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The Landau-gauge gluon and ghost correlation functions obtained in lattice simulations can be
reproduced qualitatively and, to a certain extent, quantitatively if a gluon mass is added to the
standard Faddeev-Popov action. This has been tested extensively at one loop, for the two and three
point correlation functions of the gluons, ghosts and quarks. In this article, we push the comparison
to two loops for the gluon and ghost propagators. The agreement between lattice results and the
perturbative calculation considerably improves. This validates the Curci-Ferrari action as a good
phenomenological model for describing the correlation functions of Yang-Mills theory in the Landau
gauge. It also indicates that the perturbation theory converges fairly well, in the infrared regime.

I. INTRODUCTION

During the last two decades, there has been an in-
tense activity aimed at studying the long-distance prop-
erties of the correlation functions of Quantum Chromo-
dynamics (QCD) in the Landau gauge. Nowadays, a
consensus has been reached in the community. A wide
range of approaches (both analytic and numerical), con-
cluded that the gluon propagator saturates in the in-
frared, while the ghost propagator diverges. This be-
havior is consistent with the presence of a gluon “mass”,
which is found to be of the order of 500 MeV. The ori-
gin of this mass is, however, still strongly debated. It
could be generated through nonperturbative effects (cap-
tured by truncations of Schwinger-Dyson equations [1–7]
or by integrating nonperturbative renormalization-group
equations [8–10]), it could result from the generation of
condensates (such as 〈A2〉 for instance [11–13]) or could
be a consequence of the Gribov ambiguity, which inval-
idates the standard Faddeev-Popov gauge-fixing proce-
dure [14, 15]. From the numerical side, the saturation
of the gluon propagator is unambiguously seen in lattice
simulations [16–20].

Understanding the origin of this mass is of great rele-
vance to the field, but remains a difficult task. A more
humble program consists in studying to what extent the
long-distance behavior of QCD is related to the pres-
ence of this mass. One way of addressing this question
is to minimally extend the Landau gauge-fixed QCD La-
grangian by means of a mass term for the gluons, added

on phenomenological grounds. This starting point cor-
responds to the Curci-Ferrari model, in the limit of van-
ishing gauge parameter. In a series of articles [21–27],
the 2- and 3-point correlation functions of gluons, quarks
and ghosts were computed at leading (one loop) order
in perturbation theory and the results were compared to
available lattice simulations. The overall picture which
emerges is the following. In the quenched approxima-
tion (or Yang-Mills theory), where the fluctuations of
the quarks are neglected, the lattice results can be es-
timated with a maximal error of 10-20% on the whole
range of available momenta. The model is therefore very
predictive, since many features can be reproduced with
only one phenomenological parameter: the gluon mass.
These results are surprising at first sight because the in-
frared regime of QCD is reputed to be nonperturbative.
The apparent paradox can be solved by observing that
the coupling constant deduced from lattice simulations
(see eg Ref. [28]) and derived from analytic calculations
[29] remains finite and quite mild in the whole range of
momenta. This is at odds with the result obtained in
standard perturbation theory, where the coupling con-
stant is found to diverge at an energy scale of the order
of few hundreds of MeV. Within the Curci-Ferrari model,
it is explicitly seen [22] that the mass term regularizes the
infrared properties of the theory, which does not experi-
ence a Landau pole. When the quark dynamics is taken
into account, the agreement between lattice simulations
and the one-loop results is worse. This is related to the
fact that the quark-gluon interaction is up to three times
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bigger than the 3-gluon interaction (the ghost-gluon in-
teraction being of the order of the latter).1 In this sit-
uation, it proved useful to treat the ghost-gluon sector
perturbatively, while treating the matter sector using an
expansion in the inverse of the number of colors. This
strategy enables the description of the chiral transition
within a systematic expansion controlled by two small
parameters [26].

The aim of this article is to further test the convergence
of the theory. It is particularly important, for our whole
project to understand:

• to which extent perturbation theory converges in
the quenched limit. More precisely, it is important
to evaluate the contribution of higher loops to some
observables

• if the theory converges, does it converge to results
close to those of the true Yang-Mills theory. The
issue here is to test the validity of the phenomeno-
logical model.

We concentrate here on the gluon and ghost propagators
in the quenched approximation which are the simplest
correlation functions to compute and for which we have
the cleanest lattice data.

The rest of the article is organized as follows. In Sec-
tion II, we recall the model and describe the renormaliza-
tion scheme that we use. We give some details of the two-
loop calculation in Section III. In Section IV, we discuss
how analytic results can be obtained in some momen-
tum configurations. We finally compare the perturbative
results to lattice data in Section V.

