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Abstract

We consider a public content caching system that is shared by a number of proxies. The cache could be

located in an edge-cloud datacenter and the the proxies could each serve a large population of mobile end-users.

The proxies operate their own LRU-list of a certain capacity in the shared cache. The length of objects appearing

in plural LRU-lists is divided among them. We provide a “working set” approximation to quickly approximate

the cache-hit probabilities under object sharing. We also discuss an approach to sharing cache I/O based on token

bucket mechanisms. Also, why and how a proxy may issue mock requests to exploit the shared cache is discussed.

I. INTRODUCTION

We herein consider J proxies that each service a large pool of users/processes making requests for

content from a database with N data-objects via a cache of size B ≪ N , e.g., caching as part of a

Content Distribution Network (CDN). Each proxy typically operates under a Least Recently Used (LRU)

caching policy wherein the most recently queried for data-objects are cached. The J proxies share both

cache memory and possibly also upload network-bandwidth to the users. For caching of encrypted data

(e.g., owing to copyright protections), a layered encryption strategy (as in block chains, legers) could be

used to first encrypt to the network edge and then encrypt to the individual (authorized) users.

There is substantial prior work on cache sharing, including at the network edge in support of mobile

end-users, e.g., [14], [25], [21]. At one extreme, the queries of the proxies are aggregated and one LRU

cache is maintained for all of them using the entire cache memory. At another extreme, the cache memory

is statically partitioned among the proxies (without object sharing), cf. Section IV-C. For example, [9]
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describes how cache memory can be partitioned according to a game wherein different proxy utilities

increase with cache-hit probability. For a system with a single LRU in the cache, a lower priority (paying

less) proxy could have a different tail (least recent object) pointer corresponding to lower amount of

allocated memory, but different proxies would then compete for “hot” (higher ranked) objects stored in

the cache. To reduce such competition, an interesting system of [11] also has a single LRU maintained in

the cache but with highest priority (paying most) proxies having access to the entire cache while lower

priority proxies having a head (most recently used object) pointer corresponding to a lower amount of

allocated memory.

Now consider a scenario where different proxies may query for the same object. In [22], proxies are

assigned a share of cached content based on their demand. Individual data objects are shared among

different proxy caches that store them, each according to the LRU policy, i.e., a share of their length is

attributed to each proxy’s cache (LRU list). In [22], the cache blocks some requests selected at random

to deter a proxy from “cheating” by issuing mock requests for specific content primarily of interest only

to its users in order to keep it cached (hot), while leveraging cached content apportioned to other proxies,

i.e., more generally popular content.

In this paper, we consider a caching system where each proxy i somehow pays for or is allocated

cache memory (and possibly network I/O as well), thus preventing starvation of any proxy. Objects may

be shared among different LRU-lists (each corresponding to a proxy) and a LRU-list miss but physical

cache hit is accompanied by a delay corresponding to a physical cache miss. This said, a proxy may

make inferences regarding the LRU-lists of others by comparing the cache hits they experience to what

they would be without object sharing. Mock queries may change some near-future LRU-list misses to

hits (particularly for content not in the physical cache), but will come at the cost of both memory and

network I/O resources (possibly causing some near-future cache misses that would have been hits).

This paper is organized as follows. In Section II, we give some background on (not-shared) caches for

variable-length objects. In Section III, an approach to cache memory management wherein a cached ob-

ject’s length is shared among multiple LRU-lists. In Section IV, we propose an approach to approximating

hitting times for such a system of shared cache memory under the Independent Reference Model (IRM)

model. In Section VI, we describe an approach to sharing cache I/O (specifically network bandwidth from

the cache to its users) based on token-bucket mechanisms. In Section VII, we briefly discuss pricing issues

and deterring proxies from issuing mock requests. A numerical study is given in Section V.



