the Chumchob-
Chen model M1.

Thirdly we will show how our method M4 not only overcomes the problem of mesh fr.ding while keeping
a good level of accuracy and CPU times, but also how it can maintain these good t ans. ms while being
robust to parameter choice when compared with the other models.

To gain a quantitative measure of the accuracy of the NMG methods, we - se S.ructural Similarity

2
(SSIM) [39] as well as the relative error given by Err = %‘ Moreove: in o. 'er to highlight the
2
convergence problem of the M1, and for fairness, we will consider a meth~ to .. ve converged only if

any of the following stopping criteria has been satisfied:
e The average relative residual of the EL equations reaches a tolerance . “ ; = 1072
e The maximum relative residual of the EL equations reaches a - oleranc of g5 = 1072
e The number of NMG cycles reaches the maximum number of g5 2%

We shall take 3 pairs of test images (shown in Fig.3) to experim >nt .ad ompare registrations:
Example 1 — a pair of CT images from Fig.3(a,d),
Example 2 — a pair of CT images from Fig.3(b, e),
Example 3 — a second pair of Hand images from Fi~.3(c, f).

Moreover, in Tables 5-6 we indicate whether a test has bee. ‘successful’ (results highlighted in green) or
whether it has ‘failed’ (results highlighted in red). We sav that - “est has ‘failed’ if the maximum number
of NMG cycles €3 has been reached, or if there is folding "~ the result (i.e. Qi < 0). Additionally bold
values indicate the results which give the best SSIM and rel. ive error values for each test.

5.1 Comparative results of models V' a..d M2

Here we will demonstrate the improvement o1 “e uc.. M2 over M1. As mentioned in §3, our improve-
ment is to overcome the convergence problem thav -as present in the former method.

Test on Example 1. From Figures 8 .nd . we see that our M2 produces visually similar deformed
template images T,, and final error imz ves |T,, - R| when compared with those obtained from M1. The
first two columns of Table 5 show se 7eral .~st results of varying resolutions and parameters «. There,
abbreviations 'SSIM’, "Err’, 'NMG’, ’CT U’ represent the final structural similarity, final relative error,
number of multigrid cycles perforn. 7 and CPU time respectively. When we look at the table we see
that our M2 requires consistent’y fewer = MG cycles to produce these accurate results. In fact, the M1
method almost always fails tc co. ~erge within the allowed number 3 of NMG cycles to the required
tolerances. This confirms our <tatemeuw.s earlier on the convergence problem of M 1. Moreover, this also
leads to a drastic improvem .nt i . CPU time, especially in the 5122 and 10242 cases where the M1 model
requires a much larger nuw.’ ~r of NMG cycles.

Test on Example 2. Alt' ough visual differences between the models are small in Figures 6 and 7,
in Table 4, we see tha. M". is ? etter than M1 (in all indicators: SSIM/Err/NMG cycles/CPU) for the
first « value, but for the « > .r two cases of a both models failed to give diffeomorphic maps due to
det Vi < 0.

>

Test on Example * For the second lung CT example visual differences between the models are small
in Figures 4 ar 1 5. We can see that, from Table 3, M2 is successful for all cases of @ but M1 failed in
several cases. Jn conv wrgence alone, M1 is not as fast as M2 because it takes many NMG cycles.

We remar} that, 1. the M1 method tested above, we have used the original CCNMG AOS solver on
the coarses gra out the (new) updated smoothing rates to predict the number of smoothing steps
required on h e grids; that is to say, the NMG cycles displayed are better than the original work. To
illustrate the in.portance of our re-analysis in LFA, we will give a brief comparison using the old and
new smoothing rates for a specific test. Considering Example 1 from Figure 8 of size 1282 with o = 1—10,
we obtained SSIM/Err(%)/NMG/CPU (s) values of 0.774/1.48/21/1.169 using the M1 method with
smoother steps based upon the rate ;. = 0.5. However if we perform the same test with smoother steps
based upon our re-calculated rate p = 0.74762, we obtain values of 0.775/1.46/10/0.959. Clearly there
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is a vast improvement (reduction) in the number of NMG cycles required with small improvements in
the other three values and the overall improvement of M2 over M1 is also due to the new coarsest grid
solver.

