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H eart failure (HF) is a culmination of pathological
processes presenting with debilitating symptoms that

highlight a complex interplay between immunological, hor-
monal, and metabolic systems resulting in impaired cardiac
function. HF has a major impact on the quality of life and
longevity of the affected patients.1 Inflammation has been
shown to play a pivotal role in the pathogenesis of HF within
animal studies, but there has been limited translation of these
findings into human research.2,3

Monocytes and monocyte-derived macrophages play a role
in the development of HF. In human immunology, monocytes
undertake phagocytosis to provide protection from foreign
pathogens such as bacteria and viruses. Nevertheless, there
are distinct subsets of monocytes with potential for beneficial
or detrimental effects on HF pathogenesis, although intimate
details of the involved processes are not yet fully
determined.4,5 Of importance is the fact that the role of
monocytes in cardiovascular diseases is complex and includes
inflammation, which subsequently contributes to processes of
regeneration, repair, and modulation of the prothrombotic
state.6,7 All these functions are highly relevant to patients
with HF, who show progressive impairment of cardiac function
and frequently develop atrial fibrillation (AF), an arrhythmia
with a high risk of thrombotic complications.

Therefore, of equal interest is the role of the immune
system in AF, a very common arrhythmia in HF, which has
been strongly linked to inflammation.8 Atrial and ventricular
fibrosis have been documented in patients with AF, with
monocytes playing a role in these processes, based on animal

studies.9,10 Indeed, inflammation in the myocardium clearly
predisposes to cardiac fibrosis.11

Why is this important? Cardiac fibrosis is an active
process that is part of the remodeling of the myocardium in
response to mechanical, chemical, and electrical stressors,
along with the inflammation.12 Myocardial fibrosis reduces
left ventricular (LV) compliance and increases filling pres-
sures and atrial load. This, in turn, promotes LV and atrial
fibrosis, predisposing to AF and thus completing the vicious
circle.13 HF and AF should therefore not necessarily be
considered as pathophysiologically unrelated entities, and
indeed the pathological/inflammatory processes underpin-
ning both conditions seem to overlap and this may, in turn,
guide therapeutic options.

The aim of this review article is to identify the role of
monocytes and their associated inflammatory cells in the
pathogenesis of cardiac fibrosis. Particular focus is given to
monocyte subsets and their associated immune response
cells in the inflammation process of HF and AF. Considera-
tions on possible therapeutic targets related to these cells in
the treatment of HF are also discussed.

Etiology and Pathogenesis of HF
A wide range of cardiac conditions, inherited defects, and
systemic disorders contribute to the pathogenesis of HF.
Ischemic heart disease is a major cause of HF attributed to
chronic ischemia (atherosclerosis/coronary calcification) and
acute myocardial necrosis (atherothrombosis).14 Hyperten-
sive cardiac disease leads to the mechanical myocardial
stress and neurohormonal changes that are detrimental to
cardiac myocytes. Definitive studies have not only found
significant lifetime risk of HF in people with blood pressure
of over 160/90, but also provided evidence of improved
blood pressure control contributing to reduced incidence of
HF.15,16 Valvular heart disease plays a lesser role as a cause
of HF in the developed world attributed to improved living
conditions and medical and surgical therapy. Globally,
however, rheumatic heart disease is still a major cause for
HF.17

LV dysfunction secondary tomyocardial infarction (MI) is the
most studied HF etiology. Cardiac remodeling post-MI includes
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stretching of cardiac myocytes attributed to the raised
intraventricular pressures found in acute cardiac ischemia.18

The noninfarcted myocardium attempts to compensate for the
area of myocardial loss. Remodeling of the unaffected
myocardium is a consequence of the expanding myocardial
collagen scar, as well as the response to neuroendocrine stimuli
and increased wall stress.18

MI is accompanied by an inflammatory process, involving
the migration of macrophages, monocytes, and neutrophils
into the necrotic and ischemic areas. The subsequent
signaling cascade and neurohormonal activation is responsi-
ble for the recruitment of inflammatory cells to site of tissue
injury.19

The early phase of postinfarct remodeling (within
72 hours) predominantly involves the infarct zone itself and
can be associated with the zone expansion. Late remodeling
involves the left ventricle globally and is associated with
dilatation, changes in ventricular morphology, and hypertro-
phy. Adverse remodeling leads to cardiac failure attributed to
inability to prevent or reverse progressive ventricular dilata-
tion, expansion of the myocardial scar, and deterioration in
contractile function.20

The role of monocytes/macrophages in postinfarct remod-
eling has been demonstrated in numerous studies.19,21,22

There exists a fine balance between excessive and prolonged
infiltration of inflammatory macrophages into the infarct
myocardium, causing a detrimental inflammatory response
with subsequent cardiac fibrosis, dysfunction, and adverse
ventricular remodeling.23,24 In contrast, monocytes/macro-
phages are also essential to wound healing and tissue repair
through phagocytosis, angiogenesis, and favorable remodel-
ing of the extracellular matrix in the infarcted area.4 It remains
unclear how the balance of contrasting roles of monocyte/
macrophages is achieved. However, the role of monocyte
subset populations may be a logical explanation for the
diversity in function.

The hypothesis of monocyte subset heterogeneity and
function in MI is formed on the basis of their role in
modulating chemokine expression in mice, which, in turn,
recruit Ly-6Chigh and Ly-6Clow monocyte subset through C-C
chemokine receptor type 2 (CCR2) and C-X3-C motif
chemokine receptor (CX3CR) 1, respectively. Ly-6Chigh mono-
cytes dominate early and exhibit a proinflammatory function.
Ly-6Clow monocytes dominate later. Ly-6Clow monocytes
promote myocardial healing through myofibroblast accumu-
lation, angiogenesis, and collagen deposition.4

Therefore, targeted therapy toward monocyte subsets is an
attractive therapeutic option to facilitate favorable cardiac
remodeling. The existence of monocyte/macrophage subset
heterogeneity and their step-wise contribution to cardiac
remodeling provides an opportunity for specific target inter-
vention in the future.

