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1 Introduction

It is now widely acknowledged that in many cases the government regulation cannot

achieve the first-best outcome due to the lack of information on the market develop-

ments. This is even more true for the cases when the market under consideration is

dynamic. In this case the robust control theory is needed to define welfare-improving

policies. Explicit treatment of the dynamic nature is particularly important in cases of

R&D and environmental policy issues, as in Ben-Youssef and Zaccour (2014).

Numerous studies have shown that almost unavoidable market failures can lead to a

technology lock-in; typical examples are lock-ins caused by market power that is due to

patents for new technologies (see, e.g., Krysiak (2011)) or externalities caused by network

effects in technology adoption (see Arrow (1962)), Arthur (1989)), Unruh (2000), or Unruh

(2002)). In such cases, it is not sufficient to only set a price for environmental damages

to ensure that the best clean technologies are developed; more specific incentives are

necessary, (e.g. Krysiak (2011)).

The size and duration of such specific interventions will typically depend strongly

on different cases of market failures. For example, the development of a new promising

technology might only be delayed or it could be prevented completely, rendering different

interventions necessary (see e. g. Bondarev and Krysiak (2017), Ludkovski and Sircar

(2016)).

Robust control has been used in a number of such applications in environmental and

energy economics. Studies on climate negotiations use robust optimization, as in Babon-

neau et al. (2013) or Ben-Tal et al. (2009). The robust control approach has been used

to investigate government interventions in environmental problems, in particular related

to the precautionary principle, as, for example, in Athanassoglou and Xepapadeas (2012)

or Vardas and Xepapadeas (2010). Other applications are found, for example, in asset

management, see Vardas and Xepapadeas (2015).

These studies are based on the minmax approach, where a planner tries to minimize

certain threat and the realization of this threat is given by uncertain variables chosen by

a malevolent nature to maximize damages. One particularly interesting formal analysis
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of the robustness approach is given by Todorov (2009), where a Kullback-Leibler entropy

measure is used.

Somewhat different approach based on model uncertainty is used in Gonzalez (2018).

There the robust decision-making is based on Markovian chains and the planner is not

certain over the true dynamics of the system (time-varying model mistrust).

Current paper contributes to both directions in this literature by developing a general-

ized robustness approach, where the robustness criteria naturally follows from the choice

function over the set of outcomes. Namely the min-max approach is used to define the

social welfare under uncertainty, but the underlying dynamic game is allowed to have

arbitrary many outcomes other than the standard decentralized equilibrium. This feature

may be looked upon as a version of the model mistrust, but the multiplicity of market

outcomes are defined by the optimizing logic of firms.

The closest paper to the present approach is Brock et al. (2014), where the notion

of hot spots is introduced to mark the cases where uncertainty may break down the

regulation or lead to instability of the underlying system. In the current contribution the

general idea of such hot spots is further elaborated and it is demonstrated that under

mild conditions there generically exists a sequence of such uncertainty thresholds. These

thresholds separate domains of efficiency of policy schemes with increasing robustness

levels.

The main contribution of the paper is the development of a general theory of robust

policy which may be applied to a variety of cases. This theory differs from previous

approaches in minimal assumptions being made (only countability of outcomes and axiom

of choice are needed) and provides versatile tools for construction of (suitably defined)

optimal robust policy sets. In particular, the main theorem of algebra is used to defined

the potential set of outcomes of the dynamic game both in decentralized and socially

optimal cases. Thresholds separating those regimes turn to be roots of associated algebraic

polynomials and the selector over the set of outcomes is then defined via a choice function

over sets.

These abstract results are of interest since they allow the construction of robust policies

in a fairly general setting, requiring only the countability of potential outcomes and the
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axiom of choice (see e. g. Herrlich (2006)). At the same time in applications with finitely

many regimes the sequence of increasingly robust policies may be easily constructed.

The rest of the paper is organized as following. Section 2 describes the general setup,

Section 3 contains all main results of the paper and Section 5 concludes.

2 The model

The general setup consists of dynamically interacting market players (firms) and the

government authority. To specialize, I study the underlying market as an r&d differential

game in the spirit of (Ben-Youssef and Zaccour, 2014), (Bondarev, 2014) neglecting any

production side dynamics, which can be easily incorporated as in (Krysiak, 2011).

Any alternative setup may be used, but for illustration purposes I develop the frame-

work in terms of the R&D game and R&D policy. In particular assume that in the

production sector, there is perfect competition and final producers are price takers. In

the R&D sector, the firms get a patent for their developments and are thus monopolistic

suppliers of their technology. Some of the firms have an initial advantage (their technolo-

gies being somewhat more developed initially) and thus might act strategically to forestall

the use and development of the new technologies.

In the analysis which follows I abstract from further market imperfections such as en-

vironmental externalities, assuming it is already taken care about by proper remuneration

schemes in case technologies at hand are dirty and clean ones or both are green. By doing

so I apply this study to the case of general innovations setting with green technologies

being a specific (but rather important) example of those.

2.1 The general r&d game

In the r&d sector, there is a finite N ⊂ N number of firms. Each firm j ∈ N can invest

in r&d and set prices for its own technology. Owing to the patent, each firm is the sole

supplier of its technology, thus the market is monopolistically competitive one.

Denote with qj the state of technology j (subject to investments), pj associated price,

gj investments of firm j into technology’s development.
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Without loss of generality further denote O the set of all possible outcomes of this game

and by F the set of feasible outcomes (under given initial conditions and parameters

vectors). We note that these sets have finitely many elements as long as the number of

players N is finite. Examples of those elements are issues of strategic behaviour of one or

more firms on the market, leading to temporary/permanent prevention of entry of new

firms. Denote further m ∈ O an arbitrary outcome of the r&d game and by qmj (t) the

state of technology j in regime m at time t.

In the following I assume the following general properties of the game:

Assumption 1.

• Free entry condition holds with no sunk costs of entry1.

• Costs cj associated with development of technology j depend only on firm’s j own

investments (but can be heterogeneous across firms).

• Prices pj are continuous functions of the state vector of technologies of market par-

ticipants, ~q.

• There exists (unique) equilibrium state vector ~qm of the r&d game, to which tech-

nologies converge in the long run in regime m2.

The evolution of technology j may depend on own firm’s investments as well as on

investments of other firms and on the current state of own technology and technologies

of other firms:

∀j ∈ N : q̇j(t) = fj(qj(t), q−j(t), gj(t), g−j(t)), (1)

1The absence of sunk costs is crucial for the results, since if these are present, Nash equilibrium logic

would prevent any strategic behavior of incumbent firms: indeed, they can always price optimally with

the threat of lowering price upon new entry, thus preventing the entry of new technology due to not

negligible sunk costs
2of course this vector may include infinite elements if some technologies do not have a steady state,

but I restrict the analysis to those cases where parameters’ space allow only for finite values of this vector.
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The objective of every firm is to maximize its discounted stream of profits (value) for

a given discount rate r choosing optimally price schedule and investments:

Jj = max
pj ,gj

∫ ∞
0

e−rt {πj(pj(t), qj(t), p−j(t), q−j(t))− cj(gj(t))} dt. (2)

where here and throughout the paper index j denotes player’s j quantitative and index

−j quantities associated with all other players except j. profit of firm j, πj may be a

function of prices of all firms as well as of technologies.

The dynamics of all technologies (1) forms a controlled N -dimensional ODE system

with state-space and control space restrictions:

∀j ∈ N : qj ≥ 0; gj ≥ 0; pj ≥ 0 (3)

So that both the state of every technology and associated investments are non-negative3.

Given some final producers’ demand system

∀j ∈ N : QD
j = Fj(pj, p−j, qj, q−j) (4)

for N firms present at the market, we get N reaction functions for prices of technologies

j and as a result an N -dimensional system for price schedules as functions of technology

states of all the firms, ∀j ∈ N : pj = wj(qj, q−j).