5.2 Comparative results of models M2 and M3

In §4 we introduced our constrained version M3 in order to prevent any foldi .g fr .m occurring in the
transformation. This was achieved by ensuring det V¢ > 0 for every discrete inte. r point in Q. Here
we will present results comparing M2 and M3 to show how this constraint doc indeed prevent folding
while still maintaining good accuracy and CPU time using the same th ce >xampies from §5.1. The
abbreviation @Q,,;, represents the minimum determinant value det V. "{ere sma.: ‘Err’ means a small
fitting error while @, > 0 implies a correct registration transformation.

Test on Example 1. From columns 2 and 3 of Table 5 we see tha our M 2 always produces positive
Qmin values; as a result we obtain the exact same results with our M.’ methc 1 with very small increases
in CPU times owing to the constraint checking. This also trans'..es to . igures 8 and 9 where we see
that all images look very similar visually.

Test on Example 2. From Table 4 we see that M3 has overc me t"~ .nesh folding problems of M2 by
positive Qmin values in all cases. In achieving this convergent no.. folding result, the number of NMG
cycles taken by M3 is more than M2. Although the CPU . mes in hese cases also increase noticeably,
we do however still see a reduction and consistency in "2 nu..oer of NMG cycles when compared
with the M1 method. The CPU time increase could be redi. ~d by a more computationally efficient
implementation of our smoother code to penalise the . ansformation only in regions where folding is
present.

Test on Example 3. Here we see the exact same »r ¢tern as in Example 1 since our M3 produces
positive determinant values in all cases and idei .-al re lts to M2 with small increases in CPU times
as shown in Table 3, with improvements in all cate or..~ over the M1 method especially in convergence
and CPU times.

5.3 Comparative results of r.ou.'s M3 and M4

Additionally in §4 we introduce and xten. ~n ,0 our M3 model to be robust to parameter choice while
maintaining a non-folding transforr atio .. Here we will consider a case where severe folding would occur
and our M3 model, while producin, 2 10n-'olding deformation, performs poorly in terms of registration
accuracy whereas our M4 mode’ also a. "Jds folding while producing good registration accuracy.

From Table 6 we see that alt.iougn ~e obtain very good accuracy from our M2 model, we also have
severe folding in the transfo ... tions in all tests as indicated by the negative @i, values. Looking at
the results for our M3 moc a2l wr see that the folding problem has been overcome and all @,,;, values are
now positive, however we als. ee that we have lost the accuracy of the result with regard to error when
compared with the M2 res lts, especially on the 1272 and 2562 images. Our M4 model on the other
hand no only produce. ne ~fol' ing results like with our M3 model, but also maintains a similar level
of accuracy when comnare. v .th the results from our M2 model. In addition we also see that our M4
model achieves thi, with -uly a slight increase in CPU time when compared with those from the M2
model, and is over ‘wice as fast as our M3 model. From Figures 10 and 11 we see that visually there is
a noticeable diff-~2nce ' wween the deformed template from our M3 model compared with those from
our M2 and I {4 mou ~ls, especially in the error images.

5.4 Te.v v . NMG efficiency and parameter robustness

NMG efficier zy. In this work, we are concerned with transforms’ quality and fast solution by
a NMG. For the latter, we expect the optimal efficiency of O(N log N) complexity in achieving a
fixed accuracy (with N = n? for n x n images). Let t, denote the CPU times required by regis-
tering two n X n images. Then for an optimal NMG, we expect the CPU increase to be of ratio
tn/tnja = Cn*logn?/(C(n/2)*log(n/2)?) = 4 + 4log4/log(n/2)*> ~ 4.5. In Table 7, we show test
results of all four NMG methods for varying resolutions, where in M1 we use the original analysis of [16]
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to set the number of smoothing steps. Clearly M2, M3 and M4 exhibit nearly optimal complexity but
M1 shows irregular patterns, which justify our re-analysis for Algorithm 1.

Finally to give an indication of the convergence history of M1 and M2, we plot in Fig.12 the residuals
for more NMG cycles. Evidently M2 has faster convergence plot than M1.