What Do Monocytes Do?

Monocytes are a type of white blood cell present in the
peripheral circulation. The primary roles of monocytes are in
the participation of innate immunity and to maintain or
replenish different types of macrophages and dendritic cells,
which aid in phagocytosis of pathogens.25 Monocytes make
up to 8% of the peripheral blood white cells and play a central
role in the host response to exogenous and endogenous
pathogen species, such as bacteria and viruses. Additionally,
they modulate the inflammatory processes, producing both
pro- and anti-inflammatory cytokines and developing macro-
phages with pro- and anti-inflammatory phenotype.26

Monocytes are derived from macrophage dendritic cell
precursors that originate from the bone marrow under normal
homeostatic conditions. Common myeloid progenitor cells,
derived from the bone marrow, are responsible for differenti-
ation of precursor progenitor cells into monocytes.26 Macro-
phage dendritic cell precursors mature to form either dendritic
cells or macrophages. This process is dependent upon
stimulation by cytokines and/or microbial molecules.27 Evi-
dence to date suggests that both monocytes and dendritic cells
diverge at a very early multipotent progenitor stage.26 Common
myeloid progenitor cells give rise to the granulocyte-macro-
phage lineage, which, in turn, give rise to macrophage dendritic
cell precursors and subsequently, the committed monocyte
precursor.28 Control of monocyte/macrophage differentiation
is guided by a multitude of transcription factors, the complexity
of which is beyond the scope of this review article.29

In the 1970s, studies highlighted the increase in monocyte
proliferation within the bone marrow in response to inflamma-
tory stimuli, allowing for monocytosis.30 During steady state,
circulating monocytes have a half-life of�3 days.31Monocytes
aremobilized from the bonemarrow at times of tissue injury and
differentiate into macrophages or dendritic cells while mount-
ing an immune response. However, they are also implicated in
diseases with proinflammatory shift such as heart failure and
atherosclerosis.32,33 Multiple animal studies have shown a
diverse and complex function of monocytes depending upon
the inflammatory environment, central to which is the ability of
monocytes to be mobilized to site of injury.34

With regard to atherosclerosis, monocyte-derived “foam
cell” macrophages act as a substrate and thus facilitate the
progress to MI. Monocyte counts are further highly increased
in other forms of acute cardiovascular pathology.2,33,35

Overall, monocytes have been used as indicators of
prognosis in humans, with their high numbers being associ-
ated with increased risk of recurrent MI, hospitalization, and
cardiac death. Available data indicate that monocyte mobi-
lization in acute cardiac disease does not simply reflect
response to cardiac damage, but its active involvement in the
pathological process.5,36
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Human Monocyte Heterogeneity

Monocyte subsets were first isolated in 1988 using flow
cytometry.37 Expression of CD14 (lipopolysaccharide recep-
tor) and CD16 (Fc receptor) is used to define human
monocyte subsets. It should be noted that changes in
expression of monocyte subsets are limited to cell-surface
protein expression assessed by flow cytometry, with changes
in gene expression being up- or downregulated dependent on
functional properties.38

Human monocyte subsets do not follow their mouse
counterparts, in which initial studies in this field were
undertaken. As such, nomenclature for human and mouse
monocytes is not directly interchangeable and thus should not
be directly compared. Human monocytes do not express Ly6C
and description of their subsets is primarily based on
expression of CD14 (lipopolysaccharide receptor) and CD16
(FC gamma III receptor; Table 1).39–51

Human monocytes are dominated by “classical”
CD14++CD16� (Mon1) monocytes (ie, 85%). Humans have at
least 2 types of nonclassical monocytes. The CD14++CD16+
(Mon2) subset makes up around 6% of monocytes in humans.
CD14+CD16++ (Mon3) human monocytes make up 9% of all
monocytes.4,52 There are many significant differences between
Mon2 and Mon3, and, overall Mon2 is phenotypically and
functionally closer to Mon1 than to Mon3 (discussed in more
detail below). Earlier studies analyzed these 2 subsets
together, and such data need to be interpreted with care.

A consensus opinion on the nomenclature of human
monocytes in 2010 classed monocyte subsets as classical
(CD14++CD16�), intermediate (CD14++CD16+), and nonclas-
sical (CD14+CD16++).53 However, to avoid ambiguity the
phenotypic definition and numerical designation (ie, Mon1,
Mon2, and Mon3) have been incorporated into the most
recent consensus document on monocytes subsets.54

Although direct correlation between human monocyte
subsets is difficult, their differentiation and role in innate
immunity are comparable. In fact, both Mon2 and Mon3 have
reduced phagocytic activity, reduced production of reactive
oxygen species along with lower levels of CCR2 expression.55

Several studies have highlighted the presence of raised levels
of Mon2 in human inflammatory diseases.56

Mon1 is characterized by high expression of CD14,
interleukin (IL)-6 receptor, CD64, CCR2, and CD163, with
less-dense expression of vascular cell adhesion molecule and
CD204. Intracellular adhesion molecule receptor, C-X-C
chemokine receptor type 4, CD163, and vascular endothelial
growth factor receptor 1 have the highest expression on
Mon2. Mon3 has maximal expression of CD16, vascular cell
adhesion molecule 1 receptor, and CD204, with much lower
expression of CD14, IL-6 receptor, CD64, CCR2, and CD163
that Mon257 (Table 2).42,55,58–87

