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ABSTRACT. In this paper, we are interested in the following singular stochastic differential
equation (SDE)
dX; = b(t, Xy)dt +dBy, 0<t<T, Xo=z€R?

where the drift coefficient b : [0, T] x R — R¢ is Borel measurable, possibly unbounded and
has spatial linear growth. The driving noise B: is a d— dimensional Brownian motion. The
main objective of the paper is to establish the existence and uniqueness of a strong solution
and a Sobolev differentiable stochastic flow for the above SDE. Malliavin differentiability of the
solution is also obtained (cf.[21] 24]). Our results constitute significant extensions to those in
33, 132}, [14}, 2T), 24] by allowing the drift b to be unbounded. We employ methods from white-
noise analysis and the Malliavin calculus. As application, we prove existence of a unique strong
Malliavin differentiable solution to the following stochastic delay differential equation

dX(t) = b(X(t — 1), X(,0, (v,n))dt + dB(¢), t > 0, (X(0),Xo) = (v,n) € R x L?([-r,0],RY),

with the drift coefficient b : R x RY — R? is a Borel-measurable function bounded in the first
argument and has linear growth in the second argument.

1. INTRODUCTION

The purpose of this paper is twofold: First, it aims at studying existence, uniqueness and
Malliavin regularity of solutions of stochastic differential equations with singular drift coefficients
satisfying linear growth condition. Second, it studies existence of Sobolev differentiable flows for
this class of SDEs. More specifically, we consider the following SDE

dX; = b(t, X,)dt +dB;, 0<t<T, Xo= xR (1.1)
where the drift coefficient b : [0,7] x RY — R? is a Borel measurable function and B; is a
d—dimensional Brownian motion on a probability space (2, F, P).
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2 FLOWS FOR SINGULAR SDES

When the drift coefficient b in is globally Lipschitz continuous and of linear growth, it
is known that the SDE (|1.1)) admits a unique strong solution. However, the Lipschitz continuity
condition is not always satisfied in many interesting SDEs used in practice. Consequently, the
study of SDEs with non-Lipschitz (singular) drift coefficients has received a lot of attention in
recent years.

Assuming that the drift coefficient b is bounded and measurable, Zvonkin [33] proved existence
of a unique strong solution of in the one dimensional case. It should be noted that, under
the above condition, the one-dimensional deterministic ordinary differential equation

dX; =b(t, X,)dt, 0<t<T, Xo=xecR?

may not have a unique solution even when one exists. Zvonkin’s result was generalised to the
d-dimensional case by Veretenikov [32]. For other results in this direction, the reader may con-
sult Gyoéngy, Krylov [9] or Gyongy, Martinez [10], Krylov, Réckner [14] and Portenko [28]. The
proofs of the latter results are based either on estimates of solutions of parabolic partial differen-
tial equations, the Yamada-Watanabe principle, the Skorohod embedding or a technique due to
Portenko [28]. See also [20], where the authors deal with pathwise uniqueness for some particular
one-dimensional reflected SDEs.

Recently Meyer-Brandis and Proske [22] developed a new technique for the construction of
strong solutions of SDEs with singular drift coefficients. This method is based on Malliavin calculus
and white noise analysis. Assuming that the drift coefficient in is bounded and measurable
and satisfies a certain symmetry condition (see [22, Definition 3]), they showed the existence of a
unique strong solution. The argument in [22] is not based on a pathwise uniqueness argument but
it rather gives a direct construction of a strong solution of the SDE. Menoukeu-Pamen et al [21]
further developed this approach and derived the results obtained in [22] by relaxing the symmetry
condition on the drift coefficient. A striking fact when using this technique is that the strong
solution of the SDE with a bounded and measurable drift coefficient is Malliavin differentiable.

The first objective of this paper is to study existence and uniqueness of the solution of the SDE
when the drift coefficient is Borel measurable and satisfies a linear growth condition. This
problem was studied by Engelbert and Schmidt [7] in the one-dimensional time autonomous case.
See also Nilssen [25] for the time dependent case. The proofs of the results in [7] use occupation
time formula combined with the Yamada-Watanabe principle. This technique is a purely measure
theoretical and the dependence on the initial parameter is not obvious whereas Nilssen in [25] uses
the more direct method based on Malliavin calculus and the probability probabilistic estimates
on the weak derivative with respect to the initial condition of the solution to the SDE (|1.1). The
main difference between the latter work and this paper is that there is an explicit representation
of the Malliavin derivative (respectively the weak derivative with respect to the initial condition)
in the one dimensional case, and using local time space integration, the LP(P), p > 1 estimates
of the above processes are obtained. These representations are not valid in the multi dimensional
case resulting to an infinite sum representation of the derivatives. The latter makes the moment
estimates of the derivatives more challenging.

In this article, we extend the results obtained in [7, [25] to the multidimensional case assuming
that the drift coefficient is time dependent and has spatial linear growth. This result constitute a
notable extension to the unbounded case of existing results. We develop estimates on the Malliavin
derivatives for solutions to the SDE when the drift b is smooth and has linear growth. These
estimates are obtained on a time interval that depends only on the linear growth rate of the dift
b and is independent of the initial condition. A continuation argument (that is repeating the
argument starting with the old final time as a new initial time) together with uniqueness of the
solution is then used to show that the estimates still hold for any finite time horizon. See Lemma
and Proposition (cf. [2T, Lemma 3.5]). Using successive integration by parts, we are able
to show that the estimates are independent of the spatial derivative of the drift coefficient.

Let us mention that the particular structure of the SDE (1.1]) and the Brownian motion enables
to study the notion of path by path uniqueness of solution introduced by Davie in [5]. This result
was generalised in [3] to the case of fractional Brownian motion with Hurst parameter H € (0, 1).
In particular, the authors show the path by path uniqueness of the solution when the drift belong
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to the Besov-Sobolev space Bg‘ofgo, a € R. Under some conditions on «, they showed that the
solution has a Lipschitz flow. It is also worth mentioning that the distributional drift case (« < 0)
was also studied in the case H < %

A Malliavin calculus based method combined with local time variational calculus was used in
[ to study the SDE when the driving noise is a fractional Brownian motion with Hurst
parameter H < . Assuming that the drift b € L*(R?, L>([0,T],R%)) N L>(R?, L*>([0,T], R)),
the authors prove that the unique solution has a higher order Fréchet differentiable stochastic
flows for H small.

The second objective of the paper is to establish spatial Sobolev regularity of the strong solution
of the SDE

t
X" =+t / b(u, X")du + B, — By, s,t € R and x € R%, (1.2)

when the drift coefficient b : [0,1] x R? — R? is a Borel measurable function with spatial linear
growth. More specifically, we obtain a two-parameter stochastic flow for the SDE (1.2)) defined by

R xR xRS (s,t,2) > dss(2) := X;" € R
which is pathwise Sobolev differentiable in the spatial variable z. Moreover, each flow map
RY >z ¢y 4(x) € RY
is a Sobolev diffeomorphism in the sense that
¢s,(x) and ¢S_t1(x) € L*(Q,W'P(R?, p))

for all s,¢ € R and all p € (0,00). The symbol W!?(R?, p) stands for the weighted Sobolev space
with the weight function p having exponential of the second moment with respect to Lebesgue
measure on R%. The above result is an extension to the case of unbounded drifts of the results in
[24]; see also [15]

As application of our results, we study the following stochastic delay differential equation

dX(t) = b(X(t —r), X(£,0, (v,n))dt + dB(t), t > 0, (X(0),Xo) = (v,n) € R? x L*([—r,0],R?),
(1.3)

when the drift coefficient b : R? x R? — R is a Borel-measurable function bounded in the first
argument and has linear growth in the second argument. We prove that there exists a unique
strong Malliavin differentiable solution to the above delay equation.

The paper is organized as follows: In Section [2| we recall some basic definitions and facts
on Malliavin calculus, Gaussian white noise theory and stochastic flows. We also give some
preliminary results in this section. In Section [3] we present the main results of the paper. Section
is devoted to the proof of the main results.

2. PRELIMINARY BACKGROUND

In this section we briefly review some facts from Gaussian white noise analysis, Malliavin
calculus and stochastic dynamical systems. These facts will be used in establishing our results in
the forthcoming sections. We refer the reader to [T}, 27, [16] for more information on white noise
theory. For the Malliavin calculus the reader may consult [26] [I8] [6]. For stochastic flow theory,
see [15].

2.1. Basic facts of Gaussian white noise theory. In this section, we recall the definition of
the Hida distribution space; See T. Hida et al. [II]. This space plays a crucial role in our proof of
the construction of a unique strong solution for the singular SDE (|1.1)).

Let us fix a time horizon 0 < T < co. Consider a positive self-adjoint operator A on L?([0,7])
with discrete eigenvalues greater that 1.

Denote by S([0,7T]) the standard nuclear countably Hilbertian subspace of (L2([0,T]), A) con-
structed in [27]. Denote by S’([0,T1]) its topological dual. Denote by B(S’([0,77])) the Borel
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o—algebra of §’'([0,T]). It follows from the Bochner-Minlos theorem that there exists a unique
probability measure = on B(S’([0, 7)) such that

/ ei(w,qﬁ)ﬂ_(dw) 2H¢HL2(0T
8/([0,77)

is valid for all ¢ € S([0,T]), where (w, ¢) is the action of w € §'([0,T]) on ¢ € S([0,T]). The
d-dimensional white noise probability measure P is defined as the product measure

d
P = X T (2.1)
on the measurable space
d d
(,7) = <H8’<[0,T]),Z_gB(S’([O,T]))> . (22)

For w = (w1, .. .,wa) € (S'([0,T]))% and ¢ = (6D, ..., D) € (S([0,T]))* let

~ 1
é(6,) = xp ({6 = 3 10l o0 )

be the stochastic exponential. Here {(w, ¢) := Zf 1 (Wi, @5) .
In what follows, denote by ((S([0,77)) ) the n—th complete symmetric tensor product of
(S([0,T]))¢ with itself. Since &(¢,w) is holomorphic in ¢ around zero, there exist generalized

PN
Hermite polynomials H,, (w) € (((S([O,T}))d)(gn) satisfying

26,0) = 3 (Hafw),6°") (2.3)

for ¢ in a neighbourhood of zero in (S([0, T}))d. One can prove that

{<Hn(w), ¢<”>> 6™ e ((S(0, T ", ne NO} (2.4)

is a total subset of L?(P). Moreover, for all n,m € Ny, ¢ € ((S([O,T]))d)(@n7 P ¢
((S([o, 7)) ¥ we have the following orthogonality relation
(n) (m) — | (n) ,(n)
| (Ha@) 6 ) (B (), 0™ P) = 8ot (9,0 (25)
Let L2([0, T]™; (R4)®") be the space of square integrable symmetric functions f : [0,#]" — (R%)®")
with values in (R4)®". 1t follows from (2.5) that we can uniquely extend the action (H,(w), o)
®n ®n Rn N\’
of Hy, € ((S([O,T]) ) ) on ¢ € (S([O,T]) ) to the action of H,, € ((8([O,T]) ) ) on
™ e L2([0, T)™; (RY)®™) for w a.e and for all n. Denote by I,, this extension, then I, (¢(™) can be
viewed as n-fold iterated Ito integral of ¢(™ € L2([0, T]"; (R?)®") with respect to a d-dimensional
Wiener process
B, = (BS), . ,Bt(d)) (2.6)

on the white noise probability space
(Q,F,P). (2.7)

Using (2.3) and (2.5), we deduce the Wiener-1t6 decomposition of square integrable Brownian
functional that is

2(P) = @ L(Z*([0,T]"; (R)®™)). (2.8)

n>0
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The construction of the Hida stochastic test function and distribution space is based on the
decomposition (2.8). To this end let

A= (A,... A), (2.9)

with A being the self-adjoint operator introduced earlier. It follows from a second quantization
argument that the Hida stochastic test function space (S) can be defined as the space of all
f= 00 (Hn(),¢™) € L?(P) such that

DI [(TOROIRTE

n>0

2

I/

< 00 (2.10)
L2((0,T]n;(RY)@n)

for all p > 0. Endowed with the seminorm |[|-[|, ,, p > 0, the space () is a nuclear Fréchet algebra
with respect to multiplication of functions. One sees from (2.3)) that

e(o,w) € (S) (2.11)

for all ¢ € (S([0,T]))%.
The Hida stochastic distribution space (S)* is the topological dual of (S). Hence we get the
Gel’fand triple

(S) — L*(P) — (S)*.
By construction, the Hida distribution space (S)* contains the the time derivatives of the d-
dimensional Wiener process B; i.e.,

W= %Bg‘ €S i=1,...,d (2.12)
We will also need the definition of the S-transform, see [29]. Let S(®) be the S-transform of
® € (8)* then S(®) is defined by the following dual pairing
S5(®)(9) = (@, e(¢,w)) (2.13)
for ¢ € (Sc([0,77)))? (Sc([0,T]) denotes the complexification of S([0,7]).) The S—transform is an
injective map from (S)* to C i.e., if
S(®) = S(P) for ,¥ € (S)*,
then
o =0
Furthermore,
SWiN@) = 6(1), i=1,....d (2.14)

for ¢ = (¢, ..., 0'M) € (Sc([0,T)))".
Finally, we recall the concept of the Wick-Grassmann product. Let ®, ¥ € (S)* be two distri-
bution then the Wick product ® ¢ ¥ of ® and V¥ is the unique element in (S)* such that

S(®oW)(¢) = S(®)(6)S(V)(¢) (2.15)
for all ¢ € (Sc([0,7]))¢. As an example, we have
(Ha(@),6™ ) o (Hin(w), 0™ ) = (Hypm (), 6 G ) (2.16)
for ¢ € ((S([0,T1)H)®" and ™ € ((S(0,77))%)®™ . Using and (23), we get
(¢, w) = exp®((w, ¢)) (2.17)
for ¢ € (S([0,7]))?. Here the Wick exponential exp®(X) of an element X € (S)* is defined as
exp®(X) = Z %XO”, (2.18)
n>0

where X°" = X ¢...¢ X, assuming that the sum on the right side of (2.18]) converges in (S)*.
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2.2. The Malliavin Derivative. Here we recall the definitions of the Malliavin derivative within
the context of white noise theory. Without loss of generality we assume that d = 1. Let F' € L?(P).