II. BACKGROUND ON A (NOT SHARED) CACHE FOR VARIABLE-LENGTH OBJECTS UNDER THE IRM

Assume that the aggregate demand process for object n ∈ {1, 2, . . . , N} =: [N ] is Poisson with intensity

λn. The Poisson demands are assumed independent. Let the total demand intensity be Λ =
∑N

n=1 λn. So,

this is the classical IRM with query probabilities pn = λn/Λ [1], [5]. First suppose all objects are of

unit length and that the cache has capacity B. The set R of B-permutations of [N ] (think of R as the

set of injective functions r = (r(1), . . . , r(B)) from [B] into [N ]) is the state-space of an LRU Markov

chain. The stationary invariant distribution of this Markov chain was found by W.F. King [19]. Let π be

this invariant distribution for B = N . In fact, π turns out to be an invariant distribution for more general

interarrival distributions so long as the object-querying decisions are independent (i.e., in the language of

queueing theory, this is a kind of insensitivity result).

Now suppose the cache capacity is B ≪
∑N

n=1 ℓn, where object n has length ℓn bytes (or in terms

of some other common unit of length), and R is the set of N-permutations of [N ]. In state r ∈ R, the

number of objects in the cache is given by

K(r) = max

{

K ∈ [N ] :
K
∑

k=1

ℓr(k) ≤ B

}

. (1)

For K ≤ N , define the K-vector r(K) = {r(1), r(2), . . . , r(K)}, i.e., the N-vector r truncated to its first

K elements, so a K-permutation of [N ]. Thus, the stationary probability that the cache occupancy equals

r(K(r)) is
∑

ρ∈R: ρ(K(r))=r(K(r))

π(ρ)

By the PASTA (Poisson Arrivals See Time Averages) theorem [26], [2], the hitting probability of object

n when the objects are of variable length is

hn =
∑

r: r(n)≤K(r)

π(r). (2)

See the byte-hit performance metric of [4]. Because this computation is very complex, a “working-set

approximation” (given below) was developed in [10].

III. PARTITIONING CACHE MEMORY

Suppose cache memory is “virtually” allocated so that proxy i receives bi ≤ B and

∑

i

bi ≤ B. (3)

Each partition is managed simply by a LRU linked-list of pointers (“LRU-list” in the following) to objects

stored in (physical) cache memory collectively for all the proxies.



Let P(n) be the set of proxies for which object n currently appears in their LRU-list, where P(n) = ∅

if and only if object n is not physically cached. Note that P(n) is not disclosed to the proxies, i.e., the

proxies cannot with certainty tell whether objects not in their LRU-list are in the cache, c.f. Section VII.

Upon request by proxy i for object n of length ℓn, object n will be placed at the head of i’s LRU list

and all other objects in LRU-list i are correspondingly demoted in rank.

If the request for object n was a hit on LRU-list i, then nothing further is done.

If it was a miss on LRU-list i, then

• if the object is not stored in the physical cache then it is fetched from the database, stored in the

cache and forwarded to proxy i;

• otherwise, the object is produced for proxy i after an equivalent delay.

Furthermore, i to P(n) (as in [22]), i.e.,

P(n) ← P(n) ∪ {i}, (4)

then add the length ℓn/|P(n)| to LRU-list i and reduce the the “share” of all other caches containing n

to ℓn/|P(n)| (from ℓn/(|P(n)| − 1)).

So, if the query for object n by proxy i is a miss, its LRU-list length will be inflated and possibly

exceed its allocation bi; thus, LRU-list eviction of its tail (least recently used) object may be required.

When an object m is “LRU-list evicted” by any proxy, the apportionment of ℓm to other LRU-lists is

increased (inflated), which may cause other objects to be LRU-list evicted by other proxies. A simple

mechanism that the cache operator could use is to evict until no LRU-list exceeds its allocated memory

is to iteratively:

1) identify the LRU-list will largest overflow (length minus allocation)

2) if this largest overflow is not positive then stop

3) evict its lowest-rank object

4) reassess the lengths of all caches

5) go to 1.

This is guaranteed to terminate after a finite number of iterations because in every iteration, one object

is evicted from an LRU-list and there are obviously only ever a finite number of objects per LRU-list.