We thus reduce the problem of N firms given by (1), (2) to the differential game over

technologies states qj with controls gj. To keep the constructive nature of the exposition

I limit myself to the open-loop solution concept, since closed loop one does not always

exist. As long as the controlled system (1) permits for the solution vector ~q∗4 denote

Π∗j(~q(0)) = max
gj

∫ ∞
0

e−rt {πj(~p(~q∗), ~q∗(t), )− cj(gj(~q∗))} dt (5)

value function of the firm j as a function of initial states of all technologies j ∈ N

with superscript ∗ denoting the simultaneous development regime (solution of N -players

differential game).

3this is not essential, but follows standard economic intuition
4e. g. fj are Lipschitz and bounded, then via Picard-Lindelöf theorem for each admissible ~g the

system (1) admits a solution.
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2.2 Government

The government has the objective of maximizing the net social benefit from all the tech-

nologies. This net social benefit consists of a marginal benefit βj attached to each unit

of production with technology j minus locational costs, minus the costs of developing the

technologies. For simplicity, assume that the social planner uses the same discount rate

r as the r&d firms5.

Social welfare is thus given by:

Wm :=

∫ ∞
0

e−rt
N∑
j=1

{
βjQ

m
j (t) (qmj (t) + Ξm

j (t))− cj
(
gmj (t)

)}
dt, (6)

where Ξj(t) denotes the average effect of used locations on output for technology j.

In general these are functions of prices and technologies’ states, pj, p−j, qj, p−j.

The government may use two policy instruments. First, there is the remuneration for

green production (measured by βj). Second, it might subsidize the initially disadvantaged

technologies for some time.

These instruments have to correct three market failures, two of which are well known.

First, without the remuneration, there would be no green production. Second, as r&d

firms have market power, they will set socially suboptimal prices and thus green tech-

nologies will be used less than in the social optimum. Finally, the firms developing the

initially more advanced technologies might use their market power to set prices that keep

the other firms from investing into developing the newer technologies.

In this paper, I will focus on this third problem, because this is new and could be

particularly detrimental, as the development of a technology with high potential might

be prevented indefinitely. We thus directly consider the point raised in the introduc-

tion: Should a government only provide a general incentive for using green technologies

(such as a price for GHG emissions) or should it also steer technological change by using

technology-specific subsidies?

5In general equilibrium models such an assumption would be tedious, but the framework developed

here is aimed on industrial level regulation studies and as such does not take the difference in time

preferences into account following many IO papers like Dawid et al. (2010). However, this can be easily

incorporated into the model.
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2.3 One-sided uncertainty

To investigate a setting that is both scientifically interesting and practically relevant, I

focus on the case, where the government knows initial technology vector ~q(0) which is

invariant across regimes of the game, but does not know the long-run potential of some of

the new technologies i ∈ I ⊂ N . Firms themselves are fully informed over characteristics

of both old and new technologies. This is often the case in real industries, since industry

players put more efforts into learning their competitors capabilities than the regulating

authority. Without loss of generality assume further that at any moment there is exactly

one new technology i ∈ N which is entering the market and the planner does not know its

potential, but has some limited information about boundaries of this potential6. Since I

do not specify the dynamics of technologies, (1) I also restrain from specifying where this

uncertainty comes from. It is sufficient for our purposes to assume that at any moment

in time government knows the state of the new technology i with some certainty:

qi(t) ∈ [qi(t)− ε, qi(t) + ε], ε
iid∼ N (0, σε), σε = ε2 (7)

and the government is not able to learn the true state over time (otherwise the problem

becomes trivial). In a general setting this amounts to the statement that noise vector ~εW

is non-zero for at least some technologies (i. e. its norm is positive).

As will be showed, an increasing value of ε implies that the government is less able to

differentiate between different cases of strategic and non-strategic behavior of the incum-

bent firms and thus to ascertain that and how long a subsidy is required. We thus look

for a robust policy that can cope with several cases at once.

2.4 Standing assumptions

Throughout the rest of the paper in addition to the list of assumptions on the properties

of the game, (Assumption 1), three standing assumptions are employed:

6indeed this is not a binding assumption, since in the case of simultaneous entry of several firms

the problem may be decomposed into the sequence of problems with single entry, see discussion on the

sequence of pairwise games of the leader and the follower in Bondarev and Greiner (2017) and in the

current paper later in Sec. 3
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Assumption 2. Value functions of all players Πm
j and social welfare functions Wm have

countably many zeros as functions of initial states7.

This assumption is necessary to make sense of thresholds separating regimes of the

game. It simply means that every value function does have only countably many regions

where it is positive or negative with respect to the initial states of technologies separated

by (isolated) zeros. In this case we can consider differences in these values across regimes

of the game and study those intervals of initial conditions where one or the other outcome

is preferred by players and/or the social planner. If Assumption 2 does not hold, some

of value functions may have uncountably many zeros which are not isolated implying we

could no longer define (dense) regions in the state space where the given regime of the

game admits positive value and the approach developed in this paper cannot be applied.

Observe that this assumption is not very restrictive, since all value functions considered

in economic applications so far enjoy this property. However once we consider stochastic

dynamic games, this assumption may fail which is one of the reasons of not studying the

fully stochastic game setting here.

Assumption 3. The (weak version of) axiom of choice holds, i. e. given any selector

function it is possible to choose an element of the set with countably many elements.

This is implicitly assumed in almost all economic papers, but there exist alternative

settings providing different mathematical theories (see Herrlich (2006) for example). At

the same time if this holds it is guaranteed, that the choice function may be defined for

any countable collection of sets.

Assumption 3 plays a crucial role in the analysis that follows. In particular it guar-

antees that given some predefined rule of choice (choice function) we are able to select

exactly one element from every set in a (countable or uncountable) collection of sets.

I do not require the original axiom of choice which states that this is possible for any

uncountable collection of sets, but only require a countable counterpart, since otherwise

7Observe that any analytic function of a real argument enjoys this property, but I do not restrict

attention to analytic functions only, since piecewise or absolute value functions are known to be not

analytic.
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the results even if hold would become too cumbersome to prove. This is the reason of

imposing Assumption 2 on value functions of players. Axiom of choice then enables us to

select the best outcomes in a sense that a relationship of mutual dominance of (countably

many) values of these outcomes of the general game may be established.

In the absence of the axiom of choice many standard mathematical tools would stop

working or at least would require different formulations. For example, the differential

calculus becomes essentially different (see the book Robert (2011) for example). There

are many alternative versions of this axiom with different equivalence relations. It could

be possible to reconstruct some of results of the paper employing alternative axioms, but

this is the task well beyond a current study.

Assumptions 2 and 3 together is all we need to develop the theory of robust policy

schemes for asymmetrically informed agents.

Define next the noise vector for player j as a confidence interval over the state of the

vector of technologies:

∀j ∈ N : ~q(t) ∈ [~q(t)− ~εj, ~q(t) + ~εj], ~εj
iid∼ NN(0,Σεj) (8)

Concerning the information the player is fully informed if its noise vector over the state

of all the technologies is zero. In general asymmetry of information is exhausted by the

assumption:

Assumption 4. The subset of fully informed players is non-empty. That is ∃j ∈ N :

~εj = 0.

Indeed one could in principle allow for any countable set of less informed players (not

only the government). What is important, there must be a reference point, that is, at

least one player makes optimal decisions on the basis of full information.