Then using 1) there exists a unique sequence ¢(™ € 22([07 T)™), n > 1 such that
F=3" (Ha(),6). (2.19)
n>0

Suppose that

Z nn! Hd)(”)

n>1

2
< 00 (2.20)
£2(0,7]")

and denote by D;F the Malliavin derivative of F' in the direction of the Brownian motion. Then

DyF = Zn<Hn,1(~),q§(”)(-,t)>. (2.21)

n>1

Denote by D1 » the family of all F € L?(P) which are Malliavin differentiable. Define the norm
[Il,2 on D12 by

2 2 2
IFly 2 = ||F||L2(P) + ||D~F||L2([0,T]xﬂ,,\xp) J (2.22)
where A stands for the Lebesgue measure. Endowed with this norm, D 5 is a Hilbert space and
the following chain of continuous inclusions are satisfied:

(S) = Dyg = L*(P) = D_1 5 = (S), (2.23)
where D_; 5 is the dual of Dy .

2.3. Some basic facts on stochastic flows. In this section we state some basic facts needed to
describe the Sobolev differentiable flow generated by the singular SDE (1.1)).

Definition 2.1. The P-preserving (ergodic) Wiener shift 0(t,-) : Q — § is defined by
O(t,w)(s) :=w(t+s) —w(t)we, tseR. (2.24)
Note that the Brownian motion satisfies the following perfect heliz property:
By, 41, (w) — By, (w) = By, (0(t1,w)). (2.25)

The above perfect helix property expresses, in a pathwise manner, the fact that the Brownian
motion B has stationary ergodic increments.
Next, consider the SDE

t
Xf7””:x—|—/ b(u, X,)du + B; — By, s,t € R and 2 € R, (2.26)
S

where the drift coefficient b : [0, 7] x R — R? is a Borel measurable function satisfying a linear
growth condition. The following definition describes the dynamics of the SDE ([2.26]):

Definition 2.2. A stochastic flow of homeomorphisms for the SDE (2.26]) is a map
d: RxRxR¢Y — RIxQ
(s,t,z,w) = Psi(,w)

with a universal set Q* € F of full Wiener measure such that, for all w € Q*, the following
statements hold:

(1) For any x € R%, the process ¢s(w,w),s,t € R, is a global strong solution to the SDE
2.20)).

(2) ¢s.i(w,w) is continuous in (s,t,z) € R x R x R

(3) (/j)s,t('aw) = (bu,t('aw) o ¢s,u('7w> fOT‘ all s,u,t € R.

(4) ¢r4(v,w) = for all x € R? and t € R.

(5) ¢si(-,w) : RY — Re are homeomorphisms for all s,t € R.
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We next define a class of weighted Sobolev spaces. Let p : RY — (0, 00) be a Borel measurable
function satisfying

/ emzp(a:)dz < 0. (2.27)
Rd
Denote by LP(R<, p) the Banach space of all Borel measurable functions u = (ug, ..., uq) : R? — R
satisfying
/ () Pp(z)de < o (2.28)
Rd
and equipped with the norm
1
Jull oy i= | [ futa)Poie)da] (2:29)
Rd

Moreover, denote by WP (R?, p) the space of functions u € LP(R%, p) with weak partial derivatives
V,u € LP(R%p) for j =1,...,d. For each u € WHP(R?, p), define its norm ||ul1 ,, as follows

lellpp = lullogap) + D85Vl Loga,p)- (2.30)
Equipped with the norm (2.30)), the space W1P(R? p) is a Banach space.

Definition 2.3. A stochastic flow ¢s (-, w) of homeomorphisms is said to be Sobolev-differentiable
if for all s,t € R, the maps ¢s+(-,w) and qb:tl(,w) belong to WP (R, p).

Definition 2.4. Let 0(t,-) : Q@ — Q be a P-preserving Wiener shift for each t € R. A stochastic
flow is a perfect Sobolev-differentiable cocycle ¢o (-, 0(t,-)) if it satisfies the following property
Dot -+ (1, w) = Pt (-, 0(t1,w)) © Po, (- w) (2.31)
for allw € Q and t1,t2 € R.

In the next section, we recall some preliminary facts results which will be useful in the proof of
our main results.

2.4. Preliminary Facts. Our method of constructing the strong solution for the singular SDE
employs the following result which is an extension of the result in [I7].

Proposition 2.5. Let T > 0 be sufficiently small. Assume that the drift coefficient b : [0,T] X
RY—s R in is Lipschitz continuous and of linear growth. Then the unique strong solution
Xy = (X}, .., X7 of has the following representation
¢ (t.X1(w) = Bp ¢ (4. BI@) &) (2.32)
forall ¢ : [0,T] x R — R such that ¢ (t,BZ) € L3(P) for all0 <t <T,i=1,...,d,. The symbol
E3.(b) stands for
E5(0)(w,@) = exp® (S, Jy (Wi(w) + (s, Bu(@))) 4B (@)
1 (T X . ~ o2
L (Wg (w) + bj(s,Bs(w))) ds). (2.33)

(ﬁ,f, ﬁ) , (Et) . is a copy of the quadruple (2, F, P), (Bt),~q in (3.1). Moreover E5 denotes
> >

the Pettis integral of random elements & : QO — (S)" with respect to the measure P. The Wick
product ¢ in the Wick exponential of is taken with respect to P and Wtj is the white noise
derivative of B in the Hida space (S)* The stochastic integrals fOT o(t,&)dBI(D) in are
defined for predictable integrands ¢ with values in the conuclear space (S)*, and the second integral

in (2.33) is in the sense of Pettis.
Proof. It follows as in [I7] using Benés theorem (see Lemma [A.4]). O
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Remark 2.6. [t is worth mentioning one needs to construct the stochastic integral in (S)™ with

respect to the Brownian motion Et on the filtered probability space (ﬁ,]::, ﬁ) , (]-:t) oy’ where
t>0

(j-:t) is the ﬁ—completed filtration generated by the Et. The existence of P comes from the
>0

Bochner-Minlo’s Theorem. We refer the reader to [12] for more on stochastic integral in conuclear
space.

In the following, we denote by Yf’b the expectation on the right side of (2.32) for ¢(¢,x) = «x,
that is

ib ~(i
v = By |BPg )]
fori=1,...,d. We set
YD = (yfvb,...,Yﬂ”’) . (2.34)

The next result gives an exponential estimate of the square of solution to the SDE (1.1)) and
plays a vital part in the proof of our main results. It proof uses Fernique’s Theorem.

Lemma 2.7. Letty € [0,1] and Y : Q — R? be a F,-measurable random variable independent of
the P-augmented filtration generated by the Brownian motion By. Let b : [0,1] x R — R be a
smooth coefficient with compact support satisfying a global linear growth condition; that is

[b(t, 2)|
1+ |z|
Denote by X1 the unique strong solution (if it exists) to the SDE (1) starting at Y and with

drift coefficient b. Then there exists a positive number &g independent of to and 'Y (but may depend
on k) such that

k:esssup{ :tG[O,T],zERd}<oo.

Eexp{fy sup | XY 2} < C1Eexp{Cad|Y|?}, (2.35)
to<t<1

where C1,Cy are positive constants independent of Y, but may depend on k. In addition, Cy may
depend on §y and d. This expectation is finite provided that the right side of (2.35|) is finite.

Proof. Start with the almost sure (a.s.) relation
t
XY =y +/ b(u, X!V Ydu + By — By, to <t < 1. (2.36)
to
Using the above equation, we get the following a.s. estimates using Holder’s inequality

t 2
X002 <3V + 3| / b(u, Xt )du| + 3B, — By, |
to

t

2
<3P +3( [ k(1 +|X0Y)du) +3]B - By,
to

t 2
<3|V + 3(/ k(1 + |X5°’Y|)du) +3|B; — By, |?

to

t
<3|V )2 +6K%(t —to)? [ {1+ XY} du + 3|B; — By, |?

to
t
< B|Y2 4 6K2(t — to)? + 6K2(t — to)? / X1V 2y + 3| B, — By |- (2.37)
to

Taking the supremum on both sides and multiplying by &g, we have

1
o sup |X[0Y|2 < 38|V |? + 6k%0g + 360 sup |B, — By, | +6k* [ 8 sup |XV|%ds, as.
to<t<1 to<u<l to  0<u<s
(2.38)
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Applying Gronwall’s lemma to the last inequality, we get
So sup | XY < (360|Y|? + 6k%60 + 300 sup |By — By, |? S as. (2.39)

to<t<1 to<u<l
Denote Cy := 3¢5%”. Then from the above inequality, we get
exp{do sup |Xt°’ 12} < exp{2C560k?} - exp{dpCa|Y|*} - exp{Cady sup |B., — By, |}, as.
to<t< to<u<l1 (2.40)

Taking expectations in the above inequality and using the fact that Y and |B,, — By, |, u > tg, are
independent, we obtain
Eexp{5o sup |Xt0’y\2} < exp{202k?30} - B exp{Cado|Y[*} - Eexp{Cady sup [By — By|*}-

out

(2.41)
The result follows if we can find §y independent of Y and tg such that
Bexp{Caly sup [Bu - By, [*} < co. (2.42)
to u<

The above inequality follows from Fernique’s Theorem. For the sake of completeness we provide
the details.

We use the exponential series expansion of the left side followed by Doob’s maximal inequality
to obtain the following estimates:

e nén
E exp{C2do sup |B — By, ?} <1+ Z [ sup |By — By, |*"
to<u< n=1 thuSto-‘r(l—to)
CRd™§y 1 2n \2n(2n)!
—1 ( ) 1—to)"
+ nz::l n! 2n —1 2m.n! ( 0)
(o)
CRd™sy 1 2n \27(2n)!
= (2ny et
=t ; n! 2n —1 2m.n!
> Cpd™oy 1 2n \27(2n)!
Apply the ratio test to the above series Z an, where a,, := ' ( ) , n>1to
—~ n! 2n—1/ 27.nl
get
_ anyr Ot tLentia(n + 1)) pl2nn) 2n+1) 2" oop -2
lim = lim ( )
n—oo  ay, n—oo  (n+1)200tD(n 4+ 1)1 CRd™6R(2n)!\2(n+1) — 1 2n—1
. Oyt dnt15i ™ 2(n + 1)) nl2™n!
oo (n 4 D)0 (n £ 1)1 CRdER(2n)!
= 2dCs0y.
(2.43)
o)
By the ration test, it follows that the series Z an converges for p < 5 dC (e.g. for §p := ﬁ)
n=1
With this choice of dy, take
Cy = exp{2C2k?*0y} - Eexp{C20y sup |B, — B, |*} < oc. (2.44)
to<u<l
Therefore (2.41)) gives
E exp{do sup XY 12y < 0y EeC2%IYT, (2.45)

to<t<

Note that Cy,Cs and §y are independent of Y and tg (but may depend on k and d). Thus the
claim (2.35)) holds for the above choice of dy. O
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Remark 2.8. Note that for Y deterministic, the above expectation is finite. If Y 1is for example
independent drifted Brownian motion, the above expression is also finite given the choice of dg.

3. STATEMENTS OF THE MAIN RESULTS

3.1. Existence and uniqueness of the strong solution. Let B; be a d-dimensional Brownian
motion with respect to the stochastic basis

(Qv]:7 P) ) {ft} s0<t<T (31)
with {]:t}ogth the P—augmented filtration generated by B;. In this section, we extend the
results in [22] to cover singular drifts with linear growth. In particular, we establish the existence
and uniqueness of a strong solution of the singular SDE

dX; =b(t,X;)dt +dB;, 0<t <1, Xg=x€R?, (3.2)

where the drift coefficient b : [0, 7] x R? — R? is a Borel measurable function which has linear
growth; that is

k.= esssup{b(t’z)| te [O,T],zeRd} < 00. (3.3)

T+ 2] -
One of the main results of this paper is the following:

Theorem 3.1. Suppose that the drift coefficient b : [0,T] x R? — R? in the SDE is a
Borel-measurable function such that k := esssup { b(t, 2)| :t€[0,T),z € Rd} < 00. Then there

1+ |z
exists a unique global strong solution X to the SDE (3.2) adapted to the filtration {F;}y—,<rp-
Furthermore, the solution X; is Malliavin differentiable for all 0 <t <T. o

Remark 3.2. In the one dimensional autonomous case, existence and uniqueness for the solution
of was first obtain by Engelbert and Schmidt [1]. existence, uniqueness and Malliavin dif-
ferentiability of the solution in the one dimensional case was obtained by Nilssen in [25] for small
time intervals. Thus Theorem extends the above results to the multidimensional case on any
time horizon.

Theorem can further be generalized to cover a class of non-degenerate d—dimensional It6-
diffusions as follows:

Theorem 3.3. Consider the autonomous R¢—valued SDE
dX; = b(X,)dt + o(X;)dB;, Xo=x€RY 0<t<T, (3.4)

where the coefficients b : R* — R? and o : R — R¥x R%are Borel measurable. Suppose that
there exists a bijection A : R — R, which is twice continuously differentiable and satisfies the

following requirements. Let A, : R? — L (Rd,Rd) and Agy : R — L (]Rd X ]Rd,]Rd) be the
corresponding derivatives of A and assume that
A (y)o(y) = idga fory a.e.
and
A~Y s Lipschitz continuous.
Suppose that the function b, : R — R? given by
be(x) := Ay (Af1 (x)) [b(Af1 (x))]
1 d d
+ 50 (A (@) (Do (@) [e], Y oA (@) [ed]
i=1 i=1
satisfies the conditions of Theorem where e;, i =1,...,d, is a basis of RY. Then the SDE ([3.4)
has a stochastic flow ¢s+ € L*(Q, WLP) for all p > 1. Furthermore, each map ¢s¢: Q — WP is
Malliavin differentiable.

Proof. The proof can be directly obtained from It6’s Lemma. See [22]. O
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3.2. Existence of a Sobolev differentiable stochastic flow. In this section, we aim at showing
existence of a Sobolev differentiable stochastic flow for the following d-dimensional SDE

t
X;’x =+ / b(u7Xu)d'U: + Bt - Bsa S7t S R a‘nd HAS Rd (35)

where the drift coefficient b : [0, 7] x R? — R? is a measurable function satisfying Hl~)||OO < 00,
b(t

2 4 cp0,1], 2 € R

+ |2]

where b(t, z) := 1

By Theorem the SDE (3.5) has a unique strong solution which we will denote by X**.
The following theorem gives the existence of a Sobolev differentiable flow for the SDE (3.5), and
is the main result of this section.