Monocyte subpopulations differ in the range of cytokines
they can produce in response to stimulation. Mon1 has been
shown to preferentially express cytokines IL-1b, IL-6, mono-
cyte chemoattractant protein 1 (MCP-1), an inhibitor of
nuclear factor kappa b kinase, whereas Mon2 produces anti-
inflammatory IL-10. Interestingly, Mon3 stimulates cytokine
production in response to viral rather than bacterial load,
further emphasizing the functional differences between
monocyte subsets.40 However, recent experiments showed
specific release of IL-6 and IL-8 cytokines by Mon2 and Mon3
in response to bacterial endotoxemia88 (Table 3).79,89–94

Mouse Monocyte Heterogeneity
Distinct mouse monocyte subsets were initially distinguished
based on the differential expression of a chemokine receptor,
CCR2 (receptor to MCP-1). CCR2+ monocytes showed a higher
migratory and infiltratory capacity compared with CCR2�

cells, most recently being studied in postinfarct cardiac
remodeling.42,95,96 Differential expression of an inflammatory
monocyte marker, Ly6C, allowed for better mouse subset
characterization.97 Analysis of the 2 principle mouse monocyte
subsets (Ly6C+ and Ly6C�) is commonly used in experimental
research; there is accumulating evidence for the existence of a
subset with intermediate phenotype, which resemble human
“intermediate” Mon2 subset.66,76 The subsets differ in expres-
sion of surface markers, for example: CD11b and CD115 have a
high density of CCR2 and only small numbers of CX3CR1 are
present on Ly6C+ monocytes. In contrast, Ly6C� monocytes
virtually lack CCR2, but express high levels of CX3CR1.97

Ly-6C+ monocytes have phagocytic and proinflammatory
characteristics. In acute MI, they accumulate promptly in areas
of myocardial injury, along with macrophages providing a
proinflammatory environment.98,99 Ly-6C� monocytes, on the
other hand, have been found to have anti-inflammatory
properties and this subset promotes post-MImyocardial healing
through the processes of myoblast activation, angiogenesis,
and collagen formation.66,100,101 Overall, the Ly-6C+ subset is
associated with detrimental effects to myocardium and their
high levels in the acute phase ofMI delaymyocardial healing.102

Functional studies have demonstrated that Ly6C+ cells
release reactive oxygen species, nitric oxide, and inflamma-
tory cytokines (eg, tumor necrosis factor a [TNFa], IL-1b) in
response to bacterial infection.27 The subset migration is
potentiated through the CCR2 receptor that initiates a change
in the ligand for vascular cell adhesion molecule 1 (VLA 4).
Studies have found that Ly6C+ monocytes preferentially
migrate into the sites of vascular inflammation and CCR2 is
central to this process, also promoting the subset maturation
toward M1 macrophage phenotype.96,103

In the absence of inflammation, Ly6C+ transforms into
Ly6C�, which predominates in the circulation, binding to
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vascular endothelium using CX3CR1 receptors.51 In response
to bacterial infection, Ly6C� cells release anti-inflammatory
cytokines (namely, IL-10). The response to inflammation
triggers the differentiation of monocytes into M2 macro-
phages, which, in turn, release anti-inflammatory cytokines
central to tissue repair.97,104,105

Release of Monocyte Subsets From the Bone
Marrow and Spleen
All 3 subsets are present in the bone marrow.25,66 After
maturation, Mon1 leaves the bone marrow, entering the
peripheral circulation through CCR2 chemokine receptors.59

Previous studies had suggested the ability of Mon1 to
differentiate further into Mon2 upon migration from the bone
marrow, which enter the circulation.59 Most recent studies
have shown the initial release of Mon1 in response to
endotoxemia with the subsequent differentiation into Mon2
and Mon3 subsets.106 However, analysis of bone marrow
samples indicates that cells with Mon2 phenotype are already
present in human bone marrow.107 In fact, cells with the
Mon2 phenotype were the dominant monocytic cells within
the bone marrow.57

Monocyte numbers have been found to follow a circadian
rhythm controlled by Arnt-1, which is a key gene in regulating
the molecular circadian clock.108 In contrast to the presence

Table 1. Phenotypic and Functional Differences Between Monocyte Subsets

Human (Mon1) Mouse (Mon1) Human (Mon2) Mouse (Mon2) Human (Mon3) Mouse (Mon3)

Proportion of total
monocytes, %39,40

85 40 to 45 5 5 to 32 10 26 to 50

Functional
properties39–41

High phagocytic
activity

High phagocytic
activity,
proinflammatory

High phagocytic
activity. T- cell
proliferation and
stimulation,
angiogenesis,
superior ROS
production

High phagocytic
activity,
proinflammatory

Low phagocytic
activity, high
“patrolling”
activity (in vivo),
T-cell
proliferation and
stimulation

Low phagocytic
activity,
patrolling
function,
tissue repair

Surface markers
present39,42–44

CD62L, CCR2,
CLEC4D, CLEC5A,
IL13Ra1, CXCR1,
CXCR2

CCR2, CD11b,
CD115, CCR5

CCR2, CD74, HLA-
DR, Tie-2, ENG

CCR2, CD11b,
CD115

Siglec10, CD43,
SLAN

CX3CR1, CD11b,
CD115, CCR5

Surface markers
absent39,41,45

CX3CR1, CD123,
p2rx1, Siglec10

CX3CR1 (low) CD62L, CXCR1,
CXCR2, CLEC4D
IL13Ra1

CX3CR1 (low) CCR5, CD62L,
CXCR1, CXCR2,
CD163, CLEC4D,
IL13Ra1

CCR2 (low)