In particular, assume all R&D firms know with certainty technology characteristics of

each other, but the government experiences some uncertainty over the potential of some

of the technologies (the newer ones) in a form of (7). The government may implement

a subsidizing scheme to prevent the strategic behavior of the more developed technology

owners, but does so only if this is welfare improving.
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3 Analysis of the model

3.1 Characterization of the r&d game outcomes

I first characterize the multiplicity of outcomes of the underlying r&d game under full

information on behalf of competing firms. Once the solution for the game exists, it defines

the vector of value functions of participating firms as a function of initial states of all the

technologies, (5). Those firms, which have initial advantage, l ∈ N : ql(0) > qj(0) may

choose strategic behavior to keep competitors out of the market, creating the multiplicity

of outcomes. Whether or not such strategic behavior is optimal depends on comparison

of values generated by competitive and strategic behavior for every such firm l. Assume

for certainty there is a ranking of initial technologies states, such that:

q1(0) ≥ q2(0) ≥ .. ≥ qN(0) (9)

so that the firm 1 has initial advantage over all other firms and the next firm has advantage

over the rest of N−2 firms, etc. Then firm 1 decides whether or not to implement strategic

pricing and at which level as following: it may set the price at the level p1
1 such that the

profit for all other firms is zero if they enter the market and keep this schedule for some

time. If this turns to be not feasible or not profitable, it can set the price at the level p2
1

as to keep all competitors except the closest one out of the market. Continuation of this

argument yields a descending sequence of strategic prices for firm 1, p1
1 < p2

1 < .. < pN1

such that the latest strategic price keeps off the market only the firm N .

If the first firm sets the strategic price pi1 allowing for entrance of i < N firms, those

firms upon entrance may play the best response price or again act strategically. However

the leader under full information may predict actions of all the followers and sets the

strategic price effectively determining the number of competitors. We thus may reduce

the problem to the case of only two firms, since every next competitor just repeats the

decision process of preceding firms upon the strategic price setting.

Denote the incumbent firm j and the new entrant (closest competitor) −j. I do not

specify the number of potential strategic regimes other than assuming them to be finite

in number. Denote by Πm
j the value generated by the outcome m of the underlying r&d
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game for the firm j. Observe next that from the above discussion it follows that it is

the leader (firm with maximal initial state of technology) which defines the regime of

the game. At last note that value function of any firm j is a function of initial states of

technologies and parameters only. Denote by δ(0) = qj(0)−q−j(0) the initial technological

gap between the leader and the closest competitor (potential entrant). Denote further by

δjz(m) the z-th real-valued root yielding to zero the difference in values generated by the

game for the firm j across outcomes i,m8. The set of such roots is given by real-valued

solutions of the equation:

{δjz(m)} : Πi
j(δ(0))− Πm

j (δ(0)) = 0 (10)

This set by Assumption 2 hoes countably many elements.

We then may characterize the comparison of different outcomes of the game in terms

of such roots of the algebraic equation (10)9:

Proposition 1 (Algebraization of r&d game outcomes).

The outcome i ∈ F of the r&d game is individually optimal if for a given initial state δ(0)

there exists the choice function for the leader j:

∃Θ(F) : δ(0) ∈
⋃
m∈F

⋂
m∈F

{[δjz(m); δjz+1(m)]|Πi
j(δ(0))− Πm

j (δ(0)) ≥ 0} =⇒

Θ(F) = arg max
m∈F

Πm
j = i. (11)

Proof. see Appendix A

As examples of elements of O we might think of cases of strategic pricing, preventing

the entry of a competitor, temporary delay of such an entry or any other behavior different

from the normal equilibrium of the game. Whether or not such behavior is feasible, defines

the size of the set F and the choice function simply selects the outcome (and type of

behavior) giving the highest accumulated profit (value) to a given firm. This does not

8I assume the value functions of all potential regimes has finitely (or countably many) complex roots,

which is the case for any value function over δ(0) satisfying Ass. 2
9Because of this characterization of outcomes through algebraic roots I termed the approach as the

algebraization i. e. conversion to algebraic form
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put any constraints on the pre-commitment (firm may decide to stop strategic pricing

at any time or renew it) since every element in F is the optimal value for a given time-

varying strategy of the firm j. For a particular application of such an approach one may

consider the multiplicity of outcomes in Bertrand competition studied in Bondarev and

Krysiak (2017).

We now move to the uncertain part of the problem. Since government experiences

uncertainty over the true potential of technology −j, it cannot assign the first-best subsidy

as usual10. I thus start with definition of social policy in this setup, then define social

optimality under uncertainty and work out what is called robust policy schemes preventing

strategic behavior.

3.2 Social welfare under uncertainty

Assume from now on initial level of technology j being fixed as well as other parameters

of the model except for q−j(0), Q−j.

First define the social optimality measure under robustness ε for given q−j
11:

Definition 1 (Social optimality under uncertainty).

The outcome of the r&d game s ∈ O is (weakly) social welfare improving over the outcome

m with robustness level ε if

∀ε ∈ [−ε, ε] : min
ε∈[−ε,ε]

{W ε
s (q−j)} ≥ min

ε∈[−ε,ε]
{W ε

m(q−j)} (12)

it is strongly welfare improving if

∀ε ∈ [−ε, ε] : min
ε∈[−ε,ε]

{W ε
s (q−j)−W ε

m(q−j)} ≥ 0 (13)

where W ε
s,m(q−j) are given by integral Eq. (6) with Q−j = Q−j + ε.

The outcome s is (weakly) socially optimal with robustness level ε if

∀ε ∈ [−ε, ε],∀m ∈ O : arg max
m∈O

min
ε∈[−ε,ε]

{W ε
m(q−j)} = s (14)

10in the first-best case the government plays a Stackelberg differential game being the first mover and

setting the subsidy size and duration such as to maximize social welfare
11I omit time argument in integral quantities W,Π and understand q−j = q−j(0), δ = δ(0) in what

follows if this does not lead to confusion.
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it is strongly welfare optimal if

∀ε ∈ [−ε, ε],∀m ∈ O : arg max
m∈O

min
ε∈[−ε,ε]

{W ε
s (q−j)−W ε

m(q−j)} = s (15)

The definition of social optimality (14) requires to obtain minimum possible welfare

for every regime m over realization of the noise ε and then to take the maximum across

regimes. The regime which provides maximal welfare under the most unfavorable cir-

cumstances (minε) is socially optimal with certainty (robustness) level ε, if its minimum

strictly dominates other minima. Such a definition is in line with others used in the

literature (e. g. Babonneau et al. (2013), Brock et al. (2014)) assuming the worst-case re-

alization and in line with model mistrust literature (e. .g Gonzalez (2018)) in accounting

for all potentially realizable outcomes (set O).

Strong optimality requires that regime s has higher welfare under the most unfavourable

circumstances then other regimes have under the most favourable ones, since min{x−y} =

min{x}−max{y}. Apparently the strong optimality holds if there are no intersections of

welfare functionals as functions of ε ∈ [±ε] and corresponds to the case when uncertainty

is inessential.

It is straightforward that under ε → 0 the full certainty social welfare difference

minε{W ε
s (q−j)} −minε{W ε

m(q−j)} = Ws(q−j)−Wm(q−j) is recovered.

To establish social optimality it thus suffices to consider the differences in social welfare

across different regimes of the r&d game.

∀ ∈ O : Ds,m(W )
def
= Ws(q−j)−Wm(q−j) (16)

and their robust counterparts as:

Dε
s,m(W )

def
= min

ε∈[−ε;ε]
{W ε

s (q−j)} − min
ε∈[−ε;ε]

{W ε
m(q−j)} (17)

The regime which is robust welfare optimal would yield positive differences with all

other regimes m, but we cannot apply max operator over these differences to select the

best outcome as in Def. 1.