Theorem 3.4. Assume that the drift coefficient b in the SDE is Borel-measurable and
has linear growth. Then the SDE has a Sobolev differentiable stochastic flow ¢y s : R —
R?, s,t € R; that is

(1) ¢rs(-) and ¢t_51() € L2(Q,WhEP(R4;p)) for all s,t € R and p € (1,00);

(2) d)t,u('aw) = ¢t,s('aw) © ¢s,u(’vW) fOT allt <s<wu a.s.;
(3) ¢1i(-yw) =idgra for allt € R a.s.

We also have the following cocycle property in the autonomous case.

Corollary 3.5. Consider the autonomous SDE
t
X" =x —|—/ b(X5%)du+ B; — B, s,t €R, 2 € RY, (3.6)

where b : R? — R? 4s Borel measurable and has linear growth. Then the stochastic flow of the
SDE has a version which generates a perfect Sobolev-differentiable cocycle (¢o.,0(t,-)) where
0(t,:) : Q@ — Q is the P-preserving Wiener shift. More specifically, the following perfect cocycle
property holds for all w € Q and all t1,t2 € R

¢07t1+t2('7w) = ¢0,tz('79(t’w)) © ¢07t1('7w)' (37)

Remark 3.6. Similar results were proved in [24], assuming that the drift coefficient b is measurable
and globally bounded. Considering unbounded drift coefficients, Nilssen in [25] proves similar
result in one dimension and only for small time interval. Note however that the technique used in
[25], which is based on the Itd’s-Tanaka formula, cannot be applied here since the local time for
multidimensional Brownian is not defined.

Theorem 3.7. Consider the autonomous d-dimensional SDE
dX; = b(X;)dt + o(X;)dB;, Xo=xz€cRY 0<t<T, (3.8)

where the coefficients b : RY — R? and o : R — R¥x R are Borel measurable. Assume that
o(x) has an inverse o~1(x) for all x € R%. Moreover, suppose that o= ! : R? — R? x R? is in
CHRY) and
8 1 8 -1
aixkglj = aTCjO’zk

for all l,k,j =1,...,d. Furthermore, suppose that the function A : R* — R defined by

Az) = /0 o (tx) - xdt

has a Lipschitz continuous inverse A~' : R® — R, Suppose A is C? with derivatives DA : R —
L(R%RY) and D?A : R — L(RY x RY RY). Suppose that the function b, : RT — R? given by

bi(x) := DA (Af1 (a:)) [b(Af1 (z))}

d
Yoo @) e, Yy oA (@) [ed]

i=1 i=1

+ %DQA (A7 (2))
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satisfies the conditions of Theorem where e;, i =1,...,d, is a basis of R%. Then there exists
a stochastic flow (s,t, ) — ¢s1(x) of the SDE (3.8)) such that

¢s,1(x) € L*(Q, WP(R?, p))
for all0 < s <t <1 and for all p > 1.
Proof. The proof can be directly obtained from It6’s Lemma. See [24]. O

We also have the following proposition which is essential for the proof of Theorem

Proposition 3.8. Let b : R x R* — R be measurable and and has linear growth. Le U be an
open a bounded subset of R?. Then for each t € R and p > 1 we have

X; € LA(Q; W2 (U)).

4. PROOFS OF THE MAIN RESULTS

4.1. Proof of existence and uniqueness of the strong solution. We first prove Theorem [3.1]
on a small time interval [0,¢1]. Since #; is necessarily independent of the initial point, the result
will then follow by a continuation argument on successive intervals of length ¢; (using random
non-anticipative initial conditions and Lemma, .

The proof of Theorem [3.1] is performed in two steps. In first step, we consider a sequence
by 1 [0,t1] x RY — RY n > 1 of smooth coefficients with compact support satisfying a global linear
growth condition and converging a.e. to b. Using the relative compactness criteria (Corollary
, we prove that for each 0 <t < ¢; the sequence of corresponding strong solutions X" = Y;b“',
n > 1, of the SDEs

dX! =b,(t,X")dt +dBy, 0<t<t;, Xp =z R? n>1, (4.1)

is relatively compact in L?(P;R%).

In the second step of the argument, we show that for a measurable drift coefficient b satisfying
linear growth condition, the solution Y;?, 0 <t < t;, of is a generalized process in the Hida
distribution space. Then using the S-transform (2.13)), we show that for a sequence {b,}22, of a.e.
compactly supported smooth coefficients approximating b and satisfying a uniform global linear
growth condition, there exists a convergent subsequence of the corresponding strong solutions

b’Vl 5 . .
X, ¢ =Y, 7 satisfying
b
Y," — Y} in L?(P,R%)
for 0 <t < t;. We then check that the limiting process Y} is a strong solution of the SDE (3.2,

using a transformation property for Y2
The following lemma is an essential part of the first step of our procedure.

Lemma 4.1. In the SDE (3.2)), let b : [0,t1] x R? — R be a smooth function with compact
support. Then the corresponding strong solution X of (3.2) satisfies

b(u, z
E [\DtXS — Dt,XS|2] < Cd(eSSSUP(u,z)e[o,tl]de 1(+|z)|) [t —t'|~
for 0 <t <t<ty, a=a(s) >0 with t; small and
b(u, 2)|
sup FE [|D;X,|? <C’(esssu |7’),
ogtgtl [1DXF] < G Plu.)ef0.n]xRe 77 |z
where Cyy, @ [0,00) — [0,00) is an increasing, continuous function, |- | a matriz-norm on R¥<4,

Combination of Lemma [{.1] and Corollary [A-3] yields the following result

Corollary 4.2. Let b, : [0,t;] x R? — R? n > 1, be a sequence of smooth coefficients with

‘b;ﬁ’;‘) < 0o Then for each 0 < t < t; the

sequence of corresponding strong solutions X, ¢ = Ytb", n > 1, is relatively compact in L?(P;R?).

compact support and with sup,,>, €sSSUP(, .ye[o,¢,] xR
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The following crucial estimate which generalises those in [0], 21] and plays an important role in
deriving our results:

Proposition 4.3. Let B be a d-dimensional Brownian motion starting from the origin and
bi,...,by be compactly supported continuously differentiable functions b; : [0,1] x R? — R for
i=1,2,...n. Let a; € {0,1}¢ be a multiindex such that |a;| = 1 fori =1,2,...,n. Then there
exists a universal constant C (independent of {b;}, n, and {a;}) such that

n

/ [ Dbt B(t:)) | dta ... dt,
to<t1<--<tn<t \j_p

where T is the Gamma-function and b(t, z) = Ii(f_’l?l, (t,z) € [0,1] x R? satisfies ||b(t, z)|| < 1. Here

D% denotes the partial derivative with respect to the jth space variable, where j is the position of
the 1 in a;.

C™ Ty [billoo (t — to)™/?

E )
G+ 1)

<

(4.2)

Proof. See Appendix B

We are now ready to give the proof of Lemma [£.1]

Proof of Lemma[4.1. The chain-rule for the Malliavin derivatives (see [26, Proposition 1.2.2] and
[26, Theorem 2.2.1]) yields

DX, =Tu+ [ ¥(u,X,)DiX,du, (4.3)
t

P-a.e., for all t < s < t;. Here Iy is the d x d identity matrix and ' = (%b(j)(t,$)> ii<d is
T 1<i,5<

the spatial Jacobian derivative of b. Then, we get for t; > s > ¢ > t/,

S S
Dy X, — DXy = | V(u,X,)DyXydu— / W (u, X, ) Dy Xy du

t’ t

t s
= / b'(u, Xu)Dt/XudU + / b'(u, Xu) (Dt’Xu — DtXu) du
t’ t

= Dt’Xt - Id + / b'(u, Xu) (Dt’Xu - DtXu) du. (44)
t
Tterating (4.4)) leads to
Dy X, — DX,
- (Id + Z/ B (s1, Xo,) oo b (5n, X, )dsy .. .dsn) (Dt/Xt - Id) (4.5)
n=1Yt<s1<-<sp<s
in L2(P), where “” denotes matrix multiplication. On the other hand we also have that
Dy X; — Ty = Z/ V(s1, Xg,) oo b (s, X5, )dsy ... dsy,. (4.6)
1t <s1< e <sp <t
Let |- | be the maximum norm on R?*?. Applying Girsanov’s theorem, Holder’s inequality and

the Benés Theorem (see Lemma [A.4]) in relation to (4.5)) and (4.6]), we get
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E[|Dt/Xs - Dtxﬂ

:EH(Id‘F le<81< s b’(sl’le) o b/(sn,Bsn)dsl dsn)

2

X (i/t b’(81,le) :...:b’(smBSn)dsl...dSn)

=1/t <s1<-<sn <t

X exp Z/ b (u, By, dB(J) Z/ b(J (u, B,))*du + = Z/ du)}

Bl exp (22/01(b<j>(u,Bu))%lu)]i x B exp (2z/olb<j>(u,3u)d3g> —22/0 (09 (u, B,))du) |
j=1 j=1 j=1

oo

X HLH—Z/ b (s1, B, )t -+ 1 U (s, B, )ds1 ... dsy,
t<s1< <8 <8

n=1

2

L16(P;Rdxd)

X H Z/f b/(817BS1) e b/(snaBsn)dsl .. dsn ’ (47)

t<s1< - <sp <t

L16(PyRAxd)’
n=1 i

The term E[exp (QZ] o 456 (u, B, )dBY — Z] e 5 (u, B, ))zdu)] is equal to one, by

Benés Theorem (see Lemma apphed to the martingale ZZJ o % p0) (u, B )dB(J In ad-

dition, the term ﬂexp (2 ZJ o 5 (6@ (u, B ))Qduﬂ is also finite for small ¢; (see for example
4.4)

proof of Lemma . Hence, there is a positive constant C}, such that for all ¢/ <t < s <, we

have

E[|Dt/Xs . Dth|2]
o0

IﬁZ/ V(s1,Bs,): 1V (sn, By, )dsy . ..dsy,
<81 < <8, <8

n=1

2
<C%,

L16(P;Rdxd)

e 2
X H / b'(s1,Bs,) i+ : b (8p, Bs, )dsy ...ds
Z ‘ S n

o1 It <s1<-<sn <t L16(P;Réxd)

o . o
A > Z [ B,

n=14,5=111,...l,_1=1 l2

b(ll)(SQ7 BSz) .

d
. @b(l"*)(sn, By, )ds; ...ds

(Z Z Z H/ Zlb“)(sl,le)af b0 (sq, By,) ..

n=1i,j=111, ..1n_1=1 <1< <sp <t 2

0
8—%13( n=1)(s,, By, )ds; ...ds

Consider the following the expression

2
" L“"(P'R))

(4.8)

2
" L16(P;]R)) ’

0

0 0
A::/ — bW (sy, B, b (s9,Bs) ... ——
t<s1<<sp<t OTly (81 1)89% (52 2) 0

T b(ln)(snv Bs")dsl - dsp. (49)
l

n

It follows from repeated use of (deterministic) integration by parts that A2 is equal to a sum of
at most 22" summands of the form

/ 91(81) -+ . gan(82,)dsy . .. dsap (4.10)
t<s1<-<sap<t

1
2
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where g; € {%b(i)(~,3.) 11<i4,5 < d}, Il =1,2...2n. Since A* = A%A2?, then by a similar
J
argument there are at most 25" such summands (of length 4n). Applying the same concept to
A one gets that it can be represented as a sum of at most 2'2%" terms of the form (4.10]) with
length 16n.
Using this fact and Proposition [£.3] we obtain

o 0 0
‘ / b (s1, By, ) =——b") (59, By,) ... =—bn=1) (s, By )dsy ... ds,
t<s1< - <sp <t Oy, Oxy, Oz L16(4;R)
- 1/16

< 2128ncl6n‘|b||é2n|t _ t/|8n /
- I'8n+1)

2nCm Bl |t — ¢
< (Snh)1/T6 (4.11)

Combining (4.8) and (4.11) we get

(8nl)1/16

n=1

<, grt2osnon Bt — s/
m@&m&mg%<H |m-w|>

~ 2
0 n+298nm n |4 _ ¢|(n—=1)/2
y d Cr bl It = ¢ |
2 (4n!)L/16

n=1

< Cat, (I6]loo) [t — ¥']

for ' <t < s <t; and a function Cy4, as claimed in the theorem.
Similarly, we get the estimate for supy<,<, E[|D;X,|?]. This completes the proof of Lemma

41l O

The next step based on White-noise analysis will be used to identify the process Y defined by
(2.34) as the Malliavin differentiable solution to . Assume that b is Borel measurable function
satisfying the linear growth condition. We first show that Y is a well-defined element in the
Hida distribution space (S)*, 0 < t < t;. Then we show that for a.e. approximating sequence
of smooth coefficients b,, with compact support and satisfying a uniform linear growth condition,

b . bn, .
a subsequence of the corresponding strong solutions X,,, ; =Y, 7, satisfies Y, 7 — Y} in L?(P)

for 0 < ¢t < 1. Finally, we identify Y} as a strong solution to (3.2) by applying a transformation
property for Y.

Lemma 4.4. Assume that the sequence {b,}3, satisfies conditions of Corollary 4.2l Then the
t1

expectation E{exp (512/ by, (w, Bu)|2du)] is finite for a small time t1 independent of n.
0

Proof.

Bexp (512/0Tbn(u,3u>|2du)] <B[exp (512/0T K21+ [By[?)du) |
<exp (512k2T) X E[exp (512k2T0r<Iha<xT |Bu|2)}

The process |B,|? is a non negative submartingale. Using the Doob’s martingale inequality and

the exponential expansion, one can show as in the proof of Lemma that for T =1t < m

the expectation is finite.
O

From now on, we assume that t; < The next lemma gives a condition under which

1
32v/2dk?
the process Y,? belongs to the Hida distribution space.
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Lemma 4.5. Suppose that the drift b : [0,t;] x R*¥—s R? is Borel measurable and satisfies the
linear growth condition (3.3)). Then the coordinates of the process Y} defined in (2.34)), by

Y = By [Eg”gfl (b)} , (4.12)
belong to the Hida distribution space.