Parameter robustness. In the diffusion model, the weighting parameter « indicates . ~ strongly we
wish to enforce smoothness on the deformation from the regularisation term. Sp _cu -ally, a larger value
of o will impose a strong penalisation on non-smooth deformations leading tc no f.lding, however this
also leads to a less accurate registration with regards to error. On the other ha.. ' a smaller value of
« will lead to a more accurate registration in terms of error, but will also in. ~ase the likelihood of
folding occurring. Moreover, selecting a ‘good’ value for « can be very ti ae onsuming as in general a
pre-multigrid routine is usually required to find this ‘best’ «a (for exam; fe t' e cooling process in [16]),
which can noticeably increase the computational work and CPU time. For ."“is reason, having a model
which is robust to the choice of weighting parameter is very useful as “ ne nee1 for finding the ‘best’ value
for « is less important. Here we will compare how the value of « 1 npacts he relative error (denoted
‘Err’) and minimum determinant value (denoted ‘Q,,q,’) for models 1.7 - .1d M4. From Figure 13(a)
we see that as « gets smaller the error also decreases, however "ooki~ , 2t Figure 13(b) we see that the
value of Qi is also decreasing to a point where it is always -~ gativ . as highlighted by the dotted
line. This suggests that our model M2 has a limit where it 1..>intal ., physically accurate non-folding
deformations, and once past this point folding always occurs. Loox ng at Figure 14(a) we see that our
M4 model follows a similar pattern with regard to a decrea.'»g er’ or as « decreases like with our M2
model, however from Figure 14(b) we see that our M4 mou ! always maintains the physical integrity of
the deformation with Q,,;, > 0 for all tested values of ~» Fro~ "is we can conclude that our adaptive «
model M4 is very robust to the initial value of «, even tv. small values, while maintaining a consistently
good registration accuracy in terms of error.

(d) Templa : T of Exa »le 1 (e) Template T of Example 2 (f) Template T of Example 3

Figure 3: Three Pairs of Test Images.

6 Conrclusiuns

In this paper w. have first presented an improved NMG method, with regard to convergence and accuracy,
over that proposed by Chumchob-Chen through a more detailed and accurate analysis of the multigrid
method, as well as a different coarsest grid solver. Secondly we proposed an extension to our NMG
method with the aim of producing non-folding transformations, which was achieved by imposing an
additional constraint into our improved NMG method. Next we extended our constrained INMG
to be more robust to parameter choice while keeping non-folding deformations and good registration
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see accuracy. We then used three examples to demonstrate the improvement in accuracy and NMG cycles
se7 required for convergence over the Chumchob-Chen NMG, as well as how our constrained INMG and
ses adaptive INMG overcame folding by ensuring det Vi > 0.

Image Size n? | « M1 M2 M3
SSIM/Err (%)/NMG/CPU (5)/Quin | SSIM/Exr (%)/NMG/CPU (5)/Quin | SSIM/Exr /)/.. *G/CPU (5)/Quin
1287 0.030/0.54/2/0.391/0.797 0.943/0.41/1/0.333/0.810 0.94370.41/1/1.39/0.819
2562 . 0.943/0.45/5/1.512/0.715 0.951,0.42/2/1.927/0.803 0.7,1, 42/2/2.051/0.803
5122 5 0.959/0.44/13/22.387/0.854 0.964,0.43/2/9.426,/0.801 0 964/1 43/2/9.721/0.801
10242 0.972/0.44/25,/196.585/0.872 0.975,0.43/3/66.178,/0.822 L. 75/ ,.43/3/69.500,/0.822
1287 0.031/0.52/1/0.316/0.612 0.945,0.39/1/0.425/0.694 0.940,~ 39/1/0.437/0.694
2562 . 0.945,/0.43/25,/6.887/0.464 0.953/0.40,/1/1.090,/0.660 U °%3/0.40/1/1.164/0.660
5122 0 0.961/0.43/10,/17.204/0.734 0.965,0.41/1/5.057/0.668 0.965, ~.41/1/5.250/0.668
10242 0.974/0.43/23/180.785/0.745 0.976/0.42/1/22.972/0.685 > 776/0.42/1/24.182/0.685
1287 0.037/0.45/25/1.019/0.619 0.947/0.38/3/0.976,0.550 ™ 0.94./0.38/3/1.010/0.559
2562 | 0.948/0.40,/25/6.820/0.230 0.954/0.39/1/1.080/0.511 0.954/0.39/1/1.146/0.511
5122 15 0.962/0.41/12/20.657/0.631 0.966,/0.40/1/4.886,/0.526 2 966/0.40/1/5.150/0.526
10242 0.975/0.41/18/141.395/0.644 0.977/0.40/1/24.642/0.55 0.977/0.40/1/25.546/0.554