To obtain such a procedure to select the socially optimal robust outcome I establish

the result concerning social welfare. To this end we make use of the algebraization tools

applied to the difference in minima, (17).
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First observe that robust social welfare values, W ε
m(q−j) = minε∈[−ε;ε]{W ε

m(q−j)} may

be treated as analytic functions in q−j(0) since min operator gives a unique ε value, which

is simply

εεm = arg min
ε∈[−ε;ε]

{W ε
m(q−j)} (18)

by the theorem on the average value of a function. However, these values are in general

different for different m, thus Dε
s,m(W ) depends on both εεm, ε

ε
s values. Still it is analytic

in q−j(0) with coefficients depending on given robustness level ε, since εεm,−m ∈ [±ε].
For each outcome s denote roots of differences in social welfare as functions of q−j(0)

by qmz (ε) where z is the index of the root such that qmz+1(ε) > qmz (ε), i. e.:

{qmz (ε)} : W ε
s (q−j)−W ε

m(q−j) = 0. (19)

The full certainty case is recovered with ε→ 0.

The following Proposition provides criteria for selecting the socially optimal outcome:

Proposition 2 (Social welfare algebraization under uncertainty).

The outcome s ∈ F of the r&d game is socially optimal among outcomes F ⊆ O under

robustness level ε if q−j(0) lies in the union of intervals where social welfare is higher

under outcome s than under any other m ∈ F , i. e. there exists the choice function:

Ψε(F) : q−j ∈
⋃
m∈F

⋂
m∈F

{[qmz (ε); qmz+1(ε)]|Dε
s,m(W ) ≥ 0} =⇒

Ψε(F) = arg max
m∈F

min
ε∈[−ε;ε]

W ε
m(q−j) = s. (20)

The outcome of the game s is robust welfare maximizing up to the level εWs if ∀ε < εWs :

Ψε(F) = s.

Proof. As long as the worst-case outcome s is better than the worst-case outcome m for

given ε, it follows that Dε
s,m(W ) ≥ 0. These objects are analytic functions in q−j(0) (see

discussion around (18)), depending on robustness ε. Hence they have at most countable

zeros (roots given by (19)) which are isolated. Thus roots qmz (εεs,m) form a sequence

of intervals where outcome s is social welfare improving or not over m. Select those

ranges of q−j(0) which yield positive value for this polynomial. Repeat this process for
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all m ∈ F . Outcome s is better than any collection of other outcomes from F as long as

all differences Dε
s,m(W ) are positive (since Def. 1). Ranges of q−j(0) where this condition

remains valid are given by the union of all intervals associated with positive difference for

all Dε
m,s(W ). Union of those intervals gives the total range, where outcome s is better

than any m ∈ F hence (20). The last claim is just an observation that choice function

depends on the uncertainty level: once we change ε, it could be the case that q−j(0) no

longer lies in intervals of positive sign and outcome s is no longer maximizing worst-case

welfare (although it still can be optimal in full certainty case).

This proposition gives the criteria for comparing any regimes in terms of social welfare

of the R&D game for fixed ε: we need to compute values W ε
m , and then compare them

for the given qB(0). As long as the difference between m,−m functions W is positive,

regime m is robust welfare improving over regime −m. Thus computing roots of this

difference provides the range of qB(0), for which this ordering holds. Since ε is fixed,

these roots are functions of parameters and uncertainty level. Thus for any given error

size the ordering or regimes of the underlying r&d game in terms of social welfare can be

established. Formally speaking the relationship (20) provides a selector function in the

space of functions type Dε
m,−m(W ): once the condition of positive difference is fulfilled, it

checks whether given qB(0) falls into one of the provided intervals.

Observe also, that the choice of robust optimal regime depends both on the size of the

set F and the noise level ε: it could be the case that competitive outcome is better than

strategic forestall for any ε, but not so if comparing with the monopolistic development.

We also need the robust criteria of individual optimality. It is done in the same way

as for social welfare, albeit for profit functionals of the players. Denote by Πm
j (ε) total

profit of player j in regime m under uncertainty level ε. Observe that this is valid only

for social planner, since players do not experience uncertainty at all.

Definition 2 (Robust outcome of the r&d game).

The outcome i of the r&d game is believed to be (weakly) individually optimal across

(feasible) outcomes F ⊆ O for the leader j with robustness ε, if

arg max
m∈F

min
ε∈[ε;ε]

Πm
j (ε) = i (21)
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It coincides with actual realization (the belief is robust)

arg max
m∈F

Πm
j = i = arg max

m∈M
min
ε∈[ε;ε]

Πm
j (ε) (22)

if it is strongly individually optimal:

arg max
m∈F

min
ε∈[ε;ε]
{Πi

j(ε)− Πm
j (ε)} = i (23)

Comment : By the belief in this definition the belief of the social planner is understood

(since this is the only one not fully informed actor in this setup). This belief is measured

by the confidence level ε the planner puts into its knowledge of the state of the new

technology.

This definition provides the criteria for a planner, how to define which regime of the

game to expect in the absence of regulation. Still, as the second part points out, the

believed regime is not always the actual one, so there is a room for mistake which is that

higher, the higher is ε.

Denote with δmz (ε) the z-th root (zero) of the equation

{δmz (ε)} : min
ε∈[−ε;ε]

{Πi
j(ε)} − min

ε∈[−ε;ε]
{Πm

j (ε)} = 0 (24)

which is the robust counterpart of (10).

Corollary 1 (Algebraization of robust outcomes of the r&d game).

The outcome i ∈ F of the r&d game is expected to realize among outcomes M ⊆ O with

robustness level ε if δ(0) lies in the union of intervals where worst-case profit is higher

under outcome s than under any other m ∈M for player j (denoted as the leader), i. e.

there exists the choice function:

Θε(F) : δ(0) ∈
⋃
m∈F

⋂
m∈F

[δmz (ε); δmz+1(ε)]| min
ε∈[−ε;ε]

{Πi
j(ε)} − min

ε∈[−ε;ε]
{Πm

j (ε)} ≥ 0 =⇒

Θε(F) = arg max
m∈M

min
ε∈[−ε;ε]

Πm
j (ε) = i. (25)

The outcome i is the robust realization of the r&d game with certainty level εOi if

∀ε < εOi : Θε(F) = i.
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Proof. Amounts to application of results of Prop. 2 to the value functions of the underly-

ing r&d game: Given confidence level ε compute the value function of player j under the

worst case scenario (minimal profit). Since by Assumption 2 these are analytic functions,

they have countably many zeros. Select those intervals with positive difference in these

worst-case values and consider their intersections for all outcomes m. Once δ(0) (which

is known to the planner) falls within a union of these intersections, outcome i is believed

(in the sense of Def. 2) to be chosen by the players. At last, this selection depends on

the chosen level of certainty, εOi , since for higher noise level some of intervals in (25) may

cease to exist or change signs.

3.3 Robust subsidies under uncertainty

The social planner may implement the policy scheme consisting of the subsidy and its

duration to one of the players to prevent strategic behavior. Under full certainty the first-

best subsidy might be implemented, but under the uncertain potentials of technologies

this is not the case. The implementation of a subsidy follows multiple steps:

1. Social welfare is computed for all possible regimes of the game, and the best one in

the sense of Prop. 2 is selected;

2. The expected regime of the game is defined via Cor. 1;

3. Subsidy is assigned to one of the players in such a way, as to incentivize players to

switch to the desired regime;

4. Social welfare for the resulting regime (subsidized) is computed and checked against

the otherwise realised non-perturbed regime and profit incentives of players in the

resulting regime.

I thus require the subsidy to be robust and social-welfare improving, but not necessarily

optimal. Under uncertainty the planner does not know profit incentives of players, but

only expected ones subject to the error ε. Hence the definition of socially desirable robust

subsidy:
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Definition 3 (Robust welfare-optimal policy scheme).

A policy scheme is the pair Σk : {σk, tk} which defines size (σk) and duration (tk)of the

subsidy assigned to player −j for certainty.