Response to
LPS39,42,46–48

IL-10, G-CSF, CCL2,
RANTES, IL-6, IL-8

ROS, TNFa, nitric
oxide, IL-1b,
IL10 (low levels),
IFN-1, VLA-4,
IL-6, CD62L

IL-6, IL-8 ROS, TNFa, nitric
oxide, IL-1b, IL10
(low levels), IFN-1,
VLA-4, IL-6, CCR7,
CCR8

TNFa, IL-1b, IL-6,
IL-8

IL-10 (high
levels)

Increased gene
expression28,39,42,49–51

Wound healing and
anticoagulation,
S-100 proteins,
scavenger
receptors, C-type
lectin receptors,
antiapoptosis,
response to
stimuli (CCR2,
THBS1, CD163,
RNASE4, EDG3,
S100A12,
CLEC4D, VEGFA,
F5, RNASE2,
RNASE6, F13A1,
CRISPLD2,
PLA2G7CES1,
EREG, QPCT)

CD177, FN1, Sell,
Mmp8, F13a1,
Atrnl1, Ly-6c,
Chi313

MHC Class II,
presentation and
processing (CD14,
CSPG2, SLC2A3,
CD9, CD163,
PLA2G7, MCEMP1,
CLEC10A, EVA1,
RNASE2, GFRA2,
ALDH1A1, GALS2,
MARCO, ALOX5AP,
S100A12, QPCT,
FOLR3, OSM,
EGR1, CYP27A1,
OLFM1, PAD14,
HLADOA, ANG,
H19, SCD,
calgranulin B,
S100A9DDIT4

Inconclusive data Cytoskeletal
arrangement,
complement
components,
proapoptosis,
downregulation
of transcription
(FMNL2,
CDKN1C,
FCGR3A/B)

Vegfc, G0s2,
Ikzf3, Tgfbr3,
Cd83, Eno3,
Tgm2, Itgax,
CD36, Dusp16,
Slc12a2,
Fabp4
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Table 2. Differential Expression of Surface Markers Between Monocyte Subset

Human Mouse

Mon1

Proportion of total monocytes, %39 8539 40 to 4539

Functional properties39 High phagocytic activity39 High phagocytic activity,
proinflammatory39

Surface markers/receptors present

CD1449,58 High High

CD1649,58 Low Low

CCR259–61 High (increased 26-fold) High

CX3CR149,55,59,60 Low Low

CXCR149,55,62 High (increased 5-fold) Low

CXCR249,62 High (increased 7-fold) –

CD11b49,61,63–65 Low High

CD11549,66 – High

CD62L49,58,65 High (increased 3-fold) High

CLEC4D49,67 High (increased 4-fold) –

CLEC5A42,49,67 High (increased 3-fold) –

IL13Ra149 High (increased 9-fold) –

CD5449,68 Low (decreased 2-fold) –

CD4049,65 High (increased 6-fold) –

CD3642,49,69 High (increased 2-fold) –

CD9949,70 High (increased 2-fold) –

CCR149,71 High (increased 2-fold) –

P2XR149 Low (4-fold) –

HLA-ABC49,72 Low (decreased 1-fold) –

CLEC10A49 Low (decreased 6-fold) –

GFRA249 Low (decreased 6-fold) –

HLA-DR42,49,72,73 Low (decreased 8-fold) –

CD16349,74,75 Low (decreased 1-fold) –

CD11545,49,76 Low (decreased 1-fold) High

SLAN49,77,78 High (increased 2-fold) –

CD1d49 High (increased 1-fold) –

CCR549,79,80 Low (decreased 1-fold) –

CD29449 Low (decreased 1-fold) –

Siglec1049,81,82 Low (decreased 7-fold) –

Mon2

Proportion of total monocytes, % 539 5 to 3239

Functional properties High phagocytic activity,
T-cell proliferation and stimulation,
angiogenesis, superior ROS production39

High phagocytic activity,
proinflammatory39

Surface markers/receptors present

CD1442,49,58 High High

CD1642,49,58 Low Low

Continued
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Table 2. Continued

Human Mouse

CCR249,60,83 High (increased 8-fold) High

CX3CR149,55,60 Low Low

CXCR149,55,62 High (increased 4-fold) Low

CXCR246,49,62 High (increased 3-fold) –

CD11b49,61,65 High High

CD11542,45,49 Low High

CD62L49,65,72 High (increased 1.3-fold) –

CLEC4D49 High (increased 18-fold) –

CLEC5A42,49 High (increased 5-fold) –

IL13Ra149 High (increased 2-fold) –

CD5449,68 High (increased 1-fold) –

CD4049,65 High (increased 1-fold) –

CD3649,69 High (increased 5-fold) –

CD9949,70 High (increased 5-fold) –

P2XR149 Low (decreased 5-fold) –

HLA-ABC49,72 High (increased 1-fold) –

CLEC10A49 High (increased 4-fold) –

GFRA249 High (increased 3-fold) –

HLA-DR49,72,73 High (increased 2-fold) –

CD16349,75 High (increased 6-fold) –

SLAN49,77,78 Low (decreased 3-fold) –

CD1d49 Low (decreased 5-fold) –

CCR549,79,80 High (increased 7-fold) –

CD29449 Low (decreased 3-fold) –

Siglec1049,81,82 Low (decreased 21-fold) –

Mon3

Proportion of total monocytes, % 1039 26 to 5039

Functional properties Low phagocytic activity, high “patrolling”
activity (in vivo), T-cell proliferation
and stimulation39