Table 3: Example 2 — Registration comparison of 3 methods on mu'*inle mmage sizes for different o

values, with an initial relative error of 0.60% and initial SSIM va’aes cf 1.933, 0.942, 0.957, 0.972 for the

1282, 2562, 5122, 10242 images respectively.

o, M1 M2 M3

Tmage Size n” | @ | g1\ /Err (%) /NMG/CPU (5)/Qun | SSIM/Err (%)/NMG/CEC ‘) /Quin | SSIM/Exz (%)/NMG/CPU (5)/Quin
1287 0.750/1.28/4/0.530/0.642 0.764/1.17/2/0.586/0.6. ' 0.764/1.17/2/0.603/0.664
2562 1 0.752/1.35/11/3.102/0.640 0.786/1.14/5, > 926/0.6 > 0.786/1.14/3/3.015/0.645
5122 5 0.806/1.32/25,/42.794/0.618 0.832/1.1.1/18.6. ' o83 0.832/1.18/4/19.188,/0.683
10242 0.860/1.34/25/199.920/0.640 0.883/1.20/4,. " 853/0.701 0.883/1.20/4/94.397/0.701
1282 0.766/1.04/3/0.456/0.406 0.78370 0E 2782 770 070 0.783/0.95/2/0.715/0.070
2562 . 0.768/1.11/7/2.038/0.344 0.803/U.. " /3/2.879/ — 0.028 0.800/0.95/6/6.251,/0.027
5122 10 0.819/1.07/20/34.047/0.280 0.847/0.95,. '14.244/0.091 0.847/0.95/3/14.784/0.091
10242 0.873/1.06/25/195.431/0.271 0. =" 0R/4/65.196/0.145 0.893/0.96/4/71.186/0.145
1282 0.774/0.89/3/0.488/0.080 0.7 /0.8 ./3/v.920/ — 0.687 0.757/1.18/8/3.424/0.015
2562 1 0.802/0.77/6/1.786/ — 0.165 0.811, .6/2/1.952/ — 0.862 0.772/1.23/5/8.047/0.024
5122 B 0.826/0.91/15/25.598/ — 0.122 .754/0., 2/3/13.750,/ — 0.680 0.827/1.18/6/40.789/0.012
10242 0.880/0.89/25/195.370/ — 0.156 0.9y, ~ 80/3/69.076/ — 0.584 0.881/1.16/6/182.460/0.011

Table 4: Example 2 — Registration comparis. » 0. & methods on multiple image sizes for different «
values, with an initial relative error of 1.99% and 1..“ial SSIM values of 0.667, 0.704, 0.769, 0.838 for the
1282, 2562, 5122, 10242 images respective’, Clearly although M2 does converge quickly, the M3 offers
both speed and correct transforms.

Image Size n? | « M1 ‘ M2 M3
SSIM/Err (%)/NMG/CPT (5)/Quu. | SSIM/Err (%)/NMG/CPU (5)/Qun | SSIM/Err (%)/NMG /CPU (5)/Quin
1287 0.742/2.42/16/ LA7 ./0.60 0.717/3.30/2/0.633/0 554 0.717/3.30/2/0.644/0.554
2562 . 0.743/2.61/25/7. 7/0. 1 0.725/3.24/2/1.959/0.517 0.725/3.24/2/2.093/0.517
5122 5 0.748/3.68/25/47 542, 17 0.750/3.24/2/9.397/0.498 0.750/3.24/2/9.691/0.498
10242 0.747/6.85/25/7 /5.731/0.0+ 0.784/3.24/2/45.445/0.486 0.784/3.24/2/47.728/0.486
1287 0.775/1.46/7 ;, 159/0.600 0.758/1.89,/3,/0.868/0.420 0.758/1.89/3,/0.892/0.420
2562 . 0.776/1.46, 25/6.75. " 639 0.760/1.87/2/1.984/0.376 0.760/1.87/2/2.118/0.376
5122 10 0.778/2.02 '~ /42.149/0.502 0.778/1.86/2/9.350/0.348 0.778/1.86/2/9.706,/0.348
10242 0.780/3.6 /25/ 15.403/0.532 0.807/1.87/2/45.620/0.332 0.807/1.87/2/48.026/0.332
1282 0790 135 0.814/0.563 0.783/1.33/3/0.801/0.324 0.783/1.33/3/0.922/0.324
2562 L 0.791/1.. ' 2/5.992/0.561 0.781/1.31/3/2.907/0.266 0.781/1.31/3/3.086,/0.266
5122 5 0.78 /1.40/25, "~ 225/0.539 0.794/1.31/3/13.786/0.246 0.794/1.31/3/14.526/0.246
10242 0.7 9/2.2 /25/194.026/0.390 0.819/1.31/3/66.949/0.235 0.819/1.31/3/69.405/0.235

Table 5: Example 3 — Re,. '« ration comparison of 3 methods on multiple image sizes for different «
values, with an ini 1al rel tive error of 13.25% and initial SSIM values of 0.551, 0.587, 0.639, 0.693 for

the 1282, 2562, 51+7. 1024 images respectively.