For each ε the robust welfare-improving policy scheme Σε
k(i, s) switching the game from

i to s is characterized by following:

1. Regime i is expected to realize without the subsidy in the sense of Def. 2 but regime

s is socially optimal in the sense of Def. 1

2. The policy scheme Σε
k is (weakly) social welfare-improving under uncertainty level

ε:

min
ε∈[−ε;ε]

{W ε
s (q−j,Σ

ε
k)} − min

ε∈[−ε;ε]
{W ε

i (q−j)} ≥ 0 (26)

It is strongly welfare improving if

min
ε∈[−ε;ε]

{W ε
s (q−j,Σ

ε
k)−W ε

i (q−j)} ≥ 0 (27)

3. The policy scheme is (weakly) robust under uncertainty level ε, if this policy allows

for the prevention of switching back from the subsidized regime in all cases considered

in Proposition 1:

∀m ∈ F : min
ε∈[−ε;ε]

{Πs
j(Σ

ε
k)} − min

ε∈[−ε;ε]
{Πm

j (Σε
k)} ≥ 0 (28)

It is strongly robust if

∀m ∈ F : min
ε∈[−ε;ε]

{Πs
j(Σ

ε
k)− Πm

j (Σε
k)} ≥ 0 (29)

The policy scheme Σε
∗ is (weakly) optimal among all (weakly) robust welfare-improving

policy schemes switching from i to s, Σε
k ∈ Σ(i, s) if

arg max
Σεk∈Σ(i,s)

min
ε∈[−ε;ε]

{W ε
s (q−j,Σ

ε
k)} = Σε

∗ (30)

It is strongly optimal if

arg max
Σεk∈Σ(i,s)

min
ε∈[−ε;ε]

{W ε
s (q−j,Σ

ε
∗)−W ε

s (q−j,Σ
ε
k)} = Σε

∗ (31)
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where by the argument Σε
k in social welfare I understand the social welfare obtained

under policy scheme Σε
k and by Πs

j(Σ
ε
k) the value for r&d firms obtained under the given

policy scheme in regime s12.

Robustness is thus understood in this paper as the ability of a policy to perform a

given task (prevention of strategic behavior) albeit crucial information is missing while

preserving the social welfare at least not lower than in the worst-case scenario under al-

ternative regimes. This concept of robustness is close to the usual min-max approach,

since we use maximal confidence intervals for uncertainty and compare worst-case sce-

narios in terms of welfare. At the same time the suggested notion allows for immediate

application due to the the algebraization approach and can be used in the setting with

many alternative regimes of the model.

Since there are multiple regimes of the game possible, the set of robust and welfare

improving policy schemes will be different depending both on which regime is the target

of subsidy (where the planner wants the game to switch to) and on the actual realization

(which regime realizes in the absence of the planner), but policy schemes themselves are

defined independently of regimes of the game.

Thus to find an optimally robust subsidy in terms of Def. 3 social planner has to

define both the socially desirable outcome with the help of Prop. 2 and the regime of the

game which would actually realize in a non-distorted case. Prop. 2 and Cor. 1 provide

tools necessary to define the starting position of a subsidy: where the system would go in

unperturbed case and where the planner wants it to go as well as the criteria for optimality

and robustness of it:

Corollary 2.

There is a need to subsidize regime s only if s = Ψε(F) 6= Θε(F) = i at ε < εWs . Policy

scheme Σε
k is optimal and robust in switching from i to s at the level εWs in the sense of

Def. 3 only if

Ψε(F) = Ψε(FΣεk
) = Θε(FΣεk

) = s (32)

where FΣεk
denotes the set of feasible outcomes under the policy scheme Σε

k.

12this is necessary since introduction of the subsidy changes both δ(t), qA,B(t) dynamics and thus values

for the planner and firms differ from those in regime m without subsidies
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In the present setup it is not the case that simultaneous development of both technolo-

gies is always socially desirable. We thus need a general criteria to select the appropriate

policy scheme among suitable (welfare-improving and robust) ones.

Moreover, so far we defined robust social welfare, profit incentives and criteria of choice

for policy schemes for a fixed level on uncertainty ε. It might happen that at some level

ε∗ one of the choice functions changes, i. e. predicts different outcome of the game as

socially optimal and/or profit maximizing. Denote with qkz (ε) the z− th root (zero) of the

equation

{qkz (ε)} : min
ε∈[−ε;ε]

{WΣx
s } − min

ε∈[−ε;ε]
{WΣk

s } = 0 (33)

comparing the social welfare difference in regime s achieved after implementing policy

schemes x and k respectively at robustness level ε.

We thus arrive to robust policy thresholds:

Proposition 3 (Selection and ordering of robust policy schemes).

1. If there exists εRk (i, s) < εWs such that Θε>εRk (i,s)(FΣεk
) 6= Θε<εRk (i,s)(FΣεk

) = s, the

policy scheme Σε
k is robust in switching i to s up to level of uncertainty εRk (i, s),

otherwise it is globally robust for the pair i, s.

2. If there exists εSk (i, s) < εWs such that Ψε>εRk (i,s)(FΣεk
) 6= Ψε<εRk (i,s)(FΣεk

) = s, the policy

scheme Σε
k is welfare improving for s up to level of uncertainty εSk (i, s), otherwise it

is globally improving for the pair i, s.

3. Policy scheme Σε
k is admissible for the pair {i, s} only for ε ≤ ε∗k(i, s) = min{εRk (i, s), εSk (i, s)}.

4. At any given ε ≤ εWs , if the set Σε(i, s)
def
= {Σε

k}, k ∈ K of admissible policy schemes

switching the game from i to s is non-empty, then there exists the choice function

∃Λ(Σε(i, s)) : q−j(0) ∈
⋃

Σεk∈Σε(i,s)

⋂
Σεk∈Σε(i,s)

{[qkz (ε); qkz+1(ε)]| min
ε∈[−ε;ε]

{WΣx
s } − min

ε∈[−ε;ε]
{WΣk

s } > 0} =⇒

Λ(Σε(i, s)) = arg max
Σεk∈Σε(i,s)

min
ε∈[−ε;ε]

{WΣεk
s } = Σε

x (34)

selecting the best policy scheme Σε
x among those welfare-improving and robust ones

at the level ε.
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5. Denote ε∗1(i, s) = mink∈K{ε∗k(i, s)}, the uncertainty threshold of policy scheme Σε
x =

Λ(Σε<ε∗1(i,s)(i, s)). There exists an increasing sequence Ω∗(i, s) = {ε∗1(i, s), .., ε∗k(i, s), .., ε
∗
K(i, s)}

of uncertainty thresholds for all policy schemes in Σε(i, s) such that the choice func-

tion Λ(Σε(i, s)) changes its value at each of them.

6. This forms a sequence of robust policy schemes increasing in uncertainty tolerance

level Σ∗(i, s) = {Σε∗1
1 , ..,Σ

ε∗K
K } where each next element is more robust and welfare

optimal under given robustness level.

Proof. see Appendix B

The (34) is another choice function, which selects the policy scheme among those social

welfare improving and robust under ε. It selects the one which yields the highest welfare

under regime s in worst case once policy scheme is applied.

The sequence of robust policy schemes is formed by increasing ε: once it crosses the

threshold ε∗k(i, s) the choice function changes and selects another scheme. It is important

to note that these thresholds differ not only across schemes (which are independent of the

regime) but also across the switches {i, s}: a given policy scheme may be more robust

and/or welfare improving in one switching than in the other. These uncertainty thresholds

may be found through application of choice function Λ to different values of ε. There is

exactly the same number of thresholds as of welfare-improving robust policy schemes

for switch {i, s}. Naturally for full certainty case the set of uncertainty thresholds is a

singleton with ε∗1 =∞ and the policy scheme with the highest welfare is selected.

Corollary 3 (Optimal robustness level).