. 1 . .
Proof. Since t; < s sing the same argument as in the proof of Lemma the result
follows in a similar way as in [22] Lemma 11].

Lemma 4.6. Let b, : [0,t,] x R®— R? be a sequence of Borel measurable functions with by = b

. . b’!‘L k)
and satisfying sup,,, ess SUD(y,2)€[0,,] xR | 15:‘;2)

< 00. Then the following estimate holds

S ¥ (0)] < 0 Bl - exp(31 / [6(s)[2ds), e [0,7]

for all ¢ € (Sc([0,t1]))%, i =1,...,d, where J,, is given by

d ty 2
In ::Z (2/ (bg)(u,Bu) — b(j)(u,Bu)) du
j=1 » 70

“(f

More specifically, if b, approximates b in the following sense

E[J,] = 0 as n — oo, (4.14)

<b53><u,Bu>)2—(b<ﬂ‘><u,Bu>>2\du) ) n>1 (4.13)

then
Y = Y in (S)* asn — oo
forall0<t<t;,i=1,...,d.

Proof. The proof follows in a similar way as in [22] Lemma 11] and the conclusion follows since t;
is sufficiently small, using the same reasoning as in the proof of Lemma |4.4 O

Lemma 4.7. Let b, : [0,t1] x RI—R? be a sequence of Borel-measurable, smooth functions
|bn (t,2)] ; ; _
< 0o which approzimates a Borel

1+|z|
measurable, coefficient b : [0,T] x RI—R? (satisfying ess SUD(¢,2)e[0,7] x R |?£:’IZZ)‘| < 00). Then

with compact support such that lim esssup; .yecjo,7]xre
n—00 ? ’

n

there exists a subsequence of the corresponding strong solutions X, + =Y, 7. =1,2,..., such
that

bn
Y,V =Y, 0<t<t,
in L2(u) as j — co. In particular, Y;? € L*(P) for 0 <t <t.

b .
Proof. Corollary guarantees existence of a subsequence Y, 7, j = 1,2..., converging in L?(P).
Hence, using the uniform linear growth property of the b,’s, it follows by the dominated conver-

;] — 0in (4.14), and hence Y;b"j — Y in (8)*. Therefore, it follows by
the uniqueness of the limit that Ytbn" — Y? in L3(P) for all t € [0,1]. O

gence theorem that E[J,

Lemma 4.8. Assume that b : [0,t;] x RI— R? is Borel-measurable and satisfies

b(t,
eSS SUDP(; . ) e[0,7] xR 7|1(+é)‘| < 00. Then

©® t,Y)) =E; [(p(i) (t,ét) & (b)} , a.e. (4.15)
forall0 <t <ty i=1,....d and ¢ = (oM, ..., o@D) such that ¢(B;) € L*>(P;R?).
Proof. Assuming that ¢; is small, the proof follows in a similar way as in [30, Lemma 16]. O

We now turn out to the proof of Theorem [3:1} We first prove the result for a particular T' < ¢;
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Proof of Theorem[3.1}

Case 1: We assume first that T = 64\‘}% < t1, where dq is given in Lemma e will

use of Lemma to verify that Y,? is a unique strong solution of the SDE (3.2)). Set
fo s,w) dB ?:1 fg 0 (s w)dB(]) and z = 0. Suppose the sequence {b,}52 ; satisfies the

conditions of Lemma We first show that Y’ has a continuous modification. Since each Y’ is
a strong solution of the SDE ([3.2) with b = b,,, we obtain, from Girsanov’s theorem using Benés
condition (see [2] or Lemma |A.4)) and our assumptions, that

EPKYti,bn ~ y;j,bn)“} :Eﬁ[(gtu) _ Eg))‘lg(/T bn(s,ﬁs)dés)}
0
<C -t —ulf
forall 0 < u,t <T,n>1 i=1,...,d Although the sequence { (fo ,)dB, )}n>1

may not be bounded in L2(]5,Rd) for all T > 0, we can still show that it is uniformly bounded
for T = 64\[(%2 < t; (as in (4.7))), using the supermartingale property of the Doléans-Dade

exponential and the proof of Lemma [£.4]
From Lemma, we have that

Y, ¥ in L2(PRY), 0<t<T,

for a subsequence of {Ytb" 1o° , and hence almost sure convergence holds for a further subsequence,
0 <t <T. Therefore Fatou’s Lemma yields

Eb[@fi_yjﬂ%]gc.u_uﬁ (4.16)

forall 0 < wu,t <T,i=1,...,d. Thus Y has a continuous modification from the Kolmogorov’s
continuity theorem.
Now Bt is a weak solution of 1) with respect to the measure dP* =

(fo ( )+ o(s )) )dP when the drift coeflicient b(s,z) is replaced by b(s,z) + ¢(s).
Thus we get

S()(@) = Ep | BE( / " (b5, B + 6())dB.)]

:Ep{ép}
= Ep- [/Ot (b(i)(&és) n ¢(i)(s))ds}
— /Ot Ep [b<i)(s7§5)5(/0T (b(u,ﬁu) - qﬁ(u))dgu)}ds_,_ S<Bt(i))(¢)

fori=1,2,...,d. Applying the transformation property (4.15)) to b, we get

s =s( [ B9, YN (6) + SBO)@). i = 1,2 d

0
Since S is injective, we get

t
= / b(s,Yb)ds + B, .
0
The Malliavin differentiability of Y;* follows from the fact that

sup HYf’b" <M<
1,2

n>1

foralli=1,...,d and 0 <t < T.(See e.g. [26]). Indeed, recall that:

e,

)

foe

L2(P) L2([0,T]xQ,AXP)
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Since b,, are of linear growth, using Gronwall Lemma, one shows that the first term is uniformly
bounded. The uniform boundedness of the second term follows from Girsanov theorem and Propo-
sition 3]

On the other hand, using Benés theorem, we can apply Girsanov’s theorem to any other strong
solution. Then the proof of Proposition (see e.g. [30, Proposition 1]) implies that any other
solution must be equal to Y.

The result is given for T' = 64\;529%2
and a continuation method with random non-anticipative initial conditions to iterate the above
argument on successive intervals of lengths 64\‘}% and show that the result is valid for all 0 <
T<1.

Case 2: We prove by induction that the unique solution to is Malliavin differentiable.
Since there exists a unique strong solution to in small time interval, combination of Gronwall
Lemma and linear growth condition guarantee non explosion of the unique strong solution. The
result will follow if we show that its Malliavin derivative is finite in the L?(P) norm. We will prove
this by induction.

independent of the initial condition. We will use induction

: - ‘55 — . yn,0,x _0O N,Si,Tq v
Choose once more d as in Lemma and set 7 := G i = AT T = X5 TZiXSzA»I =
9 xn.si,x ,i > 1. For 0 < t < sq, the result is true. Assume that there exists a Malliavin

% Si+1
T=T;
differentiable solution {X;,0 <t < s,,}. Set t such that s, <t < $yy1.
Let X", n > 1 be the approximating sequence defined by (4.1) and let start with the almost

sure (a.s.) relation

t
X=X +/ b (u, X)du + By — Bs, .y Sm <t < Smt1-
S

m

Using once more the chain-rule for the Malliavin derivatives, it follows that

n t / n :
<
DX — DSXsmt + fsm b (u, X)) D Xdu  if s < sy (4.17)
Tag+ fs b, (u, Xy ) D X0 du if s> s,
P-a.e., for all 0 < s < t, that is
Doxr - (Za 3520 o oy Vot X0 ) 50 (g, X0 )yt ) DXT, i s < s
Za+ 2211 Bty <<t < b (ur, X77 ) o2 b (ug, X7 )dun - .. dug if s> s,
(4.18)
P-a.e., for all 0 < s < t. We only consider the first term in (4.18]).
B[|D.X7 ]
> 2
:E[EH(Id +Z/ (g, XT) ¢ oo s b (g, X )dul...dun)DsXS”m‘ ‘]—'H
g=1"Ysm<u1<-<un<t !
© 2 2
:E{EH(Id+Z/ B (g, X ) 1ot by (g, X7 )dul...duq)’ ‘f} D.X" }
g=1 " sm<ur<--<up<t ! '

d

00 d
> >N 9 )
<C E[(l H/ iy O X B )2 p) X B -
<C1 + 2 e <ucy BT (u1, Xs,, + ul)aﬂflz W (ug, X, + Bu,)
q=14,j=114,..., lq_lzl m 1 q
]

The last inequality follows from Girsanov transform and Holder inequality. One can show as
in Proposition [{.11] (see also (.29)) that there exist a positive constant and an increasing and

0
: gjbgqfl)(uqusm + Buq)dU1 N duq’

2
) X exp (121@27(1 +X,, \2)) ’DSXS”
L16(PRe,F, ) ‘ "
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continuous function Cy : [0, 00) — [0, 00) such that

o) d d
(¥ ¥ |
g=1i,j=111,...ln_1=1 7%

0
et aiij(lqil)(UQa XSm + BUq)dul e dUn

bW (ug, X+ By,):...

9 b§;‘> (u1, X, + Bul)a8

m<ur<.<ug<t 0Tl y,

) < CCul1X,, ] ). (419)

L16(PRY,Fs,, )

Therefore, using Cauchy-Schwartz inequality, we obtain that there exists C' > 0, which may change
from one line to the other and such that
]

<CB[C31X., b)) B exp (4882700 1 1x,,)] B | DXz,

E[|DX]P] <CE[Ca(1X, |, IPlloo) exp (12630 (1 + |X,,, ) [ Do,

4} 1/2

4
<C exp{0250|x\2}EHDS)<gm } <c. (4.20)

Let us notice that E[|D,X! |*] < C. In fact,one can show (see for example Propositions
and that E[|D;X7 |P] < C for all p > 1. Hence using continuation argument on the
successive intervals and Lemma the fourth moment of the Malliavin derivative D; X can be
controlled. d

Remark 4.9. One limitation in our argument is the use of Girsanov transform (via Benés The-
orem) in the sense thalt we cannot cover SDFEs with superlinear growth drift coefficients at the
moment.

4.2. Proof of existence of a Sobolev differentiable stochastic flow. In order to prove
Theorem we first need to prove Proposition [3.8

We first consider a smooth drift coefficient b : [0,7] x R? — R¢ with compact support. We
estimate the norm of X; € L2(; W1?(U)) in terms of ||b]|oo, where U is a bounded open subset
of R?,

Second, we consider a sequence of smooth functions b,, : [0, 7] x R — R? with compact support
and such that b, (t,z) — b(t,z) dt x dz-a.e. and there is a positive k with

sup|by (£, 2)| < k(1 + |z|)
n>1

for all (¢,z) € [0, T] x R9. Let {X™**}2°, be the sequence of solutions of when b is replaced
by b,, n > 1. We will show that {X"®*}>  is relatively compact in L*({2) when integrated
against test functions on R<.

One can show (see [15]) that when b is continuously differentiable with a bounded derivative,

the process X7 is differentiable in x and its spatial derivative is given by the following linear ODE

0 s 0
— X7 =1 b (u, X¥)=——X*du. 4.21
GoXE = Tat [ ¥l X35 Xidu (121)
Observe that (4.21)) is analogous to (4.3)) when ¢ = 0 with the Malliavin derivative of X? replaced
by the spatial derivative a%X 2. Therefore, similar assertions to Lemmas also hold for
the spatial derivative %X 2. Using this observation and the proof of Proposition we get the
following proposition.

Proposition 4.10. Let B be a d-dimensional Brownian motion starting from the origin and
bi,...,b, be compactly supported continuously differentiable functions b; : [0,1] x R? — R for
i=1,2,...n. Let a; € {0,1}¢ be a multiindex such that |a;| = 1 fori = 1,2,...,n. Then there
exists a universal constant C (independent of {b;}:, n, and {c;};) such that

‘E[/ ( Daibi(ti,erB(ti)))dtl...dtn} < Gl iy [billoo (£ = )™ - 59y
to<ty<--<tn<t “j_y I'(5+1)
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where T is the Gamma-function and b(t, z) = l{(jlzz)l,(t,z) € [0,1] x RY. Here D% denotes the

partial derivative with respect to the j'th space variable, where j is the position of the 1 in «;.
The following result gives a key estimate on the spatial weak derivative in terms of ||b]|oo.

Proposition 4.11. Let b: [0,1] x R? — R? be a smooth function with compact support. Then for
any p € [1,00) and t € [0,T], the following estimate holds

0 .|P ~ ~
B/ Xz|] < Canllal,180), (4.23)
x
where Cpy 4 - [0,00) — [0,00) are increasing, continuous functions, |-| a matriz-norm on R4 ||-||

the supremum norm and Cy is a constant.

Proof. We prove this in two steps. We first prove the result for T' € [0, 1] sufficiently small. Then
we show that there does not exist a maximal interval [0,77] C [0,1] for which estimate (4.23)
holds.

Let t € [0,T] for T sufficiently small. Tterating gives

ﬁxgﬂ =T.+ Z/ b (s1,X2) 0oV (50, X2 )dsy ... dsy, (4.24)
Ox im1 Y 0<s1<..<sp <t '

LP(P), where ' is the spatial Jacobian matrix of b. Applying Benés’ Theorem to the martingale
2 2?21 fot b9 (u, Bu)qu(f ) and using Girsanov’s theorem and Hélder’s inequality, we have

a xT p - / / p
EHa—Xt ] :EHId+ Z b'(s1,24+ Bgy) :o..: b (Sn,x+ Bg,)dsy...ds,
x =17 0<s1<...<sn <t
T
x &€ / b(u,x + B,)dB,
() )]
> P
:EHId + Z/ b'(s1,2+ Bs,) t ... : V' (sp,x+ By, )dsy...ds,
n=1"70<s1<...<sp <t
d T ‘ d T )
Xexp(Z/ b9 (u,z + B,)dBY) 72/ (09 (u, z + By))?du
j=1"0 j=1"0
1 [T
it (4) 2
+ 5 J;/O OY) (u,x + By)) du)]
> P
SCHId+ / b (s1,2+ Bsy) t ... : U (sp, o+ By, )dsy ...ds,
; 0<51<...<sp <t (&1 J ( Jdsa Lp(PRdxd)

X E{exp (Qi/OT(b(j)(u,x + Bu))zdu)}%
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o0

p
gc”zd + Z/ B (s1,2 + By, ) : ... : U (snya + By )dsy ... dsy,
17/0<s1<... <5, <8

LApr(Q Rdxd
n= ( ? )

X exp (12k2T(1+|x\2)) [exp (12k2T max | Bl )}

<u<T
(x> % | a4 B

n=1d,j=11y,0 .0 0<s1<...<s, <t axh Ly

b (51,24 By,) : ...