II. CURCI-FERRARI MODEL

Based on the phenomenological considerations given
above, we use as a starting point the following Lagrangian
density

L =
1

4
(F aµν)2 + ∂µc

a(Dµc)
a + iha∂µA

a
µ +

m2

2
(Aaµ)2 . (1)

The covariant derivative (Dµc)
a = ∂µc

a+gfabcAbµc
c and

the field strength F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν are

expressed in terms of the coupling constant g and the
Latin indices correspond to the SU(Nc) gauge group. The
Lagrangian (1) corresponds to a particular case of the
Curci-Ferrari model [30], obtained in the limit of vanish-
ing gauge parameter. At tree level, the gluon propagator
is massive and transverse in momentum space, which en-
sures that the model is renormalizable. Note that the
mass term is introduced at the level of the gauge-fixed

1 We stress that the behaviour of the running coupling constant is
universal in the deep ultraviolet but the interaction in different
channels can (and does) differ in the infrared limit.

theory. If instead we modifed the unfixed theory, we
would obtain a longitudinal propagator which does not
decrease in the ultraviolet and the theory would not be
renormalizable. We refer the reader to Ref. [22] for a
more detailed account of this model, including its sym-
metries.

The theory is regularized in d = 4 − 2ε. It is renor-
malized by introducing renormalized coupling constant,
mass and fields, which are related to the bare ones (that
we denote now with the subscript “B”) by including the
multiplicative renormalization factors Z:

AaµB =
√
ZAA

aµ, caB =
√
Zcc

a, c̄aB =
√
Zcc̄

a,

λB = Z2
gλ, m2

B = Zm2m2, (2)

with λ = g2Nc

16π2 . The renormalization factors are defined
by choosing the value of propagators and vertices at a
given scale µ.2 For the gluon propagator and the ghost
dressing functions, we choose

G−1(p = µ) = m2 + µ2, F (p = µ) = 1 . (3)

We use the Taylor scheme to fix the renormalization of
the coupling constant. In this scheme, the coupling con-
stant is defined as the ghost-gluon vertex with a vanishing
antighost momentum. This leads to the following rela-
tion between renormalization factors

Zg
√
ZAZc = 1 . (4)

Finally, we use the non-renormalization theorem for the
divergent part of the gluon mass [31–35]:

Zm2ZAZc = 1 , (5)

and extend this relation to the finite parts. The four
previous constraints define the Infrared Safe (IS) scheme
[22]. 3

We obtain the flow of the coupling constant, the gluon
mass and the anomalous dimensions by computing:

βλ(λ,m2) = µ
dλ

dµ

∣∣∣
λB ,m2

B

,

βm2(λ,m2) = µ
dm2

dµ

∣∣∣
λB ,m2

B

,

γA(λ,m2) = µ
d logZA
dµ

∣∣∣
λB ,m2

B

,

γc(λ,m
2) = µ

d logZc
dµ

∣∣∣
λB ,m2

B

. (6)

2 Note that, at order λ, the renormalization factors need to be
expanded up to order ε1. This is because, they appear in one-
loop diagrams which diverge as 1/ε. The combination of these
divergences together with the ε1 of the renormalization factors
produce finite contributions (of order λ2) that should not be
forgotten in the two-loop calculation considered in this work.

3 A similar nonrenormalization theorem for the Gribov mass pa-
rameter was derived in [36, 37]
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Thanks to the non-renormalizations theorems, see Eqs.
(4) and (5), the anomalous dimensions are easily related
to the beta functions as:

γA(λ,m2) = 2
βm2

m2
− βλ

λ
, (7)

γc(λ,m
2) =

βλ
λ
− βm2

m2
. (8)

We can then use the RG equation for the vertex func-
tion with nA gluon legs and nc ghost legs:(

µ∂µ −
1

2
(nAγA + ncγc)

+ βλ∂λ + βm2∂m2

)
Γ(nA,nc) = 0 ,

(9)

to relate these functions at different scales:

Γ(nA,nc)({pi}, µ, λ(µ),m2(µ)) = zA(µ;µ0)nA/2

× zc(µ;µ0)nc/2Γ(nA,nc)({pi}, µ0, λ(µ0),m2(µ0)) ,
(10)

where λ(µ) and m2(µ) are obtained by integration of the
beta functions with initial conditions given at some scale
µ0 and where:

log zA(µ;µ0) =

∫ µ

µ0

dµ′

µ′
γA
(
λ(µ′),m2(µ′)

)
,

log zc(µ;µ0) =

∫ µ

µ0

dµ′

µ′
γc
(
λ(µ′),m2(µ′)

)
.

(11)

In order to avoid large logarithms we choose the renor-
malization group scale µ = p in Eq. (10). We thus obtain

G(p;µ0) =
zA(p;µ0)

p2 +m2(p)
,

F (p;µ0) = zc(p;µ0) . (12)

By using the non-renormalization theorems (7)-(8), the
gluon propagator and the ghost dressing function are
readily deduced from the running parameters:

G(p;µ0) =
λ(µ0)

m4(µ0)

m4(p)

λ(p)

1

p2 +m2(p)
,

F (p;µ0) =
m2(µ0)

λ(µ0)

λ(p)

m2(p)
. (13)

One advantage of the IR scheme is that the propagators
at some momentum scale are algebraically related to the
running mass and coupling constant, evaluated at the
same momentum scale.