Assume ε < εWs . The level of robustness ε∗∗(i, s) = ε∗k(i, s) is optimal for the switch {i, s},
if both

min
ε∗k

{WΣ
ε∗k
k

s } −min
ε∗k+1

{WΣ
ε∗k+1
k+1

s }+ ||min
ε∗k+1

{WΣ
ε∗k
k

s } −min
ε∗k+1

{WΣ
ε∗k
k

mk }|| ≤ 0,

min
ε∗k−1

{WΣ
ε∗k−1
k−1

s } −min
ε∗k

{WΣ
ε∗k
k

s }+ ||min
ε∗k

{WΣ
ε∗k−1
k−1

s } −min
ε∗k

{WΣ
ε∗k−1
k−1

mk−1 }|| ≥ 0,

mk = Θε∗k+1
(M

Σ
ε∗
k
k

) (35)

It is unique for any {i, s}.
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Proof. Both lines in (35) are sums of welfare loss and gain from increasing the robustness

level by one threshold. The first term is the difference in worst-case welfare in regime s

under two successive schemes from Σ∗(i, s) under associated robustness thresholds. This

is always non-positive, since at every threshold the maximum welfare is selected. The

second term is the potential error from applying the preceding (less robust) scheme under

higher robustness level. There are two kinds of potential errors: either this scheme is no

longer worst-case welfare improving, or it is not robust. Both cases are described by the

difference under modulo operation and differ only in sign. Taking absolute value gives

positive value of error avoidance. Once the sum of those two terms is not increasing, there

is no further gain in increasing robustness level for the planner. Since the sequences of

thresholds and policies are increasing, this choice is always possible and unique one.

Corollary 3 partially endogenizes the robustness concept and relates back to the well-

known Arrow-Fisher quasi-option value (see e. g. Mensink and Requate (2005) for discus-

sion). One may interpret the changing level of ε as learning new information (uncertainty

decreases) and (35) as a stopping rule taking into account the value of the new informa-

tion gain and loss in efficiency. The advantage oft his last formulation is that again it

does not relate on any specific structure of the underlying model except the existence of

the value at hand and countability of the set of outcomes.

4 Application example

In this section I present a specific model based on the fully deterministic game of Bondarev

and Krysiak (2017) to illustrate the main findings of the paper.

4.1 Specification of the model

Consider the 2-firms game {A,B} whereas firm A has an initial advantage and firm B

is trying to enter the market with the new technology. Both firms are fully informed on

both initial states, qA(0), qB(0) and efficiencies of investments. The social planner knows

with certainty only the initial state of both technologies as well as the evolution of A,

but is uncertain over the true evolution of B in time (e. g. because it does not know the
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efficiency of B’s development). The production sector is modeled in the same fashion as

in Krysiak (2011): a continuum of producers consider choosing technology A or B given

locational costs x, current prices and states of both technologies.

The profit that each producing firm can obtain by using technology A or B is given

by

πProdA = z (qA(t)− x)− pA(t), (36)

πProdB = z (qB(t) + x)− pB(t). (37)

We assume x ∈ [−x̄A, x̄B] ⊂ R>0. Thus, depending on the choice of x̄A, x̄B, locations

could be on average better suited for technology A or for technology B.

To calculate the demand for each technology, we take into account that each firm buys

one unit of equipment and each locations hosts a single firm. As long as z qj > pj holds

for j = A,B, all locations are used and thus the demand for technology j is determined

by the distance between x̄j and the location where a firm is indifferent between both

technologies. This implies the following demand functions

QProd
A = x̄A −

1

2

(
pA − pB

z
− qA + qB

)
, (38)

QProd
B = x̄B −

1

2

(
pB − pA

z
− qB + qA

)
. (39)

We assume that x̄j ≤ qj/2 for j = A,B, which implies that in the equilibrium derived

later, the conditions z qj > pj for j = A,B will always hold. Thus these demand functions

characterize the case where both technologies are available.

If only technology A is available (which will be the case in some settings), demand for

this technology is determined by the distance between x̄A and the location where a firm

receives a profit of zero when using technology A. In this case, demand for technology A

is given by

QProd
A,−B = x̄A −

(pA
z
− qA

)
. (40)

R&D firms sell their technologies and invest into their further development with ob-

jective functionals:

Jj = max
pj ,gj

∫ ∞
0

e−rt
{
pj(t)Qj(t)−

1

2
g2
j (t)

}
dt. (41)
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and given evolution of each technology as:

q̇j(t) = γjgj(t) − qj(t). (42)

where γj is the efficiency of investments into technology for firm j.

We then define δ(t) as before to be a technological gap across firms and governed by

the equation:

δ̇(t) = q̇A(t)− q̇B(t) = γAgA(t) − γBgB(t) − δ(t). (43)

This structure forms a standard linear-quadratic differential game of R&D so that explicit

solution may be easily obtained. However due to the assumption of zero entry costs, the

incumbent firm A has a variety of options of strategic behavior by setting its price at a

level preventing the entrance of the firm B.

The social planner’s objective is the same as (6) with location effect defined as follows.

In case that both technologies are available, these costs are given by13

ΞA(t) =
x̄2
A

2
− (pA(t)− pB(t)− z (qA(t)− qB(t)))2

8 z2
, (44)

ΞB(t) =
x̄2
B

2
− (pA(t)− pB(t)− z (qA(t)− qB(t)))2

8 z2
. (45)

In case only technology A is used, we get

Ξ(t) =
x̄2
A

2
− 1

2 z2
(pA(t)− z qA(t))2 . (46)

4.2 Characterization of outcomes

In this setting it has been demonstrated that depending on parameters specifications there

are the following possible outcomes:

1. Simultaneous development of both technologies, denoted by ∗,

2. Uncontested monopoly of the firm A whereas firm B never tries to enter the market,

denoted M ,

3. Permanent strategic pricing of firm A preventing the entrance of B, denoted S,

13This follows directly from Eqs. (38)–(39).
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(a) Contested monopoly (b) Delay

Figure 1: Piecewise regimes of the model

4. Temporary strategic pricing of A leading to:

(a) Eventual entrance of firm B (strategic delay), denoted d,

(b) Eventual switch to a monopoly pricing by A, denote P ,

(c) Eventual switch to a monopoly with a constraint of keeping constant technology

level due to ongoing threat of B’s entry, denoted C for contested monopoly.

All these outcomes are results of solving the associated optimal control problems and based

on the comparison of values achieved by different outcomes for the firm A, it chooses the

msot preferred one according to the general Proposition 1. In particular the set O is finite

and has 6 elements: O = {∗,M, S, P, C, d} from which the one with the highest value is

selected. Detailed solutions for all cases may be found in Bondarev and Krysiak (2017).

Illustration of typical dynamics in different regimes is given by the Figure 1.

For illustration purposes I focus only on the case when the simultaneous development

of both technologies is socially optimal. However even in this simple setup this is not

necessarily the case: depending on market potentials of both technologies, x̄A, x̄B it might

be socially optimal to select a monopoly of firm A or even the contested monopoly case,
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such that only technology A is present on the market, but it is developed to a level higher

then firm A would find individually optimal.

4.3 Full certainty policy schemes

We first derive a set of (second-best) policy schemes characterized by a subsidy size (paid

to a firm B) and its duration, so that Σk = {σk, tk} switching the game from any given

regime to the simultaneous play, restricting Σk(i, s) to Σki, ∗ only. Since all alternative

outcomes in O are consider the argument (i, ∗) is omitted in schemes characterization

onwards. There are 5 different policy schemes in total which may be defined for this

setup:

1. Maximal state-based scheme Σmax = {σmax, tmax} defined as the subsidy level mak-

ing the strategic pricing for A infeasible::

σmax = zδ(t)− 2zx̄B, t
max : δσmax(t

max) = 2x̄B (47)

where δσmax denotes the solution to (43) under subsidy size σmax;

2. Maximal state-independent scheme Σ+ = {σ+, t
+} defined as a constant counterpart

of Σmax:

σ+ = zδ0 − 2zx̄B t
+ =∞; (48)

3. Minimal scheme Σmin = {σmin, tmin}, defined as a subsidy making the permanent

strategic pricing of firm A unprofitable:

σmin(t) : πSA(t)|t<tmin = π∗A(t)|t<tmin tmin : ΠS
A(δσmin) = Π∗A(δσmin) (49)

i. e. size of the subsidy equalizes profit streams across strategic and simultaneous

regimes for A and duration equalizes the accumulated value after reaching δσmin gap

level.