Note that if during the eviction iterations, P(j)→ ∅ for some object j, then j may be removed from the

physical cache (physically evicted) – cached objects j in the physical cache that are not in any LRU-lists

are flagged as such and have lowest priority (are first evicted if there is not sufficient room for any object

that is/becomes a member of any LRU-list). Even under LRU-list eviction consensus, the physical cache



may store an object if it has room to try to avoid having to fetch it again from the database in the future.

Section VII discusses artificially delaying a response to an LRU-list miss that this a physical cache hit.

In summary, a single proxy i can cause a new object n to enter the cache (P(n) changes from ∅ to

{i}) whose entire length ℓn is applied to its cache memory allocation bi, but a consensus is required for

an object n to leave the cache (P(n)→ ∅). So, the physical cache itself is not LRU. Also, as objects are

requested, their apportionments to proxy LRU-lists may deflate and inflate.

Proposition 3.1: For a fixed set of active proxies i over an interval of time t, this object-sharing caching

system will have a higher stationary object hit-rate per proxy compared to a not-shared system of LRU

caches, where each proxy i’s LRU cache is of size bi in both cases.

The proof follows by a simple coupling argument to show that for each proxy, the objects in the not-

shared system’s cache are always a subset of what’s in the LRU-list of the shared system. This follows

simply because the size of object n apportioned to the shared system ℓn/|P(n)| ≤ ℓn, i.e., ≤ its full size

which is apportioned in the not-shared system.

IV. APPROXIMATING LRU-LIST HIT PROBABILITIES UNDER THE IRM

A. Working-set approximations for shared-object caches under IRM

In this section, we propose an approach to computing the approximate hitting probabilities of the

foregoing caching system following the Denning-Schwartz “working-set approximation” [10] for a not-

shared cache under the IRM. Note that [12], [13] address the asymptotic accuracy of this approximation.

Also see [8].

Let λi,k be the mean request rate for object k, of length ℓk, by proxy i. A simple generalization of the

working-set approximation for variable-length objects is: if mini bi ≫ maxk ℓk then

∀i bi =

N
∑

k=1

hi,kℓk (5)

where

∀i, k hi,k = 1− e−λi,kti (6)

and ti are interpreted as (assumed common) mean eviction times of objects k in LRU-list i, i.e., the time

between when an object enters the cache and when it’s evicted from the cache.

For our shared caching system, only a fraction of an object k’s length ℓk will be attributed to a

particular LRU-list i, depending on how k is shared over (eviction) time ti. For all i, k, let this attribution

be Li,k ≤ ℓk, i.e.,

∀i, bi =

N
∑

k=1

hi,kLi,k =

N
∑

k=1

(1− e−λi,kti)Li,k. (7)



One may take

L
(1)
i,k = ℓkE

1

1 +
∑

j 6=iZj,k

, (8)

where Zj,k are independent Bernoulli random variables such that hj,k = P(Zj,k = 1) = 1 − P(Zj,k = 0).

That is, under the assumption of independent LRU-lists, L
(1)
i,k is the stationary mean attribution of the

length of object k to LRU-list i given that k is stored in LRU-list i. For example, for a system with just

J = 2 caches, i.e., j ∈ {1, 2},

E
1

1 +
∑

j 6=iZj,k

= 1 · (1− h3−j,k) +
1

2
h3−j,k

= 1−
1

2
h3−j,k.

So, substituting (8) into (7) gives, for i ∈ {1, 2},

0 = bi −
N
∑

k=1

(1− e−λi,kti)(1−
1

2
(1− e−λ3−i,kt3−i))ℓk; (9)

a system with two nonlinear equations in two unknowns t1, t2.

Empirically, we found that using (8) under-estimates the object hitting probabilities, i.e., L
(1)
i,k is too

large, significantly when J = 2. To explain this, we argue that object sharing creates a kind of positive

association between the LRU-list hit events, because hits in one cause the objects to effectively reduce

in size in others, so that they remain in the LRU-lists longer (larger eviction times), thus increasing the

hit probabilities in others.

To see why, consider Prop. 4.1 below for Boolean random variables Yj,k indicating the dependent events

that object k is stored in LRU-list j in steady-state.