III. COMPUTATIONAL DETAILS

We devote this section to detailing the evaluation of
the underlying Feynman graphs contributing to the gluon
and ghost propagators in the Landau gauge of Yang-
Mills when there is a non-zero gluon mass. To achieve
this we have constructed an automatic routine which
computes the 2-point functions using state of the art
Feynman diagram evaluation procedures. The starting
point is the construction of the Feynman graphs for each
Green’s function and for this we used the graph gener-
ator Qgraf, [38]. Since there is a non-zero gluon mass
we have been careful to include graphs involving gluon
snails in the language of [38]. Ordinarily the gluon is re-
garded as massless. So graphs where the quartic gluon
vertex is included on a gluon propagator with two legs
contracted are omitted as these would be zero in dimen-
sional regularization. With a non-zero m such graphs
will give contributions and are included at one and two
loops. Also omitting them would lead to inconsistencies
with the gluon mass renormalization. In total there are
16 two loop graphs for the gluon 2-point function and
6 for the ghost case. At one loop the respective num-
bers are 3 and 1. Once the graphs are generated, the
electronic representation is converted into the notation
of the symbolic manipulation language Form, [39, 40].
It is the most suitable tool to handle the large tedious
amounts of internal algebra. With a non-zero mass, it is
not possible to use established diagram evaluation pack-
ages and therefore we have resorted to implementing the
Laporta algorithm, [41], for the computation. To apply
it, each Green’s function needs to be written as a sum of
scalar integrals. This is achieved by writing all the scalar
products in the form of the propagators. For the gluon
propagator, one has to first project out the transverse
and longitudinal components. To two loop order, this
procedure is straightforward as the number of indepen-
dent scalar products of internal and external momenta
equals the total number of propagators in the one and
two loop integral families in the syntax of the Laporta
technique, [41]. These are illustrated in Fig. 1 where the
one loop and two loop d-dimensional integrals are defined
to be

I1m1m2(n1, n2) =

∫
k

1

[k2 +m2
1]n1 [(k − p)2 +m2

2]n2
,

Im1m2m3m4m5(n1, n2, n3, n4, n5) =

∫
kl

1

[k2 +m2
1]n1 [l2 +m2

2]n2 [(k − p)2 +m2
3]n3 [(l − p)2 +m2

4]n4 [(k − l)2 +m2
5]n5

,

(14)
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with
∫
k

=
∫
ddk/(2π)d and ni are integers.

→
p

n1

n2

→
p n3

n1

n4

n2

n5

FIG. 1. One and two loop integral families.

In the decomposition of each of the Green’s functions
into scalar integrals the propagator powers can be larger
than unity. Equally, one can have integrals where the
scalar products of momenta when rearranged exceed the
number of corresponding denominator factors. So, in
Eq. (14), the propagator powers can be negative. Such
integrals are readily accounted for in the Laporta con-
struction. The notation is that the powers of the propag-
tors, which can therefore be negative or zero as well as
positive, appear in the arguments of the respective func-

tions representing the two integral families. With each
we have to allow for all possible distributions of a non-
zero mass of each propagator. Therefore the masses mi

take values in the set {0,m} since the ghosts are massless
and there is a transverse tensor in the gluon propagator.
To reflect this within the notation we append subscripts
to I in the definitions in (14) which take values in {0, 1}
where 1 corresponds to the mass being non-zero on the
respective propagator. For orientation we provide several
examples which are

I110(n1, n2) =

∫
k

1

[k2 +m2]n1 [(k − p)2]n2
,

I00000(n1, n2, n3, n4, n5) =

∫
kl

1

[k2]n1 [l2]n2 [(k − p)2]n3 [(l − p)2]n4 [(k − l)2]n5
,

I11101(n1, n2, n3, n4, n5) =

∫
kl

1

[k2 +m2]n1 [l2 +m2]n2 [(k − p)2 +m2]n3 [(l − p)2]n4 [(k − l)2 +m2]n5
. (15)

Once each of the Green’s function is written in terms of
these two core integral structures the Laporta algorithm
is applied. We have chosen to use the Reduze version,
[42, 43], and each of the integrals is converted to the
unique Laporta labelling, [41]. Using Reduze we have
created a database of the relations for the required scalar
integrals, for all possible mass configurations. These are
then solved algebraically within Reduze in order to re-
late all integrals to a basic set of what is known as master

integrals. In the case of the present problem there are 2
one loop masters and 31 two loop ones. The latter total
includes those cases which are the disjoint product of one
loop masters. In addition to the integral family topolo-
gies of Fig. 2 there are several additional master topolo-
gies which are illustrated in Fig. 2. The large number of
masters is due to the different ways the topologies can
be decorated with non-zero mass. In that file we use the
Laporta labelling, [41], and to assist with this we note

I1ab(n1, n2) = int1ab(t, id, r, s, n1, n2) ,

Iabcde(n1, n2, n3, n4, n5) = intabcde(t, id, r, s, n1, n2, n3, n4, n5) . (16)