4. Associated constant scheme Σ− = {σ−, t−} is:

σ− = z(δ0 − 4x̄B − 2x̄A) t− =∞, (50)
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5. Sufficient scheme Σsuff = {σsuff , tsuff} is defined int the same profitability terms

but taking into account the fact that firm A may switch from strategic pricing to

monopoly after some time earning higher profits:

σsuff : πMA (t)|t<tsuff = π∗A(t)|t<tsuff tsuff : ΠM
A (δσsuff ) = Π∗A(δσsuff ) (51)

6. Associated constant counterpart denoted Σo = {σo, to}.

Precise expressions for these policy schemes may be found in the referred paper Bondarev

and Krysiak (2017). It suffices to note here that every constant subsidy is higher then

the state-based counterpart and

tmin < tsuff < tmax σmin < σsuff < σmax (52)

so that every next scheme in this sequence is costlier and lasts longer.

So far we have seen that employing a simple linear-quadratic game already allows for

a multiplicity of outcomes and policy regulation tools, once we restrain from the first-

best policy (which is given by the solution of the associated Stackleberg game with the

government being the leader). This last is unique, but rather challenging to obtain and

has limited use once we assume information asymmetry.

4.4 Robust subsidies

We now are ready to use the general results of the paper.

Under any level of ε the robust counterparts of full certainty subsidies are defined as:

σεk = fk( max
ε∈[−ε,ε]

δ(t, ε));

tkε = tk( max
ε∈[−ε,ε]

δσk) (53)

with k ∈ K∗ = {min, suff,max,+,−, o} defined in above. This is the case since subsidies

are assigned only during the time when player A has an advantage (δ(t) > 0), and since

planner does not know with certainty true value of δ(t), the subsidy has to cover the

maximal possible error in duration and size.
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It follows that

∀k ∈ K∗ : σεk ≥ σk, t
k
ε ≥ tk (54)

and robust subsidies sizes and durations are increasing in the robustness level ε. Then

as long as the full certainty subsidies are ordered as in (52), the same is true for robust

counterparts for any ε.

We thus may establish the ordering of policy schemes switching the game into the

simultaneous development regime, using results of the paper:

Corollary 4. Assume the game has a structure (41)-(43), (6). As long as Ψε(F) = (∗)
(i. e. simultaneous development is socially optimal) and (52)14, holds for ε < εW∗ :

1. If Θε(F) = (d), subsidies {Σε
min,Σ

ε
−,Σ

ε
suff ,Σ

ε
max} are welfare improving and robust

for ε < min{εRmin, εSmin}.

a As long as ε < min{εRmin, εSmin}, the policy scheme Σε
min is welfare optimal and

robust;

b As soon as min{εRsuff , εSsuff} > ε > min{εRmin, εSmin} the policy scheme Σε
suff is

welfare optimal and robust

c As soon as min{εRmax, εSmax} > ε > min{εRsuff , εSsuff} the policy scheme Σε
max is

welfare optimal and robust

d At last if min{εW∗ , εOd } > ε > min{εRmax, εSmax} only the policy scheme Σε
− is welfare

optimal and robust.

2. If Θε(F) = m ∈ {S, P, C,M}, subsidies {Σε
suff ,Σ

ε
o,Σ

ε
max} are welfare improving

and robust for ε < min{εRsuff , εSsuff}.

a As long as ε < min{εRsuff , εSsuff}, the policy scheme Σε
suff is welfare optimal and

robust;

b As soon as min{εRmax, εSmax} > ε > min{εRsuff , εSsuff} the policy scheme Σε
max is

welfare optimal and robust

14In the deterministic model there are cases when this ordering may fail, so here I impose this ordering

as an assumption
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c At last if min{εW∗ , εOm} > ε > min{εRmax, εSmax} only the policy scheme Σε
o is welfare

optimal and robust.

3. If Θε(F) = (), only the policy scheme Σε
+ is robust. It is welfare improving if

max{εOm∈F} < ε < εW∗ and still ε < εS+.

Proof. See Appendix C

This last example of application of general framework developed in the paper points

out to the important distinction in what could be termed inessential, limited and unlimited

uncertainty.

Denote by δ−j∗ the value of technology gap allowing for (unperturbed) simultanous

development of both technologies, by δjd the level leading to strategic delay and by δjS the

level leading to the (permanent) strategic pricing.

Fig. 2 illustrates the relation between increasing noise and ability of the government

to distinguish different cases.

Figure 2: Structure of uncertainty in the model
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The last Corollary tells us that there exists ε∗ such that for uncertainty below this

threshold the planner is still able to distinguish all these cases and all policy schemes retain

there ordering and efficiency albeit with increased costs and duration (due to robustness

requirement). Next there is at least one other threshold ε∗∗ such that if there is limited but

non-zero information on behalf of the state of the system, confidence intervals over values

of roots of some of value functions equations overlap, dismissing some policy schemes as

not robust. At last, if e > ε∗∗ the planner cannot distinguish between different cases and

only the most robust (and most expensive) type of regulation may still do the job.

The question of which level of confidence to choose to balance off potential costs of

error and additional regulation costs is then answered by Corollary 3 which can be applied

to the provided example int he same straightforward way as the Prop. 3.

5 Conclusions

This paper develops a novel approach to robust policies, which combine the usual min-

max approach (e.g. Brock et al. (2014)) and model uncertainty (e. g. Gonzalez (2018)).

The underlying dynamic game is assumed to allow for the existence of value functions for

fully informed players while the government is uncertain over the rue state of the industry

(asymmetric information).

Starting with an arbitrary dynamic game with finite number of states measuring the

technologies’ development, I formulate the ordering of individually and socially preferred

outcomes based on the abstract notion of the choice function. The advantage of this

abstract approach is that a choice function for a finite collection of sets exists always once

axiom of choice is assumed. Moreover it allows for immediate computation of different

policy thresholds for a wide class of value functions. In particular if underlying value

functions are of the polynomial type power n, there always exist not more than n different

thresholds separating different regimes for each player.

Based solely on this notion it is possible to find the ordering of robust policy schemes,

derive the criterion for the selection of the most optimal one and formulate the concept

of the optimal robustness level relative to the uncertainty.
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First the algebraic characterization of full certainty outcomes of the differential game is

obtained, then the same is done for the uncertain problem of the planner. This last takes

into account the belief over the outcome of the game which is not necessarily coinciding

with the true outcome (model mistrust). Next the robust policy schemes are defined as

subsidies having size and duration (allowing for time-limited interventions) allowing to

switch the state of the game to the desired one given the level of noise.

It comes with no surprise that costlier policies are required to cope with noisier signals

for the planner to switch the state from some i to some j within feasible outcomes. What

is interesting that even under rather mild assumptions we are able to prove the existence

of a sequence of increasingly robust policies for different uncertainty thresholds. For any

given level of uncertainty there exists a (suitably defined) optimal choice of the policy

scheme for the planner in terms of welfare and it is a unique one.

At last once we think of this uncertainty as being subject to choice (i. e. more resources

devoted to study of the market participants capabilities) it turns out that the optimal level

of robustness exists in the sense that increasing robustness further will not increase the

gain in expected welfare more than will be lost by using costlier (and more reliable) policy

schemes. This result is generalization of the well-known Arrow-Fisher-Henry-Hanemann

(AFHH) quasi-option value which relates the learning and optimal stopping in investments

under uncertainty. Indeed, one may interpret the (increasing) uncertainty level in the last

corollary as the result of (dynamic) learning and the optimal threshold as the stage where

the ’investment’ occurs.