Lemma 4.1: F1, F2 be two cumulative distribution functions (CDF) on R such that F1(x) ≤ F2(x) for

all x ∈ R. Let g be a decreasing (that is, non-increasing) function. Then
∫

R

g(x)dF1(x) ≤

∫

R

g(x)dF2(x).

Proof: Let F−1
i (u) := inf{x ∈ R : Fi(x) > u}, i = 1, 2. By change of variables in Lebesgue-Stieltjes

integrals, we have
∫

R

g(x)dFi(x) =

∫ 1

0

g(F−1
i (u))du.

Since F1 ≤ F2 we have F−1
1 ≥ F−1

2 and so g(F−1
1 (u)) ≤ g(F−1

2 (u)) for all 0 < u < 1.



Proposition 4.1: For an arbitrary object index k, consider J ≥ 2 nonnegative random variables Y1,k, . . . , YJ,k

and J independent random variables Z1,k, . . . , ZJ,k such that, for all i, Zi,k and Yi,k have the same

distribution. If for any LRU-list i ∈ {1, 2, . . . , J} we have

P

(

∑

j 6=i

Yj,k ≤ x

)

≤ P

(

∑

j 6=i

Zj,k ≤ x

)

(10)

then

E

(

1 +
∑

j 6=i

Yj,k

)−1

≤ E

(

1 +
∑

j 6=i

Zj,k

)−1

. (11)

Proof: Simply take g(x) = 1/(1 + x) in Lemma 4.1 .

Note that according to (10),
∑

j 6=i Yj tends to be larger than
∑

j 6=iZj , similar to positive associations

or positive correlations properties among random variables Yi ≥ 0 [18], [17], [24].

By Jensen’s inequality,

L
(1)
i,k ≥ ℓk

1
1+

∑
j 6=i hj,k

=: L∗
i,k (12)

≥ ℓk
hi,k

hi,k+
∑

j 6=i hj,k
=: L

(2)
i,k . (13)

Empirically, we found that using the L∗
i,k may give approximate hitting probabilities only marginally

larger than (8).

But, empirically, we found that using (13) tends to over-estimate the cache hitting probabilities. Note

that
∑

i L
(2)
i,k = ℓk, i.e., L

(2)
i,k models how object k is shared over time by the different caches i, rather than

the mean object length given that it is stored in the cache.

Substituting (8) into (7) gives, for i ∈ {1, 2, . . . , J},

0 = bi −
N
∑

k=1

hi,kE
1

1 +
∑

j 6=iZj,k

ℓk =:
∂ui

∂ti
=: ∂iui (14)

Under (6) and EZj,k = hj,k for independent Boolean Zj,k, equations (14) are a set of J equations in J

unknowns {ti}
J
j=1.

Note that for all the above definitions, ∀i, k, Li,k ≤ ℓk, so one expects corresponding hit cache

probabilities to be larger than without object-sharing; recall Prop. 3.1.

B. Existence and uniqueness of solution to the working-set approximation (14)

A basic assumption is that,

∀i bi <
1

J

N
∑

k=1

ℓk, (15)



i.e., no LRU-list is large enough to hold all of the objects even if the objects were fully shared. Note that

if ∀i bi ≥
1
J

∑N

k=1 ℓk, then the total available cache memory (≥
∑J

i=1 bi) is sufficiently large to hold all

possible data objects (hence is not a “cache”).

Proposition 4.2: If (15) holds then there are real numbers sj ≥ 0, Sj <∞, such that sj < Sj and there

exists a unique solution {ti}
J
i=1 ∈

∏J

i=1[si, Si] to (14).

Proof: Consider the quantities ui as utilities of a noncooperative J-player game with strategies

{tj}
J
j=1 ∈

J
∏

j=1

[sj , Sj] =: S

where 0 ≤ sj < Sj <∞. First note that each ui of (14) is continuously differentiable on S.

For a J-dimensional vector t = (t1, . . . , tJ) ∈ S let t−i be the (J − 1)-vector obtained by eliminating

the entry ti. Since the strategy-space S is compact and the utility functions ui(t) are strictly concave in

ti (since ∂2
i ui < 0) a Nash equilibrium exists [3]. Alternatively, we can use Brouwer’s theorem [6] to

establish existence of the Nash equilibrium.