: ib(l"‘l)(s x+ Bs, )dsy ...ds )p X ex (12k2T(1 + |x|2)>
" Oz v S/ T Ly (pgay P
S>> z iy D0 51,4 By 5o b s+ By
n=1lij=11,,..1 0<s1<...<8, <t axh axl’z
0 P
. (n_1) 2 2
gV ot By s ds LM(P,R(I)) X exp (1% T(1+ || )), (4.25)

where the positive constant C is obtained in a similar way with the choice of T' small as in Lemma
[44] The last inequality follows from Holder’s inequality since 4p < 4P.
As in the proof of Lemma we consider the expression

0 i 0 0
A::/0 o2, b(z)(sl,x—Fle)axl b (59,24 By,) ... =——b") (s,,, 24 By, )dsy ... ds,
<1< <5 <t 1 2

al'l
(4.26)
Repeated use of deterministic integration by part shows that A? can be written as a sum of at
most 22" summands of the form

/ 91(81) e QQn(SQn)dsl e dSQn s (427)
0<s51< <82, <t

where g; € { Jb(z)( B):1<4,j< d}, 1=1,2...,2n. We deduce by induction that A*" is the

sum of at most 474" terms of the form (4.27) with length 4Pn. Using this fact and Proposition
we have that

’ / 0 b (s1,2+ By,) ... ib(l"*l)(sn,zzc + Bs, )dsy ...dsy,
<51 < <sp<t OTl O LAP (1;R)
4p4pn 4Pn|,.|4Pn || 7| |4Pn|4|4P " n 4P 4PN O |7 Tn/4 n
(IO By O T, w2s)
D(Zn+1) (@)

from which we get

CE

TG iy
(@)

} <Ciexp (12k2T(1 + |z)? ) (1 i Z

<Cyexp (1262T(1 + Ja] ))cd,p<||b|\oo, ). (4.29)

i

Hence for T sufficiently small, the above expectation is finite. Next, assume that there exists
a maximal interval [0,7}] for which (4.23)) holds and let show that there exists 1 > Ty > T3 such

that conclusion of Proposition is valid.

Choose gy as in Lemma and set 7 = 64\‘}%, Sq = AT, x;; = X;L;O”Q B Xprovi o=
%X;f;’z ,i > 1. There exists m positive integer such that mr < T} < (m + 1)7. Let

T=xT;
show that the conclusion of Proposition is valid for T = (m + 1)7.
Consider the times 0 < s,, < t < $p,41. Then by the flow property

X0 = Xt (X0
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a.s. By the chain rule
QXnvovx — 8 Xn7sm7xm . 6 n,0,x

t - t a,..“*s
ox 0Ty, ox °m

a.s., where - denotes matrix multiplication for the Jacobian derivatives.
Let {F;}+>0 denote the filtration generated by the driving Brownian motion B. Taking condi-
tional expectation w.r.t to .Fs, in the above equality, using (4.29) and Lemma we get

1))

XnOz

P
E’fxg”oﬁm

0
Xn »SmsTm 7Xn,0,ac
ox ( H Sm

0T, ox

= 58|

< CB(Cyllaml, [Bll)e™
gcw(cﬁmmmMmmn”4@%%Wm“f”XEﬁng&?ﬂhﬂf”

<cfs) el e )

2\ 1/2 -
< 0(Cres 0l ) T Oyl Cap([Blles |21)
< C15,Cap(Blscs 2], 1221, (4.30)

)

s’"} ‘81‘

where C, Cy are positive constants independent of x, but may depend on k. O

This complete the first step of the proof of Theorem

We now fix a measurable coefficient b : [0, 7] x R? — R satisfying the linear growth condition.
By Theorem the SDE (3.5 admits a (Malliavin differentiable) unique strong solution. Let
X?" be that solution. Consider the approximating sequence b,, introduced at the beginning of the

section and denote by X"*” the corresponding sequence of solutions of the SDE. We then have

the following result

Lemma 4.12. Fiz s,t € R and v € R%. Then the sequence X, >* converges weakly in L?(2;R)
to X;".

Proof. We assume here without loss of generality that d = 1 and s = 0. We know that the set

{5(/OT h(u)dBu> ‘he c,}(R)}

generates a dense subspace of L2(Q Rd) Hence it is enough to show that
Blx7e( fy hwaB,)| — E[X””S( Jy h(w)dB,)].  Noting that the function (t,z)

b(t,x) + h'(t ) is of linear growth in z, it follows by the Cameron-Martin theorem and the
uniqueness in law for the SDE ({3.5]) that

E :Xf’$6</OT h(u)dBuﬂ - E[ng(/OT h(u)dBu)}

=B+ B){( /OT bu(u,x + B.) + W (u)dB, ) - 5(/OT bz + B,) + W (w)dB,) }]
1
2
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Using the inequality |[e® — eb| < |e® + €®||a — b|, we get

s[xee( [ nwan)] - Blxee( [ nas.)]

1

<E [(x n Bt){ exp (/OT baut, @+ Bu) + W (w)dB, = 5 /OT(bn(% x+ By) + h’(u))Zdu>

+ exp / b(u,z + By) + h'(u)dB —% u,a:—l—Bu)—l—h’(u))Qdu)}x

/ o
[

1
‘/ w(t,@ + By) = b(u,@ + Bu)ABy + 5

Using Holder inequality, we get

E[Xt"’””é( /O h(u)dBu)} —E[ng( /0 ! h(u)dBu)}
1

gE[{ exp (/OT bo(u, @+ By) + B (u)dBy — 2/0T(b (w2 + By) + I (u))2du)

+exp (/OT b(u, 2 + By)dBy — % /OT(b(u, v+ B.) + H(u))du) } E [+ 8"

T
bn(u,x + By) — b(u,z + B,)dB,
0

((b(u, @+ By) + 1 (w)? — (by(u,x + By) + h'(u))Z)du}j

X
&=

O\ﬂ,—/h

Bl

N | =

23

(b(w, = + Bu) + ' (w))? — (bu(u,x + By) + h’(u))2>duH.
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It follows from Cauchy and Burkholder-Davis-Gundy inequality that there exists a constant C
such that
T

E[X;Wg(/OT h(u)dB, )] —E[che(/o h(u)dB, )]

gCEH exp (/OT bn(u, z + By) + B (u)dB, — /OT(bn(u, o+ By) + I (u)?du

3
2

P2 [ e+ B+ ) an)}

+ {exp (/OT b(u,z + B,)dB, — /OT(b(u,x + By) + A (u))*du

3

3.2
2}3

X E[{ /OT (bn(u, z+ By) — b(u,x + Bu))2du}2

+ % /OT(b(u, x4+ B,)+ h'(u))Qdu)}

1
1

+{ /OT (6. + B + W (w)? — (bl + By) + 1 ())?)du) |

1
2

SC’(E [{ exp (/OT by (u, x + By) + h'(u)dB,, — /OT(bn(u, z+ B,)+ h’(u))zdu) }2}
/OT n(u, @+ By) + h'(u))Qdu) }6] ;

b(u,z + By) + K (u)dB, — /T(b(u,x + By) + h/(u))zdu> }2]

0 0

T ) 671
/0 (b + B+ (w)du) V] )

bn(u,x + By) — b(u, z + Bu)>2du}2

x E {exp

1
2

(
+ 8o (
<[ { o (
<[ (

OT( (u, 2 + By) + 1 (u)? — (bp(u, z + By) +h’(u))2)du}4]

NG

The terms EH exp (fo bu(u,z + By) + W (u fo (u,z + By) + h’(u))2du)}2} and

2
EH exp (fOT b(u,z + By) + h'(u)dB, — fo (b(u,z + By) + h'(u))Qdu)} } are finite and equal
to one by the Benés theorem applied to the stochastic integrals with drift 2b or 2b,.
6
Moreover, the terms E[{ exp (% fOT(b(u7 v+ By) + h’(u))zdu>} } and

[{ exp ( fo (u,z + By) + h’(u))Qdu) }6] are finite for small time 7. In fact

e 6
E H exp (5 / (b(u,x + By) + h'(u))Zdu> } }
0
T
<Bfexp (6/ (K(L+ [ Bul)? + ()|
0
< 2 2 [ ( 2 2)]
<Cexp(12k°T(1 + |z|7))E| exp (12K Torgnuang|B“|
This expectation is finite for T sufficiently small and independent on the initial condition of the
solution. We can once more use conditioning, induction an a continuation argument with random

non-anticipative initial conditions to iterate the above argument on successive intervals of lengths
7. Hence the above result holds for all T' > 0. O
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As a consequence of the compactness criteria, we have by combining Corollary and Propo-
sition the following result

Theorem 4.13. For any fized s,t € R and x € R?, the sequence {X;"*"15% | converges strongly
in L2(Q,RY) to X,

The next result is a consequence of Proposition [4.11

Corollary 4.14. Let X*% be the unique strong solution to the SDE (1.1) and ¢ > 1 an integer.
Then there exists a constant C' = C(d, k,q) < oo independent of of x1,xo in every bounded subset
of R% such that

EHthlhml _ Xf;’%

q
] < C(‘SQ —81|q/2—|—|t2—t1‘q/2+ |$2 —Z‘llq) (431)

for all s3,s1,t2,11, 22, 21.
In particular, there exists a locally Holder continuous version of the random field (s, t,z) — X"
with Hélder constant o < % n s, t and a <1 in x.

Proof. Assume that the above condition holds. Moreover, without loss of generality, assume that
0 <381 <89 <ty <ty. Then

t1 to
X X =k [ b X0 du— [ b X
S1 S2

+ (Bh - le) - (qu - Bsz)

S2 t2
=x1 — To —l—/ bn(u7Xg751’””1)du—/ by, (u, X 272)du

S1 t1

t1
+/ (B X2514) = by 1, X22) ) du

82

t1
+ / (B X252) = by 1, X222) ) du
S2

+ (Bt2 - Btl) - (Bsz - le)'
Using Holder’s inequality, we get

n,581,1 n,s2,T2
Bl|xp - x,

q] S7q71 (|x1 _ x2|p + EH /32 bn(u,XZ’SI’II)dU‘q}

S1

- to q
+E / bn(u,xg»sm)duu

t1

+E| / " (B X2514) = by 1, X22) ) du

82

]

- 11
+E / (Buea, X3o072) = b, Xpoo72) ) |

52

r q q
+ BB, - B, } +EHBt2 _ B, D
2)!

- q t2 q
+E u,Xﬁ’Sl’xl)du‘ ] +EH/ bn(u,Xg’SQ’IZ)du‘ }
_ .

[
+E| /tl (b

q
1, X0 = by, X0772) ) du |

- 11
+E / (B X252) = by 1, X22) ) du

q} ) (4.32)
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The assumption on b,, and Holder’s inequality yield

EH/ bn(u,X;"Sl’“)du‘q} g/s

s2
< / B[27 k0 4 20 KX [y — 5ol

S1

S2
=207 sy — 17 (31— 2] +/ Bllxpo ] du).

s2

q
E{ by, (u, X071 }du X |51 — so|771

1

Using again Hélder’s inequality and Gronwall’s Lemma, we get

S92 S2 S92 u q
/ E[‘ngs1,fc1|q:| du S/ |x1|qdu+ / E‘ / bn(’rl,X:ll,Sl,m)drl‘ du
S1 1 S1

S1 S

+/52 EHBu - B,

' S2 u
<foilsr—sal+ [ [ B
S1 S1

(29)! /82 /2
+ lu — s1]7du
2qq' S1

q] du

q
dry(u — s1)9 tdu

bn(rla X:ll,sl,fl)

29~ 1) (29)!
So — § ‘1“’1_'_75 — s q/2+1
52 = 1] 2iglg/2 1 1) 2

S92 U
+2q—1kQ/ (u—sl)q_l(/ E[|xXzmm |9 dry )du

S
|59 — Sl|q/2+1>

<|z1]|%|s2 — s1] +

2qfll<;q|s2781|qul (29)!
21¢)(q/2 +1)

X exp {qulkq/ (u— sl)qfldu}

S1

< (w32 = ] +

201k (2¢)!
<Cylsa — s (:U 4 so—s51|T+ —————|sa — s ‘I/Q)
<Cqls2 — s |z1] . |s2 — 1] 2qq!(q/QJrl)| 2 — 51|

Thus

EH /52 bn(u,Xgm,m)du‘q} <Jsy — 52|q/20(q, k, |z1)), (4.33)

where

90-1}a (29)! 9114
g o) ~ (14 G, a0 (ER e
(g, K, [z1]) =1+ Cqq |z |* + . |s2 — 51 +2qq!(q/2+1)|52 51?7 | exp . |s2 — 51

X 2q_1k‘q|81 - Sglq/Z.

q
A similar bound holds for £ H fttf by (u, X;L’S?’w?)du‘ }
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By the Mean Value Theorem and Proposition we have
]

b% u, X;l,81,x1+7(a:27w1))

‘ / (u, X[00%1) — by (u, Xg’sl’m))du

t
! an,sl,lerT(zgle)dudT‘q]
or

0
or

:|£L'2 — 1’1|qE

2
1
<|zg —961|q/ E

0
=|zy — x1|q/ H o " 917$1+T($2 x1) axX;LQ,Shw1+T($2*m1)

0 X ST

7X3’51’I1+T(m2_m1)) X ,51,81 47 (T2 — z1)du‘ i|d7'

q
}d’]’
<Cylxe — x1|? sup

|
tels1,1],z€B(0,|z1|+|z2|) [ O
<C(k,q,d)|xe — x1|?. (4.34)

Using the Markov property, we obtain

/tl (B, X20072) = by, X7o0222) ) |

82

7|

B T ——

S2

du

[ B[ a2tz

— "~81=1'2:|
S y=Xs,

q
<erfpz ]
<C(g, k)|s2 — 51|72, (4.35)

Combining (4.32)-(4.35), we get (4.31) with X replaced by X™.