The approach proposed here can be applied to any dynamic game with finite number

of players and asymmetric uncertainty. In particular it may be applied to questions

of subsidizing green technologies, which are frequently characterized by the uncertain

potential and relative disadvantage in comparison with existing older technologies.

At last it has to be noted that the machinery developed in this paper can be easily

adapted for any dynamic game not necessarily the differential one. Indeed it suffices for

the game to have a finite well-defined value for this approach to be applicable. Such

further generalization as well as refinement of information structures are considered as

immediate extensions of the approach.
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From a more application-oriented perspective, our paper casts some new light on

policies that aim to support green technological change. These policies are widely used

and are often criticized by economists, as they eliminate competition among technological

options. Our results show that there are cases where it is indeed reasonable to temporarily

reduce the effects of competition via technology-specific subsidies. Most interestingly, a

less informed government should subsidize new technologies more and longer, as long as it

can still ascertain that developing the technology is socially desirable. This is illustrated

with the help of a particular example in the end of the paper.
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A Proof of Proposition 1

Proof. The proof simply follows from the definition of value functions Πm
j and the fact

that the choice function and the selector exist for any finite (and countable) collection of

arbitrary sets satisfying the axiom of choice.

In particular, Πm
j are functions of initial state of the game δ(0) only and thus their

differences too. Each of the intervals [δjz(m); δjz+1(m)] denotes the range of initial value

δ(0) for which the difference in values of the game for the leader j across a given outcome

i and some other outcome m has constant sign (positive or negative), since δjz(m); δjz+1(m)

denote the z-th and z+1th roots (zeros) of this difference for j as an algebraic expression.

By Assumption 2 there are at most countably many such roots for each value function

and hence at most countably many roots for differences of these values. Consider next
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only those such intervals that imply Πi
j(δ(0)) − Πm

j (δ(0)) ≥ 0. If δ(0) belongs to one of

such intervals it implies that outcome i is preferred to an outcome m.

We next compare i to all other m outcomes and consider those intervals where profit

difference is positive. The intersection of all such intervals would give a range of δ(0)

where outcome i is preferred to all other feasible outcomes. At last, we need to consider

a union of all these intersections since there might be multiple of those.

The choice function Θ(F) selects the outcome i among all feasible ones if and only

if the given initial state δ(0) belongs to the set of values where the value for j under

outcome i is greater than under any other outcome, as denoted by the argmax term. At

this point we need axiom of choice which guarantees that it is always possible to select

an element within a set given some criterion (the selector function) whereas the selector

is given by the above procedure on intervals between zeros of value functions.

Example: consider as an illustration the example with only 3 possible outcomes, a, b, c

and assume for simplicity all values are given as polynomials of 3d degree in δ(0). In this

case for an outcome a to be optimal it is needed that values differences Πa −Πb,Πa −Πc

remain positive at the given δ(0) level. So consider intervals between roots of those

polynomials (4 intervals for the case of real roots) for each of alternatives. Assume δ(0) ∈
{[δ1(b), δ2(b)|Πa − Πb ≥ 0} meaning that a is preferred to b once δ(0) is in this range.

Then find the same interval for c alternative. If the intersection of those two ranges is

non-empty and the union of such intersections contains δ(0), outcome a is optimal in

comparison to the other two, that is, the selector function gives a as an argmax of value

function w.r.t. the set of outcomes (and not δ(0) value itself).

B Proof of Proposition 3

Proof. 1. The condition Θε>εRk (i,s)(FΣεk
) 6= Θε<εRk (i,s)(FΣεk

) = s means that at the noise

level εRk (i, s) the outcome of the game believed to be realized is changing, so this is

a threshold distinguishing the level under which subsidy from i to s is robust from

not being robust. Thus by definition the given policy scheme is robust up to this

level of noise. If such a change in believed outcome does not exist up to the maximal
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noise level εWs associated with the outcome s (and chosen by the planner), the given

scheme will always have an effect in switching the outcome from i to s.

2. The same claim follows for welfare functions: once under a given noise level εSk (i, s)

the preferred outcome changes (the choice function Ψ of the planner changes its

value), this defines a threshold up to which the given policy is improving the (ex-

pected) welfare. Again, if such a change in choice function is not observed for any

noise level up to the maximal one, given subsidy scheme is always welfare improving.

3. Combining two previous arguments we observe that the given policy scheme will

be implementable (that is, both robust and welfare-improving) only for noise level

being under both above defined thresholds (if they exist).

4. Now we form a set of all admissible policy schemes as defined by the previous point

for a given noise level and two outcomes i, s. If this set is non-empty, then there is at

least one policy scheme for a noise level up to εWs which is both robust and welfare

improving in switching the regime from i to s. Then there is a problem of selecting

the best of such admissible schemes (since they are all only welfare-improving but

not optimal). We then may define the welfare associated with each of such policy

schemes and formulate a choice criteria in the same way as in previous propositions

of the paper: the policy scheme, which yields the best worst-case welfare under

given noise level ε is selected as the most appropriate one, see (34) which defines

the selection criteria int he set of these admissible policy schemes.

5. Next we fix the noise level associated with the selected by Λ policy scheme as the

minimal one. Once we allow this value to vary it is straightforward that the choice

function (34) will change its value (i. e. will select a different scheme) at some level

of noise. This level is the next threshold, where the scheme Σε
x ceases either being

robust or welfare improving and the set of admissible schemes shrinks. The fact

that the set will shrink under increasing ε is implied by the min operator over ε in

(34) formulation. Thus there is an increasing sequence of ε∗ such that the previously

admissible scheme stops to be such and the Λ selector will yield a different result.
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6. By selecting at each such a threshold a new policy scheme the sequence Σ∗ is formed.

Since we have countably many schemes, the increasing sequence can be constructed

out of it. It follows that each next element is better then previous ones under given

noise level, since otherwise those previously selected elements will remain optimal.

C Proof of Corollary 4

Proof. 1. Once the belief of the social planner is such that only delay may realize,

this outcome may be switched to the simultaneous one in a variety of ways. The

set Σε(d, ∗) defined as in Proposition 3 excludes schemes Σ+,Σo since even in the

extreme case of no information except the expected realization the scheme Σ− is

robust and by (52) it is less costly then the other two constant schemes. Hence

Σε(d, ∗) = {{Σε
min,Σ

ε
−,Σ

ε
suff ,Σ

ε
max}}. Then we start with robustness level ε <

min{εRmin, εSmin}, for which, by Proposition 3 all the set is admissible. Then the

most welfare improving scheme is selected which is by (52) the scheme Σε
min, giving

case a. Once we increase the confidence interval to the level min{εRsuff , εSsuff}, this

scheme stops being robust and the set Σε(d, ∗) looses one element. Thus the next

scheme is selected, which is Σε
suff . The process continues until the maximal level of

noise is reached, under which only the constant subsidy remains robust.

2. Once the belief is different and permits multiple other outcomes except the delay,

minimal subsidy cannot be robust since it does not prevent firm A from strategic

pricing and the same is true for its constant counterpart. A the same time since (52)

the scheme Σ+ is clearly dominated by the Σo and thus is also excluded from the

admissible set. We get Σε(m, ∗) = {Σε
suff ,Σ

ε
o,Σ

ε
max}. We next again apply Prop.

3 increasing the uncertainty tolerance level ε and selecting at each of the threshold

the next optimal scheme after the shrinkage of the admissible set.

3. At last, if there is not enough information for the planner to belief in any particular

outcome of the game, only the constant maximal scheme is robust and can prevent

strategic pricing. this would be the case if the robustness level is above the one
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enabling to select the belief in any particular outcome, max{εOm∈F} but still under

the threshold where the planner believes in the social optimality of simultaneous

development, εW∗ . The policy scheme is welfare improving (and thus optimal since

the set of admissible subsidies is a singleton) if additionally it is robust, i. e. the

noise level does not exceed its robustness level.
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