M2

| SSIN/Brr (%)/NMG/CPU (5)/Qumin

M3
SSIM/Err (%)/NMG /CPU (5)/Qumin

M4
SSIM/Err (%)/NMG /CPU (5)/Qmin

Image Size n?
1282
2562
5122 0
2
1024

0. 12/0.95/2/0.686/ — 3.078
0 ,16/0.74/2/2.458/ — 0.463
5.824/0.82/2/9.729/ — 0.132
0.832/0.78/2/45.762/ — 0.163

0.630/7.56/6/2.676/0.032

0.630/9.59/3/5.076,/0.060
0.805/1.10/4/27.558/0.025
0.812/1.64/4/121.546/0.036

0.758/1.91/3/0.711/0.554

0.815/0.82/2/2.178/0.168
0.824/0.74/2/10.318/0.351
0.842/0.73/2/58.604/0.358

Table 6: Exai. nle 3 - Registration comparison of 3 methods on multiple image sizes for a ‘bad’ choice
of o, with an imtial relative error of 13.25% and initial SSIM values of 0.551, 0.587, 0.639, 0.693 for the
1282, 2562, 5122, 10242 images respectively.
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(a) M1 Ty a = 15 Err =0.43% (b) M2 Ty o = {5 Err = 0.41% (2 MB Ty -4 Err=041%

Figure 4: Example 1 — Registration of 3(a) R and 3(d) T of size 512 > 512 oy 5 methods. Image (a)
shows the deformed template image T, obtained using the M1, while im._= (b) shows the deformed
template image T, for our M2 and image (c) shows the deformed ter plate : nage T, for our M3 for the
parameter value a = 1.

\ /

(a) Original [T — R| (b) M1 [Ty — Rl o = &5 () M2 [Ty~ Rla=1 () M3 [Ty — Rl a = &

Figure 5: Example 1 — Difference images correspo. di.,; to registrations of Fig.4. Image (a) shows the
initial error between T" and R, while images (.- (.} '-") show the final errors between T, and R for M1,
our M2 and our M3 respectively.

(a) M1 Ty a=15 BEr =10 % (b) M2 Ty, o = {5 Err = 0.95% (¢) M8 Ty o = 5 Err = 0.95%

Figure 6: Example 2 — Reg.. ‘v «tion of 3(b) R and 3(e) T of size 512 x 512 by 3 methods. Image (a) shows

the deformed temy .ate im. ~ge T,, obtained using the M1, while image (b) shows the deformed template

image T, for our 1 12 and .mage (¢) shows the deformed template image T, for our constrained NMG
1

for the paramet~~ vaiu. .. = 15
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(a) Original |7 — R| (b) M1 [Ty — Rl a= {5 (c) M2 |Ty — R a = {5 (d) o s |[Tu—Rla=4

Figure 7: Example 2 — Difference images corresponding to registrations £ F 4 Image (a) shows the
initial error between T and R, while images (b), (¢), (d) show the final €. -or¢ between Ty, and R for the
M1, our M2 and our M3 respectively.

(a) M1 Ty a = TIU Err =2.02% (b)y M2 Ty o= | Err =.1.00% (c) M3 Ty v = ﬁ Err = 1.86%

Figure 8: Example 3 — Registration of 3(c¢) R a-Z 3(f, T of size 512 x 512 by 3 methods. Image (a)
shows the deformed template image T, obtained ‘sin. the M1, while image (b) shows the deformed
template image T, for our M2 and image (¢) w..” *: = deformed template image T, for our M3 for the

— L
parameter value o = 5.