The first four entries of each integral in the Form output are the unique internal labels required by the Reduze
version of the Laporta algorithm. In particular id labels the sector the integral belongs to uniquely. It is defined from
the different ways the various lines can appear in each of the Fig. 1 integral families. This includes the case where
there are no lines which is known as a zero sector. At one loop there are four sectors but 32 at two loops for each
possible mass configuration. The total number of independent lines in a sector is t irrespective of what their powers
are. The sum of the propagator powers is r while the sum of numerator propagators is s. Several of the masters
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have non-unit powers which is an established feature of master bases. An example where one can be related to other
integrals is

I10011(1,−1, 0, 1, 1) =
1

3
[p2 − 3m2]I10011(1, 0, 0, 1, 1) + I11000(1, 1, 0, 0, 0) , (17)

where p is the external momentum. In the Supplemental material [44] we give the 2-loop expressions for the gluon
and ghost 2-point vertices expressed in terms of the integrals int1ab and intabcde defined above. We have used the
more general gluon-ghost vertex of the gauge fixing of Curci-Ferrari, [30] which involves an extra parameter β for any
future investigations into other gauges but our results focus exclusively throughout on the standard Faddeev-Popov
case which is β = 1. Finally, the transverse and longitudinal parts of the 2-point gluon vertex appear are encoded
in the parts proportional to long and trans resppectively. For completeness we note that the Feynman rule for the
gluon-ghost vertex used is

〈Aaµ(p1)c̄b(p2)cc(p3)〉 = − i

2
gf bac [[1 + β]p2µ − [1− β]p3µ] . (18)

where g is the usual gauge coupling constant.

FIG. 2. Additional one and two loop master topologies.

The main duty of the Laporta algorithm is to convert
the evaluation of a Green’s function into a small set of
master integrals. The next stage in the procedure is the
determination of these integrals. How one achieves this is
dependent on the particular problem of interest. Here we
wish to plot the propagators over the whole momentum
range and compare with the lattice gauge theory compu-
tation of the same quantities. Therefore we either need
the explicit analytic form of all the master integrals as
a function of m and the external momentum or instead
a numerical tabulation of each master integral. In the
former case while there has been large amount of invest-
ment in achieving this for two loop self-energy graphs
where the distribution of masses corresponds to integrals
which can appear in the Standard Model at large, such
as in [45], integrals like I11111(1, 1, 1, 1, 1) are not known
explicitly analytically. Various known cases have been
noted in [45]. So instead we have resorted to a numeri-
cal analysis and made extensive use of the Tsil package,
[46], which is written in C. This has been designed with
the Laporta algorithm in mind as it provides the neces-

sary tools to numerically evaluate two loop self-energy
graphs with all possible mass configurations. Moreover
it is comprehensive and complete in the sense that we
have not taken the route of trying to consolidate results
for various integrals from different sources. This would
have the added complication of needing to reconcile dif-
ferent conventions. As an aid to converting between the
Reduze conventions of (14) and (16) and the integral
definitions of Tsil the mapping between the two is

I1x0(1, 0) = A(x) , I1xy(1, 1) = B(x, y) , (19)

for the one loop integrals of Tsil. As Tsil accommo-
dates the most general mass configuration we adapt our
definitions (14) and use x, y, z, u and v as subscript
labels corresponding to the different masses. These pa-
rameters are used in Tsil and correspond to the general
masses m2

i of our notation in (14) although we have only
one mass in our problem. At two loops the corresponding
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relations are

Ixy00z(1, 1, 0, 0, 1) = I(x, y, z) ,

Ix00yz(1, 0, 0, 1, 1) = S(x, y, z) ,

Ix00yz(2, 0, 0, 1, 1) = T(x, y, z) ,

Iyux0z(1, 1, 1, 0, 1) = U(x, y, z, u) ,

Iyux0z(2, 1, 1, 0, 1) = V(x, y, z, u) ,

Ixyzuv(1, 1, 1, 1, 1) = M(x, y, z, u, v) . (20)

One useful aspect of the Tsil package used in this work
is that it correctly isolates the poles with respect to ε
for each master integral ahead of the numerical evalua-
tion of the finite part. Moreover the residues of the 1

ε

and 1
ε2 poles are determined analytically rather than nu-

merically. This provides an important check on both the
Laporta reduction and the Tsil implementation. The
divergent part for each 2-point function is already known
analytically in the case of a massless gluon. This there-
fore has to be recovered and we note that this is indeed
the case when the m → 0 limit is taken. Moreover we
correctly recover the divergent part of the gluon mass
renormalization to two loops when m 6= 0. Therefore the
correct MS renormalization constants emerge from our
full contruction of the Green’s functions. The main ben-
efit of Tsil [46] is that if the finite part of a master is
unknown then it is evaluated numerically and we note
that version 1.41 was used for our computations.