Low phagocytic activity,
patrolling function,
tissue repair39

Surface markers/receptors present

CD1449,58 Low Low

CD1649,58 High High

CCR249,60,61 Low Low/–

CX3CR145,49,60,65 High High

CD11b49,61,84 High High

CD62L58,65,85 Low Low

P2XR149 High (increased 1.2-fold) –

HLA-ABC49,72 Low (–) –

CLEC10A49 Low (–) –

GFRA249 Low (–) –

HLA-DR49,72,73 Low (–) –

Continued
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of CCR2 ligands present on monocytes during homeostasis,
the release of patrolling monocytes is dependent upon the
G-protein-coupled receptor for sphingosine-1-phosphate, the
deficiency of which leads to an inability of Mon3 to
redistribute from the bone marrow.109

Under certain inflammatory conditions (eg, cancer, HF, MI,
and stroke), mouse models have shown the spleen to be
capable of extramedullary monopoiesis.110 Release of mono-
cytes from the spleen is dependent upon angiotensin II as
opposed to CCR2 in the bone marrow.63 Furthermore, in
cardiovascular disease, there is a dependency upon a
separate chemokine, chemokine (C-X-C motif) ligand 1, to
direct the release of monocytes from both the splenic and
bone marrow reservoirs.111

Roles of Circulating Monocyte Subsets
Monocyte studies involving gene analysis highlight the pref-
erential expression of genes involved in angiogenesis, wound
healing, and coagulation (namely, Mon3).49 Alternatively,

Mon1 have a higher capability to produce IL-1b and TNFa in
response to bacterial lipopolysaccharides.40 During the
inflammatory process, both Mon1 and Mon2 bind to MCP-1,
thus allowing monocytes to invade into human tissue and
perpetuate the inflammatory cascade.112

In contrast, Mon3 bind to CX3CR/chemokine (C-C motif)
ligand 3 receptors through the leucocyte functional antigen 1,
subsequently stimulating the release of IL-1b and TNFa. Such
pathophysiology has been implicated in autoimmune condi-
tions, such as rheumatoid arthritis.40

Role of Monocytes in Cardiovascular Disease
and Heart Failure
Inflammation plays a pivotal role in the pathogenesis of HF.
Cytokines, such as IL-6 and TNFa, are important markers of
active disease and prognosis.113,114 Compromise of the
myocardium has multiple etiologies, ranging from ischemic
heart disease, hypertension, cardiac arrhythmias, and meta-
bolic diseases. Neopterin, which is a metabolite of guanosine
triphosphate, has been found to be elevated in patients with
HF and this is said to be a marker of monocyte activation.115

The transmigration of cells to the site of tissue injury relies
upon specific cell-surface molecules, namely monocytes and
cell adhesion molecules, that respond to signaling by cytokines
released from the injured vessel wall.4 Once inside the vessel
wall/myocardium, monocytes will differentiate into macro-
phages, which promote tissue repair. The complex interactions
within injured myocardial cells lead to formation of both pro-
and anti-inflammatory cells. In pathological conditions, there is
an override of tissue homeostasis and uncontrolled inflamma-
tion leads to the exaggerated release of macrophages, which,
instead of healing tissue, cause tissue damage with adverse
remodeling. Therefore, trying to regulate the monocyte/
macrophage balance is a logical therapeutic strategy.

As discussed, under specific stimuli monocytes will
differentiate into macrophages. Macrophages play a vital role
in the phagocytosis and removal of pathogens.116 Although

Table 2. Continued

Human Mouse

CD16349,74,86 High (increased 7-fold) –

CD11545,49,76 Low (decreased 2-fold) High

SLAN49,77,78,87 Low (decreased 7-fold) –

CD1d49 High (increased 4-fold) –

CCR549,79,80 High (increased 8-fold) –

CD29449 Low (decreased 2-fold) –

Siglec1049,81,82 Low (decreased 3-fold) –

(–) indicates evidence lacking or under-reported.

Table 3. Differential Cytokines Production by Monocyte
Subsets in Response to LPS in Human and Mouse Models
Relative to Mon2

Plasma Cytokine Mon1 Mon2 Mon3

G-CSF49,89,90 High Low Low

IL-1040,49,91,92 High Low Low

CCL227,49,93 High Low Low

RANTES49,79 High Low Low

IL-627,49,65,88 High Intermediate Intermediate

IL-840,49,88,90 High High High

IL 1-b27,49,65 Intermediate Intermediate High

TNF-a49,65,94 Intermediate Low High

CCR2 indicates C-C chemokine receptor type 2; G-CSF, granulocyte colony-stimulating
factor; IL, interleukin; LPS, lipopolysaccharide; RANTES, regulated on activation, normal T
cell expressed and secreted; TNF-a, tumor necrosis factor alpha.
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inflammation aims to protect against infection, it can cause
damage to the vascular endothelium, activation of tissue
macrophage, and activation of cytokine pathway migration of
smooth muscle cells to the intima of the arterial wall, thus
accelerating the process of atherosclerosis.117

Hypoxia and myocardial necrosis drive an inflammatory
process in the injured myocardium, which involves activation
of monocytes/macrophages. These cells, in turn, are capable
of producing cytokines, chemokines, and growth factors.118 In
patients with diabetes mellitus who suffer an ST-elevation MI,
Mon2 subsets were elevated and their high counts predict
recurrent cardiovascular events and death.119

In ischemic HF, Mon1 have similar counts to controls with
coronary artery disease without HF, but their numbers are
increased during HF decompensation. In contrast, Mon2 is the
only subset increased in patients with stable HF and it shows
a further sharp increase in acute HF.119,120 Of interest, high
Mon2 counts were associated with better survival in that
study, using a combined outcome of death and rehospitaliza-
tion. This suggests a presence of potentially protective
properties of this subset in patients with failing hearts.
Analysis of their functional status was not analyzed in the
study, and it is difficult to be certain what drives possible
benefits or dangers associated with the subset.