Generally, a Nash equilibrium may occur on the boundary of the strategy-space. However, note here

that for an arbitrary t−i,

lim
ti→0

∂iui(ti, t−i) = bi > 0 and

lim
ti→∞

∂iui(ti, t−i) = bi −
N
∑

k=1

1

1 +
∑

j 6=i(1− e−λj,ktj )
ℓk

≤ bi −
1

J

N
∑

k=1

ℓk < 0, by (15).

Because of this and the strict concavity of ui in ti, if all Sj are sufficiently large and sj ≥ 0 sufficiently

small, then all ∂iui(t) are unimodal in ti for all t−i such that t ∈ S. As a result, the Nash equilibria are

all interior to S so that the first-order necessary conditions for ui-optimality must all hold, i.e., (14) are

satisfied.

By such unimodality and because strict concavity implies ∂2
i ui 6= 0, uniqueness of the solution follows.

By the same argument:

Corollary 4.1: Proposition 4.2 is also true under (12) or (13) as well, the latter with si > 0 for all i.

Note that the diagonal-dominance conditions implying negative definiteness of the Jacobian of the

gradient map, in turn implying uniqueness of the solution {ti}
J
i=1 to (14) [23], [20], do not hold here.



C. Static cache partitioning with shared objects

Consider a caching system as described above with LRU-lists but without object sharing, i.e., the full

length of the an object is charged to each LRU list in which it resides. In this case, from any proxy’s

point-of-view, the system is just as static cache partitioning mentioned in Section 1. But from the cache’s

point of view, there may be room for additional objects in the memory even when
∑J

i=1 bi = B because

every object is only store once in the cache. This additional memory could be used to store objects recently

evicted from all LRU-lists (as described above), or the cache operator could attempt to overbook the cache,

i.e., operate such that
∑J

i=1 bi > B. That is, the cache operator would benefit from object-sharing and its

customers (the proxies) would not.

For example, considering the working-set approximation (5) for independent LRU caches without object

sharing under the IRM, if the cache operator can estimate

N
∑

k=1

ℓk(1−
J
∏

i=1

(1− hi,k))

for a current set of J proxies, then she can admit a new proxy requiring cache memory bJ+1 if

bJ+1 ≤ B −
N
∑

k=1

ℓk(1−
J
∏

i=1

(1− hi,k)).

V. NUMERICAL RESULTS ON CACHE

MEMORY SHARING

We ran a number of experiments to test the foregoing approximations of hitting probabilities of the

shared-object cache. To approximate, we solved (14) using the Newton-Raphson algorithm; this was

simplified by the concavity properties and uniqueness of solution discussed in the proof of Prop. 4.2.

The result of a typical experiment for a cache shared by J = 2 LRU-lists is given in Table I (where

hitting probabilities were evaluated by simulation with high confidence) and Table II (where (6) and (14)

was used). The experiment involved LRU-lists i = 0, 1 of size bi ∈ {8, 64} and N = 1000 objects all of

unit length. As a reference, we provide Table IV giving hitting probabilities of isolated caches without

data-object sharing.

The “popularity” of a data object n refers to the mean rate λn. at which it is requested. A commonly

used model for popularity is given by the so-called Zipf law:

λn ∝ ρ(n)−α, (16)

where α > 0 is the Zipf parameter and ρ(n) is the popularity rank of object n, i.e., ρ(n′) = 1 if n′ =

argmaxnλn is unique and ρ(n′′) = N if n′′ = argminnλn is unique. For example, values 0.64 ≤ α ≤ 0.83

were given for different datasets in Table 1 of [7].