| S

(a) IT - R| D) M1 Ty — Rl a =% (c) M2 [Ty — Rl o= (d) M3 |Ty — Rl a = &

Figure 9: Example 3 - M fere’ ce images corresponding to registrations of Fig.8. Image (a) shows the
initial error betweer 7 ana ., while images (b), (¢), (d) show the final errors between T, and R for the
M1, our M2 and ur M$ respectively.
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(a) M2 Ty a = 45 Err = 0.82% (b) M8 Ty, o = 75 Err = 1.10% (M4 Ty - 35 Err=0.74%
Figure 10: Example 3 — Registration of 3(¢) R and 3(f) T of size 512 517 by o methods. Image (a)
shows the deformed template image T, obtained using the M2, while im._= (b) shows the deformed

template image T, for our M3 and image (c) shows the deformed ter plate ? nage T, for our M4 for the

‘bad’ parameter value oo = 4%.

(a) Original |T — R| (b) M2 [T — Rl a = {5 (c) M3 [Ty — Rl a = 45 (d) M4 [Tw — Rl o = 45

Figure 11: Example 3 — Difference images correspo. du. ; to registrations of Fig.10. Image (a) shows the
initial error between T and R, while images . -, (' . 7) show the final errors between T, and R for our
M2, M3 and M4 respectively.

" Max. Rel. Residual Plot

10° T T T T T T T T T T L N
— INMG
CONMG

Residual
3

10 T T I R R S S S SR R N R T TN O N N
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 20 30
lteration

Figure 12: Co. parison of the number of NMG cycles required for the maximum relative residual to
reach a tolerance of 107!° between our M2 method and the M1 method
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(a) Plot of relative error vs parameter « of model M2 for

Example 1

(b) Plot f mi-.in. m determinant value vs

model M. ¢  Exariple 1

0.1
Alpha

0.05

parameter «

Figure 13: Test of robustness of model M2 to the choice f parameter o (50 values).

Err (%)

0.0333 0.025 0.02

of

Qin

-0.2

-0.4

-0.6

-0.8

0.0u 0.0333 0.025 0.02

Alpha

(a) Plot of relative error vs parameter « .{ model M4 for

Example 1

Alpha

0.05

0.0333 0.025 0.02

(b) Plot of minimum determinant value vs parameter o of

model M4 for Example 1

Figure 14: Test of 1. wustness of model M4 to the choice of parameter a (50 values).

Image Size n? | nage k.. aple o M1 . M2 . M3 . M4 .
‘ CPU (s) Ratio | CPU (s) Ratio | CPU (s) Ratio | CPU (s) Ratio

1282 ‘ 0.316 - 0.425 - 0.437 - 0.452 -
2562 6.887 21.794 1.090 2.565 1.164 2.666 1.304 2.885
5122 T ule 1 (CT) Tlo 17.204 2.498 5.057 4.639 5.250 4.510 6.202 4.756
102 180.785  10.508 || 22.972 4543 | 24.182 4.606 | 29.072  4.688

12 2 0.456 - 0.636 - 0.715 - 0.831 -
250" 2.038 4.469 2.879 4.527 6.251 8.743 3.874 4.662
5122 dxample 2 (CT) Tlo 34.047 16.706 14.244 4.948 14.784 2.365 18.768 4.845
o ‘ 195.431 5.740 68.196 4.788 71.186 4.815 87.203 4.646

o es? 0.959 - 0.868 - 0.892 - 0.845 -
2 6.787 7.077 1.984 2.286 2.118 2.374 2.582 3.059
512 Example 3 (Hand) Tlo 42.149 6.210 9.350 4.713 9.706 4.089 12.340 4.779
10242 195.403  4.636 45.620  4.879 | 48.026  4.948 | 58.466  4.738

Table 7: Test on optimal complexity in CPU time ratio for 4 NMG methods. The optimal ratio is 4 for
an O(N) method (with N = n?). Clearly the newer NMGs are better.
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Opti aised version of Algorithm 3

In our constrained NMG, we check to see whether the constraint in (4.4) has been satisfied after the
final post-smoothing step and solver step. While checking the constraint after the coarsest solver step is
inexpensive computationally owing to the very small grid size, this is not the case when checking after the
post-smoothing step. For each interior point Algorithm 3 needs to solve eight inverse problems which,
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even though we are only using 3 x 3 matrices, become very expensive on larger grids thus leading to a
significant increase in CPU time. We will now look to exploit the structure and commonality between
different interior points, of the matrices A;, to create an optimised version of Algorithm 3. First we will
look at the relation of the matrices A4; at the first interior point (2,2) and a general ’ iterior point (i, j).
Looking at the matrix A;, we see that