There is some controversy on the role of Mon3 in HF given
that both their depletion or no change were observed.119,120

This may be attributed to differences in etiology of the studied
patients, for example, an accelerated homing of Mon3 in
patients with nonischemic HF, as observed in the study with
mixed HF etiology. A notable limitation in some studies is the
lack of control for comorbidities that may be responsible for
the abnormal release of monocytes. Despite this potential
limitation, one should still recognize the importance of

monocytes in the inflammatory process that happens in HF
with further research in human subjects, particularly focusing
on Mon2 being justified.5

A compromised myocardium provides multiple stimuli for
monocyte recruitment in patients with HF. The presence of
excessive LV and atrial stretch in experimental studies of mice
with HF with preserved ejection fraction on the background of
hypertension has shown to stimulate myocardial resident
macrophages to signal the release monocyte chemoattrac-
tants (including MCP-1, interleukins).121 Monocyte recruit-
ment is further amplified by the presence of tissue hypoxia
and ischemia122,123 (Table 4).124–136

Excessive monocyte/macrophage cardiac recruitment
leads to a vicious circle of myocardial damage and remodeling.
This process involves apoptosis of cardiomyocytes.122,123 It
has been shown that monocyte TNFa triggers production of the
inducible type of nitric oxide synthase, uncontrolled oxidative
stress, and, consequently, apoptosis and tissue necrosis.122 In
the inflammatory process, cytokine release by stimulated
monocytes attracts even more monocytes to the compromised
myocardium, thus contributing to the vicious circle (Figure 1).

Monocyte Activation in Cardiac Fibrosis
Cardiac fibrosis is the consequence of an activated mono-
cyte/macrophage cascade in HF. Both cellular and extracel-
lular processes are involved in cardiac fibrosis. Within the
extracellular matrix, cardiac fibroblasts make up �60% of all
cells, in fact, outnumbering cardiomyocytes. They are rela-
tively scarce in a healthy adult heart, and a rise in the cell
population occurs during a pathological process. This is
suggested, for example, by evidence from mice models where
tissue injury led to a rise in IL-b production and, consequently,

Table 4. Changes in Mon2 and Mon3 in Cardiovascular Disease States

Condition Mon2 Mon3

Stable coronary artery disease33,124,125 No change vs healthy control No change vs health control

Acute myocardial infarction126–128 2.5-fold increase, positively correlates
with troponin T level

No change, no correlation with
troponin T level

Unstable angina129–131 Increased (in intermediate-high-risk patients’
vs low-risk cohort)

No change (no difference with
risk severity)

Acute heart failure5,132,133 Increased, raised CD41 count relative to mon3 No change

Chronic heart failure120,134 Increased expression, correlates with NYHA
class/LVEF/NT-proBNP

Increased but no correlation to NYHA
class/LVEF/NT-proBNP

Chronic heart failure135 No change vs healthy control
No association with end-diastolic dimension

Increased percentage vs health
controls

Inverse relationship with end-diastolic
dimension

Abdominal aortic aneurysm136 Increased vs healthy controls Increase count vs healthy controls

LVEF indicates left ventricular ejection fraction; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association.
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to fibroblast expansion.137 This, in turn, propagates inflam-
matory cell infiltration and further cytokine production in the
site of tissue injury.137 In such cases, there is an increase in
rate of differentiation of precursor cells (eg, monocytes,
endothelial progenitors, pericytes, and bone marrow circulat-
ing progenitor cells) into fibroblasts.138,139

The process by which monocytes can potentiate the
cardiac inflammatory response leading to fibrosis is reliant on
monocyte cell-surface receptors. One such group of receptors
is termed the Toll-like receptors (TLRs), which are members of
the pattern recognition system, but also able to respond to
endogenic stimuli.140 Although TLR4 is present on different
types of cells, its highest density has been noted on
monocytes, reflective of their vital role in innate immunity.
In addition, monocyte density of CD14 has also been found to
be higher in patients with moderate-severe heart failure in
comparison with normal or mild LV impairment.141,142

Expression of TLR4 on monocytes is linked to the degree of
cardiac injury and remodeling.143 Evidence thus far points to
the enhanced recruitment of TLR4-expressing monocytes into
a compromised myocardium in both human and mouse
studies.144,145 The remodeled myocardium has a higher count
of TLR4+ monocytes compared with a healthy myocardium,146

thus creating a proinflammatory environment. Indeed, TLR4-
deficient mice have a lower inflammatory burden post–acute
ischemia and reduced apoptosis of cardiomyocytes.147

Further evidence has pointed to several mechanisms by
which monocyte activation takes place in HF. With respect to
the immune response found in cardiovascular disease,
lipopolysaccharides that are found on Gram-negative bacteria
act as the ligand component for the activation of monocytes
(eg, binding to CD14 and TLR4 as previously mentioned) and
triggering cytokine release. This endotoxin-cytokine hypothe-
sis centers on bacterial transition into the circulation through
entrance through a permeable bowel membrane.148 This is
promoted by venous congestion developed through HF
increasing membrane permeability. The overexpression of
inflammatory cytokines amplifies the process leading to a
pathological loop often culminating in symptomatic HF.142

An alternative mechanism to the introduction of bacteria
into the circulation in HF involves activation of the sympa-
thetic system, a common feature of HF.149 The sympathetic
activity is thought to redistribute blood flow away from the
splanchnic circulation, which, in turn, leads to transient
ischemia in the bowel. This causes an increase in endothelial
permeability and entry of the proinflammatory bowel contam-
inants into the circulation. This mobilizes inflammatory cells
from bone marrow (and the spleen depot), and numerous
studies have found an increase in blood leucocytes in patients
with advanced HF, thus supporting this hypothesis.150,151

It is likely that no 1 single hypothesis fully explains the
process by which monocytes and their surface receptors are
stimulated to propagate cardiac fibrosis. Both systemic and
local cascades of inflammatory pathways exist to enhance the
stimuli for monocyte-triggered cardiac fibrosis.