i b0 b1 hi,1 hi,10 hi,100 hi,1000

0 8 8 0.501 0.113 0.0226 0.00399

0 8 64 0.503 0.113 0.0216 0.00396

0 64 8 0.998 0.687 0.189 0.0343

0 64 64 0.998 0.697 0.195 0.0400

1 8 8 0.203 0.0673 0.0226 0.00709

1 8 64 0.853 0.453 0.172 0.0574

1 64 8 0.208 0.0699 0.0231 0.00736

1 64 64 0.860 0.465 0.179 0.0609

TABLE I

EMPIRICAL HITTING PROBABILITIES FOR A SIMULATED CACHE UNDER THE IRM OF SIZE B = 1000 FOR UNIT-LENGTH OBJECTS

(∀n, ℓn = 1) THAT IS SHARED BY TWO LRU-LISTS i = 1, 2 RESPECTIVELY WITH ZIPF POPULARITY PARAMETERS α0 = .75 AND

α1 = .5. SIMULATION TIME WAS SUFFICIENTLY LONG SO THAT THESE HITTING PROBABILITIES ARE OBTAINED WITH HIGH

CONFIDENCE.

cache i b0 b1 hi,1 hi,10 hi,100 hi,1000

0 8 8 .571 .140 .0264 .00474

0 8 64 .805 .253 .0504 .00916

0 64 8 .996 .630 .162 .0309

0 64 64 .999 .791 .243 .0483

1 8 8 .223 .0767 .0249 .00795

1 8 64 .773 .374 .138 .0458

1 64 8 .393 .146 .0487 .0157

1 64 64 .900 .517 .205 .0701

TABLE II

HITTING PROBABILITIES NUMERICALLY APPROXIMATED USING NEWTON-RAPHSON TO SOLVE (7) WITH MEAN OBJECT LENGTHS (13)

FOR {ti}
J
i=1, AND THEN USING (6), FOR THE SHARED CACHE OF TABLE I.

cache i b0 b1 hi,1 hi,10 hi,100 hi,1000

0 8 8 0.357 0.0756 0.0139 0.00248

0 8 64 0.392 0.08479 0.0156 0.00280

0 64 8 0.983 0.516 0.121 0.0227

0 64 64 0.990 0.557 0.135 0.0254

1 8 8 0.125 0.041 0.0133 0.00421

1 8 64 0.676 0.300 0.107 0.0350

1 64 8 0.136 0.0453 0.0146 0.0046

1 64 64 0.712 0.325 0.117 0.03857

TABLE III

HITTING PROBABILITIES NUMERICALLY APPROXIMATED INSTEAD USING MEAN OBJECT LENGTHS (8) FOR THE SHARED CACHE OF

TABLE I, i.e., SOLVING (14). USING MEAN OBJECT LENGTHS (12) GIVES SIMILAR RESULTS.



cache i b0 b1 hi,1 hi,10 hi,100 hi,1000

0 8 n/a .354 .0735 .0133 .00222

0 64 n/a .981 .504 .123 .0200

1 n/a 8 .123 .0403 .0137 .00376

1 n/a 64 .665 .295 .105 .0343

TABLE IV

EMPIRICAL HITTING PROBABILITIES OF ISOLATED (NOT OBJECT-SHARING) CACHES UNDER THE IRM OF SIZE bi , i = 1, 2, FOR

UNIT-LENGTH OBJECTS (∀n, ℓn = 1) RESPECTIVELY WITH ZIPF POPULARITY PARAMETERS α0 = .75 AND α1 = .5.

In our typical two LRU-list experiments reported herein, we took the Zipf parameter α0 = 0.75 for

LRU-list i = 0 and α1 = 0.5 for LRU-list i = 1.

First note that the cache-hit probabilities of Table IV are generally lower than those of Table I, i.e., object

sharing obviously increases cache-hit probabilities, recall Prop. 3.1. The cache-hit probabilities by working-

set approximation of Table II (corresponding to mean object lengths (13)) are larger than those of Table I.

The cache-hit probabilities of Table III (corresponding to mean object lengths (8)) are smaller (by ∼30%)

than those of Table I. These working-set approximations required orders of magnitude less computation

than system simulation with high confidence of Table I. The approximations of Table II are 10-20% higher

in most cases, except when the cache-memory sizes are quite different – e.g., “0,8,64” (LRU list i = 0

with b0 = 8 and b1 = 64) and “1,64,8” – the approximation is about 80% higher.