1 h h i 1 (i—1)h ( 1Dh
At (2,2): Ay=|(1 20 h|,At(i,j): Ai=[1 ih G- 1h
1 h 2h 1 (i—1)h h

since ((.Il)g,(l‘g)g) = (h,h) and ((l‘l)i, (l‘g)j) = ((’L — 1)h, (] — 1)h), thon 211 Ca.t be written in the
following way

()2 + (@ —1h (z2)2+ (j—1)h I

(x1)3+ (@ —1Dh (22)2+(—1)h
(x1)2+ (G —1h (z2)3+ (j—1Dh

i -

)

= A1+ pq" (A1)

with p = (1,1,1)7, ¢ = (0,(i — 1)h, (j — l)h)T. The matrices A; for the remaining triangles can be
written in similar ways to (A.1), then we have

A=A+ -7 (A.2)

with p, g as before, and so the inverse flfl = (A4; 2 . -Th 71, at a general discrete interior point, can be

3

computed using the Sherman-Morrison formula [2] g -er by the following theorem

Theorem A.l. (Sherman-Morrison) Suppose A « ™" ' is an invertible matriz, and p, ¢ € R™*! are

column vectors. Then (A + qu) is invertible <= 1+qTA 'p#£0. If (A —i—qu) is invertible, then
its inverse is given by

AflquAfl

_nl —1
W) =47 iy

(A.3)

where pq” denotes the outer produc’ of the . tors p, q.

It can be shown that the multiplic. “io. g7 Al_lp =0V1=1,...,4, therefore the invertibility condition
from Theorem A.1 holds for ever inter. - i,7) for i, j = 2,...,n—1 and thus the matrices (A; +pq?)~*

are invertible for each [ = 1,.. ,~ Then we can use Theorem A.1 to rewrite the inverses (4; + pq”)~!
as
1 B A*lquAfl
A +pgh) teat oA PT A Ad

Next we use the fact t2 ~t * e ne :d only determine the b;,,,, ¢, coefficients where m = 1,2, and so our
original inverse problem (+.7) reduces to the following scalar equations

blul = Wy, 1(2) — MWy, l(2)7 Cluy = Wyy 1(3) — MWy l(g)v
vius = Wy 1(2) — tiw, 1(2), Clus = Wy 1(3) — iy 1(3), (A.5)

1$(;%+% and wy(2), wpi(3), ¢2, ¢35 Wa,, 1(2), Wy, 1(3) denote the second and third

componen ., £ = A;lp, q' and w,, ;= Aflvml respectively.

where pu; =

Therefore the ey message is that per checking step across the entire grid only simple matrix-vector
products are n.aded, if we invert matrices Al_1 at the first pixel and then re-use them. Hence our
optimised version of Algorithm 3 can be expressed by the following
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Algorithm 8 Q,,;, = FEMOpt(u",n,h)

1: forl=1,...,4do
Compute matrices A; corresponding to first interior point (2,2)
Compute inverse matrices Az_l
Compute second and third components of A; 'p — wp1(2), wpi(3)
2: end for
3: fori=2,...,.n—1do
4: for j=2,...,n—1do
Compute second and third components of g7 — g2 = (i — 1)h, g3 = (j — 1)h
5: forl=1,...,4do
Compute
Compute second and third components of wuy; 1, Wus 1 —> Wy 1(2), Wuy 1(7); & 1 1(2), Wus1(3)
Determine coefficients b;,, Cluy, biugs Clus using (A.5
Compute determinant for triangle 7} — Qi = (1 + biwy ) (1 + Clug) — Clure
6: end for ~ ~ _
Assign minimum @ to be entry (Qs;) — (Qi;) = min{Q1,...,Q4’
7: end for
8: end for
Take minimum entry in @ to be minimum determinant value — @ . = min{Q}

ess Finally we show in Table 8 how much speed up can be achieved for . simple example. Clearly Algorithm
es7 8 uses up to 30 times less CPU than Algorithm 3.

Image Size n | Unoptimised Time (s) | + ~timised Time (s)
2562 4.46 ‘ 0.17
5122 17.87 ‘ 0.61
10242 71.53 2.40
2048 306 23 ‘ 9.90

Table 8&: Table showing the comparison of CPU tim. s per iteration between old unoptimised FEM code
and new optimised FEM code.
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