IV. ANALYTIC RESULTS

After extracting the divergences of the various master
integrals according to Ref. [46] and implementing the IR
safe renormalization conditions, the decomposition of the
inverse gluon propagator and of the inverse ghost dressing
function into master integrals can be written formally as

G−1(p) = Z1 p
2 + Z2m

2 +
∑
I∈M

RG(I) I , (21)

F−1(p) = Z3 +
∑
I∈M

RF (I) I , (22)

where the Zi are related to the finite parts of the renor-
malization factors,

∑
I∈M represents the sum over the

finite master integrals and the coefficients RG(I) and
RF (I) are rational functions of the external momentum
p which depend on the considered integral. The finite
master integrals are defined in Ref [46] and are denoted
A0, B0, I0, S0, T0, U0, V0 and M0. The sum also involves
products of bilinears in A0 and/or B0 and also linear
terms involving the order ε1 contributions to the one-
loop master integrals, denoted respectively A1 and B1.4

Similar decompositions hold for the β- and γ-functions.

4 The origin of those terms is again that the order ε1 contributions
multiply factors of order 1/ε. For completeness, we also mention

The explicit expressions for the renormalized 2-point ver-
tex in an arbitrary scheme, expressed in terms of these
finite master integrals is given in the Supplemental Mate-
rial [44]. We also included in this Supplemental Material
the two-loop expressions for the renormalization factors
and the γ functions.

In principle, the above decompositions can be evalu-
ated directly using the Tsil library. In practice how-
ever, certain ranges of momenta, including the ultravio-
let regime (p � m), the infrared regime (p � m), and

also the vicinity of p = p∗ ≡
√

2m, require a more ana-
lytic treatment. The reason is that the decompositions
(21) and (22) are not well conditioned in those ranges of
momenta because the expected behavior of G−1(p) and
F−1(p) as functions of p emerges only as the result of
cancellations among the various terms of the decomposi-
tion.

For instance, we find that some of the terms in the
decomposition diverge artificially as p approaches p∗,
whereas we expect G−1(p) and F−1(p) to be regular for
any value of the Euclidean momentum. A more detailed
analysis reveals that the residue of the potential pole at
p = p∗ is proportional to

11− 8
A0(m2)

m2
+ 2

A0(m2)2

m4
− 4

A0(m2)

m2
B0(m2,m2; p2

∗)

− 2B2
0(m2,m2; p2

∗) + 4B0(m2,m2; p2
∗)

+
4

m2
S0(m2,m2,m2; p2

∗) , (23)

both for the gluon propagator and for the ghost dressing
function. All these integrals can be computed analyt-
ically [46] and we find that the residue vanishes, as it
should. This is a non-trivial check of our decompositions
into master integrals.

Similarly, we find that the individual terms in (21) can
grow up to p6 (up to logarithmic corrections) in the UV,
and those in (22) can grow up to p4, whereas on general
grounds, we expect

lim
p→∞

G−1(p)

|p|3
= 0 and lim

p→∞

F−1(p)

|p|
= 0 . (24)

In the infrared, the various terms can grow up to 1/p4

in the IR, whereas we expect the G−1(p) and F−1(p) to
be regular. In order to check that the correct behavior
emerges after summing over the master integrals we have
used analytic asymptotic expansions for the master inte-
grals that we derived using the algorithms described in
[47, 48]. The algorithm in the infrared does not apply
to certain cases but fortunately the master integrals in
those cases are known exactly [46]. In the Supplemen-
tal Material [44], we provide the infrared and ultraviolet

that the renormalization procedure generates linear terms involv-
ing m2-derivatives of one-loop master integrals. However, using
dimensional analysis, these derivatives can always be expressed
in terms of the master integrals themselves.
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expansions of all the master integrals needed in our cal-
culation up to order p2.5

Using these expansion, we find for instance that the
potentially dangerous 1/p4 contributions in the infrared
regime are proportional to

∝ λ2
[
A0(m2) +m2B0(m2, 0; p2 = 0)

]2 1

p4
(25)

and thus cancel identically since the combination between
brackets vanishes. Similarly, the dangerous 1/p2 contri-
butions cancel owing to an identity between the finite
two-loop master integrals that involves the following re-
lation

0 = π2 − 36 Li2(e−iπ/3)− 54iCl2

(
2π

3

)
(26)

between Clausen function and the dilogarithm.
We have used the UV/IR asymptotic expansions of

the master integrals not only to check that the expected
leading behaviors of G−1(p) and F−1(p) are retrieved
in the ultraviolet and the infrared, but also to replace
when needed the numerical evaluation of these functions
by a controlled analytic expansion to arbitrary order. In
particular to leading order, we find that the UV behavior
are given by

γA = −13

3
λ− 85

6
λ2 +O

(
m2

µ2
ln
m2

µ2

)
, (27)

γc = −3

2
λ− 17

4
λ2 +O

(
m2

µ2
ln
m2

µ2

)
, (28)

from which one recovers the two-loop universal βλ func-
tion. The expansion in the infrared regime leads, for the
IR safe scheme, to

γA =λ

(
1

3
− 217µ̄2

180m2

)
+
λ2µ̄2

m2

[
38687

25920
− 37

48
ζ(2) (29)

+
3647

288
S2 −

179

180
log
( µ̄
m

)
+

13

36
log2

( µ̄
m

)]
+O(λ3, (µ̄/m)4) ,

γc =
λµ̄2

m2

[
− 5

12
+ log

( µ̄
m

)]
+
λ2µ̄2

m2

[
−4295

576
(30)

+
5

12
ζ(2) +

459

16
S2 +

1

6
log
( µ̄
m

)]
+O(λ3, (µ̄/m)4) ,

where the constant S2 = 2
√

3/9 Cl2(2π/3) ' 0.2604341.
It is remarkable that the low-momentum behavior of γA
is completely governed by the 1-loop result.