Is There a Different Role of Monocytes in HF
With Preserved Ejection Fraction?
HF with preserved ejection fraction (HFpEF) is a common
condition that constitutes half of all cases of HF. Its diagnosis
is based on the presence of a “normal” ejection fraction
together with signs and symptoms suggestive of HF and
evidence of diastolic dysfunction in the form of prolonged LV
relaxation and filling, increased diastolic stiffness, and
elevated LV end-diastolic pressures.152 An aging population,
along with multiple comorbidities, predisposes to the increas-
ing rates of HFpEF. Limited advancement has been made in
the treatment of these patients. The complexity in the
pathogenesis of LV remodeling in HFpEF with insufficient
understanding of its mechanisms likely contribute to the
limited progress in this field.

HF symptoms in patients with diastolic dysfunction are
attributed to reduced stroke volume secondary to
increased cardiac stiffness. This reflects changes in the

Figure 1. Triggers for monocyte activation and subsequent
function. HSP indicates xxx; LPS, lipopolysaccharide; LV, left
ventricular; ROS, reactive oxygen species.
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extracellular matrix with cardiac fibrosis and cardiomyocyte
hypertrophy.153 Majority of such patients have a prolonged
history of hypertension with an accelerated accumulation of
monocytes in the presence of pressure overload.154,155

Monocytes have been found to mediate the inflammatory
process by releasing chemokines, such MCP-1, TNFa, and
transforming growth factor-b (TGF-b), which, in turn, play
proinflammatory and -fibrotic roles.156,157 MCP-1 knockout
mice studies have shown significant suppression of fibrosis
and macrophage activation.158 In relation to cytokines, TNFa,
IL-1, IL-6, IL-8, and MCP-1 in the peripheral circulation of
patients with chronic HF are shown to be elevated.159–161

Monocytes are 1 of the major sources of these inflamma-
tory cells. Such cells have been shown to be of prognostic
importance in patients developing HFpEF.162 This is unsur-
prising given that the comorbidities of patients with HFpEF
have long established an inflammatory origin in their etiology,
for example, chronic vascular inflammation found in patients
with coronary artery disease.

The processes described lead to structural and mechanical
remodeling of the heart muscle through the interstitial depo-
sition of extracellular matrix proteins such as collagen.163 The
resulting hypertrophic changes of the myocardium cause the
findings of diastolic dysfunction. It is this inflammatory and
fibrotic process that underpins the changes observed in
patients with diastolic dysfunction and HFpEF.

However, until very recently, all pathophysiological evi-
dence for monocytes in HF were based on HF with reduced
ejection fraction. More recently, patients with HFpEF have
been found to have raised monocyte counts, specifically the
Mon2 subset.164,165 Data on macrophage/monocyte polariza-
tion in human patient cardiac tissue showed increased
presence of TGF-b-expressing leucocytes, resembling blood
Mon2 subset.166 In agreement with this, animal studies have
shown cardiac upregulation of M2 macrophages, which
contribute to cardiac fibrosis in hypertension.167 Healthy
monocytes exposed to serum from HFpEF patients preferen-
tially develop M2 macrophage profibrotic features.154 In this
study, patients with HFpEF had elevated cytokine levels (eg,
TNFa, IL-6, and IL-12) and MCP-1, which paralleled high
monocyte counts. Furthermore, there was a positive correla-
tion between monocyte numbers and worsening parameters of
diastolic dysfunction.154 An acute ischemic injury is accom-
panied by conversion from M1 to M2 macrophages, a type of
macrophage known to provide a profibrotic inflammatory
environment.168

Despite the relative scarcity of the data, it is likely that this
monocyte/macrophage-driven inflammatory environment is
largely responsible for the fibrotic changes in HFpEF. Their
increase number causes an increase in collagen deposition
and conversion of cardiac fibroblasts to myofibroblasts
(Figure 2).

What About Atrial Fibrillation?

Atrial fibrosis is a hallmark of the structural cardiac remod-
eling that takes place in AF, causing an increase in the
frequency of AF paroxysms, which, in turn, increase likelihood
of progression to permanent AF.169 Atrial fibrosis has been
observed in biopsies from patients with AF148 as well as in
patients with specific risk factors predisposing to AF, such
as valvular heart disease,170 dilated and hypertrophic
cardiomyopathy,171 and advanced age.172

Structural heart remodeling in aging and heart disease is
associated with fibrosis. With aging, there is a progressive
enlargement of the extracellular compartment in the atrial
septum attributed to accumulation of connective tissue
fibers.173 This process is even more prominent in an HF
model,174 where larger areas of fibrosis were observed,
similar to the “replacement fibrosis” observed after tissue
damage and cell death. Atrial fibrosis may, in itself, be
sufficient to increase susceptibility to AF, as shown in mice
with atrial fibrosis attributed to overexpression of TGF-b1.175

Although there are strong indications from animal models
that atrial fibrosis can be proarrhythmic,8 some questions
regarding the role of atrial fibrosis as a substrate of AF are still
unresolved. Experimental data linking inflammation and atrial
fibrosis have been conflicting. Most recent data point to the
upregulation of profibrotic factors, such as TGF-b, and accumu-
lation of collagen in the atrial interstitium.176 However, previous
studies showed preserved interstitium despite changes in atrial
architecture and myocyte characteristics.177 The discrepancy
between the data can be partly explained by the findings that
profibrotic factors may not accumulate over shorter time
periods found in some studies, and that increased gene
expression of markers of fibrosis may be the first sign of later
fibrosis.178 Another proinflammatory peptide, TNFa, has been
shown to be elevated in patients with chronic AF. Released
largely bymonocytes andmacrophages, TNFa has been found at
higher levels in patients with nonvalvular AF than those in sinus
rhythm.179 This correlates with a more-significant leuckocyte
infiltration and more-advanced fibrotic changes in the atria.