Typical results for a cache shared by three or more LRU-lists are shown in Tables V and VI (for J = 3

LRU-lists). Here we see that the approximation (8) is reasonably accurate.

VI. DISCUSSION OF CACHE I/O SHARING

Let Ri,n be the incident mean-rate that proxy i requests object n having length ℓn. Let λi,n be the

gi-admitted mean request rate, where over any interval of length t, the total length of requests admitted

is at most gi(t). Thus,

∀i,
∑

n

ℓnλi,n ≤ lim
t→∞

gi(t)

t
. (17)

Let the total mean-rate of requests for object n to the cache be

λn =

J
∑

i=1

λi,n. (18)

A proxy does not wish to unnecessarily pay more than it needs for larger demand envelope nor to have

its users’ requests blocked (or delayed in order to conform to its demand envelope g). So, assume that gi

is selected (purchased) by proxy i so that it minimally impedes the estimated incident rate of its users’



i b0 b1 b2 hi,1 hi,10 hi,100 hi,1000

0 8 8 8 0.368 0.075760 0.014187 0.002258

0 8 8 64 0.407 0.087653 0.015783 0.002726

0 8 64 8 0.389 0.082334 0.014859 0.002705

0 8 64 64 0.422 0.092404 0.016709 0.002814

0 64 8 8 0.983 0.513789 0.117013 0.023025

0 64 8 64 0.989 0.556809 0.132546 0.026602

0 64 64 8 0.986 0.538738 0.126236 0.023658

0 64 64 64 0.992 0.576265 0.144489 0.027240

1 8 8 8 0.126 0.041193 0.013011 0.004227

1 8 8 64 0.136 0.044836 0.013762 0.004377

1 8 64 8 0.676 0.299101 0.106945 0.034217

1 8 64 64 0.699 0.320489 0.113116 0.035743

1 64 8 8 0.136 0.043797 0.013603 0.004249

1 64 8 64 0.143 0.047648 0.014567 0.004582

1 64 64 8 0.699 0.315947 0.112926 0.036378

1 64 64 64 0.726 0.331754 0.120471 0.039156

2 8 8 8 0.708 0.114214 0.012135 0.001164

2 8 8 64 1.000 0.755988 0.129207 0.014110

2 8 64 8 0.745 0.128129 0.013006 0.001455

2 8 64 64 1.000 0.788157 0.141869 0.016281

2 64 8 8 0.771 0.138305 0.014620 0.001684

2 64 8 64 1.000 0.796751 0.141870 0.014351

2 64 64 8 0.793 0.150212 0.014683 0.001525

2 64 64 64 1.000 0.819580 0.159722 0.014161

TABLE V

EMPIRICAL HITTING PROBABILITIES FOR A SIMULATED CACHE UNDER THE IRM OF SIZE B = 1000 FOR UNIT-LENGTH OBJECTS

(∀n, ℓn = 1) THAT IS SHARED BY THREE LRU-LISTS i = 0, 1, 2 RESPECTIVELY WITH ZIPF POPULARITY PARAMETERS α0 = .75,

α1 = .5, AND α2 = 1. SIMULATION TIME WAS SUFFICIENTLY LONG SO THAT THESE HITTING PROBABILITIES ARE OBTAINED WITH

HIGH CONFIDENCE.

requests. For example, if the aggregate demand from proxy i is Poisson (so that the mean number of

requests in a time interval approximately equals the variance), then

gi(t) = gi(0) + tRi + 3
√

tRi, (19)

may be selected, where Ri =
∑

n Ri,n is the mean aggregate request rate. For large Ri recall that the

(Poisson distributed) number of requests in an interval of time t approximately Normal(tRi, tRi). Hence, in

selecting gi in (19) we limit the probability of a blocked request to about 1%. Here, gi(0) > 0 corresponds

to a number of allowed simultaneous requests. In practice, such a demand envelope gi may be approximated