Since X" — X2 and X1 — X" strongly in L2(Q : R%) as n — oo, it follows that
there exists subsequences of {X;"*>**}, > and {X;"*"""'},>1 that converge almost everywhere.
The result then follows from Fatou’s lemma. O

In the next Lemma, we prove that the sequence defined by {X7"*},>1 := {X;"®*},,>1 converges
to X7 := X

Lemma 4.15. For any ¢ € C*(R4GRY) and t € [0,T), T > 0 the sequence
(X1.9) = [ (X7 p(ogude
converges to (X, p) in L?(Q,R?).
Proof. Let D4 be the Malliavin derivative and let U be the compact support of ¢. Then we have
E[IDu(X7, 0] <lleltaqun|Ul sup B[1D X7

and

B[1D5 (X7 ) = Dos (X2 )| <l laqa)| U] sup B[ 1D X7 — D X717

Using the compactness criteria (Corollary , there exists a subsequence (X n(k), ©) converging
in L2(Q,R?%) as k — oo to a limit Y (). Hence as in the proof of Lemma one can show

that E[ X1 )€ (fo )] converges to E{ X, 0 (fo )} for all h € C}(R;R?).
Therefore (X, ., ) converges weakly to (X, ¢) and the uniqueness of the limits implies that

Y(p) = (X, ).
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Using contradiction, suppose that the full sequence does not converge. Then there exist g > 0
and a subsequence (X, (), @) for which

(X% ), ©) — (X, )| > €0 (4.36)
for every k. But using once more Lemma[4.12] one can show that there exist a further subsequence
(Xt (ki) @) of (Xin(r), ) that converges to (X¢, ). This is a contradiction to (4.36).

O
We are now ready to conclude the proof of Proposition [3.8

Proof Proposition[3.8. For each bounded set B of RY, we have

o p
supsupEH—Xt"’ac
n x€B Oz

] <o

From this, it follows that there exists a subsequence B%th *)- that converges to an element Y in
the weak topology of L?(Q, LP(U)). Hence for any A € F and ¢ € C5°(U;RY)

BlLa{Xe, )] = lim E[1a(X;", ')

= lim El4(2-X,"", ¢)]
= E[1A<Xt7 90>]
Hence for any ¢ € C5°(U; R?),
E14(Xy,¢")] = —E[14(X4,¢)] P-as. (4.37)

We now construct a measurable set €y C € of full measure such that X; has a weak derivative
B%Xt“’ on this subset. Let {¢,} be a sequence in C§°(U;R?) dense in Wy *(U; R%). Replace ¢ by
n and choose a measurable subset €2, of 2 with full measure such that holds on €2,,. Set
Qg = ng1Q”’ then Qg satisfies the required property. O

We get the following result for a weighted Sobolev space.
Lemma 4.16. For allp € (1,00), we have
X, € L*(Q, WP (R p(x)dx)).

Proof. Without loss of generality, we assume that d = 1. We first show that

2[( Iz

Z x=
ox !
We prove this by successive conditioning on the filtration generated by the Brownian motion and
successive use of the flow property and Lemma Let X;"" be the sequence as defined in Lemma
4. 19

Choose once more Jj as in Lemmaﬁand set 7= 64\‘}%, S; = AT, X; = X;};OJ O X msiwi =

pp(w)d:r)wp} < 0. (4.38)

) Ox; T Si+1

9 n,S;,T

Ox “ " Sit1

,© > 1. There exists m positive integer such that s, <t < sp41.
T=T;

For p > 2, using Holder inequality with respect to the measure P and Fubini Theorem, we have

B[ L[5 onan) ™) <(e] [ g piras])™

X e i
<( [ el enas) ™

ox ox
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Using the flow property, the chain rule and Proposition [4.11] we have

0 0 p
Xn 0,z ] ( H Xn JSmoTm X Sm-1,Em—1 . < xn,0 F. })
H ox OTm_1 °™ oxr *°t "
p o o p
Xn »SmTm F ] . X Sm—1,Tm—1 . 7Xn,0,z )
( H OTm OTy—1 °™ ox  °t
<CE( 6k r|x,”\ ‘ Xn ySm—1,Tm—1 ,,,QXH,OJ p)
OTpm—1 °™ Oz~ !

1/2 0 0
< E 50\90m|2> [E{ X Sm—1:Tm—1 , . x 0.z
_C( ‘ 8mm 1 sm 837 81

2pH1/2
gc(clec250|$‘2)1/2 [E{‘axa X 1...%)(;’0@ Zp}]m, (4.39)

where the last inequality comes from Lemma with C1, Cy positive constants independent of x,
but may depend on k. Successive application of the previous step on the second term of the right

side of (4.39) gives

H X707 <Oty (60250|I|2)1/2(60250\$|2)1/4... (eczaomﬁ)”?m[E{‘QXn,o,w QmPHl/Qm
Oz - ox %t
<Cm k.5 (ecZ‘s“'“'Q) 2 (60250\1|2)1/4 . (60250|fr\2) b/zm (eCzéo\zl2)1/2m
Scm,k,éoec':"”“*%mz. (4.40)
Thus

0

E[(/ 2 xpe p(m)dx)Z/p} gcm,kypygo(/w e%,k,%\z\?p(x)dxf/’ﬂ

It follows that is satisfied for p > 2.
Now, choose 1 S p < 2, it follows from the Holder’s inequality with respect to the measure
p(x)dz that
p

([ g weae) ] <( [ peae) = (2]

From this, we get that holds for 1 < p < 2.

Independently of the choice of p, there exists a subsequence converging to an object Y €
L?(Q, LY(R% p(x)dz)) in the weak topology. More specifically, for every A € F and f €
LY(R%; p(x)dx) (with g such that % + % = 1), such that fp € LI(R% dz), we have

lim E[lA /R d a%x:““)’w f(x)p(x)dx} - E[u /}R Y(@) f(x)p(z)dx].

n<—oo

0

X’I’LI a

XTLCL‘

p(m)de

Hence Y must be equal to the weak derivative of X and the results follows. 0

Proof of Theorem[3.4 Let R x R x R? 3 (s,¢,2) + ¢ ,(x) € R? be the continuous version of the
map R xR xR? > (s,t,2) — X;** given in Proposition Denote by Q* the set of all w € Q for
which there exists a unique spatially Sobolev differentiable family of solutions to equation .
Since (€2, F, P) is a complete probability space, we get that Q* € F and P(2*) = 1. Moreover,
the uniqueness of solutions to the SDE , implies the following two-parameter group property

¢s,t('7w) = ¢u,t('7w) o (bs,u('aw)a ¢s,s('7w) =, (441)

is satisfied for all s,u,t € R, all z € R? and all w € Q*. In fact, without loss of generality, we can
assume that u < s < t and for s,t € R, there exists an integer m such that s, <t —s < s, 11
and one can verify that the flow property holds in this case. Repeated use of in
small intervals of length 7 and the uniqueness of the solution gives the above two-parameter group
property for all s,u,t € R.

The proof of the theorem is completed by applying Lemma [£.16] and using the relation

¢S,t('7w) :(rbt_,el(’w) o
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Proof of Corollary[3.5 Let Q* be as in the proof of Theorem We will show that 0(t,-)(2*) =
Q" for t € R. Fix t € R and let w € Q*. The relation (3.6] yields

t+t1
XAt (w) == Jr/ b(X[H" (w))dr + Biyy, (w) — By, (w), t1,t €R. (4.42)

ty

Using the helix property of B and a change of variable we get from (4.42)
t
Xttifl (w)== +/0 b(Xﬁﬂr’fl (w))dr + By (0(t1,w)), teR. (4.43)

Substituting w by 6(t1,w), the relation suggests that the SDE (3.5) has a Sobolev differ-
entiable family of solutions. Therefore, 0(t1,w) € Q* and hence 0(¢,-)(£2*) C 2*. Since this holds
for arbitrary ¢; € R, we have 0(¢,-)(Q2*) = Q* for all t € R.

Moreover,the uniqueness of solutions of the integral equation gives

XU () = X0 (0(t1,w)) (4.44)

for all t1,t2 € R, all € R? and all w € Q*.
To prove the perfect cocycle property (3.7)), note that (4.44]) can be rewritten as

Gty taty (T, w) = Pop, (2, 0(t1,w)), t1,ta €ER, z € R we Q. (4.45)

The perfect cocycle property (3.7) now follows by replacing x in the relation (4.45) by ¢o.+, (z,w)
and using the two parameter flow property (4.41). O

5. APPLICATION TO STOCHASTIC DELAY DIFFERENTIAL EQUATION

In this section we consider the following stochastic delay differential equation

{ dX(t) =b(X(t —7r),X(t,0,(v,n))dt +dB(t), t>0 (5.1)

(X(0), Xo) = (v,n) € My :=R? x L2([-r,0],R?)

Theorem 5.1. Suppose that the drift coefficient b : R* x R4 — R? in the SDE is a Borel-
measurable function bounded in the first argument and has linear growth in the second argument.
Then there exists a unique global strong solution X to the SDE adapted to the filtration
{Fi}o<i<p- Furthermore, the solution X, is Malliavin differentiable for all 0 <t < T.

The proof of Theorem also uses the relative compactness criteria. Let consider a sequence
b, : RExR? — R? n > 1 of smooth coefficients with compact support such that b, (vy, vs) is Borel
measurable, bounded in v; € R? and has linear growth in vo € R? We will view the semiflow
X"(t,0,(v,n)) := (X™(t),X]") as a process with values in the Hilbert state space Ms in order
to use Malliavin calculus. The symbol X[ € L%([-r,0], R%) stands for the segment X['(s) :=
X"(t+s), s € [-r,0] and r > 0 is the delay. For brevity, we will often denote z := (v,n) € M; and
by p1 : My — R% py : My — L?([—r,0], R?) the natural projections onto R? and L?([—r,0],R%).
For any t; > 0 denote by X" (-, t1, z) the solution of the following approximating SDDE starting
at tll

t
n p1(2)+/ bn(X”(ufr,tl,z),X"(u,tl,z))du+B(t)fB(tl) fOI‘ tlgt,
X (tatlaz) = t1

pQ(Z)(t — tl) fort e [tl — T,tl).

By the continuation property, we have
X" (t,0,(v,n)) := X"(t,tl,f("(th 0,(v,n)) t=>t1, (v,n) € Ms. (5.3)

Apply the chain rule (for Mallliavin derivatives) to the above relation and get:

Dan(t,O, (U,Tl)) = DSXn(tatlvz) +DXn(t7t1,Z) B ’DSXn(tlvoa (Uﬂ]))

Z:X"(tho’(vvﬂ))) 2=X"(t1,0,(v,n)))
(5.4)
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for 0 < s < t and each deterministic initial data (v,n) € M.

Let ¢; be the supremum of all ¢ > r such that there exists Cy; > 0 and the following two
estimates hold:
sup E||DX"(t,0, (v,m)) — Da X"(t,0, (v,n))[|* < Cals — 5’| for 0 <s,s <t,
n>1
> 5.5
sup sup B|D,X" (6,0, (o, )| < Cq (55
n>10<s<t
for all deterministic initial data (v,n) € M.
Claim: We claim that t; = co.

Proof. Use contradiction: Suppose t; < oco. We will show by continuation and a conditioning
argument that there exists to € (¢1,t1 +7) (with to — 1 possibly small) such that the inequalities
hold for ¢ = t5. This will contradict the choice of ¢; as a supremum.

Consider the following cases:
Case 1: t1 <s<t<t;+r:

For deterministic z € Ms, take the Malliavin derivative D, in to obtain

t
DX (t 1, 2) :/ Dab(poz(u — 1), X™(u, 11, 2)) Ds X" (s 11, =) + I. (5.6)

Using successive iterations in the above integral equation, the Girsanov theorem and integrations
by parts, we obtain to > ¢; with o — ¢; possibly small and a positive constant C,; (independent of
z € Ma,n > 1) such that

sup E||D(9X”(t,t1,z)|\2 < Cy. (5.7)
t1<s<t

Next, we use (5.4)), conditioning on z = X" (¢, (v,7)), and (5.7) to get the following:

E||D.X" (1,0, (v, m)|]” = E(E(HDSX”(t,thz)P X" (2,0, (vm))) <Ci (58

2=X"(t1,0,(v,7)))
for t1 < s <t <ts.
Therefore, from the above inequality, we get

sup sup E[D,X"(t,0,(v,n))|I* < Cq (5.9)

n>1t;<s<t
for tl <t< t2.
Case 2: 0 <s<t; <t<tqg:
Taking Malliavin derivatives Dy for s < t; in the integral equation (5.2), we get
t
Dy X" (t,t1,2) = / Dby, (p2z(u — 1), X" (u,t1,2))Ds X" (u, t1, z)du. (5.10)
ty

The above linear integral equation implies that
D X"(t, t1,2) =0, a.s.,, s<t; <t, n>1 (5.11)

for any deterministic z € Ms.
As before, we apply the chain rule in (5.4) followed by conditioning with respect to
X"™(t1,0,(v,m)) together with the above equality, to get

BID. X100 < 25(B(ID.x7 (00,21

} ‘Xn(tlaoa (Uﬂ?)))
z=X"(t1,0,(v,n)))

-D,X"(t;,0, (v, 77))||2‘)~("(t1, 0, (v,n)))

701,000 )

12F (E(|DX"(t,t1,z)

2= X7 (t1,0,(v,1)))
=2F (E(HDSX"(??, t1,2)|?

Z:X"(tho,(vm)))
=0
(5.12)
for s <t; <t <ty and all deterministic (v,n) € Ms..



32 FLOWS FOR SINGULAR SDES

Now combine the second estimate in (5.5) (for ¢ = t1) with (5.9)) and (5.12) to get
sup sup E|DX"(t,0,(v,n))||* < Cqy (5.13)

n>10<s<t

for t; <t <ty with a positive constant Cy (denoted by the same symbol). This shows that the
second estimate in still holds for ¢t5 > ¢ > ¢; and therefore contradicts the maximality of t;
if 1 < oc.