As a further crosscheck of our calculation, we have
used the symmetries of the model. In particular, the

5 Some of these master integrals are known analytically. We only
give the expansions of those for which no analytic form is known.

~ H0.6 , 1.64L

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

m H ΜL � Μ

Λ
H
Μ
L

FIG. 3. Different trajectories of the IS-flow including two
loop corrections. The infrared fixed point is located at
(λ∗,m∗/µ) ∼ (1.64, 0.6). Green trajectories (left side) present
a Landau pole, while blue trajectories (right side) are infrared
safe. The dotted line represent the position for the extrema
of the gluon propagator. The orange (dashed) curve is the
one used to reproduce lattice data in SU(3).

Curci-Ferrari model possesses a (non-nilpotent) BRST-
type symmetry. Together with the equation of motion
for the antighost field, this symmetry implies a relation
between the ghost dressing function and the longitudinal

component of the vertex function Γ
(2)
AA, namely

Γ
(2)
AA,L(p)F−1(p) = m2, (31)

see [22] for more details. We have checked that this iden-
tity is fulfilled by our expressions up to the relevant order
of accuracy.

V. RESULTS

We are now ready to compute explicitly the gluon and
ghost propagators at two loop order. We shall do so in
four dimensions for the SU(2) and SU(3) gauge groups
and compare our results with lattice data as well as with
previously obtained one loop results. However, before
embarking in this discussion, we first describe the general
properties of the RG flow.

A. General properties of the
renormalization-group flow

In Fig. 3 we depict the solutions of Eqs. (6) for
different initial conditions. The two-loop IR-safe flow
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FIG. 4. Gluon propagator for different initial conditions of
the flow.

presents an infrared fixed point at (λ∗, m̃∗) ∼ (1.64, 0.6),
where m̃ = m/µ is the dimensionless mass. These fixed-
point values are smaller than those found at one loop
(λ∗, m̃∗) ∼ (16, 3.7) [27]. The trajectory from the UV
fixed point, (λ, m̃) ∼ (0, 0), to the infrared fixed point,
corresponds to the so-called “scaling solution”. This so-
lution leads to a gluon propagator which vanishes at small
momentum, as is shown in Fig. 4. For initial conditions
lying on the left of the separatrix, the RG flow terminates
at a Landau-pole (green curves), while the flows initial-
ized at the right of the separatrix (blue trajectories) are
infrared safe and correspond to a gluon propagator which
saturates at a nonzero value in the infrared, see Fig. 4.

There is a feature which appears at two loops that was
not present in our previous one loop calculation. We see
that, for trajectories close enough to the scaling solu-
tion, the gluon propagator shows oscillations, see Fig. 4.
To understand more clearly this phenomenon, we have
drawn in Fig. 3 the position of the extrema of gluon
propagator (dotted line). This curve corresponds to the
values of λ and m/µ for which the derivative of the gluon
propagator with respect to p2 is zero, that is to say:

βλ
λ
− 2µ2 +m2

µ2 +m2

βm2

m2
+

2µ2

µ2 +m2
= 0 .

As some of the flow trajectories can intersect this line
several times, the gluon propagator may present some
oscillations, as seen in Fig. 4. However, these features
concern only relatively large values of λ (λ & 1), a region
where the perturbative approach is questionable. The os-
cillations observed in the gluon propagator are probably
to be attributed to the use of the perturbative approach
beyond its range of validity. We note that such oscil-
lations are not observed in nonperturbative approaches,
see eg ref. [49]. Finally, although not shown in Fig. 3, we
note that the line of extrema (dotted line) always crosses
the IR safe trajectories deep in the infrared.

B. Fixing the parameters

Our calculation of the gluon and ghost propagator in-
volves four parameters: the initial conditions of the RG
flow (at µ0 = 1 GeV) for the running gluon mass and the
running coupling as well as a global normalization of the
propagators.

We choose those parameters in order to minimize si-
multaneously the error for the ghost dressing function
and the gluon propagator. Specifically, we minimize the

average of the error functions, χ =

√
χ2
AA+χ2

cc̄

2 , where

χ2
AA and χ2

cc̄ are defined as:

χ2
AA =

∑
i

G−2
lt. (µ0) +G−2

lt. (pi)

2N
(Glt.(pi)−Gth.(pi))

2
,

χ2
cc̄ =

∑
i

F−2
lt. (µ0) + F−2

lt. (pi)

2N
(Flt.(pi)− Fth.(pi))

2
.