Some, but not all, human studies have confirmed excessive
atrial fibrosis in chronic AF patients compared with those with
sinus rhythm.180,181 The degree of atrial fibrosis and profibro-
genic status correlates with the persistence of AF.182 However,
from these studies, it is unclear whether the fibrosis is caused
by underlying structural disease leading to AF or by AF itself.
Given that the degree of the underlying heart disease is not
well documented in every study, it is currently difficult to
establish the magnitude of effects of particular conditions to
the development of atrial fibrosis in AF patients. Some insights
into profibrotic effects of background cardiac pathology versus
AF come from a comparison of structural heart disease
patients with and without AF.170 In this study, AF itself has not
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been found to be associated with atrial fibrosis, but is instead
related to the severity of the structural heart disease. Given the
significant differences in AF pathogenesis among patients with
or without structural heart disease, studies dedicated to
nonvalvular AF would be essential to shed further light to the
interactions between AF and connective tissue deposition in
the atria.

The question therefore remains of how important atrial
fibrosis is as a causative factor for AF in humans. Most animal
models show that atrial dilation is accompanied by both atrial
fibrosis and conduction disturbances, although conduction
disturbances could also be observed in the absence of atrial
fibrosis.183,184 However, frequently used mice models of AF
have significant limitations attributed to the fact that this
species has a high physiological heart rate and thus AF
induced in mice may not accurately reflect pathological
processes in humans. In patients undergoing open heart
surgery, degree of fibrosis does correlate with the occurrence
of postoperative AF185 and with the recurrence of AF.181

Similar to AF, cardiac fibrosis is related to myocardial
inflammation and oxidative stress secondary to infiltration of
inflammatory cells, thus suggesting further pathophysiological
links between the 2.186 The oxidative stress observed in these

conditions is further amplified by stimulation of the renin
angiotensin-aldosterone system, which aids NADH oxidase
release.187 IL-1, IL-6, TNFa, and MCP-1 are all upregulated in
AF predisposing to fibrotic changes and the related electrical
and structural remodeling, typical of AF. The role of inflam-
mation in AF development is highlighted by the correlation
with C-reactive protein (CRP) and has been found, in
postoperative patients, to be a surrogate marker for predictor
of new-onset AF.188 Also, postablation CRP levels can be used
as a marker for risk of recurrence.189

Further evidence on the role of cardiac fibrosis in AF
comes from experimental and clinical studies demonstrating
that prevention of atrial fibrosis can delay the development of
AF. Several treatments (eg, statins, angiotensin-converting
enzyme inhibitors, AT1-receptor blockers, fish oil, and gluco-
corticoids) have been proven to effectively delay the structural
remodeling process and reduce AF burden in a variety of
experimental models.190–195 Several post-hoc analyses of
clinical trials and small-scale, proof-of-principle studies indi-
cate utility of such approaches in humans, but improvement
of the patients’ hemodynamics with normalization of atrial
pressures might also have contributed to the beneficial
effects of these compounds.196

Figure 2. Role of monocyte subsets in heart failure. Human monocytes are classified as Mon1, Mon2, and Mon3, respectively, based on their
levels expression of CD14 and CD16. Mon2 are increased in patients with heart failure and are recruited to the myocardium in times of tissue
injury, whereas Mon3 serve more of a patrolling function and are not so rapidly recruited. Monocyte subsets then differentiate into dendritic
cells and inflammatory macrophages to further potentiate the fibrosis. CCR2/5 indicates C-C chemokine receptor type 2/5; CX3CR1, C-X3-C
motif chemokine receptor 1; HLA-DR, human leukocyte antigen – antigen D related; IL, interleukin; ROS, reactive oxygen species; TNF, tumor
necrosis factor.
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The role of ventricular fibrosis in AF is less established.
Patients with AF have more-marked ventricular fibrosis than
those with sinus rhythm.197 Although atrial and ventricular
fibrosis are likely to share a common mechanism, there are
much more-limited findings of profibrotic gene expression in
ventricular fibrosis in comparison with the atrium.198 TGF-b
seems to play a major role in ventricular fibrosis in AF, but
further data are needed to establish the mechanisms that
trigger its expression in the myocardium and the role of
monocytes and macrophages as a source of TGF-b in the
heart.199

Conclusion
Monocytes represent an essential component of the innate
immune system and play a vital role in cardiovascular
health. The beneficial effects of monocytes include their
contribution to cardiac remodeling in response to physio-
logical and pathological changes in hemodynamics, elimina-
tion of pathogens, involvement in apoptosis, and
phagocytosis of necrotic tissues. However, excessive inflam-
matory response to cardiac insult can be harmful to the
human body and can lead to cardiac fibrosis and heart
failure. There is a fine balance between monocytes that
predisposes to beneficial or deleterious effects. Existence of
several subsets of monocytes is likely to explain the
diversity of the monocyte effects in health and disease. To
date, few studies have specifically looked at monocytes
subsets and their key characteristics as contributors to
cardiac fibrosis and AF.

Monocytes trigger an inflammatory cascade involving the
release of cytokines. Such cytokines migrate to the
myocardium and adhere to the endothelial wall. Infiltration
into the myocardium is a complex process, but 1 that
ultimately leads to fibrosis and symptoms of HF. To better
identify therapeutic targets, the role of monocytes and their
individual subsets, in the pathophysiology of AF and its
complications, such as HF, must be determined.
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