It remains to show that the first estimate in also holds for t; <t < t5. To do this consider
the following cases:

Case 3: t1 < s’ <s<t <ty
Using the chain rule in (5.4) gives

D X"(t,0,(v,n)) — Dg X" (t,0, (v,n)) = [Ds X" (t,t1,2) — Ds X" (t, t1, 2)] . (5.14)
z:X"(tl,O,(vm)))

For any fixed z € Ms, consider the expression

D, X"™(t,t1,2) — Dg X" (t, 1, 2)
¢
:/ Dby (p2z(u — 1), X" (u, t1, 2))[Ds X" (u, t1,2) — Do X" (u, t1, 2)]du. (5.15)
t1

The above linear integral equation implies that
[Ds X" (t,t1,2) — Dy X" (t,t1,2)] =0 (5.16)

for any fixed z € Ms.
Now taking E(]| - [|?) on both sides of ([5.14)), conditioning with respect to X" (t1,0, (v,n)) and
using ((5.16)), gives

E||D,X"(t,0,(v,n)) — Da X" (t,0, (v,n))|IP =0< Cyls — §'|, t1 <8 <s<t<ty (5.17)
for any (v,n) € Ma.
Case 4: ' <t1 <s<t<ty:

Fix any z € M> and use (5.6) and (5.10) to get
D X"(t,t1,2) — Dg X" (t,t1, 2)
t
:/ Dsby (paz(u — 1), X" (u,t1,2))Ds X™ (0, t1,2)du + T
ot
— | Daby(pez(u—r), X™(u,t1,2))De X" (u, t1, z)du

t1

t
_ / Dab(paz(tt — 1), X" (u, t1, 2)) (D X" (1, t1, 2) — Dy X" (i, 11, )]l +
St
+/ Dsby, (p2z(u — 1), X" (u,t1,2))Dg X" (u, t1, z)du
t

— | Dabp(paz(u—1), X" (u,t1,2))Dg X" (u,t1, z)du
t1

=1 — Ds/Xn(S,tl, Z)
t
+ / Db, (paz(u — 1), X™(u,t1,2))[Ds X" (u, t1,2) — Dg X" (u, t1, z)]du. (5.18)

Using successive iterations in the last equality above, the Girsanov Theorem and successive in-
tegrations by parts, we obtain to > t; (with ({2 — ¢1) possibly small) and a positive constant
Cyq = Cy(]|b]|loo), independent of z € My and n > 1 such that

sup E|| Dy X™(t,t1,2) — Dg X" (t, 11, 2)||> < Cyls — §'| for s’ <t < s <t<ty. (5.19)
n>1
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Next, we use the above estimate, the chain rule (as in (5.12))), and conditioning on z =
X (tr, (v,1)), to get

EHDan(t, 03 (’U,T])) - DS’Xn(t707 (%77))”2

<2FE <E<||[DSX"(t,t1, 2) — Dy X"(t,t1, 2)]||?

: ’Xn(tlv(vvn)>>
z=X"(t1,0,(v,n)))

<Cyls —§'| for s’ <t; <s <t <ty (5.20)
where C; = 2C,.

Case 5: ' <s <ty <t<ty:
In this case, for fixed z € M5, we have

[Ds X" (t,t1,2) — Dg X" (t, 1, 2)]
t

= | Dabp(p2z(u—r1), X" (u,t1,2))[Ds X" (u,t1,2) — Dy X" (u, t1, z)]du, (5.21)
t1
which implies that
[Ds X™(t,t1,2) — Dge X" (t,t1,2)] = 0, a.s. (5.22)
Therefore, using similar arguments as before (chain rule and conditioning), we obtain
E||D,X™(t,0,(v,n)) — Do X™(t,0, (v,n))||> =0 for s’ < s <t; <t<ty. (5.23)

Finally, putting together the first estimate in (5.5)) with ¢t = 1, (5.17)), (5.20)) and (5.23), it follows
that the first estimate in (5.5) holds for ¢; < ¢ < t5. This contradicts the maximal choice of t;
and completes the proof of the proposition. Thus ¢t; = co. O

Further applications of the results in Section [3[are given in [I9]

APPENDIX A. COMPACTNESS CRITERIA

The proposed construction of the strong solution and the stochastic flow for the SDE (|1.1)) is
based on the following relative compactness criteria from Malliavin calculus due to [4].

Theorem A.1. Let {(, A, P);H} be a Gaussian probability space, that is (Q, A, P) is a prob-
ability space and H a separable closed subspace of Gaussian random variables in L?(Q), which
generate the o-field A. Denote by D the derivative operator acting on elementary smooth random
variables in the sense that

D(f(hla .- ah/n)) = Zaif(h’la ) '7hn)hi7 hl € Haf € CZ?O(RH)
i=1

Further let Dy 2 be the closure of the family of elementary smooth random variables with respect
to the norm

1Fll1 2 o= [1Fl 20y + IDF 20 -
Assume that C is a self-adjoint compact operator on H with dense image. Then for any ¢ > 0 the
set

G = {G €D12: Gllyao) + | DG oy < c}
is relatively compact in L?(£2).

The relative compactness criteria in our setting required the subsequent result (see [4, Lemma
1]).
Lemma A.2. Let vs,s > 0 be the Haar basis of L?([0,1]). For any 0 < a < 1/2 define the
operator A, on L*([0,1]) by
Aqus = 2F%,, if s =2F +
f07“k2070§j§27~C and
A1 =1.
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Then for all § with o < B < (1/2), there exists a constant c1 such that

o -sof
Aol < er § 1l ooy + </o /0 tt,HQﬁdtdt/>

The next compactness criteria whoch plays a key role in the proof of our results is a direct
consequence of Theorem and Lemma [A72]

Corollary A.3. Let X, € D12, n = 1,2..., be a sequence of Fi-measurable random variables
such that there exist constants a > 0 and C > 0 with
sup F HDtXn — Dt/Xn|2] <Clt -t~

for0<t' <t<1, and

sup sup E [|D;X,|*] <C.
n 0<t<1

Then the sequence X,,, n = 1,2, ..., is relatively compact in L*(Q).
Let us recall the following result is due to Benes (see [2] and [13, Corollary 5.16]).

Lemma A.4. Let B; be a d-dimensional Brownian motion on a probability space (Q, F, P). Let
the vector b = (by,...,bq) of progressively measurable functional on C[0,00)? satisfy for each
0 <T < oo and some Kp > 0 depending on T, the condition

bt )| < K1+ max [a(s)])

then the process Z(b(-, B(+))) defined by

d T d T
200 80)) = e (3 [ 0900 B)ABY -3 3 [ 09w, B,))d)
j=1"0 =170
is a martingale.

APPENDIX B. PROOF OF PROPOSITION [4.3]

Here we give the proof of Proposition [4.3] Before we proceed, we need some notations and
intermediate results.

Without loss of generality, assume that ||b]joe < 1 for i = 1,2...,n. Let z = (21, ... 2(9)) be
a generic element of R? and | - | be the Euclidean norm. Let P(t,z) = (27rt)*d/26*|z|2/2t be the
Gaussian kernel, then the left side of can be written as

n

/ / H Daibi(ti, ZZ)P(tZ — tifl, Zi — zi,l)dzl . dantl . dtn .
to<t1<--<tp,<t JRIn ;4

Define

Js(t07 t7 ZO) = /

to<t1< - <t <t

n

/ H Daibi(ti, Zz)P(tl — ti—l, Zi — Zi_1)dZ1 .. .dzndtl . dtn,
Rdnz 1

with @ = (a1,...a,) € {0,1}"®.  To prove the proposition, it is enough to prove that t
| T (o, £,0)] < C™(t — to)"/?/T'(n/2 + 1).

To this end, we shift the derivatives from the b;’s onto P by using the integration by part. This
is done by introducing the alphabet A(a) = {P,D**P,...,D* P, D**D*2P,... D% -1D% P},
Here D%, D D*i+! gtands for the derivative of P(t,z) with respect to the space.

Choose a string S = S1 -5, in A(a) and define

Ig(t07ta ZO) = /

to<---<tnp<t

n

/ H bi(ti, Zi)Si(ti - ti—la Zi — Zi—l)dzl [N dzndtl PN dtn .
Rdn =1

In the following, we say that a string is allowed if, when all the D% P’s are taken out from the
string, a string of type P - D* D*+1P . P. D¥+t1D%+2pP... P. D DY +1Pfors>1,r<n-—1
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remains. Moreover, assume that the first derivatives D P are written in an increasing order with
respect to .

Lemma B.1. The following representation holds

27:,—1

Jg(to,t7 Zo) = Z Ej.[gj (to,t, ZQ),

j=1
where each €; is either —1 or 1 and each S7 is an allowed string in A(a).

Proof. We use induction on n > 1. Clearly, the representation holds for n = 1. Now assume that
it holds for n > 1, and let by be another function satisfying the assumptions of the proposition.
as well as ag. Then

t
Jfliofa)(toat,zo) =/ ) D*bo(t1,21)P(t1 —to, 21 — 20)Jy; (t1,t, z21)dz1dty
R
t
= */ / bo(t1,21) D P(ty —to, 21 — 20)Jy; (t1,t, z1)dz1dty
to JRA

t
— / / bo(th Zl)P(tl — t07 zZ1 — Zo)Dao Jg(th t, zl)dzldtl .
tg JRA

Moreover
Daolg(tlv t: Zl) = _I,(é'ao)a)(tla ta Zl)a
with
g D¥pP .Sy S, ifS=P-S---5,
| D*D¥p.Sy...8, ifS=D¥MP.S---8,.
Clearly, S is not an allowed string in A(a). Using the induction hypothesis D J(to,t, z9) =
Z?; —ejI(aO’ )(to,t, 20) and we have

S
gn—1 gn—1
(g, o) ao,a)
Jn+1 - § _EJ Deo P-Si + E :63 pP-Si-
Jj=1

One verifies that both D®P - S7 and P - S are allowed strings in A(aq, ) whenever S7 is an
allowed string in A(a). O

Assuming that S is a allowed string, we will give an upper bound of I§, thus the proof of
Proposition will be completed using the above representation.

Lemma B.2. Let ¢,h:[0,1] x R — R be measurable functions satzsfymg 9(s, Hz |)| < e 2P/35 gnd

[hlloe <1, with h(s,y) = Msv) Lot o, B € {0,1}¢ be multiindices satisfying |a| = |B| = 1. Then

1+[yl
one can find a universal constant C (independent of ¢, h, a and 3) satisfying
1] <C,

where

1 gt

:/ / / #(s,2)h(t,y)D*DPP(t — s,y — z)dydzdsdt. (B.1)

1/2 Jt/2 JRE JRE

Proof. Let I,m € Z% and define [I,1 + 1) := [[M 1M 41) x -+« x [[(D (D 4 1) and similarly for

[m,m + 1). Moreover, define ¢;(s, z) := ¢(s,z)1 ”+ (z) and h ( y) == "t y) L m me1) (V)

We denote by I;,, the integral defined in when ¢, h are replaced by ¢;, h,,. Then
I= Zl,meld I} . In the following, C' denotes a constant that may change from one line to the
other.

We rewrite I ,, as:
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1 t
I = / / / G1(8,2)hn (t,y) D*DP P(t — 5,y — z)dydzdsdt
1/2 Jt/2 JRd JRd

R,
/ / / / [9us: 2 g oy B0y 1 1) DO DP Pt — 5,4 — #)dydzdsdt
1/2 Jt/2 Jra JRa 14 z] L+ |y

<+ TP, (B.2)

where

[61(s, 2)| o (t,)] )
A+ [2) == (L + |y = 2[) DDP(t = 5,y — z)dydzdsdt,
//2//2/]]{d/]gd 1+|| ||) 1+|| ( | |) ( )

I = / / / / 915, 2)] +|Z|)2MDQD5P( — 5,y — z)dydzdsdt.
12 Ji/2 Jrd Jra 1+|| + [yl

We only give an estimate of [ l{m. The corresponding estimate for [, 12m follows similarly.

suppose that ||l — m|se := max; [IV) —m®| > 2. For z € [I,1 + 1) and y € [m,m + 1) we have
|z =yl = ([l =me — 1.

Assume « # (3, then

(2D — y@)(200) — 40))

(L + |y = 2)D*DPP(t — 5,2 — y)| =| AE |(I+ly—2))P(t — s,y — 2)
L) _ D) (50) _ @) -

for appropriate choice of i,j, where P(t,z) = (27Tt)7d/267|2|2/4t. Then there exists a positive
constant C' such that

(1+ |y — 2))D*DPP(t — 5,2 — y)| < Ce(Il=mll=2)?/8

Assume « = 3, then

(1) _ ()2 — 8.y — 2z
(1 ly = DOl = sy - 2) = (L5 = 1) s - o T 202

and similarly there exists a positive constant C' such that
(14 |y — 2)) (D)2 P(t — s,y — 2)] < Ce™=mll~=27/8.