(32)

The subscript lt. indicates the lattice data while th. indi-
cates the perturbative results and N represents the num-
ber of lattice points with momentum less than 4 GeV
(more ultraviolet data were disregarded). Therefore, the
functions χ correspond to a sort of average between the
(normalized) absolute error and the relative error. As an
example for the determination of the best fitting parame-
ters we show in Fig. 5 the level curves for χ as a function
of λ0 and m0, for one and two loop corrections, using the
corresponding data for SU(3) [50] and SU(2) [28]. We
stress that the optimal value for the coupling constant
λ0 is smaller in the SU(3) than in SU(2) case. In table
I we summarize the values of the parameters λ0 = λ(µ0)
and m0 = m(µ0) used for the comparison with lattice
data for different gauge groups. The values of the gluon
masses are comparable with those found by other meth-
ods, see, eg [51]. A more quantitative comparison would
require using the same renormalization scheme.

SU(N) Two-loops One-loop

λ0 m0 (GeV) χ λ0 m0 (GeV) χ

SU(3) 0.27 0.33 4% 0.24 0.35 7%
SU(2) 0.38 0.39 6% 0.36 0.43 7%

TABLE I. Parameters used in our calculations with the IS
scheme, which correspond to the minimum of the error χ.

C. SU(3)

With the set of parameters given in Table I, we obtain
the propagators depicted in Fig. 6, where we represent
the two-loop results for the gluon propagator, gluon and
ghost dressing functions in comparison with lattice data
and the one loop calculation. We include both plots for
gluon propagator and gluon dressing function since the
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FIG. 5. Level curves for the error χ for the two loop correc-
tion (left) and one loop correction (right) in SU(3) (top) and
SU(2) (bottom) all in d = 4 and renormalized using the IS
scheme. From dark to light, the different regions correspond
to 4%, 5% and 6% (top left); 7%, 8%, 9% and 10% (top right);
6%, 7% and 8% and 10% (bottom left); 7%, 8%, 9% and 10%
(bottom right)

first one shows better the comparison in the deep infrared
while the second has better resolution for intermediate
momenta.

The agreement between lattice data and perturbation
theory is considerably improved when the two-loop cor-
rections are added and the error is reduced by a factor
2. For the two loop results the error is less than 5%. At
a more qualitative level, we observe that the two loop
results reproduce the gluon dressing function with great
accuracy while providing a better fit for the ghost prop-
agator.

In Fig. 7 we represent directly the running gluon mass
and the squared coupling constant λ as a function of
the momentum scale. This figure shows that there is a
sizeable difference between the one loop and two loop
results, but only in a rather small range of momentum.
Moreover, as discussed in [27] the relevant expansion pa-
rameter within this model is not λ itself. Indeed in the
deep infrared all the interactions are mediated by a gluon
propagator, which is massive. A better measure of the
relative importance of the different terms in perturbation
theory is

λ̃(µ) =
g2Nc
16π2

µ2

µ2 +m2(µ)
. (33)

We can see, in Fig. 8, that the relevant expansion param-
eter does not change much from one loop to two loops
and in particular it remains less that 0.4.

It is interesting to observe that the typical error of
the 1-loop and 2-loop calculations are not too far from

0 2 4 6
0

2

4

6

8

p HGeVL

G
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IS one - loop results

IS two - loop results

0 2 4 6
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p HGeVL
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p
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IS one - loop results

IS two - loop results

FIG. 6. Comparison with lattice data from [50] for the gluon
propagator (top), gluon dressing function (middle) and ghost
dressing function (bottom) in four dimension

0.42 and 0.43, which gives a strong indication that λ̃ is
indeed a good measure of the convergence of perturbation
theory.

D. SU(2)

We can easily extend our study to the SU(2) case. The
one loop case was studied in [22] and it was observed that
the agreement with lattice data was less satisfactory than
for SU(3). This can be understood because the coupling
constant seems to be roughly 30% larger than for SU(3),
as can be seen in Fig. 9. Using two loops corrections we
find parameters that give accurate results for both propa-
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FIG. 7. Renormalization-group flow of the coupling constant
(top) and mass (bottom) for the SU(3) gauge group, in the
IS scheme.
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FIG. 8. Expansion parameter λ̃(µ) [See Eq. (33)] as a function
of the renormalization-group scale for SU(3).

gators at the same time. Those parameters considerably
improve the fitting for gluon and ghost dressing functions
as is shown in Fig. 10.

E. Scheme dependence

The IR safe renormalization-group scheme that we
used in this study has several nice properties but is just
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FIG. 9. Expansion parameter λ̃(µ) [See Eq. (33)] as a function
of the renormalization-group scale for SU(2).
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FIG. 10. Comparison with lattice data from [28] for the gluon
propagator (top), gluon dressing function (middle) and ghost
dressing function (bottom) in four dimension and SU(2).
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Two-loops λ0 m0 (GeV)
VM α = 1 0.39 0.50
VM α = 2 0.36 0.50

One-loop λ0 m0 (GeV)
VM α = 1 0.36 0.50
VM α = 2 0.42 0.50

TABLE II. Parameters used in our calculations in the VM
scheme in SU(3), which minimize the error χ.

one scheme among infinitely many. Of course, in an ex-
act calculation, the physical results would not depend on
the choice of scheme but this property is not maintained
when we perform an approximation, such as a perturba-
tive expansion.