i b0 b1 b2 hi,1 hi,10 hi,100 hi,1000

0 8 8 8 0.365 0.077604 0.014262 0.002551

0 8 8 64 0.401 0.087205 0.016095 0.002881

0 8 64 8 0.386 0.083160 0.015321 0.002742

0 8 64 64 0.421 0.092609 0.017133 0.003068

0 64 8 8 0.984 0.521259 0.122771 0.023024

0 64 8 64 0.990 0.562247 0.136623 0.025785

0 64 64 8 0.988 0.545451 0.130823 0.024625

0 64 64 64 0.993 0.584584 0.144627 0.027397

1 8 8 8 0.126 0.041602 0.013347 0.004240

1 8 8 64 0.134 0.044618 0.014330 0.004554

1 8 64 8 0.678 0.301116 0.107113 0.035193

1 8 64 64 0.704 0.319691 0.114687 0.037788

1 64 8 8 0.133 0.044198 0.014193 0.004510

1 64 8 64 0.142 0.047180 0.015167 0.004821

1 64 64 8 0.701 0.317105 0.113624 0.037423

1 64 64 64 0.725 0.335317 0.121168 0.040022

2 8 8 8 0.694 0.111572 0.011761 0.001182

2 8 8 64 1.000 0.755600 0.131419 0.013991

2 8 64 8 0.734 0.124170 0.013171 0.001325

2 8 64 64 1.000 0.786098 0.142920 0.015304

2 64 8 8 0.756 0.131431 0.013992 0.001408

2 64 8 64 1.000 0.799474 0.148437 0.015940

2 64 64 8 0.787 0.143363 0.015355 0.001546

2 64 64 64 1.000 0.824859 0.159885 0.017271

TABLE VI

HITTING PROBABILITIES NUMERICALLY APPROXIMATED INSTEAD USING MEAN OBJECT LENGTHS (8), SOLVING (14) AND

SUBSTITUTING INTO (6), FOR THE SHARED CACHE OF TABLE V.

by piecewise linear one implemented by one or more token-bucket mechanisms, e.g., [15], [16]. That is,

a token corresponds to a common unit of object/content length (the dimension of ℓn).

For long-term stability, the cache I/O bandwidth C should satisfy

C ≥ lim
t→∞

∑

i

gi(t)

t
⇒ C ≥

∑

n

ℓnλn. (20)

Admission control of new proxies and dynamic pricing could be based on in part on (20).

It is possible that, periodically, demand may exceed cache memory bandwidth, so the cache will have

a finite request queue. The total length of in-profile [15], [16] objects corresponding to queued requests



will be upper bounded by

max
t>0

∑

i

gi(t)− Ct.

Instead of blocking out-of-profile requests, one could set-up queues for both in-profile and out-of-profile

requests, where the former would obviously have priority over the latter.

Finally, recall the edge-computing context in support of mobile users. If the same object is requested

at the same time over a wireless channel, the necessary tokens may be shared among requesting proxies.

Again, a problem here is intellectual property protections: content could be encrypted to the cache and

then commonly encrypted to a group of authorized mobile subscribers. The cryptographic keys required

for the latter may be periodically refreshed to deal with subscriber churn.

VII. DISCUSSION OF PRICING AND MOCK REQUESTS

Obviously, prices charged to proxy i could depend in part on resource reservations (gi, bi). Service

may be organized in tiers, where tier k is associated with demand envelope g = kγ and cache memory

allocation b = kβ, and k = 1 corresponds to an atomic or base service tier. Though the price πk of tier k is

obviously increasing with (integer) k, it may be such that πk/k is decreasing as a kind of volume discount.

Also, costs may be affected by usage – there is precedent for penalizing low utilization, presumably to

encourage customers to better characterize their workloads and not be resource wasteful.

Recall that a query by proxy i that is a LRU-miss but a physical cache hit involves an added delay

so that the net effect is a physical cache miss. So, from proxy i’s point of view, there is no incentive to

“free ride” on other proxies by issuing mock queries so that i’s LRU list is populated primarily by objects

that are popular only among its own users. Mock requests will deplete apportioned network bandwidth

resources too. Also, if allocated resources are multiples of an “atomic” service tier, a proxy may not be

able to purchase just a little more network bandwidth to mitigate this impact of mock requests.
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