Using once more the fact that (1 + \z|)e_|z|2/3s is bounded by Ce~I#"/6s for s € [0,1], we get in
both cases |I}, | < Ce /16 =(l1=mlloc=2)*/8. thyg

l=m|lec>2

Suppose that ||l — s < 1 and denote by ¢;(s,u) and hy, (t,u) the Fourier transform of ¢ and
h in the second variable. Then

B (t, 1) == (2m)~%/? / B (£, ) e~ %) d g,
Rd'
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and similarly for qgl(s, u). It follows from the Plancherel theorem that

- QSZ(S,U)QdU :/ o1(s, 2)%dz

[ s, 2)* s
- | G e

S/ 22l /35(1+|Z|)21[l’l+1)(z)dz
Rd

2
<C eIl /GSl[l’l+1)(Z)dZ
Rd

<CeIlI?/2a

for all s € [0,1] and

/ o (1, 0) 2l = / hon (1, 9)dy.
R4 R4

We have
1 gt R . o )
I = / / D1(8, W) (8, —u)uDu) (£ — s)e™ =D/ 2qudsdt. (B.3)
/2 Je2 Jra

This can be seeing by applying the Fubini’s theorem to the right side of (B.3]) to get

B (£, =) by (s, w)u'n? (t — s)e_(t_s)‘"|2/2du
Rd
- (Qw)*d/ / B (£, )€ %) ¢y (5, 1) e~ W il (¢ — s)ef(tfs)lu‘z/zdudxdy
Rd JRd JRe

/ / m(t,x)d(s,y)(t — s) [(27r)d/ et (e =v) gy = (t=9)lul*/2 gy, dzdy.
Rd Rd
Consider the expression in the square brackets. Substituting v = \/t — su, we get

(27)~ / (=) i3 o= (t=9)ul?/2 gy,
]Rd

= (2 (e )2 [ S
Rd

= (2m) Ut — 5)"V2(t - 8)71/ 0TS yiyd eIV 2y,
Rd

= ¢~ I*/2 and p(v) = vWvU). The properties of the Fourier transform yield ];} = DDA f
f. Hence, the above expression can be written by

Set f(v)
and f:

(2m) Y2 (t — 5)~¥2(t — §)"LD DA f (j%) = (t—s)"'D°DPP(t — s, —y),

from which we obtain (B.3).
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Using the inequality ab < %a’c + 1b%c™! with a = di(s,w)u®, b = hp(t,—u)u@ and ¢ =

2
ellll*/48 e have

1 t
[1m| < 1/ / éz(s,u)2(u(“)Qe””'2/486*“*5”“‘2/Qdudsdt
7 2 J1y2Ji)2 Jra

1 gt
+1/ / / ﬁm(t,—u)2(u(j))2(t—s)ze_”l“2/486_(’5_S)|“‘2/2dudsdt
2 )12 Ji2 Jra

1 t
< 1/ / by (s, w)2u|2ellIP /48— (t=)lul*/2qy q sqt
1/2Jt/2 JRE

1 1 t .
+ = / / / P (t, —10)? | (t — 5)267””‘2/4867@75)‘“'2/2dudsdt.
2 Ji2Ji)2 Jra

Integrating the first term of the right side in the above inequality with respect to ¢ gives
1 gt
/ / Bu(s, w2 [uf 2P 48— (=u /2 4y q st < Ce=NI/48,
1/2 Jt/2 JRd

Now let assume m = 0 that is m(? = 0 for i = 1,...,d then we have h,, = hy and

ﬁo(t,u)zdu = / ho(t,y)*dy < C(1 +d).
Rd

Rd

Hence, integrating the second term with respect to s gives

/ / / ho(t, —u)2uf2(t — 5)2e~MIP/48e ==l /2qydsdt < /(1 + d)eINI*/48
1/2 Jt/2 Jra

Let now assume that ||m|| # 0, then ||m|| > 1 and we have

/ / / ot —u)2uf2(t — 5)2e= /48 = (=)l /2 st
1/2 Jt/2 Jrd
/ / / m(t, —u)?(t —s) (\u|\/ (t—9) ) I /48 o= (t=9)lul* /24y, 4 st
1/2Jt/2 Jra
1
SC(;HHWS/ / / (£,
1/2Jt/2 Jra
— 11 /48 t 20 /s
<Ce hon (t, —w) * Ry (2, —u)iwe dudsdt
1/2 Jt/2 Jre (t—s)¥
d
:C’e*””lz/‘lg/ / / / B (8, 0) o (8, 0 —u)zidze*m“‘z/(t*s)dvdudsdt
1/2 Jt/2 Jra (t—s)¥

24 >
=C _”l||2/48/ / / / 1 14— o)) e=2ul/(=9) gy dudsdt
e 172 Jija Jimom1)a mm.l,-l)d( + )1+ |u v|)(t75)d/26 vduds

1 2
SCe_|“|l2/48(1 + lm + 1)) Qd/ / e AT/t qsqs.
e [

N

—u)?(t — s)e” " Nul*/8 qudsdt

~

We show that when we integrate first with respect to s, the integral is bounded above. We split
the proof in several cases.

e Ford=1

' E4jm? )
Al ge = [ o T ge2mlP/(t-s) _/ AT —2pm)?/-s) g
/t/z (t— 52" o= L/z o (t—5)32° ’

g[— /T — se—2lmll*/(t— s)} < 9¢4lIml?.

t/2
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e For d = 2, we have

t t
/ L omi/—s g — {Mgznmu%#s)r _ 1 / o—2lml?/(t=5) 4
/2

t/2 (t— 5" 2(|m|f? t/2 2(ml?
<[7_(t — %) e—2nmu2/<t—s>]t <1 -aimi,
2[|m|> t/2 = 4|m]?

e For d = 3, we have

t t
/ 1 672||m|\2/(t75)d / (t—s) 2HmH /(t=9) g
ty2 (t —s)3/2 2 (=92
==
[2”
1

Afm]

o—2lmlI2/(t=5) 4

IA

(t—
L —ami2/e- s)]
|12 t/2

e 4lml*

IN

e For d = 4, we have

t
/ L 2fml/(t-s)qs — [ie—znmuw—s)} '

12 (t—s)? 2||m||? t/2
1yt
< o=l
4||mH2
e For d > 4, we use induction. Let J; = ft/2 d/2 e=2Iml*/(t=5)qs. Assume that Jy_; <
We*‘l“m” We will show that J; < e ”26*4”’””2
g 1 —2ljml*/(t—s) g
C s (=i ’
—dj2+2 t
:[;(tﬂ) / 672Hm\|2/(t78)r n (d/Q*Q)/ L —2ml2/—s) g,
2[|m/[? vz 2ml2 Sy (t—s)4/271
1

—(t =" i/ —9)]" /t olim?/(t—s)
<[ZU=8) T —aml? /e d/2-2) [ —— _2mlP/ng
7[ AqNmlE ¢ L/ﬁ(/ ) ty2 (t—s)(d= DIEN ’

C 4 2
< o~ 4lml
A|m||> ’

which gives

|11 <C(1+ ||m + 1H2)ef|\l||2/48674|\m“2
<C(1+ ||m|? + d2)e 11 /48 —4llmll*

In any cases, we have |I;,,| < C(1+ ||m|?* + d2)e~ U7 /48 =4llml® - Thys

> |ml <C.

lli=mlloo <1
U
Corollary B.3. Let g, h: [0,1] x R* = R be measurable functions satisfying ||§lleo < 1, ||2]loe < 1
where §(s,y) = g(sl’zf and fL( y) == 1+"Z‘) for (s,y) € [0,1] xRY. Then there is a positive constant
C such that

/ / / / g(s,2)P(s,2)h(t,y)D*DPP(t — s,y — z)dydzdsdt| < C
172 Je/2 Jra JRd
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and
/ / / / g(s,2)DVP(s,2)h(t,y) D*DP P(t — 5,y — z)dydzdsdt| < C.
1/2 Jt/2 Jrd JRe

Furthermore, [p, P(t,z)dz =1 and

|DP(t,2)ldz < ot=42, (B.4)

/ |ID“DPP(t,z)|dz < Ot~ . (B.5)
Rd

Lemma B.4. We can find an absolute constant C' such that for every Borel-measurable functions
g and h such that h and g are bounded by 1, and v > 0

| / / / / (12, 2)P(ts — to, 2)h(t1, 9)D*DP Pty — b2, — 2)(¢ — 1) dydadydy
]Rd R4

<C(l+4+r)""(t— 7"+1

ty
‘/ / / / g(ta, 2)DYE(ty — to, 2)h(t1,y)D*DP P(t, —tg,y—z)(t—tl)rdydzdtldtg‘
to Rd
<C(147)" V2t — o) +1/2,

Proof. We first prove the estimate for t = 1,ty = 0. Using Corollary it follows that for each
k>0

2—k7
‘ / / / / g(s,2)P(s,2)h(t,y)D*DPP(t — s,y — 2)(1 — t)rdydzdsdt‘ <C(1—27F o=k,
2-k=1.J¢/2 JRE JRE

In fact, put ' = 2Ft and s’ = 2¥s and use the fact that P(at,z) = a~%?P(t,a='/?2), then
substitute 2/ = 2%/2z and ¢/ = 2¥/2y. The result follows by sing hy(t,y) = %h(t,y) in
Corollary B3]

Summing the above inequalities over k gives

< C1+ r)*l

1t

/ / / / g(s,2)P(s,2)h(t,y)D*DPP(t — s,y — 2)(1 — t)"dydzdsdt
0 Jts2 Jrd Jre

Using the bound (B.5)), we get

/1 /t/2 /Rd /R,i 9(s,2)P(s,2)h(t,y) D*DP P(t — s,y — 2)(1 — t)"dyd=dsdt

v [ht,y)| .
/ / // . V14 2P, = T L+ DDA P(t = s,y = 2)(1— 1) dydzdsds
SQ(/O /Ot/2 /Rd /Rd(1+ |2|?)P(s,2)D*DPP(t — s,y — 2)(1 — t)"dydzdsdt
+/0 /Otxz/Rd /Rd(lJr|z|)P(s,z)(1+|y7z|)DaDﬁp(t,S’yfz>(l7t)rdydzdsdt)

SC/ /t/2(t —8) N1 —t)"dsdt < C(1417)7", (B.6)

where in the third inequality, we used the following estimates:
o (1+]z))P(s,2) < CP(s,2) = C(Zﬂ's)’d/Qe"Z‘Q/‘ls,
o (1+422)P(s,2) < CPi(s,2) = C(2ms)~ /21717 /85,
e (1+|y—2))D*DPP(t — s,y — z) < CD*DPP(t — s,y — z) and one can also show that
Joa ID¥DPP(t, 2)|dz < Ct 1.
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Combination of these bounds gives the first assertion for ¢ = 1,#y = 0. For general ¢ and ¢, use

the change of variables ] = 1= tto, ty = L= t’;D, y = (t—to) Y2y and 2’ = (t —to)" /22

The second assertion of the lemma follows similarly. O

We are now ready to give a proof of Proposition

Proof of Proposition[].3 : We prove that there is a constant M such that for each allowed string
S in the alphabet A(a) we have
M’n(t _ to)n/2
G5+ 1)
We use induction on n. The case n = 0 is straightforward. Assume n > 0 and that the above
inequality is valid for all allowed strings of length less than n. There are three possibilities.
(1) S=D*P -85 where S’ is a string in A(¢/) and o := (a2, ..., ap)
(2) S=P-D**D*P .S where S’ is a string in A(a’) and o' := (as,...,a,)
(3) S =P -D*P...D* P . D¥m+1D¥m+2P . §' where S’ is a string in A(a’) and o =
(057n+37 SERE) O‘n)’
In each possibility, S’ is an allowed string in the given alphabet.

Ig(to,t, 20) <

(1) Use the inductive hypothesis to get an upper bound for Ig,/ (t1,t,21) and using (B.4), we
have
t

|I§(t0, t, Zo)l = b1 (tl, Zl)D 1P(t1 — to, zZ1 — Zo)Igll (tl, t, zl)dzldtl

by (t1,21) /
/ / ‘ 1 ! 1 1 + |Zl|)Da1P(t1 - tQ,Zl — ZQ)IS/ (tl,t, zl)dzldtl
re 1 “r‘

M"— 1 t B
ST(ai) /t (t- tl)(" o /Rd(l +zDID* Pt — to, 21 = 20)ldz1dty
2 0
M1 t
< [ =2 ( [ (DD Pl o1~ 20)ldand
].—‘(72 ) to Rd

+/ (1 + |21 — Zo|)|Da1P(t1 — to,Zl — Zo)|d2’1>dt1
Rd

Mn—lC t
ST(]- + |ZOD/ (t — tl)(n_l)/2(t1 _ to)—1/2dt1
I(*7) o
,M"*C\/Tr(t—to)”/?
- T2 +1)

where the last inequality is similar to (B.4)) and follows as in . The result follows if
M is large enough.

(2) Here, write

t ot
I?(to,t,20)=/// / b1(t1,21)ba(t2, 22)
to Jt1 Rd JR4

X P(tl — 19,21 — Zo)DalDaz,P(tQ — tl, Z9 — Zl)[gl/ (tQ, t, Zg)dzlethgdtl.

(1+ |ZO|)5

Define h(tq, 29) := ba(t2, zz)Ig‘,l (ta,t, 20)(t — o) ~"/2. Hence it follows from the inductive
hypothesis that
|h(t2, 22)|
1+ |2’2|
Use the above bound in the first part of Lemma [B-4 with g = b; and integrating first with
respect to te, we get

< M"2/T(n/2).

CM"=2(t — to)"/?
nl'(n/2)

|Ig(t0atv ZO)| <
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and the result follows if M is large enough.
(3) We have

Ig(t07ta ZO) = /

to<...tm42<t

m—+2

P(ti —to,z1 — 2 bi(ti,z;
/]R(m+2)d (t1 —to, 21 O)H i(t5, 25)

Jj=1
m—+1

X H DajP(tj — tjfl, Zj — ijl)DaerlDam*QP(thrz — Tm+1s B2 — Zm+1)
Jj=2

X Ig/ (tm+2, t, an_l’_Q)le . dzm+2dt1 . dt7n+2 .
Define A(tmt2, 2mt2) = bm+2(tm+2,zm+2)1§,/ (tmta,t,2)(t — tm+2)(2+m_")/2. It follows
from the induction hypothesis that

|h(tm+2 ’ Zm+2) |

e < CM™™=2/T((n — m)/2).

Let
t t
Q(tmy Zm) = / / / bm+1 (thrla Zm+1)h(tm+2a zm+2)
tm Jtmy1 JR24

X (t = tygo) A ZDO Pty — s 21 — 2)

X DL DY 2 Pt v 0 — bty Zma2 — Zma1)d2Zma1dzmaodt e 1dEm s
Using Lemma [B-4] we have
C(n—m) Y2MP—"=2(t —t,,)(n=m=1/2

P(#5")

|2t m, 2m)| <

Using the above bound in

I8 (to, £, 20) = /

to<...tmy2<t

m
/ P(tl—to,zl—zo)Hbj(tj,zj)
R(m+2)d j=1

m—1
X H Dajp(tj — tj_l, Zj — Zj_l)Q(tm, zm)dz1 . dzmdtl . dtm N
j=1

and using (B.4) repeatedly, we get

Mn—m—2
118 to,t, 20)| < ™+ (0 — m) ™12

((n—m)/2)
X / (t —t1) Y2 (b = tpe1) Y2 (= b)) I 2A8 L dty,
to<..tm<t
Mn—m—2ﬂ_(m—1)/21'\(n—gl+l)
L(#5=)0(z +1)

and the result follows when M is large enough, thus completing the induction argument.
The proof of Proposition [.9]is now completed.

— Cm+1(n_m)fl/2 (t_to)n/Q

O
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