In [22, 23] we studied the dependence of the Yang-
Mills propagator with the renormalization scheme. We
compared the results obtained in the IS scheme with
the those obtained in the vanishing-momentum scheme
(VM), which differs from the IS scheme by changing the
condition of Eq. (5) by

G(p = 0) =
1

m2
. (34)

This renormalization scheme is not infrared safe so it
reaches a Landau pole at low momentum. As a conse-
quence, we cannot evaluate, as in the IS scheme, equa-
tion (10) at the renormalization scale µ = p. Instead, we

use µ =
√
p2 + αm2

0 where α is a constant. This choice
is sufficient to avoid large logarithms. The conclusion of
this study was that the difference between the results ob-
tained in the IR scheme and the VM scheme were of the
same order as the difference between lattice simulation
and the one-loop calculation.

In this section, we perform again this comparison with
our two-loop results. We will use the values α = 1 and
α = 2. The optimal parameters for the coupling constant
and the mass are presented in Table II.

In Fig. 11 we analyze the dependence in the renormal-
ization scheme by comparing our results computed in the
IS scheme, and in the VM scheme for α = 1 and α = 2.
We can see that the dependence on the scheme for one
loop results in SU(3) is small. Still, as expected, two loop
results reduce this dependence as it is shown in Fig. 11.

In order to measure quantitatively the difference be-
tween schemes we compute the error with respect to the
IS scheme, H, defined as:

H(α) =

√√√√ 1

N

∑
i

(
ηVM(α)(pi)− ηIS(pi)

)2
η2

IS(pi)

where η represents the gluon or ghost dressing functions
and N the number of lattice points. In table III we sum-
marize the values of H for gluon and ghost dressing func-
tions using one loop or two loops results.
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FIG. 11. Comparison with lattice data from [50] for the gluon
dressing function in four dimension and SU(3) using different
schemes at two loops (top) and one loop (bottom).

Gluon dressing Ghost dressing
One-loop Two-loops One-loop Two-loops

VM α = 1 0.03 0.02 0.06 0.05
VM α = 2 0.06 0.03 0.08 0.03

TABLE III. The estimation of the scheme dependence H be-
tween the IS scheme and different VM schemes in SU(3) for
the gluon and ghost dressing functions.

VI. CONCLUSIONS

In this article, we have computed the propagators of
the gluons and ghosts at two loops in the Curci-Ferrari
model, in the quenched approximation. These were com-
pared with the available lattice simulations, both for
SU(2) and SU(3) gauge groups. The gluon mass is seen
as a phenomenological parameter, which is fitted to ob-
tain the best agreement with the lattice data. The two
loop calculations significantly improve the fits for the
SU(3) group. With a unique set of fitting parameters,
we obtain a maximal error of a few percent on the gluon
and ghost propagators. In the SU(2) case, we also find
an improvement of the precision, but which is less sig-
nificant. This can be traced back to the fact that the
interaction is bigger in SU(2) than in SU(3).

This study gives strong indications that the Curci-
Ferrari model is indeed a good phenomenological model
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for describing the correlation functions of QCD in the
quenched approximation. We stress that it is a nontriv-
ial result that two-loop results reproduce better lattice
simulations than one loop. Indeed, it could happen that,
adding more and more loops, we obtain correlation func-
tions that converge to results very different from the lat-
tice results. This possibility seems to be excluded by our
analysis. Moreover, it justifies a posteriori that a good
estimate of the infrared contributions of higher loops is
given by the square of the coupling constant, divided by
the typical momentum squared [see Eq. (33)] (up to mul-
tiplicative factors). This is an important effect, which
ensures the convergence of perturbation theory in the
deep infrared regime.

Following the same procedure, a calculation of the
quark propagator could be performed. The situation is
more complex in this case because there two masses are
present which are those of the quark and the gluon, which
leads to an increase in the number of master integrals ap-
pearing in the expressions. This calculation is interesting
because the renormalization factor of the quarks receives
no correction at 1-loop in the Landau gauge. In this situ-
ation, we expect the 2-loop contribution to have a signif-
icant influence on the results. For higher point vertices,

the calculations become significantly more complex. In
particular, while the Laporta algorithm will decompose
Feynman diagrams to master integrals, full analytic ex-
pressions for massive two loop n-point masters are not
known. This could be circumvented by considering n-
point vertices with n− 2 vanishing external momenta.

Alternatively one could compute power corrections,

such as m2

p2 , to the full two loop vertex functions with non-

nullified external legs in order to compare with lattice
results in intermediate momentum ranges. This would
provide an interim study of when mass effects become
apparent ahead of when the fully two loop technology
becomes available.
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